1
|
Lai EY, Ackermann L, Johansson MJ. A unified approach to meta-selective methylation, mono-, di- and trifluoromethylation of arenes. Chem Sci 2025; 16:8478-8486. [PMID: 40236595 PMCID: PMC11995027 DOI: 10.1039/d5sc01367d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 04/07/2025] [Indexed: 04/17/2025] Open
Abstract
Matched molecular series (MMS) are series of molecules that differ only by a single modification at a specific site. The synthesis of MMS is a desirable strategy in drug discovery campaigns. Small aliphatic motifs, notably methyl, mono-, di- and trifluoromethyl substituents (C1 units), are known to have profound effects on the physiochemical properties and/or potency of drug candidates. In this context, we herein report a unique strategy for achieving direct meta-selective methylation, mono-, di-, and trifluoromethylation from the same parent compound. This approach takes advantage of a highly meta-selective ruthenium(ii)-catalyzed alkylation, followed by a subsequent photocatalyzed protodecarboxylation or silver-mediated fluorodecarboxylation to reveal the (fluoro)methyl moiety. This method enables the late-stage access to MMS in small molecules bearing a variety of orienting groups as well as bio-relevant molecules containing complex functionalities, bypassing the need for de novo synthesis to access individual compounds in a series. Moreover, key physiochemical properties of drug candidates were successfully modulated, highlighting opportunities to accelerate medicinal chemistry programs in a sustainable fashion.
Collapse
Affiliation(s)
- Elisa Y Lai
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), Biopharmaceuticals R&D, AstraZeneca, Gothenburg Pepparedsleden 1 431 50 Mölndal Sweden
- Institut für Organische und Biomolekulare Chemie, Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Germany
| | - Magnus J Johansson
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), Biopharmaceuticals R&D, AstraZeneca, Gothenburg Pepparedsleden 1 431 50 Mölndal Sweden
| |
Collapse
|
2
|
Kadota K, Kohata A, Sando S, Morimoto J, Aikawa K, Okazoe T. Comparison of the effects of perfluoroalkyl and alkyl groups on cellular uptake in short peptides. RSC Adv 2025; 15:8189-8194. [PMID: 40103971 PMCID: PMC11912358 DOI: 10.1039/d5ra00304k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/08/2025] [Indexed: 03/20/2025] Open
Abstract
The differences in the effects of perfluoroalkyl (RF) and alkyl (RH) groups on the cellular uptake of short peptides were evaluated. A facile synthetic method was established to produce Fmoc-protected amino acids bearing RF and RH groups on their side chains. The synthesized Fmoc-protected amino acids were successfully incorporated into peptides using solid-phase peptide synthesis. Peptides with an RF group exhibited higher cellular uptake efficiency compared to peptides with an RH group of the same side-chain length. Intriguingly, the cytotoxicity of the AF647-RF-tripeptide (RF = C8F17) was lower than that of the AF647-RH-tripeptide (RH = C12H25), despite similar cellular uptake efficiencies. An evaluation of the binding affinity of the peptides to liposome membranes suggested that the higher lipophobicity of the RF group, compared to the RH group, contributed to the lower cytotoxicity observed in the peptide with the RF group. These findings indicate that the introduction of an RF group into peptides has considerable potential for developing drug-delivery carriers with enhanced uptake efficiency and low cytotoxicity.
Collapse
Affiliation(s)
- Koji Kadota
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo 2-11-16 Yayoi, Bunkyo-ku Tokyo 113-0032 Japan
| | - Ai Kohata
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo 2-11-16 Yayoi, Bunkyo-ku Tokyo 113-0032 Japan
| | - Shinsuke Sando
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Jumpei Morimoto
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Kohsuke Aikawa
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo 2-11-16 Yayoi, Bunkyo-ku Tokyo 113-0032 Japan
| | - Takashi Okazoe
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo 2-11-16 Yayoi, Bunkyo-ku Tokyo 113-0032 Japan
- Yokohama Technical Center, AGC Inc. 1-1 Suehiro-cho, Tsurumi-ku Yokohama 230-0045 Japan
| |
Collapse
|
3
|
Jakka SR, Mugesh G. Emerging Role of Noncovalent Interactions and Disulfide Bond Formation in the Cellular Uptake of Small Molecules and Proteins. Chem Asian J 2025; 20:e202401734. [PMID: 39831847 DOI: 10.1002/asia.202401734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/13/2025] [Accepted: 01/20/2025] [Indexed: 01/22/2025]
Abstract
Intracellular delivery of proteins and small molecules is an important barrier in the development of strategies to deliver functional proteins and therapeutics into the cells to realize their full potential in biotechnology, biomedicine, cell-based therapies, and gene editing protein systems. Most of the intracellular protein delivery strategies involve the conjugation of cell penetrating peptides to enable the permeability of plasma membrane of mammalian cells to allow proteins to enter cytosol. The conjugations of small molecules such as (p-methylphenyl) glycine, pyrenebutyrate and cysteines are used for the same purpose. Molecular level interactions are governed mostly by ionic (cationic/anionic), covalent and noncovalent interactions with various molecular entities of glycocalyx matrix on plasma membrane lipid bilayer. Although the role of noncovalent interactions in cellular uptake is not fully understood, several recent advances have focused on the noncovalent interaction-based strategies of intracellular delivery of small molecules and proteins into mammalian cells. These are achieved by simple modification of protein surfaces with chemical moieties which can form noncovalent interactions other than hydrogen bonding. In this review, we describe the recent advances and the mechanistic aspects of intracellular delivery and role of noncovalent interactions in the cellular uptake of proteins and small molecules.
Collapse
Affiliation(s)
- Surendar R Jakka
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560 012, India
| | - Govindasamy Mugesh
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560 012, India
| |
Collapse
|
4
|
Shao L, Zhang H, Sun L, Ning L, Sun X, Qin C, Xu W, Xu R, Jia F. Responsive Degradable Bottlebrush Polymers Enable Drugs With Superior Efficacy and Minimal Systemic Toxicity. Adv Healthc Mater 2025; 14:e2405202. [PMID: 39757488 DOI: 10.1002/adhm.202405202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 12/26/2024] [Indexed: 01/07/2025]
Abstract
Bottlebrush polymers (BBPs) have garnered significant attention as advanced drug delivery systems, capable of transporting a diverse range of therapeutic agents, including both chemical drugs and biologics. Despite their effectiveness, the empty BBP vectors post-drug release may pose long-term safety risks due to their difficult systemic clearance. Here, a responsive degradable BBP platform for cancer therapy is developed, featuring a poly(disulfide) backbone grafted with fluorine-terminated zwitterionic side chains. Anti-cancer drugs are tethered to the backbone via a clinically approved valine-citrulline (VC) linker. This design leverages the tumor's reductive environment and Cathepsin B overexpression for BBP rapid degradation and precise drug release restricted within tumor cells, thereby addressing systemic safety concerns over synthetic BBP and expanding the therapeutic window of anti-cancer drugs simultaneously. Surface fluorination of BBP further enhances tumor accumulation and deep penetration. In vivo studies with monomethyl auristatin E (MMAE)-loaded BBP in tumor-bearing mice demonstrate substantial tumor suppression with minimal side effects. Together, these findings highlight the potential of responsive degradable BBP as a versatile unimolecular platform for cancer drug delivery, addressing existing challenges associated with synthetic BBP nanomedicines.
Collapse
Affiliation(s)
- Liming Shao
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Hongrui Zhang
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Lei Sun
- College & Hospital of Stomatology, Key Lab. of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Lubin Ning
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Xiuying Sun
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Chaoke Qin
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Wenhua Xu
- College & Hospital of Stomatology, Key Lab. of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Rui Xu
- College & Hospital of Stomatology, Key Lab. of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Fei Jia
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| |
Collapse
|
5
|
Laurent Q, Bona BL, Asohan J, Rosati M, Faiad S, Bombelli FB, Metrangolo P, Sleiman HF. Self-Assembly and Biological Properties of Highly Fluorinated Oligonucleotide Amphiphiles. Angew Chem Int Ed Engl 2025; 64:e202419996. [PMID: 39636686 PMCID: PMC11811686 DOI: 10.1002/anie.202419996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/24/2024] [Accepted: 12/04/2024] [Indexed: 12/07/2024]
Abstract
Nucleic acids, used as therapeutics to silence disease-related genes, offer significant advantages over small molecule drugs: they provide high specificity, the ability to target "undruggable" molecules, and adaptability to a wide range of disease phenotypes. However, their instability in biological media, as well their rapid clearance from the organism limit their applicability, necessitating the use of nanocarriers to overcome these challenges. Among these strategies, spherical nucleic acids (SNA)-composed of a densely packed corona of oligonucleotides around a nanoparticle-have emerged as a powerful tool, in particular when self-assembled from DNA amphiphiles. This non-covalent strategy however has caveats, especially when it comes to stability in complex biological media, where these SNAs disassemble in contact to serum proteins. Here, we developed highly fluorinated DNA amphiphiles that readily self-assemble into SNAs and have tunable stability profiles in biological media. They are made of branched fluorinated moieties with potentially improved biodegradability as compared to their linear counterparts. Depending on the number of fluorophilic interactions, the self-assembled SNAs can have excellent serum stabilities-up to days-and readily deliver nucleic acid therapeutics for gene silencing applications. These systems show great potential as promising candidates for nucleic acid-based therapies.
Collapse
Affiliation(s)
- Quentin Laurent
- Department of ChemistryMcGill University801 Sherbrooke St. WQC-H3A 0B8MontrealCanada
| | - Beatrice L. Bona
- SupraBioNano LabDepartment of ChemistryMaterialsand Chemical Engineering “Giulio Natta”Politecnico di MilanoVia Luigi Mancinelli 7MI-20131MilanoItaly
| | - Jathavan Asohan
- Department of ChemistryMcGill University801 Sherbrooke St. WQC-H3A 0B8MontrealCanada
| | - Marta Rosati
- SupraBioNano LabDepartment of ChemistryMaterialsand Chemical Engineering “Giulio Natta”Politecnico di MilanoVia Luigi Mancinelli 7MI-20131MilanoItaly
| | - Sinan Faiad
- Department of ChemistryMcGill University801 Sherbrooke St. WQC-H3A 0B8MontrealCanada
| | - Francesca Baldelli Bombelli
- SupraBioNano LabDepartment of ChemistryMaterialsand Chemical Engineering “Giulio Natta”Politecnico di MilanoVia Luigi Mancinelli 7MI-20131MilanoItaly
| | - Pierangelo Metrangolo
- SupraBioNano LabDepartment of ChemistryMaterialsand Chemical Engineering “Giulio Natta”Politecnico di MilanoVia Luigi Mancinelli 7MI-20131MilanoItaly
| | - Hanadi F. Sleiman
- Department of ChemistryMcGill University801 Sherbrooke St. WQC-H3A 0B8MontrealCanada
| |
Collapse
|
6
|
Li L, Rong G, Gao X, Cheng Y, Sun Z, Cai X, Xiao J. Bone-Targeted Fluoropeptide Nanoparticle Inhibits NF-κB Signaling to Treat Osteosarcoma and Tumor-Induced Bone Destruction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412014. [PMID: 39501934 PMCID: PMC11714165 DOI: 10.1002/advs.202412014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/23/2024] [Indexed: 01/11/2025]
Abstract
Osteosarcoma is a malignant bone cancer usually characterized by symptoms of bone loss due to pathologically enhanced osteoclast activity. Activated osteoclasts enhance bone resorption and promote osteosarcoma cell progression by secreting various cytokines. Intercepting the detrimental interplay between osteoclasts and osteosarcoma cells is considered as an option for osteosarcoma treatment. Here, a bone-targeted fluoropeptide nanoparticle that can inhibit the nuclear factor kappa B (NF-κB) signaling in both osteoclasts and osteosarcoma to address the above issue is developed. The NF-κB essential modulator binding domain (NBD) peptide is conjugated with a fluorous tag to improve its proteolytic stability and intracellular penetration. The NBD peptide is efficiently delivered into cells after fluorination to induce apoptosis of osteocarcoma cells, and inhibits osteoclasts differentiation. The fluorous-tagged NBD peptide is further co-assembled with an oligo (aspartic acid) terminated fluoropeptide to form bone-targeted peptide nanoparticles for osteosarcoma treatment. The targeted nanoparticles efficiently inhibited tumor progression and osteosarcoma-induced bone destruction in vivo. This co-assembled fluoropeptide nanoplatform proposed in this study offers a promising approach for targeted and intracellular delivery of peptide therapeutics in the treatment of various diseases.
