1
|
Li G, Chen C, Zhang H, Li ZH, Sun C, Shi Z, Han Y. Unraveling Various Stacking Modes and Local Structures in Poly(triazine imide) Materials via Low-Dose Electron Microscopy. J Am Chem Soc 2025; 147:3896-3903. [PMID: 39827414 DOI: 10.1021/jacs.4c17928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Poly(triazine imide) (PTI) materials, a class of layered graphitic carbon nitrides, have garnered significant attention for their unique electronic, thermal, and catalytic properties. These properties can be adjusted through postsynthesis treatments. However, the influence of these treatments on the layer stacking modes and local structures within PTI remains largely unexplored. Herein, we demonstrate that low-dose electron microscopy can provide crucial insights into these previously unanswered questions. Utilizing integrated differential phase-contrast scanning transmission electron microscopy (iDPC-STEM) with carefully controlled electron doses, we achieved subangstrom resolution imaging of PTI materials. The obtained images reveal that acid treatments promote the transformation from AA'-stacking to AB- and ABC-stacking, with the latter being identified for the first time. Density functional theory calculations indicate that the replacement of intercalated cations is the primary driver of stacking mode transformation, while interlayer electrostatic interactions dictate the overall layer stacking. In addition, iDPC-STEM reveals the presence of Cl on the zigzag side surfaces of pristine PTI and its absence in acid-treated PTI. It also uncovers a Cl-deficient transition zone between AA'-stacking and AB-stacking regions, suggesting that the transformation of stacking modes is accompanied by the extraction and reintercalation of Cl ions.
Collapse
Affiliation(s)
- Guanxing Li
- Advanced Membranes and Porous Materials Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Cailing Chen
- Advanced Membranes and Porous Materials Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Hui Zhang
- Center for Electron Microscopy, South China University of Technology, Guangzhou 510640, China
- School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhen-Hua Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Chenghua Sun
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Zhan Shi
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Yu Han
- Center for Electron Microscopy, South China University of Technology, Guangzhou 510640, China
- School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
2
|
Jing L, Li Z, Chen Z, Li R, Hu J. Engineering Polyheptazine and Polytriazine Imides for Photocatalysis. Angew Chem Int Ed Engl 2024; 63:e202406398. [PMID: 39190831 PMCID: PMC11586708 DOI: 10.1002/anie.202406398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 08/29/2024]
Abstract
As organic semiconductor materials gain increasing prominence in the realm of photocatalysis, two carbon-nitrogen materials, poly (heptazine imide) (PHI) and poly (triazine imide) (PTI), have garnered extensive attention and applications owing to their unique structure properties. This review elaborates on the distinctive physical and chemical features of PHI and PTI, emphasizing their formation mechanisms and the ensuing properties. Furthermore, it elucidates the intricate correlation between the energy band structures and various photocatalytic reactions. Additionally, the review outlines the primary synthetic strategies for constructing PHI and PTI, along with characterization techniques for their identification. It also summarizes the primary strategies for enhancing the photocatalytic performance of PHI and PTI, whose advantages in various photocatalytic applications are discussed. Finally, it highlights the promising prospects and challenges of PHI and PTI as photocatalysts.
Collapse
Affiliation(s)
- Liquan Jing
- Department of Chemical and Petroleum EngineeringUniversity of Calgary2500 University DriveNWCalgaryAlbertaT2 N1 N4Canada
| | - Zheng Li
- Department of Chemical and Petroleum EngineeringUniversity of Calgary2500 University DriveNWCalgaryAlbertaT2 N1 N4Canada
| | - Zhangxin Chen
- Department of Chemical and Petroleum EngineeringUniversity of Calgary2500 University DriveNWCalgaryAlbertaT2 N1 N4Canada
- Eastern Institute for Advanced StudyNingboZhejiang315200China
| | - Rengui Li
- State Key Laboratory of CatalysisDalian National Laboratory for Clean EnergyDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023China
| | - Jinguang Hu
- Department of Chemical and Petroleum EngineeringUniversity of Calgary2500 University DriveNWCalgaryAlbertaT2 N1 N4Canada
| |
Collapse
|
3
|
Taghilou S, Nakhjirgan P, Esrafili A, Dehghanifard E, Kermani M, Kakavandi B, Pelalak R. Performance, progress, and mechanism of g-C 3N 4-based photocatalysts in the degradation of pesticides: A systematic review. CHEMOSPHERE 2024; 368:143667. [PMID: 39515531 DOI: 10.1016/j.chemosphere.2024.143667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
In the modern world, humans are exposed to an enormous number of pesticides discharged into the environment. Exposure to pesticides causes many health disorders, such as cancer, mental retardation, and endocrine disruption. Therefore, it is a priority to eliminate pesticides from contaminated water before discharge into aquatic environments. Conventional treatment systems do not efficiently accomplish pesticide remediation. Applying graphitic carbon nitride (g-C3N4; GCN)-based materials as highly efficient and low-cost catalysts can be one of the best methods for adequately removing pesticides. This study aims to review the most relevant studies on the use of GCN-based photocatalytic processes for degrading well-known pesticides in aqueous solutions. Thus, in the current state-of-the-art review, an overview is focused not only on how to use GCN-based photocatalysts towards the degradation of pesticides, but also discusses the impact of important operational factors like solution pH, mixture temperature, catalyst dosage, pesticide concentration, photocatalyst morphology, light intensity, reaction time, oxidant concentration, and coexisting anions. In this context, four common pesticides were reviewed, namely 2,4-dichlorophenoxyacetic acid (2,4-D), malathion (MTN), diazinon (DZN), and atrazine (ATZ). Following the screening procedure, 55 full-text papers were chosen, of which the most were published in 2023 (n = 10), and the most publications focused on the elimination of ATZ (n = 33). Among the GCN modification methods, integrating GCN with other photocatalysts showed the best performance in enhancing photocatalytic activity towards the degradation of pesticides. All GCN-based photocatalysts showed a degradation efficiency of > 90% for pesticides under optimum operating conditions. This review provides a detailed summary of different GCN modification methods to select the most promising and cost-effective photocatalyst degradation of pesticides.
Collapse
Affiliation(s)
- Samaneh Taghilou
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, IR, Iran
| | - Pegah Nakhjirgan
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, IR, Iran
| | - Ali Esrafili
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, IR, Iran
| | - Emad Dehghanifard
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, IR, Iran
| | - Majid Kermani
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, IR, Iran.
| | - Babak Kakavandi
- Department of Environmental Health Engineering, Alborz University of Medical Sciences, Karaj, Iran.
| | - Rasool Pelalak
- Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam; School of Engineering & Technology, Duy Tan University, Da Nang, Viet Nam.
| |
Collapse
|
4
|
Zhang Y, Zhou K, Su S, Gao J, Liu J, Jiang L. Congener-welded crystalline carbon nitride membrane for robust and highly selective Li/Mg separation. SCIENCE ADVANCES 2024; 10:eadm9620. [PMID: 38875338 PMCID: PMC11177944 DOI: 10.1126/sciadv.adm9620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 05/10/2024] [Indexed: 06/16/2024]
Abstract
Extracting lithium from salt-lake brines critically relies on the separation of Li+ and Mg2+, which could combat the lithium shortage. However, designing robust sieving membrane with high Li+/Mg2+ selectivity in the long-time operation has remained highly challenging. Here, we demonstrate a bioinspired congener-welded crystalline carbon nitride membrane that can accomplish efficient and stable monovalent ion sieving over divalent Mg ion. The crystalline carbon nitrides have uniform and narrow pore size to reject the large hydrated Mg2+ and rich ligating sites to facilitate an almost barrierless Li+ transport as suggested by ab initio simulations. These crystals were then welded by vapor-deposited congeners, i.e., amorphous polymer carbon nitride, which have similar composition and chemistry with the crystals, forming intimate and compatible crystal/polymer interface. As a result, our membrane can sieve out highly dilute Li+ (0.002 M) from concentrated Mg2+ (1.0 M) with a high selectivity of 1708, and can be continuously operated for 10 days.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Ke Zhou
- College of Energy, Soochow Institute for Energy and Materials InnovationS (SIEMIS), Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou 215006, China
| | - Shigang Su
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jun Gao
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Jian Liu
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Lei Jiang
- CAS Key Laboratory of Bio-Inspired Materials and Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100090, China
| |
Collapse
|
5
|
Haseen U, Kapoor S, Khan RA, Ahmad H, Koo BH. In Situ Fabrication and Characterization of g-C 3N 4 onto Cellulose Nanofibers and Selective Separation of Heavy Metal Ions. ACS OMEGA 2024; 9:1620-1626. [PMID: 38222511 PMCID: PMC10785291 DOI: 10.1021/acsomega.3c08177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/28/2023] [Accepted: 12/18/2023] [Indexed: 01/16/2024]
Abstract
Graphitic carbon nitride nanosheets were synthesized onto cellulose nanofiber surfaces utilizing an eco-friendly salt melt approach. The fabricated material CNF@C3N4 selectively removes Ni(II) and Cu(II) from electroplating wastewater samples. The immobilization of g-C3N4 on solid substrates eases handling of nanomaterial in a flow-through approach and mitigates sorbent loss during column operations. Characterization techniques such as scanning electron microscopy, tunneling electron microscopy, and X-ray photoelectron microscopy were employed to analyze the surface morphology and chemical bonding within the synthesized material. Selective Cu(II) and Ni(II) sorption predominantly arises from the soft-soft interaction between metal ions and associated nitrogen groups. An inner-sphere surface complexation mechanism effectively elucidated the interaction dynamics between the metal and CNF@C3N4. Experimental findings demonstrated satisfactory separation of Ni(II) and Cu(II) ions, with the extraction of 340.0 and 385.0 mg g-1 of material, respectively. Additionally, the devised technique was executed for the preconcentration and quantification of trace metals ions in water samples with a detection limit and limit of quantification of 0.06 and 0.20 μg L-1, respectively.
