1
|
Yang A, Chen L, Tang S, Guo X, Su H, Jiang BP, Shen XC. Light/Ultrasound Dual Responsive Carbon Dots-Based Nanovaccines for Multimodal Activation Tumor Immunotherapy of Melanoma. Adv Healthc Mater 2025; 14:e2405194. [PMID: 40200897 DOI: 10.1002/adhm.202405194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/26/2025] [Indexed: 04/10/2025]
Abstract
Melanoma is a highly aggressive and metastatic tumor, and immunotherapy has become the current solution. However, conventional nanovaccines do not strongly activate T cell immune responses. Therefore, development of effective therapeutic nanovaccines to activate systemic antitumor immunity is urgently required. Herein, light/ultrasound (US) dual-responsive carbon dot-based nanovaccines (Cu-N-CDs@OVA) are designed using copper-nitrogen-coordinated carbon dots composited with ovalbumin. Under 650-nm laser irradiation, Cu-N-CDs@OVA exhibited superior photothermal ablation of primary tumors, induced immunogenic cell death and released antigens by phototherapy, facilitating the maturation of dendritic cells (DCs). More importantly, Cu-N-CDs@OVA stably penetrated and diffused upon US treatment, eradicating metastatic tumors and generating low-dose reactive oxygen species to activate DCs. By integrating with the model antigen OVA, the combined multimodal treatment promotes DC maturation to activate systematic antitumor immunity. This is the first example of a light/US dual-responsive therapeutic nanovaccine that provides a paradigm for the production of personalized nanovaccines against malignant tumors.
Collapse
Affiliation(s)
- Aijia Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Li Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Shunxin Tang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Xiaolu Guo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Hongqin Su
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Bang-Ping Jiang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Xing-Can Shen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| |
Collapse
|
2
|
An Y, Xu D, He P, Wang Z, Li Y, Ming J, Liu R, Li J, Lu Z, Liu G. A Lanthanide Nanoparticle-Aggregation-Induced Emission Photosensitizer Complex System Drives Coupled Triplet Energy Transfer for Enhanced Radio-Photodynamic Therapy. J Am Chem Soc 2025; 147:11964-11974. [PMID: 40165679 DOI: 10.1021/jacs.4c18033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Cerenkov light (CL), utilized as an internal excitation source for photodynamic therapy (PDT), addresses the limitations of laser penetration and has substantial potential for seamlessly integrating clinical radiotheranostics with phototheranostics. Nevertheless, the effectiveness of CL-mediated PDT is significantly hindered by challenges, such as the low intensity of CL and inadequate energy transfer between the CL donor and photosensitizers (PSs). In this study, a novel approach is introduced for enhanced radionuclide-activated radio-photodynamic therapy utilizing a hybrid nanoparticle system composed of lanthanide nanoparticles and an aggregation-induced emission photosensitizer (AIE PS), designated LnNP-TQ NPs. This system enables lanthanide nanoparticles to optimize the decay energy of radionuclides, effectively sensitizing the AIE PS through triplet energy transfer (TET)-mediated processes with an efficiency approaching 100%. When activated by the clinical radionuclide 18F for positron emission tomography imaging, the LnNP-TQ NPs substantially inhibited tumor growth via effective singlet oxygen (1O2) generation. This strategy, which optimally harnesses radionuclide energy and achieves efficient energy transfer, offers a promising pathway for enhancing radiotherapy-phototherapy efficacy in tumor treatment.
Collapse
Affiliation(s)
- Yibo An
- State Key Laboratory of Vaccines for Infectious Diseases & Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, People's Republic of China
| | - Dazhuang Xu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Fujian Engineering Research Center of Molecular Theranostic Technology, Xiamen University, Xiamen 361102, People's Republic of China
| | - Pan He
- Department of Hepatobiliary and Pancreatic Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China
- Department of General Surgery, Institute of Hepatobiliary-Pancreatic-Intestinal Diseases, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, People's Republic of China
| | - Ziying Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Fujian Engineering Research Center of Molecular Theranostic Technology, Xiamen University, Xiamen 361102, People's Republic of China
| | - Yun Li
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Fujian Engineering Research Center of Molecular Theranostic Technology, Xiamen University, Xiamen 361102, People's Republic of China
| | - Jiang Ming
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361102, People's Republic of China
| | - Renyuan Liu
- State Key Laboratory of Vaccines for Infectious Diseases & Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, People's Republic of China
| | - Jingchao Li
- Department of Nuclear Medicine, Daping Hospital, Army Medical University, Chongqing 400042, People's Republic of China
| | - Zhixiang Lu
- State Key Laboratory of Vaccines for Infectious Diseases & Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, People's Republic of China
| | - Gang Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Fujian Engineering Research Center of Molecular Theranostic Technology, Xiamen University, Xiamen 361102, People's Republic of China
| |
Collapse
|
3
|
Tang X, Wu W, Zhang S, He C, Fan K, Fan Y, Yang X, Li J, Yang Y, Ling J. Photodynamic hemostatic silk fibroin film with photo-controllable modulation of macrophages for bacteria-infected wound healing. Biomater Sci 2025; 13:606-616. [PMID: 39308338 DOI: 10.1039/d4bm01038h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Massive hemorrhage and chronic wounds caused by bacterial infections after trauma are significant challenges in clinical practice. An ideal hemostatic wound dressing should simultaneously manage bleeding and prevent bacterial infections and also hold excellent biocompatibility and bioactivities to successfully modulate immune microenvironments to promote wound healing. In this study, a silk fibroin-based light-responsive film was demonstrated to possess effective capacity of light-induced non-compressible hemostasis on liver hemorrhage and tail bleeding in vivo by binding with blood platelets to promote the clotting cascade. The blood loss of the rats was significantly less after C-MASiF films were applied, which were 1223.33 ± 347.9 mg (liver trauma) and 363.33 ± 60.28 mg (tail trimming). Importantly, the films exhibited photo-controllable modulation activity on macrophages through repeated near-infrared irradiation to regulate the immune microenvironment to enhance photodynamic antibacterial therapy. Moreover, the light-responsive silk fibroin film effectively promoted Staphylococcus aureus infected burn wound healing in vivo. The quantity of residual bacteria in the wound sites of mice in the C-MASiF films group (0.05 ± 0.0047 × 108 CFU mL-1) was considerably less than that in the control group (3.18 ± 0.75 × 108 CFU mL-1), and the wound area in the C-MASiF group (78.03% ± 4.12%) was considerably smaller than that in the control group (60.33% ± 8.81%) after 14 days. Overall, this light-responsive silk fibroin film can provide a powerful strategy for wound healing of burns.
Collapse
Affiliation(s)
- Xiaoxuan Tang
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-Innovation Center of Neuroregeneration, Medical School of Nantong University, Nantong University, Nantong, 226001, China
| | - Wenpin Wu
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-Innovation Center of Neuroregeneration, Medical School of Nantong University, Nantong University, Nantong, 226001, China
| | - Shuxuan Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-Innovation Center of Neuroregeneration, Medical School of Nantong University, Nantong University, Nantong, 226001, China
| | - Chang He
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-Innovation Center of Neuroregeneration, Medical School of Nantong University, Nantong University, Nantong, 226001, China
| | - Kewei Fan
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-Innovation Center of Neuroregeneration, Medical School of Nantong University, Nantong University, Nantong, 226001, China
| | - Yulan Fan
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-Innovation Center of Neuroregeneration, Medical School of Nantong University, Nantong University, Nantong, 226001, China
| | - Xuewa Yang
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-Innovation Center of Neuroregeneration, Medical School of Nantong University, Nantong University, Nantong, 226001, China
| | - Jiaying Li
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-Innovation Center of Neuroregeneration, Medical School of Nantong University, Nantong University, Nantong, 226001, China
| | - Yumin Yang
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-Innovation Center of Neuroregeneration, Medical School of Nantong University, Nantong University, Nantong, 226001, China
| | - Jue Ling
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-Innovation Center of Neuroregeneration, Medical School of Nantong University, Nantong University, Nantong, 226001, China
| |
Collapse
|
4
|
Dou L, Fang Y, Yang H, Ai G, Shen N. Immunogenic cell death: A new strategy to enhancing cancer immunotherapy. Hum Vaccin Immunother 2024; 20:2437918. [PMID: 39655738 PMCID: PMC11639453 DOI: 10.1080/21645515.2024.2437918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 11/14/2024] [Accepted: 12/02/2024] [Indexed: 12/15/2024] Open
Abstract
Immunogenic cell death (ICD) is a distinct type of stress-induced regulated cell death that can lead to adaptive immune responses and the establishment of immunological memory. ICD exhibits both similarities and differences when compared to apoptosis and other non-apoptotic forms of regulated cell death (RCD). The interplay between ICD-mediated immunosurveillance against cancer and the ability of cancer cells to evade ICD influences the host-tumor immunological interaction. Consequently, the restoration of ICD and the development of effective strategies to induce ICD have emerged as crucial considerations in the treatment of cancer within the context of immunotherapy. To enhance comprehension of ICD in the setting of cancer, this paper examines the interconnected responsive pathways associated with ICD, the corresponding biomarkers indicative of ICD, and the mechanisms through which tumors subvert ICD. Additionally, this review explores strategies for reinstating ICD and the therapeutic potential of harnessing ICD in cancer immunotherapy.
Collapse
Affiliation(s)
- Lei Dou
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Fang
- Intensive Care Unit, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiyuan Yang
- Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guo Ai
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Na Shen
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Chen Z, Li X, Liu Q, Li W, Wang T, Ding D. Recent advances in AIE-based platforms for cancer immunotherapy. J Control Release 2024; 376:1-19. [PMID: 39343142 DOI: 10.1016/j.jconrel.2024.09.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/11/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024]
Abstract
Aggregation-induced emission luminogens (AIEgens) possess the unique property of enhanced fluorescence and photostability in aggregated states, making them exceptional materials for the convergence of imaging and phototherapy. With their inherent advantages, AIEgens are propelling the field of nanomedicine into a vibrant frontier in the phototheranostics of a spectrum of diseases, particularly in the realm of cancer immunotherapy. AIEgens-based therapeutics enhance the cancer immune response through a variety of approaches, including real-time image-guided precise therapy, induction of programmed cell death, metabolic reprogramming, and modulation of the tumor microenvironment. Additionally, they contribute to the synergistic effect of immune checkpoint inhibition, a pivotal aspect of modern cancer immunotherapy strategies. This review offers a comprehensive overview of the integration of AIEgens in nanomedicine and their role in immune adaptation, highlighting the advantages, basic action mechanisms, and recent advancement of AIEgens as promising therapeutic platform for cancer immunotherapy.
Collapse
Affiliation(s)
- Ziyi Chen
- Frontiers Science Center for New Organic Matter, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xueping Li
- Tianjin Key Laboratory of Biomedical Materials and Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Qian Liu
- Department of Urology, Tianjin First Central Hospital, Tianjin 300192, China
| | - Wen Li
- Tianjin Key Laboratory of Biomedical Materials and Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Tianjiao Wang
- Tianjin Key Laboratory of Biomedical Materials and Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Dan Ding
- Frontiers Science Center for New Organic Matter, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin 300071, China; Nankai International Advanced Research Institute, Futian District, Shenzhen 518045, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou 221002, Jiangsu, China.
| |
Collapse
|
6
|
Li B, Tian J, Zhang F, Wu C, Li Z, Wang D, Zhuang J, Chen S, Song W, Tang Y, Ping Y, Liu B. Self-assembled aldehyde dehydrogenase-activatable nano-prodrug for cancer stem cell-enriched tumor detection and treatment. Nat Commun 2024; 15:9417. [PMID: 39482286 PMCID: PMC11528051 DOI: 10.1038/s41467-024-53771-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 10/23/2024] [Indexed: 11/03/2024] Open
Abstract
Cancer stem cells, characterized by high tumorigenicity and drug-resistance, are often responsible for tumor progression and metastasis. Aldehyde dehydrogenases, often overexpressed in cancer stem cells enriched tumors, present a potential target for specific anti-cancer stem cells treatment. In this study, we report a self-assembled nano-prodrug composed of aldehyde dehydrogenases activatable photosensitizer and disulfide-linked all-trans retinoic acid for diagnosis and targeted treatment of cancer stem cells enriched tumors. The disulfide-linked all-trans retinoic acid can load with photosensitizer and self-assemble into a stable nano-prodrug, which can be disassembled into all-trans retinoic acid and photosensitizer in cancer stem cells by high level of glutathione. As for the released photosensitizer, overexpressed aldehyde dehydrogenase catalyzes the oxidation of aldehydes to carboxyl under cancer stem cells enriched microenvironment, activating the generation of reactive oxygen species and fluorescence emission. This generation of reactive oxygen species leads to direct killing of cancer stem cells and is accompanied by a noticeable fluorescence enhancement for real-time monitoring of the cancer stem cells enriched microenvironment. Moreover, the released all-trans retinoic acid, as a differentiation agent, reduce the cancer stem cells stemness and improve the cancer stem cells enriched microenvironment, offering a synergistic effect for enhanced anti-cancer stem cells treatment of photosensitizer in inhibition of in vivo tumor growth and metastasis.
