1
|
Wollweber F, Xu J, Ponce-Toledo RI, Marxer F, Rodrigues-Oliveira T, Pössnecker A, Luo ZH, Malit JJL, Kokhanovska A, Wieczorek M, Schleper C, Pilhofer M. Microtubules in Asgard archaea. Cell 2025; 188:2451-2464.e26. [PMID: 40120574 DOI: 10.1016/j.cell.2025.02.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 01/27/2025] [Accepted: 02/25/2025] [Indexed: 03/25/2025]
Abstract
Microtubules are a hallmark of eukaryotes. Archaeal and bacterial homologs of tubulins typically form homopolymers and non-tubular superstructures. The origin of heterodimeric tubulins assembling into microtubules remains unclear. Here, we report the discovery of microtubule-forming tubulins in Asgard archaea, the closest known relatives of eukaryotes. These Asgard tubulins (AtubA/B) are closely related to eukaryotic α/β-tubulins and the enigmatic bacterial tubulins BtubA/B. Proteomics of Candidatus Lokiarchaeum ossiferum showed that AtubA/B were highly expressed. Cryoelectron microscopy structures demonstrate that AtubA/B form eukaryote-like heterodimers, which assembled into 5-protofilament bona fide microtubules in vitro. The additional paralog AtubB2 lacks a nucleotide-binding site and competitively displaced AtubB. These AtubA/B2 heterodimers polymerized into 7-protofilament non-canonical microtubules. In a sub-population of Ca. Lokiarchaeum ossiferum cells, cryo-tomography revealed tubular structures, while expansion microscopy identified AtubA/B cytoskeletal assemblies. Our findings suggest a pre-eukaryotic origin of microtubules and provide a framework for understanding the fundamental principles of microtubule assembly.
Collapse
Affiliation(s)
- Florian Wollweber
- Department of Biology, Institute of Molecular Biology & Biophysics, Eidgenössische Technische Hochschule Zürich, Otto-Stern-Weg 5, 8093 Zürich, Switzerland
| | - Jingwei Xu
- Department of Biology, Institute of Molecular Biology & Biophysics, Eidgenössische Technische Hochschule Zürich, Otto-Stern-Weg 5, 8093 Zürich, Switzerland
| | - Rafael I Ponce-Toledo
- Department of Functional and Evolutionary Ecology, Archaea Biology and Ecogenomics Unit, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Florina Marxer
- Department of Biology, Institute of Molecular Biology & Biophysics, Eidgenössische Technische Hochschule Zürich, Otto-Stern-Weg 5, 8093 Zürich, Switzerland
| | - Thiago Rodrigues-Oliveira
- Department of Functional and Evolutionary Ecology, Archaea Biology and Ecogenomics Unit, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Anja Pössnecker
- Department of Biology, Institute of Molecular Biology & Biophysics, Eidgenössische Technische Hochschule Zürich, Otto-Stern-Weg 5, 8093 Zürich, Switzerland
| | - Zhen-Hao Luo
- Department of Functional and Evolutionary Ecology, Archaea Biology and Ecogenomics Unit, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Jessie James Limlingan Malit
- Department of Biology, Institute of Molecular Biology & Biophysics, Eidgenössische Technische Hochschule Zürich, Otto-Stern-Weg 5, 8093 Zürich, Switzerland
| | - Anastasiia Kokhanovska
- Department of Biology, Institute of Molecular Biology & Biophysics, Eidgenössische Technische Hochschule Zürich, Otto-Stern-Weg 5, 8093 Zürich, Switzerland
| | - Michal Wieczorek
- Department of Biology, Institute of Molecular Biology & Biophysics, Eidgenössische Technische Hochschule Zürich, Otto-Stern-Weg 5, 8093 Zürich, Switzerland
| | - Christa Schleper
- Department of Functional and Evolutionary Ecology, Archaea Biology and Ecogenomics Unit, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Martin Pilhofer
- Department of Biology, Institute of Molecular Biology & Biophysics, Eidgenössische Technische Hochschule Zürich, Otto-Stern-Weg 5, 8093 Zürich, Switzerland.
| |
Collapse
|
2
|
Davín AA, Woodcroft BJ, Soo RM, Morel B, Murali R, Schrempf D, Clark JW, Álvarez-Carretero S, Boussau B, Moody ERR, Szánthó LL, Richy E, Pisani D, Hemp J, Fischer WW, Donoghue PCJ, Spang A, Hugenholtz P, Williams TA, Szöllősi GJ. A geological timescale for bacterial evolution and oxygen adaptation. Science 2025; 388:eadp1853. [PMID: 40179162 DOI: 10.1126/science.adp1853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 12/19/2024] [Indexed: 04/05/2025]
Abstract
Microbial life has dominated Earth's history but left a sparse fossil record, greatly hindering our understanding of evolution in deep time. However, bacterial metabolism has left signatures in the geochemical record, most conspicuously the Great Oxidation Event (GOE). We combine machine learning and phylogenetic reconciliation to infer ancestral bacterial transitions to aerobic lifestyles, linking them to the GOE to calibrate the bacterial time tree. Extant bacterial phyla trace their diversity to the Archaean and Proterozoic, and bacterial families prior to the Phanerozoic. We infer that most bacterial phyla were ancestrally anaerobic and adopted aerobic lifestyles after the GOE. However, in the cyanobacterial ancestor, aerobic metabolism likely predated the GOE, which may have facilitated the evolution of oxygenic photosynthesis.