Collapse
Affiliation(s)
- Uzma Haseen
- Department
of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Sakshi Kapoor
- Department
of Physics, Indian Institute of Technology, New Delhi 110016, India
| | - Rais Ahmad Khan
- Department
of Chemistry, College of Science, King Saud
University, Riyadh 11451, Saudi Arabia
| | - Hilal Ahmad
- Division
of Computational Physics, Institute for Computational Science, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
- Faculty of
Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
| | - Bon Heun Koo
- School
of Materials Science and Engineering, Changwon
National University, Changwon 1140, Gyeongnam, South Korea
| |
Collapse
|
6
|
Hou S, Gao X, Lv X, Zhao Y, Yin X, Liu Y, Fang J, Yu X, Ma X, Ma T, Su D. Decade Milestone Advancement of Defect-Engineered g-C 3N 4 for Solar Catalytic Applications. NANO-MICRO LETTERS 2024; 16:70. [PMID: 38175329 PMCID: PMC10766942 DOI: 10.1007/s40820-023-01297-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/17/2023] [Indexed: 01/05/2024]
Abstract
Over the past decade, graphitic carbon nitride (g-C3N4) has emerged as a universal photocatalyst toward various sustainable carbo-neutral technologies. Despite solar applications discrepancy, g-C3N4 is still confronted with a general fatal issue of insufficient supply of thermodynamically active photocarriers due to its inferior solar harvesting ability and sluggish charge transfer dynamics. Fortunately, this could be significantly alleviated by the "all-in-one" defect engineering strategy, which enables a simultaneous amelioration of both textural uniqueness and intrinsic electronic band structures. To this end, we have summarized an unprecedently comprehensive discussion on defect controls including the vacancy/non-metallic dopant creation with optimized electronic band structure and electronic density, metallic doping with ultra-active coordinated environment (M-Nx, M-C2N2, M-O bonding), functional group grafting with optimized band structure, and promoted crystallinity with extended conjugation π system with weakened interlayered van der Waals interaction. Among them, the defect states induced by various defect types such as N vacancy, P/S/halogen dopants, and cyano group in boosting solar harvesting and accelerating photocarrier transfer have also been emphasized. More importantly, the shallow defect traps identified by femtosecond transient absorption spectra (fs-TAS) have also been highlighted. It is believed that this review would pave the way for future readers with a unique insight into a more precise defective g-C3N4 "customization", motivating more profound thinking and flourishing research outputs on g-C3N4-based photocatalysis.
Collapse
Affiliation(s)
- Shaoqi Hou
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney (UTS), Sydney, NSW, 2007, Australia
| | - Xiaochun Gao
- Laboratory of Plasma and Energy Conversion, School of Physics and Optoelectronic Engineering, Ludong University, 186 Middle Hongqi Road, Yantai, 264025, People's Republic of China.
| | - Xingyue Lv
- Laboratory of Plasma and Energy Conversion, School of Physics and Optoelectronic Engineering, Ludong University, 186 Middle Hongqi Road, Yantai, 264025, People's Republic of China
| | - Yilin Zhao
- Laboratory of Plasma and Energy Conversion, School of Physics and Optoelectronic Engineering, Ludong University, 186 Middle Hongqi Road, Yantai, 264025, People's Republic of China
| | - Xitao Yin
- Laboratory of Plasma and Energy Conversion, School of Physics and Optoelectronic Engineering, Ludong University, 186 Middle Hongqi Road, Yantai, 264025, People's Republic of China
| | - Ying Liu
- Laboratory of Plasma and Energy Conversion, School of Physics and Optoelectronic Engineering, Ludong University, 186 Middle Hongqi Road, Yantai, 264025, People's Republic of China
| | - Juan Fang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
| | - Xingxing Yu
- Department of Chemistry, The University of Tokyo, 7-3-1 Hogo, Bunkyo, Tokyo, Japan
| | - Xiaoguang Ma
- Laboratory of Plasma and Energy Conversion, School of Physics and Optoelectronic Engineering, Ludong University, 186 Middle Hongqi Road, Yantai, 264025, People's Republic of China.
| | - Tianyi Ma
- School of Science, STEM College, RMIT University, Melbourne, VIC, 3000, Australia.
| | - Dawei Su
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney (UTS), Sydney, NSW, 2007, Australia.
| |
Collapse
|
7
|
Lisowska K, Purser W, Chang F, Suter TM, Miller TS, Sella A, Howard CA, McMillan PF, Corà F, Clancy AJ. Amphoteric dissolution of two-dimensional polytriazine imide carbon nitrides in water. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2023; 381:20220339. [PMID: 37691463 PMCID: PMC10493549 DOI: 10.1098/rsta.2022.0339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/18/2023] [Indexed: 09/12/2023]
Abstract
Crystalline two-dimensional carbon nitrides with polytriazine imide (PTI) structure are shown to act amphoterically, buffering both HCl and NaOH aqueous solutions, resulting in charged PTI layers that dissolve spontaneously in their aqueous media, particularly for the alkaline solutions. This provides a low energy, green route to their scalable solution processing. Protonation in acid is shown to occur at pyridinic nitrogens, stabilized by adjacent triazines, whereas deprotonation in base occurs primarily at basal plane NH bridges, although NH2 edge deprotonation is competitive. We conclude that mildly acidic or basic pHs are necessary to provide sufficient net charge on the nanosheets to promote dissolution, while avoiding high ion concentrations which screen the repulsion of like-charged PTI sheets in solution. This article is part of the theme issue 'Exploring the length scales, timescales and chemistry of challenging materials (Part 2)'.
Collapse
Affiliation(s)
- Karolina Lisowska
- Department of Chemistry, University College London,London WC1E 0AJ, UK
| | - Will Purser
- Department of Chemistry, University College London,London WC1E 0AJ, UK
| | - Fuqiang Chang
- Department of Chemistry, University College London,London WC1E 0AJ, UK
| | - Theo M. Suter
- Department of Chemistry, University College London,London WC1E 0AJ, UK
- Department of Chemical Engineering, University College London, London WC1E 7JE, UK
| | - Thomas S. Miller
- Department of Chemical Engineering, University College London, London WC1E 7JE, UK
| | - Andrea Sella
- Department of Chemistry, University College London,London WC1E 0AJ, UK
| | | | - Paul F. McMillan
- Department of Chemistry, University College London,London WC1E 0AJ, UK
| | - Furio Corà
- Department of Chemistry, University College London,London WC1E 0AJ, UK
| | - Adam J. Clancy
- Department of Chemistry, University College London,London WC1E 0AJ, UK
| |
Collapse
|
8
|
Tarighati Sareshkeh A, Seyed Dorraji MS, Karami Z, Shahmoradi S, Fekri E, Daneshvar H, Rasoulifard MH, Karimov DN. Preparation of high-crystalline and non-metal modified g-C 3N 4 for improving ultrasound-accelerated white-LED-light-driven photocatalytic performances. Sci Rep 2023; 13:15079. [PMID: 37699970 PMCID: PMC10497575 DOI: 10.1038/s41598-023-41473-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/27/2023] [Indexed: 09/14/2023] Open
Abstract
As a non-metallic organic semiconductor, graphitic carbon nitride (g-C3N4) has received much attention due to its unique physicochemical properties. However, the photocatalytic activity of this semiconductor faces challenges due to factors such as low electronic conductivity and limited active sites provided on its surface. The morphology and structure of g-C3N4, including macro/micro morphology, crystal structure and electronic structure can affect its catalytic activity. Non-metallic heteroatom doping is considered as an effective method to tune the optical, electronic and other physicochemical properties of g-C3N4. Here, we synthesized non-metal-doped highly crystalline g-C3N4 by one-pot calcination method, which enhanced the photocatalytic activity of g-C3N4 such as mesoporous nature, reduced band gap, wide-range photousability, improved charge carrier recombination, and the electrical conductivity was improved. Hence, the use of low-power white-LED-light illumination (λ ≥ 420 nm) and ultrasound (US) irradiation synergistically engendered the Methylene Blue (MB) mineralization efficiency elevated to 100% within 120 min by following the pseudo-first-order mechanism under the following condition (i.e., pH 11, 0.75 g L-1 of O-doped g-C3N4 and S-doped g-C3N4, 20 mg L-1 MB, 0.25 ml s-1 O2, and spontaneous raising temperature). In addition, the rapid removal of MB by sonophotocatalysis was 4 times higher than that of primary photocatalysis. And radical scavenging experiments showed that the maximum distribution of active species corresponds to superoxide radical [Formula: see text]. More importantly, the sonophotocatalytic degradation ability of O-doped g-C3N4 and S-doped g-C3N4 was remarkably sustained even after the sixth consecutive run.
Collapse
Affiliation(s)
- Abdolreza Tarighati Sareshkeh
- Applied Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, Iran
| | - Mir Saeed Seyed Dorraji
- Applied Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, Iran.
| | - Zhaleh Karami
- Applied Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, Iran
| | - Saeedeh Shahmoradi
- Applied Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, Iran
| | - Elnaz Fekri
- Applied Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, Iran
| | - Hoda Daneshvar
- Applied Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, Iran
| | - Mohammad Hossein Rasoulifard
- Applied Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, Iran
| | - Denis N Karimov
- Federal Scientific Research Center "Crystallography and Photonics", Russian Academy of Sciences, Leninsky Prospekt 59, 119333, Moscow, Russia.
| |
Collapse
|
9
|
Di S, Li H, Zhai B, Zhi X, Niu P, Wang S, Li L. A crystalline carbon nitride-based separator for high-performance lithium metal batteries. Proc Natl Acad Sci U S A 2023; 120:e2302375120. [PMID: 37549254 PMCID: PMC10438388 DOI: 10.1073/pnas.2302375120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/22/2023] [Indexed: 08/09/2023] Open
Abstract
Lithium metal anodes with ultrahigh theoretical capacities are very attractive for assembling high-performance batteries. However, uncontrolled Li dendrite growth strongly retards their practical applications. Different from conventional separator modification strategies that are always focused on functional group tuning or mechanical barrier construction, herein, we propose a crystallinity engineering-related tactic by using the highly crystalline carbon nitride as the separator interlayer to suppress dendrite growth. Interestingly, the presence of Cl- intercalation and high-content pyrrolic-N from molten salt treatment along with highly crystalline structure enhanced the interactions of carbon nitride with Li+ and homogenized lithium flux for uniform deposition, as supported by both experimental and theoretical evidences. The Li-Li cell with the modified separator therefore delivered ultrahigh stability even after 3,000 h with dendrite-free cycled electrodes. Meanwhile, the assembled Li-LiFePO4 full-cell also presented high-capacity retention. This work opens up opportunities for design of functional separators through crystallinity engineering and broadens the use of C3N4 for advanced batteries.