Collapse
Affiliation(s)
- Lin Li
- Department of Orthopedics OncologyChangzheng HospitalNavy Medical UniversityShanghai200003China
| | - Guangyu Rong
- Department of Ophthalmology and Vision ScienceShanghai Eye, Ear, Nose and Throat HospitalFudan UniversityShanghai200030China
| | - Xin Gao
- Department of Orthopedics OncologyChangzheng HospitalNavy Medical UniversityShanghai200003China
| | - Yiyun Cheng
- Shanghai Frontiers Science Center of Genome Editing and Cell TherapyShanghai Key Laboratory of Regulatory BiologySchool of Life SciencesEast China Normal UniversityShanghai200241China
| | - Zhengwang Sun
- Department of Musculoskeletal OncologyFudan University Shanghai Cancer CenterShanghai200032China
| | - Xiaopan Cai
- Department of Orthopedics OncologyChangzheng HospitalNavy Medical UniversityShanghai200003China
| | - Jianru Xiao
- Department of Orthopedics OncologyChangzheng HospitalNavy Medical UniversityShanghai200003China
| |
Collapse
|
7
|
Li Y, Kang Z, Zhang X, Sun Y, Han Z, Zhang H, Liu Z, Liang Y, Zhang J, Ren J. Fluoroamphiphiles for enhancing immune response of subunit vaccine against SARS-CoV-2. Eur J Pharm Biopharm 2024; 204:114528. [PMID: 39383977 DOI: 10.1016/j.ejpb.2024.114528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 08/19/2024] [Accepted: 10/07/2024] [Indexed: 10/11/2024]
Abstract
In recent decades, protein-based therapy has garnered valid attention for treating infectious diseases, genetic disorders, cancer, and other clinical requirements. However, preserving protein-based drugs against degradation and denaturation during processing, storage, and delivery poses a formidable challenge. Herein, we designed a novel fluoroamphiphiles polymer to deliver protein. Two different formulations of nanoparticles, cross-linked (CNP) and micelle (MNP) polymer, were prepared rationally by disulfide cross-linked and thin-film hydration techniques, respectively. The size, zeta potential, and morphology of both formulations were characterized and the delivery efficacy of both in vitro and in vivo was also assessed. The in vitro findings demonstrated that both formulations effectively facilitated protein delivery into various cell lines. Moreover, in vivo experiments revealed that intramuscular administration of the two formulations loaded with a SARS-CoV-2 recombinant receptor-binding domain (RBD) vaccine induced robust antibody responses in mice without adding another adjuvant. These results highlight the potential use of our carrier system as a safe and effective platform for the in vivo delivery of subunit vaccines.
Collapse
Affiliation(s)
- Yuan Li
- Immunological Materials Research Group 1, National Vaccine and Serum Institute (NVSI), Beijing, China; National Engineering Center for Novel Vaccine Research, Beijing, China
| | - Ziyao Kang
- Immunological Materials Research Group 1, National Vaccine and Serum Institute (NVSI), Beijing, China; National Engineering Center for Novel Vaccine Research, Beijing, China
| | - Xuefeng Zhang
- The Sixth Laboratory, National Vaccine and Serum Institute (NVSI), Beijing, China; National Engineering Center for Novel Vaccine Research, Beijing, China
| | - Yun Sun
- Immunological Materials Research Group 1, National Vaccine and Serum Institute (NVSI), Beijing, China; National Engineering Center for Novel Vaccine Research, Beijing, China
| | - Zibo Han
- National Engineering Center for Novel Vaccine Research, Beijing, China; Immunological Evaluation Unit, National Vaccine and Serum Institute (NVSI), Beijing, China
| | - Hao Zhang
- The Sixth Laboratory, National Vaccine and Serum Institute (NVSI), Beijing, China; National Engineering Center for Novel Vaccine Research, Beijing, China
| | - Zhaoming Liu
- The Sixth Laboratory, National Vaccine and Serum Institute (NVSI), Beijing, China; National Engineering Center for Novel Vaccine Research, Beijing, China
| | - Yu Liang
- The Sixth Laboratory, National Vaccine and Serum Institute (NVSI), Beijing, China; National Engineering Center for Novel Vaccine Research, Beijing, China
| | - Jing Zhang
- The Sixth Laboratory, National Vaccine and Serum Institute (NVSI), Beijing, China; National Engineering Center for Novel Vaccine Research, Beijing, China.
| | - Jin Ren
- Immunological Materials Research Group 1, National Vaccine and Serum Institute (NVSI), Beijing, China; National Engineering Center for Novel Vaccine Research, Beijing, China.
| |
Collapse
|
8
|
Singh S, Singh RP. Polar-Effect-Directed Control in Site-Selectivity of Radical Substitution Enables C-H Perfluoroalkylation of Coumarins. J Org Chem 2024; 89:14785-14801. [PMID: 39327096 DOI: 10.1021/acs.joc.4c01469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
A novel Ru-catalyzed protocol for C-7 selective C-H trifluoromethylation of coumarins in the presence of light is presented. This reaction undergoes a radical type nucleophilic substitution instead of a radical type electrophilic substitution owing to the benzocore activation as a result of lowering the lowest unoccupied molecular orbital (LUMO).
Collapse
Affiliation(s)
- Shashank Singh
- Department of Chemistry, Indian Institute of Technology, Delhi, Delhi 110016, India
| | - Ravi P Singh
- Department of Chemistry, Indian Institute of Technology, Delhi, Delhi 110016, India
| |
Collapse
|
9
|
Su H, Rong G, Li L, Cheng Y. Subcellular targeting strategies for protein and peptide delivery. Adv Drug Deliv Rev 2024; 212:115387. [PMID: 38964543 DOI: 10.1016/j.addr.2024.115387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/15/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Cytosolic delivery of proteins and peptides provides opportunities for effective disease treatment, as they can specifically modulate intracellular processes. However, most of protein-based therapeutics only have extracellular targets and are cell-membrane impermeable due to relatively large size and hydrophilicity. The use of organelle-targeting strategy offers great potential to overcome extracellular and cell membrane barriers, and enables localization of protein and peptide therapeutics in the organelles. Although progresses have been made in the recent years, organelle-targeted protein and peptide delivery is still challenging and under exploration. We reviewed recent advances in subcellular targeted delivery of proteins/peptides with a focus on targeting mechanisms and strategies, and highlight recent examples of active and passive organelle-specific protein and peptide delivery systems. This emerging platform could open a new avenue to develop more effective protein and peptide therapeutics.
Collapse
Affiliation(s)
- Hao Su
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Guangyu Rong
- Department of Ophthalmology and Vision Science, Shanghai Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, 200030, China
| | - Longjie Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Yiyun Cheng
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
10
|
Goswami A, Kohata A, Okazoe T, Huang H, Aida T. Fluoro-Crown Ether Phosphate as Efficient Cell-Permeable Drug Carrier by Disrupting Hydration Layer. J Am Chem Soc 2024; 146:23406-23411. [PMID: 39082642 DOI: 10.1021/jacs.4c06464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Fast and direct permeation of drug molecules is crucial for effective biotherapeutics. Inspired by a recent finding that fluorous compounds disrupt the hydrogen-bonded network of water, we developed fluoro-crown ether phosphate CyclicFP-X. This compound acts as a fast cell-permeating agent, enabling direct delivery of various bioactive cargos (X) into cancer cells without endocytic entrapment. In contrast, its nonfluorinated cyclic analog (CyclicP-X) failed to achieve cellular internalization. Although the acyclic fluorous analog AcyclicFP-X was internalized, this process occurred slowly owing to the involvement of an endocytic trapping pathway. Designed with a high fluorine density, CyclicFP-X exhibits compactness, polarity, and high-water solubility, facilitating lipid vesicle fusion by disrupting their hydration layers. Raman spectroscopy confirmed the generation of dangling -OH bonds upon addition of CyclicFP-OH to water. Furthermore, conjugating CyclicFP-X with fluorouracil (FU, an anticancer drug) via a reductively cleavable disulfide linker (CyclicFP-SS-FU) demonstrated the general utility of fluoro-crown ether phosphate as a potent carrier for biotherapeutics.
Collapse
Affiliation(s)
- Abir Goswami
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Ai Kohata
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Takashi Okazoe
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
- Yokohama Technical Center, AGC Inc., 1-1 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Hubiao Huang
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Takuzo Aida
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| |
Collapse
|
11
|
Tadano A, Watabe Y, Tanigawa T, Konishi-Yamada S, Kubo T. Evaluation of fluorous affinity using fluoroalkyl-modified silica gel and selective separation of poly-fluoroalkyl substances in organic solvents. J Sep Sci 2024; 47:e2400121. [PMID: 39189598 DOI: 10.1002/jssc.202400121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/23/2024] [Accepted: 08/08/2024] [Indexed: 08/28/2024]
Abstract
In this study, we focused on the fluorous affinity acting among fluorine compounds, and then developed a new separation medium and evaluated their performance. We prepared the stationary phases for a column using silica gel-modified alkyl fluoride and investigated the characteristics of fluorous affinity by comparing them with a typical stationary phase, which does not contain fluorine, using high-performance liquid chromatography (HPLC). In HPLC measurements, we confirmed that while all non-fluorine compounds were not retained, retention of fluorine compounds increased as the number of fluorine increased with the stationary phase. It also revealed that the strength of fluorous affinity changes depending on the types of the organic solvent; the more polar the solvent, the stronger the effect. Additionally, the stationary phase was employed to compare the efficiency of our column with that of a commercially available column, Fluofix-II. The retention selectivity was almost the same, but the absolute retention strength was slightly higher on our column, indicating that the column is available for practical use.
Collapse
Affiliation(s)
- Atsuya Tadano
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | | | - Tetsuya Tanigawa
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Sayaka Konishi-Yamada
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Takuya Kubo
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
- Graduate School of Life and Environmental Science, Kyoto Prefectural University, Kyoto, Japan
| |
Collapse
|
12
|
Hu J, Liu N, Fan Q, Gu Y, Chen S, Zhu F, Cheng Y. A Fluorous Peptide Amphiphile with Potent Antimicrobial Activity for the Treatment of MRSA-induced Sepsis and Chronic Wound Infection. Angew Chem Int Ed Engl 2024; 63:e202403140. [PMID: 38393614 DOI: 10.1002/anie.202403140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 02/22/2024] [Accepted: 02/22/2024] [Indexed: 02/25/2024]
Abstract
The rising prevalence of global antibiotic resistance evokes the urgent need for novel antimicrobial candidates. Cationic lipopeptides have attracted much attention due to their strong antimicrobial activity, broad-spectrum and low resistance tendency. Herein, a library of fluoro-lipopeptide amphiphiles was synthesized by tagging a series of cationic oligopeptides with a fluoroalkyl tail via a disulfide spacer. Among the lipopeptide candidates, R6F bearing six arginine moieties and a fluorous tag shows the highest antibacterial activity, and it exhibits an interesting fluorine effect as compared to the non-fluorinated lipopeptides. The high antibacterial activity of R6F is attributed to its excellent bacterial membrane permeability, which further disrupts the respiratory chain redox stress and cell wall biosynthesis of the bacteria. By co-assembling with lipid nanoparticles, R6F showed high therapeutic efficacy and minimal adverse effects in the treatment of MRSA-induced sepsis and chronic wound infection. This work provides a novel strategy to design highly potent antibacterial peptide amphiphiles for the treatment of drug-resistant bacterial infections.
