1
|
Chen Y, Song J, Chen X, Chen G. Synthetic Glycopolymers in Tumor Immunotherapy. Macromol Rapid Commun 2025:e2401089. [PMID: 40372066 DOI: 10.1002/marc.202401089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/30/2025] [Indexed: 05/16/2025]
Abstract
Glycopolymers, as an emerging immunomodulatory material, exhibit considerable promise in the field of tumor immunotherapy. Compared to native saccharides, they offer significant advantages, including enhanced immune activity, controllable structure and sequence, elevated stability, and high purity. By mimicking the multivalency of native sugar chains, glycopolymers significantly enhance their interactions with receptors, a phenomenon known as the "glycocluster effect." Glycopolymers are capable of modulating immune cell functions, inhibiting tumor immune evasion, and reconfiguring the tumor microenvironment. This review provides a comprehensive overview of recent advancements in the application of glycopolymers, protein-glycopolymer conjugates, glycopolymer-based micro/nanoparticles, and glycopolymer-engineered cells in tumor immunotherapy. These glycopolymer-based materials enhance antitumor immune responses by specifically interacting with immune cell surface receptors, significantly improving the precision and efficacy of immunotherapy, and providing valuable insights for the development of innovative therapeutic strategies in cancer treatment.
Collapse
Affiliation(s)
- Yuru Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Jiaxin Song
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Xiangqian Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Gaojian Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
2
|
Peñaherrera-Pazmiño AB, Rosero G, Ruarte D, Pinter J, Vizuete K, Perez M, Follo M, Lerner B, Mertelsmann R. Activation and Expansion of Human T-Cells Using Microfluidic Devices. BIOSENSORS 2025; 15:270. [PMID: 40422009 DOI: 10.3390/bios15050270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 04/21/2025] [Accepted: 04/22/2025] [Indexed: 05/28/2025]
Abstract
Treatment of cancer patients with autologous T-cells expressing a chimeric antigen receptor (CAR) is one of the most promising therapeutic modalities for hematological malignancy treatment. For this treatment, primary T-cell expansion is needed. Microfluidic technologies can be used to better understand T-cell activation and proliferation. Microfluidics have had a meaningful impact in the way experimental biology and biomedical research are approached in general. Furthermore, microfluidic technology allows the generation of large amounts of data and enables the use of image processing for analysis. However, one of the major technical hurdles involved in growing suspension cells under microfluidic conditions is their immobilization, to avoid washing them out of the microfluidic chip during medium renewal. In this work, we use a multilevel microfluidic chip to successfully capture and immobilize suspension cells. Jurkat cells and T-cells are isolated through traps to microscopically track their development and proliferation after activation over a period of 8 days. The T-cell area of four independent microchannels was compared and there is no statistically significant difference between them (ANOVA p-value = 0.976). These multilevel microfluidic chips provide a new method of studying T-cell activation.
Collapse
Affiliation(s)
- Ana Belén Peñaherrera-Pazmiño
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador
| | - Gustavo Rosero
- Ingeniería de Recubrimientos Especiales y Nanoestructuras (IREN) Center, National Technological University, Buenos Aires 1706, Argentina
| | - Dario Ruarte
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79085 Freiburg im Breisgau, Germany
| | - Julia Pinter
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79085 Freiburg im Breisgau, Germany
| | - Karla Vizuete
- Centro de Nanociencia y Nanotecnología, Universidad de las Fuerzas Armadas ESPE, Sangolqui 1711031, Ecuador
| | - Maximiliano Perez
- Ingeniería de Recubrimientos Especiales y Nanoestructuras (IREN) Center, National Technological University, Buenos Aires 1706, Argentina
- Collaborative Research Institute Intelligent Oncology (CRIION), Hermann-Herder-Straße 4, 79104 Freiburg im Breisgau, Germany
- Department of Electrical and Computer Engineering, Florida International University, Miami, FL 33174, USA
| | - Marie Follo
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79085 Freiburg im Breisgau, Germany
| | - Betiana Lerner
- Ingeniería de Recubrimientos Especiales y Nanoestructuras (IREN) Center, National Technological University, Buenos Aires 1706, Argentina
- Collaborative Research Institute Intelligent Oncology (CRIION), Hermann-Herder-Straße 4, 79104 Freiburg im Breisgau, Germany
- Department of Electrical and Computer Engineering, Florida International University, Miami, FL 33174, USA
| | - Roland Mertelsmann
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79085 Freiburg im Breisgau, Germany
| |
Collapse
|
3
|
Zhou J, Zhao L, Liu L, He L, Chen Y, Wang F, Cui D, Wang L, Zhou Q. The Emerging Mechanisms and Therapeutic Potentials of Dendritic Cells in NSCLC. J Inflamm Res 2025; 18:5061-5076. [PMID: 40255658 PMCID: PMC12007507 DOI: 10.2147/jir.s506644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 04/03/2025] [Indexed: 04/22/2025] Open
Abstract
Non-small-cell lung cancer (NSCLC) is the predominant subtype of lung cancer. Despite the demonstrated effectiveness of established treatments such as radiotherapy, chemotherapy, and immunotherapy, the prognosis for patients with advanced NSCLC remains poor. Dendritic cells (DCs), the most potent antigen-presenting cells (APCs), play a crucial role in the tumor microenvironment (TME) of NSCLC. This review explores the classification and biological functions of DCs, highlighting the specific molecular pathways and external factors that influence their maturation and function in NSCLC, which is novel in this review. Moreover, we discuss the potential therapeutic applications of DCs in the management of NSCLC, presenting novel possibilities for future treatments.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Laboratory Medicine, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang Hospital of Traditional Chinese Medicine, Zhangjiagang, Jiangsu, People’s Republic of China
| | - Ling Zhao
- Department of Laboratory Medicine, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang Hospital of Traditional Chinese Medicine, Zhangjiagang, Jiangsu, People’s Republic of China
| | - Lianfang Liu
- Department of Oncology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang Hospital of Traditional Chinese Medicine, Zhangjiagang, Jiangsu, People’s Republic of China
| | - Li He
- Department of Laboratory Medicine, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang Hospital of Traditional Chinese Medicine, Zhangjiagang, Jiangsu, People’s Republic of China
| | - Yuanyuan Chen
- Department of Laboratory Medicine, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang Hospital of Traditional Chinese Medicine, Zhangjiagang, Jiangsu, People’s Republic of China
| | - Fang Wang
- Department of Laboratory Medicine, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang Hospital of Traditional Chinese Medicine, Zhangjiagang, Jiangsu, People’s Republic of China
| | - Dawei Cui
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Lei Wang
- Department of Laboratory Medicine, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang Hospital of Traditional Chinese Medicine, Zhangjiagang, Jiangsu, People’s Republic of China
| | - Qinfeng Zhou
- Department of Laboratory Medicine, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang Hospital of Traditional Chinese Medicine, Zhangjiagang, Jiangsu, People’s Republic of China
| |
Collapse
|
4
|
Zhao Y, Kong W, Zhu J, Qu F. Bimodal accurate H 2O 2 regulation to equalize tumor-associated macrophage repolarization and immunogenic tumor cell death elicitation. Chem Sci 2024; 15:20403-20412. [PMID: 39583561 PMCID: PMC11580027 DOI: 10.1039/d4sc06305h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 10/20/2024] [Indexed: 11/26/2024] Open
Abstract
Simultaneous implementation of tumor-associated macrophage (TAM) repolarization and immunogenic tumor cell death (ICD) elicitation enables tumor immunotherapy with high efficacy. However, the inconsistency of stimulation tolerance restricts simultaneous implementation. To address this obstacle, we validate that an H2O2-mediated regulatory strategy could achieve coordinated occurrences. To accomplish this, a bimodal responsive modulator is constructed, namely ZnO2-ATM (ATM: 3-amino-1,2,4-triazole), as an immune adjuvant to coordinate the occurrence of TAM repolarization and ICD elicitation through the endo/exogenous synergistic responsive production of H2O2. H2O2 produced by ZnO2-ATM reverses the immune-suppressive TAM from an M2 to an M1 phenotype, but induces tumor cell necrosis and promotes damage-related molecular pattern release, thereby evoking ICD. This H2O2-mediation bimodal responsive therapeutic strategy to induce the synergistic occurrence of TAM repolarization and ICD elicitation promotes effective immune effects against tumors, demonstrating that the ZnO2-ATM nanoadjuvant could be expected to provide new tools and paradigms for antitumor immunotherapy.
Collapse
Affiliation(s)
- Yan Zhao
- College of Chemistry and Chemical Engineering, Qufu Normal University Qufu Shandong 273165 China
| | - Weiheng Kong
- College of Chemistry and Chemical Engineering, Qufu Normal University Qufu Shandong 273165 China
| | - Jianqing Zhu
- Department of Gynecologic Oncology, University Cancer Hospital of Chinese Science Academy Hangzhou Zhejiang 310004 China
| | - Fengli Qu
- Department of Pathology, Cancer Hospital of Zhejiang Province, Hangzhou Institute of Medicine, Chinese Academy of Sciences Hangzhou Zhejiang 310022 China
| |
Collapse
|
5
|
Zhu Z, Heng X, Shan F, Yang H, Wang Y, Zhang H, Chen G, Chen H. Customizable Glycopolymers as Adjuvants for Cancer Immunotherapy: From Branching Degree Optimization to Cell Surface Engineering. Biomacromolecules 2024; 25:7975-7984. [PMID: 39534984 DOI: 10.1021/acs.biomac.4c01230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Engineering dendritic cell (DC) maturation is paramount for robust T-cell responses and immunological memory, critical for cancer immunotherapy. This work unveils a novel strategy using precisely controlled branching in synthetic glycopolymers to optimize DC activation. Using the distinct copolymerization kinetics of 2-(methacrylamido) glucopyranose (MAG) and diethylene glycol dimethacrylate (DEGDMA) in a RAFT polymerization, unique glycopolymers with varying branching degrees are created. These strategically produced gradient branched glycopolymers with sugar moieties on the outer chain potently promote DC maturation. Strikingly, low-branched glycopolymers demonstrate superior activity, both in pure form and when engineered on tumor cell surfaces. Quartz crystal microbalance and theoretical simulations elucidate the crucial role of branching in modulating glycopolymer-DC receptor interactions. Low-branched gradient glycopolymers have shown a notable advantage and are promising adjuvants in DC-based cancer immunotherapy.