Collapse
Affiliation(s)
- Shuanlong Di
- Department of Chemistry, College of Science, Northeastern University, Shenyang110819,Liaoning, P. R. China
- State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang110819,Liaoning, P. R. China
- School of Metallurgy, Northeastern University, Shenyang110819,Liaoning, P. R. China
| | - Hongguan Li
- State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang110819,Liaoning, P. R. China
- School of Metallurgy, Northeastern University, Shenyang110819,Liaoning, P. R. China
| | - Boyin Zhai
- Department of Chemistry, College of Science, Northeastern University, Shenyang110819,Liaoning, P. R. China
- School of Metallurgy, Northeastern University, Shenyang110819,Liaoning, P. R. China
| | - Xiaojuan Zhi
- State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang110819,Liaoning, P. R. China
- School of Metallurgy, Northeastern University, Shenyang110819,Liaoning, P. R. China
| | - Ping Niu
- State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang110819,Liaoning, P. R. China
- School of Metallurgy, Northeastern University, Shenyang110819,Liaoning, P. R. China
| | - Shulan Wang
- Department of Chemistry, College of Science, Northeastern University, Shenyang110819,Liaoning, P. R. China
| | - Li Li
- State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang110819,Liaoning, P. R. China
- School of Metallurgy, Northeastern University, Shenyang110819,Liaoning, P. R. China
- Foshan Graduate School of Innovation, Northeastern University, Foshan528311, Guangdong, P. R. China
| |
Collapse
|
10
|
Burmeister D, Eljarrat A, Guerrini M, Röck E, Plaickner J, Koch CT, Banerji N, Cocchi C, List-Kratochvil EJW, Bojdys MJ. On the non-bonding valence band and the electronic properties of poly(triazine imide), a graphitic carbon nitride. Chem Sci 2023; 14:6269-6277. [PMID: 37325148 PMCID: PMC10266476 DOI: 10.1039/d3sc00667k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/17/2023] [Indexed: 06/17/2023] Open
Abstract
Graphitic carbon nitrides are covalently-bonded, layered, and crystalline semiconductors with high thermal and oxidative stability. These properties make graphitic carbon nitrides potentially useful in overcoming the limitations of 0D molecular and 1D polymer semiconductors. In this contribution, we study structural, vibrational, electronic and transport properties of nano-crystals of poly(triazine-imide) (PTI) derivatives with intercalated Li- and Br-ions and without intercalates. Intercalation-free poly(triazine-imide) (PTI-IF) is corrugated or AB stacked and partially exfoliated. We find that the lowest energy electronic transition in PTI is forbidden due to a non-bonding uppermost valence band and that its electroluminescence from the π-π* transition is quenched which severely limits their use as emission layer in electroluminescent devices. THz conductivity in nano-crystalline PTI is up to eight orders of magnitude higher than the macroscopic conductivity of PTI films. We find that the charge carrier density of PTI nano-crystals is among the highest of all known intrinsic semiconductors, however, macroscopic charge transport in films of PTI is limited by disorder at crystal-crystal interfaces. Future device applications of PTI will benefit most from single crystal devices that make use of electron transport in the lowest, π-like conduction band.
Collapse
Affiliation(s)
- David Burmeister
- Department of Chemistry & IRIS Adlershof, Humboldt-Universität zu Berlin Brook-Taylor-Str. 6 12489 Germany
| | - Alberto Eljarrat
- Humboldt-Universität zu Berlin, Institut für Physik, IRIS Adlershof Zum Großen Windkanal 2 12489 Berlin Germany
| | - Michele Guerrini
- Humboldt-Universität zu Berlin, Institut für Physik, IRIS Adlershof Zum Großen Windkanal 2 12489 Berlin Germany
- Institute of Physics, Carl von Ossietzky Universität Oldenburg 26129 Oldenburg Germany
| | - Eva Röck
- Department for Chemistry and Biochemistry, University of Bern Freiestrasse 3 3012 Bern Switzerland
| | - Julian Plaickner
- Humboldt-Universität zu Berlin, Institut für Physik, IRIS Adlershof Zum Großen Windkanal 2 12489 Berlin Germany
| | - Christoph T Koch
- Department of Chemistry & IRIS Adlershof, Humboldt-Universität zu Berlin Brook-Taylor-Str. 6 12489 Germany
- Humboldt-Universität zu Berlin, Institut für Physik, IRIS Adlershof Zum Großen Windkanal 2 12489 Berlin Germany
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH Hahn-Meitner-Platz 1 14109 Berlin Germany
| | - Natalie Banerji
- Department for Chemistry and Biochemistry, University of Bern Freiestrasse 3 3012 Bern Switzerland
| | - Caterina Cocchi
- Humboldt-Universität zu Berlin, Institut für Physik, IRIS Adlershof Zum Großen Windkanal 2 12489 Berlin Germany
- Institute of Physics, Carl von Ossietzky Universität Oldenburg 26129 Oldenburg Germany
| | - Emil J W List-Kratochvil
- Department of Chemistry & IRIS Adlershof, Humboldt-Universität zu Berlin Brook-Taylor-Str. 6 12489 Germany
- Humboldt-Universität zu Berlin, Institut für Physik, IRIS Adlershof Zum Großen Windkanal 2 12489 Berlin Germany
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH Hahn-Meitner-Platz 1 14109 Berlin Germany
| | - Michael J Bojdys
- Department of Chemistry & IRIS Adlershof, Humboldt-Universität zu Berlin Brook-Taylor-Str. 6 12489 Germany
| |
Collapse
|
11
|
Negro P, Cesano F, Casassa S, Scarano D. Combined DFT-D3 Computational and Experimental Studies on g-C 3N 4: New Insight into Structure, Optical, and Vibrational Properties. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16103644. [PMID: 37241276 DOI: 10.3390/ma16103644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/03/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023]
Abstract
Graphitic carbon nitride (g-C3N4) has emerged as one of the most promising solar-light-activated polymeric metal-free semiconductor photocatalysts due to its thermal physicochemical stability but also its characteristics of environmentally friendly and sustainable material. Despite the challenging properties of g-C3N4, its photocatalytic performance is still limited by the low surface area, together with the fast charge recombination phenomena. Hence, many efforts have been focused on overcoming these drawbacks by controlling and improving the synthesis methods. With regard to this, many structures including strands of linearly condensed melamine monomers, which are interconnected by hydrogen bonds, or highly condensed systems, have been proposed. Nevertheless, complete and consistent knowledge of the pristine material has not yet been achieved. Thus, to shed light on the nature of polymerised carbon nitride structures, which are obtained from the well-known direct heating of melamine under mild conditions, we combined the results obtained from XRD analysis, SEM and AFM microscopies, and UV-visible and FTIR spectroscopies with the data from the Density Functional Theory method (DFT). An indirect band gap and the vibrational peaks have been calculated without uncertainty, thus highlighting a mixture of highly condensed g-C3N4 domains embedded in a less condensed "melon-like" framework.
Collapse
Affiliation(s)
- Paolo Negro
- Department of Chemistry and NIS (Nanostructured Interfaces and Surfaces) Interdepartmental Centre, University of Torino & INSTM-UdR Torino, Via P. Giuria 7, 10125 Torino, Italy
| | - Federico Cesano
- Department of Chemistry and NIS (Nanostructured Interfaces and Surfaces) Interdepartmental Centre, University of Torino & INSTM-UdR Torino, Via P. Giuria 7, 10125 Torino, Italy
| | - Silvia Casassa
- Department of Chemistry and NIS (Nanostructured Interfaces and Surfaces) Interdepartmental Centre, University of Torino & INSTM-UdR Torino, Via P. Giuria 7, 10125 Torino, Italy
| | - Domenica Scarano
- Department of Chemistry and NIS (Nanostructured Interfaces and Surfaces) Interdepartmental Centre, University of Torino & INSTM-UdR Torino, Via P. Giuria 7, 10125 Torino, Italy
| |
Collapse
|
12
|
Ngo HM, Pal U, Kang YS, Ok KM. DFT-Based Study for the Enhancement of CO 2 Adsorption on Metal-Doped Nitrogen-Enriched Polytriazines. ACS OMEGA 2023; 8:8876-8884. [PMID: 36910961 PMCID: PMC9996777 DOI: 10.1021/acsomega.3c00395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Nitrogen-enriched polytriazine (NPT), a carbon nitride-based material, has received much attention for CO2 storage applications. However, to enhance the CO2 uptake capacity more efficiently, it is necessary to understand the interaction mechanism between CO2 molecules and NPT through appropriate modification of the structures. Here, we introduce a method to enhance the CO2 adsorption capacity of NPT by incorporating metal atoms such as Sn, Co, and Ni into the polytriazine network. DFT calculations were used to investigate the CO2 adsorption mechanism of the polytriazine frameworks by tracking the interactions between CO2 and the various interaction sites of NPT. By optimizing the geometry of the pure and metal-containing NPT frameworks, we calculated the binding energy of metal atoms in the NPT framework, the adsorption energy of CO2 molecules, and the charge transfer between CO2 molecules and the corresponding adsorption systems. In this work, we demonstrate that the CO2 adsorption capacity of NPT can be greatly enhanced by doping transition-metal atoms into the cavities of NPT.
Collapse
Affiliation(s)
- Hieu Minh Ngo
- Department
of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic
of Korea
| | - Umapada Pal
- Institute
of Physics, Autonomous University of Puebla, P.O. Box. J-48, Puebla, Pue 72570 Mexico
| | - Young Soo Kang
- Department
of Environmental and Climate Technology, Korea Institute of Energy Technology, Naju-si, Jeollanam do 58217, Republic of Korea
| | - Kang Min Ok
- Department
of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic
of Korea
| |
Collapse
|
13
|
Single-layered fluorinated graphene nanopores for H2/CH4 and H2/CO2 separation with high efficiency and selectivity. J Mol Model 2022; 28:403. [DOI: 10.1007/s00894-022-05400-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022]
|
14
|
Towards large-scale application of nanoporous materials in membranes for separation of energy-relevant gas mixtures. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
15
|
Ashirov T, Siena JS, Zhang M, Ozgur Yazaydin A, Antonietti M, Coskun A. Fast light-switchable polymeric carbon nitride membranes for tunable gas separation. Nat Commun 2022; 13:7299. [DOI: 10.1038/s41467-022-35013-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 11/14/2022] [Indexed: 11/28/2022] Open
Abstract
AbstractSwitchable gas separation membranes are intriguing systems for regulating the transport properties of gases. However, existing stimuli-responsive gas separation membranes suffer from either very slow response times or require high energy input for switching to occur. Accordingly, herein, we introduced light-switchable polymeric carbon nitride (pCN) gas separation membranes with fast response times prepared from melamine precursor through in-situ formation and deposition of pCN onto a porous support using chemical vapor deposition. Our systematic analysis revealed that the gas transport behavior upon light irradiation is fully governed by the polarizability of the permeating gas and its interaction with the charged pCN surface, and can be easily tuned either by controlling the power of the light and/or the duration of irradiation. We also demonstrated that gases with higher polarizabilities such as CO2 can be separated from gases with lower polarizability like H2 and He effectively with more than 22% increase in the gas/CO2 selectivity upon light irradiation. The membranes also exhibited fast response times (<1 s) and can be turned “on” and “off” using a single light source at 550 nm.
