1
|
Qian J, Zhang B, Liu C, Xue Y, Zhou H, Huang L, Zheng S, Chen M, Fu YQ. Reconfigurable acoustic tweezer for precise tracking and in-situ sensing of trace miRNAs in tumor cells. Biosens Bioelectron 2025; 282:117505. [PMID: 40288310 DOI: 10.1016/j.bios.2025.117505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 04/10/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025]
Abstract
MicroRNAs (miRNAs) have emerged as critical biomarkers for early cancer diagnosis and monitoring. However, their isolation from clinical samples typically yields only trace amounts, significantly limiting the sensitivity and efficiency of cancer detection. To address this challenge, we present a octangular reconfigurable acoustic tweezer (ORAT) as an integrated platform for precise tumor cell tracking and in-situ detection of trace miRNAs. By simultaneously modulating multidirectional acoustic signals and parameters, the ORAT dynamically reshapes the acoustic field, enabling precise control over manipulation areas, particle spacing, array angles, distribution patterns, and node rotation. This device allows selective particle manipulation across entire regions or specific areas through adaptive adjustments of the microchamber boundary. Notably, the ORAT achieves rapid and accurate localization and labeling of rare tumor cells within a large population of normal cells. Furthermore, it enhances the sensitivity of CRISPR/Cas-based miRNA detection in digital microdroplets by three orders of magnitude, if compared to that of the conventional tube-based method. With its versatile capabilities, the ORAT holds remarkable promise for advancing nucleic acid analysis in a wide range of cancers and related diseases.
Collapse
Affiliation(s)
- Jingui Qian
- Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Bowei Zhang
- Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Chuanmin Liu
- Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yuhang Xue
- Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Hong Zhou
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221006, China
| | - Liang Huang
- Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Shaohui Zheng
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221006, China.
| | - Minghui Chen
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221006, China.
| | - Yong-Qing Fu
- Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne, NE1 8ST, UK.
| |
Collapse
|
2
|
Li X, Deng Z, Zhang W, Zhou W, Liu X, Quan H, Li J, Li P, Li Y, Hu C, Li F, Niu L, Tian Z, Meng L, Zheng H. Oscillating microbubble array-based metamaterials (OMAMs) for rapid isolation of high-purity exosomes. SCIENCE ADVANCES 2025; 11:eadu8915. [PMID: 40238867 PMCID: PMC12002133 DOI: 10.1126/sciadv.adu8915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 03/12/2025] [Indexed: 04/18/2025]
Abstract
Exosomes secreted by cells hold substantial potential for disease diagnosis and treatment. However, the rapid isolation of high-purity exosomes and their subpopulations from biofluids (e.g., undiluted whole blood) remains challenging. This study presents oscillating microbubble array-based metamaterials (OMAMs) for enabling the rapid isolation of high-purity exosomes and their subpopulations from biofluids without labeling or preprocessing. Particularly, leveraging acoustically excited microbubble oscillation, OMAMs can generate numerous acoustofluidic traps for filtering in-fluid micro/nanoparticles, thus allowing for removing bioparticles larger than exosomes to obtain high-purity (93%) exosomes from undiluted whole blood in ~3 minutes. Moreover, exosome subpopulations in different size ranges can be isolated by tuning the microbubble oscillation amplitude. Additionally, as each oscillating microbubble functions as an ultradeep subwavelength (~λ/186) acoustic amplifier and a nonlinear source, OMAMs can generate high-resolution complex acoustic energy patterns and tune the patterns by activating different-sized microbubbles at their distinct resonance frequencies.
Collapse
Affiliation(s)
- Xinjia Li
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, Liaoning 110016, China
| | - Zhiting Deng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Wenjun Zhang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
- School of Intelligent Manufacturing and Materials Engineering, Gannan University of Science and Technology, 156 Kejia Avenue, Ganzhou 341000, China
| | - Wei Zhou
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Xiufang Liu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Hao Quan
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, Liaoning 110016, China
| | - Jiali Li
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Pengqi Li
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Yingyin Li
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, Liaoning 110016, China
| | - Cai Hu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Fei Li
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Lili Niu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Zhenhua Tian
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Long Meng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, Liaoning 110016, China
- Guangdong Provincial Key Laboratory of Multimodality Non-Invasive Brain-Computer Interfaces, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
| |
Collapse
|
3
|
Li X, Chen J, Yang Y, Cai H, Ao Z, Xing Y, Li K, Yang K, Guan W, Friend J, Lee LP, Wang N, Guo F. Extracellular vesicle-based point-of-care testing for diagnosis and monitoring of Alzheimer's disease. MICROSYSTEMS & NANOENGINEERING 2025; 11:65. [PMID: 40246821 PMCID: PMC12006457 DOI: 10.1038/s41378-025-00916-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 11/15/2024] [Accepted: 12/11/2024] [Indexed: 04/19/2025]
Abstract
Extracellular vesicles (EVs) show potential for early diagnosis of Alzheimer's disease (AD) and monitoring of its progression. However, EV-based AD diagnosis faces challenges due to the small size and low abundance of biomarkers. Here, we report a fully integrated organic electrochemical transistor (OECT) sensor for ultrafast, accurate, and convenient point-of-care testing (POCT) of serum EVs from AD patients. By utilizing acoustoelectric enrichment, the EVs can be quickly propelled, significantly enriched, and specifically bound to the OECT detection area, achieving a gain of over 280 times response in 30 s. The integrated POCT sensor can detect serum EVs from AD patients with a limit of detection as low as 500 EV particles/mL and a reduced detection time of just two minutes. Furthermore, the integrated POCT sensors were used to monitor AD progression in an AD mouse model by testing the mouse Aβ EVs at different time courses (up to 18 months) and compared with the Aβ accumulation using high-resolution magnetic resonance imaging (MRI). This innovative technology has the potential for accurate and rapid diagnosis of Alzheimer's and other neurodegenerative diseases, and monitoring of disease progression and treatment response.
Collapse
Affiliation(s)
- Xiang Li
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, 47405, USA
| | - Jie Chen
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Yang Yang
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, 47405, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Hongwei Cai
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, 47405, USA
| | - Zheng Ao
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, 47405, USA
| | - Yantao Xing
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, 47405, USA
| | - Kangle Li
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, 47405, USA
| | - Kaiyuan Yang
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, 47405, USA
| | - Weihua Guan
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, 47405, USA
| | - James Friend
- Department of Mechanical and Aerospace Engineering, and Department of Surgery, University of California San Diego, La Jolla, CA, 92093, USA
| | - Luke P Lee
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
- Department of Bioengineering, and Department of Electrical Engineering and Computer Science, University of California at Berkeley, Berkeley, CA, 94720, USA.
- Institute of Quantum Biophysics, Department of Biophysics, Sungkyunkwan University, Suwon, Korea.
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, Korea.
| | - Nian Wang
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Feng Guo
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, 47405, USA.
| |
Collapse
|
4
|
Godary T, Binkley B, Liu Z, Awoyemi O, Overby A, Yuliantoro H, Fike BJ, Anderson S, Li P. Acoustofluidics: Technology Advances and Applications from 2022 to 2024. Anal Chem 2025; 97:6847-6870. [PMID: 40133046 PMCID: PMC11983376 DOI: 10.1021/acs.analchem.4c06803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 02/27/2025] [Accepted: 03/13/2025] [Indexed: 03/27/2025]
Affiliation(s)
| | | | - Zhengru Liu
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown 26506-6201, West Virginia, United States
| | - Olanrewaju Awoyemi
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown 26506-6201, West Virginia, United States
| | - Amanda Overby
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown 26506-6201, West Virginia, United States
| | - Herbi Yuliantoro
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown 26506-6201, West Virginia, United States
| | - Bethany J. Fike
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown 26506-6201, West Virginia, United States
| | - Sydney Anderson
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown 26506-6201, West Virginia, United States
| | - Peng Li
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown 26506-6201, West Virginia, United States
| |
Collapse
|
5
|
Gerlt M, Laurell T. Acoustofluidic Chromatography for Extracellular Vesicle Enrichment from 4 μL Blood Plasma Samples. Anal Chem 2025; 97:6049-6058. [PMID: 40079471 PMCID: PMC11948168 DOI: 10.1021/acs.analchem.4c06105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/13/2025] [Accepted: 03/07/2025] [Indexed: 03/15/2025]
Abstract
We present a novel acoustofluidic chromatography platform for high-throughput nanoparticle trapping and enrichment, with a focus on extracellular vesicles (EVs) from blood plasma. The system features a packed bed of polystyrene beads inside a rectangular glass capillary, acoustically actuated by a piezoelectric element. Using fluorescent polystyrene nanoparticles as small as 25 nm, we characterized device performance across a frequency range of 0.45-4 MHz, demonstrating particle trapping at all tested frequencies. The platform achieved recoveries of up to 42.9 ± 3.2% at input powers as low as 55 mW and operated at high flow rates of up to 200 μL/min. Trapping capacity reached 6.7 × 109 ± 2.5 × 109 particles for 25 nm polystyrene beads. For EV isolation, processing just 4 μL of blood plasma yielded 2 × 108 washed EV-sized particles eluted in 100 μL within 8 min. Micro BCA analysis confirmed a plasma protein background below 2 μg/mL, enabling downstream mass spectrometry. This platform provides an efficient, high-throughput approach for nanoparticle trapping and EV enrichment with minimal sample volumes, offering potential applications in diagnostics and therapeutic development. Future work will focus on optimizing bead properties for EV subpopulation separation and scaling the system for clinical applications.