Collapse
Affiliation(s)
- Zhichen Zhu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, P.R. China
| | - Xingyu Heng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, P.R. China
| | - Fangjian Shan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, P.R. China
| | - He Yang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, P.R. China
| | - Yichen Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, P.R. China
| | - Hengyuan Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, P.R. China
| | - Gaojian Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, P.R. China
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, P.R. China
| |
Collapse
|
6
|
Wang Y, Shi J, Xin M, Kahkoska AR, Wang J, Gu Z. Cell-drug conjugates. Nat Biomed Eng 2024; 8:1347-1365. [PMID: 38951139 PMCID: PMC11646559 DOI: 10.1038/s41551-024-01230-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/01/2024] [Indexed: 07/03/2024]
Abstract
By combining living cells with therapeutics, cell-drug conjugates can potentiate the functions of both components, particularly for applications in drug delivery and therapy. The conjugates can be designed to persist in the bloodstream, undergo chemotaxis, evade surveillance by the immune system, proliferate, or maintain or transform their cellular phenotypes. In this Review, we discuss strategies for the design of cell-drug conjugates with specific functions, the techniques for their preparation, and their applications in the treatment of cancers, autoimmune diseases and other pathologies. We also discuss the translational challenges and opportunities of this class of drug-delivery systems and therapeutics.
Collapse
Affiliation(s)
- Yanfang Wang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Jinhua Institute of Zhejiang University, Jinhua, China
| | - Jiaqi Shi
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Jinhua Institute of Zhejiang University, Jinhua, China
| | - Minhang Xin
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Anna R Kahkoska
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jinqiang Wang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
- Jinhua Institute of Zhejiang University, Jinhua, China.
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
- Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.
| | - Zhen Gu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
- Jinhua Institute of Zhejiang University, Jinhua, China.
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
- Liangzhu Laboratory, Hangzhou, China.
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China.
| |
Collapse
|
7
|
Srivastava P, Rütter M, Antoniraj G, Ventura Y, David A. Dendritic Cell-Targeted Nanoparticles Enhance T Cell Activation and Antitumor Immune Responses by Boosting Antigen Presentation and Blocking PD-L1 Pathways. ACS APPLIED MATERIALS & INTERFACES 2024; 16:53577-53590. [PMID: 39344665 DOI: 10.1021/acsami.4c12821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Dendritic cells (DCs) within the tumor microenvironment (TME) have an insufficient capacity to activate T cells through antigen presentation. Furthermore, the programmed cell-death ligand 1 (PD-L1), abundantly expressed on tumor-associated DCs, binds the programmed cell-death 1 (PD-1)-positive T cells and suppresses their immune function. The binding of PD-L1 to CD80 (B7.1) on the same DC via cis-interactions further prevents T cell costimulation through CD28. Here, we present a strategy to simultaneously promote antigen cross-presentation and block the inhibitory interactions of PD-L1 on DCs to amplify T cell-mediated antitumor responses within the TME. Mesoporous silica nanoparticles (MSNPs) were loaded with clotrimazole (CLT) to boost MHC II-mediated antigen presentation by DCs, surface-modified with mannose to target CD206 on DCs, and then decorated with PD-L1 binding peptide (PDL1bp) to block PD-L1-mediated interactions. PDL1bp was cleaved from the mannosylated and CLT-loaded MSNPs (MSNP-MaN/CLT) under conditions simulating the TME and tethered to PD-L1 to reverse CD80 sequestration on DC2.4 cells. The blocking of PD-L1 by PDL1bp-decorated NPs (MSNP-MaN-PDL1bp) increased the cellular interactions between DC2.4 and EL4 T cells and the amount of IL-2 secretion. The MSNP-MaN/CLT were taken up rapidly by DC2.4 cells, promoted MHC II presentation of hen egg lysozyme (HEL), and increased IL-2 production from HEL antigen-primed 3A9 T cells, which was further enhanced by PDL1bp. In vivo investigation revealed that administration of the CLT-loaded and PDL1bp-functionalized MSNPs remarkably inhibited subcutaneous B16-F10 melanoma tumor growth when compared with anti-PD-L1 therapy. MSNP-MaN-PDL1bp/CLT treatment upregulated the levels of effector molecules such as granzyme B and proinflammatory cytokines (IFNγ and INFα) in the tumor tissue, indicating antitumoral T cell responses. This strategy of utilizing nanoparticles to trigger DC activation while promoting T cell stimulation can be used to amplify the antitumor T cell responses and represents a promising alternative to anti-PD-L1 immunotherapy.
Collapse
Affiliation(s)
- Prateek Srivastava
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Marie Rütter
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Gover Antoniraj
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Yvonne Ventura
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Ayelet David
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
8
|
Liang J, Tian X, Zhou M, Yan F, Fan J, Qin Y, Chen B, Huo X, Yu Z, Tian Y, Deng S, Peng Y, Wang Y, Liu B, Ma X. Shikonin and chitosan-silver nanoparticles synergize against triple-negative breast cancer through RIPK3-triggered necroptotic immunogenic cell death. Biomaterials 2024; 309:122608. [PMID: 38744189 DOI: 10.1016/j.biomaterials.2024.122608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/21/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024]
Abstract
Necroptotic immunogenic cell death (ICD) can activate the human immune system to treat the metastasis and recurrence of triple-negative breast cancer (TNBC). However, developing the necroptotic inducer and precisely delivering it to the tumor site is the key issue. Herein, we reported that the combination of shikonin (SHK) and chitosan silver nanoparticles (Chi-Ag NPs) effectively induced ICD by triggering necroptosis in 4T1 cells. Moreover, to address the lack of selectivity of drugs for in vivo application, we developed an MUC1 aptamer-targeted nanocomplex (MUC1@Chi-Ag@CPB@SHK, abbreviated as MUC1@ACS) for co-delivering SHK and Chi-Ag NPs. The accumulation of MUC1@ACS NPs at the tumor site showed a 6.02-fold increase compared to the free drug. Subsequently, upon reaching the tumor site, the acid-responsive release of SHK and Chi-Ag NPs from MUC1@ACS NPs cooperatively induced necroptosis in tumor cells by upregulating the expression of RIPK3, p-RIPK3, and tetrameric MLKL, thereby effectively triggering ICD. The sequential maturation of dendritic cells (DCs) subsequently enhanced the infiltration of CD8+ and CD4+ T cells in tumors, while inhibiting regulatory T cells (Treg cells), resulting in the effective treatment of primary and distal tumor growth and the inhibition of TNBC metastasis. This work highlights the importance of nanoparticles in mediating drug interactions during necroptotic ICD.
Collapse
Affiliation(s)
- Jiahao Liang
- Pharmaceutical Research Center, Second Affiliated Hospital, Dalian Medical University, Dalian, China; Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Xiangge Tian
- Pharmaceutical Research Center, Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Meirong Zhou
- Pharmaceutical Research Center, Second Affiliated Hospital, Dalian Medical University, Dalian, China; Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Fei Yan
- Pharmaceutical Research Center, Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Jialong Fan
- College of Biology, Hunan University, Changsha, China
| | - Yan Qin
- College of Biology, Hunan University, Changsha, China
| | - Binlong Chen
- College of Biology, Hunan University, Changsha, China
| | - Xiaokui Huo
- Pharmaceutical Research Center, Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Zhenlong Yu
- Pharmaceutical Research Center, Second Affiliated Hospital, Dalian Medical University, Dalian, China; Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian, China.
| | - Yan Tian
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Sa Deng
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Yulin Peng
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Yan Wang
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Bin Liu
- College of Biology, Hunan University, Changsha, China.
| | - Xiaochi Ma
- Pharmaceutical Research Center, Second Affiliated Hospital, Dalian Medical University, Dalian, China.
| |
Collapse
|
9
|
Niu X, Yang H, Guo J, Yao L, Wang Y, Yu W, Liu Z, Chen H. Click Chemistry-Mediated Polymannose Surface-Engineering of Natural Killer Cells for Immunotherapy of Triple-Negative Breast Cancer. Adv Healthc Mater 2024; 13:e2400970. [PMID: 38838184 DOI: 10.1002/adhm.202400970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/04/2024] [Indexed: 06/07/2024]
Abstract
Natural killer (NK) cells, serve as the frontline defense of the immune system, and are capable of surveilling and eliminating tumor cells. Their significance in tumor immunotherapy has garnered considerable attention in recent years. However, the absence of specific receptor-ligand interactions between NK cells and tumor cells hampers their selectivity, thereby limiting the therapeutic effectiveness of NK cell-based tumor immunotherapy. Herein, this work constructs polymannose-engineered NK (pM-NK) cells via metabolic glycoengineering and copper-free click chemistry. Polymannose containing dibenzocyclooctyne terminal groups (pM-DBCO) is synthesized and covalently modified on the surface of azido-labeled NK cells. Compared to the untreated NK cells, the interactions between pM-NK cells and MDA-MB-231 cells, a breast tumor cell line with overexpression of mannose receptors (MRs), are significantly increased, and lead to significantly enhanced killing efficacy. Consequently, intravenous administration of pM-NK cells will effectively inhibit the tumor growth and will prolong the survival of mice bearing MDA-MB-231 tumors. Thus, this work presents a novel strategy for tumor-targeting NK cell-based tumor immunotherapy.
Collapse
Affiliation(s)
- Xiaomeng Niu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123, China
| | - He Yang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Jiangping Guo
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123, China
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Lihua Yao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Yichen Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Wenzhuo Yu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Lab Carbon Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Lab Carbon Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Hong Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123, China
| |
Collapse
|
10
|
Wang X, Feng Y, Wang F, Lin Z, Huang J, Li Q, Luo H, Liu X, Zhai X, Gao Q, Li L, Zhang Y, Wen J, Zhang L, Niu T, Zheng Y. Single-cell sequencing reveals the correlation of aggrephagy signaling and multiple myeloma immune microenvironment composition. J Gene Med 2024; 26:e3712. [PMID: 38949072 DOI: 10.1002/jgm.3712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 10/07/2023] [Accepted: 06/02/2024] [Indexed: 07/02/2024] Open
Abstract
Aggrephagy, a type of autophagy, degrades the aggregation of misfolded protein in cells. However, the role of aggrephagy in multiple myeloma (MM) has not been fully demonstrated. In this study, we first investigated the correlation between aggrephagy signaling, MM immune microenvironment composition and disease prognosis. Single-cell RNA-seq data, including the expression profiles of 12,187 single cells from seven MM bone marrow (BM) and seven healthy BM samples, were analyzed by non-negative matrix factorization for 44 aggrephagy-related genes. Bulk RNA-seq cohorts from the Gene Expression Omnibus database were used to evaluate the prognostic value of aggrephagy-related immune cell subtypes and predict immune checkpoint blockade immunotherapeutic response in MM. Compared with healthy BM, MM BM exhibited different patterns of aggrephagy-related gene expression. In MM BM, macrophages, CD8+ T cells, B cells and natural killer cells could be grouped into four to nine aggrephagy-related subclusters. The signature of aggrephagy signaling molecule expression in the immune cells correlates with the patient's prognosis. Our investigation provides a novel view of aggrephagy signaling in MM tumor microenvironment cells, which might be a prognostic indicator and potential target for MM treatment.