Collapse
Affiliation(s)
- Bowen Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Jianwu Tian
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Fu Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chongzhi Wu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhiyao Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Dandan Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Jiahao Zhuang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Siqin Chen
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Wentao Song
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Yufu Tang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Yuan Ping
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore.
| |
Collapse
|
7
|
Yang B, Cao L, Ge K, Lv C, Zhao Z, Zheng T, Gao S, Zhang J, Wang T, Jiang J, Qin Y. FeSA‐Ir/Metallene Nanozymes Induce Sequential Ferroptosis‐Pyroptosis for Multi‐Immunogenic Responses Against Lung Metastasis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401110. [PMID: 38874051 DOI: 10.1002/smll.202401110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/01/2024] [Indexed: 06/15/2024]
Abstract
For cancer metastasis inhibition, the combining of nanozymes with immune checkpoint blockade (ICB) therapy remains the major challenge in controllable reactive oxygen species (ROS) generation for creating effective immunogenicity. Herein, new nanozymes with light-controlled ROS production in terms of quantity and variety are developed by conjugating supramolecular-wrapped Fe single atom on iridium metallene with lattice-strained nanoislands (FeSA-Ir@PF NSs). The Fenton-like catalysis of FeSA-Ir@PF NSs effectively produced •OH radicals in dark, which induced ferroptosis and apoptosis of cancer cells. While under second near-infrared (NIR-II) light irradiation, FeSA-Ir@PF NSs showed ultrahigh photothermal conversion efficiency (𝜂, 75.29%), cooperative robust •OH generation, photocatalytic O2 and 1O2 generation, and caused significant pyroptosis of cancer cells. The controllable ROS generation, sequential cancer cells ferroptosis and pyroptosis, led 99.1% primary tumor inhibition and multi-immunogenic responses in vivo. Most importantly, the inhibition of cancer lung metastasis is completely achieved by FeSA-Ir@PF NSs with immune checkpoint inhibitors, as demonstrated in different mice lung metastasis models, including circulating tumor cells (CTCs) model. This work provided new inspiration for developing nanozymes for cancer treatments and metastasis inhibition.
Collapse
Affiliation(s)
- Baochan Yang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- School of Biomedical Engineering, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 510260, China
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China
| | - Lingzhi Cao
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding, Hebei, 071002, China
| | - Kun Ge
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding, Hebei, 071002, China
| | - Chaofan Lv
- School of Biomedical Engineering, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 510260, China
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China
| | - Zunling Zhao
- School of Biomedical Engineering, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 510260, China
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China
| | - Tianyu Zheng
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Shutao Gao
- College of Science, Hebei Agricultural University, Baoding, 071001, China
| | - Jinchao Zhang
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding, Hebei, 071002, China
| | - Tianyu Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jianzhuang Jiang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yan Qin
- School of Biomedical Engineering, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 510260, China
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China
| |
Collapse
|
8
|
Lan J, Chen L, Li Z, Liu L, Zeng R, He Y, Shen Y, Zhang T, Ding Y. Multifunctional Biomimetic Liposomes with Improved Tumor-Targeting for TNBC Treatment by Combination of Chemotherapy, Antiangiogenesis and Immunotherapy. Adv Healthc Mater 2024; 13:e2400046. [PMID: 38767575 DOI: 10.1002/adhm.202400046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/11/2024] [Indexed: 05/22/2024]
Abstract
Triple negative breast cancer (TNBC) featuring high relapses and metastasis shows limited clinical therapeutic efficiency with chemotherapy for the extremely complex tumor microenvironment, especially angiogenesis and immunosuppression. Combination of antiangiogenesis and immunotherapy holds promise for effective inhibition of tumor proliferation and invasion, while it remains challenging for specific targeting drug delivery to tumors and metastatic lesions. Here, a multifunctional biomimetic liposome loading Gambogic acid (G/R-MLP) is developed using Ginsenoside Rg3 (Rg3) to substitute cholesterol and cancer cell membrane coating, which is designed to increase long-circulating action by a low immunogenicity and specifically deliver gambogic acid (GA) to tumor site and metastatic lesions by homologous targeting and glucose transporter targeting. After G/R-MLP accumulates in the primary tumors and metastatic nodules, it synergistically enhances the antitumor efficacy of GA, effectively suppressing the tumor growth and lung metastasis by killing tumor cells, inhibiting tumor cell migration and invasion, achieving antiangiogenesis and improving the antitumor immunity. All in all, the strategy combining chemotherapy, antiangiogenesis, and immunotherapy improves therapeutic efficiency and prolonged survival, providing a new perspective for the clinical treatment of TNBC.
Collapse
Affiliation(s)
- Jinshuai Lan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Lixia Chen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zhe Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Li Liu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ruifeng Zeng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yitian He
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yi Shen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Tong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yue Ding
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| |
Collapse
|
9
|
Khatua R, Bhar B, Dey S, Jaiswal C, J V, Mandal BB. Advances in engineered nanosystems: immunomodulatory interactions for therapeutic applications. NANOSCALE 2024; 16:12820-12856. [PMID: 38888201 DOI: 10.1039/d4nr00680a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Advances in nanotechnology have led to significant progress in the design and fabrication of nanoparticles (NPs) with improved therapeutic properties. NPs have been explored for modulating the immune system, serving as carriers for drug delivery or vaccine adjuvants, or acting as therapeutics themselves against a wide range of deadly diseases. The combination of NPs with immune system-targeting moieties has facilitated the development of improved targeted immune therapies. Targeted delivery of therapeutic agents using NPs specifically to the disease-affected cells, distinguishing them from other host cells, offers the major advantage of concentrating the therapeutic effect and reducing systemic side effects. Furthermore, the properties of NPs, including size, shape, surface charge, and surface modifications, influence their interactions with the targeted biological components. This review aims to provide insights into these diverse emerging and innovative approaches that are being developed and utilized for modulating the immune system using NPs. We reviewed various types of NPs composed of different materials and their specific application for modulating the immune system. Furthermore, we focused on the mechanistic effects of these therapeutic NPs on primary immune components, including T cells, B cells, macrophages, dendritic cells, and complement systems. Additionally, a recent overview of clinically approved immunomodulatory nanomedicines and potential future perspectives, offering new paradigms of this field, is also highlighted.
Collapse
Affiliation(s)
- Rupam Khatua
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India.
| | - Bibrita Bhar
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India.
| | - Souradeep Dey
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India
| | - Chitra Jaiswal
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India.
| | - Victoria J
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India.
| | - Biman B Mandal
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India.
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India
| |
Collapse
|
10
|
Li HH, Wang YK, Liao LS. Near-Infrared Luminescent Materials Incorporating Rare Earth/Transition Metal Ions: From Materials to Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403076. [PMID: 38733295 DOI: 10.1002/adma.202403076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/26/2024] [Indexed: 05/13/2024]
Abstract
The spotlight has shifted to near-infrared (NIR) luminescent materials emitting beyond 1000 nm, with growing interest due to their unique characteristics. The ability of NIR-II emission (1000-1700 nm) to penetrate deeply and transmit independently positions these NIR luminescent materials for applications in optical-communication devices, bioimaging, and photodetectors. The combination of rare earth metals/transition metals with a variety of matrix materials provides a new platform for creating new chemical and physical properties for materials science and device applications. In this review, the recent advancements in NIR emission activated by rare earth and transition metal ions are summarized and their role in applications spanning bioimaging, sensing, and optoelectronics is illustrated. It started with various synthesis techniques and explored how rare earths/transition metals can be skillfully incorporated into various matrixes, thereby endowing them with unique characteristics. The discussion to strategies of enhancing excitation absorption and emission efficiency, spotlighting innovations like dye sensitization and surface plasmon resonance effects is then extended. Subsequently, a significant focus is placed on functionalization strategies and their applications. Finally, a comprehensive analysis of the challenges and proposed strategies for rare earth/transition metal ion-doped near-infrared luminescent materials, summarizing the insights of each section is provided.
Collapse
Affiliation(s)
- Hua-Hui Li
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Macau SAR, Taipa, 999078, China
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Ya-Kun Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Liang-Sheng Liao
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Macau SAR, Taipa, 999078, China
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| |
Collapse
|
11
|
Xie D, Han C, Chen C, Liao Z, Campos de Souza S, Niu Y, Mano JF, Dong L, Wang C. A scaffold vaccine to promote tumor antigen cross-presentation via sustained toll-like receptor-2 (TLR2) activation. Bioact Mater 2024; 37:315-330. [PMID: 38694764 PMCID: PMC11061615 DOI: 10.1016/j.bioactmat.2024.03.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 05/04/2024] Open
Abstract
Cancer vaccination holds great promise for cancer treatment, but its effectiveness is hindered by suboptimal activation of CD8+ cytotoxic T lymphocytes, which are potent effectors to mediate anti-tumor immune responses. A possible solution is to switch antigen-presenting cells to present tumor antigens via the major histocompatibility complex class I (MHC-I) to CD8+ T cells - a process known as cross-presentation. To achieve this goal, we develop a three-dimensional (3D) scaffold vaccine to promote antigen cross-presentation by persisted toll-like receptor-2 (TLR2) activation after one injection. This vaccine comprises polysaccharide frameworks that "hook" TLR2 agonist (acGM) via tunable hydrophobic interactions and forms a 3D macroporous scaffold via click chemistry upon subcutaneous injection. Its retention-and-release of acGM enables sustained TLR2 activation in abundantly recruited dendritic cells in situ, inducing intracellular production of reactive oxygen species (ROS) in optimal kinetics that crucially promotes efficient antigen cross-presentation. The scaffold loaded with model antigen ovalbumin (OVA) or tumor specific antigen can generate potent immune responses against lung metastasis in B16-OVA-innoculated wild-type mice or spontaneous colorectal cancer in transgenic ApcMin/+ mice, respectively. Notably, it requires neither additional adjuvants nor external stimulation to function and can be adjusted to accommodate different antigens. The developed scaffold vaccine may represent a new, competent tool for next-generation personalized cancer vaccination.
Collapse
Affiliation(s)
- Daping Xie
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
| | - Congwei Han
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093, China
| | - Chonghao Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
| | - Zhencheng Liao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
| | - Senio Campos de Souza
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
| | - Yiming Niu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
| | - João F. Mano
- Department of Chemistry, CICECO – Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Lei Dong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093, China
- National Resource Center for Mutant Mice, Nanjing, 210093, China
- Chemistry and Biomedicine Innovative Center, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Chunming Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
- Department of Pharmaceutical Sciences, Faculty of Health Science, University of Macau, Taipa, Macau SAR, China
- Zhuhai UM Science and Technology Research Institute (ZUMRI), University of Macau, Hengqin, China
| |
Collapse
|
12
|
Peng J, Li S, Ti H. Sensitize Tumor Immunotherapy: Immunogenic Cell Death Inducing Nanosystems. Int J Nanomedicine 2024; 19:5895-5930. [PMID: 38895146 PMCID: PMC11184231 DOI: 10.2147/ijn.s457782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Low immunogenicity of tumors poses a challenge in the development of effective tumor immunotherapy. However, emerging evidence suggests that certain therapeutic approaches, such as chemotherapy, radiotherapy, and phototherapy, can induce varying degrees of immunogenic cell death (ICD). This ICD phenomenon leads to the release of tumor antigens and the maturation of dendritic cells (DCs), thereby enhancing tumor immunogenicity and promoting immune responses. However, the use of a single conventional ICD inducer often fails to achieve in situ tumor ablation and establish long-term anti-tumor immune responses. Furthermore, the induction of ICD induction varies among different approaches, and the distribution of the therapeutic agent within the body influences the level of ICD and the occurrence of toxic side effects. To address these challenges and further boost tumor immunity, researchers have explored nanosystems as inducers of ICD in combination with tumor immunotherapy. This review examines the mechanisms of ICD and different induction methods, with a specific focus on the relationship between ICD and tumor immunity. The aim is to explore the research advancements utilizing various nanomaterials to enhance the body's anti-tumor effects by inducing ICD. This paper aims to contribute to the development and clinical application of nanomaterial-based ICD inducers in the field of cancer immunotherapy by providing important theoretical guidance and practical references.