Collapse
Affiliation(s)
- Jingjing Hu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China, Dongchuan Road, No. 500
| | - Nan Liu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China, Dongchuan Road, No. 500
| | - Qianqian Fan
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China, Dongchuan Road, No. 500
| | - Yunqing Gu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China, Dongchuan Road, No. 500
| | - Sijia Chen
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China, Dongchuan Road, No. 500
| | - Fang Zhu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China, Dongchuan Road, No. 500
| | - Yiyun Cheng
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China, Dongchuan Road, No. 500
| |
Collapse
|
13
|
Lu Y, Chen Y, Hou G, Lei H, Liu L, Huang X, Sun S, Liu L, Liu X, Na J, Zhao Y, Cheng L, Zhong L. Zinc-Iron Bimetallic Peroxides Modulate the Tumor Stromal Microenvironment and Enhance Cell Immunogenicity for Enhanced Breast Cancer Immunotherapy Therapy. ACS NANO 2024; 18:10542-10556. [PMID: 38561324 DOI: 10.1021/acsnano.3c12615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Immunotherapy has emerged as a potential approach for breast cancer treatment. However, the rigid stromal microenvironment and low immunogenicity of breast tumors strongly reduce sensitivity to immunotherapy. To sensitize patients to breast cancer immunotherapy, hyaluronic acid-modified zinc peroxide-iron nanocomposites (Fe-ZnO2@HA, abbreviated FZOH) were synthesized to remodel the stromal microenvironment and increase tumor immunogenicity. The constructed FZOH spontaneously generated highly oxidative hydroxyl radicals (·OH) that degrade hyaluronic acid (HA) in the tumor extracellular matrix (ECM), thereby reshaping the tumor stromal microenvironment and enhancing blood perfusion, drug penetration, and immune cell infiltration. Furthermore, FZOH not only triggers pyroptosis through the activation of the caspase-1/GSDMD-dependent pathway but also induces ferroptosis through various mechanisms, including increasing the levels of Fe2+ in the intracellular iron pool, downregulating the expression of FPN1 to inhibit iron efflux, and activating the p53 signaling pathway to cause the failure of the SLC7A11-GSH-GPX4 signaling axis. Upon treatment with FZOH, 4T1 cancer cells undergo both ferroptosis and pyroptosis, exhibiting a strong immunogenic response. The remodeling of the tumor stromal microenvironment and the immunogenic response of the cells induced by FZOH collectively compensate for the limitations of cancer immunotherapy and significantly enhance the antitumor immune response to the immune checkpoint inhibitor αPD-1. This study proposes a perspective for enhancing immune therapy for breast cancer.
Collapse
Affiliation(s)
- Yujie Lu
- Institute of State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Youdong Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Guanghui Hou
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Huali Lei
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Lin Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Xuan Huang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Shumin Sun
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Luyao Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Xiyu Liu
- Institute of State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Jintong Na
- Institute of State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Yongxiang Zhao
- Institute of State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Liang Cheng
- Institute of State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, China
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Liping Zhong
- Institute of State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, China
| |
Collapse
|
14
|
Zhang H, Meng C, Yi X, Han J, Wang J, Liu F, Ling Q, Li H, Gu Z. Fluorinated Lipid Nanoparticles for Enhancing mRNA Delivery Efficiency. ACS NANO 2024; 18:7825-7836. [PMID: 38452271 DOI: 10.1021/acsnano.3c04507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Lipid nanoparticles (LNPs), a nonviral nucleic acid delivery system, have shown vast potential for vaccine development and disease treatment. LNPs assist mRNA to cross physiological barriers such as cell membranes and endosomes/lysosomes, promoting the intracellular presentation of mRNA. However, the endosome escape efficiency and biosafety of currently commercialized LNPs are still unsatisfactory, resulting in underutilization of mRNA. Herein, we report that fluorinated modification of the 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-poly(ethylene glycol)-2000 (PEG-DSPE), termed as FPD, in the LNPs can improve the delivery efficiency of mRNA. FPD accounts for only 1.5% of lipids in LNPs but could mediate a 5-fold and nearly 2-fold enhancement of mRNA expression efficiency in B16F10 tumor cells and primary dendritic cells, respectively. Mechanism studies reveal that FPD promotes the cellular internalization of LNPs as well as endosome escape. In vivo studies substantiate that FPD can augment overall mRNA expression at least 3-fold, either by intravenous or intraperitoneal injection, compared to LNPs prepared with nonfluorinated PEG-lipids at a relatively low mRNA dose. Besides, with the introduction of FPD, mRNA expression in the spleen augmented compared to that of the DMG-PEG commercial formulations. Benefiting from a prudent dosage of fluorine, the fluorinated LNPs display favorable biosafety profiles at cellular and zoological levels.
Collapse
Affiliation(s)
- Huipeng Zhang
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chaoyang Meng
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Xuewen Yi
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Jinpeng Han
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Junxia Wang
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Feng Liu
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qi Ling
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
- National Health Commission (NHC) Key Laboratory of Combined Multi-Organ Transplantation, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Hongjun Li
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
- Jinhua Institute of Zhejiang University, Jinhua 321299 China
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Zhen Gu
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
- Jinhua Institute of Zhejiang University, Jinhua 321299 China
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
15
|
Bona BL, Lagarrigue P, Chirizzi C, Espinoza MIM, Pipino C, Metrangolo P, Cellesi F, Baldelli Bombelli F. Design of fluorinated stealth poly(ε-caprolactone) nanocarriers. Colloids Surf B Biointerfaces 2024; 234:113730. [PMID: 38176337 DOI: 10.1016/j.colsurfb.2023.113730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/21/2023] [Accepted: 12/24/2023] [Indexed: 01/06/2024]
Abstract
The covalent functionalization of polymers with fluorinated moieties represents a promising strategy for the development of multimodal systems. Moreover, polymer fluorination often endows the resulting nanocarriers with improved colloidal stability in the biological environment. In this work, we developed fluorinated pegylated (PEG) biodegradable poly(ε-caprolactone) (PCL) drug nanocarriers showing both high colloidal stability and stealth properties, as well as being (19F)-Nuclear Magnetic Resonance (NMR) detectable. The optimized nanocarriers were obtained mixing a PEG-PCL block copolymer with a nonafluoro-functionalized PCL polymer. The role of PEGylation and fluorination on self-assembly and colloidal behavior of the obtained nanoparticles (NPs) was investigated, as well as their respective role on stealth properties and colloidal stability. To prove the feasibility of the developed NPs as potential 19F NMR detectable drug delivery systems, a hydrophobic drug was successfully encapsulated, and the maintenance of the relevant 19F NMR properties evaluated. Drug-loaded fluorinated NPs still retained a sharp and intense 19F NMR signal and good relaxivity parameters (i.e., T1 and T2 relaxation times) in water, which were not impaired by drug encapsulation.
Collapse
Affiliation(s)
- Beatrice Lucia Bona
- SupraBioNanoLab, Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milano 20131, Italy
| | - Prescillia Lagarrigue
- SupraBioNanoLab, Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milano 20131, Italy; Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milano 20131, Italy
| | - Cristina Chirizzi
- SupraBioNanoLab, Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milano 20131, Italy
| | - Maria Isabel Martinez Espinoza
- SupraBioNanoLab, Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milano 20131, Italy
| | - Christian Pipino
- SupraBioNanoLab, Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milano 20131, Italy
| | - Pierangelo Metrangolo
- SupraBioNanoLab, Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milano 20131, Italy
| | - Francesco Cellesi
- SupraBioNanoLab, Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milano 20131, Italy; Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milano 20131, Italy
| | - Francesca Baldelli Bombelli
- SupraBioNanoLab, Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milano 20131, Italy.
| |
Collapse
|
16
|
Xie F, Tang S, Zhang Y, Zhao Y, Lin Y, Yao Y, Wang M, Gu Z, Wan J. Designing Peptide-Based Nanoinhibitors of Programmed Cell Death Ligand 1 (PD-L1) for Enhanced Chemo-immunotherapy. ACS NANO 2024; 18:1690-1701. [PMID: 38165832 DOI: 10.1021/acsnano.3c09968] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
The combination of immune checkpoint blockade (ICB) and chemotherapy has shown significant potential in the clinical treatment of various cancers. However, circulating regeneration of PD-L1 within tumor cells greatly limits the efficiency of chemo-immunotherapy and consequent patient response rates. Herein, we report the synthesis of a nanoparticle-based PD-L1 inhibitor (FRS) with a rational design for effective endogenous PD-L1 suppression. The nanoinhibitor is achieved through self-assembly of fluoroalkylated competitive peptides that target PD-L1 palmitoylation. The FRS nanoparticles provide efficient protection and delivery of functional peptides to the cytoplasm of tumors, showing greater inhibition of PD-L1 than nonfluorinated peptidic inhibitors. Moreover, we demonstrate that FRS synergizes with chemotherapeutic doxorubicin (DOX) to boost the antitumor activities via simultaneous reduction of PD-L1 abundance and induction of immunogenic cell death in murine colon tumor models. The nano strategy of PD-L1 regulation present in this study is expected to advance the development of ICB inhibitors and overcome the limitations of conventional ICB-assisted chemo-immunotherapy.
Collapse
Affiliation(s)
- Fengjuan Xie
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, People's Republic of China
| | - Shasha Tang
- Department of Breast Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, People's Republic of China
| | - Ye Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, People's Republic of China
| | - Yinbing Zhao
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, People's Republic of China
| | - Yingying Lin
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, People's Republic of China
| | - Yining Yao
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, People's Republic of China
| | - Meiyan Wang
- School of Medicine, Shanghai University, Shanghai 200444, People's Republic of China
| | - Zhengying Gu
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, People's Republic of China
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, People's Republic of China
| | - Jingjing Wan
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, People's Republic of China
| |
Collapse
|
17
|
Wang H, Chen M, Zhang X, Xie S, Qin J, Li J. Peptide-based PROTACs: Current Challenges and Future Perspectives. Curr Med Chem 2024; 31:208-222. [PMID: 36718000 DOI: 10.2174/0929867330666230130121822] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 02/01/2023]
Abstract
Proteolysis-targeting chimeras (PROTACs) are an attractive means to target previously undruggable or drug-resistant mutant proteins. While small molecule-based PROTACs are stable and can cross cell membranes, there is limited availability of suitable small molecule warheads capable of recruiting proteins to an E3 ubiquitin ligase for degradation. With advances in structural biology and in silico protein structure prediction, it is now becoming easier to define highly selective peptides suitable for PROTAC design. As a result, peptide-based PROTACs are becoming a feasible proposition for targeting previously "undruggable" proteins not amenable to small molecule inhibition. In this review, we summarize recent progress in the design and application of peptide-based PROTACs as well as several practical approaches for obtaining candidate peptides for PROTACs. We also discuss the major hurdles preventing the translation of peptide-based PROTACs from bench to bedside, such as their delivery and bioavailability, with the aim of stimulating discussion about how best to accelerate the clinical development of peptide- based PROTACs in the near future.