Collapse
Affiliation(s)
- Xin Wang
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Feng
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Fangfang Wang
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Zhimei Lin
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, China
- Department of Hematology, The Affiliated Hospital of Chengdu University, Chengdu, China
| | - Jingcao Huang
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Qian Li
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Hongmei Luo
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiang Liu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Xinyu Zhai
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Qianwen Gao
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, China
- School of Life Science, Sichuan University, Chengdu, China
| | - Linfeng Li
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Yue Zhang
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Jingjing Wen
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, China
- Department of Hematology, Mianyang Central Hospital, Mianyang, China
| | - Li Zhang
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Ting Niu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Yuhuan Zheng
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Qin S, Xie B, Wang Q, Yang R, Sun J, Hu C, Liu S, Tao Y, Xiao D. New insights into immune cells in cancer immunotherapy: from epigenetic modification, metabolic modulation to cell communication. MedComm (Beijing) 2024; 5:e551. [PMID: 38783893 PMCID: PMC11112485 DOI: 10.1002/mco2.551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/24/2024] [Accepted: 04/02/2024] [Indexed: 05/25/2024] Open
Abstract
Cancer is one of the leading causes of death worldwide, and more effective ways of attacking cancer are being sought. Cancer immunotherapy is a new and effective therapeutic method after surgery, radiotherapy, chemotherapy, and targeted therapy. Cancer immunotherapy aims to kill tumor cells by stimulating or rebuilding the body's immune system, with specific efficiency and high safety. However, only few tumor patients respond to immunotherapy and due to the complex and variable characters of cancer immune escape, the behavior and regulatory mechanisms of immune cells need to be deeply explored from more dimensions. Epigenetic modifications, metabolic modulation, and cell-to-cell communication are key factors in immune cell adaptation and response to the complex tumor microenvironment. They collectively determine the state and function of immune cells through modulating gene expression, changing in energy and nutrient demands. In addition, immune cells engage in complex communication networks with other immune components, which are mediated by exosomes, cytokines, and chemokines, and are pivotal in shaping the tumor progression and therapeutic response. Understanding the interactions and combined effects of such multidimensions mechanisms in immune cell modulation is important for revealing the mechanisms of immunotherapy failure and developing new therapeutic targets and strategies.
Collapse
Affiliation(s)
- Sha Qin
- Department of PathologyXiangya HospitalCentral South UniversityChangshaHunanChina
- Department of PathologySchool of Basic Medical ScienceXiangya School of MedicineCentral South UniversityChangshaHunanChina
| | - Bin Xie
- Department of PathologyXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Qingyi Wang
- Department of PathologyXiangya HospitalCentral South UniversityChangshaHunanChina
- Department of PathologySchool of Basic Medical ScienceXiangya School of MedicineCentral South UniversityChangshaHunanChina
| | - Rui Yang
- Department of PathologyXiangya HospitalCentral South UniversityChangshaHunanChina
- Department of PathologySchool of Basic Medical ScienceXiangya School of MedicineCentral South UniversityChangshaHunanChina
| | - Jingyue Sun
- Department of PathologyXiangya HospitalCentral South UniversityChangshaHunanChina
- Department of PathologySchool of Basic Medical ScienceXiangya School of MedicineCentral South UniversityChangshaHunanChina
| | - Chaotao Hu
- Regenerative Medicine, Medical SchoolUniversity of Chinese Academy of SciencesBeijingChina
| | - Shuang Liu
- Department of OncologyInstitute of Medical SciencesNational Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangsha, Hunan, China. UniversityChangshaHunanChina
| | - Yongguang Tao
- Department of PathologyXiangya HospitalCentral South UniversityChangshaHunanChina
- NHC Key Laboratory of CarcinogenesisCancer Research Institute and School of Basic MedicineCentral South universityChangshaHunanChina
| | - Desheng Xiao
- Department of PathologyXiangya HospitalCentral South UniversityChangshaHunanChina
- Department of PathologySchool of Basic Medical ScienceXiangya School of MedicineCentral South UniversityChangshaHunanChina
| |
Collapse
|
12
|
Guo J, Wang S, Yu Z, Heng X, Zhou N, Chen G. Well-Defined Oligo(azobenzene- graft-mannose): Photostimuli Supramolecular Self-Assembly and Immune Effect Regulation. ACS Macro Lett 2024; 13:273-279. [PMID: 38345474 DOI: 10.1021/acsmacrolett.3c00663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
The immune system can recognize and respond to pathogens of various shapes. Synthetic materials that can change their shape have the potential to be used in vaccines and immune regulation. The ability of supramolecular assemblies to undergo reversible transformations in response to environmental stimuli allows for dynamic changes in their shapes and functionalities. A meticulously designed oligo(azobenzene-graft-mannose) was synthesized using a stepwise iterative method and "click" chemistry. This involved integrating hydrophobic and photoresponsive azobenzene units with hydrophilic and bioactive mannose units. The resulting oligomer, with its precise structure, displayed versatile assembly morphologies and chiralities that were responsive to light. These varying assembly morphologies demonstrated distinct capabilities in terms of inhibiting the proliferation of cancer cells and stimulating the maturation of dendritic cells. These discoveries contribute to the theoretical comprehension and advancement of photoswitchable bioactive materials.
Collapse
Affiliation(s)
- Jiangping Guo
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, P. R. China
| | - Shuyuan Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Zhihong Yu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Xingyu Heng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Nianchen Zhou
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Gaojian Chen
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, P. R. China
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
13
|
Li Y, Wang H, Chen Y, Ding L, Ju H. In Situ Glycan Analysis and Editing in Living Systems. JACS AU 2024; 4:384-401. [PMID: 38425935 PMCID: PMC10900212 DOI: 10.1021/jacsau.3c00717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 03/02/2024]
Abstract
Besides proteins and nucleic acids, carbohydrates are also ubiquitous building blocks of living systems. Approximately 70% of mammalian proteins are glycosylated. Glycans not only provide structural support for living systems but also act as crucial regulators of cellular functions. As a result, they are considered essential pieces of the life science puzzle. However, research on glycans has lagged far behind that on proteins and nucleic acids. The main reason is that glycans are not direct products of gene coding, and their synthesis is nontemplated. In addition, the diversity of monosaccharide species and their linkage patterns contribute to the complexity of the glycan structures, which is the molecular basis for their diverse functions. Research in glycobiology is extremely challenging, especially for the in situ elucidation of glycan structures and functions. There is an urgent need to develop highly specific glycan labeling tools and imaging methods and devise glycan editing strategies. This Perspective focuses on the challenges of in situ analysis of glycans in living systems at three spatial levels (i.e., cell, tissue, and in vivo) and highlights recent advances and directions in glycan labeling, imaging, and editing tools. We believe that examining the current development landscape and the existing bottlenecks can drive the evolution of in situ glycan analysis and intervention strategies and provide glycan-based insights for clinical diagnosis and therapeutics.
Collapse
Affiliation(s)
- Yiran Li
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing
University, Nanjing 210023, China
| | - Haiqi Wang
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing
University, Nanjing 210023, China
| | - Yunlong Chen
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing
University, Nanjing 210023, China
| | - Lin Ding
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing
University, Nanjing 210023, China
- Chemistry
and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Huangxian Ju
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing
University, Nanjing 210023, China
| |
Collapse
|
14
|
Yang H, Xiong Z, Heng X, Niu X, Wang Y, Yao L, Sun L, Liu Z, Chen H. Click-Chemistry-Mediated Cell Membrane Glycopolymer Engineering to Potentiate Dendritic Cell Vaccines. Angew Chem Int Ed Engl 2024; 63:e202315782. [PMID: 38018480 DOI: 10.1002/anie.202315782] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 11/30/2023]
Abstract
Dendritic cell vaccine (DCV) holds great potential in tumor immunotherapy owing to its potent ability in eliciting tumor-specific immune responses. Aiming at engineering enhanced DCV, we report the first effort to construct a glycopolymer-engineered DC vaccine (G-DCV) via metabolicglycoengineering and copper-free click-chemistry. Model G-DCV was prepared by firstly delivering tumor antigens, ovalbumin (OVA) into dendritic cells (DC) with fluoroalkane-grafted polyethyleneimines, followed by conjugating glycopolymers with a terminal group of dibenzocyclooctyne (DBCO) onto dendritic cells. Compared to unmodified DCV, our G-DCV could induce stronger T cell activation due to the enhanced adhesion between DCs and T cells. Notably, such G-DCV could more effectively inhibit the growth of the mouse B16-OVA (expressing OVA antigen) tumor model after adoptive transfer. Moreover, by combination with an immune checkpoint inhibitor, G-DCV showed further increased anti-tumor effects in treating different tumor models. Thus, our work provides a novel strategy to enhance the therapeutic effectiveness of DC vaccines.
Collapse
Affiliation(s)
- He Yang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Zijian Xiong
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Lab Carbon Based Functional Materials and Devices, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Xingyu Heng
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Xiaomeng Niu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Yichen Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Lihua Yao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Lele Sun
- Institute of Materiobiology, Department of Chemistry, College of Science, Shanghai University, Shanghai, 200444, China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Lab Carbon Based Functional Materials and Devices, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Hong Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, Jiangsu, China
| |
Collapse
|
15
|
Gu J, Li Y, Lu G, Ma Y, Zhang Y, Chen J. Glycopolymer-grafted nanoparticles as glycosaminoglycan mimics with cell proliferation and anti-tumor metastasis activities. Int J Biol Macromol 2023; 253:126975. [PMID: 37739278 DOI: 10.1016/j.ijbiomac.2023.126975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/10/2023] [Accepted: 09/16/2023] [Indexed: 09/24/2023]
Abstract
Glycosaminoglycans (GAGs) are naturally existing extracellular components with a variety important biological functions. However, their heterogeneous chemical compositions and the challenges in purification have become the main disadvantages for clinical applications. Thus, various synthetic glycopolymers have been designed to mimic the structures and functions of natural GAGs. In the current study, glycopolymers from structurally simple glucose or N-acetylglucosamine monomers were synthesized, which were further subjected to sulfation of different degrees and grafting onto silica nanoparticles, leading to spherical-shaped nano-structures of uniform diameters. With the successively strengthened multivalent effect, the obtained glycopolymer nanoparticles not only showed excellent effects on promotion of cell proliferation by stabilizing growth factors, but also significantly inhibited tumor metastasis by weakening the adhesion between tumor cells and activated platelets. Among the prepared nanoparticles, S3-PGNAc@Si with N-acetylglucosamine segment and the highest sulfation degree exhibited the strongest bioactivities, which were even close to those of heparin. This work presents a novel approach for structural and functional mimicking of natural GAGs from simple and low-cost monosaccharides, holding great potential for a range of biomedical applications.