Collapse
Affiliation(s)
| | - Thomas Laurell
- Acoustofluidics
Group, Lund University, Lund 221 00, Sweden
| |
Collapse
|
6
|
Wang J, Shang X, Zhou X, Chen H. Research advances of acoustic particle manipulation techniques in field-assisted manufacturing. NANOSCALE 2025; 17:5654-5671. [PMID: 39937064 DOI: 10.1039/d4nr04891a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Field-assisted manufacturing (FAM) technology, which employs external fields to transport and manipulate micro/nanoparticles for tailored arrangements and structures, can produce novel materials with specific properties and functions. Acoustic particle manipulation has attracted increasing attention in FAM due to its various advantages, such as a wide range of materials, ease of fabrication, rapid actuation, non-invasive operation and high biocompatibility. The present review summarizes the recent progress of acoustic particle manipulation in the FAM area, with respect to operation principles, fabrication and control of particles, and particle cluster patterning. The emphasis is placed on the recent innovative applications of microparticle manipulation realized by acoustic fields in different advanced manufacturing technologies. Finally, we provide our perspective on the current challenges and potential prospects of acoustic particle manipulation technology in FAM.
Collapse
Affiliation(s)
- Jiaqi Wang
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China.
| | - Xiaopeng Shang
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China.
| | - Xinzhao Zhou
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China.
| | - Huawei Chen
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China.
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, China
| |
Collapse
|
7
|
Amorim D, Sousa PC, Abreu C, Catarino SO. A Review of SAW-Based Micro- and Nanoparticle Manipulation in Microfluidics. SENSORS (BASEL, SWITZERLAND) 2025; 25:1577. [PMID: 40096453 PMCID: PMC11902558 DOI: 10.3390/s25051577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/21/2025] [Accepted: 03/01/2025] [Indexed: 03/19/2025]
Abstract
Surface acoustic wave (SAW)-based microfluidics has emerged as a promising technology for precisely manipulating particles and cells at the micro- and nanoscales. Acoustofluidic devices offer advantages such as low energy consumption, high throughput, and label-free operation, making them suitable for particle manipulation tasks including pumping, mixing, sorting, and separation. In this review, we provide an overview and discussion of recent advancements in SAW-based microfluidic devices for micro- and nanoparticle manipulation. Through a thorough investigation of the literature, we explore interdigitated transducer designs, materials, fabrication techniques, microfluidic channel properties, and SAW operational modes of acoustofluidic devices. SAW-based actuators are mainly based on lithium niobate piezoelectric transducers, with a plethora of wavelengths, microfluidic dimensions, and transducer configurations, applied for different fluid manipulation methods: mixing, sorting, and separation. We observed the accuracy of particle sorting across different size ranges and discussed different alternative device configurations to enhance sensitivity. Additionally, the collected data show the successful implementation of SAW devices in real-world applications in medical diagnostics and environmental monitoring. By critically analyzing different approaches, we identified common trends, challenges, and potential areas for improvement in SAW-based microfluidics. Furthermore, we discuss the current state-of-the-art and opportunities for further research and development in this field.
Collapse
Affiliation(s)
- Débora Amorim
- Microelectromechanical Systems Research Unit (CMEMS), School of Engineering, Campus de Azurém, University of Minho, 4800-058 Guimarães, Portugal; (D.A.); (C.A.)
- INL—International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal;
| | - Patrícia C. Sousa
- INL—International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal;
| | - Carlos Abreu
- Microelectromechanical Systems Research Unit (CMEMS), School of Engineering, Campus de Azurém, University of Minho, 4800-058 Guimarães, Portugal; (D.A.); (C.A.)
- LABBELS—Associate Laboratory, 4800-122 Braga, Portugal
- ADiT-Lab—Instituto Politécnico de Viana do Castelo, 4900-367 Viana do Castelo, Portugal
| | - Susana O. Catarino
- Microelectromechanical Systems Research Unit (CMEMS), School of Engineering, Campus de Azurém, University of Minho, 4800-058 Guimarães, Portugal; (D.A.); (C.A.)
- LABBELS—Associate Laboratory, 4800-122 Braga, Portugal
| |
Collapse
|
8
|
Li Y, Liang D, Kabla A, Zhang Y, Ma J, Yang X. Dependence of acoustophoretic aggregation on the impedance of microchannel's walls. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2025; 260:108530. [PMID: 39642401 DOI: 10.1016/j.cmpb.2024.108530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 12/08/2024]
Abstract
BACKGROUND AND OBJECTIVES Acoustofluidic manipulation of particles and biological cells has been widely applied in various biomedical and engineering applications, including effective separation of cancer cell, point-of-care diagnosis, and cell patterning for tissue engineering. It is often implemented within a polydimethylsiloxane (PDMS) microchannel, where standing surface acoustic waves (SSAW) are generated by sending two counter-propagating ultrasonic waves on a piezoelectric substrate. METHODS In this paper, we develop a full cross-sectional model of the acoustofluidic device using finite element method, simulating the wave excitation on the substrate and wave propagation in both the fluid and the microchannel wall. This model allows us to carry out extensive parametric analyses concerning the acoustic properties of the fluid and the microchannel wall, as well as the dimensions of the channel, to explore their influences on the acoustic field, fluid flow and microparticle aggregation. RESULTS Our findings demonstrate an order-of-magnitude enhancement in acoustic pressure amplitude and aggregation speed and a reduction in the particle threshold radius to submicron levels, which can be achieved through adjustments to the channel height and the difference in acoustic impedance between the channel wall and the fluid. The optimum channel heights are determined, which depend on the acoustic properties of the channel wall. The particle trajectories, movements along pressure nodal planes, and terminal positions are identified, with relative strength between the radiation force and the streaming force compared in different combinations of parameters. CONCLUSIONS This work demonstrates that finetuning the dimensions and acoustic properties of the fluid and microchannel wall in acoustofluidic device can greatly enhance particle aggregation throughput and reduce constraints on particle size. Our findings offer valuable insights into device design and optimization.