Collapse
Affiliation(s)
- Huidan Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, China
| | - Miao Chen
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, China
| | - Xiaoyuan Zhang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, China
| | - Songbo Xie
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, China
| | - Jie Qin
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, China
| | - Jingrui Li
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, China
| |
Collapse
|
18
|
Takatsu M, Morihiro K, Watanabe H, Yuki M, Hattori T, Noi K, Aikawa K, Noguchi K, Yohda M, Okazoe T, Okamoto A. Cellular Penetration and Intracellular Dynamics of Perfluorocarbon-Conjugated DNA/RNA as a Potential Means of Conditional Nucleic Acid Delivery. ACS Chem Biol 2023; 18:2590-2598. [PMID: 37981738 DOI: 10.1021/acschembio.3c00612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Nucleic acid-based therapeutics represent a novel approach for controlling gene expression. However, a practical delivery system is required that overcomes the poor cellular permeability and intercellular instability of nucleic acids. Perfluorocarbons (PFCs) are highly stable structures that can readily traverse the lipid membrane of cells. Thus, PFC-DNA/RNA conjugates have properties that offer a potential means of delivering nucleic acid therapeutics, although the cellular dynamics of the conjugates remain unknown. Here, we performed systematic analysis of the cellular permeability of sequence-controlled PFC-DNA conjugates (N[PFC]n-DNA, n = 1,2,3,4,5) that can be synthesized by conventional phosphoramidite chemistry. We showed that DNA conjugates with two or more PFC-containing units (N[PFC]n≥2-DNA) penetrated HeLa cells without causing cellular damage. Imaging analysis along with quantitative flow cytometry analysis revealed that N[PFC]2-DNA rapidly passes through the cell membrane and is evenly distributed within the cytoplasm. Moreover, N[PFC]2-modified cyclin B1-targeting siRNA promoted gene knockdown efficacy of 30% compared with naked siRNA. A similar cell penetration without associated toxicity was consistent among the seven different human cell lines tested. These unique cellular environmental properties make N[PFC]2-DNA/RNA a potential nucleic acid delivery platform that can meet a wide range of applications.
Collapse
Affiliation(s)
- Masako Takatsu
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, , Japan
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kunihiko Morihiro
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Honoka Watanabe
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Mizue Yuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takara Hattori
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kentaro Noi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Kohsuke Aikawa
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Keiichi Noguchi
- Instrumentation Analysis Center, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Masafumi Yohda
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Takashi Okazoe
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
- Yokohama Technical Center, AGC Inc. Yokohama, Kanagawa 230-0045, Japan
| | - Akimitsu Okamoto
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
19
|
Xia Y, Liu K, Wang F, Xu Z, Wang Y, Zong R, Xu Y, Li P, Deng B, Xu M, Chen G. Self-Assembled Virus-Like Particle Vaccines via Fluorophilic Interactions Enable Infection Mimicry and Immune Protection. Adv Healthc Mater 2023; 12:e2301647. [PMID: 37703498 DOI: 10.1002/adhm.202301647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/10/2023] [Indexed: 09/15/2023]
Abstract
Influenza epidemics persistently threaten global health. Vaccines based on virus-like particles (VLPs), which resemble the native conformation of viruses, have emerged as vaccine candidates. However, the production of VLPs via genetic engineering remains constrained by challenges such as low yields, high costs, and being time consuming. In this study, a novel VLP platform is developed that could mimic infection and confer influenza protection through fluorination-driven self-assembly. The VLPs closely mimick the key steps in viral infection including dendritic cell (DC) attachment and pH-responsive endo-lysosomal escape, which enhances DC maturation and antigen cross-presentation. It is also observed that the VLPs migrate from the injection site to the draining lymph nodes efficiently. Immunization with VLPs triggers both Th1 and Th2 cellular responses, thereby inducing an improved CD8+ T cell response along with strong antigen-specific antibody responses. In several infected mouse models, VLP vaccines ameliorate weight loss, lung virus titers, pulmonary pathologies, and confer full protection against H1N1, H6N2, H9N2, and mixed influenza viruses. Therefore, the results support the potential of VLPs as an effective influenza vaccine with improved immune potency against infection. A methodology to generate VLPs based on fluorophilic interactions, which can be a general approach for development of pathogenic VLPs, is reported.
Collapse
Affiliation(s)
- Yinhe Xia
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, P. R. China
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 266024, P. R. China
- Qingdao Hospital (Qingdao Municipal Hospital), University of Health and Rehabilitation Sciences, Qingdao, 266024, P. R. China
| | - Kai Liu
- Qingdao Hospital (Qingdao Municipal Hospital), University of Health and Rehabilitation Sciences, Qingdao, 266024, P. R. China
| | - Fei Wang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Zhou Xu
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, P. R. China
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 266024, P. R. China
- Qingdao Hospital (Qingdao Municipal Hospital), University of Health and Rehabilitation Sciences, Qingdao, 266024, P. R. China
| | - Yuesheng Wang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, P. R. China
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 266024, P. R. China
- Qingdao Hospital (Qingdao Municipal Hospital), University of Health and Rehabilitation Sciences, Qingdao, 266024, P. R. China
| | - Rongling Zong
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, P. R. China
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 266024, P. R. China
- Qingdao Hospital (Qingdao Municipal Hospital), University of Health and Rehabilitation Sciences, Qingdao, 266024, P. R. China
| | - Yemin Xu
- Department of Gastroenterology, Affiliated Hospital, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Ping Li
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 266024, P. R. China
- Qingdao Hospital (Qingdao Municipal Hospital), University of Health and Rehabilitation Sciences, Qingdao, 266024, P. R. China
| | - Bin Deng
- Department of Gastroenterology, Affiliated Hospital, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Maolei Xu
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine, School of Pharmacy, Binzhou Medical University, Yantai, 264003, P. R. China
| | - Gang Chen
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 266024, P. R. China
- Qingdao Hospital (Qingdao Municipal Hospital), University of Health and Rehabilitation Sciences, Qingdao, 266024, P. R. China
| |
Collapse
|
20
|
Kadota K, Mikami T, Kohata A, Morimoto J, Sando S, Aikawa K, Okazoe T. Synthesis of Short Peptides with Perfluoroalkyl Side Chains and Evaluation of Their Cellular Uptake Efficiency. Chembiochem 2023; 24:e202300374. [PMID: 37430341 DOI: 10.1002/cbic.202300374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/12/2023]
Abstract
With an increasing demand for macromolecular biotherapeutics, the issue of their poor cell-penetrating abilities requires viable and relevant solutions. Herein, we report tripeptides bearing an amino acid with a perfluoroalkyl (RF ) group adjacent to the α-carbon. RF -containing tripeptides were synthesized and evaluated for their ability to transport a conjugated hydrophilic dye (Alexa Fluor 647) into the cells. RF -containing tripeptides with the fluorophore showed high cellular uptake efficiency and none of them were cytotoxic. Interestingly, we demonstrated that the absolute configuration of perfluoroalkylated amino acids (RF -AAs) affects not only nanoparticle formation but also the cell permeability of the tripeptides. These novel RF -containing tripeptides are potentially useful as short and noncationic cell-penetrating peptides (CPPs).
Collapse
Affiliation(s)
- Koji Kadota
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Toshiki Mikami
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Ai Kohata
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Jumpei Morimoto
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Shinsuke Sando
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kohsuke Aikawa
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Takashi Okazoe
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
- Yokohama Technical Center, AGC Inc., 1-1 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| |
Collapse
|
21
|
Fan YL, Zhang NY, Hou DY, Hao Y, Zheng R, Yang J, Fan Z, An HW, Wang H. Programmable Peptides Activated Macropinocytosis for Direct Cytosolic Delivery. Adv Healthc Mater 2023; 12:e2301162. [PMID: 37449948 DOI: 10.1002/adhm.202301162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/02/2023] [Indexed: 07/18/2023]
Abstract
Bioactive macromolecules show great promise for the treatment of various diseases. However, the cytosolic delivery of peptide-based drugs remains a challenging task owing to the existence of multiple intracellular barriers and ineffective endosomal escape. To address these issues, herein, programmable self-assembling peptide vectors are reported to amplify cargo internalization into the cytoplasm through receptor-activated macropinocytosis. Programmable self-assembling peptide vector-active human epidermal growth factor receptor-2 (HER2) signaling induces the receptor-activated macropinocytosis pathway, achieving efficient uptake in tumor cells. Shrinking macropinosomes accelerate the process of assembly dynamics and form nanostructures in the cytoplasm to increase peptide-based cargo accumulation and retention. Inductively coupled plasma mass (ICP-MS) spectrometry quantitative analysis indicates that the Gd delivery efficiency in tumor tissue through the macropinocytosis pathway is improved 2.5-fold compared with that through the use of active targeting molecular delivery. Finally, compared with nanoparticles and active targeting delivery, the delivery of bioactive peptide drugs through the self-assembly of peptide vectors maintains high drug activity (the IC50 decreased twofold) in the cytoplasm and achieves effective inhibition of tumor cell growth. Programmable self-assembling peptide vectors represent a promising platform for the intracellular delivery of diverse bioactive drugs, including molecular drugs, peptides, and biologics.
Collapse
Affiliation(s)
- Yan-Lei Fan
- College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Beijing, 100190, P. R. China
| | - Ni-Yuan Zhang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Beijing, 100190, P. R. China
| | - Da-Yong Hou
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Beijing, 100190, P. R. China
| | - Yi Hao
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Beijing, 100190, P. R. China
| | - Rui Zheng
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Beijing, 100190, P. R. China
| | - Jia Yang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Beijing, 100190, P. R. China
| | - Zhi Fan
- College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
| | - Hong-Wei An
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Beijing, 100190, P. R. China
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
22
|
Han S, Xin P, Guo Q, Cao Z, Huang H, Wu J. Oral Delivery of Protein Drugs via Lysine Polymer-Based Nanoparticle Platforms. Adv Healthc Mater 2023; 12:e2300311. [PMID: 36992627 DOI: 10.1002/adhm.202300311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/24/2023] [Indexed: 03/31/2023]
Abstract
Oral delivery of proteins has opened a new perspective for the treatment of different diseases. However, advances of oral protein formulation are usually hindered by protein susceptibility and suboptimal absorption in the gastrointestinal tract (GIT). Polymeric nano drug delivery systems are considered revolutionary candidates to solve these issues, which can be preferably tunable against specific delivery challenges. Herein, a tailored family of lysine-based poly(ester amide)s (Lys-aaPEAs) is designed as a general oral protein delivery platform for efficient protein loading and protection from degradation. Insulin, as a model protein, can achieve effective internalization by epithelial cells and efficient transport across the intestinal epithelium layer into the systemic circulation, followed by controlled release in physiological environments. After the oral administration of insulin carried by Lys-aaPEAs with ornamental hyaluronic acid (HA), mice with type 1 diabetes mellitus showed an acceptable hypoglycemic effect with alleviated complications. A successful oral insulin delivery is associated with patient comfort and convenience and simultaneously avoids the risk of hypoglycemia compared with injections, which is of great feasibility for daily diabetes therapy. More importantly, this versatile Lys-aaPEAs polymeric library can be recognized as a universal vehicle for oral biomacromolecule delivery, providing more possibilities for treating various diseases.