Collapse
Affiliation(s)
- Jieyu Gu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China
| | - Yi Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China
| | - Guodong Lu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China
| | - Yongxin Ma
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China
| | - Yan Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China.
| | - Jinghua Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
16
|
Liu C, Zhou Y, Guo D, Huang Y, Ji X, Li Q, Chen N, Fan C, Song H. Reshaping Intratumoral Mononuclear Phagocytes with Antibody-Opsonized Immunometabolic Nanoparticles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303298. [PMID: 37867225 PMCID: PMC10700695 DOI: 10.1002/advs.202303298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/25/2023] [Indexed: 10/24/2023]
Abstract
Mononuclear phagocytes (MPs) are vital components of host immune defenses against cancer. However, tumor-infiltrating MPs often present tolerogenic and pro-tumorigenic phenotypes via metabolic switching triggered by excessive lipid accumulation in solid tumors. Inspired by viral infection-mediated MP modulation, here enveloped immunometabolic nanoparticles (immeNPs) are designed to co-deliver a viral RNA analog and a fatty acid oxidation regulator for synergistic reshaping of intratumoral MPs. These immeNPs are camouflaged with cancer cell membranes for tumor homing and opsonized with anti-CD163 antibodies for specific MP recognition and uptake. It is found that internalized immeNPs coordinate lipid metabolic reprogramming with innate immune stimulation, inducing M2-to-M1 macrophage repolarization and tolerogenic-to-immunogenic dendritic cell differentiation for cytotoxic T cell infiltration. The authors further demonstrate that the use of immeNPs confers susceptibility to anti-PD-1 therapy in immune checkpoint blockade-resistant breast and ovarian tumors, and thereby provide a promising strategy to expand the potential of conventional immunotherapy.
Collapse
Affiliation(s)
- Chang Liu
- State Key Laboratory of Oncogenes and Related GenesCenter for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Yanfeng Zhou
- State Key Laboratory of Oncogenes and Related GenesCenter for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Daoxia Guo
- State Key Laboratory of Oncogenes and Related GenesCenter for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Yan Huang
- College of Chemistry and Materials ScienceThe Education Ministry Key Lab of Resource ChemistryJoint International Research Laboratory of Resource Chemistry of Ministry of EducationShanghai Key Laboratory of Rare Earth Functional Materialsand Shanghai Frontiers Science Center of Biomimetic CatalysisShanghai Normal UniversityShanghai200234China
| | - Xiaoyuan Ji
- State Key Laboratory of Oncogenes and Related GenesCenter for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Qian Li
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative Molecules and National Center for Translational MedicineShanghai Jiao Tong UniversityShanghai200240China
| | - Nan Chen
- College of Chemistry and Materials ScienceThe Education Ministry Key Lab of Resource ChemistryJoint International Research Laboratory of Resource Chemistry of Ministry of EducationShanghai Key Laboratory of Rare Earth Functional Materialsand Shanghai Frontiers Science Center of Biomimetic CatalysisShanghai Normal UniversityShanghai200234China
| | - Chunhai Fan
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative Molecules and National Center for Translational MedicineShanghai Jiao Tong UniversityShanghai200240China
| | - Haiyun Song
- State Key Laboratory of Oncogenes and Related GenesCenter for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of MedicineShanghai200025China
| |
Collapse
|
17
|
Yang H, Yao L, Wang Y, Chen G, Chen H. Advancing cell surface modification in mammalian cells with synthetic molecules. Chem Sci 2023; 14:13325-13345. [PMID: 38033886 PMCID: PMC10685406 DOI: 10.1039/d3sc04597h] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Biological cells, being the fundamental entities of life, are widely acknowledged as intricate living machines. The manipulation of cell surfaces has emerged as a progressively significant domain of investigation and advancement in recent times. Particularly, the alteration of cell surfaces using meticulously crafted and thoroughly characterized synthesized molecules has proven to be an efficacious means of introducing innovative functionalities or manipulating cells. Within this realm, a diverse array of elegant and robust strategies have been recently devised, including the bioorthogonal strategy, which enables selective modification. This review offers a comprehensive survey of recent advancements in the modification of mammalian cell surfaces through the use of synthetic molecules. It explores a range of strategies, encompassing chemical covalent modifications, physical alterations, and bioorthogonal approaches. The review concludes by addressing the present challenges and potential future opportunities in this rapidly expanding field.
Collapse
Affiliation(s)
- He Yang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University 199 Ren'ai Road Suzhou 215123 Jiangsu P. R. China
| | - Lihua Yao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University 199 Ren'ai Road Suzhou 215123 Jiangsu P. R. China
| | - Yichen Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University 199 Ren'ai Road Suzhou 215123 Jiangsu P. R. China
| | - Gaojian Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University 199 Ren'ai Road Suzhou 215123 Jiangsu P. R. China
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University Suzhou 215006 Jiangsu P. R. China
| | - Hong Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University 199 Ren'ai Road Suzhou 215123 Jiangsu P. R. China
| |
Collapse
|
18
|
Wu J, Yi S, Cao Y, Zu M, Li B, Yang W, Shahbazi MA, Wan Y, Reis RL, Kundu SC, Shi X, Xiao B. Dual-driven nanomotors enable tumor penetration and hypoxia alleviation for calcium overload-photo-immunotherapy against colorectal cancer. Biomaterials 2023; 302:122332. [PMID: 37801790 DOI: 10.1016/j.biomaterials.2023.122332] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/03/2023] [Accepted: 09/14/2023] [Indexed: 10/08/2023]
Abstract
The treatment efficacies of conventional medications against colorectal cancer (CRC) are restricted by a low penetrative, hypoxic, and immunosuppressive tumor microenvironment. To address these restrictions, we developed an innovative antitumor platform that employs calcium overload-phototherapy using mitochondrial N770-conjugated mesoporous silica nanoparticles loaded with CaO2 (CaO2-N770@MSNs). A loading level of 14.0 wt% for CaO2-N770@MSNs was measured, constituting an adequate therapeutic dosage. With the combination of oxygen generated from CaO2 and hyperthermia under near-infrared irradiation, CaO2-N770@MSNs penetrated through the dense mucus, accumulated in the colorectal tumor tissues, and inhibited tumor cell growth through endoplasmic reticulum stress and mitochondrial damage. The combination of calcium overload and phototherapy revealed high therapeutic efficacy against orthotopic colorectal tumors, alleviated the immunosuppressive microenvironment, elevated the abundance of beneficial microorganisms (e.g., Lactobacillaceae and Lachnospiraceae), and decreased harmful microorganisms (e.g., Bacteroidaceae and Muribaculaceae). Moreover, together with immune checkpoint blocker (αPD-L1), these nanoparticles showed an ability to eradicate both orthotopic and distant tumors, while potentiating systemic antitumor immunity. This treatment platform (CaO2-N770@MSNs plus αPD-L1) open a new horizon of synergistic treatment against hypoxic CRC with high killing power and safety.
Collapse
Affiliation(s)
- Jiaxue Wu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Shixiong Yi
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Yingui Cao
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Menghang Zu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Baoyi Li
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Wenjing Yang
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Mohammad-Ali Shahbazi
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, Netherlands; W.J. Kolff Institute for Biomedical Engineering and Materials Science, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, Netherlands
| | - Ying Wan
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Rui L Reis
- 3Bs Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Barco, 4805-017, Guimaraes, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Subhas C Kundu
- 3Bs Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Barco, 4805-017, Guimaraes, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Xiaoxiao Shi
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, 400715, China.
| | - Bo Xiao
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
19
|
Wang S, Zhang G, Cui Q, Yang Y, Wang D, Liu A, Xia Y, Li W, Liu Y, Yu J. The DC-T cell axis is an effective target for the treatment of non-small cell lung cancer. Immun Inflamm Dis 2023; 11:e1099. [PMID: 38018578 PMCID: PMC10681037 DOI: 10.1002/iid3.1099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 11/30/2023] Open
Abstract
The dendritic cell (DC)-T cell axis is a bridge that connects innate and adaptive immunities. The initial immune response against tumors is mainly induced by mature antigen-presenting DCs. Enhancing the crosstalk between DCs and T cells may be an effective approach to improve the immune response to non-small cell lung cancer (NSCLC). In this article, a review was made of the interaction between DCs and T cells in the treatment of NSCLC and how this interaction affects the treatment outcome.
Collapse
Affiliation(s)
- Shuangcui Wang
- Department of OncologyFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
- Graduate SchoolTianjin University of Traditional Chinese MedicineTianjinChina
| | - Guan Zhang
- Department of OncologyFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
- Graduate SchoolTianjin University of Traditional Chinese MedicineTianjinChina
| | - Qian Cui
- Department of OncologyFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
- Graduate SchoolTianjin University of Traditional Chinese MedicineTianjinChina
| | - Yanjie Yang
- Department of OncologyFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
- Graduate SchoolTianjin University of Traditional Chinese MedicineTianjinChina
| | - Dong Wang
- Department of OncologyFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
- Graduate SchoolTianjin University of Traditional Chinese MedicineTianjinChina
| | - Aqing Liu
- Department of OncologyFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
- Graduate SchoolTianjin University of Traditional Chinese MedicineTianjinChina
| | - Ying Xia
- Department of OncologyFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
- Graduate SchoolTianjin University of Traditional Chinese MedicineTianjinChina
| | - Wentao Li
- Department of OncologyFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
| | - Yunhe Liu
- Department of OncologyFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
| | - Jianchun Yu
- Department of OncologyFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
| |
Collapse
|
20
|
Heng X, Shan F, Yang H, Hu J, Feng R, Tian W, Chen G, Chen H. Glycopolymers With On/Off Anchors: Confinement Effect on Regulating Dendritic Cells. Adv Healthc Mater 2023; 12:e2301536. [PMID: 37590030 DOI: 10.1002/adhm.202301536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/15/2023] [Indexed: 08/18/2023]
Abstract
Insufficient activation or over-activation of T cells due to the dendritic cells (DCs) state can cause negative effects on immunotherapy, making it crucial for DCs to maintain different states in different treatments. Polysaccharides are one of the most studied substances to promote DCs maturation. However, in many methods, optimizing the spatial dimension of the interaction between polysaccharides and cells is often overlooked. Therefore, in this study, a new strategy from the perspective of spatial dimension is proposed to regulate the efficacy of polysaccharides in promoting DCs maturation. An anchoring molecule (DMA) is introduced to existing glycopolymers for the confinement effect, and the effect can be turned off by oxidation of DMA. Among the prepared on-confined (PMD2 ), off-confined (PMD2 -O), and norm (PM2 ) glycopolymers, PMD2 and PMD2 -O show the best and worst results, respectively, in terms of the amount of binding to DCs and the effect on promoting DCs maturation. This sufficiently shows that the turn-on and off of confinement effect can regulate the maturation of DCs by polysaccharides. Based on the all-atom molecular dynamics (MD) simulation, the mechanism of difference in the confinement effect is explained. This simple method can also be used to regulate other molecule-cell interactions to guide cell behavior.