Collapse
|
16
|
Ashirov T, Siena JS, Zhang M, Ozgur Yazaydin A, Antonietti M, Coskun A. Fast light-switchable polymeric carbon nitride membranes for tunable gas separation. Nat Commun 2022; 13:7299. [DOI: https:/doi.org/10.1038/s41467-022-35013-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 11/14/2022] [Indexed: 07/03/2024] Open
Abstract
AbstractSwitchable gas separation membranes are intriguing systems for regulating the transport properties of gases. However, existing stimuli-responsive gas separation membranes suffer from either very slow response times or require high energy input for switching to occur. Accordingly, herein, we introduced light-switchable polymeric carbon nitride (pCN) gas separation membranes with fast response times prepared from melamine precursor through in-situ formation and deposition of pCN onto a porous support using chemical vapor deposition. Our systematic analysis revealed that the gas transport behavior upon light irradiation is fully governed by the polarizability of the permeating gas and its interaction with the charged pCN surface, and can be easily tuned either by controlling the power of the light and/or the duration of irradiation. We also demonstrated that gases with higher polarizabilities such as CO2 can be separated from gases with lower polarizability like H2 and He effectively with more than 22% increase in the gas/CO2 selectivity upon light irradiation. The membranes also exhibited fast response times (<1 s) and can be turned “on” and “off” using a single light source at 550 nm.
Collapse
|
17
|
Zhou Y, Wu Y, Wu H, Xue J, Ding L, Wang R, Wang H. Fast hydrogen purification through graphitic carbon nitride nanosheet membranes. Nat Commun 2022; 13:5852. [PMID: 36195763 PMCID: PMC9532387 DOI: 10.1038/s41467-022-33654-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 09/27/2022] [Indexed: 11/09/2022] Open
Abstract
Two-dimensional graphitic carbon nitride (g-C3N4) nanosheets are ideal candidates for membranes because of their intrinsic in-plane nanopores. However, non-selective defects formed by traditional top-down preparation and the unfavorable re-stacking hinder the application of these nanosheets in gas separation. Herein, we report lamellar g-C3N4 nanosheets as gas separation membranes with a disordered layer-stacking structure based on high quality g-C3N4 nanosheets through bottom-up synthesis. Thanks to fast and highly selective transport through the high-density sieving channels and the interlayer paths, the membranes, superior to state-of-the-art ones, exhibit high H2 permeance of 1.3 × 10−6 mol m−2 s−1 Pa−1 with excellent selectivity for multiple gas mixtures. Notably, these membranes show excellent stability under harsh practice-relevant environments, such as temperature swings, wet atmosphere and long-term operation of more than 200 days. Therefore, such lamellar membranes with high quality g-C3N4 nanosheets hold great promise for gas separation applications. In this work, lamellar graphitic carbon nitride nanosheet membranes are constructed for gas separation. Benefiting from their high-density intrinsic in-plane nanopores and broader permeable interlayer channels, the proposed membranes exhibit high H2 permeance with good selectivity of multiple gas mixtures.
Collapse
Affiliation(s)
- Yisa Zhou
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou, 510640, China
| | - Ying Wu
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou, 510640, China
| | - Haoyu Wu
- Beijing Key Laboratory of Membrane Materials and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Jian Xue
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou, 510640, China.
| | - Li Ding
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou, 510640, China
| | - Rui Wang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou, 510640, China
| | - Haihui Wang
- Beijing Key Laboratory of Membrane Materials and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
18
|
Chi HY, Chen C, Zhao K, Villalobos LF, Schouwink PA, Piveteau L, Marshall KP, Liu Q, Han Y, Agrawal KV. Unblocking Ion-occluded Pore Channels in Poly(triazine imide) Framework for Proton Conduction. Angew Chem Int Ed Engl 2022; 61:e202207457. [PMID: 35906967 DOI: 10.1002/anie.202207457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Indexed: 01/07/2023]
Abstract
Poly(triazine imide) or PTI is an ordered graphitic carbon nitride hosting Å-scale pores attractive for selective molecular transport. AA'-stacked PTI layers are synthesized by ionothermal route during which ions occupy the framework and occlude the pores. Synthesis of ion-free PTI hosting AB-stacked layers has been reported, however, pores in this configuration are blocked by the neighboring layer. The unavailability of open pore limits application of PTI in molecular transport. Herein, we demonstrate acid treatment for ion depletion which maintains AA' stacking and results in open pore structure. We provide first direct evidence of ion-depleted open pores by imaging with the atomic resolution using integrated differential phase-contrast scanning transmission electron microscopy. Depending on the extent of ion-exchange, AA' stacking with open channels and AB stacking with closed channels are obtained and imaged for the first time. The accessibility of open channels is demonstrated by enhanced proton transport through ion depleted PTI.
Collapse
Affiliation(s)
- Heng-Yu Chi
- Laboratory of Advanced Separations (LAS), École Polytechnique Fédérale de Lausanne (EPFL), Rue de l'Industrie 17, 1950, Sion, Switzerland
| | - Cailing Chen
- Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Kangning Zhao
- Laboratory of Advanced Separations (LAS), École Polytechnique Fédérale de Lausanne (EPFL), Rue de l'Industrie 17, 1950, Sion, Switzerland
| | - Luis Francisco Villalobos
- Laboratory of Advanced Separations (LAS), École Polytechnique Fédérale de Lausanne (EPFL), Rue de l'Industrie 17, 1950, Sion, Switzerland
| | - Pascal Alexander Schouwink
- Institute of Chemical Sciences and Engineering (ISIC), EPFL, Rue de l'Industrie 17, 1950, Sion, Switzerland
| | - Laura Piveteau
- Institute of Chemical Sciences and Engineering, NMR Platform, EPFL, Rte Cantonale, 1015, Lausanne, Switzerland
| | - Kenneth Paul Marshall
- Swiss-Norwegian Beamlines, European Synchrotron Radiation Facility, 71 Av. des Martyrs, 38000, Grenoble, France
| | - Qi Liu
- Laboratory of Advanced Separations (LAS), École Polytechnique Fédérale de Lausanne (EPFL), Rue de l'Industrie 17, 1950, Sion, Switzerland
| | - Yu Han
- Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Kumar Varoon Agrawal
- Laboratory of Advanced Separations (LAS), École Polytechnique Fédérale de Lausanne (EPFL), Rue de l'Industrie 17, 1950, Sion, Switzerland
| |
Collapse
|
19
|
Zhang K, Zhou L, Wang Z, Li H, Yan Y, Zhang J. Molecular insight into CO 2/N 2 separation using a 2D-COF supported ionic liquid membrane. Phys Chem Chem Phys 2022; 24:23690-23698. [PMID: 36148751 DOI: 10.1039/d2cp03044f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The covalent organic framework (COF) shows great potential for use in gas separation because of its uniform and high-density sub-nanometer sized pores. However, most of the COF pore sizes are large, and there are mismatches with the gas pairs (3-6 Å), and the steric hindrance cannot work in gas selectivity. In this work, one type of COF (NUS-2) supported ionic liquid membrane (COF-SILM) was prepared for use in CO2/N2 separation. The separation performance was investigated using molecular dynamics simulation. There was an ultrahigh CO2 permeability up to 2.317 × 106 GPU, and a better CO2 selectivity was obtained when compared to that of N2. The physical mechanism of ultrahigh permeability and CO2 selectivity are discussed in detail. The ultrathin membrane, high-density pores and high transmembrane driving force are responsible for the ultrahigh permeability of CO2. The different adsorption capabilities of ionic liquid (IL) for CO2 and N2, as well as a gating effect, which allows CO2 passage and inhibits N2 passage, contribute to the better CO2 selectivity over N2. Moreover, the effects of the COF layer number and IL thickness on gas separation performance are also discussed. This work provides a molecular level understanding of the gas separation mechanism of COF-SILM, and the simulation results show one potential outstanding CO2 separation membrane for future applications.
Collapse
Affiliation(s)
- Kuiyuan Zhang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266000, P. R. China.
| | - Lixia Zhou
- College of Science, China University of Petroleum, Qingdao 266000, P. R. China
| | - Zichang Wang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266000, P. R. China.
| | - Haiyang Li
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266000, P. R. China.
| | - Youguo Yan
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266000, P. R. China.
| | - Jun Zhang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266000, P. R. China.
| |
Collapse
|
20
|
Zhang J, Zhang K, Hao X, Wan T, Yan Y. Molecular Insights into the CO2 separation mechanism of GO supported deep eutectic solvent membrane. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
21
|
Chi HY, Chen C, Zhao K, Villalobos LF, Schouwink PA, Piveteau L, Marshall KP, Liu Q, Han Y, Agrawal KV. Unblocking Ion‐occluded Pore Channels in Poly(triazine imide) Framework for Proton Conduction. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Heng-Yu Chi
- Ecole Polytechnique Federale de Lausanne Institute of chemical sciences and engineering Rue de l'Industrie 17Case Postale 440 1950 Sion SWITZERLAND
| | - Cailing Chen
- King Abdullah University of Science and Technology Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division Thuwal SAUDI ARABIA
| | - Kangning Zhao
- Ecole Polytechnique Federale de Lausanne Institute of chemical sciences and engineering Rue de l'Industrie 17Case Postale 440 CH-1950 Sion SWITZERLAND
| | - Luis Francisco Villalobos
- Ecole Polytechnique Federale de Lausanne Institute of chemical sciences and engineering Rue de l'Industrie 17Case Postale 440 CH-1950 Sion SWITZERLAND
| | - Pascal Alexander Schouwink
- Ecole Polytechnique Federale de Lausanne Institute of Chemical Sciences and Engineering Rue de l'Industrie 17 CH-1950 Sion SWITZERLAND
| | - Laura Piveteau
- Ecole Polytechnique Federale de Lausanne Institute of Chemical Sciences and Engineering, NMR Platform Rte Cantonale CH-1015 Lausanne SWITZERLAND
| | - Kenneth Paul Marshall
- European Synchrotron Radiation Facility: ESRF Swiss-Norwegian Beamlines 71 Av. des Martyrs 38000 Grenoble FRANCE
| | - Qi Liu
- Ecole Polytechnique Federale de Lausanne Institute of chemical sciences and engineering Rue de l'Industrie 17Case Postale 440 CH-1950 Sion SWITZERLAND
| | - Yu Han
- King Abdullah University of Science and Technology Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division Thuwal SAUDI ARABIA
| | - Kumar Varoon Agrawal
- École polytechnique fédérale de Lausanne (EPFL) Institute of chemical sciences and engineering Rue de l'Industrie 17Case Postale 440Switzerland CH-1950 Sion SWITZERLAND
| |
Collapse
|
22
|
Cheng L, Yue X, Fan J, Xiang Q. Site-Specific Electron-Driving Observations of CO 2 -to-CH 4 Photoreduction on Co-Doped CeO 2 /Crystalline Carbon Nitride S-Scheme Heterojunctions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200929. [PMID: 35476265 DOI: 10.1002/adma.202200929] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Photoexcited dynamic modulation, maximizing the effective utilization of photoinduced electron-hole pairs, dominates the multiple electrons-involving reduction pathways for terminal CH4 evolution during CO2 photoreduction. Yet, the site-specific regulation of directional charge transfer by modification of an S-scheme heterojunction has seldom been discussed. Herein, an atomic-level tailoring strategy by anchoring single-atomic Co into CeO2 co-catalyst rather than carbon nitride supports, which can selectively favor CO2 -to-CH4 photoreduction, is reported. Through in situ dynamic tracking investigations, this study identifies that surface Co-embedded bimetallic CeCo conjunction is the key feature driving a strong interconnection of dynamical charge states through S-scheme heterojunctions. The Co-embedded modification into CeO2 co-catalysts is demonstrated to have a critical effect on directional charge control, accelerating the driving of electrons from the carbon nitride donations to site-specific Co hubs, which thereby promotes electronic transferability for electrons-involving CH4 formation. As a result, an unprecedented CH4 yield (181.7 µmol g-1 ) is obtained with a high turnover number (411.4) through a fully gas-solid reaction, demonstrating its potential toward targeted CH4 formation without adding any sacrificial agent.