Collapse
Affiliation(s)
- Adrián A Davín
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, Brisbane, Queensland, Australia
- Department of Biological Physics, Eötvös Loránd University, Budapest, Hungary
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
| | - Ben J Woodcroft
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, Australia
| | - Rochelle M Soo
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, Brisbane, Queensland, Australia
| | - Benoit Morel
- Computational Molecular Evolution Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
- Institute for Theoretical Informatics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Ranjani Murali
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Dominik Schrempf
- Department of Biological Physics, Eötvös Loránd University, Budapest, Hungary
- MTA-ELTE "Lendület" Evolutionary Genomics Research Group, Budapest, Hungary
| | - James W Clark
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Bristol, UK
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath, UK
| | | | - Bastien Boussau
- Laboratoire de Biométrie et Biologie Evolutive, Univ Lyon, Univ Lyon 1, CNRS, VetAgro Sup, Villeurbanne, France
| | - Edmund R R Moody
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Bristol, UK
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Lénárd L Szánthó
- Department of Biological Physics, Eötvös Loránd University, Budapest, Hungary
- Institute of Evolution, Centre for Ecological Research, Budapest, Hungary
- Model-Based Evolutionary Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Etienne Richy
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Davide Pisani
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Bristol, UK
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - James Hemp
- Metrodora Institute, West Valley City, UT, USA
| | - Woodward W Fischer
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Philip C J Donoghue
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Bristol, UK
| | - Anja Spang
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, Den Burg, Netherlands
- Department of Evolutionary & Population Biology, Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, Netherlands
| | - Philip Hugenholtz
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, Brisbane, Queensland, Australia
| | - Tom A Williams
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Gergely J Szöllősi
- Department of Biological Physics, Eötvös Loránd University, Budapest, Hungary
- MTA-ELTE "Lendület" Evolutionary Genomics Research Group, Budapest, Hungary
- Institute of Evolution, Centre for Ecological Research, Budapest, Hungary
- Model-Based Evolutionary Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| |
Collapse
|
3
|
Santana-Molina C, Williams TA, Snel B, Spang A. Chimeric origins and dynamic evolution of central carbon metabolism in eukaryotes. Nat Ecol Evol 2025; 9:613-627. [PMID: 40033103 PMCID: PMC11976288 DOI: 10.1038/s41559-025-02648-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 01/24/2025] [Indexed: 03/05/2025]
Abstract
The origin of eukaryotes was a key event in the history of life. Current leading hypotheses propose that a symbiosis between an asgardarchaeal host cell and an alphaproteobacterial endosymbiont represented a crucial step in eukaryotic origin and that metabolic cross-feeding between the partners provided the basis for their subsequent evolutionary integration. A major unanswered question is whether the metabolism of modern eukaryotes bears any vestige of this ancestral syntrophy. Here we systematically analyse the evolutionary origins of the eukaryotic gene repertoires mediating central carbon metabolism. Our phylogenetic and sequence analyses reveal that this gene repertoire is chimeric, with ancestral contributions from Asgardarchaeota and Alphaproteobacteria operating predominantly in glycolysis and the tricarboxylic acid cycle, respectively. Our analyses also reveal the extent to which this ancestral metabolic interplay has been remodelled via gene loss, transfer and subcellular retargeting in the >2 billion years since the origin of eukaryotic cells, and we identify genetic contributions from other prokaryotic sources in addition to the asgardarchaeal host and alphaproteobacterial endosymbiont. Our work demonstrates that, in contrast to previous assumptions, modern eukaryotic metabolism preserves information about the nature of the original asgardarchaeal-alphaproteobacterial interactions and supports syntrophy scenarios for the origin of the eukaryotic cell.
Collapse
Affiliation(s)
- Carlos Santana-Molina
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, AB Den Burg, the Netherlands
| | - Tom A Williams
- Bristol Palaeobiology Group, School of Biological Sciences, University of Bristol, Bristol, UK
| | - Berend Snel
- Theoretical Biology & Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands.
| | - Anja Spang
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, AB Den Burg, the Netherlands.
- Department of Evolutionary & Population Biology, Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
4
|
Richards TA, Eme L, Archibald JM, Leonard G, Coelho SM, de Mendoza A, Dessimoz C, Dolezal P, Fritz-Laylin LK, Gabaldón T, Hampl V, Kops GJPL, Leger MM, Lopez-Garcia P, McInerney JO, Moreira D, Muñoz-Gómez SA, Richter DJ, Ruiz-Trillo I, Santoro AE, Sebé-Pedrós A, Snel B, Stairs CW, Tromer EC, van Hooff JJE, Wickstead B, Williams TA, Roger AJ, Dacks JB, Wideman JG. Reconstructing the last common ancestor of all eukaryotes. PLoS Biol 2024; 22:e3002917. [PMID: 39585925 PMCID: PMC11627563 DOI: 10.1371/journal.pbio.3002917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/09/2024] [Indexed: 11/27/2024] Open
Abstract
Understanding the origin of eukaryotic cells is one of the most difficult problems in all of biology. A key challenge relevant to the question of eukaryogenesis is reconstructing the gene repertoire of the last eukaryotic common ancestor (LECA). As data sets grow, sketching an accurate genomics-informed picture of early eukaryotic cellular complexity requires provision of analytical resources and a commitment to data sharing. Here, we summarise progress towards understanding the biology of LECA and outline a community approach to inferring its wider gene repertoire. Once assembled, a robust LECA gene set will be a useful tool for evaluating alternative hypotheses about the origin of eukaryotes and understanding the evolution of traits in all descendant lineages, with relevance in diverse fields such as cell biology, microbial ecology, biotechnology, agriculture, and medicine. In this Consensus View, we put forth the status quo and an agreed path forward to reconstruct LECA's gene content.