Collapse
Affiliation(s)
- Yiming Li
- Department of Engineering, University of Cambridge, Cambridge, CB2 1PZ, UK
| | - Dongfang Liang
- Department of Engineering, University of Cambridge, Cambridge, CB2 1PZ, UK.
| | - Alexandre Kabla
- Department of Engineering, University of Cambridge, Cambridge, CB2 1PZ, UK
| | - Yuning Zhang
- Key Laboratory of Power Station Energy Transfer Conversion and System (Ministry of Education), School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing, 102206, China
| | - Jun Ma
- Department of Engineering, University of Cambridge, Cambridge, CB2 1PZ, UK; CHN Energy Technology & Economics Research Institute, Beijing Changping District Future Science City Shenhua Research Institute, Beijing, 102211, China
| | - Xin Yang
- School of Engineering, Cardiff University, Cardiff, CF24 3AA, UK
| |
Collapse
|
9
|
Almasi F, Abbasloo F, Soltani N, Dehbozorgi M, Moghadam Fard A, Kiani A, Ghasemzadeh N, Mesgari H, Zadeh Hosseingholi E, Payandeh Z, Rahmanpour P. Biology, Pathology, and Targeted Therapy of Exosomal Cargoes in Parkinson's Disease: Advances and Challenges. Mol Neurobiol 2025:10.1007/s12035-025-04788-7. [PMID: 39998798 DOI: 10.1007/s12035-025-04788-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 02/14/2025] [Indexed: 02/27/2025]
Abstract
Parkinson's disease (PD) involves the loss of dopamine neurons and accumulation of alpha-synuclein (α-syn), leading to Lewy bodies. While α-syn-targeting immunotherapies show promise, clinical application is challenging. Emerging strategies include nano-platforms for targeted delivery and imaging, and cell-based therapies with patient-specific dopaminergic neurons, aiming to enhance treatment effectiveness despite challenges. Exosome-based methodologies are emerging as a promising area of research in PD due to their role in the spread of α-syn pathology. Exosomes are small extracellular vesicles that can carry misfolded α-syn and transfer it between cells, contributing to the progression of PD. They can be isolated from biological fluids such as blood and cerebrospinal fluid, making them valuable biomarkers for the disease. Additionally, engineering exosomes to deliver therapeutic agents, including small molecules, RNA, or proteins, offers a novel approach for targeted therapy, capitalizing on their natural ability to cross the blood-brain barrier (BBB). Ongoing studies are evaluating the safety and efficacy of these engineered exosomes in clinical settings. This review explores the role of exosomes in PD, focusing on their potential for diagnosis, treatment, and understanding of pathology. It highlights advancements and future directions in using exosomes as biomarkers and therapeutic tools.
Collapse
Affiliation(s)
- Faezeh Almasi
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, 45139-56184, Iran.
| | - Faeze Abbasloo
- Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Narges Soltani
- Center for Gene Regulation in Health and Disease, Department of Biological Sciences, Cleveland State University, Cleveland, OH, 44115, USA
| | - Masoud Dehbozorgi
- Faculty of Medicine, Rheinisch-Westfälische Technische Hochschule Aachen (RWTH Aachen), Aachen City, Germany
| | | | - Arash Kiani
- Yasuj University of Medical Sciences, Yasuj, Iran
| | - Nasim Ghasemzadeh
- School of Natural Sciences and Mathematics, University of Dallas, Richardson, TX, USA
| | - Hassan Mesgari
- Oral and Maxillofacial Surgery Department, Faculty of Dentistry, Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Elaheh Zadeh Hosseingholi
- Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran.
| | - Zahra Payandeh
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 41346, Gothenburg, Sweden.
| | | |
Collapse
|
10
|
Qian J, Xia J, Chiang S, Liu JF, Li K, Li F, Wei F, Aziz M, Kim Y, Go V, Morizio J, Zhong R, He Y, Yang K, Yang OO, Wong DTW, Lee LP, Huang TJ. Rapid and comprehensive detection of viral antibodies and nucleic acids via an acoustofluidic integrated molecular diagnostics chip: AIMDx. SCIENCE ADVANCES 2025; 11:eadt5464. [PMID: 39813350 PMCID: PMC11734728 DOI: 10.1126/sciadv.adt5464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 12/16/2024] [Indexed: 01/18/2025]
Abstract
Precise and rapid disease detection is critical for controlling infectious diseases like COVID-19. Current technologies struggle to simultaneously identify viral RNAs and host immune antibodies due to limited integration of sample preparation and detection. Here, we present acoustofluidic integrated molecular diagnostics (AIMDx) on a chip, a platform enabling high-speed, sensitive detection of viral immunoglobulins [immunoglobulin A (IgA), IgG, and IgM] and nucleic acids. AIMDx uses acoustic vortexes and Gor'kov potential wells at a 1/10,000 subwavelength scale for concurrent isolation of viruses and antibodies while excluding cells, bacteria, and large (>200 nanometers) vesicles from saliva samples. The chip facilitates on-chip viral RNA enrichment, lysis in 2 minutes, and detection via transcription loop-mediated isothermal amplification, alongside electrochemical sensing of antibodies, including mucin-masked IgA. AIMDx achieved nearly 100% recovery of viruses and antibodies, a 32-fold RNA detection improvement, and an immunity marker sensitivity of 15.6 picograms per milliliter. This breakthrough provides a transformative tool for multiplex diagnostics, enhancing early infectious disease detection.
Collapse
Affiliation(s)
- Jiao Qian
- Thomas Lord Department of Mechanical Engineering and Materials, Duke University, Durham, NC 27708, USA
| | - Jianping Xia
- Thomas Lord Department of Mechanical Engineering and Materials, Duke University, Durham, NC 27708, USA
| | - Samantha Chiang
- School of Dentistry, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Jessica F. Liu
- Department of Anesthesiology, Duke University, Durham, NC 27710, USA
| | - Ke Li
- Thomas Lord Department of Mechanical Engineering and Materials, Duke University, Durham, NC 27708, USA
| | - Feng Li
- School of Dentistry, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Fang Wei
- School of Dentistry, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Mohammad Aziz
- School of Dentistry, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Yong Kim
- School of Dentistry, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Vinson Go
- Department of Electrical and Computer Engineering, Duke University, Durham, NC 27710, USA
| | - James Morizio
- Department of Electrical and Computer Engineering, Duke University, Durham, NC 27710, USA
| | - Ruoyu Zhong
- Thomas Lord Department of Mechanical Engineering and Materials, Duke University, Durham, NC 27708, USA
| | - Ye He
- Thomas Lord Department of Mechanical Engineering and Materials, Duke University, Durham, NC 27708, USA
| | - Kaichun Yang
- Thomas Lord Department of Mechanical Engineering and Materials, Duke University, Durham, NC 27708, USA
| | - Otto O. Yang
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - David T. W. Wong
- School of Dentistry, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Luke P. Lee
- Renal Division and Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard University, Boston, MA 02115, USA
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Electrical Engineering and Computer Science, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Korea
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Tony Jun Huang
- Thomas Lord Department of Mechanical Engineering and Materials, Duke University, Durham, NC 27708, USA
| |
Collapse
|
11
|
Rabe DC, Choudhury A, Lee D, Luciani EG, Ho UK, Clark AE, Glasgow JE, Veiga S, Michaud WA, Capen D, Flynn EA, Hartmann N, Garretson AF, Muzikansky A, Goldberg MB, Kwon DS, Yu X, Carlin AF, Theriault Y, Wells JA, Lennerz JK, Lai PS, Rabi SA, Hoang AN, Boland GM, Stott SL. Ultrasensitive detection of intact SARS-CoV-2 particles in complex biofluids using microfluidic affinity capture. SCIENCE ADVANCES 2025; 11:eadh1167. [PMID: 39792670 PMCID: PMC11721714 DOI: 10.1126/sciadv.adh1167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 12/04/2024] [Indexed: 01/12/2025]
Abstract
Measuring virus in biofluids is complicated by confounding biomolecules coisolated with viral nucleic acids. To address this, we developed an affinity-based microfluidic device for specific capture of intact severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Our approach used an engineered angiotensin-converting enzyme 2 to capture intact virus from plasma and other complex biofluids. Our device leverages a staggered herringbone pattern, nanoparticle surface coating, and processing conditions to achieve detection of as few as 3 viral copies per milliliter. We further validated our microfluidic assay on 103 plasma, 36 saliva, and 29 stool samples collected from unique patients with COVID-19, showing SARS-CoV-2 detection in 72% of plasma samples. Longitudinal monitoring in the plasma revealed our device's capacity for ultrasensitive detection of active viral infections over time. Our technology can be adapted to target other viruses using relevant cell entry molecules for affinity capture. This versatility underscores the potential for widespread application in viral load monitoring and disease management.