Collapse
Affiliation(s)
- Lei Cheng
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001, P. R. China
| | - Xiaoyang Yue
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001, P. R. China
| | - Jiajie Fan
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450000, P. R. China
| | - Quanjun Xiang
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001, P. R. China
| |
Collapse
|
23
|
Ying Y, Peh SB, Yang H, Yang Z, Zhao D. Ultrathin Covalent Organic Framework Membranes via a Multi-Interfacial Engineering Strategy for Gas Separation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2104946. [PMID: 34535914 DOI: 10.1002/adma.202104946] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/03/2021] [Indexed: 06/13/2023]
Abstract
Covalent organic frameworks (COFs) are promising membrane materials due to their high porosity, ordered arrangements, and high stability. However, the relatively large pore size and complicated membrane preparation processes of COFs limit their applications in sieving small gas molecules, even at a lab scale. Herein, a multi-interfacial engineering strategy is proposed, that is, direct layer-by-layer interfacial reaction of two COFs (TpPa-SO3 H and TpTGCl ) with different pore sizes to form narrowed apertures at the COF-COF interfaces atop a relatively large-pore COF (COF-LZU1) film. At 423 K, one fabricated 155 nm-thick ultrathin COF membrane displays H2 permeance as high as 2163 gas permeation units (GPU) and a H2 /CO2 selectivity of 26, transcending the 2008 Robeson upper bound. This strategy not only provides high-performance membrane candidates for H2 separation, but also enlightens the interfacial engineering and pore engineering manipulation for other COFs, porous polymers, and their membranes.
Collapse
Affiliation(s)
- Yunpan Ying
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Shing Bo Peh
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Hao Yang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Ziqi Yang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Dan Zhao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| |
Collapse
|
24
|
Hu L, Bui VT, Pal S, Guo W, Subramanian A, Kisslinger K, Fan S, Nam CY, Ding Y, Lin H. In Situ Growth of Crystalline and Polymer-Incorporated Amorphous ZIFs in Polybenzimidazole Achieving Hierarchical Nanostructures for Carbon Capture. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201982. [PMID: 35567438 DOI: 10.1002/smll.202201982] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/25/2022] [Indexed: 06/15/2023]
Abstract
Mixed matrix materials (MMMs) hold great potential for membrane gas separations by merging nanofillers with unique nanostructures and polymers with excellent processability. In situ growth of the nanofillers is adapted to mitigate interfacial incompatibility to avoid the selectivity loss. Surprisingly, functional polymers have not been exploited to co-grow the nanofillers for membrane applications. Herein, in situ synergistic growth of crystalline zeolite imidazole framework-8 (ZIF-8) in polybenzimidazole (PBI), creating highly porous structures with high gas permeability, is demonstrated. More importantly, PBI contains benzimidazole groups (similar to the precursor for ZIF-8, i.e., 2-methylimidazole) and induces the formation of amorphous ZIFs, enhancing interfacial compatibility and creating highly size-discriminating bottlenecks. For instance, the formation of 15 mass% ZIF-8 in PBI improves H2 permeability and H2 /CO2 selectivity by ≈100% at 35 °C, breaking the permeability/selectivity tradeoff. This work unveils a new platform of MMMs comprising functional polymer-incorporated amorphous ZIFs with hierarchical nanostructures for various applications.
Collapse
Affiliation(s)
- Leiqing Hu
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Vinh T Bui
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Sankhajit Pal
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Wenji Guo
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Ashwanth Subramanian
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Kim Kisslinger
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Shouhong Fan
- Department of Mechanical Engineering, University of Colorado, Boulder, CO, 80309, USA
| | - Chang-Yong Nam
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Yifu Ding
- Department of Mechanical Engineering, University of Colorado, Boulder, CO, 80309, USA
| | - Haiqing Lin
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| |
Collapse
|
25
|
Nadizadeh Z, Mahdavi H, Heidari AA, Kahriz PK. Synthesis of palladium‐chelated poly(triazine imide) heterogeneous nanocatalysts for reduction of p‐nitrophenol to p‐aminophenol. J Appl Polym Sci 2022. [DOI: 10.1002/app.52489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Zahra Nadizadeh
- School of Chemistry, College of Science University of Tehran Tehran Iran
| | - Hossein Mahdavi
- School of Chemistry, College of Science University of Tehran Tehran Iran
| | - Ali Akbar Heidari
- School of Chemistry, College of Science University of Tehran Tehran Iran
| | | |
Collapse
|
26
|
Luan B, Elmegreen B, Kuroda MA, Gu Z, Lin G, Zeng S. Crown Nanopores in Graphene for CO 2 Capture and Filtration. ACS NANO 2022; 16:6274-6281. [PMID: 35324145 DOI: 10.1021/acsnano.2c00213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
With growing concerns about global warming, it has become urgent and critical to capture carbon from various emission sources (such as power plants) and even directly from air. Recent advances in materials research permit the design of various efficient approaches for capturing CO2 with high selectivity over other gases. Here, we show that crown nanopores (resembling crown ethers) embedded in graphene can efficaciously allow CO2 to pass and block other flue gas components (such as N2 and O2). We carried out extensive density functional theory-based calculations as well as classical and ab initio molecular dynamics simulations to reveal the energetics and dynamics of gas transport through crown nanopores. Our results highlight that the designed crown nanopores in graphene possess not only an excellent selectivity for CO2 separation/capture but also fast transport (flow) rates, which are ideal for the treatment of flue gas in power plants.
Collapse
Affiliation(s)
- Binquan Luan
- IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598, United States
| | - Bruce Elmegreen
- IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598, United States
| | - Marcelo A Kuroda
- Department of Physics, Auburn University, Auburn, Alabama 36849, United States
| | - Zonglin Gu
- College of Physical Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Guojun Lin
- College of Physical Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Shuming Zeng
- College of Physical Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| |
Collapse
|
27
|
Mortazavi B, Shahrokhi M, Shojaei F, Rabczuk T, Zhuang X, Shapeev AV. A first-principles and machine-learning investigation on the electronic, photocatalytic, mechanical and heat conduction properties of nanoporous C 5N monolayers. NANOSCALE 2022; 14:4324-4333. [PMID: 35253027 DOI: 10.1039/d1nr06449e] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Carbon nitride nanomembranes are currently among the most appealing two-dimensional (2D) materials. As a nonstop endeavor in this field, a novel 2D fused aromatic nanoporous network with a C5N stoichiometry has been most recently synthesized. Inspired by this experimental advance and exciting physics of nanoporous carbon nitrides, herein we conduct extensive density functional theory calculations to explore the electronic, optical and photocatalytic properties of the C5N monolayer. In order to examine the dynamic stability and evaluate the mechanical and heat transport properties under ambient conditions, we employ state of the art methods on the basis of machine-learning interatomic potentials. The C5N monolayer is found to be a direct band gap semiconductor, with a band-gap of 2.63 eV according to the HSE06 method. The obtained results confirm the dynamic stability, remarkable tensile strengths over 10 GPa and a low lattice thermal conductivity of ∼9.5 W m-1 K-1 for the C5N monolayer at room temperature. The first absorption peak of the single-layer C5N along the in-plane polarization is predicted to appear in the visible range of light. With a combination of high carrier mobility, appropriate band edge positions and strong absorption of visible light, the C5N monolayer might be an appealing candidate for photocatalytic water splitting reactions. The presented results provide an extensive understanding concerning the critical physical properties of the C5N nanosheets and also highlight the robustness of machine-learning interatomic potentials in the exploration of complex physical behaviors.
Collapse
Affiliation(s)
- Bohayra Mortazavi
- Chair of Computational Science and Simulation Technology, Department of Mathematics and Physics, Leibniz Universität Hannover, Appelstraße 11, 30167 Hannover, Germany.
- Cluster of Excellence PhoenixD (Photonics, Optics, and Engineering - Innovation Across Disciplines), Gottfried Wilhelm Leibniz Universität Hannover, Hannover, Germany
| | - Masoud Shahrokhi
- Young Researchers Club, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
| | - Fazel Shojaei
- Department of Chemistry, Faculty of Nano and Bioscience and Technology, Persian Gulf University, Bushehr 75169, Iran
| | - Timon Rabczuk
- College of Civil Engineering, Department of Geotechnical Engineering, Tongji University, 1239 Siping Road, Shanghai, China
| | - Xiaoying Zhuang
- Chair of Computational Science and Simulation Technology, Department of Mathematics and Physics, Leibniz Universität Hannover, Appelstraße 11, 30167 Hannover, Germany.
- College of Civil Engineering, Department of Geotechnical Engineering, Tongji University, 1239 Siping Road, Shanghai, China
| | - Alexander V Shapeev
- Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Bolshoy Bulvar, 30, Moscow, 143026, Russia.
| |
Collapse
|
28
|
Hu L, Bui VT, Krishnamurthy A, Fan S, Guo W, Pal S, Chen X, Zhang G, Ding Y, Singh RP, Lupion M, Lin H. Tailoring sub-3.3 Å ultramicropores in advanced carbon molecular sieve membranes for blue hydrogen production. SCIENCE ADVANCES 2022; 8:eabl8160. [PMID: 35263122 PMCID: PMC8906570 DOI: 10.1126/sciadv.abl8160] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 01/19/2022] [Indexed: 05/29/2023]
Abstract
Carbon molecular sieve (CMS) membranes prepared by carbonization of polymers containing strongly size-sieving ultramicropores are attractive for high-temperature gas separations. However, polymers need to be carbonized at extremely high temperatures (900° to 1200°C) to achieve sub-3.3 Å ultramicroporous channels for H2/CO2 separation, which makes them brittle and impractical for industrial applications. Here, we demonstrate that polymers can be first doped with thermolabile cross-linkers before low-temperature carbonization to retain the polymer processability and achieve superior H2/CO2 separation properties. Specifically, polybenzimidazole (PBI) is cross-linked with pyrophosphoric acid (PPA) via H bonding and proton transfer before carbonization at ≤600°C. The synergistic PPA doping and subsequent carbonization of PBI increase H2 permeability from 27 to 140 Barrer and H2/CO2 selectivity from 15 to 58 at 150°C, superior to state-of-the-art polymeric materials and surpassing Robeson's upper bound. This study provides a facile and effective way to tailor subnanopore size and porosity in CMS membranes with desirable molecular sieving ability.