Collapse
Affiliation(s)
- Shuyan Han
- School of Biomedical Engineering, State Key Laboratory of Oncology in South China, Sun Yat-sen University, 518107, Shenzhen, P. R. China
| | - Peikun Xin
- School of Biomedical Engineering, State Key Laboratory of Oncology in South China, Sun Yat-sen University, 518107, Shenzhen, P. R. China
| | - Qilun Guo
- Department of Orthopedics, the Seventh Affiliated Hospital of Sun Yet-sen University, 5181107, Shenzhen, P. R. China
| | - Zhong Cao
- School of Biomedical Engineering, State Key Laboratory of Oncology in South China, Sun Yat-sen University, 518107, Shenzhen, P. R. China
| | - Hai Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120, Guangzhou, P. R. China
| | - Jun Wu
- School of Biomedical Engineering, State Key Laboratory of Oncology in South China, Sun Yat-sen University, 518107, Shenzhen, P. R. China
- Bioscience and Biomedical Engineering Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou, Guangdong, 511400, China
- Division of Life Science, The Hong Kong Univeristy of Science and Technology, Hongkong SAR,, China
| |
Collapse
|
23
|
Lawanprasert A, Sloand JN, Vargas MG, Singh H, Eldor T, Miller MA, Pimcharoen S, Wang J, Leighow SM, Pritchard JR, Dokholyan NV, Medina SH. Deciphering the Mechanistic Basis for Perfluoroalkyl-Protein Interactions. Chembiochem 2023; 24:e202300159. [PMID: 36943393 PMCID: PMC10364144 DOI: 10.1002/cbic.202300159] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 03/23/2023]
Abstract
Although rarely used in nature, fluorine has emerged as an important elemental ingredient in the design of proteins with altered folding, stability, oligomerization propensities, and bioactivity. Adding to the molecular modification toolbox, here we report the ability of privileged perfluorinated amphiphiles to noncovalently decorate proteins to alter their conformational plasticity and potentiate their dispersion into fluorous phases. Employing a complementary suite of biophysical, in-silico and in-vitro approaches, we establish structure-activity relationships defining these phenomena and investigate their impact on protein structural dynamics and intracellular trafficking. Notably, we show that the lead compound, perfluorononanoic acid, is 106 times more potent in inducing non-native protein secondary structure in select proteins than is the well-known helix inducer trifluoroethanol, and also significantly enhances the cellular uptake of complexed proteins. These findings could advance the rational design of fluorinated proteins, inform on potential modes of toxicity for perfluoroalkyl substances, and guide the development of fluorine-modified biologics with desirable functional properties for drug discovery and delivery applications.
Collapse
Affiliation(s)
- Atip Lawanprasert
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA, 16802
| | - Janna N. Sloand
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA, 16802
| | - Mariangely González Vargas
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA, 16802
- Department of Industrial Engineering, University of Puerto Rico, Mayagüez, Puerto Rico 00682
| | - Harminder Singh
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA, 16802
| | - Tomer Eldor
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA, 16802
| | - Michael A. Miller
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA, 16802
| | - Sopida Pimcharoen
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA, 16802
| | - Jian Wang
- Department of Pharmacology, Penn State College of Medicine, Pennsylvania State University, Hershey, PA, USA, 17033
| | - Scott M. Leighow
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA, 16802
| | - Justin R. Pritchard
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA, 16802
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA, 16802
| | - Nikolay V. Dokholyan
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA, 16802
- Department of Pharmacology, Penn State College of Medicine, Pennsylvania State University, Hershey, PA, USA, 17033
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, Hershey, PA, USA, 17033
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA, 16802
| | - Scott H. Medina
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA, 16802
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA, 16802
| |
Collapse
|
24
|
Ding L, Rong G, Cheng Y. Fluorous Tagged Peptides for Intracellular Delivery and Biomedical Imaging. Macromol Biosci 2023; 23:e2300048. [PMID: 36918279 DOI: 10.1002/mabi.202300048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/06/2023] [Indexed: 03/16/2023]
Abstract
Fluorous tagged peptides have shown promising features for biomedical applications such as drug delivery and multimodal imaging. The bioconjugation of fluoroalkyl ligands onto cargo peptides greatly enhances their proteolytic stability and membrane penetration via a proposed "fluorine effect". The tagged peptides also efficiently deliver other biomolecules such as DNA and siRNA into cells via a co-assembly strategy. The fluoroalkyl chains on peptides with antifouling properties enable efficient gene delivery in the presence of serum proteins. Besides intracellular biomolecule delivery, the amphiphilic peptides can be used to stabilized perfluorocarbon-filled microbubbles for ultrasound imaging. The fluorine nucleus on fluoroalkyls provides intrinsic probes for background-free magnetic resonance imaging. Labeling of fluorous tags with radionuclide 18 F also allows tracing the biodistribution of peptides via positron emission tomography imaging. This mini-review will discuss properties and mechanism of the fluorous tagged peptides in these applications.
Collapse
Affiliation(s)
- Lei Ding
- Department of Ultrasound Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, P. R. China
| | - Guangyu Rong
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Yiyun Cheng
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, P. R. China
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, P. R. China
- Fengxian District Central Hospital-ECNU Joint Center of Translational Medicine, Fengxian District Central Hospital, Shanghai, 200241, P. R. China
| |
Collapse
|
25
|
Shen F, Lin Y, Höhn M, Luo X, Döblinger M, Wagner E, Lächelt U. Iron-Gallic Acid Peptide Nanoparticles as a Versatile Platform for Cellular Delivery with Synergistic ROS Enhancement Effect. Pharmaceutics 2023; 15:1789. [PMID: 37513976 PMCID: PMC10385416 DOI: 10.3390/pharmaceutics15071789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
Cytosolic delivery of peptides is of great interest owing to their biological functions, which could be utilized for therapeutic applications. However, their susceptibility to enzymatic degradation and multiple cellular barriers generally hinders their clinical application. Integration into nanoparticles, which can enhance the stability and membrane permeability of bioactive peptides, is a promising strategy to overcome extracellular and intracellular obstacles. Herein, we present a versatile platform for the cellular delivery of various cargo peptides by integration into metallo-peptidic coordination nanoparticles. Both termini of cargo peptides were conjugated with gallic acid (GA) to assemble GA-modified peptides into nanostructures upon coordination of Fe(III). Initial pre-complexation of Fe(III) by poly-(vinylpolypyrrolidon) (PVP) as a template favored the formation of nanoparticles, which are able to deliver the peptides into cells efficiently. Iron-gallic acid peptide nanoparticles (IGPNs) are stable in water and are supposed to generate reactive oxygen species (ROS) from endogenous H2O2 in cells via the Fenton reaction. The strategy was successfully applied to an exemplary set of peptide sequences varying in length (1-7 amino acids) and charge (negative, neutral, positive). To confirm the capability of transporting bioactive cargos into cells, pro-apoptotic peptides were integrated into IGPNs, which demonstrated potent killing of human cervix carcinoma HeLa and murine neuroblastoma N2a cells at a 10 µM peptide concentration via the complementary mechanisms of peptide-triggered apoptosis and Fe(III)-mediated ROS generation. This study demonstrates the establishment of IGPNs as a novel and versatile platform for the assembly of peptides into nanoparticles, which can be used for cellular delivery of bioactive peptides combined with intrinsic ROS generation.
Collapse
Affiliation(s)
- Faqian Shen
- Pharmaceutical Biotechnology, Department of Pharmacy, Center for NanoScience (CeNS), LMU Munich, 81377 Munich, Germany
| | - Yi Lin
- Pharmaceutical Biotechnology, Department of Pharmacy, Center for NanoScience (CeNS), LMU Munich, 81377 Munich, Germany
| | - Miriam Höhn
- Pharmaceutical Biotechnology, Department of Pharmacy, Center for NanoScience (CeNS), LMU Munich, 81377 Munich, Germany
| | - Xianjin Luo
- Pharmaceutical Biotechnology, Department of Pharmacy, Center for NanoScience (CeNS), LMU Munich, 81377 Munich, Germany
| | | | - Ernst Wagner
- Pharmaceutical Biotechnology, Department of Pharmacy, Center for NanoScience (CeNS), LMU Munich, 81377 Munich, Germany
| | - Ulrich Lächelt
- Pharmaceutical Biotechnology, Department of Pharmacy, Center for NanoScience (CeNS), LMU Munich, 81377 Munich, Germany
- Department of Pharmaceutical Sciences, University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
26
|
Yan A, Chen X, He J, Ge Y, Liu Q, Men D, Xu K, Li D. Phosphorothioated DNA Engineered Liposomes as a General Platform for Stimuli-Responsive Cell-Specific Intracellular Delivery and Genome Editing. Angew Chem Int Ed Engl 2023; 62:e202303973. [PMID: 37100742 DOI: 10.1002/anie.202303973] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/18/2023] [Accepted: 04/26/2023] [Indexed: 04/28/2023]
Abstract
Intracellular protein delivery is highly desirable for protein drug-based cell therapy. Established technologies suffer from poor cell-specific cytosolic protein delivery, which hampers the targeting therapy of specific cell populations. A fusogenic liposome system enables cytosolic delivery, but its ability of cell-specific and controllable delivery is quite limited. Inspired by the kinetics of viral fusion, we designed a phosphorothioated DNA coatings-modified fusogenic liposome to mimic the function of viral hemagglutinin. The macromolecular fusion machine docks cargo-loaded liposomes at the membrane of target cells, triggers membrane fusion upon pH or UV light stimuli, and facilitates cytosolic protein delivery. Our results showed efficient cell-targeted delivery of proteins of various sizes and charges, indicating the phosphorothioated DNA plug-in unit on liposomes could be a general strategy for spatial-temporally controllable protein delivery both in vitro and in vivo.
Collapse
Affiliation(s)
- An Yan
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Xiaoqing Chen
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Jie He
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Yifan Ge
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Qing Liu
- Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Dong Men
- Guangzhou Laboratory, Guangzhou, 510005, China
| | - Ke Xu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Di Li
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
27
|
Huo H, Cheng X, Xu J, Lin J, Chen N, Lu X. A fluorinated ionizable lipid improves the mRNA delivery efficiency of lipid nanoparticles. J Mater Chem B 2023; 11:4171-4180. [PMID: 37129135 DOI: 10.1039/d3tb00516j] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The efficacy of messenger RNA (mRNA)-based vaccines or therapies relies on delivery vehicles that can transport them into the cytosol of cells. Lipid nanoparticles (LNPs) are the most clinically advanced carrier for mRNA. The chemical structure of an ionizable lipid is critical for the delivery efficiency of the LNPs. Herein, we synthesize a new ionizable lipid containing fluorinated alkyl chains (F-L319) and evaluate its mRNA delivery efficiency compared to its hydrocarbon counterpart (L319). While LNPs formulated with F-L319 alone showed decreased mRNA encapsulation and delivery efficiencies in comparison to the L319-LNP, we found that combining the appropriate ratios of F-L319 and L319 as hybrid ionizable lipids in LNPs (hybrid-LNPs) greatly enhanced mRNA delivery efficiency both in vitro and in vivo. Upon intravenous injection, the hybrid-LNP showed targeted mRNA expression in the spleen. Mechanistic studies indicate that the enhanced mRNA delivery of the hybrid-LNP is attributed to both improved mRNA encapsulation and cellular uptake. Collectively, fluorination of ionizable lipids represents a promising strategy to improve the delivery efficiency of LNPs.
Collapse
Affiliation(s)
- Haonan Huo
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingdi Cheng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Jiaxi Xu
- State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Jiaqi Lin
- Key State Laboratory of Fine Chemicals, School of Bioengineering, Dalian University of Technology, Dalian 116024, China.
| | - Ning Chen
- State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xueguang Lu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
28
|
Ma S, Song L, Bai Y, Wang S, Wang J, Zhang H, Wang F, He Y, Tian C, Qin G. Improved intracellular delivery of exosomes by surface modification with fluorinated peptide dendrimers for promoting angiogenesis and migration of HUVECs. RSC Adv 2023; 13:11269-11277. [PMID: 37057265 PMCID: PMC10087381 DOI: 10.1039/d3ra00300k] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/27/2023] [Indexed: 04/15/2023] Open
Abstract
Exosomes exhibit great potential as novel therapeutics for tissue regeneration, including cell migration and angiogenesis. However, the limited intracellular delivery efficiency of exosomes might reduce their biological effects. Here, exosomes secreted by adipose-derived mesenchymal stem cells were recombined with fluorinated peptide dendrimers (FPG3) to form the fluorine-engineered exosomes (exo@FPG3), which was intended to promote the cytosolic release and the biological function of exosomes. The mass ratio of FPG3 to exosomes at 5 was used to investigate its cellular uptake efficiency and bioactivity in HUVECs, as the charge of exo@FPG3 tended to be stable even more FPG3 was applied. It was found that exo@FPG3 could enter HUVECs through a variety of pathways, in which the clathrin-mediated endocytosis played an important role. Compared with exosomes modified with peptide dendrimers (exo@PG3) and exosomes alone, the cellular uptake efficiency of exo@FPG3 was significantly increased. Moreover, exo@FPG3 significantly enhanced the angiogenesis and migration of HUVECs in vitro as compared to exo@PG3 and exosomes. It is concluded that surface fluorine modification of exosomes with FPG3 is conducive to the cellular uptake and bioactivity of the exosome, which provides a novel strategy for engineered exosomes to enhance the biological effects of exosome-based drug delivery.