Collapse
Affiliation(s)
- Daniel C. Rabe
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Adarsh Choudhury
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Dasol Lee
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Evelyn G. Luciani
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Uyen K. Ho
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Alex E. Clark
- Departments of Pathology and Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Jeffrey E. Glasgow
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Sara Veiga
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
| | - William A. Michaud
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Diane Capen
- Microscopy Core of the Program in Membrane Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Elizabeth A. Flynn
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Nicola Hartmann
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Aaron F. Garretson
- Departments of Pathology and Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Alona Muzikansky
- Massachusetts General Hospital Biostatistics, Harvard Medical School, Boston, MA, USA
| | - Marcia B. Goldberg
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
- Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Douglas S. Kwon
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Xu Yu
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Aaron F. Carlin
- Departments of Pathology and Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Yves Theriault
- Qualcomm Institute, University of California, San Diego, La Jolla, CA, USA
| | - James A. Wells
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Jochen K. Lennerz
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Peggy S. Lai
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Sayed Ali Rabi
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Anh N. Hoang
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
- Departments of Pathology and Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Microscopy Core of the Program in Membrane Biology, Massachusetts General Hospital, Boston, MA, USA
- Massachusetts General Hospital Biostatistics, Harvard Medical School, Boston, MA, USA
- Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Qualcomm Institute, University of California, San Diego, La Jolla, CA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Genevieve M. Boland
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Shannon L. Stott
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
12
|
Sui M, Dong H, Mu G, Yang Z, Ai Y, Zhao J. Acoustofluidic Tweezers Integrated with Droplet Sensing Enable Multifunctional Closed-Loop Droplet Manipulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409394. [PMID: 39527667 PMCID: PMC11714172 DOI: 10.1002/advs.202409394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Droplet manipulation technologies with surface acoustic waves attract significant attention for applications in fluid handling and bioanalysis. However, existing technologies face challenges in automation, precision, and functional integration, limiting broader applications. In this work, a highly integrated droplet-sensing acoustofluidic tweezer is developed, incorporating orthogonally arranged slanted finger interdigital transducers and a custom-designed control and detection circuit system. Using a single acoustic device, this tweezer enables switchable acoustic droplet manipulation and detection, providing multifunctional closed-loop manipulation of on-chip microliter-scale droplets. The platform takes advantage of the wideband frequency response characteristics of the transducers, along with an automated droplet detection algorithm, enabling high-precision detection of central positions, edge positions, contact diameters, and the number of droplets. With this feedback, automated closed-loop control of various droplet manipulation functions, including transportation, merging, mixing, splitting, and internal particle enrichment, is achieved for the first time on a single acoustic platform. This significantly enhances the precision, efficiency, and fault tolerance of the manipulation process. This droplet-sensing acoustofluidic tweezer provides an innovative acoustic solution for droplet manipulation technologies in fields such as fluid processing and biosensing, demonstrating significant application potential.
Collapse
Affiliation(s)
- Mingyang Sui
- State Key Laboratory of Robotics and SystemHarbin Institute of TechnologyHarbin150001China
| | - Huijuan Dong
- State Key Laboratory of Robotics and SystemHarbin Institute of TechnologyHarbin150001China
| | - Guanyu Mu
- State Key Laboratory of Robotics and SystemHarbin Institute of TechnologyHarbin150001China
| | - Zhen Yang
- Institute of OrthopedicsChinese PLA General HospitalBeijing Key Laboratory of Regenerative Medicine in OrthopedicsKey Laboratory of Musculoskeletal Trauma & War Injuries PLABeijing100853China
| | - Ye Ai
- Pillar of Engineering Product DevelopmentSingapore University of Technology and DesignSingapore487372Singapore
| | - Jie Zhao
- State Key Laboratory of Robotics and SystemHarbin Institute of TechnologyHarbin150001China
| |
Collapse
|
13
|
Amolegbe SM, Johnston NC, Ambrosi A, Ganguly A, Howcroft TK, Kuo LS, Labosky PA, Rudnicki DD, Satterlee JS, Tagle DA, Happel C. Extracellular RNA communication: A decade of NIH common fund support illuminates exRNA biology. J Extracell Vesicles 2025; 14:e70016. [PMID: 39815775 PMCID: PMC11735951 DOI: 10.1002/jev2.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 11/06/2024] [Accepted: 11/19/2024] [Indexed: 01/18/2025] Open
Abstract
The discovery that extracellular RNAs (exRNA) can act as endocrine signalling molecules established a novel paradigm in intercellular communication. ExRNAs can be transported, both locally and systemically in virtually all body fluids. In association with an array of carrier vehicles of varying complexity, exRNA can alter target cell phenotype. This highlights the important role secreted exRNAs have in regulating human health and disease. The NIH Common Fund exRNA Communication program was established in 2012 to accelerate and catalyze progress in the exRNA biology field. The program addressed both exRNA and exRNA carriers, and served to generate foundational knowledge for the field from basic exRNA biology to future potential clinical applications as biomarkers and therapeutics. To address scientific challenges, the exRNA Communication program developed novel tools and technologies to isolate exRNA carriers and analyze their cargo. Here, we discuss the outcomes of the NIH Common Fund exRNA Communication program, as well as the evolution of exRNA as a scientific field through the analysis of scientific publications and NIH funding. ExRNA and associated carriers have potential clinical use as biomarkers, diagnostics, and therapeutics. Recent translational applications include exRNA-related technologies repurposed as novel diagnostics in response to the COVID-19 pandemic, the clinical use of extracellular vesicle-based biomarker assays, and exRNA carriers as drug delivery platforms. This comprehensive landscape analysis illustrates how discoveries and innovations in exRNA biology are being translated both into the commercial market and the clinic. Analysis of program outcomes and NIH funding trends demonstrate the impact of this NIH Common Fund program.
Collapse
Affiliation(s)
- Sara M. Amolegbe
- Office of the DirectorNational Institutes of HealthBethesdaMarylandUSA
| | - Nicolas C. Johnston
- National Institute on Drug AbuseNational Institutes of HealthBethesdaMarylandUSA
| | - Angela Ambrosi
- Office of the DirectorNational Institutes of HealthBethesdaMarylandUSA
| | - Aniruddha Ganguly
- National Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - T. Kevin Howcroft
- National Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Lillian S. Kuo
- National Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| | | | - Dobrila D. Rudnicki
- National Center for Advancing Translational SciencesNational Institutes of HealthBethesdaMarylandUSA
| | - John S. Satterlee
- National Institute on Drug AbuseNational Institutes of HealthBethesdaMarylandUSA
| | - Danilo A. Tagle
- National Center for Advancing Translational SciencesNational Institutes of HealthBethesdaMarylandUSA
| | - Christine Happel
- National Center for Advancing Translational SciencesNational Institutes of HealthBethesdaMarylandUSA
| |
Collapse
|
14
|
Wei W, Wang Z, Wang B, He X, Wang Y, Bai Y, Yang Q, Pang W, Duan X. Acoustofluidic manipulation for submicron to nanoparticles. Electrophoresis 2024; 45:2132-2153. [PMID: 38794970 DOI: 10.1002/elps.202400062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/27/2024]
Abstract
Particles, ranging from submicron to nanometer scale, can be broadly categorized into biological and non-biological types. Submicron-to-nanoscale bioparticles include various bacteria, viruses, liposomes, and exosomes. Non-biological particles cover various inorganic, metallic, and carbon-based particles. The effective manipulation of these submicron to nanoparticles, including their separation, sorting, enrichment, assembly, trapping, and transport, is a fundamental requirement for different applications. Acoustofluidics, owing to their distinct advantages, have emerged as a potent tool for nanoparticle manipulation over the past decade. Although recent literature reviews have encapsulated the evolution of acoustofluidic technology, there is a paucity of reports specifically addressing the acoustical manipulation of submicron to nanoparticles. This article endeavors to provide a comprehensive study of this topic, delving into the principles, apparatus, and merits of acoustofluidic manipulation of submicron to nanoparticles, and discussing the state-of-the-art developments in this technology. The discourse commences with an introduction to the fundamental theory of acoustofluidic control and the forces involved in nanoparticle manipulation. Subsequently, the working mechanism of acoustofluidic manipulation of submicron to nanoparticles is dissected into two parts, dominated by the acoustic wave field and the acoustic streaming field. A critical analysis of the advantages and limitations of different acoustofluidic platforms in nanoparticles control is presented. The article concludes with a summary of the challenges acoustofluidics face in the realm of nanoparticle manipulation and analysis, and a forecast of future development prospects.