Collapse
Affiliation(s)
- Jianlan Peng
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Shiying Li
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Huihui Ti
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
- Guangdong Province Precise Medicine and Big Data Engineering Technology Research Center for Traditional Chinese Medicine, Guangzhou, People’s Republic of China
| |
Collapse
|
13
|
Wang C, Gu B, Qi S, Hu S, Wang Y. Boosted photo-immunotherapy via near-infrared light excited phototherapy in tumor sites and photo-activation in sentinel lymph nodes. NANOSCALE ADVANCES 2024; 6:2075-2087. [PMID: 38633053 PMCID: PMC11019502 DOI: 10.1039/d4na00032c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 02/28/2024] [Indexed: 04/19/2024]
Abstract
Phototherapy is a promising modality that could eradicate tumor and trigger immune responses via immunogenic cell death (ICD) to enhance anti-tumor immunity. However, due to the lack of deep-tissue-excitable phototherapeutic agents and appropriate excitation strategies, the utility of phototherapy for efficient activation of the immune system is challenging. Herein, we report functionalized ICG nanoparticles (NPs) with the capture capability of tumor-associated antigens (TAAs). Under near-infrared (NIR) light excitation, the ICG NPs exhibited high-performance phototherapy, i.e., synergistic photothermal therapy and photodynamic therapy, thereby efficiently eradicating primary solid tumor and inducing ICD and subsequently releasing TAAs. The ICG NPs also captured TAAs and delivered them to sentinel lymph nodes, and then the sentinel lymph nodes were activated with NIR light to trigger efficient T-cell immune responses through activation of dendritic cells with the assistance of ICG NP generated reactive oxygen species, inhibiting residual primary tumor recurrence and controlling distant tumor growth. The strategy of NIR light excited phototherapy in tumor sites and photo-activation in sentinel lymph nodes provides a powerful platform for active immune systems for anti-tumor photo-immunotherapy.
Collapse
Affiliation(s)
- Chen Wang
- Med-X Research Institute & School of Biomedical Engineering, Shanghai Jiao Tong University 1954 Huashan Road Shanghai 200030 China
| | - Bobo Gu
- Med-X Research Institute & School of Biomedical Engineering, Shanghai Jiao Tong University 1954 Huashan Road Shanghai 200030 China
| | - Shuhong Qi
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology Wuhan Hubei 430074 China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology Wuhan Hubei 430074 China
| | - Siyi Hu
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences Suzhou 215163 China
| | - Yu Wang
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University Shanghai 200092 China
| |
Collapse
|
14
|
Ma W, Wang Y, Xue Y, Wang M, Lu C, Guo W, Liu YH, Shu D, Shao G, Xu Q, Tu D, Yan H. Molecular engineering of AIE-active boron clustoluminogens for enhanced boron neutron capture therapy. Chem Sci 2024; 15:4019-4030. [PMID: 38487248 PMCID: PMC10935674 DOI: 10.1039/d3sc06222h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/01/2024] [Indexed: 03/17/2024] Open
Abstract
The development of boron delivery agents bearing an imaging capability is crucial for boron neutron capture therapy (BNCT), yet it has been rarely explored. Here we present a new type of boron delivery agent that integrates aggregation-induced emission (AIE)-active imaging and a carborane cluster for the first time. In doing so, the new boron delivery agents have been rationally designed by incorporating a high boron content unit of a carborane cluster, an erlotinib targeting unit towards lung cancer cells, and a donor-acceptor type AIE unit bearing naphthalimide. The new boron delivery agents demonstrate both excellent AIE properties for imaging purposes and highly selective accumulation in tumors. For example, at a boron delivery agent dose of 15 mg kg-1, the boron amount reaches over 20 μg g-1, and both tumor/blood (T/B) and tumor/normal cell (T/N) ratios reach 20-30 times higher than those required by BNCT. The neutron irradiation experiments demonstrate highly efficient tumor growth suppression without any observable physical tissue damage and abnormal behavior in vivo. This study not only expands the application scopes of both AIE-active molecules and boron clusters, but also provides a new molecular engineering strategy for a deep-penetrating cancer therapeutic protocol based on BNCT.
Collapse
Affiliation(s)
- Wenli Ma
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Yanyang Wang
- Department of Nuclear Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University Nanjing 210008 China
| | - Yilin Xue
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University Nanjing 210033 China
| | - Mengmeng Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Changsheng Lu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Wanhua Guo
- Department of Nuclear Medicine, Nanjing Tongren Hospital, the Affiliated Hospital of Southeast University Medical School Nanjing 210033 China
| | - Yuan-Hao Liu
- Neuboron Therapy System Ltd. Xiamen 361028 China
- Nanjing University of Aeronautics and Astronautics Nanjing 210016 China
- Neuboron Medtech Ltd. Nanjing 211112 China
| | - Diyun Shu
- Neuboron Therapy System Ltd. Xiamen 361028 China
- Nanjing University of Aeronautics and Astronautics Nanjing 210016 China
- Neuboron Medtech Ltd. Nanjing 211112 China
| | - Guoqiang Shao
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University Nanjing 210033 China
| | - Qinfeng Xu
- Department of Nuclear Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine Nanjing 210029 China
| | - Deshuang Tu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Hong Yan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| |
Collapse
|
15
|
Raj G, Vasudev DS, Christopher S, Babulal A, Harsha P, Ram S, Tiwari M, Sauer M, Varghese R. Multifunctional siRNA/ferrocene/cyclodextrin nanoparticles for enhanced chemodynamic cancer therapy. NANOSCALE 2024; 16:3755-3763. [PMID: 38299362 DOI: 10.1039/d3nr06071c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
The therapeutic outcome of chemodynamic therapy (CDT) is greatly hindered by the presence of oxidative damage repair proteins (MTH1) inside cancer cells. These oxidative damage repair proteins detoxify the action of radicals generated by Fenton or Fenton-like reactions. Hence, it is extremely important to develop a simple strategy for the downregulation of MTH1 protein inside cancer cells along with the delivery of metal ions into cancer cells. A one-pot host-guest supramolecular approach for the codelivery of MTH1 siRNA and metal ions into a cancer cell is reported. Our approach involves the fabrication of an inclusion complex between cationic β-cyclodextrin and a ferrocene prodrug, which spontaneously undergoes amphiphilicity-driven self-assembly to form spherical nanoparticles (NPs) having a positively charged surface. The cationic surface of the NPs was then explored for the loading of MTH1 siRNA through electrostatic interactions. Using HeLa cells as a representative example, efficient uptake of the NPs, delivery of MTH1 siRNA and the enhanced CDT of the nanoformulation are demonstrated. This work highlights the potential of the supramolecular approach as a simple yet efficient method for the delivery of siRNA across the cell membrane for enhanced chemodynamic therapy.
Collapse
Affiliation(s)
- Gowtham Raj
- School of Chemistry, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Trivandrum-695551, Kerala, India.
| | - D S Vasudev
- School of Chemistry, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Trivandrum-695551, Kerala, India.
| | - Sarah Christopher
- School of Chemistry, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Trivandrum-695551, Kerala, India.
| | - Anupama Babulal
- School of Chemistry, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Trivandrum-695551, Kerala, India.
| | - P Harsha
- School of Chemistry, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Trivandrum-695551, Kerala, India.
| | - Soumakanya Ram
- School of Chemistry, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Trivandrum-695551, Kerala, India.
| | - Mehul Tiwari
- School of Chemistry, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Trivandrum-695551, Kerala, India.
| | - Markus Sauer
- Department of Biotechnology and Biophysics, Biocenter, Julius Maximilian University of Würzburg, Würzburg, Germany
| | - Reji Varghese
- School of Chemistry, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Trivandrum-695551, Kerala, India.
| |
Collapse
|
16
|
Li S, Meng X, Peng B, Huang J, Liu J, Xiao H, Ma L, Liu Y, Tang J. Cell membrane-based biomimetic technology for cancer phototherapy: Mechanisms, recent advances and perspectives. Acta Biomater 2024; 174:26-48. [PMID: 38008198 DOI: 10.1016/j.actbio.2023.11.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/04/2023] [Accepted: 11/20/2023] [Indexed: 11/28/2023]
Abstract
Despite significant advances in medical technology and antitumour treatments, the diagnosis and treatment of tumours have undergone remarkable transformations. Noninvasive phototherapy methods, such as photodynamic therapy (PDT) and photothermal therapy (PTT), have gained significant interest in antitumour medicine. However, traditional photosensitisers or photothermal agents face challenges like immune system recognition, rapid clearance from the bloodstream, limited tumour accumulation, and phototoxicity concerns. Researchers combine photosensitisers or photothermal agents with natural cell membranes to overcome these obstacles to create a nano biomimetic therapeutic platform. When used to coat nanoparticles, red blood cells, platelets, cancer cells, macrophages, lymphocytes, and bacterial outer membranes could provide prolonged circulation, tumour targeting, immune stimulation, or antigenicity. This article covers the principles of cellular membrane biomimetic nanotechnology and phototherapy, along with recent advancements in applying nano biomimetic technology to PDT, PTT, PCT, and combined diagnosis and treatment. Furthermore, the challenges and issues of using nano biomimetic nanoparticles in phototherapy are discussed. STATEMENT OF SIGNIFICANCE: Currently, there has been significant progress in the field of cell membrane biomimetic technology. Researchers are exploring its potential application in tumor diagnosis and treatment through phototherapy. Scholars have conducted extensive research on combining cell membrane technology and phototherapy in anticancer diagnosis and treatment. This review aims to highlight the mechanisms of phototherapy and the latest advancements in single phototherapy (PTT, PDT) and combination phototherapy (PCT, PRT, and PIT), as well as diagnostic approaches. The review provides an overview of various cell membrane technologies, including RBC membranes, platelet membranes, macrophage cell membranes, tumour cell membranes, bacterial membranes, hybrid membranes, and their potential for anticancer applications under phototherapy. Lastly, the review discusses the challenges and future directions in this field.
Collapse
Affiliation(s)
- Songtao Li
- Traditional Chinese Medicine (TCM) Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China; Clinical School of Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Xiangrui Meng
- Traditional Chinese Medicine (TCM) Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China; Clinical School of Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China.
| | - Bo Peng
- Clinical School of Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Ju Huang
- Traditional Chinese Medicine (TCM) Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China; Clinical School of Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Jingwen Liu
- Traditional Chinese Medicine (TCM) Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Hang Xiao
- College of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, PR China
| | - Li Ma
- College of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, PR China
| | - Yiyao Liu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, PR China.
| | - Jianyuan Tang
- Traditional Chinese Medicine (TCM) Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China; Clinical School of Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China.
| |
Collapse
|
17
|
Wang J, Ma J, Tai Z, Li L, Zhang T, Cheng T, Yu J, Zhu Q, Bao L, Chen Z. Nanocarrier-Mediated Immunogenic Cell Death for Melanoma Treatment. Int J Nanomedicine 2023; 18:7149-7172. [PMID: 38059000 PMCID: PMC10697015 DOI: 10.2147/ijn.s434582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/20/2023] [Indexed: 12/08/2023] Open
Abstract
Melanoma, a highly aggressive skin tumor, exhibits notable features including heterogeneity, a high mutational load, and innate immune escape. Despite advancements in melanoma treatment, current immunotherapies fail to fully exploit the immune system's maximum potential. Activating immunogenic cell death (ICD) holds promise in enhancing tumor cell immunogenicity, stimulating immune amplification response, improving drug sensitivity, and eliminating tumors. Nanotechnology-enabled ICD has emerged as a compelling therapeutic strategy for augmenting cancer immunotherapy. Nanoparticles possess versatile attributes, such as prolonged blood circulation, stability, and tumor-targeting capabilities, rendering them ideal for drug delivery. In this review, we elucidate the mechanisms underlying ICD induction and associated therapeutic strategies. Additionally, we provide a concise overview of the immune stress response associated with ICD and explore the potential synergistic benefits of combining ICD induction methods with the utilization of nanocarriers.