Collapse
Affiliation(s)
- Shengnan Ma
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450052 Henan China
| | - Lei Song
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450052 Henan China
| | - Yueyue Bai
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450052 Henan China
| | - Shihao Wang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450052 Henan China
| | - Jiao Wang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450052 Henan China
| | - Haohao Zhang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450052 Henan China
| | - Fazhan Wang
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450052 Henan China
| | - Yiyan He
- College of Materials Science and Engineering, Nanjing Tech University Nanjing 211816 Jiangsu China
| | - Chuntao Tian
- Department of Oncology, Sanmenxia Central Hospital Sanmenxia 472000 Henan China
| | - Guijun Qin
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450052 Henan China
| |
Collapse
|
29
|
Son H, Shin J, Park J. Recent progress in nanomedicine-mediated cytosolic delivery. RSC Adv 2023; 13:9788-9799. [PMID: 36998521 PMCID: PMC10043881 DOI: 10.1039/d2ra07111h] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Cytosolic delivery of bioactive agents has exhibited great potential to cure undruggable targets and diseases. Because biological cell membranes are a natural barrier for living cells, efficient delivery methods are required to transfer bioactive and therapeutic agents into the cytosol. Various strategies that do not require cell invasive and harmful processes, such as endosomal escape, cell-penetrating peptides, stimuli-sensitive delivery, and fusogenic liposomes, have been developed for cytosolic delivery. Nanoparticles can easily display functionalization ligands on their surfaces, enabling many bio-applications for cytosolic delivery of various cargo, including genes, proteins, and small-molecule drugs. Cytosolic delivery uses nanoparticle-based delivery systems to avoid degradation of proteins and keep the functionality of other bioactive molecules, and functionalization of nanoparticle-based delivery vehicles imparts a specific targeting ability. With these advantages, nanomedicines have been used for organelle-specific tagging, vaccine delivery for enhanced immunotherapy, and intracellular delivery of proteins and genes. Optimization of the size, surface charges, specific targeting ability, and composition of nanoparticles is needed for various cargos and target cells. Toxicity issues with the nanoparticle material must be managed to enable clinical use.
Collapse
Affiliation(s)
- Hangyu Son
- Department of Medical Life Sciences, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea 222 Banpo-daero, Seocho-gu Seoul 06591 Republic of Korea
| | - Jeongsu Shin
- Department of Medical Life Sciences, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea 222 Banpo-daero, Seocho-gu Seoul 06591 Republic of Korea
| | - Joonhyuck Park
- Department of Medical Life Sciences, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea 222 Banpo-daero, Seocho-gu Seoul 06591 Republic of Korea
| |
Collapse
|
30
|
Gao X, Yuan C, Tan E, Li Z, Cheng Y, Xiao J, Rong G. Dual-responsive bioconjugates bearing a bifunctional adaptor for robust cytosolic peptide delivery. J Control Release 2023; 355:675-684. [PMID: 36791993 DOI: 10.1016/j.jconrel.2023.02.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023]
Abstract
Peptide drugs have been successfully used for the treatment of various diseases. However, it is still challenging to develop therapeutic peptides working on intracellular targets due to their poor membrane permeability. Here, we proposed a type of dual-responsive bioconjugates bearing a heterobifunctional adaptor containing both aldehyde and catechol moieties for efficient cytosolic peptide delivery. Hydrazine-terminated cargo peptides were tagged to a boronated dendrimer with the help of the adaptor via dynamic acylhydrazone and catechol‑boronate linkages. The bioconjugates efficiently delivered peptides with distinct physicochemical properties into various cells, and could release the cargo peptides triggered by intracellular reactive oxygen species and endolysosomal acidity, restoring the biofunctions of delivered peptides. In addition, the designed complexes efficiently delivered a pro-apoptotic peptide into osteosarcoma cancer cells and successfully inhibited the tumor growth both in vitro and in vivo. This study provides a universal and efficient platform for cytosolic therapeutic peptide delivery to intracellular targets for treating various diseases.
Collapse
Affiliation(s)
- Xin Gao
- Department of Orthopedic Oncology, Changzheng Hospital, Naval Medical University, Shanghai 200003, PR China
| | - Chunyang Yuan
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, PR China
| | - Echuan Tan
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, PR China
| | - Zhan Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, PR China
| | - Yiyun Cheng
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, PR China.
| | - Jianru Xiao
- Department of Orthopedic Oncology, Changzheng Hospital, Naval Medical University, Shanghai 200003, PR China.
| | - Guangyu Rong
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, PR China; South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, PR China.
| |
Collapse
|
31
|
Chen C, Gao P, Wang H, Cheng Y, Lv J. Histidine-based coordinative polymers for efficient intracellular protein delivery via enhanced protein binding, cellular uptake, and endosomal escape. Biomater Sci 2023; 11:1765-1775. [PMID: 36648450 DOI: 10.1039/d2bm01541b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Polymers are one of the most promising protein delivery carriers; however, their applications are hindered by low delivery efficacy owing to their undesirable performance in protein binding, cellular uptake and endosomal escape. Here, we designed a series of histidine-based coordinative polymers for efficient intracellular protein delivery. Coordination of metal ions such as Ni2+, Zn2+, and Cu2+ with histidine residues on a polymer greatly improved its performance in protein binding, complex stability, cellular uptake and endosomal escape, therefore achieving highly improved protein delivery efficacy. Among the coordinative polymers, the Zn2+-coordinated one exhibited the highest cellular uptake, while the Cu2+-coordinated one exhibited the highest endosomal escape. The Ni2+-coordinated polymer formed large-sized aggregates with cargo proteins and showed insufficient protein release after endocytosis. The results obtained in this study provided new insight into the development of coordinative polymer-based protein delivery systems.
Collapse
Affiliation(s)
- Changyuan Chen
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Peng Gao
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Hui Wang
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Yiyun Cheng
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Jia Lv
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
32
|
Han H, Xing J, Chen W, Jia J, Li Q. Fluorinated polyamidoamine dendrimer-mediated miR-23b delivery for the treatment of experimental rheumatoid arthritis in rats. Nat Commun 2023; 14:944. [PMID: 36805456 PMCID: PMC9941585 DOI: 10.1038/s41467-023-36625-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 02/10/2023] [Indexed: 02/22/2023] Open
Abstract
In rheumatoid arthritis (RA), insufficient apoptosis of macrophages and excessive generation of pro-inflammatory cytokines are intimately connected, accelerating the development of disease. Here, a fluorinated polyamidoamine dendrimer (FP) is used to deliver miR-23b to reduce inflammation by triggering the apoptosis of as well as inhibiting the inflammatory response in macrophages. Following the intravenous injection of FP/miR-23b nanoparticles in experimental RA models, the nanoparticles show therapeutic efficacy with inhibition of inflammatory response, reduced bone and cartilage erosion, suppression of synoviocyte infiltration and the recovery of mobility. Moreover, the nanoparticles accumulate in the inflamed joint and are non-specifically captured by synoviocytes, leading to the restoration of miR-23b expression in the synovium. The miR-23b nanoparticles target Tab2, Tab3 and Ikka to regulate the activation of NF-κB pathway in the hyperplastic synovium, thereby promoting anti-inflammatory and anti-proliferative responses. Additionally, the intravenous administration of FP/miR-23b nanoparticles do not induce obvious systemic toxicity. Overall, our work demonstrates that the combination of apoptosis induction and inflammatory inhibition could be a promising approach in the treatment of RA and possibly other autoimmune diseases.
Collapse
Affiliation(s)
- Haobo Han
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, 130012, Changchun, China
| | - Jiakai Xing
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, 130012, Changchun, China
| | - Wenqi Chen
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, 130012, Changchun, China
| | - Jiaxin Jia
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, 130012, Changchun, China
| | - Quanshun Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, 130012, Changchun, China.
| |
Collapse
|
33
|
Shi L, Jin Y, Bai L, Shang X, Li Y, Zhou R. Ultrasensitive
redox‐responsive ditelluride‐containing
fluorinated Gemini micelles for controlled drug release. J Appl Polym Sci 2023. [DOI: 10.1002/app.53719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- Liangjie Shi
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, National Engineering Research Center of Clean Technology in Leather Industry Sichuan University Chengdu People's Republic of China
| | - Yong Jin
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, National Engineering Research Center of Clean Technology in Leather Industry Sichuan University Chengdu People's Republic of China
| | - Long Bai
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, National Engineering Research Center of Clean Technology in Leather Industry Sichuan University Chengdu People's Republic of China
| | - Xiang Shang
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, National Engineering Research Center of Clean Technology in Leather Industry Sichuan University Chengdu People's Republic of China
| | - Yupeng Li
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, National Engineering Research Center of Clean Technology in Leather Industry Sichuan University Chengdu People's Republic of China
| | - Rong Zhou
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, National Engineering Research Center of Clean Technology in Leather Industry Sichuan University Chengdu People's Republic of China
| |
Collapse
|
34
|
Hohmann T, Chowdhary S, Ataka K, Er J, Dreyhsig GH, Heberle J, Koksch B. Introducing Aliphatic Fluoropeptides: Perspectives on Folding Properties, Membrane Partition and Proteolytic Stability. Chemistry 2023; 29:e202203860. [PMID: 36722398 DOI: 10.1002/chem.202203860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/02/2023]
Abstract
A de novo designed class of peptide-based fluoropolymers composed of fluorinated aliphatic amino acids as main components is reported. Structural characterization provided insights into fluorine-induced alterations on β-strand to α-helix transition upon an increase in SDS content and revealed the unique formation of PPII structures for trifluorinated fluoropeptides. A combination of circular dichroism, fluorescence-based leaking assays and surface enhanced infrared absorption spectroscopy served to examine the insertion and folding processes into unilamellar vesicles. While partitioning into lipid bilayers, the degree of fluorination conducts a decrease in α-helical content. Furthermore, this study comprises a report on the proteolytic stability of peptides exclusively built up by fluorinated amino acids and proved all sequences to be enzymatically degradable despite the degree of fluorination. Herein presented fluoropeptides as well as the distinctive properties of these artificial and polyfluorinated foldamers with enzyme-degradable features will play a crucial role in the future development of fluorinated peptide-based biomaterials.