Collapse
Affiliation(s)
- Wei Wei
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin, P. R. China
| | - Zhaoxun Wang
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin, P. R. China
| | - Bingnan Wang
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin, P. R. China
| | - Xinyuan He
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin, P. R. China
| | - Yaping Wang
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin, P. R. China
| | - Yang Bai
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin, P. R. China
| | - Qingrui Yang
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin, P. R. China
| | - Wei Pang
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin, P. R. China
| | - Xuexin Duan
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin, P. R. China
| |
Collapse
|
15
|
Yu W, Zhu H, Upreti N, Lu B, Xu X, Lee LP, Huang TJ. Acoustography by Beam Engineering and Acoustic Control Node: BEACON. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403742. [PMID: 39422067 PMCID: PMC11633508 DOI: 10.1002/advs.202403742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/26/2024] [Indexed: 10/19/2024]
Abstract
Acoustic manipulation has emerged as a valuable tool for precision controls and dynamic programming of cells and particles. However, conventional acoustic manipulation approaches lack the finesse necessary to form intricate, configurable, continuous, and 3D patterning of particles. Here, this study reports acoustography by Beam Engineering and Acoustic Control Node (BEACON), which delivers intricate, configurable patterns by guiding particles along custom paths with independent phase modulation. Leveraging analytical methods of orbital angular momentum beam via iterative Wirtinger hologram algorithm, this study accomplish acoustography by facilitating orbital angular momentum traps, enabling continuous 2D and 3D acoustic manipulation of microparticles in any desired geometry, with phase modulation independent of intensity. Utilizing on-chip acoustography, the BEACON platform markedly increases the space-bandwidth product to 31 000 while attaining an enhanced resolution with a pixel size of ≈25 µm, surpassing the typical resolution of over 200 µm in previous holographic particle manipulation methods. The capabilities of BEACON are demonstrated in creating intricate triple helical tracing structures using microdroplets (20 µm in diameter) and those carrying DNA to validate the effectiveness of the acoustography and phase control methods. This study offers new particle manipulation opportunities, paving the way for next-generation biomedical systems and the future of contact-free precision manufacturing.
Collapse
Affiliation(s)
- Wenjun Yu
- Department of Mechanical Engineering and Material ScienceDuke UniversityDurhamNC27708USA
| | - Haodong Zhu
- Department of Mechanical Engineering and Material ScienceDuke UniversityDurhamNC27708USA
| | - Neil Upreti
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | - Brandon Lu
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | - Xianchen Xu
- Department of Mechanical Engineering and Material ScienceDuke UniversityDurhamNC27708USA
| | - Luke P Lee
- Harvard Medical SchoolDivision of Engineering in MedicineDepartment of MedicineBrigham and Women's HospitalHarvard UniversityBostonMA02115USA
- Department of BioengineeringDepartment of Electrical Engineering and Computer ScienceUniversity of CaliforniaBerkeleyCA94720USA
- Institute of Quantum BiophysicsDepartment of BiophysicsSungkyunkwan UniversitySuwonSouth Korea16419
| | - Tony Jun Huang
- Department of Mechanical Engineering and Material ScienceDuke UniversityDurhamNC27708USA
| |
Collapse
|
16
|
Zhang P, Tian Z, Jin K, Yang K, Collyer W, Rufo J, Upreti N, Dong X, Lee LP, Huang TJ. Automating life science labs at the single-cell level through precise ultrasonic liquid sample ejection: PULSE. MICROSYSTEMS & NANOENGINEERING 2024; 10:172. [PMID: 39567484 PMCID: PMC11579414 DOI: 10.1038/s41378-024-00798-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/30/2024] [Accepted: 08/17/2024] [Indexed: 11/22/2024]
Abstract
Laboratory automation technologies have revolutionized biomedical research. However, the availability of automation solutions at the single-cell level remains scarce, primarily owing to the inherent challenges of handling cells with such small dimensions in a precise, biocompatible manner. Here, we present a single-cell-level laboratory automation solution that configures various experiments onto standardized, microscale test-tube matrices via our precise ultrasonic liquid sample ejection technology, known as PULSE. PULSE enables the transformation of titer plates into microdroplet arrays by printing nanodrops and single cells acoustically in a programmable, scalable, and biocompatible manner. Unlike pipetting robots, PULSE enables researchers to conduct biological experiments using single cells as anchoring points (e.g., 1 cell vs. 1000 cells per "tube"), achieving higher resolution and potentially more relevant data for modeling and downstream analyses. We demonstrate the ability of PULSE to perform biofabrication, precision gating, and deterministic array barcoding via preallocated droplet-addressable primers. Single cells can be gently printed at a speed range of 5-20 cell⋅s-1 with an accuracy of 90.5-97.7%, which can then adhere to the substrate and grow for up to 72 h while preserving cell integrity. In the deterministic barcoding experiment, 95.6% barcoding accuracy and 2.7% barcode hopping were observed by comparing the phenotypic data with known genotypic data from two types of single cells. Our PULSE platform allows for precise and dynamic analyses by automating experiments at the single-cell level, offering researchers a powerful tool in biomedical research.
Collapse
Affiliation(s)
- Peiran Zhang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Zhenhua Tian
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Ke Jin
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Kaichun Yang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Wesley Collyer
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Joseph Rufo
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Neil Upreti
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Xianjun Dong
- Genomics and Bioinformatics Hub, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Luke P Lee
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Bioengineering, Department of Electrical Engineering and Computer Science, University of California at Berkeley, Berkeley, CA, USA.
- Institute of Quantum Biophysics, Department of Biophysics, Sungkyunkwan University, Suwon, Korea.
- Department of Chemistry & Nanoscience, Ewha Womans University, Seoul, Korea.
| | - Tony Jun Huang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
17
|
Zeng Y, Yuan R, Fu H, Xu Z, Wei S. Foodborne pathogen detection using surface acoustic wave biosensors: a review. RSC Adv 2024; 14:37087-37103. [PMID: 39569109 PMCID: PMC11577347 DOI: 10.1039/d4ra06697a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 11/06/2024] [Indexed: 11/22/2024] Open
Abstract
This paper summarizes several attractive surface acoustic wave (SAW) biosensors, including Love-wave sensors, dual-channel SAW sensors, langasite SAW sensors, and SAW syringe filters. SAW sensors with different piezoelectric materials and high-frequency SAW sensors used for identifying the food pathogenic bacteria Escherichia coli (E. coli) are discussed together with the examples of methods based on such sensing technology that have been effectively utilized in diagnostics and epidemiological research. This review also emphasizes some of the limitations of using these biosensors, which have prompted the increased need for more rapid, sensitive, selective, portable, power-efficient, and low-cost methods for detecting these pathogens. It is envisioned that SAW devices will have remarkable significance in the future.
Collapse
Affiliation(s)
- Yujia Zeng
- School of Electronic Information Engineering, China West Normal University Nanchong 637009 China
| | - Rui Yuan
- School of Electronic Information Engineering, China West Normal University Nanchong 637009 China
| | - Hao Fu
- School of Electronic Information Engineering, China West Normal University Nanchong 637009 China
| | - Zhangliang Xu
- School of Electronic Information Engineering, China West Normal University Nanchong 637009 China
| | - Song Wei
- School of Mechanical and Electrical Engineering Guilin University of Electronic Technology Guilin 541000 China
| |
Collapse
|
18
|
Wu M, Ma Z, Tian Z, Rich JT, He X, Xia J, He Y, Yang K, Yang S, Leong KW, Lee LP, Huang TJ. Sound innovations for biofabrication and tissue engineering. MICROSYSTEMS & NANOENGINEERING 2024; 10:170. [PMID: 39562793 PMCID: PMC11577104 DOI: 10.1038/s41378-024-00759-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/31/2024] [Accepted: 06/20/2024] [Indexed: 11/21/2024]
Abstract
Advanced biofabrication techniques can create tissue-like constructs that can be applied for reconstructive surgery or as in vitro three-dimensional (3D) models for disease modeling and drug screening. While various biofabrication techniques have recently been widely reviewed in the literature, acoustics-based technologies still need to be explored. The rapidly increasing number of publications in the past two decades exploring the application of acoustic technologies highlights the tremendous potential of these technologies. In this review, we contend that acoustics-based methods can address many limitations inherent in other biofabrication techniques due to their unique advantages: noncontact manipulation, biocompatibility, deep tissue penetrability, versatility, precision in-scaffold control, high-throughput capabilities, and the ability to assemble multilayered structures. We discuss the mechanisms by which acoustics directly dictate cell assembly across various biostructures and examine how the advent of novel acoustic technologies, along with their integration with traditional methods, offers innovative solutions for enhancing the functionality of organoids. Acoustic technologies are poised to address fundamental challenges in biofabrication and tissue engineering and show promise for advancing the field in the coming years.