Collapse
Affiliation(s)
- Jiandong Wang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, People’s Republic of China
- Department of Pharmacy, Third Affiliated Hospital of Naval Medical University, Shanghai, People’s Republic of China
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, People’s Republic of China
| | - Jinyuan Ma
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, People’s Republic of China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, 200443, People’s Republic of China
| | - Zongguang Tai
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, People’s Republic of China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, 200443, People’s Republic of China
| | - Lisha Li
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, People’s Republic of China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, 200443, People’s Republic of China
| | - Tingrui Zhang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, People’s Republic of China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, 200443, People’s Republic of China
| | - Tingting Cheng
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, People’s Republic of China
- Department of Pharmacy, Third Affiliated Hospital of Naval Medical University, Shanghai, People’s Republic of China
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, People’s Republic of China
| | - Junxia Yu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, People’s Republic of China
- Department of Pharmacy, Third Affiliated Hospital of Naval Medical University, Shanghai, People’s Republic of China
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, People’s Republic of China
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, People’s Republic of China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, 200443, People’s Republic of China
| | - Leilei Bao
- Department of Pharmacy, Third Affiliated Hospital of Naval Medical University, Shanghai, People’s Republic of China
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, People’s Republic of China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, 200443, People’s Republic of China
| |
Collapse
|
18
|
Wang DP, Zheng J, Jiang FY, Wu LF, Wang MY, Wang YL, Qin CY, Ning JY, Cao JM, Zhou X. Facile and green fabrication of tumor- and mitochondria-targeted AIEgen-protein nanoparticles for imaging-guided photodynamic cancer therapy. Acta Biomater 2023; 168:551-564. [PMID: 37414113 DOI: 10.1016/j.actbio.2023.06.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 06/25/2023] [Accepted: 06/29/2023] [Indexed: 07/08/2023]
Abstract
In recent years, aggregation-induced emission (AIE)-active materials have been emerging as a promising means for bioimaging and phototherapy. However, the majority of AIE luminogens (AIEgens) need to be encapsulated into versatile nanocomposites to improve their biocompatibility and tumor targeting. Herein, we prepared a tumor- and mitochondria-targeted protein nanocage by the fusion of human H-chain ferritin (HFtn) with a tumor homing and penetrating peptide LinTT1 using genetic engineering technology. The LinTT1-HFtn could serve as a nanocarrier to encapsulate AIEgens via a simple pH-driven disassembly/reassembly process, thereby fabricating the dual-targeting AIEgen-protein nanoparticles (NPs). The as designed NPs exhibited an improved hepatoblastoma-homing property and tumor penetrating ability, which is favorable for tumor-targeted fluorescence imaging. The NPs also presented a mitochondria-targeting ability, and efficiently generated reactive oxygen species (ROS) upon visible light irradiation, making them valuable for inducing efficient mitochondrial dysfunction and intrinsic apoptosis in cancer cells. In vivo experiments demonstrated that the NPs could provide the accurate tumor imaging and dramatic tumor growth inhibition with minimal side effects. Taken together, this study presents a facile and green approach for fabrication of tumor- and mitochondria-targeted AIEgen-protein NPs, which can serve as a promising strategy for imaging-guided photodynamic cancer therapy. STATEMENT OF SIGNIFICANCE: AIE luminogens (AIEgens) show strong fluorescence and enhanced ROS generation in the aggregate state, which would facilitate the image-guided photodynamic therapy [12-14]. However, the major obstacles that hinder biological applications are their lack of hydrophilicity and selective targeting [15]. To address this issue, this study presents a facile and green approach for the fabrication of tumor‑ and mitochondria‑targeted AIEgen-protein nanoparticles via a simple disassembly/reassembly of the LinTT1 peptide-functionalized ferritin nanocage without any harmful chemicals or chemical modification. The targeting peptide-functionalized nanocage not only restricts the intramolecular motion of AIEgens leading to enhanced fluorescence and ROS production, but also confers good targeting to AIEgens.
Collapse
Affiliation(s)
- De-Ping Wang
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan 030001, China
| | - Jian Zheng
- Department of Breast Surgery, Shanxi Cancer Hospital, Taiyuan 030001, China
| | - Fang-Ying Jiang
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan 030001, China
| | - Li-Fei Wu
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan 030001, China
| | - Mei-Yue Wang
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan 030001, China
| | - Yu-Lan Wang
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan 030001, China
| | - Chuan-Yue Qin
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan 030001, China
| | - Jun-Ya Ning
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan 030001, China
| | - Ji-Min Cao
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan 030001, China.
| | - Xin Zhou
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan 030001, China; Department of Medical Imaging, Shanxi Medical University, Taiyuan 030001, China.
| |
Collapse
|
19
|
Zheng Z, Su J, Bao X, Wang H, Bian C, Zhao Q, Jiang X. Mechanisms and applications of radiation-induced oxidative stress in regulating cancer immunotherapy. Front Immunol 2023; 14:1247268. [PMID: 37600785 PMCID: PMC10436604 DOI: 10.3389/fimmu.2023.1247268] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023] Open
Abstract
Radiotherapy (RT) is an effective treatment option for cancer patients, which induces the production of reactive oxygen species (ROS) and causes oxidative stress (OS), leading to the death of tumor cells. OS not only causes apoptosis, autophagy and ferroptosis, but also affects tumor immune response. The combination of RT and immunotherapy has revolutionized the management of various cancers. In this process, OS caused by ROS plays a critical role. Specifically, RT-induced ROS can promote the release of tumor-associated antigens (TAAs), regulate the infiltration and differentiation of immune cells, manipulate the expression of immune checkpoints, and change the tumor immune microenvironment (TME). In this review, we briefly summarize several ways in which IR induces tumor cell death and discuss the interrelationship between RT-induced OS and antitumor immunity, with a focus on the interaction of ferroptosis with immunogenic death. We also summarize the potential mechanisms by which ROS regulates immune checkpoint expression, immune cells activity, and differentiation. In addition, we conclude the therapeutic opportunity improving radiotherapy in combination with immunotherapy by regulating OS, which may be beneficial for clinical treatment.
Collapse
Affiliation(s)
- Zhuangzhuang Zheng
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- National Health Commission (NHC) Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| | - Jing Su
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- National Health Commission (NHC) Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| | - Xueying Bao
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- National Health Commission (NHC) Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| | - Huanhuan Wang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- National Health Commission (NHC) Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| | - Chenbin Bian
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- National Health Commission (NHC) Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| | - Qin Zhao
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- National Health Commission (NHC) Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| | - Xin Jiang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- National Health Commission (NHC) Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| |
Collapse
|
20
|
Fang L, Han M, Zhang Y, Song Y, Liu B, Cai M, Jiang M, Hu L, Zheng R, Lian X, Yan F, Huang K, Feng S. Single Component Organic Photosensitizer with NIR-I Emission Realizing Type-I Photodynamic and GSH-Depletion Caused Ferroptosis Synergistic Theranostics. Adv Healthc Mater 2023; 12:e2300134. [PMID: 37070469 DOI: 10.1002/adhm.202300134] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/10/2023] [Indexed: 04/19/2023]
Abstract
Phototheranostic agents have thrived as prominent tools for tumor luminescence imaging and therapies. Herein, a series of organic photosensitizers (PSs) with donor-acceptors (D-A) are elaborately designed and synthesized. In particular, PPR-2CN exhibits stable near infrared-I (NIR-I) emission, excellent free radicals generation and phototoxicity. Experimental analysis and calculations imply that a small singlet-triplet energy gap (ΔES1-T1 ) and large spin-orbit coupling (SOC) constant boost the intersystem crossing (ISC), leading to type-I photodynamic therapy (PDT). Additionally, the specific glutamate (Glu) and glutathione (GSH) consumption abilities of PPR-2CN inhibit the intracellular biosynthesis of GSH, resulting in redox dyshomeostasis and GSH-depletion causing ferroptosis. This work first realizes that single component organic PS could be simultaneously used as a type-I photodynamic agent and metal-free ferroptosis inducer for NIR-I imaging-guided multimodal synergistic therapy.
Collapse
Affiliation(s)
- Laiping Fang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun, 130012, P. R. China
| | - Mingda Han
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun, 130012, P. R. China
| | - Yuan Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun, 130012, P. R. China
| | - Yue Song
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun, 130012, P. R. China
| | - Botong Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun, 130012, P. R. China
| | - Minmin Cai
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun, 130012, P. R. China
| | - Mengpei Jiang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun, 130012, P. R. China
| | - Liyun Hu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun, 130012, P. R. China
| | - Ran Zheng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun, 130012, P. R. China
| | - Xin Lian
- School of Materials Science and Engineering, National Institute for Advanced Materials, Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tongyan Road 38, Tianjin, 300350, P. R. China
| | - Fei Yan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun, 130012, P. R. China
| | - Keke Huang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun, 130012, P. R. China
| | - Shouhua Feng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun, 130012, P. R. China
| |
Collapse
|
21
|
Xu C, Shen H, Liu TM, Kwok RT, Lam JW, Tang BZ. Restriction of molecular motion to a higher level: Towards bright AIE dots for biomedical applications. iScience 2023; 26:106568. [PMID: 37128609 PMCID: PMC10148129 DOI: 10.1016/j.isci.2023.106568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023] Open
Abstract
In the late 19th century, scientists began to study the photophysical differences between chromophores in the solution and aggregate states, which breed the recognition of the prototypical processes of aggregation-caused quenching and aggregation-induced emission (AIE). In particular, the conceptual discovery of the AIE phenomenon has spawned the innovation of luminogenic materials with high emission in the aggregate state based on their unique working principle termed the restriction of intramolecular motion. As AIE luminogens have been practically fabricated into AIE dots for bioimaging, further improvement of their brightness is needed although this is technically challenging. In this review, we surveyed the recent advances in strategic molecular engineering of highly emissive AIE dots, including nanoscale crystallization and matrix-assisted rigidification. We hope that this timely summary can deepen the understanding about the root cause of the high emission of AIE dots and provide inspiration to the rational design of functional aggregates.
Collapse
Affiliation(s)
- Changhuo Xu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Hanchen Shen
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Tzu-Ming Liu
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macao, China
| | - Ryan T.K. Kwok
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jacky W.Y. Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Key Laboratory of Functional Aggregate, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
- Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
22
|
Peng S, Xia P, Wang T, Lu L, Zhang P, Zhou M, Zhao F, Hu S, Kim JT, Qiu J, Wang Q, Yu X, Xu X. Mechano-luminescence Behavior of Lanthanide-Doped Fluoride Nanocrystals for Three-Dimensional Stress Imaging. ACS NANO 2023; 17:9543-9551. [PMID: 37167417 DOI: 10.1021/acsnano.3c02298] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Pervasive mechanical force in nature and human activities is closely related to intriguing physics and widespread applications. However, describing stress distribution timely and precisely in three dimensions to avoid "groping in the dark" is still a formidable challenge, especially for nonplanar structures. Herein, we realize three-dimensional (3D) stress imaging for sharp arbitrary targets via advanced 3D printing, owing to the use of fluoride nanocrystal(NC)-based ink. Notably, a fascinating mechano-luminescence (ML) is observed for the homogeneously dispersed NaLuF4:Tb3+ NCs (∼25 nm) with rationally designed deep traps (at 0.88 and 1.02 eV) via incorporating Cs+ ions and using X-ray irradiation. Carriers captured in the corresponding traps are steadily released under mechanical stimulations, which enables a ratio metric luminescence intensity based on the applied force. As a result, a significant mechano-optical conversion and superior optical waveguide of the corresponding transparent printed targets demonstrate stress in 3D with a high spatial and temporal resolution based on stereovision. These results highlight the optical function of the 3D-printed fluoride NCs, which cast light into the black boxes of stress described in space, benefiting us in understanding the ubiquitous force relevant to most natural and engineering processes.
Collapse
Affiliation(s)
- Songcheng Peng
- College of Materials Science and Engineering, Key Laboratory of Advanced Materials of Yunnan Province, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| | - Ping Xia
- School of Mechanical Engineering, Institute for Advanced Materials Deformation and Damage from Multi-Scale, Chengdu University, Chengdu 610106, Sichuan, China
| | - Ting Wang
- School of Materials and Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu 610059, Sichuan, China
| | - Lan Lu
- College of Materials Science and Engineering, Key Laboratory of Advanced Materials of Yunnan Province, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| | - Peng Zhang
- College of Materials Science and Engineering, Key Laboratory of Advanced Materials of Yunnan Province, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| | - Min Zhou
- College of Physical Science and Technology, Institute of Optoelectronic Technology, Yangzhou University, Yangzhou 225002, Jiangsu, China
| | - Feng Zhao
- School of Mechanical Engineering, Institute for Advanced Materials Deformation and Damage from Multi-Scale, Chengdu University, Chengdu 610106, Sichuan, China
| | - Shiqi Hu
- The University of Hong Kong, Dept Mech Engn, Pokfulam Rd, Hong Kong 999077, Hong Kong, China
| | - Ji Tae Kim
- The University of Hong Kong, Dept Mech Engn, Pokfulam Rd, Hong Kong 999077, Hong Kong, China
| | - Jianbei Qiu
- College of Materials Science and Engineering, Key Laboratory of Advanced Materials of Yunnan Province, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| | - Qingyuan Wang
- School of Mechanical Engineering, Institute for Advanced Materials Deformation and Damage from Multi-Scale, Chengdu University, Chengdu 610106, Sichuan, China
| | - Xue Yu
- School of Mechanical Engineering, Institute for Advanced Materials Deformation and Damage from Multi-Scale, Chengdu University, Chengdu 610106, Sichuan, China
| | - Xuhui Xu
- College of Materials Science and Engineering, Key Laboratory of Advanced Materials of Yunnan Province, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| |
Collapse
|
23
|
Sun F, Shen H, Yang Q, Yuan Z, Chen Y, Guo W, Wang Y, Yang L, Bai Z, Liu Q, Jiang M, Lam JWY, Sun J, Ye R, Kwok RTK, Tang BZ. Dual Behavior Regulation: Tether-Free Deep-Brain Stimulation by Photothermal and Upconversion Hybrid Nanoparticles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210018. [PMID: 36864009 DOI: 10.1002/adma.202210018] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 02/26/2023] [Indexed: 05/26/2023]
Abstract
Optogenetics has been plagued by invasive brain implants and thermal effects during photo-modulation. Here, two upconversion hybrid nanoparticles modified with photothermal agents, named PT-UCNP-B/G, which can modulate neuronal activities via photostimulation and thermo-stimulation under near-infrared laser irradiation at 980 nm and 808 nm, respectively, are demonstrated. PT-UCNP-B/G emits visible light (410-500 nm or 500-570 nm) through the upconversion process at 980 nm, while they exhibit efficient photothermal effect at 808 nm with no visible emission and tissue damage. Intriguingly, PT-UCNP-B significantly activates extracellular sodium currents in neuro2a cells expressing light-gated channelrhodopsin-2 (ChR2) ion channels under 980-nm irradiation, and inhibits potassium currents in human embryonic kidney 293 cells expressing the voltage-gated potassium channels (KCNQ1) under 808-nm irradiation in vitro. Furthermore, deep-brain bidirectional modulation of feeding behavior is achieved under tether-free 980 or 808-nm illumination (0.8 W cm-2 ) in mice stereotactically injected with PT-UCNP-B in the ChR2-expressing lateral hypothalamus region. Thus, PT-UCNP-B/G creates new possibility of utilizing both light and heat to modulate neural activities and provides a viable strategy to overcome the limits of optogenetics.