Collapse
Affiliation(s)
- Xingyu Heng
- Soochow University, College of Chemistry, Chemical Engineering and Materials Science, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Fangjian Shan
- Soochow University, Center for Soft Condensed Matter Physics and Interdisciplinary Research and School of Physical Science and Technology, Suzhou, Jiangsu, 215006, P. R. China
| | - He Yang
- Soochow University, College of Chemistry, Chemical Engineering and Materials Science, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Jun Hu
- Soochow University, Center for Soft Condensed Matter Physics and Interdisciplinary Research and School of Physical Science and Technology, Suzhou, Jiangsu, 215006, P. R. China
| | - Ruyan Feng
- Soochow University, College of Chemistry, Chemical Engineering and Materials Science, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Wende Tian
- Soochow University, Center for Soft Condensed Matter Physics and Interdisciplinary Research and School of Physical Science and Technology, Suzhou, Jiangsu, 215006, P. R. China
| | - Gaojian Chen
- Soochow University, College of Chemistry, Chemical Engineering and Materials Science, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
- Soochow University, Center for Soft Condensed Matter Physics and Interdisciplinary Research and School of Physical Science and Technology, Suzhou, Jiangsu, 215006, P. R. China
| | - Hong Chen
- Soochow University, College of Chemistry, Chemical Engineering and Materials Science, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| |
Collapse
|
21
|
Mu R, Dong L, Wang C. Carbohydrates as putative pattern recognition receptor agonists in vaccine development. Trends Immunol 2023; 44:845-857. [PMID: 37684173 DOI: 10.1016/j.it.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 09/10/2023]
Abstract
Adjuvants are essential components of modern vaccines. One general mechanism underlying their immunostimulatory functions is the activation of pattern recognition receptors (PRRs) of innate immune cells. Carbohydrates - as essential signaling molecules on microbial surfaces - are potent PRR agonists and candidate materials for adjuvant design. Here, we summarize the latest trends in developing carbohydrate-containing adjuvants, with fresh opinions on how the physicochemical characteristics of the glycans (e.g., molecular size, assembly status, monosaccharide components, and functional group patterns) affect their adjuvant activities in aiding antigen transport, regulating antigen processing, and enhancing adaptive immune responses. From a translational perspective, we also discuss potential technologies for solving long-lasting challenges in carbohydrate adjuvant design.
Collapse
Affiliation(s)
- Ruoyu Mu
- Institute of Chinese Medical Sciences & State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau SAR, China
| | - Lei Dong
- School of Life Sciences & State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Chunming Wang
- Institute of Chinese Medical Sciences & State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau SAR, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macau SAR, China.
| |
Collapse
|
22
|
Inamdar S, Suresh AP, Mangal JL, Ng ND, Sundem A, Wu C, Lintecum K, Thumsi A, Khodaei T, Halim M, Appel N, Jaggarapu MMCS, Esrafili A, Yaron JR, Curtis M, Acharya AP. Rescue of dendritic cells from glycolysis inhibition improves cancer immunotherapy in mice. Nat Commun 2023; 14:5333. [PMID: 37660049 PMCID: PMC10475105 DOI: 10.1038/s41467-023-41016-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 08/21/2023] [Indexed: 09/04/2023] Open
Abstract
Inhibition of glycolysis in immune cells and cancer cells diminishes their activity, and thus combining immunotherapies with glycolytic inhibitors is challenging. Herein, a strategy is presented where glycolysis is inhibited in cancer cells using PFK15 (inhibitor of PFKFB3, rate-limiting step in glycolysis), while simultaneously glycolysis and function is rescued in DCs by delivery of fructose-1,6-biphosphate (F16BP, one-step downstream of PFKFB3). To demonstrate the feasibility of this strategy, vaccine formulations are generated using calcium-phosphate chemistry, that incorporate F16BP, poly(IC) as adjuvant, and phosphorylated-TRP2 peptide antigen and tested in challenging and established YUMM1.1 tumours in immunocompetent female mice. Furthermore, to test the versatility of this strategy, adoptive DC therapy is developed with formulations that incorporate F16BP, poly(IC) as adjuvant and mRNA derived from B16F10 cells as antigens in established B16F10 tumours in immunocompetent female mice. F16BP vaccine formulations rescue DCs in vitro and in vivo, significantly improve the survival of mice, and generate cytotoxic T cell (Tc) responses by elevating Tc1 and Tc17 cells within the tumour. Overall, these results demonstrate that rescuing glycolysis of DCs using metabolite-based formulations can be utilized to generate immunotherapy even in the presence of glycolytic inhibitor.
Collapse
Affiliation(s)
- Sahil Inamdar
- Chemical Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, 85281, USA
| | | | - Joslyn L Mangal
- Biological Design, Arizona State University, Tempe, AZ, 85281, USA
| | - Nathan D Ng
- Molecular Biosciences and Biotechnology, The College of Liberal Arts and Sciences, Arizona State University, Tempe, AZ, 85281, USA
| | - Alison Sundem
- Chemical Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, 85281, USA
| | - Christopher Wu
- Department of Biomedical Engineering, School of Biological and Health System Engineering, Arizona State University, Tempe, AZ, 85281, USA
| | - Kelly Lintecum
- Chemical Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, 85281, USA
| | - Abhirami Thumsi
- Biological Design, Arizona State University, Tempe, AZ, 85281, USA
| | - Taravat Khodaei
- Department of Biomedical Engineering, School of Biological and Health System Engineering, Arizona State University, Tempe, AZ, 85281, USA
| | - Michelle Halim
- Chemical Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, 85281, USA
| | - Nicole Appel
- Chemical Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, 85281, USA
- Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ, 85281, USA
| | | | - Arezoo Esrafili
- Chemical Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, 85281, USA
| | - Jordan R Yaron
- Chemical Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, 85281, USA
| | - Marion Curtis
- Department of Cancer Biology, Mayo Clinic, Scottsdale, AZ, 85259 8, USA
- College of Medicine and Science, Mayo Clinic, Scottsdale, AZ, 85259, USA
| | - Abhinav P Acharya
- Chemical Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, 85281, USA.
- Biological Design, Arizona State University, Tempe, AZ, 85281, USA.
- Department of Biomedical Engineering, School of Biological and Health System Engineering, Arizona State University, Tempe, AZ, 85281, USA.
- Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ, 85281, USA.
- Materials Science and Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, 85281, USA.
- Biodesign Center for Biomaterials Innovation and Translation, Arizona State University, Tempe, AZ, 85281, USA.
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, USA.
| |
Collapse
|
23
|
Zhang W, Li D, Xu X, Chen Y, Shi X, Pan Y, Yao S, Piao Y, Zhou Z, Slater NKH, Shen Y, Tang J. A Bispecific Peptide-Polymer Conjugate Bridging Target-Effector Cells to Enhance Immunotherapy. Adv Healthc Mater 2023; 12:e2202977. [PMID: 36878223 DOI: 10.1002/adhm.202202977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 02/22/2023] [Indexed: 03/08/2023]
Abstract
Peptide-based immune checkpoint inhibitors exhibit remarkable therapeutic benefits although their application is hindered by quick blood clearance and low affinity with receptors. The modification of the peptides into artificial antibodies is an ideal platform to solve these problems, and one of the optional pathways is the conjugation of peptides with a polymer. More importantly, the bridging effect, mediated by bispecific artificial antibodies, could promote the interaction of cancer cells and T cells, which will benefit cancer immunotherapy. Herein, a bispecific peptide-polymer conjugate (octa PEG-PD1-PDL1) is prepared by simultaneously conjugating PD1-binding and PDL1-binding peptides onto 8-arm-PEG. octa PEG-PD1-PDL1 bridges T cells and cancer cells and thus enhances T cell-mediated cytotoxicity against cancer cells. Meanwhile, the tumor-targeting octa PEG-PD1-PDL1 increases the infiltration of cytotoxic T lymphocytes in tumors and reduces their exhaustion. It effectively activates the tumor immune microenvironment and exerts a potent antitumor effect against CT26 tumor models with a tumor inhibition rate of 88.9%. This work provides a novel strategy to enhance tumor immunotherapy through conjugating bispecific peptides onto a hyperbranched polymer to effectively engage target-effector cells.