Collapse
Affiliation(s)
| | - Laura Eme
- Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette, France
- Department of Cell & Molecular Biology, The University of Rhode Island, Kingston, Rhode Island, United States of America
| | - John M. Archibald
- Department of Biochemistry and Molecular Biology and the Institute for Comparative Genomics, Dalhousie University, Halifax, Canada
| | - Guy Leonard
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Susana M. Coelho
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Alex de Mendoza
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, United States of America
| | - Christophe Dessimoz
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Pavel Dolezal
- Charles University, Faculty of Science, Department of Parasitology, BIOCEV, Vestec, Czech Republic
| | - Lillian K. Fritz-Laylin
- Department of Biology, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
| | - Toni Gabaldón
- Barcelona Supercomputing Centre (BSC-CNS), Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Vladimír Hampl
- Charles University, Faculty of Science, Department of Parasitology, BIOCEV, Vestec, Czech Republic
| | - Geert J. P. L. Kops
- Hubrecht Institute-KNAW, Oncode Institute, UMC Utrecht, Utrecht, the Netherlands
| | - Michelle M. Leger
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
- Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa, Japan
| | - Purificacion Lopez-Garcia
- Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette, France
| | - James O. McInerney
- Department of Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - David Moreira
- Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette, France
| | - Sergio A. Muñoz-Gómez
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Daniel J. Richter
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Iñaki Ruiz-Trillo
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Alyson E. Santoro
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, California, United States of America
| | - Arnau Sebé-Pedrós
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Berend Snel
- Theoretical Biology and Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | | | - Eelco C. Tromer
- Cell Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, Rijksuniversiteit Groningen, Groningen, the Netherlands
| | - Jolien J. E. van Hooff
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands
| | - Bill Wickstead
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Tom A. Williams
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Andrew J. Roger
- Department of Biochemistry and Molecular Biology and the Institute for Comparative Genomics, Dalhousie University, Halifax, Canada
| | - Joel B. Dacks
- Division of Infectious Diseases, Department of Medicine, and Department of Biological Sciences, University of Alberta, Edmonton, Canada
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Centre for Life’s Origins and Evolution, Department of Genetics, Evolution, & Environment, University College, London, United Kingdom
| | - Jeremy G. Wideman
- Center for Mechanisms of Evolution, School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| |
Collapse
|
5
|
Vosseberg J, van Hooff JJE, Köstlbacher S, Panagiotou K, Tamarit D, Ettema TJG. The emerging view on the origin and early evolution of eukaryotic cells. Nature 2024; 633:295-305. [PMID: 39261613 DOI: 10.1038/s41586-024-07677-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 06/05/2024] [Indexed: 09/13/2024]
Abstract
The origin of the eukaryotic cell, with its compartmentalized nature and generally large size compared with bacterial and archaeal cells, represents a cornerstone event in the evolution of complex life on Earth. In a process referred to as eukaryogenesis, the eukaryotic cell is believed to have evolved between approximately 1.8 and 2.7 billion years ago from its archaeal ancestors, with a symbiosis with a bacterial (proto-mitochondrial) partner being a key event. In the tree of life, the branch separating the first from the last common ancestor of all eukaryotes is long and lacks evolutionary intermediates. As a result, the timing and driving forces of the emergence of complex eukaryotic features remain poorly understood. During the past decade, environmental and comparative genomic studies have revealed vital details about the identity and nature of the host cell and the proto-mitochondrial endosymbiont, enabling a critical reappraisal of hypotheses underlying the symbiotic origin of the eukaryotic cell. Here we outline our current understanding of the key players and events underlying the emergence of cellular complexity during the prokaryote-to-eukaryote transition and discuss potential avenues of future research that might provide new insights into the enigmatic origin of the eukaryotic cell.
Collapse
Affiliation(s)
- Julian Vosseberg
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands
| | - Jolien J E van Hooff
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands
| | - Stephan Köstlbacher
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands
| | - Kassiani Panagiotou
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands
| | - Daniel Tamarit
- Theoretical Biology and Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Thijs J G Ettema
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands.
| |
Collapse
|
6
|
Greening C, Cabotaje PR, Valentin Alvarado LE, Leung PM, Land H, Rodrigues-Oliveira T, Ponce-Toledo RI, Senger M, Klamke MA, Milton M, Lappan R, Mullen S, West-Roberts J, Mao J, Song J, Schoelmerich M, Stairs CW, Schleper C, Grinter R, Spang A, Banfield JF, Berggren G. Minimal and hybrid hydrogenases are active from archaea. Cell 2024; 187:3357-3372.e19. [PMID: 38866018 PMCID: PMC11216029 DOI: 10.1016/j.cell.2024.05.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 04/12/2024] [Accepted: 05/16/2024] [Indexed: 06/14/2024]
Abstract
Microbial hydrogen (H2) cycling underpins the diversity and functionality of diverse anoxic ecosystems. Among the three evolutionarily distinct hydrogenase superfamilies responsible, [FeFe] hydrogenases were thought to be restricted to bacteria and eukaryotes. Here, we show that anaerobic archaea encode diverse, active, and ancient lineages of [FeFe] hydrogenases through combining analysis of existing and new genomes with extensive biochemical experiments. [FeFe] hydrogenases are encoded by genomes of nine archaeal phyla and expressed by H2-producing Asgard archaeon cultures. We report an ultraminimal hydrogenase in DPANN archaea that binds the catalytic H-cluster and produces H2. Moreover, we identify and characterize remarkable hybrid complexes formed through the fusion of [FeFe] and [NiFe] hydrogenases in ten other archaeal orders. Phylogenetic analysis and structural modeling suggest a deep evolutionary history of hybrid hydrogenases. These findings reveal new metabolic adaptations of archaea, streamlined H2 catalysts for biotechnological development, and a surprisingly intertwined evolutionary history between the two major H2-metabolizing enzymes.