Collapse
Affiliation(s)
- Feiyi Sun
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science & Technology, Kowloon, Hong Kong, 999077, P. R. China
| | - Hanchen Shen
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science & Technology, Kowloon, Hong Kong, 999077, P. R. China
| | - Qinghu Yang
- College of Life Science & Research Center for Natural Peptide Drugs, Shaanxi Engineering & Technological Research Center for Conversation & Utilization of Regional Biological Resources, Yanan University, Yanan, 716000, P. R. China
| | - Zhaoyue Yuan
- College of Life Science & Research Center for Natural Peptide Drugs, Shaanxi Engineering & Technological Research Center for Conversation & Utilization of Regional Biological Resources, Yanan University, Yanan, 716000, P. R. China
| | - Yuyang Chen
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science & Technology, Kowloon, Hong Kong, 999077, P. R. China
| | - Weihua Guo
- Department of Chemistry, State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Yu Wang
- College of Life Science & Research Center for Natural Peptide Drugs, Shaanxi Engineering & Technological Research Center for Conversation & Utilization of Regional Biological Resources, Yanan University, Yanan, 716000, P. R. China
| | - Liang Yang
- College of Life Science & Research Center for Natural Peptide Drugs, Shaanxi Engineering & Technological Research Center for Conversation & Utilization of Regional Biological Resources, Yanan University, Yanan, 716000, P. R. China
| | - Zhantao Bai
- College of Life Science & Research Center for Natural Peptide Drugs, Shaanxi Engineering & Technological Research Center for Conversation & Utilization of Regional Biological Resources, Yanan University, Yanan, 716000, P. R. China
| | - Qingqing Liu
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, 999077, P. R. China
| | - Ming Jiang
- College of Life Science & Research Center for Natural Peptide Drugs, Shaanxi Engineering & Technological Research Center for Conversation & Utilization of Regional Biological Resources, Yanan University, Yanan, 716000, P. R. China
| | - Jacky W Y Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science & Technology, Kowloon, Hong Kong, 999077, P. R. China
| | - Jianwei Sun
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science & Technology, Kowloon, Hong Kong, 999077, P. R. China
| | - Ruquan Ye
- Department of Chemistry, State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Ryan T K Kwok
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science & Technology, Kowloon, Hong Kong, 999077, P. R. China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science & Technology, Kowloon, Hong Kong, 999077, P. R. China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, 518172, P. R. China
- Center of Aggregation-Induced Emission, South China University of Technology, Guangzhou, 510640, P. R. China
| |
Collapse
|
24
|
Sun X, Li M, Wang P, Bai Q, Cao X, Mao D. Recent Organic Photosensitizer Designs for Evoking Proinflammatory Regulated Cell Death in Antitumor Immunotherapy. SMALL METHODS 2023; 7:e2201614. [PMID: 36960933 DOI: 10.1002/smtd.202201614] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/12/2023] [Indexed: 05/17/2023]
Abstract
In the past decades, immunotherapy has achieved a series of clinical successes in the field of cancer. However, existing therapeutic options usually show a low immune response to solid tumors caused by immunosuppressive "cold" tumor microenvironment (TME). Several types of proinflammatory regulated cell death (RCD), mainly including ferroptosis and pyroptosis, have been studied recently, which can provide proinflammatory signals and immunogenicity necessary for remodeling TME and activating an antitumor immune response. A variety of chemotherapeutic drugs are proven to be effective in the proinflammatory RCD induction of tumor cells, but several adverse effects and intrinsic drug resistance usually occur in the therapeutic process, greatly hindering their further clinical application. The emerging organic photosensitizer (PS)-based materials open new possibilities to effectively activate proinflammatory RCD through precise spatiotemporal regulation of intracellular reactive oxygen species-associated signaling pathways, which can overcome many challenges encountered in current proinflammatory RCD-mediated immunotherapy. In this review, the recent design strategies of PS probes are detailly summarized and their potential advantages for tumor-specific proinflammatory RCD induction are discussed. Moreover, the representative examples in cancer immunotherapy are highlighted and future perspectives in this emerging field are proposed.
Collapse
Affiliation(s)
- Xuan Sun
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, and Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
| | - Min Li
- Precision Medicine Institute, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, 510080, China
| | - Peng Wang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China
| | - Qingqing Bai
- Precision Medicine Institute, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xuchen Cao
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, and Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
| | - Duo Mao
- Precision Medicine Institute, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, 510080, China
| |
Collapse
|
25
|
Zheng S, Gao D, Wu Y, Hu D, Li Z, Wang Y, Zheng H, Li Y, Sheng Z. X-Ray Activatable Au/Ag Nanorods for Tumor Radioimmunotherapy Sensitization and Monitoring of the Therapeutic Response Using NIR-II Photoacoustic Imaging. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206979. [PMID: 36793141 PMCID: PMC10104665 DOI: 10.1002/advs.202206979] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/21/2023] [Indexed: 06/18/2023]
Abstract
Radioimmunotherapy (RIT) is an advanced physical therapy used to kill primary cancer cells and inhibit the growth of distant metastatic cancer cells. However, challenges remain because RIT generally has low efficacy and serious side effects, and its effects are difficult to monitor in vivo. This work reports that Au/Ag nanorods (NRs) enhance the effectiveness of RIT against cancer while allowing the therapeutic response to be monitored using activatable photoacoustic (PA) imaging in the second near-infrared region (NIR-II, 1000-1700 nm). The Au/Ag NRs can be etched using high-energy X-ray to release silver ions (Ag+ ), which promotes dendritic cell (DC) maturation, enhances T-cell activation and infiltration, and effectively inhibits primary and distant metastatic tumor growth. The survival time of metastatic tumor-bearing mice treated with Au/Ag NR-enhanced RIT is 39 days compared with 23 days in the PBS control group. Furthermore, the surface plasmon absorption intensity at 1040 nm increases fourfold after Ag+ are released from the Au/Ag NRs, allowing X-ray activatable NIR-II PA imaging to monitor the RIT response with a high signal-to-background ratio of 24.4. Au/Ag NR-based RIT has minimal side effects and shows great promise for precise cancer RIT.
Collapse
Affiliation(s)
- Si Zheng
- Department of Medicine UltrasonicsNanfang HospitalSouthern Medical UniversityGuangzhou510515P. R. China
- Paul C. Lauterbur Research Center for Biomedical ImagingInstitute of Biomedical and Health EngineeringShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055P. R. China
| | - Duyang Gao
- Paul C. Lauterbur Research Center for Biomedical ImagingInstitute of Biomedical and Health EngineeringShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055P. R. China
| | - Yayun Wu
- Paul C. Lauterbur Research Center for Biomedical ImagingInstitute of Biomedical and Health EngineeringShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055P. R. China
| | - Dehong Hu
- Paul C. Lauterbur Research Center for Biomedical ImagingInstitute of Biomedical and Health EngineeringShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055P. R. China
| | - Ziyue Li
- Department of Medicine UltrasonicsNanfang HospitalSouthern Medical UniversityGuangzhou510515P. R. China
- Paul C. Lauterbur Research Center for Biomedical ImagingInstitute of Biomedical and Health EngineeringShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055P. R. China
| | - Yuenan Wang
- Department of Radiation OncologyPeking University Shenzhen HospitalShenzhen518036P. R. China
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical ImagingInstitute of Biomedical and Health EngineeringShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055P. R. China
| | - Yingjia Li
- Department of Medicine UltrasonicsNanfang HospitalSouthern Medical UniversityGuangzhou510515P. R. China
| | - Zonghai Sheng
- Paul C. Lauterbur Research Center for Biomedical ImagingInstitute of Biomedical and Health EngineeringShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055P. R. China
| |
Collapse
|
26
|
Li G, Wu M, Xu Y, Wang Q, Liu J, Zhou X, Ji H, Tang Q, Gu X, Liu S, Qin Y, Wu L, Zhao Q. Recent progress in the development of singlet oxygen carriers for enhanced photodynamic therapy. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
27
|
Wan G, Chen X, Chen J, Gou R, Wang H, Liu S, Zhang M, Chen H, Wang D, Zhang Q. Endoplasmic reticulum-targeted NIR-II phototherapy combined with inflammatory vascular suppression elicits a synergistic effect against TNBC. Biomater Sci 2023; 11:1876-1894. [PMID: 36692120 DOI: 10.1039/d2bm01823c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Recurrence and metastasis are the main reasons for failure in the treatment of triple-negative breast cancer (TNBC). Phototherapy, one of the most well-known potent cancer treatment models is highlighted by ablating primitive tumors with immunogenic cell death (ICD) and is associated with endoplasmic reticulum (ER) stress to elicit long-lasting anti-tumor immunity. However, the provoked inflammatory response after phototherapy will stimulate angiogenesis, which provides nutrition for tumor recurrence. Here, an ER-targeted nanoplatform was constructed based on hollow mesoporous Cu2-XS (HMCu2-XS) nanoparticles to suppress recurrence and metastasis of TNBC by combining photo-ablation and microenvironment remodeling. Profiting from the metal ion coordination and large hollow space, HMCu2-XS can be easily modified with p-toluenesulfonamide for ER-targeting and quantitatively loaded celecoxib (CXB) as a vascular inhibitor, thus obtaining ER-HMCu2-XS/CXB. ER-HMCu2-XS showed great photothermal and photodynamic efficiency for ablating 4T1 tumors and inducing ICD under NIR-II laser irradiation. Compared with non-ER-targeted nanosystems, the ER-targeted nanosystem elicited stronger ICDs and recruited more immune cells. Moreover, the thermal-responsively released CXB successfully inhibited angiogenesis after photothermal therapy. The data showed that the ER-HMCu2-XS/CXB mediated the triplicate therapeutic effect of photo-ablation, immune response activation, and vascular suppression effectively, preventing the recurrence and metastasis of TNBC. In conclusion, this work provides a synergistic strategy to enhance therapeutic outcomes in TNBC.