Collapse
Affiliation(s)
- Wei Zhang
- Key Laboratory of Smart Biomaterials of Zhejiang Province, College of Chemical and Biological Engineering of Zhejiang University, Hangzhou, Zhejiang, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang, 311215, China
| | - Dongdong Li
- Key Laboratory of Smart Biomaterials of Zhejiang Province, College of Chemical and Biological Engineering of Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Xiaodan Xu
- Key Laboratory of Smart Biomaterials of Zhejiang Province, College of Chemical and Biological Engineering of Zhejiang University, Hangzhou, Zhejiang, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang, 311215, China
| | - Yong Chen
- Key Laboratory of Smart Biomaterials of Zhejiang Province, College of Chemical and Biological Engineering of Zhejiang University, Hangzhou, Zhejiang, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang, 311215, China
| | - Xueying Shi
- Key Laboratory of Smart Biomaterials of Zhejiang Province, College of Chemical and Biological Engineering of Zhejiang University, Hangzhou, Zhejiang, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang, 311215, China
| | - Yixuan Pan
- Key Laboratory of Smart Biomaterials of Zhejiang Province, College of Chemical and Biological Engineering of Zhejiang University, Hangzhou, Zhejiang, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang, 311215, China
| | - Shasha Yao
- Key Laboratory of Smart Biomaterials of Zhejiang Province, College of Chemical and Biological Engineering of Zhejiang University, Hangzhou, Zhejiang, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang, 311215, China
| | - Ying Piao
- Key Laboratory of Smart Biomaterials of Zhejiang Province, College of Chemical and Biological Engineering of Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Zhuxian Zhou
- Key Laboratory of Smart Biomaterials of Zhejiang Province, College of Chemical and Biological Engineering of Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Nigel K H Slater
- Key Laboratory of Smart Biomaterials of Zhejiang Province, College of Chemical and Biological Engineering of Zhejiang University, Hangzhou, Zhejiang, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang, 311215, China
| | - Youqing Shen
- Key Laboratory of Smart Biomaterials of Zhejiang Province, College of Chemical and Biological Engineering of Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Jianbin Tang
- Key Laboratory of Smart Biomaterials of Zhejiang Province, College of Chemical and Biological Engineering of Zhejiang University, Hangzhou, Zhejiang, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang, 311215, China
| |
Collapse
|
24
|
Pan C, Wang L, Zhang M, Li J, Liu J, Liu J. In Situ Polymerization-Mediated Antigen Presentation. J Am Chem Soc 2023. [PMID: 37262440 DOI: 10.1021/jacs.3c02682] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Activating antigen-presenting cells is essential to generate adaptive immunity, while the efficacy of conventional activation strategies remains unsatisfactory due to suboptimal antigen-specific priming. Here, in situ polymerization-mediated antigen presentation (IPAP) is described, in which antigen-loaded nanovaccines are spontaneously formed and efficiently anchored onto the surface of dendritic cells in vivo through co-deposition with dopamine. The resulting chemically bound nanovaccines can promote antigen presentation by elevating macropinocytosis-based cell uptake and reducing lysosome-related antigen degradation. IPAP is able to prolong the duration of antigen reservation in the injection site and enhance subsequent accumulation in the draining lymph nodes, thereby eliciting robust antigen-specific cellular and humoral immune responses. IPAP is also applicable for different antigens and capable of circumventing the disadvantages of complicated preparation and purification. By implementation with ovalbumin, IPAP induces a significant protective immunity against ovalbumin-overexpressing tumor cell challenge in a prophylactic murine model. The use of the SARS-CoV-2 Spike protein S1 subunit also remarkably increases the production of S1-specific immunoglobulin G in mice. IPAP offers a unique strategy for stimulating antigen-presenting cells to boost antigen-specific adaptive responses and proposes a facile yet versatile method for immunization against various diseases.
Collapse
Affiliation(s)
- Chao Pan
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Lu Wang
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Mengmeng Zhang
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Juanjuan Li
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Junqiu Liu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Jinyao Liu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
25
|
Ding Y, Zheng D, Xie L, Zhang X, Zhang Z, Wang L, Hu ZW, Yang Z. Enzyme-Instructed Peptide Assembly Favored by Preorganization for Cancer Cell Membrane Engineering. J Am Chem Soc 2023; 145:4366-4371. [PMID: 36669158 DOI: 10.1021/jacs.2c11823] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Innovative methods for engineering cancer cell membranes promise to manipulate cell-cell interactions and boost cell-based cancer therapeutics. Here, we illustrate an in situ approach to selectively modify cancer cell membranes by employing an enzyme-instructed peptide self-assembly (EISA) strategy. Using three phosphopeptides (pY1, pY2, and pY3) targeting the membrane-bound epidermal growth factor receptor (EGFR) and differing in just one phosphorylated tyrosine, we reveal that site-specific phosphorylation patterns in pY1, pY2, and pY3 can distinctly command their preorganization levels, self-assembling kinetics, and spatial distributions of the resultant peptide assemblies in cellulo. Overall, pY1 is the most capable of producing preorganized assemblies and shows the fastest dephosphorylation reaction in the presence of alkaline phosphatase (ALP), as well as the highest binding affinity for EGFR after dephosphorylation. Consequently, pY1 exhibits the greatest capacity to construct stable peptide assemblies on cancer cell membranes with the assistance of both ALP and EGFR. We further use peptide-protein and peptide-peptide co-assembly strategies to apply two types of antigens, namely ovalbumin (OVA) protein and dinitrophenyl (DNP) hapten respectively, on cancer cell membranes. This study demonstrates a very useful technique for the in situ construction of membrane-bound peptide assemblies around cancer cells and implies a versatile strategy to artificially enrich cancer cell membrane components for potential cancer immunotherapy.
Collapse
Affiliation(s)
- Yinghao Ding
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Debin Zheng
- Medical Innovation Research Department, General Hospital of PLA, No. 28 Fu Xing Road, Beijing 100853, P. R. China
| | - Limin Xie
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Xiangyang Zhang
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Zhenghao Zhang
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Ling Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300071, P. R. China
| | - Zhi-Wen Hu
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Zhimou Yang
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
26
|
Wang Y, Chen W, Wang Z, Zhu Y, Zhao H, Wu K, Wu J, Zhang W, Zhang Q, Guo H, Ju H, Liu Y. NIR-II Light Powered Asymmetric Hydrogel Nanomotors for Enhanced Immunochemotherapy. Angew Chem Int Ed Engl 2023; 62:e202212866. [PMID: 36401612 DOI: 10.1002/anie.202212866] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/21/2022]
Abstract
Nanomotors are appealing drug carriers, and the strength of the propelling force is important for their motion capability. Though high motion efficiency has been achieved with 808 nm light driven Janus-structured noble metal nanomotors, the NIR-I light penetration depth and material biocompatibility limit their broad application. Herein, we develop a 1064 nm NIR-II light driven asymmetric hydrogel nanomotor (AHNM) with high motion capability and load it with doxorubicin for enhanced immunochemotherapy. Magnetic field assisted photopolymerization generates an asymmetric distribution of Fe3 O4 @Cu9 S8 nanoparticles in the AHNM, producing self-thermophoresis as driving force under NIR-II irradiation. The AHNM is also functionalized with dopamine for the capture and retention of tumor-associated antigens to boost immune activation. The as-obtained NIR-II light driven AHNM has a high tumor tissue penetration capability and enhances immunochemotherapy, providing a promising strategy for cancer therapy.
Collapse
Affiliation(s)
- Yingfei Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Wei Chen
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, Nanjing, 210008, China
| | - Zhong Wang
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, MOE Key Laboratory of Intelligent Optical Sensing and Manipulation, State Key Laboratory of Analytical Chemistry for Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Yu Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Hongxia Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Kun Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jie Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Weihua Zhang
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, MOE Key Laboratory of Intelligent Optical Sensing and Manipulation, State Key Laboratory of Analytical Chemistry for Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Qing Zhang
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, Nanjing, 210008, China
| | - Hongqian Guo
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, Nanjing, 210008, China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Ying Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.,Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
27
|
Gao Y, Wang Z, Cui Y, Xu M, Weng L. Emerging Strategies of Engineering and Tracking Dendritic Cells for Cancer Immunotherapy. ACS APPLIED BIO MATERIALS 2023; 6:24-43. [PMID: 36520013 DOI: 10.1021/acsabm.2c00790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Dendritic cells (DCs), a kind of specialized immune cells, play key roles in antitumor immune response and promotion of innate and adaptive immune responses. Recently, many strategies have been developed to utilize DCs in cancer therapy, such as delivering antigens and adjuvants to DCs and using scaffold to recruit and activate DCs. Here we outline how different DC subsets influence antitumor immunity, summarize the FDA-approved vaccines and cancer vaccines under clinical trials, discuss the strategies for engineering DCs and noninvasive tracking of DCs to improve antitumor immunotherapy, and reveal the potential of artificial neural networks for the design of DC based vaccines.
Collapse
Affiliation(s)
- Yu Gao
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Zhixuan Wang
- School of Geography and Biological Information, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Ying Cui
- School of Geography and Biological Information, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Miaomiao Xu
- School of Geography and Biological Information, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Lixing Weng
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.,School of Geography and Biological Information, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|
28
|
Mastrotto F, Pirazzini M, Negro S, Salama A, Martinez-Pomares L, Mantovani G. Sulfation at Glycopolymer Side Chains Switches Activity at the Macrophage Mannose Receptor (CD206) In Vitro and In Vivo. J Am Chem Soc 2022; 144:23134-23147. [PMID: 36472883 PMCID: PMC9782796 DOI: 10.1021/jacs.2c10757] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Indexed: 12/12/2022]
Abstract
The mannose receptor (CD206) is an endocytic receptor expressed by selected innate immune cells and nonvascular endothelium, which plays a critical role in both homeostasis and pathogen recognition. Although its involvement in the development of several diseases and viral infections is well established, molecular tools able to both provide insight on the chemistry of CD206-ligand interactions and, importantly, effectively modulate its activity are currently lacking. Using novel SO4-3-Gal-glycopolymers targeting its cysteine-rich lectin ectodomain, this study uncovers and elucidates a previously unknown mechanism of CD206 blockade involving the formation of stable intracellular SO4-3-Gal-glycopolymer-CD206 complexes that prevents receptor recycling to the cell membrane. Further, we show that SO4-3-Gal glycopolymers inhibit CD206 both in vitro and in vivo, revealing hitherto unknown receptor function and demonstrating their potential as CD206 modulators within future immunotherapies.
Collapse
Affiliation(s)
- Francesca Mastrotto
- School
of Pharmacy, University of Nottingham, Nottingham NG7 2RD, U.K.
- School
of Life Sciences, University of Nottingham, Nottingham NG7 2RD, U.K.
- Department
of Pharmaceutical and Pharmacological Sciences, University of Padova, via F. Marzolo 5, Padova 35131, Italy
| | - Marco Pirazzini
- Department
of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, Padova 35131, Italy
| | - Samuele Negro
- Department
of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, Padova 35131, Italy
| | - Alan Salama
- Department
of Renal Medicine, University College London, London NW3 2PF, U.K.
| | | | | |
Collapse
|
29
|
Sun M, Shi W, Wu Y, He Z, Sun J, Cai S, Luo Q. Immunogenic Nanovesicle-Tandem-Augmented Chemoimmunotherapy via Efficient Cancer-Homing Delivery and Optimized Ordinal-Interval Regime. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 10:e2205247. [PMID: 36453573 PMCID: PMC9811449 DOI: 10.1002/advs.202205247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/27/2022] [Indexed: 06/17/2023]
Abstract
The strategy of combining immune checkpoint inhibitors (ICIs) with anthracycline is recommended by clinical guidelines for the standard-of-care treatment of triple-negative breast cancer (TNBC). Nevertheless, several fundamental clinical principles are yet to be elucidated to achieve a great therapeutic effect, including cancer-homing delivery efficiency and ordinal-interval regime. Tumor-derived extracellular vesicles (TDEVs), as vectors for intratumoral intercellular communication, can encapsulate therapeutic agents and home tumors. However, PD-L1 overexpression in TDEVs leads to systemic immunosuppression during in vivo circulation, ultimately inhibiting intratumoral T activity. In this study, CRISPR/Cas9-edited Pd-l1KO TDEV-fusogenic anthracycline doxorubicin (DOX) liposomes with high drug encapsulation (97%) are fabricated, which homologously deliver DOX to breast cancer cells to intensify the immunogenic response and induce PD-L1 overexpression in the tumor. By setting the stage for sensitizing tumors to ICIs, sequential treatment with disulfide-linked PD1-cross-anchored TDEVs nanogels at one-day interval could sustainably release PD1 in the tumor, triggering a high proportion of effector T cell-mediated destruction of orthotopic and metastatic tumors without off-target side effects in the 4T1-bearing TNBC mouse model. Such a TDEV-tandem-augmented chemoimmunotherapeutic strategy with efficient cancer-homing delivery capacity and optimized ordinal-interval regime provides a solid foundation for developing chemoimmunotherapeutic formulations for TNBC therapy at the clinical level.