Collapse
Affiliation(s)
- Chris Greening
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia; SAEF: Securing Antarctica's Environmental Future, Monash University, Clayton, VIC, Australia.
| | - Princess R Cabotaje
- Department of Chemistry - Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Luis E Valentin Alvarado
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA 94709, USA
| | - Pok Man Leung
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia; SAEF: Securing Antarctica's Environmental Future, Monash University, Clayton, VIC, Australia
| | - Henrik Land
- Department of Chemistry - Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Thiago Rodrigues-Oliveira
- Department of Functional and Evolutionary Ecology, Archaea Biology and Ecogenomics Unit, University of Vienna, Vienna, Austria
| | - Rafael I Ponce-Toledo
- Department of Functional and Evolutionary Ecology, Archaea Biology and Ecogenomics Unit, University of Vienna, Vienna, Austria
| | - Moritz Senger
- Department of Chemistry - Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Max A Klamke
- Department of Chemistry - Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Michael Milton
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Rachael Lappan
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia; SAEF: Securing Antarctica's Environmental Future, Monash University, Clayton, VIC, Australia
| | - Susan Mullen
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA 94709, USA
| | - Jacob West-Roberts
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA 94709, USA
| | - Jie Mao
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia; Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Jiangning Song
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Marie Schoelmerich
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA 94709, USA
| | | | - Christa Schleper
- Department of Functional and Evolutionary Ecology, Archaea Biology and Ecogenomics Unit, University of Vienna, Vienna, Austria
| | - Rhys Grinter
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
| | - Anja Spang
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research, Den Hoorn, the Netherlands; Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands.
| | - Jillian F Banfield
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia; Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA 94709, USA.
| | - Gustav Berggren
- Department of Chemistry - Ångström Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
7
|
Maire J, Collingro A, Horn M, van Oppen MJH. Chlamydiae in corals: shared functional potential despite broad taxonomic diversity. ISME COMMUNICATIONS 2024; 4:ycae054. [PMID: 38707840 PMCID: PMC11070183 DOI: 10.1093/ismeco/ycae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/15/2024] [Accepted: 04/09/2024] [Indexed: 05/07/2024]
Abstract
Cnidarians, such as corals and sea anemones, associate with a wide range of bacteria that have essential functions, including nutrient cycling and the production of antimicrobial compounds. Within cnidarians, bacteria can colonize all microhabitats including the tissues. Among them are obligate intracellular bacteria of the phylum Chlamydiota (chlamydiae) whose impact on cnidarian hosts and holobionts, especially corals, remain unknown. Here, we conducted a meta-analysis of previously published 16S rRNA gene metabarcoding data from cnidarians (e.g. coral, jellyfish, and anemones), eight metagenome-assembled genomes (MAGs) of coral-associated chlamydiae, and one MAG of jellyfish-associated chlamydiae to decipher their diversity and functional potential. While the metabarcoding dataset showed an enormous diversity of cnidarian-associated chlamydiae, six out of nine MAGs were affiliated with the Simkaniaceae family. The other three MAGs were assigned to the Parasimkaniaceae, Rhabdochlamydiaceae, and Anoxychlamydiaceae, respectively. All MAGs lacked the genes necessary for an independent existence, lacking any nucleotide or vitamin and most amino acid biosynthesis pathways. Hallmark chlamydial genes, such as a type III secretion system, nucleotide transporters, and genes for host interaction, were encoded in all MAGs. Together these observations suggest an obligate intracellular lifestyle of coral-associated chlamydiae. No unique genes were found in coral-associated chlamydiae, suggesting a lack of host specificity. Additional studies are needed to understand how chlamydiae interact with their coral host, and other microbes in coral holobionts. This first study of the diversity and functional potential of coral-associated chlamydiae improves our understanding of both the coral microbiome and the chlamydial lifestyle and host range.
Collapse
Affiliation(s)
- Justin Maire
- School of BioSciences, The University of Melbourne, Parkville 3010, VIC, Australia
| | - Astrid Collingro
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna 1030, Austria
| | - Matthias Horn
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna 1030, Austria
| | - Madeleine J H van Oppen
- School of BioSciences, The University of Melbourne, Parkville 3010, VIC, Australia
- Australian Institute of Marine Science, PMB No 3, Townsville 4810, QLD, Australia
| |
Collapse
|
8
|
Baum B, Spang A. On the origin of the nucleus: a hypothesis. Microbiol Mol Biol Rev 2023; 87:e0018621. [PMID: 38018971 PMCID: PMC10732040 DOI: 10.1128/mmbr.00186-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023] Open
Abstract
SUMMARYIn this hypothesis article, we explore the origin of the eukaryotic nucleus. In doing so, we first look afresh at the nature of this defining feature of the eukaryotic cell and its core functions-emphasizing the utility of seeing the eukaryotic nucleoplasm and cytoplasm as distinct regions of a common compartment. We then discuss recent progress in understanding the evolution of the eukaryotic cell from archaeal and bacterial ancestors, focusing on phylogenetic and experimental data which have revealed that many eukaryotic machines with nuclear activities have archaeal counterparts. In addition, we review the literature describing the cell biology of representatives of the TACK and Asgardarchaeaota - the closest known living archaeal relatives of eukaryotes. Finally, bringing these strands together, we propose a model for the archaeal origin of the nucleus that explains much of the current data, including predictions that can be used to put the model to the test.