Collapse
Affiliation(s)
- Guoyun Wan
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China.
| | - Xuheng Chen
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China.
| | - Jiayu Chen
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China.
| | - Ruiling Gou
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China.
| | - Haijiao Wang
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China.
| | - Shuhao Liu
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China.
| | - Mingyang Zhang
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China.
| | - Hongli Chen
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China. .,The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, China
| | - Dan Wang
- Xuzhou Central Hospital, Xuzhou 221009, China.
| | - Qiqing Zhang
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China.
| |
Collapse
|
28
|
Abstract
Surface-modified lanthanide nanoparticles have been widely developed as an emerging class of therapeutics for cancer treatment because they exhibit several unique properties. First, lanthanide nanoparticles exhibit a variety of diagnostic capabilities suitable for various image-guided therapies. Second, a large number of therapeutic molecules can be accommodated on the surface of lanthanide nanoparticles, which can simultaneously achieve combined cancer therapy. Third, multivalent targeting ligands on lanthanide nanoparticles can be easily modified to achieve high affinity and specificity for target cells. Last but not least, lanthanide nanoparticles can be engineered for spatially and temporally controlled tumor therapy, which is critical for developing precise and personalized tumor therapy. Surface-modified lanthanide-doped nanoparticles are widely used in cancer phototherapy. This is due to their unique optical properties, including large anti-Stokes shifts, long-lasting luminescence, high photostability, and the capacity for near-infrared or X-ray excitation. Upon near-infrared irradiation, these nanoparticles can emit ultraviolet to visible light, which activates photosensitizers and photothermal agents to destroy tumor cells. Surface modification with special ligands that respond to tumor microenvironment changes, such as acidic pH, hypoxia, or redox reactions, can turn lanthanide nanoparticles into a smart nanoplatform for light-guided tumor chemotherapy and gene therapy. Surface-engineered lanthanide nanoparticles can include antigens that elicit tumor-specific immune responses, as well as immune activators that boost immunity, allowing distant and metastatic tumors to be eradicated. The design of ligands and surface chemistry is crucial for improving cancer therapy without causing side effects. In this Account, we classify surface-modified lanthanide nanoparticles for tumor therapy into four main domains: phototherapy, radiotherapy, chemotherapy, and biotherapy. We begin by introducing fundamental bioapplications and then discuss recent developments in tumor phototherapy (photodynamic therapy and photothermal therapy), radiotherapy, chemotherapy, and biotherapy (gene therapy and immunotherapy). We also assess the viability of a variety of strategies for eliminating tumor cells through innovative pathways. Finally, future opportunities and challenges for the development of more efficient lanthanide nanoprobes are discussed.
Collapse
Affiliation(s)
- Zichao Luo
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Zhigao Yi
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Xiaogang Liu
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore.,The N.1 Institute for Health, National University of Singapore, Singapore 117456, Singapore.,Institute of Materials Research and Engineering, Agency for Science, Technology, and Research, Singapore 138634, Singapore
| |
Collapse
|
29
|
Liu Y, Yuang G, Chen X, Liu J. Near-infrared band responsive ROS regulator selectively inhibits breast cancer cells by programming combination phototherapy. J Mater Chem B 2023; 11:1356-1364. [PMID: 36655692 DOI: 10.1039/d2tb02508f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Catalytic therapy can effectively kill tumor cells and inhibit tumor growth by producing highly toxic reactive oxygen species (ROS). However, the long-term catalysis of nanozymes easily lead to ROS breaking through the boundary in tumor tissues, resulting in spillover and injuring normal cells. Therefore, how to control the threshold of ROS production from nanozymes in tumor tissues is an unsolved problem. In this work, to prevent the boundary effect of the photosensitizer ([Ru(bpy)2(tip)]2+, RBT) during ROS generation, we used the sensitivity of RBT and PdH0.2-Ir with different wavelengths of near-infrared light (NIR) to generate ROS and H2, respectively. Therefore, an intelligent nanosystem PdH0.2-Ir@RBT(PIH@R) was constructed to precisely control ROS generation by adjusting the NIR laser wavelength. The palladium-iridium alloy (Pd-Ir) nanoparticles as the core can co-load hydrogen (H2) and RBT and show NIR-responsive behaviors. Under 808 nm laser irradiation, PIH@R produces ROS with the photocatalysis of RBT, while under 1064 nm laser irradiation PIH@R will quickly activate and release H2 to eliminate ROS. Interestingly, in vitro and in vivo experiments showed that PIH@R acted like a "Trojan horse": PIH@R can destroy the mitochondria of 4T1 cells to destroy their redox homeostasis system, resulting in cancer cells relying on exogenous PIH@R to change their reactive oxygen species levels. Subsequently, when PIH@R is activated into a harmful oxidation state, it can easily crush the redox homeostasis system of cancer cells and induce cancer cell apoptosis.
Collapse
Affiliation(s)
- Yanan Liu
- Shenzhen Longhua Maternity and Child Healthcare Hospital, Shenzhen, 518110, China.
| | - Guanglong Yuang
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 511436, China.
| | - Xu Chen
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 511436, China. .,Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, Guangzhou 510317, P. R. China
| | - Jie Liu
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 511436, China.
| |
Collapse
|
30
|
Nasser T, Adel R, Badr A, Teleb M, Bekhit AA, Elkhodairy KA, Abdelhamid AS, Elzoghby AO. Combined Cancer Immunotheranostic Nanomedicines: Delivery Technologies and Therapeutic Outcomes. ACS OMEGA 2023; 8:4491-4507. [PMID: 36777563 PMCID: PMC9909687 DOI: 10.1021/acsomega.2c05986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/16/2023] [Indexed: 05/05/2023]
Abstract
Cancer is among the main causes of mortality all over the world. The delayed diagnosis is directly related to the decrease in survival rate. The use of immunotherapy has dramatically changed the treatment outcomes of different types of cancers. However, many patients still do not respond to immunotherapies, and many also suffer from severe immune-related side effects. Recent advances in the fields of nanomedicine bioengineering and in particular imaging offered new approaches which can enhance not only the safety but also the efficacy of immunotherapy. Theranostics has showed great progress as a branch of medicine which integrates both diagnosis and therapy in a single system. The outcomes from animal studies demonstrated an improvement in the diagnostic and immunotherapeutic potential of nanoparticles within the theranostic framework. Herein, we discuss the most recent developments in the application of nanotheranostics for combining tumor imaging and cancer immunotherapies.
Collapse
Affiliation(s)
- Tasneem
A. Nasser
- Cancer
Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Rawan Adel
- Cancer
Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Abdelrahman Badr
- Cancer
Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Mohamed Teleb
- Cancer
Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 5372066, Egypt
| | - Adnan A. Bekhit
- Cancer
Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 5372066, Egypt
| | - Kadria A. Elkhodairy
- Cancer
Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
- Department
of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria 5372066, Egypt
| | - Ahmed S. Abdelhamid
- Cancer
Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
- . Cell: (002) 010-986-85077
| | - Ahmed O. Elzoghby
- Cancer
Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
- Department
of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria 5372066, Egypt
- Division
of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- . Cell: (001) 781-366-8703
| |
Collapse
|
31
|
Zhang B, Zheng R, Liu Y, Lou X, Zhang W, Cui Z, Huang Y, Wang T. Perylene-Mediated Electron Leakage in Respiratory Chain to Trigger Endogenous ROS Burst for Hypoxic Cancer Chemo-Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204498. [PMID: 36373677 PMCID: PMC9875625 DOI: 10.1002/advs.202204498] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Perylene derivatives can be stimulated by the hypoxic tumor microenvironment to generate radical anion that is proposed to arouse electron exchange with oxidizing substance, and in turn, realize reactive oxygen species (ROS) burst. Here, three perylene therapeutic agents, PDI-NI, PDIB-NI, and PDIC-NI, are developed and it is found that the minimum lowest unoccupied molecular orbital (LUMO) energy level makes PDIC-NI most easily accept electrons from the oxidative respiratory chain to form lots of anions, and the resultant maximum ROS generation, establishing an unambiguous mechanism for the formation of perylene radical anions in the cell, presents solid evidence for LUMO energy level determining endogenous ROS burst. Stirringly, PDIC-NI-induced ROS generation arouses enhanced mitochondrial oxidative stress and concurrently activates immunogenic cell death (ICD), which not only efficiently kills lung tumor cells but also reprograms immunosuppressive tumor microenvironment, including the cytokine secretion, dendritic cell maturation, as well as cytotoxic T lymphocytes activation, to inhibit the growth of xenografted and metastasis tumor, presenting a proof-of-concept demonstration of perylene that acts as an integrated therapeutic agent to well realize hypoxia-activated chemotherapy with ICD-induced immunotherapy on lung cancer.
Collapse
Affiliation(s)
- Bianbian Zhang
- Laboratory for NanoMedical PhotonicsSchool of Basic Medical ScienceHenan UniversityKaifeng475004P. R. China
| | - Rijie Zheng
- Laboratory for NanoMedical PhotonicsSchool of Basic Medical ScienceHenan UniversityKaifeng475004P. R. China
| | - Yuting Liu
- Laboratory for NanoMedical PhotonicsSchool of Basic Medical ScienceHenan UniversityKaifeng475004P. R. China
| | - Xue Lou
- Laboratory for NanoMedical PhotonicsSchool of Basic Medical ScienceHenan UniversityKaifeng475004P. R. China
| | - Wei Zhang
- Tianjin Key Laboratory of Drug Targeting and BioimagingLife and Health Intelligent Research InstituteTianjin University of TechnologyTianjin300384P. R. China
| | - Zhanjun Cui
- Laboratory for NanoMedical PhotonicsSchool of Basic Medical ScienceHenan UniversityKaifeng475004P. R. China
| | - Yongwei Huang
- Laboratory for NanoMedical PhotonicsSchool of Basic Medical ScienceHenan UniversityKaifeng475004P. R. China
| | - Tie Wang
- Tianjin Key Laboratory of Drug Targeting and BioimagingLife and Health Intelligent Research InstituteTianjin University of TechnologyTianjin300384P. R. China
| |
Collapse
|
32
|
Sarkar MI, Mishra NK, Kumar K. Comparative study of upconversion and photoacoustic measurements of Er 3+/Yb 3+ doped La 2O 3 phosphor under 980 nm. Methods Appl Fluoresc 2023; 11. [DOI: 10.1088/2050-6120/ac9fa7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 11/02/2022] [Indexed: 11/17/2022]
Abstract
Abstract
The Er3+/Yb3+doped La2O3 phosphor samples were synthesized by the combustion method and then photoluminescence and photoacoustic spectroscopic studies were done. Prepared samples were annealed at 800 °C, 1000 °C and 1300 °C and all samples were found in pure hexagonal phase as confirmed by XRD analysis. From FE-SEM images it is found that particle size increases with increase in annealing temperature. The frequency upconversion emission spectra of samples were recorded by exciting the sample with 980 nm diode laser and maximum emission intensity is obtained for the sample annealed at 1000 °C for 2 h. A photoacoustic cell was designed and wavelength dependent photoacoustic spectra were measured. The effect of sample storage time on radiative and non-radiative emission properties of sample was checked by measuring upconversion emission and photoacoustic spectra, simultaneously. It is observed that the emission intensity and photoacoustic signal both decreases with time. The maximum photoacoustic signal is obtained around 974 nm wavelength and it indicates its potential for photo-thermal therapy using infrared excitation.
Collapse
|
33
|
Recent Progress in Type I Aggregation-Induced Emission Photosensitizers for Photodynamic Therapy. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010332. [PMID: 36615526 PMCID: PMC9822449 DOI: 10.3390/molecules28010332] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/21/2022] [Accepted: 12/26/2022] [Indexed: 01/03/2023]
Abstract
In modern medicine, precision diagnosis and treatment using optical materials, such as fluorescence/photoacoustic imaging-guided photodynamic therapy (PDT), are becoming increasingly popular. Photosensitizers (PSs) are the most important component of PDT. Different from conventional PSs with planar molecular structures, which are susceptible to quenching effects caused by aggregation, the distinct advantages of AIE fluorogens open up new avenues for the development of image-guided PDT with improved treatment accuracy and efficacy in practical applications. It is critical that as much of the energy absorbed by optical materials is dissipated into the pathways required to maximize biomedical applications as possible. Intersystem crossing (ISC) represents a key step during the energy conversion process that determines many fundamental optical properties, such as increasing the efficiency of reactive oxygen species (ROS) production from PSs, thus enhancing PDT efficacy. Although some review articles have summarized the accomplishments of various optical materials in imaging and therapeutics, few of them have focused on how to improve the phototherapeutic applications, especially PDT, by adjusting the ISC process of organic optics materials. In this review, we emphasize the latest advances in the reasonable design of AIE-active PSs with type I photochemical mechanism for anticancer or antibacterial applications based on ISC modulation, as well as discuss the future prospects and challenges of them. In order to maximize the anticancer or antibacterial effects of type I AIE PSs, it is the aim of this review to offer advice for their design with the best energy conversion.
Collapse
|
34
|
Stereoisomeric engineering of aggregation-induced emission photosensitizers towards fungal killing. Nat Commun 2022; 13:7046. [PMID: 36396937 PMCID: PMC9672067 DOI: 10.1038/s41467-022-34358-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 10/24/2022] [Indexed: 11/18/2022] Open
Abstract
Fungal infection poses and increased risk to human health. Photodynamic therapy (PDT) as an alternative antifungal approach garners much interest due to its minimal side effects and negligible antifungal drug resistance. Herein, we develop stereoisomeric photosensitizers ((Z)- and (E)-TPE-EPy) by harnessing different spatial configurations of one molecule. They possess aggregation-induced emission characteristics and ROS, viz. 1O2 and O2-• generation capabilities that enable image-guided PDT. Also, the cationization of the photosensitizers realizes the targeting of fungal mitochondria for antifungal PDT killing. Particularly, stereoisomeric engineering assisted by supramolecular assembly leads to enhanced fluorescence intensity and ROS generation efficiency of the stereoisomers due to the excited state energy flow from nonradiative decay to the fluorescence pathway and intersystem (ISC) process. As a result, the supramolecular assemblies based on (Z)- and (E)-TPE-EPy show dramatically lowered dark toxicity without sacrificing their significant phototoxicity in the photodynamic antifungal experiments. This study is a demonstration of stereoisomeric engineering of aggregation-induced emission photosensitizers based on (Z)- and (E)-configurations.