Collapse
Affiliation(s)
- Mengchi Sun
- School of PharmacyShenyang Pharmaceutical UniversityShenyangLiaoning110016P. R. China
| | - Wen Shi
- Department of PharmacyThe First Hospital of China Medical UniversityShenyangLiaoning110001P. R. China
| | - Yuxia Wu
- Department of PharmacyThe First Hospital of China Medical UniversityShenyangLiaoning110001P. R. China
| | - Zhonggui He
- Wuya College of InnovationShenyang Pharmaceutical UniversityShenyangLiaoning110016P. R. China
| | - Jin Sun
- Wuya College of InnovationShenyang Pharmaceutical UniversityShenyangLiaoning110016P. R. China
| | - Shuang Cai
- Department of PharmacyThe First Hospital of China Medical UniversityShenyangLiaoning110001P. R. China
| | - Qiuhua Luo
- Department of PharmacyThe First Hospital of China Medical UniversityShenyangLiaoning110001P. R. China
| |
Collapse
|
30
|
Fang Y, Yan Y, Bi S, Wang Y, Chen Y, Xu P, Ju H, Liu Y. Screening T-Cell Activity via a Photodetachable DNA-Copolymer Nanocage and Its Therapeutic Application. Anal Chem 2022; 94:13205-13214. [PMID: 36095289 DOI: 10.1021/acs.analchem.2c02763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Screening T-cell activity and selecting active ones from large ex vivo-expanded populations before reinfusion is important for the success of T-cell therapy. Cytokine secretion is the evaluation criterion of cell immune activity. Cell membrane-anchored probes and microchamber-based techniques have been used to screen cytokine secretion at the single-cell level. However, they are either easily affected by nearby cells' secretion or lack of single-cell encapsulation efficiency. Here, we design a photodetachable DNA-copolymer nanocage on the cell membrane for screening the activities of ex vivo-expanded T cells by in-situ monitoring cytokine interferon-gamma (IFN-γ) secretion. The ones with good immune activity are selected for therapeutic application. DNA-copolymer nanocage is self-assembled on a cell membrane to encapsulate a single T cell. A self-quenched IFN-γ recognition aptamer is contained in the DNA-copolymer nanocage, which recovers fluorescence in response to IFN-γ secretion to indicate individual T-cell activity. The active T cells are collected after fluorescence-activated cell sorting, irradiated with 5 min UV light to detach nanocage from the cell membrane, and continuously cocultured with downstream cells. The selected Jurkat cells and CD19 CAR-T cells showed improved capabilities for downstream cell activation and cancer cell killing. The cell membrane-detachable DNA-copolymer nanocage-based T-cell activity screening and selection would have promising applications in T-cell therapy.
Collapse
Affiliation(s)
- Yanyun Fang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yawei Yan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shiyi Bi
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yingfei Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yue Chen
- Department of Hematology, Nanjing Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing 210093, China
| | - Peipei Xu
- Department of Hematology, Nanjing Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing 210093, China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Ying Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China
| |
Collapse
|
31
|
Sun X, Li T, Wang P, Shang L, Niu M, Meng X, Shao H. Nanomaterials and Advances in Tumor Immune-Related Therapy: A Bibliometric Analysis. J Biomed Nanotechnol 2022. [DOI: 10.1166/jbn.2022.3415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
With the rapid growth of the research content of nanomaterials and tumor immunity, the hot spots and urgent problems in the field become blurred. In this review, noticing the great development potential of this research field, we collected and sorted out the research articles from The
Clarivate Analytics Web of Science (WOS) Core Collection database in the field over the past 20 years. Next, we use Excel 2019 from Microsoft (Microsoft Corp, Redmond,WA, USA), VOSviewer (version 1.6.18, Leiden University, Leiden, Netherlands), CiteSpace (Chaomei Chen, Drexel University, USA)
and other softwares to conduct bibliometric analysis on the screened literatures. This paper not only analyzes the countries, institutions and authors with outstanding contributions in the current research field, but also comes up with the hot spots of current research. We hope that by analyzing
and sorting out the past data, we can provide help for the current clinical work and future scientific research.
Collapse
Affiliation(s)
- Xiaohan Sun
- Department of Interventional Radiology, The First Hospital of China Medical University, Shenyang, Liaoning, 110000, China
| | - Tian Li
- Department of Interventional Radiology, The First Hospital of China Medical University, Shenyang, Liaoning, 110000, China
| | - Peng Wang
- Department of Interventional Radiology, The First Hospital of China Medical University, Shenyang, Liaoning, 110000, China
| | - Liqi Shang
- Department of Interventional Radiology, The First Hospital of China Medical University, Shenyang, Liaoning, 110000, China
| | - Meng Niu
- Department of Interventional Radiology, The First Hospital of China Medical University, Shenyang, Liaoning, 110000, China
| | - Xianwei Meng
- Laboratory of Controllable Preparation and Application of Nanomaterials, Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, CAS, Beijing, 100190, China
| | - Haibo Shao
- Department of Interventional Radiology, The First Hospital of China Medical University, Shenyang, Liaoning, 110000, China
| |
Collapse
|
32
|
Huo W, Yang X, Wang B, Cao L, Fang Z, Li Z, Liu H, Liang XJ, Zhang J, Jin Y. Biomineralized hydrogel DC vaccine for cancer immunotherapy: A boosting strategy via improving immunogenicity and reversing immune-inhibitory microenvironment. Biomaterials 2022; 288:121722. [DOI: 10.1016/j.biomaterials.2022.121722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 11/02/2022]
|
33
|
Abstract
With the outstanding achievement of chimeric antigen receptor (CAR)-T cell therapy in the clinic, cell-based medicines have attracted considerable attention for biomedical applications and thus generated encouraging progress. As the basic construction unit of organisms, cells harbor low immunogenicity, desirable compatibility, and a strong capability of crossing various biological barriers. However, there is still a long way to go to fix significant bottlenecks for their clinical translation, such as facile preparation, strict stability requirements, scale-up manufacturing, off-target toxicity, and affordability. The rapid development of biotechnology and engineering approaches in materials sciences has provided an ideal platform to assist cell-based therapeutics for wide application in disease treatments by overcoming these issues. Herein, we survey the most recent advances of various cells as bioactive ingredients and outline the roles of biomaterials in developing cell-based therapeutics. Besides, a perspective of cell therapies is offered with a particular focus on biomaterial-involved development of cell-based biopharmaceuticals.
Collapse
Affiliation(s)
- Yu Chen
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA. .,Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA.,Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Samira Pal
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | - Quanyin Hu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA. .,Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA.,Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
34
|
Mizuta R, Sasaki Y, Katagiri K, Sawada SI, Akiyoshi K. Reversible conjugation of biomembrane vesicles with magnetic nanoparticles using a self-assembled nanogel interface: single particle analysis using imaging flow cytometry. NANOSCALE ADVANCES 2022; 4:1999-2010. [PMID: 36133411 PMCID: PMC9419520 DOI: 10.1039/d1na00834j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/13/2022] [Indexed: 06/16/2023]
Abstract
Nanoscale biomembrane vesicles such as liposomes and extracellular vesicles are promising materials for therapeutic delivery applications. However, modification processes that disrupt the biomembrane affect the performance of these systems. Non-covalent functionalization approaches that are facile and easily reversed by environmental triggers are therefore being widely investigated. In this study, liposomes were successfully hybridized with magnetic iron oxide particles using a cholesterol-modified pullulan nanogel interface. Both the magnetic nanoparticles and the hydrophobic core of the lipid bilayer interacted with the hydrophobic cholesteryl moieties, resulting in stable hybrids after simple mixing. Single particle analysis by imaging flow cytometry showed that the hybrid particles interacted in solution. Calcein loaded liposomes were not disrupted by the hybridization, showing that conjugation did not affect membrane stability. The hybrids could be magnetically separated and showed significantly enhanced uptake by HeLa cells when a magnetic field was applied. Differential scanning calorimetry revealed that the hybridization mechanism involved hydrophobic cholesteryl inserting into the biomembrane. Furthermore, exposure of the hybrids to fetal bovine serum proteins reversed the hybridization in a concentration dependent manner, indicating that the interaction was both reversible and controllable. This is the first example of reversible inorganic material conjugation with a biomembrane that has been confirmed by single particle analysis. Both the magnetic nanogel/liposome hybrids and the imaging flow cytometry analysis method have the potential to significantly contribute to therapeutic delivery and nanomaterial development.
Collapse
Affiliation(s)
- Ryosuke Mizuta
- Department of Polymer Chemistry, Graduate School of Engineering, A3-317, Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan +81-75-383-2590 +81-75-383-2823
| | - Yoshihiro Sasaki
- Department of Polymer Chemistry, Graduate School of Engineering, A3-317, Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan +81-75-383-2590 +81-75-383-2823
| | - Kiyofumi Katagiri
- Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University 1-4-1 Kagamiyama Higashi-Hiroshima 739-8527 Japan
| | - Shin-Ichi Sawada
- Department of Polymer Chemistry, Graduate School of Engineering, A3-317, Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan +81-75-383-2590 +81-75-383-2823
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Graduate School of Engineering, A3-317, Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan +81-75-383-2590 +81-75-383-2823
| |
Collapse
|
35
|
Zhang T, Yang Y, Huang L, Liu Y, Chong G, Yin W, Dong H, Li Y, Li Y. Biomimetic and Materials-Potentiated Cell Engineering for Cancer Immunotherapy. Pharmaceutics 2022; 14:pharmaceutics14040734. [PMID: 35456568 PMCID: PMC9024915 DOI: 10.3390/pharmaceutics14040734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/17/2022] [Accepted: 03/25/2022] [Indexed: 02/01/2023] Open
Abstract
In cancer immunotherapy, immune cells are the main force for tumor eradication. However, they appear to be dysfunctional due to the taming of the tumor immunosuppressive microenvironment. Recently, many materials-engineered strategies are proposed to enhance the anti-tumor effect of immune cells. These strategies either utilize biomimetic materials, as building blocks to construct inanimate entities whose functions are similar to natural living cells, or engineer immune cells with functional materials, to potentiate their anti-tumor effects. In this review, we will summarize these advanced strategies in different cell types, as well as discussing the prospects of this field.