Collapse
Affiliation(s)
- Leiqing Hu
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Vinh T. Bui
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Ajay Krishnamurthy
- Theiss Research, La Jolla, CA 92037, USA
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Shouhong Fan
- Department of Mechanical Engineering, University of Colorado, Boulder, CO 80309, USA
| | - Wenji Guo
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Sankhajit Pal
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Xiaoyi Chen
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Gengyi Zhang
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Yifu Ding
- Department of Mechanical Engineering, University of Colorado, Boulder, CO 80309, USA
| | - Rajinder P. Singh
- Materials Physics and Applications Division, Carbon Capture and Separations for Energy Applications (CaSEA) Labs, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Monica Lupion
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Haiqing Lin
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| |
Collapse
|
29
|
Wang F, Zhang Z, Shakir I, Yu C, Xu Y. 2D Polymer Nanosheets for Membrane Separation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103814. [PMID: 35084113 PMCID: PMC8922124 DOI: 10.1002/advs.202103814] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/10/2021] [Indexed: 05/12/2023]
Abstract
Since the discovery of single-layer graphene in 2004, the family of 2D inorganic nanosheets is considered as ideal membrane materials due to their ultrathin atomic thickness and fascinating physicochemical properties. However, the intrinsically nonporous feature of 2D inorganic nanosheets hinders their potential to achieve a higher flux to some extent. Recently, 2D polymer nanosheets, originated from the regular and periodic covalent connection of the building units in 2D plane, have emerged as promising candidates for preparing ultrafast and highly selective membranes owing to their inherently tunable and ordered pore structure, light weight, and high specific surface. In this review, the synthetic methodologies (including top-down and bottom-up methods) of 2D polymer nanosheets are first introduced, followed by the summary of 2D polymer nanosheets-based membrane fabrication as well as membrane applications in the fields of gas separation, water purification, organic solvent separation, and ion exchange/transport in fuel cells and lithium-sulfur batteries. Finally, based on their current achievements, the authors' personal insights are put forward into the existing challenges and future research directions of 2D polymer nanosheets for membrane separation. The authors believe this comprehensive review on 2D polymer nanosheets-based membrane separation will definitely inspire more studies in this field.
Collapse
Affiliation(s)
- Fei Wang
- School of Materials Science and EngineeringShanghai UniversityShanghai201800China
- School of EngineeringWestlake UniversityHangzhouZhejiang Province310024China
- School of EngineeringWestlake Institute for Advanced StudyHangzhouZhejiang Province310024China
| | - Zhao Zhang
- School of EngineeringWestlake UniversityHangzhouZhejiang Province310024China
- School of EngineeringWestlake Institute for Advanced StudyHangzhouZhejiang Province310024China
| | - Imran Shakir
- Department of Materials Science and EngineeringUniversity of CaliforniaLos AngelesCA90095USA
- Sustainable Energy Technologies CenterCollege of EngineeringKing Saud UniversityRiyadh11421Saudi Arabia
| | - Chengbing Yu
- School of Materials Science and EngineeringShanghai UniversityShanghai201800China
| | - Yuxi Xu
- School of EngineeringWestlake UniversityHangzhouZhejiang Province310024China
- School of EngineeringWestlake Institute for Advanced StudyHangzhouZhejiang Province310024China
| |
Collapse
|
30
|
Synergistic effect of KCl mixing and melamine/urea mixture in the synthesis of g-C3N4 for photocatalytic removal of tetracycline. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2021.11.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Parkes E, Lisowska K, McMillan PF, Corà F, Clancy AJ. New functionalisation reactions of graphitic carbon nitrides: Computational and experimental studies. JOURNAL OF CHEMICAL RESEARCH 2022. [DOI: 10.1177/17475198211073888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The functionalisation of two-dimensional materials is key to modify their properties and facilitate assembly into functional devices. Here, new reactions have been proposed to modify crystalline two-dimensional carbon nitrides of polytriazine imide structure. Both amine alkylation and aryl-nitrene-based reactions have been explored computationally and with exploratory synthetic trials. The approach illustrates that alkylation is unfavourable, particularly at basal-plane sites. In contrast, while initial trial reactions were inconclusive, the radical-addition of nitrenes is shown to be energetically favourable, with a preference for functionalising sheet edges to minimise steric effects.
Collapse
Affiliation(s)
- Ellen Parkes
- Department of Chemistry, University College London, London, UK
| | | | - Paul F McMillan
- Department of Chemistry, University College London, London, UK
| | - Furio Corà
- Department of Chemistry, University College London, London, UK
| | - Adam J Clancy
- Department of Chemistry, University College London, London, UK
| |
Collapse
|
32
|
Liu J, Yuan X, Sun J, Ke J, Liu B, Wang L. Creating triazine units to bridge carbon nitride with titania for enhanced hydrogen evolution performance. J Colloid Interface Sci 2022; 608:2768-2778. [PMID: 34774313 DOI: 10.1016/j.jcis.2021.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/31/2021] [Accepted: 11/01/2021] [Indexed: 11/19/2022]
Abstract
In this work, a wealth of triazine units was created in carbon nitride through a facile molten salt method to bridge titania and carbon nitride for accelerating charge transportation and enhancing hydrogen production performance. The doping of triazine ring into C3N4 framework results in more exposure of - CN - and - CN bond and forms a homojunction (MCN), which favors photocatalysis by acting as photoresponse and active centers, respectively. Moreover, the triazine units can bridge the hybridized C3N4 and TiO2, forming a stable MCN/TiO2 homo-heterojunction. Attributed to the matched band energy structure of MCN and TiO2 and the structural characteristics of triazine/heptazine heterocyclic, the light response, charge separation and transfer as well as the lifetime of carriers on MCN/TiO2 hybrid are improved significantly. As a result, the MCN/TiO2 homo-heterojunction exhibits excellent activity and stability for photocatalytic hydrogen production performance, up to 2594 μmol∙g-1∙h-1 under simulated solar irradiation, which is 5.5 times higher than that of the bare g-C3N4.
Collapse
Affiliation(s)
- Jie Liu
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| | - Xinda Yuan
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Juan Sun
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Jun Ke
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Baojun Liu
- College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Lidong Wang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| |
Collapse
|
33
|
Cheng L, Zhang P, Wen Q, Fan J, Xiang Q. Copper and platinum dual-single-atoms supported on crystalline graphitic carbon nitride for enhanced photocatalytic CO2 reduction. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63879-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
34
|
Burmeister D, Tran HA, Müller J, Guerrini M, Cocchi C, Plaickner J, Kochovski Z, List‐Kratochvil EJW, Bojdys MJ. Optimierte Synthese von in Lösung verarbeitbarem kristallinem Poly(triazinimid) mit minimalen Defekten für OLED‐Anwendungen. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202111749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- David Burmeister
- Department of Chemistry Department of Physics IRIS Adlershof Humboldt-Universität zu Berlin Zum Großen Windkanal 2 12489 Berlin Deutschland
| | - Ha Anh Tran
- Department of Chemistry Department of Physics IRIS Adlershof Humboldt-Universität zu Berlin Zum Großen Windkanal 2 12489 Berlin Deutschland
| | - Johannes Müller
- Department of Physics IRIS Adlershof Humboldt-Universität zu Berlin Brook-Taylor-Straße 15 12489 Berlin Deutschland
| | - Michele Guerrini
- Institute of Physics Carl von Ossietzky Universität Oldenburg 26129 Oldenburg Deutschland
| | - Caterina Cocchi
- Department of Physics IRIS Adlershof Humboldt-Universität zu Berlin Brook-Taylor-Straße 15 12489 Berlin Deutschland
- Institute of Physics Carl von Ossietzky Universität Oldenburg 26129 Oldenburg Deutschland
| | - Julian Plaickner
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH Hahn-Meitner-Platz 1 14109 Berlin Deutschland
- Leibniz-Institut für Analytische Wissenschaften – IAS e.V. Schwarzschildstraße 8 12489 Berlin Deutschland
| | - Zdravko Kochovski
- Institute of Electrochemical Energy Storage Helmholtz-Zentrum Berlin für Materialien und Energie Hahn-Meitner-Platz 1 14109 Berlin Deutschland
| | - Emil J. W. List‐Kratochvil
- Department of Chemistry Department of Physics IRIS Adlershof Humboldt-Universität zu Berlin Zum Großen Windkanal 2 12489 Berlin Deutschland
| | - Michael J. Bojdys
- Department of Chemistry Kings College London Britannia House Guy's Campus, 7 Trinity Street London SE1 1DB Vereinigtes Königreich
- Department of Chemistry Department of Physics IRIS Adlershof Humboldt-Universität zu Berlin Zum Großen Windkanal 2 12489 Berlin Deutschland
| |
Collapse
|
35
|
Deshpande S, Deshpande M, Ahuja R, Hussain T. Tuning the electronic, magnetic, and sensing properties of a single atom embedded microporous C 3N 6 monolayer towards XO 2 (X = C, N, S) gases. NEW J CHEM 2022. [DOI: 10.1039/d2nj01956f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
2D carbon nitride frameworks have received a lot of attention due to their high potential in many applications, such as gas sensing.
Collapse
Affiliation(s)
- Swapnil Deshpande
- Department of Physics, H. P. T. Arts and R. Y. K. Science College, Nashik 422005, Maharashtra, India
| | - Mrinalini Deshpande
- Department of Physics, H. P. T. Arts and R. Y. K. Science College, Nashik 422005, Maharashtra, India
| | - Rajeev Ahuja
- Department of Physics, Indian Institute of Technology, Ropar, Rupnagar 140001, Punjab, India
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120, Uppsala, Sweden
| | - Tanveer Hussain
- School of Chemical Engineering, The University of Queensland, St Lucia, Brisbane 4072, Australia
- School of Science and Technology, University of New England, Armidale, New South Wales 2351, Australia
| |
Collapse
|
36
|
Kim DW, Choi J, Byun J, Kim JT, Lee GS, Kim JG, Kim D, Boonmongkolras P, McMillan PF, Lee HM, Clancy AJ, Shin B, Kim SO. Monodisperse Carbon Nitride Nanosheets as Multifunctional Additives for Efficient and Durable Perovskite Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2021; 13:61215-61226. [PMID: 34905920 DOI: 10.1021/acsami.1c19587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Two-dimensional (2D) materials are promising components for defect passivation of metal halide perovskites. Unfortunately, commonly used polydisperse liquid-exfoliated 2D materials generally suffer from heterogeneous structures and properties while incorporated into perovskite films. We introduce monodisperse multifunctional 2D crystalline carbon nitride, poly(triazine imide) (PTI), as an effective defect passivation agent in perovskite films via typical solution processing. Incorporation of PTI into perovskite film can be readily attained by simple solution mixing of PTI dispersions with perovskite precursor solutions, resulting in the highly selective distribution of PTI localized at the defective crystal grain boundaries and layer interfaces in the functional perovskite layer. Several chemical, optical, and electronic characterizations, in conjunction with density functional theory calculations, reveal multiple beneficial roles from PTI: passivation of undercoordinated organic cations at the surface of perovskite crystal, suppression of ion migration by blocking diffusion channels, and prevention of hole quenching at perovskite/SnO2 interfaces. Consequently, a noticeably improved power conversion efficiency is achieved in perovskite solar cells, accompanied with promoted stability under humid air and thermal stress. Our strategy highlights the potential of judiciously designed 2D materials as a simple-to-implement material for various optoelectronic devices, including solar cells, based on hybrid perovskites.