Collapse
Affiliation(s)
- Buzz Baum
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Anja Spang
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, Den Burg, the Netherlands
- Department of Evolutionary & Population Biology, Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, the Netherlands
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, Den Burg, the Netherlands
| |
Collapse
|
9
|
Davison HR, Hurst GDD. Hidden from plain sight: Novel Simkaniaceae and Rhabdochlamydiaceae diversity emerging from screening genomic and metagenomic data. Syst Appl Microbiol 2023; 46:126468. [PMID: 37847957 DOI: 10.1016/j.syapm.2023.126468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/19/2023]
Abstract
Chlamydiota are an ancient and hyperdiverse phylum of obligate intracellular bacteria. The best characterized representatives are pathogens or parasites of mammals, but it is thought that their most common hosts are microeukaryotes like Amoebozoa. The diversity in taxonomy, evolution, and function of non-pathogenic Chlamydiota are slowly being described. Here we use data mining techniques and genomic analysis to extend our current knowledge of Chlamydiota diversity and its hosts, in particular the Order Parachlamydiales. We extract one Rhabdochlamydiaceae and three Simkaniaceae Metagenome-Assembled Genomes (MAGs) from NCBI Short Read Archive deposits of ciliate and algal genome sequencing projects. We then use these to identify a further 14 and 8 MAGs respectively amongst existing, unidentified environmental assemblies. From these data we identify two novel clades with host associated data, for which we propose the names "Sacchlamyda saccharinae" (Family Rhabdochlamydiaceae) and "Amphrikana amoebophyrae" (Family Simkaniaceae), as well as a third new clade of environmental MAGs "Acheromyda pituitae" (Family Rhabdochlamydiaceae). The extent of uncharacterized diversity within the Rhabdochlamydiaceae and Simkaniaceae is indicated by 16 of the 22 MAGs being evolutionarily distant from currently characterised genera. Within our limited data, there was great predicted diversity in Parachlamydiales metabolism and evolution, including the potential for metabolic and defensive symbioses as well as pathogenicity. These data provide an imperative to link genomic diversity in metagenomics data to their associated eukaryotic host, and to develop onward understanding of the functional significance of symbiosis with this hyperdiverse clade.
Collapse
Affiliation(s)
- Helen R Davison
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB UK.
| | - Gregory D D Hurst
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB UK
| |
Collapse
|
10
|
Borel N, Greub G, For The Icsp Subcommittee On The Taxonomy Of Chlamydiae. International Committee on Systematics of Prokaryotes Subcommittee on the taxonomy of Chlamydiae: Minutes of the closed meeting, March 20, Meeting of the Chlamydia Research Society, Omaha, NE, USA. Int J Syst Evol Microbiol 2023; 73. [PMID: 37589254 DOI: 10.1099/ijsem.0.006004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023] Open
Affiliation(s)
- Nicole Borel
- Institute of Veterinary Pathology, Department of Pathobiology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 268, CH-8057 Zurich, Swaziland
| | - Gilbert Greub
- Institute of Microbiology, University Hospital and University of Lausanne, Bugnon 48, CH-1011 Lausanne, Swaziland
| | | |
Collapse
|
11
|
Waguia Kontchou C, Häcker G. Role of mitochondrial outer membrane permeabilization during bacterial infection. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 374:83-127. [PMID: 36858657 DOI: 10.1016/bs.ircmb.2022.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Beyond the initial 'powerhouse' view, mitochondria have numerous functions in their mammalian cell and contribute to many physiological processes, and many of these we understand only partially. The control of apoptosis by mitochondria is firmly established. Many questions remain however how this function is embedded into physiology, and how other signaling pathways regulate mitochondrial apoptosis; the interplay of bacteria with the mitochondrial apoptosis pathway is one such example. The outer mitochondrial membrane regulates both import into mitochondria and the release of intermembrane, and in some situations also matrix components from mitochondria, and these mitochondrial components can have signaling function in the cytosol. One function is the induction of apoptotic cell death. An exciting, more recently discovered function is the regulation of inflammation. Mitochondrial molecules, both proteins and nucleic acids, have inflammatory activity when released from mitochondria, an activity whose regulation is intertwined with the activation of apoptotic caspases. Bacterial infection can have more general effects on mitochondrial apoptosis-regulation, through effects on host transcription and other pathways, such as signals controlled by pattern recognition. Some specialized bacteria have products that more specifically regulate signaling to the outer mitochondrial membrane, and to apoptosis; both pro- and anti-apoptotic mechanisms have been reported. Among the intriguing recent findings in this area are signaling contributions of porins and the sub-lethal release of intermembrane constituents. We will here review the literature and place the new developments into the established context of mitochondrial signaling during the contact of bacterial pathogens with human cells.
Collapse
Affiliation(s)
- Collins Waguia Kontchou
- Institute of Medical Microbiology and Hygiene, Medical Center-University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Georg Häcker
- Institute of Medical Microbiology and Hygiene, Medical Center-University of Freiburg, Faculty of Medicine, Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
12
|
Dharamshi JE, Köstlbacher S, Schön ME, Collingro A, Ettema TJG, Horn M. Gene gain facilitated endosymbiotic evolution of Chlamydiae. Nat Microbiol 2023; 8:40-54. [PMID: 36604515 PMCID: PMC9816063 DOI: 10.1038/s41564-022-01284-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 11/07/2022] [Indexed: 01/07/2023]
Abstract
Chlamydiae is a bacterial phylum composed of obligate animal and protist endosymbionts. However, other members of the Planctomycetes-Verrucomicrobia-Chlamydiae superphylum are primarily free living. How Chlamydiae transitioned to an endosymbiotic lifestyle is still largely unresolved. Here we reconstructed Planctomycetes-Verrucomicrobia-Chlamydiae species relationships and modelled superphylum genome evolution. Gene content reconstruction from 11,996 gene families suggests a motile and facultatively anaerobic last common Chlamydiae ancestor that had already gained characteristic endosymbiont genes. Counter to expectations for genome streamlining in strict endosymbionts, we detected substantial gene gain within Chlamydiae. We found that divergence in energy metabolism and aerobiosis observed in extant lineages emerged later during chlamydial evolution. In particular, metabolic and aerobic genes characteristic of the more metabolically versatile protist-infecting chlamydiae were gained, such as respiratory chain complexes. Our results show that metabolic complexity can increase during endosymbiont evolution, adding an additional perspective for understanding symbiont evolutionary trajectories across the tree of life.