Collapse
Affiliation(s)
- Tingting Zhang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200092, China; (T.Z.); (Y.Y.); (L.H.); (Y.L.); (G.C.); (W.Y.); (Y.L.)
| | - Yushan Yang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200092, China; (T.Z.); (Y.Y.); (L.H.); (Y.L.); (G.C.); (W.Y.); (Y.L.)
| | - Li Huang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200092, China; (T.Z.); (Y.Y.); (L.H.); (Y.L.); (G.C.); (W.Y.); (Y.L.)
| | - Ying Liu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200092, China; (T.Z.); (Y.Y.); (L.H.); (Y.L.); (G.C.); (W.Y.); (Y.L.)
| | - Gaowei Chong
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200092, China; (T.Z.); (Y.Y.); (L.H.); (Y.L.); (G.C.); (W.Y.); (Y.L.)
| | - Weimin Yin
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200092, China; (T.Z.); (Y.Y.); (L.H.); (Y.L.); (G.C.); (W.Y.); (Y.L.)
| | - Haiqing Dong
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200092, China
- Correspondence: (H.D.); (Y.L.); Tel.: +86-021-659-819-52 (H.D. & Y.L.)
| | - Yan Li
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200092, China; (T.Z.); (Y.Y.); (L.H.); (Y.L.); (G.C.); (W.Y.); (Y.L.)
- Correspondence: (H.D.); (Y.L.); Tel.: +86-021-659-819-52 (H.D. & Y.L.)
| | - Yongyong Li
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200092, China; (T.Z.); (Y.Y.); (L.H.); (Y.L.); (G.C.); (W.Y.); (Y.L.)
| |
Collapse
|
36
|
Wang W, Wang S. Cell-based biocomposite engineering directed by polymers. LAB ON A CHIP 2022; 22:1042-1067. [PMID: 35244136 DOI: 10.1039/d2lc00067a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Biological cells such as bacterial, fungal, and mammalian cells always exploit sophisticated chemistries and exquisite micro- and nano-structures to execute life activities, providing numerous templates for engineering bioactive and biomorphic materials, devices, and systems. To transform biological cells into functional biocomposites, polymer-directed cell surface engineering and intracellular functionalization have been developed over the past two decades. Polymeric materials can be easily adopted by various cells through polymer grafting or in situ hydrogelation and can successfully bridge cells with other functional materials as interfacial layers, thus achieving the manufacture of advanced biocomposites through bioaugmentation of living cells and transformation of cells into templated materials. This review article summarizes the recent progress in the design and construction of cell-based biocomposites by polymer-directed strategies. Furthermore, the applications of cell-based biocomposites in broad fields such as cell research, biomedicine, and bioenergy are discussed. Last, we provide personal perspectives on challenges and future trends in this interdisciplinary area.
Collapse
Affiliation(s)
- Wenshuo Wang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
| | - Shutao Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
37
|
Ying L, Xu J, Han D, Zhang Q, Hong Z. The Applications of Metabolic Glycoengineering. Front Cell Dev Biol 2022; 10:840831. [PMID: 35252203 PMCID: PMC8892211 DOI: 10.3389/fcell.2022.840831] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/28/2022] [Indexed: 11/13/2022] Open
Abstract
Mammalian cell membranes are decorated by the glycocalyx, which offer versatile means of generating biochemical signals. By manipulating the set of glycans displayed on cell surface, it is vital for gaining insight into the cellular behavior modulation and medical and biotechnological adhibition. Although genetic engineering is proven to be an effective approach for cell surface modification, the technique is only suitable for natural and genetically encoded molecules. To circumvent these limitations, non-genetic approaches are developed for modifying cell surfaces with unnatural but functional groups. Here, we review latest development of metabolic glycoengineering (MGE), which enriches the chemical functions of the cell surface and is becoming an intriguing new tool for regenerative medicine and tissue engineering. Particular emphasis of this review is placed on discussing current applications and perspectives of MGE.
Collapse
Affiliation(s)
- Liwei Ying
- Orthopedic Department, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China
- Enze Medical Research Center, Taizhou Hospital, Wenzhou Medical University, Linhai, China
| | - Junxi Xu
- Department of Medical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dawei Han
- Orthopedic Department, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China
- Enze Medical Research Center, Taizhou Hospital, Wenzhou Medical University, Linhai, China
| | - Qingguo Zhang
- Orthopedic Department, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China
- Enze Medical Research Center, Taizhou Hospital, Wenzhou Medical University, Linhai, China
- *Correspondence: Qingguo Zhang, ; Zhenghua Hong,
| | - Zhenghua Hong
- Orthopedic Department, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China
- Enze Medical Research Center, Taizhou Hospital, Wenzhou Medical University, Linhai, China
- *Correspondence: Qingguo Zhang, ; Zhenghua Hong,
| |
Collapse
|
38
|
Zhao T, Terracciano R, Becker J, Monaco A, Yilmaz G, Becer CR. Hierarchy of Complex Glycomacromolecules: From Controlled Topologies to Biomedical Applications. Biomacromolecules 2022; 23:543-575. [PMID: 34982551 DOI: 10.1021/acs.biomac.1c01294] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Carbohydrates bearing a distinct complexity use a special code (Glycocode) to communicate with carbohydrate-binding proteins at a high precision to manipulate biological activities in complex biological environments. The level of complexity in carbohydrate-containing macromolecules controls the amount and specificity of information that can be stored in biomacromolecules. Therefore, a better understanding of the glycocode is crucial to open new areas of biomedical applications by controlling or manipulating the interaction between immune cells and pathogens in terms of trafficking and signaling, which would become a powerful tool to prevent infectious diseases. Even though a certain level of progress has been achieved over the past decade, synthetic glycomacromolecules are still lagging far behind naturally existing glycans in terms of complexity and precision because of insufficient and inefficient synthetic techniques. Currently, specific targeting at a cellular level using synthetic glycomacromolecules is still challenging. It is obvious that multidisciplinary collaborations are essential between different specialized disciplines to enhance the carbohydrate receptor-targeting paradigm for new biomedical applications. In this Perspective, recent developments in the synthesis of sophisticated glycomacromolecules are highlighted, and their biological and biomedical applications are also discussed in detail.
Collapse
Affiliation(s)
- Tieshuai Zhao
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Roberto Terracciano
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Jonas Becker
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Alessandra Monaco
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Gokhan Yilmaz
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - C Remzi Becer
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
| |
Collapse
|
39
|
Song Y, Dong CM. Sugar-dependent targeting and immune adjuvant effects of hyperbranched glycosylated polypeptide nanoparticles for ovalbumin delivery. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.01.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
40
|
Immune-instructive materials as new tools for immunotherapy. Curr Opin Biotechnol 2021; 74:194-203. [PMID: 34959210 DOI: 10.1016/j.copbio.2021.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 12/13/2022]
Abstract
Immune instructive materials, are materials with the ability to modulate or mimic the function of immune cells, provide exciting opportunities for developing new therapies in many areas including medical devices, chronic inflammation, cancer, and autoimmune diseases. In this review we highlight some of the latest research involving material-based strategies for modulating macrophage phenotype and dendritic cell function, as well as a brief description on biomaterial use in T cell and natural killer cell engineering. We highlight studies on material topography, size, shape and surface chemistry to reduce inflammation, along with scaffold and hydrogel delivery systems that are used for modulating DC phenotype and influencing T cell polarization. Artificial antigen presenting cells are also reviewed as a promising approach to cancer immunotherapy.
Collapse
|
41
|
Kim Y, Hyun JY, Shin I. Multivalent glycans for biological and biomedical applications. Chem Soc Rev 2021; 50:10567-10593. [PMID: 34346405 DOI: 10.1039/d0cs01606c] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recognition of glycans by proteins plays a crucial role in a variety of physiological processes in cells and living organisms. In addition, interactions of glycans with proteins are involved in the development of diverse diseases, such as pathogen infection, inflammation and tumor metastasis. It is well-known that multivalent glycans bind to proteins much more strongly than do their monomeric counterparts. Owing to this property, numerous multivalent glycans have been utilized to elucidate glycan-mediated biological processes and to discover glycan-based biomedical agents. In this review, we discuss recent advances (2014-2020) made in the development and biological and biomedical applications of synthetic multivalent glycans, including neoglycopeptides, neoglycoproteins, glycodendrimers, glycopolymers, glyconanoparticles and glycoliposomes. We hope this review assists researchers in the design and development of novel multivalent glycans with predictable activities.
Collapse
Affiliation(s)
- Yujun Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea.
| | - Ji Young Hyun
- Department of Drug Discovery, Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Korea.
| | - Injae Shin
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
42
|
Tang H, Wang J, Yu L, Zhang S, Yang H, Li X, Brash JL, Wang L, Chen H. Ultrahigh Efficiency and Minimalist Intracellular Delivery of Macromolecules Mediated by Latent-Photothermal Surfaces. ACS APPLIED MATERIALS & INTERFACES 2021; 13:12594-12602. [PMID: 33661595 DOI: 10.1021/acsami.0c22736] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Intracellular delivery of exogenous macromolecules by photothermal methods is still not widely employed despite its universal and clear effect on cell membrane rupture. The main causes are the unsatisfactory delivery efficiency, poor cell activity, poor cell harvest, and sophisticated operation; these challenges stem from the difficulty of simply controlling laser hotspots. Here, we constructed latent-photothermal surfaces based on multiwall carbon nanotube-doped poly(dimethyl siloxane), which can deliver cargoes with high delivery efficiency and cell viability. Also, cell release and harvest efficiencies were not affected by coordinating the hotspot content and surface structure. This system is suitable for use with a wide range of cell lines, including hard-to-transfect types. The delivery efficiency and cell viability were shown to be greater than 85 and 80%, respectively, and the cell release and harvest efficiency were greater than 95 and 80%, respectively. Moreover, this system has potential application prospects in the field of cell therapy, including stem cell neural differentiation and dendritic cell vaccines.
Collapse
Affiliation(s)
- Heming Tang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Jinghong Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Liying Yu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Sixuan Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - He Yang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xin Li
- Suzhou Seemine-Nebula Biotech Company Ltd, Suzhou 215123, China
| | - John L Brash
- School of Biomedical Engineering and Department of Chemical Engineering, McMaster University, Hamilton, Ontario L8S4L7, Canada
| | - Lei Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|