Collapse
Affiliation(s)
- Mengxi Wu
- School of Mechanical Engineering, Dalian University of Technology, Dalian, 116086, Liaoning, China
| | - Zhiteng Ma
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Zhenhua Tian
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24060, USA
| | - Joseph T Rich
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Xin He
- School of Mechanical Engineering, Dalian University of Technology, Dalian, 116086, Liaoning, China
| | - Jianping Xia
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Ye He
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Kaichun Yang
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Shujie Yang
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
- Renal Division and Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA.
| | - Luke P Lee
- Renal Division and Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| | - Tony Jun Huang
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
19
|
Naquin T, Jain S, Zhang J, Xu X, Yao G, Naquin CM, Yang S, Xia J, Wang J, Jimenez S, Huang TJ. An Acoustofluidic Picoinjector. SENSORS AND ACTUATORS. B, CHEMICAL 2024; 418:136294. [PMID: 39131888 PMCID: PMC11308560 DOI: 10.1016/j.snb.2024.136294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Droplet microfluidics has emerged as a valuable technology for a multitude of chemical and biomedical applications, offering the capability to create independent microenvironments for high-throughput assays. Central to numerous droplet microfluidic applications is the picoinjection of materials into individual droplets, yet existing picoinjection methods often exhibit high power requirements, lack biocompatibility, and/or suffer from limited controllability. Here, we present an acoustofluidic picoinjector that generates acoustic pressure at the droplet interface to enable on-demand, energy-efficient, and biocompatible injection at high precision. We validate our platform by performing acid-base titrations by iteratively injecting picoliter volume reagents into droplets to induce pH transitions detectable by color change in solution. Additionally, we demonstrate the versatility of the acoustofluidic picoinjector in the synthesis of metallic nanoparticles, yielding highly monodisperse and reproducible particle morphologies compared to conventional bulk-phase techniques. By facilitating controlled delivery of reagents or biological samples with unparalleled accuracy, acoustofluidic picoinjection broadens the utility of droplet microfluidics for a myriad of applications in chemical and biological research.
Collapse
Affiliation(s)
| | | | - Jinxin Zhang
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Xianchen Xu
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Gary Yao
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Chloe M. Naquin
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Shujie Yang
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Jianping Xia
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Janna Wang
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Sebastian Jimenez
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Tony Jun Huang
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| |
Collapse
|
20
|
Kang B, Shin J, Kang D, Chang S, Rhyou C, Cho SW, Lee H. Spatial regulation of hydrogel polymerization reaction using ultrasound-driven streaming vortex. ULTRASONICS SONOCHEMISTRY 2024; 110:107053. [PMID: 39270467 DOI: 10.1016/j.ultsonch.2024.107053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/15/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024]
Abstract
Ultrasound is gaining attention as an alternative tool to regulate chemical processes due to its advantages such as high cost-effectiveness, rapid response, and contact-free operation. Previous studies have demonstrated that acoustic bubble cavitation can generate energy to synthesize functional materials. In this study, we introduce a method to control the spatial distribution of physical and chemical properties of hydrogels by using an ultrasound-mediated particle manipulation technique. We developed a surface acoustic wave device that can localize micro-hydrogel particles, which are formed during gelation, in a hydrogel solution. The hydrogel fabricated with the application of surface acoustic waves exhibited gradients in mechanical, mass transport, and structural properties. We demonstrated that the gel having the property gradients could be utilized as a cell-culture substrate dictating cellular shapes, which is beneficial for interfacial tissue engineering. The acoustic method and fabricated hydrogels with property gradients can be applied to design flexible polymeric materials for soft robotics, biomedical sensors, or bioelectronics applications.
Collapse
Affiliation(s)
- Byungjun Kang
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jisoo Shin
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Donyoung Kang
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Sooho Chang
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Chanryeol Rhyou
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Seung-Woo Cho
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea; Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul 03722, Republic of Korea; Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
| | - Hyungsuk Lee
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
21
|
Shen L, Tian Z, Yang K, Rich J, Xia J, Upreti N, Zhang J, Chen C, Hao N, Pei Z, Huang TJ. Joint subarray acoustic tweezers enable controllable cell translation, rotation, and deformation. Nat Commun 2024; 15:9059. [PMID: 39428395 PMCID: PMC11491459 DOI: 10.1038/s41467-024-52686-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 09/18/2024] [Indexed: 10/22/2024] Open
Abstract
Contactless microscale tweezers are highly effective tools for manipulating, patterning, and assembling bioparticles. However, current tweezers are limited in their ability to comprehensively manipulate bioparticles, providing only partial control over the six fundamental motions (three translational and three rotational motions). This study presents a joint subarray acoustic tweezers platform that leverages acoustic radiation force and viscous torque to control the six fundamental motions of single bioparticles. This breakthrough is significant as our manipulation mechanism allows for controlling the three translational and three rotational motions of single cells, as well as enabling complex manipulation that combines controlled translational and rotational motions. Moreover, our tweezers can gradually increase the load on an acoustically trapped cell to achieve controllable cell deformation critical for characterizing cell mechanical properties. Furthermore, our platform allows for three-dimensional (3D) imaging of bioparticles without using complex confocal microscopy by rotating bioparticles with acoustic tweezers and taking images of each orientation using a standard microscope. With these capabilities, we anticipate the JSAT platform to play a pivotal role in various applications, including 3D imaging, tissue engineering, disease diagnostics, and drug testing.
Collapse
Affiliation(s)
- Liang Shen
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
- Department of Mechanical Engineering, Virginia Polytechnical Institute and State University, Blacksburg, VA, USA
| | - Zhenhua Tian
- Department of Mechanical Engineering, Virginia Polytechnical Institute and State University, Blacksburg, VA, USA.
| | - Kaichun Yang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
| | - Joseph Rich
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Jianping Xia
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
| | - Neil Upreti
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
| | - Jinxin Zhang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
| | - Chuyi Chen
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
| | - Nanjing Hao
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
| | - Zhichao Pei
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
| | - Tony Jun Huang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA.
| |
Collapse
|
22
|
Tang H, Yu D, Zhang J, Wang M, Fu M, Qian Y, Zhang X, Ji R, Gu J, Zhang X. The new advance of exosome-based liquid biopsy for cancer diagnosis. J Nanobiotechnology 2024; 22:610. [PMID: 39380060 PMCID: PMC11463159 DOI: 10.1186/s12951-024-02863-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 09/16/2024] [Indexed: 10/10/2024] Open
Abstract
Liquid biopsy is a minimally invasive method that uses biofluid samples instead of tissue samples for cancer diagnosis. Exosomes are small extracellular vesicles secreted by donor cells and act as mediators of intercellular communication in human health and disease. Due to their important roles, exosomes have been considered as promising biomarkers for liquid biopsy. However, traditional methods for exosome isolation and cargo detection methods are time-consuming and inefficient, limiting their practical application. In the past decades, many new strategies, such as microfluidic chips, nanowire arrays and electrochemical biosensors, have been proposed to achieve rapid, accurate and high-throughput detection and analysis of exosomes. In this review, we discussed about the new advance in exosome-based liquid biopsy technology, including isolation, enrichment, cargo detection and analysis approaches. The comparison of currently available methods is also included. Finally, we summarized the advantages and limitations of the present strategies and further gave a perspective to their future translational use.
Collapse
Affiliation(s)
- Haozhou Tang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
- Department of Orthopaedics, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, 215300, China
| | - Dan Yu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Jiahui Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Maoye Wang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Min Fu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Yu Qian
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Xiaoxin Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Runbi Ji
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Jianmei Gu
- Departmemt of Clinical Laboratory Medicine, Nantong Tumor Hospital/Affiliated Tumor Hospital of Nantong University, Nantong, 226300, China.