Collapse
Affiliation(s)
- Jennah E Dharamshi
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Stephan Köstlbacher
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Vienna, Austria
- University of Vienna, Doctoral School in Microbiology and Environmental Science, Vienna, Austria
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Max E Schön
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Astrid Collingro
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Vienna, Austria
| | - Thijs J G Ettema
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands.
| | - Matthias Horn
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Vienna, Austria.
| |
Collapse
|
13
|
Barlow LD, Maciejowski W, More K, Terry K, Vargová R, Záhonová K, Dacks JB. Comparative Genomics for Evolutionary Cell Biology Using AMOEBAE: Understanding the Golgi and Beyond. Methods Mol Biol 2022; 2557:431-452. [PMID: 36512230 DOI: 10.1007/978-1-0716-2639-9_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Taking an evolutionary approach to cell biology can yield important new information about how the cell works and how it evolved to do so. This is true of the Golgi apparatus, as it is of all systems within the cell. Comparative genomics is one of the crucial first steps to this line of research, but comes with technical challenges that must be overcome for rigor and robustness. We here introduce AMOEBAE, a workflow for mid-range scale comparative genomic analyses. It allows for customization of parameters, queries, and taxonomic sampling of genomic and transcriptomics data. This protocol article covers the rationale for an evolutionary approach to cell biological study (i.e., when would AMOEBAE be useful), how to use AMOEBAE, and discussion of limitations. It also provides an example dataset, which demonstrates that the Golgi protein AP4 Epsilon is present as the sole retained subunit of the AP4 complex in basidiomycete fungi. AMOEBAE can facilitate comparative genomic studies by balancing reproducibility and speed with user-input and interpretation. It is hoped that AMOEBAE or similar tools will encourage cell biologists to incorporate an evolutionary context into their research.
Collapse
Affiliation(s)
- Lael D Barlow
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada. .,Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, UK.
| | - William Maciejowski
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Kiran More
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Kara Terry
- Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Romana Vargová
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czechia
| | - Kristína Záhonová
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czechia.,Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
| | - Joel B Dacks
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada. .,Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, AB, Canada. .,Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czechia. .,Centre for Life's Origin and Evolution, Department of Genetics, Evolution and Environment, University College of London, London, UK.
| |
Collapse
|
14
|
Spang A, Mahendrarajah TA, Offre P, Stairs CW. Evolving Perspective on the Origin and Diversification of Cellular Life and the Virosphere. Genome Biol Evol 2022; 14:evac034. [PMID: 35218347 PMCID: PMC9169541 DOI: 10.1093/gbe/evac034] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2022] [Indexed: 11/14/2022] Open
Abstract
The tree of life (TOL) is a powerful framework to depict the evolutionary history of cellular organisms through time, from our microbial origins to the diversification of multicellular eukaryotes that shape the visible biosphere today. During the past decades, our perception of the TOL has fundamentally changed, in part, due to profound methodological advances, which allowed a more objective approach to studying organismal and viral diversity and led to the discovery of major new branches in the TOL as well as viral lineages. Phylogenetic and comparative genomics analyses of these data have, among others, revolutionized our understanding of the deep roots and diversity of microbial life, the origin of the eukaryotic cell, eukaryotic diversity, as well as the origin, and diversification of viruses. In this review, we provide an overview of some of the recent discoveries on the evolutionary history of cellular organisms and their viruses and discuss a variety of complementary techniques that we consider crucial for making further progress in our understanding of the TOL and its interconnection with the virosphere.
Collapse
Affiliation(s)
- Anja Spang
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, Utrecht University, Den Burg, The Netherlands
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Tara A Mahendrarajah
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, Utrecht University, Den Burg, The Netherlands
| | - Pierre Offre
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, Utrecht University, Den Burg, The Netherlands
| | - Courtney W Stairs
- Department of Biology, Microbiology research group, Lund University, Lund, Sweden
| |
Collapse
|
15
|
Abstract
The ability to harvest reducing power from molecular hydrogen was once considered a prokaryotic trait. New research challenges this notion by finding the first eukaryotic organism capable of oxidizing hydrogen.