Collapse
Affiliation(s)
- Thomas Hohmann
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 20, 14195, Berlin, Germany
| | - Suvrat Chowdhary
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 20, 14195, Berlin, Germany
| | - Kenichi Ataka
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Jasmin Er
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 20, 14195, Berlin, Germany
| | - Gesa Heather Dreyhsig
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 20, 14195, Berlin, Germany
| | - Joachim Heberle
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Beate Koksch
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 20, 14195, Berlin, Germany
| |
Collapse
|
35
|
Choosing an Optimal Solvent Is Crucial for Obtaining Cell-Penetrating Peptide Nanoparticles with Desired Properties and High Activity in Nucleic Acid Delivery. Pharmaceutics 2023; 15:pharmaceutics15020396. [PMID: 36839718 PMCID: PMC9963036 DOI: 10.3390/pharmaceutics15020396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 01/27/2023] Open
Abstract
Cell-penetrating peptides (CPPs) are highly promising transfection agents that can deliver various compounds into living cells, including nucleic acids (NAs). Positively charged CPPs can form non-covalent complexes with negatively charged NAs, enabling simple and time-efficient nanoparticle preparation. However, as CPPs have substantially different chemical and physical properties, their complexation with the cargo and characteristics of the resulting nanoparticles largely depends on the properties of the surrounding environment, i.e., solution. Here, we show that the solvent used for the initial dissolving of a CPP determines the properties of the resulting CPP particles formed in an aqueous solution, including the activity and toxicity of the CPP-NA complexes. Using different biophysical methods such as dynamic light scattering (DLS), atomic force microscopy (AFM), transmission and scanning electron microscopy (TEM and SEM), we show that PepFect14 (PF14), a cationic amphipathic CPP, forms spherical particles of uniform size when dissolved in organic solvents, such as ethanol and DMSO. Water-dissolved PF14, however, tends to form micelles and non-uniform aggregates. When dissolved in organic solvents, PF14 retains its α-helical conformation and biological activity in cell culture conditions without any increase in cytotoxicity. Altogether, our results indicate that by using a solvent that matches the chemical nature of the CPP, the properties of the peptide-cargo particles can be tuned in the desired way. This can be of critical importance for in vivo applications, where CPP particles that are too large, non-uniform, or prone to aggregation may induce severe consequences.
Collapse
|
36
|
Han S, Wu J. Development of a Lysine-Based Poly(ester amide) Library with High Biosafety and a Finely Tunable Structure for Spatiotemporal-Controlled Protein Delivery. ACS APPLIED MATERIALS & INTERFACES 2022; 14:55944-55956. [PMID: 36503257 DOI: 10.1021/acsami.2c16492] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
With the fast growth of protein therapeutics, efficient, precise, and universal delivery platforms are highly required. However, very few reports have discussed the progress of precisely spatiotemporal-controlled protein delivery. Therefore, a mini library of well-designed amino acid-based poly(ester amide)s derived from lysine (Lys-aaPEAs) has been developed. Lys-aaPEAs can interact with and encapsulate proteins into nanocomplexes via electrostatic interactions. The chemical structure of Lys-aaPEAs can be finely tuned by changing the type and molar ratio of the monomers. Studies of structure-function relationships reveal that the carbon chain length of diacid/diol segments, hydrophilicity, and electrical properties affect the polymer-protein interaction, cell-material interaction, and, therefore, the outcome of protein delivery. By modulating the structures of Lys-aaPEAs, the delivery systems could present customized physiochemical and biological properties and perform time- and space-specific protein release and delivery without causing any systematic toxicity. The screened systems exhibited prolonged hypoglycemic activity and superior biosafety in vivo, using insulin as a model protein and a mouse model bearing type 1 diabetes mellitus (T1DM). This work establishes a novel lysine-based polymer platform for spatiotemporal-controlled protein delivery and offers a paradigm of precise structure-function controllability for designing the next generation of polymers.
Collapse
Affiliation(s)
- Shuyan Han
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, P. R. China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Jun Wu
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, P. R. China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou 510006, P. R. China
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P. R. China
| |
Collapse
|
37
|
Luo H, Chen Y, Kuang X, Wang X, Yang F, Cao Z, Wang L, Lin S, Wu F, Liu J. Chemical reaction-mediated covalent localization of bacteria. Nat Commun 2022; 13:7808. [PMID: 36528693 PMCID: PMC9759558 DOI: 10.1038/s41467-022-35579-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Methods capable of manipulating bacterial colonization are of great significance for modulating host-microbiota relationships. Here, we describe a strategy of in-situ chemical reaction-mediated covalent localization of bacteria. Through a simple one-step imidoester reaction, primary amino groups on bacterial surface can be converted to free thiols under cytocompatible conditions. Surface thiolation is applicable to modify diverse strains and the number of introduced thiols per bacterium can be easily tuned by varying feed ratios. These chemically reactive bacteria are able to spontaneously bond with mucous layer by catalyst-free thiol-disulfide exchange between mucin-associated disulfides and newly converted thiols on bacterial surface and show thiolation level-dependent attachment. Bacteria optimized with 9.3 × 107 thiols per cell achieve 170-fold higher attachment in mucin-enriched jejunum, a challenging location for gut microbiota to colonize. As a proof-of-concept application for microbiota transplantation, covalent bonding-assisted localization of an oral probiotic in the jejunum generates an improved remission of jejunal mucositis. Our findings demonstrate that transforming bacteria with a reactive surface provides an approach to chemically control bacterial localization, which is highly desirable for developing next-generation bacterial living bioagents.
Collapse
Affiliation(s)
- Huilong Luo
- grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127 Shanghai, China
| | - Yanmei Chen
- grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127 Shanghai, China
| | - Xiao Kuang
- grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127 Shanghai, China
| | - Xinyue Wang
- grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127 Shanghai, China
| | - Fengmin Yang
- grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127 Shanghai, China
| | - Zhenping Cao
- grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127 Shanghai, China
| | - Lu Wang
- grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127 Shanghai, China
| | - Sisi Lin
- grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127 Shanghai, China
| | - Feng Wu
- grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127 Shanghai, China
| | - Jinyao Liu
- grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127 Shanghai, China
| |
Collapse
|
38
|
Rong G, Wang C, Hu J, Li Y, Cheng Y. Benzaldehyde-tethered fluorous tags for cytosolic delivery of bioactive peptides. J Control Release 2022; 351:703-712. [DOI: 10.1016/j.jconrel.2022.09.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 10/31/2022]
|
39
|
Wang Z, Hu R, Zhu R, Lu W, Wei G, Zhao J, Gu ZY, Zhao Q. Metal-Organic Cage as Single-Molecule Carrier for Solid-State Nanopore Analysis. SMALL METHODS 2022; 6:e2200743. [PMID: 36216776 DOI: 10.1002/smtd.202200743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/19/2022] [Indexed: 06/16/2023]
Abstract
The ability to detect biomolecules at the single-molecule level is at the forefront of biological research, precision medicine, and early diagnosis. Recently, solid-state nanopore sensors have emerged as a promising technique for label-free and precise diagnosis assay. However, insufficient sensitivity and selectivity for small analytes are a great challenge for clinical diagnosis applications via solid-state nanopores. Here, for the first time, a metal-organic cage, PCC-57, is employed as a carrier to increase the sensitivity and selectivity of solid-state nanopores based on the intrinsic interaction of the nanocage with biomolecules. Firstly, it is found that the carrier itself is undetectable unless bound with the target analytes and used oligonucleotides as linkers to attach PCC-57 and target analytes. Secondly, two small analytes, oligonucleotide conjugated angiopep-2 and polyphosphoric acid, are successfully distinguished using the molecular carrier. Finally, selectivity of nanopore detection is achieved by attaching PCC-57 to oligonucleotide-tailed aptamers, and the human alpha-thrombin sample is successfully detected. It is believed that the highly designable metal-organic cage could serve as a rich carrier repository for a variety of biomolecules, facilitating single-molecule screening of clinically relevant biomolecules based on solid-state nanopores in the future.
Collapse
Affiliation(s)
- Zhan Wang
- State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, Electron Microscopy Laboratory, School of Physics, Peking University, Beijing, 100871, China
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Rui Hu
- State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, Electron Microscopy Laboratory, School of Physics, Peking University, Beijing, 100871, China
| | - Rui Zhu
- State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, Electron Microscopy Laboratory, School of Physics, Peking University, Beijing, 100871, China
| | - Wenlong Lu
- State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, Electron Microscopy Laboratory, School of Physics, Peking University, Beijing, 100871, China
| | - Guanghao Wei
- State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, Electron Microscopy Laboratory, School of Physics, Peking University, Beijing, 100871, China
| | - Jing Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Zhi-Yuan Gu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Qing Zhao
- State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, Electron Microscopy Laboratory, School of Physics, Peking University, Beijing, 100871, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu, 226010, China
- Collaborative Innovation Center of Quantum Matter, Beijing, 100084, China
| |
Collapse
|
40
|
Ruan W, Jiao M, Xu S, Ismail M, Xie X, An Y, Guo H, Qian R, Shi B, Zheng M. Brain-targeted CRISPR/Cas9 nanomedicine for effective glioblastoma therapy. J Control Release 2022; 351:739-751. [PMID: 36174804 DOI: 10.1016/j.jconrel.2022.09.046] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 09/17/2022] [Accepted: 09/22/2022] [Indexed: 11/28/2022]
Abstract
CRISPR/Cas9 gene-editing technology shows great potential for treating a variety of diseases, such as glioblastoma multiforme (GBM). However, CRISPR components suffer from inherent delivery challenges, such as poor in vivo stability of Cas9 protein and gRNA, low blood-brain barrier (BBB) permeability and non-specific tissue or cell targeting. These defects have limited the application of Cas9/gRNA ribonucleoprotein (RNP) complexes for GBM therapy. Here, we developed a brain-targeted CRISPR/Cas9 based nanomedicine by fabricating an angiopep-2 decorated, guanidinium and fluorine functionalized polymeric nanoparticle with loading Cas9/gRNA RNP for the treatment of GBM. The guanidinium and fluorine domains of our polymeric nanoparticles were both capable of interacting with Cas9/gRNA RNP to stabilize it in blood circulation, without impairing its activity. Moreover, by leveraging angiopep-2 peptide functionality, the RNP nanoparticles efficiently crossed the BBB and accumulated in brain tumors. In U87MG cells, we achieved approximately 32% gene knockout and 67% protein reduction in the targeted proto-oncogene polo-like kinase 1 (PLK1). This was sufficient to suppress tumor growth and significantly improved the median survival time of mice bearing orthotopic glioblastoma to 40 days, while inducing negligible side or off-target effects. These results suggest that the developed brain-targeted CRISPR/Cas9 based nanomedicine shows promise for effective human glioblastoma gene therapy.
Collapse
Affiliation(s)
- Weimin Ruan
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng, Henan 475004, China; Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Mingzhu Jiao
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng, Henan 475004, China; Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China; Henan Chemical Technician College, Kaifeng, Henan 475002, China
| | - Sen Xu
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng, Henan 475004, China; Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Muhammad Ismail
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng, Henan 475004, China; Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Xuan Xie
- Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Science, Henan University, Kaifeng 475004, China
| | - Yang An
- Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Science, Henan University, Kaifeng 475004, China
| | - Haixing Guo
- Department of Neurosurgery, Henan Provincial People's Hospital, Henan University People's Hospital, Zhengzhou 450003, China
| | - Rongjun Qian
- Department of Neurosurgery, Henan Provincial People's Hospital, Henan University People's Hospital, Zhengzhou 450003, China.
| | - Bingyang Shi
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China; Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia.
| | - Meng Zheng
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng, Henan 475004, China; Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China.
| |
Collapse
|
41
|
Lipase-activated glycopeptide nano-assemblies as an antibiotic nano-adjuvant to inhibit Pseudomonas aeruginosa biofilm and enhance antibacterial activity. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1348-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
42
|
Abstract
INTRODUCTION Gene delivery vectors are a crucial determinant for gene therapeutic efficacy. Usually, it is necessary to use an excess of cationic vectors to achieve better transfection efficiency. However, it will cause severe cytotoxicity. In addition, cationic vectors are not resistant to serum, suffering from reduced transfection efficiency by forming large aggregates. Therefore, there is an urgent need to develop optimized gene delivery vectors. Recently, fluorination of vectors has been extensively applied to increase the gene delivery performance because of the unique properties of both hydrophobicity and lipophobicity, and chemical and biological inertness. AREAS COVERED This review will discuss the fluorophilic effects that impact gene delivery efficiency, and chemical modification approaches for fluorination. Next, recent advances and applications of fluorinated polymeric and lipidic vectors in gene therapy and gene editing are summarized. EXPERT OPINION Fluorinated vectors are a promising candidate for gene delivery. However, it still needs further studies to obtain pure and well-defined fluorinated polymers, guarantee the biosafety, and clarify the detailed mechanism. Apart from the improvements in gene delivery, exploiting other versatility of fluorinated vectors, such as oxygen-carrying ability, high affinity with fluorine-containing drugs, and imaging property upon introducing 19F, will further facilitate their applications in gene therapy.