Collapse
|
35
|
Zhao X, He S, Chi W, Liu X, Chen P, Sun W, Du J, Fan J, Peng X. An Approach to Developing Cyanines with Upconverted Photosensitive Efficiency Enhancement for Highly Efficient NIR Tumor Phototheranostics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202885. [PMID: 36095253 PMCID: PMC9631065 DOI: 10.1002/advs.202202885] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/02/2022] [Indexed: 05/19/2023]
Abstract
Upconverted reactive oxygen species (ROS) photosensitization with one-photon excitation mode is a promising tactic to elongate the excitation wavelengths of photosensitive dyes to near-infrared (NIR) light region without the requirement of coherent high-intensity light sources. However, the photosensitization efficiencies are still finite by the unilateral improvement of excited-state intersystem crossing (ISC) via heavy-atom-effect, since the upconverted efficiency also plays a decisive role in upconverted photosensitization. Herein, a NIR light initiated one-photon upconversion heavy-atom-free small molecule system is reported. The meso-rotatable anthracene in pentamethine cyanine (Cy5) is demonstrated to enrich the populations in high vibrational-rotational energy levels and subsequently improve the hot-band absorption (HBA) efficiency. Moreover, the spin-orbit charge transfer intersystem crossing (SOCT-ISC) caused by electron donated anthracene can further amplify the triplet yield. Benefiting from the above two aspects, the 1 O2 generation significantly increases with over 2-fold improved performance compared with heavy-atom-modified method under upconverted light excitation, which obtains efficient in vivo phototheranostic results and provides new opportunities for other applications such as photocatalysis and fine chemical synthesis.
Collapse
Affiliation(s)
- Xueze Zhao
- State Key Laboratory of Fine ChemicalsFrontiers Science Center for Smart Materials Oriented Chemical EngineeringDalian University of TechnologyDalian116024P. R. China
| | - Shan He
- State Key Laboratory of Molecular Reaction Dynamics and Dynamics Research Center for Energy and Environmental MaterialsDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023P. R. China
| | - Weijie Chi
- Fluorescence Research GroupSingapore University of Technology and DesignSingapore487372Singapore
| | - Xiaogang Liu
- Fluorescence Research GroupSingapore University of Technology and DesignSingapore487372Singapore
| | - Pengzhong Chen
- State Key Laboratory of Fine ChemicalsFrontiers Science Center for Smart Materials Oriented Chemical EngineeringDalian University of TechnologyDalian116024P. R. China
- Ningbo Institute of Dalian University of TechnologyNingbo315016P. R. China
| | - Wen Sun
- State Key Laboratory of Fine ChemicalsFrontiers Science Center for Smart Materials Oriented Chemical EngineeringDalian University of TechnologyDalian116024P. R. China
- Ningbo Institute of Dalian University of TechnologyNingbo315016P. R. China
| | - Jianjun Du
- State Key Laboratory of Fine ChemicalsFrontiers Science Center for Smart Materials Oriented Chemical EngineeringDalian University of TechnologyDalian116024P. R. China
- Ningbo Institute of Dalian University of TechnologyNingbo315016P. R. China
| | - Jiangli Fan
- State Key Laboratory of Fine ChemicalsFrontiers Science Center for Smart Materials Oriented Chemical EngineeringDalian University of TechnologyDalian116024P. R. China
- Ningbo Institute of Dalian University of TechnologyNingbo315016P. R. China
| | - Xiaojun Peng
- State Key Laboratory of Fine ChemicalsFrontiers Science Center for Smart Materials Oriented Chemical EngineeringDalian University of TechnologyDalian116024P. R. China
- State Key Laboratory of Fine Chemicals, College of Materials Science and EngineeringShenzhen UniversityShenzhen518057P. R. China
| |
Collapse
|
36
|
Shi Y, Zhu D, Wang D, Liu B, Du X, Wei G, Zhou X. Recent advances of smart AIEgens for photoacoustic imaging and phototherapy. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
37
|
Advancing biomedical applications via manipulating intersystem crossing. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
38
|
Guo S, Yang X, Guan S, Lu J, Zhou S. Bioinspired Construction of an Enzyme-Mimetic Supramolecular Nanoagent for RNS-Augmented Cascade Chemodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:46252-46261. [PMID: 36197447 DOI: 10.1021/acsami.2c12823] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Inspired by natural enzymes, specific enzyme-like cascade catalytic reactions can be obtained by imitating the metal active sites of natural enzymes and assembling inorganic materials at the molecular level via supramolecular interactions, which can greatly expand their application in biology. Herein, it is reported that a bioinspired SNP/MgMnFe-LDH (denoted as S2MFL) supramolecular nanoagent has been successfully synthesized via the intercalation between nitroprusside (SNP) and MgMnFe-layered double hydroxides (denoted as 2MFL). Initially, the resulting S2MFL possesses peroxidase-, catalase-, and oxidase (OXD)-like activities under tumor microenvironment (TME) stimulation. It should be noted that this S2MFL demonstrates a high OXD-like activity rate level of 9.508 × 10-6 Ms-1 in the chemodynamic therapy (CDT) study. Furthermore, the superoxide anions (O2•-) generated via OXD-like activity can react with NO (GSH-responsive), followed by the production of reactive nitrogen species (RNS). The synergistic reactive oxygen species (ROS) and RNS generation destroys the intratumoral redox balance and extensively promotes cancer cell inhibition without additional energy introduction and has excellent T1/T2-weighted magnetic resonance imaging (MRI) ability. Overall, this RNS-enhanced CDT strategy provides a novel approach for TME-mediated therapy.
Collapse
Affiliation(s)
- Shuaitian Guo
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, P.O. Box 98, Beisanhuan East Road 15, Beijing 100029, P. R. China
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Xueting Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, P.O. Box 98, Beisanhuan East Road 15, Beijing 100029, P. R. China
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Shanyue Guan
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Jun Lu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, P.O. Box 98, Beisanhuan East Road 15, Beijing 100029, P. R. China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Shuyun Zhou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
39
|
Wang F, Duan H, Xu W, Sheng G, Sun Z, Chu H. Light-activated nanomaterials for tumor immunotherapy. Front Chem 2022; 10:1031811. [PMID: 36277335 PMCID: PMC9585221 DOI: 10.3389/fchem.2022.1031811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/20/2022] [Indexed: 11/20/2022] Open
Abstract
Tumor immunotherapy mainly relies on activating the immune system to achieve antitumor treatment. However, the present tumor immunotherapy used in the clinic showed low treatment efficacy with high systematic toxicity. To overcome the shortcomings of traditional drugs for immunotherapy, a series of antitumor immunotherapies based on nanomaterials have been developed to enhance the body’s antitumor immune response and reduce systematic toxicity. Due to the noninvasiveness, remote controllability, and high temporal and spatial resolution of light, photocontrolled nanomaterials irradiated by excitation light have been widely used in drug delivery and photocontrolled switching. This review aims to highlight recent advances in antitumor immunotherapy based on photocontrolled nanomaterials. We emphasized the advantages of nanocomposites for antitumor immunotherapy and highlighted the latest progress of antitumor immunotherapy based on photoactivated nanomaterials. Finally, the challenges and future prospects of light-activated nanomaterials in antitumor immunity are discussed.
Collapse
Affiliation(s)
- Fang Wang
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Huijuan Duan
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Weizhe Xu
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Gang Sheng
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Zhaogang Sun
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Hongqian Chu
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
- *Correspondence: Hongqian Chu,
| |
Collapse
|
40
|
Ma X, Zhang MJ, Wang J, Zhang T, Xue P, Kang Y, Sun ZJ, Xu Z. Emerging Biomaterials Imaging Antitumor Immune Response. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2204034. [PMID: 35728795 DOI: 10.1002/adma.202204034] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/19/2022] [Indexed: 06/15/2023]
Abstract
Immunotherapy is one of the most promising clinical modalities for the treatment of malignant tumors and has shown excellent therapeutic outcomes in clinical settings. However, it continues to face several challenges, including long treatment cycles, high costs, immune-related adverse events, and low response rates. Thus, it is critical to predict the response rate to immunotherapy by using imaging technology in the preoperative and intraoperative. Here, the latest advances in nanosystem-based biomaterials used for predicting responses to immunotherapy via the imaging of immune cells and signaling molecules in the immune microenvironment are comprehensively summarized. Several imaging methods, such as fluorescence imaging, magnetic resonance imaging, positron emission tomography imaging, ultrasound imaging, and photoacoustic imaging, used in immune predictive imaging, are discussed to show the potential of nanosystems for distinguishing immunotherapy responders from nonresponders. Nanosystem-based biomaterials aided by various imaging technologies are expected to enable the effective prediction and diagnosis in cases of tumors, inflammation, and other public diseases.
Collapse
Affiliation(s)
- Xianbin Ma
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, P. R. China
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Meng-Jie Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, P. R. China
| | - Jingting Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, P. R. China
| | - Tian Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, P. R. China
| | - Peng Xue
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, P. R. China
| | - Yuejun Kang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, P. R. China
| | - Zhi-Jun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, P. R. China
| | - Zhigang Xu
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, P. R. China
| |
Collapse
|
41
|
Lin X, Li W, Wen Y, Su L, Zhang X. Aggregation-induced emission (AIE)-Based nanocomposites for intracellular biological process monitoring and photodynamic therapy. Biomaterials 2022; 287:121603. [PMID: 35688028 DOI: 10.1016/j.biomaterials.2022.121603] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/08/2022] [Accepted: 05/23/2022] [Indexed: 11/02/2022]
Abstract
As a non-invasive visualization technique, photoluminescence imaging (PLI) has found its huge value in many biological applications associated with intracellular process monitoring and early and accurate diagnosis of diseases. PLI can also be combined with therapeutics to build imaging-guided theragnostic platforms for achieving early and precise treatment of diseases. Photodynamic therapy (PDT) as a quintessential phototheranostics technology has gained great benefits from the combination with PLI. Recently, aggregation-induced emission (AIE)-active materials have emerged as one of the most promising bioimaging and phototheranostic agents. Most of AIEgens, however, need to be chemically engineered to form versatile nanocomposites with improved their photophysical property, photochemical activity, biocompatibility, etc. In this review, we focus on three categories of AIE-active nanocomposites and highlight their application progresses in the intracellular biological process monitoring and PLI-guided PDT. We hope this review can guide further development of AIE-active nanocomposites and promote their practical applications for monitoring intracellular biological processes and imaging-guided PDT.
Collapse
Affiliation(s)
- Xiangfang Lin
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Wei Li
- School of Biomedical Engineering, International Health Science Innovation Center, Shenzhen Key Laboratory for Nano-Biosensing Technology, Health Science Center, Shenzhen University, Shenzhen, 518037, PR China
| | - Yongqiang Wen
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Lei Su
- School of Biomedical Engineering, International Health Science Innovation Center, Shenzhen Key Laboratory for Nano-Biosensing Technology, Health Science Center, Shenzhen University, Shenzhen, 518037, PR China.
| | - Xueji Zhang
- School of Biomedical Engineering, International Health Science Innovation Center, Shenzhen Key Laboratory for Nano-Biosensing Technology, Health Science Center, Shenzhen University, Shenzhen, 518037, PR China.
| |
Collapse
|
42
|
Qi J, Jia S, Kang X, Wu X, Hong Y, Shan K, Kong X, Wang Z, Ding D. Semiconducting Polymer Nanoparticles with Surface-Mimicking Protein Secondary Structure as Lysosome-Targeting Chimaeras for Self-Synergistic Cancer Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2203309. [PMID: 35704513 DOI: 10.1002/adma.202203309] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/23/2022] [Indexed: 05/05/2023]
Abstract
Immunotherapy has received tremendous attention for tumor treatment, but the efficacy is greatly hindered by insufficient tumor-infiltration of immune cells and immunosuppressive tumor microenvironment. The strategy that can efficiently activate cytotoxic T lymphocytes and inhibit negative immune regulators will greatly amplify immunotherapy outcome, which is however very rare. Herein, a new kind of semiconducting polymer (SP) nanoparticles is developed, featured with surface-mimicking protein secondary structure (SPSS NPs) for self-synergistic cancer immunotherapy by combining immunogenic cell death (ICD) and immune checkpoint blockade therapy. The SPs with excellent photodynamic property are synthesized by rational fluorination, which can massively induce ICD. Additionally, the peptide antagonists are introduced and self-assembled into β-sheet protein secondary structures on the photodynamic NP surface via preparation process optimization, which function as efficient lysosome-targeting chimaeras (LYTACs) to mediate the degradation of programmed cell death ligand-1 (PD-L1) in lysosome. In vivo experiments demonstrate that SPSS NPs can not only elicit strong antitumor immunity to suppress both primary tumor and distant tumor, but also evoke long-term immunological memory against tumor rechallenge. This work introduces a new kind of robust immunotherapy agents by combining well-designed photosensitizer-based ICD induction and protein secondary structures-mediated LYTAC-like multivalence PD-L1 blockade, rendering great promise for synergistic immunotherapy.