Collapse
Affiliation(s)
- Dae-Won Kim
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Material Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jungwoo Choi
- Department of Material Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jinwoo Byun
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Material Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jun Tae Kim
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Material Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Gang San Lee
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Material Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jin Goo Kim
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Material Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Daehan Kim
- Department of Material Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Passarut Boonmongkolras
- Department of Material Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Paul F McMillan
- Department of Chemistry, University College London (UCL), Gower St., London WC1E 6BT, U.K
| | - Hyuck Mo Lee
- Department of Material Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Adam J Clancy
- Department of Chemistry, University College London (UCL), Gower St., London WC1E 6BT, U.K
| | - Byungha Shin
- Department of Material Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Sang Ouk Kim
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Material Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
37
|
Morozov RS, Golovin MS, Uchaev DA, Fakhrutdinov AN, Gavrilyak MV, Arkhipushkin IA, Boronin VA, Korshunov VM, Podgornov FV, Taydakov IV, Avdin VV, Zherebtsov DA, Bol’shakov OI. Polytriazine imide-LiCl semiconductor for highly efficient photooxidation of benzyl alcohol to benzaldehyde. J CHEM SCI 2021. [DOI: 10.1007/s12039-021-01999-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
38
|
Burmeister D, Trunk MG, Bojdys MJ. Development of metal-free layered semiconductors for 2D organic field-effect transistors. Chem Soc Rev 2021; 50:11559-11576. [PMID: 34661213 PMCID: PMC8521667 DOI: 10.1039/d1cs00497b] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Indexed: 12/23/2022]
Abstract
To this day, the active components of integrated circuits consist mostly of (semi-)metals. Concerns for raw material supply and pricing aside, the overreliance on (semi-)metals in electronics limits our abilities (i) to tune the properties and composition of the active components, (ii) to freely process their physical dimensions, and (iii) to expand their deployment to applications that require optical transparency, mechanical flexibility, and permeability. 2D organic semiconductors match these criteria more closely. In this review, we discuss a number of 2D organic materials that can facilitate charge transport across and in-between their π-conjugated layers as well as the challenges that arise from modulation and processing of organic polymer semiconductors in electronic devices such as organic field-effect transistors.
Collapse
Affiliation(s)
- David Burmeister
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany.
- Integrative Research Institute for the Sciences Adlershof, Humboldt-Universität zu Berlin, Zum Großen Windkanal 2, 12489 Berlin, Germany
| | - Matthias G Trunk
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany.
- Integrative Research Institute for the Sciences Adlershof, Humboldt-Universität zu Berlin, Zum Großen Windkanal 2, 12489 Berlin, Germany
| | - Michael J Bojdys
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany.
- Integrative Research Institute for the Sciences Adlershof, Humboldt-Universität zu Berlin, Zum Großen Windkanal 2, 12489 Berlin, Germany
- Department of Chemistry, King's College London, Britannia House Guy's Campus, 7 Trinity Street, London, SE1 1DB, UK
| |
Collapse
|
39
|
Burmeister D, Tran HA, Müller J, Guerrini M, Cocchi C, Plaickner J, Kochovski Z, List-Kratochvil EJW, Bojdys MJ. Optimized Synthesis of Solution-Processable Crystalline Poly(Triazine Imide) with Minimized Defects for OLED Application. Angew Chem Int Ed Engl 2021; 61:e202111749. [PMID: 34634165 PMCID: PMC9300060 DOI: 10.1002/anie.202111749] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/29/2021] [Indexed: 11/13/2022]
Abstract
Poly(triazine imide) (PTI) is a highly crystalline semiconductor, and though no techniques exist that enable synthesis of macroscopic monolayers of PTI, it is possible to study it in thin layer device applications that are compatible with its polycrystalline, nanoscale morphology. We find that the by‐product of conventional PTI synthesis is a C−C carbon‐rich phase that is detrimental for charge transport and photoluminescence. An optimized synthetic protocol yields a PTI material with an increased quantum yield, enabled photocurrent and electroluminescence. We report that protonation of the PTI structure happens preferentially at the pyridinic N atoms of the triazine rings, is accompanied by exfoliation of PTI layers, and contributes to increases in quantum yield and exciton lifetimes. This study describes structure–property relationships in PTI that link the nature of defects, their formation, and how to avoid them with the optical and electronic performance of PTI. On the basis of our findings, we create an OLED prototype with PTI as the active, metal‐free material.
Collapse
Affiliation(s)
- David Burmeister
- Department of Chemistry, Department of Physics, IRIS Adlershof, Humboldt-Universität zu Berlin, Zum Grossen Windkanal 2, 12489, Berlin, Germany
| | - Ha Anh Tran
- Department of Chemistry, Department of Physics, IRIS Adlershof, Humboldt-Universität zu Berlin, Zum Grossen Windkanal 2, 12489, Berlin, Germany
| | - Johannes Müller
- Department of Physics, IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 15, 12489, Berlin, Germany
| | - Michele Guerrini
- Institute of Physics, Carl von Ossietzky Universität Oldenburg, 26129, Oldenburg, Germany
| | - Caterina Cocchi
- Department of Physics, IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 15, 12489, Berlin, Germany.,Institute of Physics, Carl von Ossietzky Universität Oldenburg, 26129, Oldenburg, Germany
| | - Julian Plaickner
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109, Berlin, Germany.,Leibniz-Institut für Analytische Wissenschaften-IAS e.V., Schwarzschildstrasse 8, 12489, Berlin, Germany
| | - Zdravko Kochovski
- Institute of Electrochemical Energy Storage, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109, Berlin, Germany
| | - Emil J W List-Kratochvil
- Department of Chemistry, Department of Physics, IRIS Adlershof, Humboldt-Universität zu Berlin, Zum Grossen Windkanal 2, 12489, Berlin, Germany
| | - Michael J Bojdys
- Department of Chemistry, Kings College London, Britannia House Guy's Campus, 7 Trinity Street, London, SE1 1DB, United Kingdom.,Department of Chemistry, Department of Physics, IRIS Adlershof, Humboldt-Universität zu Berlin, Zum Grossen Windkanal 2, 12489, Berlin, Germany
| |
Collapse
|
40
|
Wang J, Zhao H, Zhu B, Larter S, Cao S, Yu J, Kibria MG, Hu J. Solar-Driven Glucose Isomerization into Fructose via Transient Lewis Acid–Base Active Sites. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03252] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jiu Wang
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, Northwest, Calgary, Alberta T2N 1N4, Canada
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, P. R. China
| | - Heng Zhao
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, Northwest, Calgary, Alberta T2N 1N4, Canada
| | - Bicheng Zhu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan 430074, P. R. China
| | - Stephen Larter
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, Northwest, Calgary, Alberta T2N 1N4, Canada
| | - Shaowen Cao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, P. R. China
| | - Jiaguo Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, P. R. China
| | - Md Golam Kibria
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, Northwest, Calgary, Alberta T2N 1N4, Canada
| | - Jinguang Hu
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, Northwest, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
41
|
Bottom-up synthesis of graphene films hosting atom-thick molecular-sieving apertures. Proc Natl Acad Sci U S A 2021; 118:2022201118. [PMID: 34493654 DOI: 10.1073/pnas.2022201118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Incorporation of a high density of molecular-sieving nanopores in the graphene lattice by the bottom-up synthesis is highly attractive for high-performance membranes. Herein, we achieve this by a controlled synthesis of nanocrystalline graphene where incomplete growth of a few nanometer-sized, misoriented grains generates molecular-sized pores in the lattice. The density of pores is comparable to that obtained by the state-of-the-art postsynthetic etching (1012 cm-2) and is up to two orders of magnitude higher than that of molecular-sieving intrinsic vacancy defects in single-layer graphene (SLG) prepared by chemical vapor deposition. The porous nanocrystalline graphene (PNG) films are synthesized by precipitation of C dissolved in the Ni matrix where the C concentration is regulated by controlled pyrolysis of precursors (polymers and/or sugar). The PNG film is made of few-layered graphene except near the grain edge where the grains taper down to a single layer and eventually terminate into vacancy defects at a node where three or more grains meet. This unique nanostructure is highly attractive for the membranes because the layered domains improve the mechanical robustness of the film while the atom-thick molecular-sized apertures allow the realization of large gas transport. The combination of gas permeance and gas pair selectivity is comparable to that from the nanoporous SLG membranes prepared by state-of-the-art postsynthetic lattice etching. Overall, the method reported here improves the scale-up potential of graphene membranes by cutting down the processing steps.
Collapse
|
42
|
Ashirov T, Coskun A. Ultrahigh permeance metal coated porous graphene membranes with tunable gas selectivities. Chem 2021. [DOI: 10.1016/j.chempr.2021.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
43
|
Ashirov T, Coskun A. Ultrahigh permeance metal coated porous graphene membranes with tunable gas selectivities. Chem 2021; 7:2385-2394. [DOI: https:/doi.org/10.1016/j.chempr.2021.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
|
44
|
Zhu L, Huang L, Venna SR, Blevins AK, Ding Y, Hopkinson DP, Swihart MT, Lin H. Scalable Polymeric Few-Nanometer Organosilica Membranes with Hydrothermal Stability for Selective Hydrogen Separation. ACS NANO 2021; 15:12119-12128. [PMID: 34254506 DOI: 10.1021/acsnano.1c03492] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nanoporous silica membranes exhibit excellent H2/CO2 separation properties for sustainable H2 production and CO2 capture but are prepared via complicated thermal processes above 400 °C, which prevent their scalable production at a low cost. Here, we demonstrate the rapid fabrication (within 2 min) of ultrathin silica-like membranes (∼3 nm) via an oxygen plasma treatment of polydimethylsiloxane-based thin-film composite membranes at 20 °C. The resulting organosilica membranes unexpectedly exhibit H2 permeance of 280-930 GPU (1 GPU = 3.347 × 10-10 mol m-2 s-1 Pa-1) and H2/CO2 selectivity of 93-32 at 200 °C, far surpassing state-of-the-art membranes and Robeson's upper bound for H2/CO2 separation. When challenged with a 3 d simulated syngas test containing water vapor at 200 °C and a 340 d stability test, the membrane shows durable separation performance and excellent hydrothermal stability. The robust H2/CO2 separation properties coupled with excellent scalability demonstrate the great potential of these organosilica membranes for economic H2 production with minimal carbon emissions.