Collapse
Affiliation(s)
- Yu Wan
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yuhan Yang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Mingyu Wu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Shun Feng
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
43
|
Wang K, Rong G, Gao Y, Wang M, Sun J, Sun H, Liao X, Wang Y, Li Q, Gao W, Cheng Y. Fluorous-Tagged Peptide Nanoparticles Ameliorate Acute Lung Injury via Lysosomal Stabilization and Inflammation Inhibition in Pulmonary Macrophages. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203432. [PMID: 36069247 DOI: 10.1002/smll.202203432] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is a common respiratory critical syndrome that currently has no effective therapeutic interventions. Pulmonary macrophages play a principal role in the initiation and progression of the overwhelming inflammation in ALI/ARDS. Here, a type of fluorous-tagged bioactive peptide nanoparticle termed CFF13F is developed, which can be efficiently internalized by macrophages and suppress the excessive expression of cytokines and the overproduction of reactive oxygen species (ROS) triggered by lipopolysaccharide (LPS). The cytoprotective effect of CFF13F may be attributed to the lysosomal-stabilization property and regulation of the antioxidative system. Moreover, intratracheal pretreatment with CFF13F can effectively reduce local and systematic inflammation, and ameliorate pulmonary damage in an LPS-induced ALI murine model. The therapeutic efficacy of CFF13F is affected by the administration routes, and the local intratracheal injection is found to be the optimal choice for ALI treatment, with preferred biodistribution profiles. The present study provides solid evidence of the potent immunomodulatory bioactivity of the fluorous-tagged peptide nanoparticles CFF13F in vitro and in vivo, and sheds light on the development of novel efficient nanodrugs for ALI/ARDS.
Collapse
Affiliation(s)
- Kun Wang
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, P. R. China
| | - Guangyu Rong
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, P. R. China
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Yixuan Gao
- Department of Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong, 250021, P. R. China
| | - Muyun Wang
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, P. R. China
| | - Jiaxing Sun
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, P. R. China
| | - He Sun
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, P. R. China
| | - Ximing Liao
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, P. R. China
| | - Yuanyuan Wang
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, P. R. China
| | - Qiang Li
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, P. R. China
| | - Wei Gao
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, P. R. China
| | - Yiyun Cheng
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, P. R. China
| |
Collapse
|
44
|
Carrier-free supramolecular nanomedicines assembled by small-molecule therapeutics for cancer treatment. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
45
|
Rong G, Chen L, Zhu F, Tan E, Cheng Y. Polycatechols with Robust Efficiency in Cytosolic Peptide Delivery via Catechol-Boronate Chemistry. NANO LETTERS 2022; 22:6245-6253. [PMID: 35900805 DOI: 10.1021/acs.nanolett.2c01810] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cytosolic delivery of peptides remains a challenging task because of the limited binding sites on peptides and the existence of multiple intracellular barriers. Here, we proposed the use of polycatechols with a high cell permeability to deliver peptides of different physicochemical properties using the catechol-boronate chemistry. Peptides were decorated with boronate moieties via three strategies, and the introduced boronate groups greatly increased the binding affinity of cargo peptides with polycatechols. The loading peptides could be released under the endolysosomal acidity. When the cargo peptide was modified with boronate moiety via a p-hydroxybenzylcarbamate self-immolative spacer, it could be loaded by polycatechols and released in a traceless manner triggered by reactive oxygen species. The proposed strategies greatly promote the cytosolic delivery efficiency of different peptides into various cell lines and restored their biofunctions after intracellular delivery and release. This study provides a general and robust platform for the intracellular delivery of membrane-impermeable peptides.
Collapse
Affiliation(s)
- Guangyu Rong
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, PR China
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, PR China
| | - Lijie Chen
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, PR China
| | - Fang Zhu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, PR China
| | - Echuan Tan
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, PR China
| | - Yiyun Cheng
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, PR China
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, PR China
| |
Collapse
|
46
|
Hausig-Punke F, Richter F, Hoernke M, Brendel JC, Traeger A. Tracking the Endosomal Escape: A Closer Look at Calcein and Related Reporters. Macromol Biosci 2022; 22:e2200167. [PMID: 35933579 DOI: 10.1002/mabi.202200167] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/19/2022] [Indexed: 11/11/2022]
Abstract
Crossing the cellular membrane and delivering active pharmaceuticals or biologicals into the cytosol of cells is an essential step in the development of nanomedicines. One of the most important intracellular processes regarding the cellular uptake of biologicals is the endolysosomal pathway. Sophisticated nanocarriers have been developed overcoming a major hurdle, the endosomal entrapment, and delivering their cargo to the required site of action. In parallel, in vitro assays have been established analyzing the performance of these nanocarriers. Among them, the release of the membrane-impermeable dye calcein has become a popular and straightforward method. It is accessible for most researchers worldwide, allows for rapid conclusions about the release potential, and enables the study of release mechanisms. This review is intended to provide an overview and guidance for scientists applying the calcein release assay. It comprises a survey of several applications in the study of endosomal escape, considerations of potential pitfalls, challenges and limitations of the assay, and a brief summary of complementary methods. Based on this review, we hope to encourage further research groups to take advantage of the calcein release assay for their own purposes and help to create a database for more efficient cross-correlations between nanocarriers. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Franziska Hausig-Punke
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Friederike Richter
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Maria Hoernke
- Chemistry and Pharmacy, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Str. 9, 79104, Freiburg i.Br., Germany
| | - Johannes C Brendel
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Anja Traeger
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| |
Collapse
|
47
|
Redox-responsive carrier based on fluorinated gemini amphiphilic polymer for combinational cancer therapy. Colloids Surf B Biointerfaces 2022; 216:112551. [PMID: 35567807 DOI: 10.1016/j.colsurfb.2022.112551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 04/24/2022] [Accepted: 05/06/2022] [Indexed: 11/23/2022]
Abstract
Polymeric micelle has emerged as an efficient implement to overcome the shortcomings of conventional cancer chemotherapy due to its superior solubility of hydrophobic drugs and less side effects of drugs. However, insufficient dilution resistance and ordinary therapeutic effect severely restrict the further translation of current drug-loaded polymeric micelles. Here, we showed that well-defined G-Fn (n = 5, 9, 13) polymeric micelles possessed excellent capabilities as a drug carrier in light of high drug loading content, high stability and precise drug release combined with wonderful endocytosis efficiency to tumors. The representative G-F13 exhibited an excellent dilution resistance, outstanding high drug loading content (22 wt%) and drug loading efficiency (82%), which might be attributed to the extremely low critical micelle concentration conferred by its special Gemini structure and the superhydrophobicity of the fluorocarbon chain. Furthermore, the "cross-linked" internal fluoride membrane consisted of the two chains of the Gemini structure made G-F13 stable even after 24 h of incubation in 10% fetal bovine serum (FBS). The camptothecin (CPT) release was selectively triggered by glutathione (GSH) and H2O2, reaching 75% and 85% after 24 h respectively, in which only 15% of drugs leak under physiological conditions. The CCK-8 assays of Hela cells showed that CPT-loaded G-F13 micelles had high cell compatibility (200 μg/mL, 93% cell viability, 48 h) and high cancer cytotoxicity (IC50 0.1 μg/mL). Notably, a tenfold lower dosage of loaded CPT had an higher tumor growth inhibition than the free CPT. This result was attributed to the combined treatment of fluorinated drug carriers were more likely to penetrate the cell membrane to enter tumor cells, the cytotoxicity of selenic acid generated after the oxidation of G-F13 and the large amounts of CPT after redox release. Excellent physical and chemical properties as well as good therapeutic effects reveal that G-F13 can act as a promising drug carrier to widely use in cancer chemotherapy.
Collapse
|
48
|
Lin S, Zhang Q, Li S, Qin X, Cai X, Wang H. Tetrahedral framework nucleic acids-based delivery promotes intracellular transfer of healing peptides and accelerates diabetic would healing. Cell Prolif 2022; 55:e13279. [PMID: 35810322 PMCID: PMC9436915 DOI: 10.1111/cpr.13279] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/12/2022] [Accepted: 05/17/2022] [Indexed: 02/05/2023] Open
Abstract
Objectives Peptide‐based therapeutics are natural candidates to desirable wound healing. However, enzymatic surroundings largely limit its stability and bioavailability. Here, we developed a tetrahedral framework nucleic acids(tFNA)‐based peptide delivery system, that is, p@tFNAs, to address deficiencies of healing peptide stability and intracellular delivery in diabetic wound healing. Materials and Methods AGEs (advanced glycation end products) were used to treat endothelial cell to simulate cell injury in diabetic microenvironment. The effects and related mechanisms of p@tFNAs on endothelial cell proliferation, migration, angiogenesis and ROS (reactive oxygen species) production have been comprehensively studied. The wound healing model in diabetic mice was photographically and histologically investigated in vivo. Results Efficient delivery of healing peptide by the framework(tFNA) was verified. p@tFNAs helped overcome the angiogenic obstacles induced by AGEs via ERK1/2 phosphorylation. In the meantime, p@tFNA exhibited its antioxidative property to achieve ROS balance. As a result, p@tFNA improved angiogenesis and diabetic wound healing in vitro and in vivo. Conclusions Our findings demonstrate that p@tFNA could be a novel therapeutic strategy for diabetic wound healing. Moreover, a new method for intracellular delivery of peptides was also constructed.
Collapse
Affiliation(s)
- Shiyu Lin
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Qi Zhang
- Department of Implant Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,College of Stomatology, Shanghai Jiao Tong University, Shanghai, China.,National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Songhang Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin Qin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaoxiao Cai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Huiming Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| |
Collapse
|
49
|
Qiu J, Fan Q, Xu S, Wang D, Chen J, Wang S, Hu T, Ma X, Cheng Y, Xu L. A fluorinated peptide with high serum- and lipid-tolerence for the delivery of siRNA drugs to treat obesity and metabolic dysfunction. Biomaterials 2022; 285:121541. [DOI: 10.1016/j.biomaterials.2022.121541] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 04/14/2022] [Accepted: 04/22/2022] [Indexed: 12/12/2022]
|
50
|
Wang R, Yang S, Xiao P, Sun Y, Li J, Jiang X, Wu W. Fluorination and Betaine Modification Augment the Blood-Brain Barrier-Crossing Ability of Cylindrical Polymer Brushes. Angew Chem Int Ed Engl 2022; 61:e202201390. [PMID: 35143085 DOI: 10.1002/anie.202201390] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Indexed: 12/25/2022]
Abstract
Blood-brain barrier (BBB)-crossing ability of drugs is of paramount importance for the treatments of central nervous system diseases. However, the known methods for drug transport across the BBB are generally complicated and inefficient, and exhibit serious side effects in some cases. Herein, we report an exciting finding that fluorination and betaine modification can significantly augment the BBB-crossing ability of cylindrical polymer brushes (CPBs), which was demonstrated by the comparison with the CPBs modified with alkyl and poly(ethylene glycol) chains, respectively. We surmise that fluorination enhances the BBB penetration of the CPBs by increasing the hydrophobicity and reducing the surface energy, and betaine medication achieves this function via a betaine transporter BGT1 expressed on brain capillaries. By means of an in vitro BBB model, we demonstrated that the CPBs penetrated the BBB through transendothelial transport. This work provides a novel strategy for enhancing the BBB-crossing ability of nanomaterials.
Collapse
Affiliation(s)
- Ruonan Wang
- Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Shuo Yang
- Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Panpan Xiao
- Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Ying Sun
- Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Jia Li
- Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Xiqun Jiang
- Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Wei Wu
- Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|