Collapse
Affiliation(s)
- Ji Qi
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Shaorui Jia
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xiaoying Kang
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xinying Wu
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yuning Hong
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Ke Shan
- Shandong Artificial intelligence Institute and Shandong Computer Science Center, Qilu University of Technology, Jinan, Shandong, 250353, China
| | - Xianglong Kong
- Shandong Artificial intelligence Institute and Shandong Computer Science Center, Qilu University of Technology, Jinan, Shandong, 250353, China
| | - Zhiming Wang
- AIE Institute, Center for Aggregation-Induced Emission, Key Laboratory of Luminescence from Molecular Aggregates of Guangdong Province, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, Guangdong, 510640, China
| | - Dan Ding
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| |
Collapse
|
43
|
Xie W, Chen B, Wen H, Xiao P, Wang L, Liu W, Wang D, Tang BZ. Biomimetic Nanoplatform Loading Type I Aggregation-Induced Emission Photosensitizer and Glutamine Blockade to Regulate Nutrient Partitioning for Enhancing Antitumor Immunotherapy. ACS NANO 2022; 16:10742-10753. [PMID: 35830505 DOI: 10.1021/acsnano.2c02605] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The intense metabolism of cancer cells leads to hypoxia and lack of crucial nutrients in the tumor microenvironment, which hinders the function of immune cells. We designed a biomimetic immune metabolic nanoplatform, in which a type I aggregation-induced emission photosensitizer and a glutamine antagonist are encapsulated into a cancer cell membrane for achieving specific delivery in vivo. This approach greatly satisfies the glucose and glutamine required by T cells, significantly improves the tumor hypoxic environment, enables the reprogramming of tumor and immune cell metabolism, induces immunogenic cell death, promotes dendritic cell maturation, and effectively inhibits tumor proliferation. Strong tumor-specific immune responses are further triggered, and the tumor immune-suppressing microenvironment is modulated, by decreasing the number of immunosuppressive cells. Moreover, subsequent combination with anti-PD-1 is able to generate strong abscopal effects to prevent tumor distant metastasis and provide long-term immune memory against tumor recurrence.
Collapse
Affiliation(s)
- Wei Xie
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Bei Chen
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Haifei Wen
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Peihong Xiao
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Lei Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Wei Liu
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ben Zhong Tang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| |
Collapse
|
44
|
Kenry, Liu B. Enhancing the Theranostic Performance of Organic Photosensitizers with Aggregation-Induced Emission. ACCOUNTS OF MATERIALS RESEARCH 2022; 3:721-734. [DOI: 10.1021/accountsmr.2c00039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Affiliation(s)
- Kenry
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- Department of Imaging, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| |
Collapse
|
45
|
Zuo Y, Shen H, Sun F, Li P, Sun J, Kwok RTK, Lam JWY, Tang BZ. Aggregation-Induced Emission Luminogens for Cell Death Research. ACS BIO & MED CHEM AU 2022; 2:236-257. [PMID: 37101570 PMCID: PMC10114857 DOI: 10.1021/acsbiomedchemau.1c00066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Cell death is closely related to various diseases, and monitoring and controlling cell death is a promising strategy to develop efficient therapy. Aggregation-induced emission luminogens (AIEgens) are ideal candidates for developing novel theranostic agents because of their intriguing properties in the aggregate state. The rational application of AIE materials in cell death-related research is still in its infancy but has shown great clinical potential. This review discussed the research frontier and our understanding of AIE materials in various subroutines of cell death, including apoptosis, necrosis, immunogenic cell death, pyroptosis, autophagy, lysosome-dependent cell death, and ferroptosis. We hope that the new insights can be offered to this growing field and attract more researchers to provide valuable contributions.
Collapse
Affiliation(s)
- Yunfei Zuo
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, and Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, Division of Life Science, and State Key Laboratory of Molecular
Neuroscience, The Hong Kong University of
Science & Technology, Clear Water Bay, Kowloon, Hong Kong 999077, P.R. China
| | - Hanchen Shen
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, and Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, Division of Life Science, and State Key Laboratory of Molecular
Neuroscience, The Hong Kong University of
Science & Technology, Clear Water Bay, Kowloon, Hong Kong 999077, P.R. China
| | - Feiyi Sun
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, and Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, Division of Life Science, and State Key Laboratory of Molecular
Neuroscience, The Hong Kong University of
Science & Technology, Clear Water Bay, Kowloon, Hong Kong 999077, P.R. China
| | - Pei Li
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, and Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, Division of Life Science, and State Key Laboratory of Molecular
Neuroscience, The Hong Kong University of
Science & Technology, Clear Water Bay, Kowloon, Hong Kong 999077, P.R. China
- Department
of Gastrointestinal Surgery, The Second Clinical Medical College, Shenzhen People’s Hospital, Jinan University, Shenzhen, 518020, China
| | - Jianwei Sun
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, and Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, Division of Life Science, and State Key Laboratory of Molecular
Neuroscience, The Hong Kong University of
Science & Technology, Clear Water Bay, Kowloon, Hong Kong 999077, P.R. China
| | - Ryan T. K. Kwok
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, and Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, Division of Life Science, and State Key Laboratory of Molecular
Neuroscience, The Hong Kong University of
Science & Technology, Clear Water Bay, Kowloon, Hong Kong 999077, P.R. China
| | - Jacky W. Y. Lam
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, and Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, Division of Life Science, and State Key Laboratory of Molecular
Neuroscience, The Hong Kong University of
Science & Technology, Clear Water Bay, Kowloon, Hong Kong 999077, P.R. China
| | - Ben Zhong Tang
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, and Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, Division of Life Science, and State Key Laboratory of Molecular
Neuroscience, The Hong Kong University of
Science & Technology, Clear Water Bay, Kowloon, Hong Kong 999077, P.R. China
- Shenzhen
Institute of Aggregate Science and Technology, School of Science and
Engineering, The Chinese University of Hong
Kong, Shenzhen, 2001
Longxiang Boulevard, Longgang District, Shenzhen
City, Guangdong 518172, China
| |
Collapse
|
46
|
Liu R, Peng L, Zhou L, Huang Z, Zhou C, Huang C. Oxidative Stress in Cancer Immunotherapy: Molecular Mechanisms and Potential Applications. Antioxidants (Basel) 2022; 11:antiox11050853. [PMID: 35624717 PMCID: PMC9137834 DOI: 10.3390/antiox11050853] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 12/21/2022] Open
Abstract
Immunotherapy is an effective treatment option that revolutionizes the management of various cancers. Nevertheless, only a subset of patients receiving immunotherapy exhibit durable responses. Recently, numerous studies have shown that oxidative stress induced by reactive oxygen species (ROS) plays essential regulatory roles in the tumor immune response, thus regulating immunotherapeutic effects. Specifically, studies have revealed key roles of ROS in promoting the release of tumor-associated antigens, manipulating antigen presentation and recognition, regulating immune cell phenotypic differentiation, increasing immune cell tumor infiltration, preventing immune escape and diminishing immune suppression. In the present study, we briefly summarize the main classes of cancer immunotherapeutic strategies and discuss the interplay between oxidative stress and anticancer immunity, with an emphasis on the molecular mechanisms underlying the oxidative stress-regulated treatment response to cancer immunotherapy. Moreover, we highlight the therapeutic opportunities of manipulating oxidative stress to improve the antitumor immune response, which may improve the clinical outcome.
Collapse
Affiliation(s)
- Ruolan Liu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China;
| | - Liyuan Peng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; (L.P.); (L.Z.); (Z.H.)
| | - Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; (L.P.); (L.Z.); (Z.H.)
| | - Zhao Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; (L.P.); (L.Z.); (Z.H.)
| | - Chengwei Zhou
- Department of Thoracic Surgery, The Affiliated Hospital of Ningbo University School of Medicine, Ningbo 315020, China
- Correspondence: (C.Z.); (C.H.)
| | - Canhua Huang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China;
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; (L.P.); (L.Z.); (Z.H.)
- Correspondence: (C.Z.); (C.H.)
| |
Collapse
|
47
|
Huang J, Yan L, Liu S, Tao L, Zhou B. Expanding the toolbox of photon upconversion for emerging frontier applications. MATERIALS HORIZONS 2022; 9:1167-1195. [PMID: 35084000 DOI: 10.1039/d1mh01654g] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Photon upconversion in lanthanide-based materials has recently shown compelling advantages in a wide range of fields due to their exceptional anti-Stokes luminescence performances and physicochemical properties. In particular, the latest breakthroughs in the optical manipulation of photon upconversion, such as the precise tuning of switchable emission profiles and lifetimes, open up new opportunities for diverse frontier applications from biological imaging to therapy, nanophotonics and three-dimensional displays. A summary and discussion on the recent progress can provide new insights into the fundamental understanding of luminescence mechanisms and also help to inspire new upconversion concepts and promote their frontier applications. Herein, we present a review on the state-of-the-art progress of lanthanide-based upconversion materials, focusing on the newly emerging approaches to the smart control of upconversion in aspects of light intensity, colors, and lifetimes, as well as new concepts. The emerging scientific and technological discoveries based on the well-designed upconversion materials are highlighted and discussed, along with the challenges and future perspectives. This review will contribute to the understanding of the fundamental research of photon upconversion and further promote the development of new classes of efficient upconversion materials towards diversities of frontier applications in the future.
Collapse
Affiliation(s)
- Jinshu Huang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, South China University of Technology, Guangzhou 510641, China.
| | - Long Yan
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, South China University of Technology, Guangzhou 510641, China.
| | - Songbin Liu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, South China University of Technology, Guangzhou 510641, China.
| | - Lili Tao
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China.
| | - Bo Zhou
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, South China University of Technology, Guangzhou 510641, China.
| |
Collapse
|
48
|
A peptide-AIEgen nanocomposite mediated whole cancer immunity cycle-cascade amplification for improved immunotherapy of tumor. Biomaterials 2022; 285:121528. [DOI: 10.1016/j.biomaterials.2022.121528] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/25/2022] [Accepted: 02/14/2022] [Indexed: 02/06/2023]
|
49
|
Cao R, Zhang W, Zhang H, Wang L, Chen X, Ren X, Cheng B, Xia J. Comprehensive Analysis of the PRDXs Family in Head and Neck Squamous Cell Carcinoma. Front Oncol 2022; 12:798483. [PMID: 35350568 PMCID: PMC8957933 DOI: 10.3389/fonc.2022.798483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 02/14/2022] [Indexed: 12/24/2022] Open
Abstract
The peroxidase family of peroxiredoxins (PRDXs) plays a vital role in maintaining the intracellular balance of ROS. However, their function in head and neck squamous cell carcinoma (HNSCC) has not been investigated. We therefore explored the value of PRDXs in HNSCC. We found that the expression of PRDX1, PRDX4, and PRDX5 in HNSCC increased while the expression of PRDX2 decreased. Moreover, the high expression of PRDX4/5/6 indicated a poor prognosis. Lower expression of PRDX1/5 was linked to more immune cell infiltration, higher expression of immune-related molecules and a more likely response to anti-PD-1 treatment. Moreover, PRDX5 knockdown inhibited HNSCC cell proliferation, invasion and metastasis and it might promote apoptosis through its antioxidant property. Taken together, our study highlights the potential role of PRDXs in HNSCC. The function of PRDX5 in the development of HNSCC and the formation of the immune microenvironment makes it a promising potential therapeutic target.
Collapse
Affiliation(s)
- Ruoyan Cao
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Weilin Zhang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Hongjian Zhang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Lixuan Wang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Xijuan Chen
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Xianyue Ren
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Bin Cheng
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Juan Xia
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
50
|
Liu P, Ren F, Son S, Ji MS, Li P, Cai Z, Shi J, Liu Y, Dong Y, Kim JS. Mitochondrial targeted AIEgen phototheranostics for bypassing immune barrier via encumbering mitochondria functions. Biomaterials 2022; 283:121409. [DOI: 10.1016/j.biomaterials.2022.121409] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/09/2022] [Accepted: 02/13/2022] [Indexed: 01/14/2023]
|