- Affiliated Cancer Hospital of Nantong University, Nantong, 226300, China.
| | - Xu Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
23
|
Li W, Yao Z, Ma T, Ye Z, He K, Wang L, Wang H, Fu Y, Xu X. Acoustofluidic precise manipulation: Recent advances in applications for micro/nano bioparticles. Adv Colloid Interface Sci 2024; 332:103276. [PMID: 39146580 DOI: 10.1016/j.cis.2024.103276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/30/2024] [Accepted: 08/11/2024] [Indexed: 08/17/2024]
Abstract
Acoustofluidic technologies that integrate acoustic waves and microfluidic chips have been widely used in bioparticle manipulation. As a representative technology, acoustic tweezers have attracted significant attention due to their simple manufacturing, contact-free operation, and low energy consumption. Recently, acoustic tweezers have enabled the efficient and smart manipulation of biotargets with sizes covering millimeters (such as zebrafish) and nanometers (such as DNA). In addition to acoustic tweezers, other related acoustofluidic chips including acoustic separating, mixing, enriching, and transporting chips, have also emerged to be powerful platforms to manipulate micro/nano bioparticles (cells in blood, extracellular vesicles, liposomes, and so on). Accordingly, some interesting applications were also developed, such as smart sensing. In this review, we firstly introduce the principles of acoustic tweezers and various related technologies. Second, we compare and summarize recent applications of acoustofluidics in bioparticle manipulation and sensing. Finally, we outlook the future development direction from the perspectives such as device design and interdisciplinary.
Collapse
Affiliation(s)
- Wanglu Li
- College of Life Science, China Jiliang University, Hangzhou 310018, China; Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; College of Biosystems Engineering and Food Science, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Zhihao Yao
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Lab of Brewing Microbiology and Applied Enzymology, The Key Laboratory of Industrial Biotechnology, Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Tongtong Ma
- College of Biosystems Engineering and Food Science, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Zihong Ye
- College of Life Science, China Jiliang University, Hangzhou 310018, China
| | - Kaiyu He
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Liu Wang
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Hongmei Wang
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yingchun Fu
- College of Biosystems Engineering and Food Science, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Zhejiang University, Hangzhou 310058, China.
| | - Xiahong Xu
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| |
Collapse
|
24
|
Zhang X, Dumčius P, Mikhaylov R, Qi J, Stringer M, Sun C, Nguyen VD, Zhou Y, Sun X, Liang D, Liu D, Yan B, Feng X, Mei C, Xu C, Feng M, Fu Y, Clayton A, Zhi R, Tian L, Dong Z, Yang X. Surface Acoustic Wave-Enhanced Multi-View Acoustofluidic Rotation Cytometry (MARC) for Pre-Cytopathological Screening. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403574. [PMID: 39136049 PMCID: PMC11497091 DOI: 10.1002/advs.202403574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/20/2024] [Indexed: 10/25/2024]
Abstract
Cytopathology, crucial in disease diagnosis, commonly uses microscopic slides to scrutinize cellular abnormalities. However, processing high volumes of samples often results in numerous negative diagnoses, consuming significant time and resources in healthcare. To address this challenge, a surface acoustic wave-enhanced multi-view acoustofluidic rotation cytometry (MARC) technique is developed for pre-cytopathological screening. MARC enhances cellular morphology analysis through comprehensive and multi-angle observations and amplifies subtle cell differences, particularly in the nuclear-to-cytoplasmic ratio, across various cell types and between cancerous and normal tissue cells. By prioritizing MARC-screened positive cases, this approach can potentially streamline traditional cytopathology, reducing the workload and resources spent on negative diagnoses. This significant advancement enhances overall diagnostic efficiency, offering a transformative vision for cytopathological screening.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- Department of Electrical and Electronic Engineering, School of EngineeringCardiff UniversityCardiffCF24 3AAUK
- International Joint Laboratory of Biomedicine and EngineeringCollege of Biomedicine and HealthCollege of Life Science and TechnologyHuazhong Agricultural UniversityWuhan430070P. R. China
| | - Povilas Dumčius
- Department of Electrical and Electronic Engineering, School of EngineeringCardiff UniversityCardiffCF24 3AAUK
| | - Roman Mikhaylov
- Department of Electrical and Electronic Engineering, School of EngineeringCardiff UniversityCardiffCF24 3AAUK
| | - Jiangfa Qi
- International Joint Laboratory of Biomedicine and EngineeringCollege of Biomedicine and HealthCollege of Life Science and TechnologyHuazhong Agricultural UniversityWuhan430070P. R. China
| | - Mercedes Stringer
- Department of Electrical and Electronic Engineering, School of EngineeringCardiff UniversityCardiffCF24 3AAUK
| | - Chao Sun
- School of Life SciencesNorthwestern Polytechnical UniversityXi'an710072P. R. China
| | - Van Dien Nguyen
- Systems Immunity University Research InstituteCardiff UniversityCardiffCF14 4XNUK
- Division of Infection and ImmunityCardiff UniversityCardiffCF14 4XNUK
| | - You Zhou
- Systems Immunity University Research InstituteCardiff UniversityCardiffCF14 4XNUK
- Division of Infection and ImmunityCardiff UniversityCardiffCF14 4XNUK
| | - Xianfang Sun
- School of Computer Science and InformaticsCardiff UniversityCardiffCF24 4AGUK
| | - Dongfang Liang
- Department of EngineeringUniversity of CambridgeCambridgeCB2 1PZUK
| | - Dongge Liu
- Department of PathologyBeijing HospitalBeijing100730P. R. China
| | - Bing Yan
- Department of Information ManagementBeijing HospitalBeijing100730P. R. China
| | - Xi Feng
- Department of PathologyHubei Cancer HospitalWuhan430079P. R. China
| | - Changjun Mei
- Department of PathologyXiangzhou District People's Hospital of XiangyangXiangyang441000P. R. China
| | - Cong Xu
- Department of PathologyXiangzhou District People's Hospital of XiangyangXiangyang441000P. R. China
| | - Mingqian Feng
- International Joint Laboratory of Biomedicine and EngineeringCollege of Biomedicine and HealthCollege of Life Science and TechnologyHuazhong Agricultural UniversityWuhan430070P. R. China
| | - Yongqing Fu
- Faculty of Engineering and EnvironmentNorthumbria UniversityNewcastle Upon TyneNE1 8STUK
| | - Aled Clayton
- School of MedicineCardiff UniversityCardiffCF14 4XNUK
| | - Ruicong Zhi
- School of Computer and Communication EngineeringUniversity of Science and Technology BeijingBeijing100083P. R. China
- Beijing Key Laboratory of Knowledge Engineering for Materials ScienceBeijing100083P.R. China
| | - Liangfei Tian
- Department of Biomedical EngineeringMOE Key Laboratory of Biomedical EngineeringZhejiang UniversityHangzhou310027P. R. China
| | - Zhiqiang Dong
- International Joint Laboratory of Biomedicine and EngineeringCollege of Biomedicine and HealthCollege of Life Science and TechnologyHuazhong Agricultural UniversityWuhan430070P. R. China
| | - Xin Yang
- Department of Electrical and Electronic Engineering, School of EngineeringCardiff UniversityCardiffCF24 3AAUK
| |
Collapse
|
25
|
Xia J, Wang Z, Becker R, Li F, Wei F, Yang S, Rich J, Li K, Rufo J, Qian J, Yang K, Chen C, Gu Y, Zhong R, Lee PJ, Wong DTW, Lee LP, Huang TJ. Acoustofluidic Virus Isolation via Bessel Beam Excitation Separation Technology. ACS NANO 2024; 18:22596-22607. [PMID: 39132820 DOI: 10.1021/acsnano.4c09692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The isolation of viruses from complex biological samples is essential for creating sensitive bioassays that assess the efficacy and safety of viral therapeutics and vaccines, which have played a critical role during the COVID-19 pandemic. However, existing methods of viral isolation are time-consuming and labor-intensive due to the multiple processing steps required, resulting in low yields. Here, we introduce the rapid, efficient, and high-resolution acoustofluidic isolation of viruses from complex biological samples via Bessel beam excitation separation technology (BEST). BEST isolates viruses by utilizing the nondiffractive and self-healing properties of 2D, in-plane acoustic Bessel beams to continuously separate cell-free viruses from biofluids, with high throughput and high viral RNA yield. By tuning the acoustic parameters, the cutoff size of isolated viruses can be easily adjusted to perform dynamic, size-selective virus isolation while simultaneously trapping larger particles and separating smaller particles and contaminants from the sample, achieving high-precision isolation of the target virus. BEST was used to isolate severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from human saliva samples and Moloney Murine Leukemia Virus from cell culture media, demonstrating its potential use in both practical diagnostic applications and fundamental virology research. With high separation resolution, high yield, and high purity, BEST is a powerful tool for rapidly and efficiently isolating viruses. It has the potential to play an important role in the development of next-generation viral diagnostics, therapeutics, and vaccines.