Collapse
Affiliation(s)
| | - Courtney W Stairs
- Department of Biology, Lund University, Sölvegatan 35, 223 62 Lund, Sweden.
| |
Collapse
|
16
|
Stairs CW, Táborský P, Salomaki ED, Kolisko M, Pánek T, Eme L, Hradilová M, Vlček Č, Jerlström-Hultqvist J, Roger AJ, Čepička I. Anaeramoebae are a divergent lineage of eukaryotes that shed light on the transition from anaerobic mitochondria to hydrogenosomes. Curr Biol 2021; 31:5605-5612.e5. [PMID: 34710348 DOI: 10.1016/j.cub.2021.10.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/07/2021] [Accepted: 10/05/2021] [Indexed: 01/02/2023]
Abstract
Discoveries of diverse microbial eukaryotes and their inclusion in comprehensive phylogenomic analyses have crucially re-shaped the eukaryotic tree of life in the 21st century.1 At the deepest level, eukaryotic diversity comprises 9-10 "supergroups." One of these supergroups, the Metamonada, is particularly important to our understanding of the evolutionary dynamics of eukaryotic cells, including the remodeling of mitochondrial function. All metamonads thrive in low-oxygen environments and lack classical aerobic mitochondria, instead possessing mitochondrion-related organelles (MROs) with metabolisms that are adapted to low-oxygen conditions. These MROs lack an organellar genome, do not participate in the Krebs cycle and oxidative phosphorylation,2 and often synthesize ATP by substrate-level phosphorylation coupled to hydrogen production.3,4 The events that occurred during the transition from an oxygen-respiring mitochondrion to a functionally streamlined MRO early in metamonad evolution remain largely unknown. Here, we report transcriptomes of two recently described, enigmatic, anaerobic protists from the genus Anaeramoeba.5 Using phylogenomic analysis, we show that these species represent a divergent, phylum-level lineage in the tree of metamonads, emerging as a sister group of the Parabasalia and reordering the deep branching order of the metamonad tree. Metabolic reconstructions of the Anaeramoeba MROs reveal many "classical" mitochondrial features previously not seen in metamonads, including a disulfide relay import system, propionate production, and amino acid metabolism. Our findings suggest that the cenancestor of Metamonada likely had MROs with more classical mitochondrial features than previously anticipated and demonstrate how discoveries of novel lineages of high taxonomic rank continue to transform our understanding of early eukaryote evolution.
Collapse
Affiliation(s)
- Courtney W Stairs
- Department of Biology, Lund University, Sölvegatan 35, 223 62 Lund, Sweden.
| | - Petr Táborský
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 44 Prague, Czech Republic
| | - Eric D Salomaki
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic
| | - Martin Kolisko
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic
| | - Tomáš Pánek
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 44 Prague, Czech Republic
| | - Laura Eme
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, 91400 Orsay, France
| | - Miluše Hradilová
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Čestmír Vlček
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Jon Jerlström-Hultqvist
- Department of Biochemistry and Molecular Biology, Dalhousie University, 5850 College St. Halifax, NS B3H 4R2, Canada
| | - Andrew J Roger
- Department of Biochemistry and Molecular Biology, Dalhousie University, 5850 College St. Halifax, NS B3H 4R2, Canada
| | - Ivan Čepička
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 44 Prague, Czech Republic.
| |
Collapse
|
17
|
McCutcheon JP. The Genomics and Cell Biology of Host-Beneficial Intracellular Infections. Annu Rev Cell Dev Biol 2021; 37:115-142. [PMID: 34242059 DOI: 10.1146/annurev-cellbio-120219-024122] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Microbes gain access to eukaryotic cells as food for bacteria-grazing protists, for host protection by microbe-killing immune cells, or for microbial benefit when pathogens enter host cells to replicate. But microbes can also gain access to a host cell and become an important-often required-beneficial partner. The oldest beneficial microbial infections are the ancient eukaryotic organelles now called the mitochondrion and plastid. But numerous other host-beneficial intracellular infections occur throughout eukaryotes. Here I review the genomics and cell biology of these interactions with a focus on intracellular bacteria. The genomes of host-beneficial intracellular bacteria have features that span a previously unfilled gap between pathogens and organelles. Host cell adaptations to allow the intracellular persistence of beneficial bacteria are found along with evidence for the microbial manipulation of host cells, but the cellular mechanisms of beneficial bacterial infections are not well understood. Expected final online publication date for the Annual Review of Cell and Developmental Biology, Volume 37 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- John P McCutcheon
- Biodesign Center for Mechanisms of Evolution, School of Life Sciences, Arizona State University, Tempe, Arizona 85287, USA;
| |
Collapse
|
18
|
Köstlbacher S, Collingro A, Halter T, Schulz F, Jungbluth SP, Horn M. Pangenomics reveals alternative environmental lifestyles among chlamydiae. Nat Commun 2021; 12:4021. [PMID: 34188040 PMCID: PMC8242063 DOI: 10.1038/s41467-021-24294-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/10/2021] [Indexed: 02/07/2023] Open
Abstract
Chlamydiae are highly successful strictly intracellular bacteria associated with diverse eukaryotic hosts. Here we analyzed metagenome-assembled genomes of the "Genomes from Earth's Microbiomes" initiative from diverse environmental samples, which almost double the known phylogenetic diversity of the phylum and facilitate a highly resolved view at the chlamydial pangenome. Chlamydiae are defined by a relatively large core genome indicative of an intracellular lifestyle, and a highly dynamic accessory genome of environmental lineages. We observe chlamydial lineages that encode enzymes of the reductive tricarboxylic acid cycle and for light-driven ATP synthesis. We show a widespread potential for anaerobic energy generation through pyruvate fermentation or the arginine deiminase pathway, and we add lineages capable of molecular hydrogen production. Genome-informed analysis of environmental distribution revealed lineage-specific niches and a high abundance of chlamydiae in some habitats. Together, our data provide an extended perspective of the variability of chlamydial biology and the ecology of this phylum of intracellular microbes.