Collapse
Affiliation(s)
- Lingxiang Zhu
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
- U.S. Department of Energy, National Energy Technology Laboratory, 626 Cochrans Mill Road, P.O. Box 10940, Pittsburgh, Pennsylvania 15236, United States
- NETL Support Contractor, 626 Cochrans Mill Road, P.O. Box 10940, Pittsburgh, Pennsylvania 15236, United States
| | - Liang Huang
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Surendar R Venna
- U.S. Department of Energy, National Energy Technology Laboratory, 626 Cochrans Mill Road, P.O. Box 10940, Pittsburgh, Pennsylvania 15236, United States
- NETL Support Contractor, 626 Cochrans Mill Road, P.O. Box 10940, Pittsburgh, Pennsylvania 15236, United States
| | - Adrienne K Blevins
- Membrane Science, Engineering and Technology Center, Paul M. Rady Mechanical Engineering, University of Colorado at Boulder, Boulder, Colorado 80309, United States
| | - Yifu Ding
- Membrane Science, Engineering and Technology Center, Paul M. Rady Mechanical Engineering, University of Colorado at Boulder, Boulder, Colorado 80309, United States
| | - David P Hopkinson
- U.S. Department of Energy, National Energy Technology Laboratory, 626 Cochrans Mill Road, P.O. Box 10940, Pittsburgh, Pennsylvania 15236, United States
| | - Mark T Swihart
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Haiqing Lin
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|
45
|
Jia M, Zhang XF, Yao J. Graphitic Carbon Nitride–Graphene Oxide Hybrid Membranes for Hydrogen Purification. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c02098] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mingmin Jia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
- Jiangsu Engineering Laboratory for Environment Functional Materials, Jiangsu Key Lab for Chemistry of Low-Dimensional Materials, College of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian 223300, China
| | - Xiong-Fei Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jianfeng Yao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
46
|
Xing P, Zhou F, Zhan S. Catalytic conversion of seawater to fuels: Eliminating N vacancies in g-C 3N 4 to promote photocatalytic hydrogen production. ENVIRONMENTAL RESEARCH 2021; 197:111167. [PMID: 33861976 DOI: 10.1016/j.envres.2021.111167] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/17/2021] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
The use of solar energy to decompose seawater and produce hydrogen is of great significance in solving the energy crisis. Numerous studies have shown that vacancies can significantly improve photocatalytic activity due to their electron-rich nature. However, our recent research has shown that materials with vacancies are not suitable for photocatalytic reactions in seawater. In this study, g-C3N4 with rich N vacancies was selected as the research object, and urea was used as the precursor; in this system, the N vacancies in g-C3N4 could be effectively reduced by the addition of ZIF-8 (ZCNQx). The activity of ZCNQ40 was 5.6 times higher than that of g-C3N4 in fresh seawater, but only 3.1 times higher in freshwater. Based on the analysis of the experimental results, we believe that g-C3N4 has a limiting relationship between H+ adsorption catalysis and H2 product desorption. In addition, seawater contains many heteroatoms that will also compete with proton (H+) reduction. The results of our study show that catalysts with vacancies are not necessarily suitable for catalytic reactions in seawater media. This research will stimulate new ideas for research into the conversion of solar energy to chemical energy in seawater media.
Collapse
Affiliation(s)
- Peng Xing
- Key Laboratory of Ship-Machinery Maintenance and Manufacture for Ministry of Transport, Dalian Maritime University, Dalian, 116026, PR China
| | - Feng Zhou
- Key Laboratory of Ship-Machinery Maintenance and Manufacture for Ministry of Transport, Dalian Maritime University, Dalian, 116026, PR China.
| | - Su Zhan
- Key Laboratory of Ship-Machinery Maintenance and Manufacture for Ministry of Transport, Dalian Maritime University, Dalian, 116026, PR China
| |
Collapse
|
47
|
Zhang Y, Su S, Zhang Y, Zhang X, Giusto P, Huang X, Liu J. Visible-Light-Driven Photocatalytic Water Disinfection Toward Escherichia coli by Nanowired g-C3N4 Film. FRONTIERS IN NANOTECHNOLOGY 2021. [DOI: 10.3389/fnano.2021.684788] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Graphitic carbon nitride (g-C3N4) as metal-free visible light photocatalyst has recently emerged as a promising candidate for water disinfection. Herein, a nanowire-rich superhydrophilic g-C3N4 film was prepared by a vapor-assisted confined deposition method. With a disinfection efficiency of over 99.99% in 4 h under visible light irradiation, this nanowire-rich g-C3N4 film was found to perform better than conventional g-C3N4 film. Control experiments showed that the disinfection performance of the g-C3N4 film reduced significantly after hydrophobic treatment. The potential disinfection mechanism was investigated through scavenger-quenching experiments, which indicate that H2O2 was the main active specie and played an important role in bacteria inactivation. Due to the metal-free composition and excellent performance, photocatalytic disinfection by nanowire-rich g-C3N4 film would be a promising and cost-effective way for safe drinking water production.
Collapse
|
48
|
Bafekry A, Shahrokhi M, Shafique A, Jappor HR, Shojaei F, Feghhi SAH, Ghergherehchi M, Gogova D. Two-dimensional carbon nitride C 6N nanosheet with egg-comb-like structure and electronic properties of a semimetal. NANOTECHNOLOGY 2021; 32:215702. [PMID: 33339018 DOI: 10.1088/1361-6528/abd50c] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
In this study, the structural, electronic and optical properties of theoretically predicted C6N monolayer structure are investigated by means of Density Functional Theory-based First-Principles Calculations. Phonon band dispersion calculations and molecular dynamics simulations reveal the dynamical and thermal stability of the C6N single-layer structure. We found out that the C6N monolayer has large negative in-plane Poisson's ratios along bothXandYdirection and the both values are almost four times that of the famous-pentagraphene. The electronic structure shows that C6N monolayer is a semi-metal and has a Dirac-point in the BZ. The optical analysis using the random phase approximation method constructed over HSE06 illustrates that the first peak of absorption coefficient of the C6N monolayer along all polarizations is located in theIRrange of spectrum, while the second absorption peak occurs in the visible range, which suggests its potential applications in optical and electronic devices. Interestingly, optically anisotropic character of this system is highly desirable for the design of polarization-sensitive photodetectors. Thermoelectric properties such as Seebeck coefficient, electrical conductivity, electronic thermal conductivity and power factor are investigated as a function of carrier doping at temperatures 300, 400, and 500 K. In general, we predict that the C6N monolayer could be a new platform for study of novel physical properties in two-dimensional semi-metal materials, which may provide new opportunities to realize high-speed low-dissipation devices.
Collapse
Affiliation(s)
- A Bafekry
- Department of Radiation Application, Shahid Beheshti University, Tehran, Iran
- Department of Physics, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - M Shahrokhi
- Department of Physics, Faculty of Science, University of Kurdistan, 66177-15175 Sanandaj, Iran
| | - A Shafique
- Department of Physics, Lahore University of Management Sciences, Lahore, Pakistan
| | - H R Jappor
- Department of Physics, College of Education for Pure Sciences, University of Babylon, Hilla, Iraq
| | - F Shojaei
- Department of Chemistry, Faculty of Sciences, Persian Gulf University, Bushehr 75169, Iran
| | - S A H Feghhi
- Department of Radiation Application, Shahid Beheshti University, Tehran, Iran
| | - M Ghergherehchi
- College of Electronic and Electrical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - D Gogova
- Department of Physics, University of Oslo, P.O. Box 1048, Blindern, Oslo, Norway
| |
Collapse
|
49
|
Vidyasagar D, Bhoyar T, Singh G, Vinu A. Recent Progress in Polymorphs of Carbon Nitride: Synthesis, Properties, and Their Applications. Macromol Rapid Commun 2021; 42:e2000676. [PMID: 33448072 DOI: 10.1002/marc.202000676] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/16/2020] [Indexed: 11/11/2022]
Abstract
Carbon nitride (CN) materials are at the forefront of contemporary solar energy conversion applications, owing to their extraordinary physicochemical properties. Having such multifunctional properties, CN photocatalytic materials are practically significant; however, due to the indistinguishable physical properties, all solid CN materials in most literature reports are referred to as graphitic C3 N4 phase, which is incorrect. This perspective discourses the various identified polymeric forms of CN, their molecular structure, synthesis, photophysical properties, and their applications. The article attempts to simplify the conjectures in CN terminology and discuss future perspectives, challenges, and opportunities in the developing field of CN chemistry.
Collapse
Affiliation(s)
- Devthade Vidyasagar
- Material Science and Engineering Department, Kyungpook National University, Daegu, 41566, Republic of Korea.,Materials and Catalysis Laboratory, Department of Chemistry, Visvesvaraya National Institute of Technology (VNIT), Nagpur, 440010, India
| | - Toshali Bhoyar
- Materials and Catalysis Laboratory, Department of Chemistry, Visvesvaraya National Institute of Technology (VNIT), Nagpur, 440010, India
| | - Gurwinder Singh
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, Faculty of Engineering and Build Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Ajayan Vinu
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, Faculty of Engineering and Build Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| |
Collapse
|
50
|
Jia C, Yang L, Zhang Y, Zhang X, Xiao K, Xu J, Liu J. Graphitic Carbon Nitride Films: Emerging Paradigm for Versatile Applications. ACS APPLIED MATERIALS & INTERFACES 2020; 12:53571-53591. [PMID: 33210913 DOI: 10.1021/acsami.0c15159] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Graphitic carbon nitride (g-C3N4) is a well-known two-dimensional conjugated polymer semiconductor that has been broadly applied in photocatalysis-related fields. However, further developments of g-C3N4, especially in device applications, have been constrained by the inherent limitations of its insoluble nature and particulate properties. Recent breakthroughs in fabrication methods of g-C3N4 films have led to innovative and inspiring applications in many fields. In this review, we first summarize the fabrication of continuous and thin films, either supported on substrates or as free-standing membranes. Then, the novel properties and application of g-C3N4 films are the focus of the current review. Finally, some underlying challenges and the future developments of g-C3N4 films are tentatively discussed. This review is expected to provide a comprehensive and timely summary of g-C3N4 film research to the wide audience in the field of conjugated polymer semiconductor-based materials.
Collapse
Affiliation(s)
- Changchao Jia
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P.R. China
| | - Lijun Yang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P.R. China
| | - Yizhu Zhang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P.R. China
| | - Xia Zhang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P.R. China
| | - Kai Xiao
- Department of Colloids Chemistry, Max Planck Institute of Colloids and Interfaces, Potsdam 14476, Germany
| | - Jingsan Xu
- School of Chemistry and Physics, Science and Engineering Faculty, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - Jian Liu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P.R. China
| |
Collapse
|