Collapse
Affiliation(s)
- Stephan Köstlbacher
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Astrid Collingro
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Tamara Halter
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | | | | | - Matthias Horn
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria.
| |
Collapse
|
19
|
Hughes ER, Winter MG, Alves da Silva L, Muramatsu MK, Jimenez AG, Gillis CC, Spiga L, Chanin RB, Santos RL, Zhu W, Winter SE. Reshaping of bacterial molecular hydrogen metabolism contributes to the outgrowth of commensal E. coli during gut inflammation. eLife 2021; 10:e58609. [PMID: 34085924 PMCID: PMC8177889 DOI: 10.7554/elife.58609] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 05/20/2021] [Indexed: 12/24/2022] Open
Abstract
The composition of gut-associated microbial communities changes during intestinal inflammation, including an expansion of Enterobacteriaceae populations. The mechanisms underlying microbiota changes during inflammation are incompletely understood. Here, we analyzed previously published metagenomic datasets with a focus on microbial hydrogen metabolism. The bacterial genomes in the inflamed murine gut and in patients with inflammatory bowel disease contained more genes encoding predicted hydrogen-utilizing hydrogenases compared to communities found under non-inflamed conditions. To validate these findings, we investigated hydrogen metabolism of Escherichia coli, a representative Enterobacteriaceae, in mouse models of colitis. E. coli mutants lacking hydrogenase-1 and hydrogenase-2 displayed decreased fitness during colonization of the inflamed cecum and colon. Utilization of molecular hydrogen was in part dependent on respiration of inflammation-derived electron acceptors. This work highlights the contribution of hydrogenases to alterations of the gut microbiota in the context of non-infectious colitis.
Collapse
Affiliation(s)
| | - Maria G Winter
- Department of Microbiology, UT SouthwesternDallasUnited States
| | - Laice Alves da Silva
- Departamento de Clinica e Cirurgia Veterinarias, Escola de Veterinaria, Universidade Federal de Minas GeraisBelo HorizonteBrazil
| | | | - Angel G Jimenez
- Department of Microbiology, UT SouthwesternDallasUnited States
| | | | - Luisella Spiga
- Department of Microbiology, UT SouthwesternDallasUnited States
| | | | - Renato L Santos
- Departamento de Clinica e Cirurgia Veterinarias, Escola de Veterinaria, Universidade Federal de Minas GeraisBelo HorizonteBrazil
| | - Wenhan Zhu
- Department of Microbiology, UT SouthwesternDallasUnited States
| | - Sebastian E Winter
- Department of Microbiology, UT SouthwesternDallasUnited States
- Department of Immunology, UT SouthwesternDallasUnited States
| |
Collapse
|
20
|
Lazcano A, Peretó J. Prokaryotic symbiotic consortia and the origin of nucleated cells: A critical review of Lynn Margulis hypothesis. Biosystems 2021; 204:104408. [PMID: 33744400 DOI: 10.1016/j.biosystems.2021.104408] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 03/11/2021] [Indexed: 12/17/2022]
Abstract
The publication in the late 1960s of Lynn Margulis endosymbiotic proposal is a scientific milestone that brought to the fore of evolutionary discussions the issue of the origin of nucleated cells. Although it is true that the times were ripe, the timely publication of Lynn Margulis' original paper was the product of an intellectually bold 29-years old scientist, who based on the critical analysis of the available scientific information produced an all-encompassing, sophisticated narrative scheme on the origin of eukaryotic cells as a result of the evolution of prokaryotic consortia and, in bold intellectual stroke, put it all in the context of planetary evolution. A critical historical reassessment of her original proposal demonstrates that her hypothesis was not a simple archival outline of past schemes, but a renewed historical narrative of prokaryotic evolution and the role of endosymbiosis in the origin of eukaryotes. Although it is now accepted that the closest bacterial relatives of mitochondria and plastids are α-proteobacteria and cyanobacteria, respectively, comparative genomics demonstrates the mosaic character of the organelle genomes. The available evidence has completely refuted Margulis' proposal of an exogenous origin for eukaryotic flagella, the (9 + 2) basal bodies, and centromeres, but we discuss in detail the reasons that led her to devote considerable efforts to argue for a symbiotic origin of the eukaryotic motility. An analysis of the arguments successfully employed by Margulis in her persuasive advocacy of endosymbiosis, combined with the discussions of her flaws and the scientific atmosphere during the period in which she formulated her proposals, are critical for a proper appraisal of the historical conditions that shaped her theory and its acceptance.
Collapse
Affiliation(s)
- Antonio Lazcano
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico; Miembro de El Colegio Nacional, Mexico.
| | - Juli Peretó
- Department of Biochemistry and Molecular Biology, Universitat de València, C. Dr. Moliner 50, 46100, Burjassot, Spain; Institute for Integrative Systems Biology (I(2)SysBio), Universitat de València-CSIC, C. José Beltrán 2, 46980, Paterna, Spain.
| |
Collapse
|
21
|
Gawryluk RMR, Stairs CW. Diversity of electron transport chains in anaerobic protists. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1862:148334. [PMID: 33159845 DOI: 10.1016/j.bbabio.2020.148334] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/21/2020] [Accepted: 10/30/2020] [Indexed: 01/06/2023]
Abstract
Eukaryotic microbes (protists) that occupy low-oxygen environments often have drastically different mitochondrial metabolism compared to their aerobic relatives. A common theme among many anaerobic protists is the serial loss of components of the electron transport chain (ETC). Here, we discuss the diversity of the ETC across the tree of eukaryotes and review hypotheses for how ETCs are modified, and ultimately lost, in protists. We find that while protists have converged to some of the same metabolism as anaerobic animals, there are clear protist-specific strategies to thrive without oxygen.
Collapse
Affiliation(s)
- Ryan M R Gawryluk
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| | - Courtney W Stairs
- Department of Biology, Lund University, Sölvegatan 35, 223 62 Lund, Sweden; Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, SE-75123 Uppsala, Sweden.
| |
Collapse
|