Collapse
Affiliation(s)
- Jianping Xia
- The Thomas Lord Department of Mechanical Engineering and Materials, Duke University, Durham, North Carolina 27708, United States
| | - Zeyu Wang
- The Thomas Lord Department of Mechanical Engineering and Materials, Duke University, Durham, North Carolina 27708, United States
| | - Ryan Becker
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Feng Li
- School of Dentistry, University of California, Los Angeles, California 90095, United States
| | - Fang Wei
- School of Dentistry, University of California, Los Angeles, California 90095, United States
| | - Shujie Yang
- The Thomas Lord Department of Mechanical Engineering and Materials, Duke University, Durham, North Carolina 27708, United States
| | - Joseph Rich
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Ke Li
- The Thomas Lord Department of Mechanical Engineering and Materials, Duke University, Durham, North Carolina 27708, United States
| | - Joseph Rufo
- The Thomas Lord Department of Mechanical Engineering and Materials, Duke University, Durham, North Carolina 27708, United States
| | - Jiao Qian
- The Thomas Lord Department of Mechanical Engineering and Materials, Duke University, Durham, North Carolina 27708, United States
| | - Kaichun Yang
- The Thomas Lord Department of Mechanical Engineering and Materials, Duke University, Durham, North Carolina 27708, United States
| | - Chuyi Chen
- The Thomas Lord Department of Mechanical Engineering and Materials, Duke University, Durham, North Carolina 27708, United States
| | - Yuyang Gu
- The Thomas Lord Department of Mechanical Engineering and Materials, Duke University, Durham, North Carolina 27708, United States
| | - Ruoyu Zhong
- The Thomas Lord Department of Mechanical Engineering and Materials, Duke University, Durham, North Carolina 27708, United States
| | - Patty J Lee
- Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - David T W Wong
- School of Dentistry, University of California, Los Angeles, California 90095, United States
| | - Luke P Lee
- Renal Division and Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard University, Boston, Massachusetts 02115, United States
| | - Tony Jun Huang
- The Thomas Lord Department of Mechanical Engineering and Materials, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
26
|
Wu M, Ma Z, Xu X, Lu B, Gu Y, Yoon J, Xia J, Ma Z, Upreti N, Anwar IJ, Knechtle SJ, T Chambers E, Kwun J, Lee LP, Huang TJ. Acoustofluidic-based therapeutic apheresis system. Nat Commun 2024; 15:6854. [PMID: 39127732 PMCID: PMC11316742 DOI: 10.1038/s41467-024-50053-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 06/26/2024] [Indexed: 08/12/2024] Open
Abstract
Therapeutic apheresis aims to selectively remove pathogenic substances, such as antibodies that trigger various symptoms and diseases. Unfortunately, current apheresis devices cannot handle small blood volumes in infants or small animals, hindering the testing of animal model advancements. This limitation restricts our ability to provide treatment options for particularly susceptible infants and children with limited therapeutic alternatives. Here, we report our solution to these challenges through an acoustofluidic-based therapeutic apheresis system designed for processing small blood volumes. Our design integrates an acoustofluidic device with a fluidic stabilizer array on a chip, separating blood components from minimal extracorporeal volumes. We carried out plasma apheresis in mouse models, each with a blood volume of just 280 μL. Additionally, we achieved successful plasmapheresis in a sensitized mouse, significantly lowering preformed donor-specific antibodies and enabling desensitization in a transplantation model. Our system offers a new solution for small-sized subjects, filling a critical gap in existing technologies and providing potential benefits for a wide range of patients.
Collapse
Affiliation(s)
- Mengxi Wu
- School of Mechanical Engineering, Dalian University of Technology, Dalian, Liaoning, P.R. China
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Zhiteng Ma
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Xianchen Xu
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Brandon Lu
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Yuyang Gu
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Janghoon Yoon
- Department of Surgery, Duke Transplant Center, Duke University Medical Center, Durham, NC, 27708, USA
| | - Jianping Xia
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Zhehan Ma
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Neil Upreti
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Imran J Anwar
- Department of Surgery, Duke Transplant Center, Duke University Medical Center, Durham, NC, 27708, USA
| | - Stuart J Knechtle
- Department of Surgery, Duke Transplant Center, Duke University Medical Center, Durham, NC, 27708, USA
| | - Eileen T Chambers
- Department of Surgery, Duke Transplant Center, Duke University Medical Center, Durham, NC, 27708, USA
| | - Jean Kwun
- Department of Surgery, Duke Transplant Center, Duke University Medical Center, Durham, NC, 27708, USA.
| | - Luke P Lee
- Renal Division and Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Harvard University, Brigham and Women's Hospital, Boston, MA, 02115, USA.
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, 94720, USA.
- Department of Electrical Engineering and Computer Science, University of California, Berkeley, Berkeley, CA, 94720, USA.
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Korea.
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, Korea.
| | - Tony Jun Huang
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
27
|
Shen L, Tian Z, Yang K, Rich J, Zhang J, Xia J, Collyer W, Lu B, Hao N, Pei Z, Chen C, Huang TJ. Acousto-dielectric tweezers enable independent manipulation of multiple particles. SCIENCE ADVANCES 2024; 10:eado8992. [PMID: 39110808 PMCID: PMC11305384 DOI: 10.1126/sciadv.ado8992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/01/2024] [Indexed: 08/10/2024]
Abstract
Acoustic tweezers have gained substantial interest in biology, engineering, and materials science for their label-free, precise, contactless, and programmable manipulation of small objects. However, acoustic tweezers cannot independently manipulate multiple microparticles simultaneously. This study introduces acousto-dielectric tweezers capable of independently manipulating multiple microparticles and precise control over intercellular distances and cyclical cell pairing and separation for detailed cell-cell interaction analysis. Our acousto-dielectric tweezers leverage the competition between acoustic radiation forces, generated by standing surface acoustic waves (SAWs), and dielectrophoretic (DEP) forces, induced by gradient electric fields. Modulating these fields allows for the precise positioning of individual microparticles at points where acoustic radiation and DEP forces are in equilibrium. This mechanism enables the simultaneous movement of multiple microparticles along specified paths as well as cyclical cell pairing and separation. We anticipate our acousto-dielectric tweezers to have enormous potential in colloidal assembly, cell-cell interaction studies, disease diagnostics, and tissue engineering.
Collapse
Affiliation(s)
- Liang Shen
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
- Department of Mechanical Engineering, Virginia Polytechnical Institute and State University, Blacksburg, VA 24061, USA
| | - Zhenhua Tian
- Department of Mechanical Engineering, Virginia Polytechnical Institute and State University, Blacksburg, VA 24061, USA
| | - Kaichun Yang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Joseph Rich
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Jinxin Zhang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Jianping Xia
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Wesley Collyer
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Brandon Lu
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Nanjing Hao
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Zhichao Pei
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Chuyi Chen
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Tony Jun Huang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| |
Collapse
|
28
|
Pei Z, Tian Z, Yang S, Shen L, Hao N, Naquin TD, Li T, Sun L, Rong W, Huang TJ. Capillary-based, multifunctional manipulation of particles and fluids via focused surface acoustic waves. JOURNAL OF PHYSICS D: APPLIED PHYSICS 2024; 57:305401. [PMID: 38800708 PMCID: PMC11126230 DOI: 10.1088/1361-6463/ad415a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Surface acoustic wave (SAW)-enabled acoustofluidic technologies have recently atttracted increasing attention for applications in biology, chemistry, biophysics, and medicine. Most SAW acoustofluidic devices generate acoustic energy which is then transmitted into custom microfabricated polymer-based channels. There are limited studies on delivering this acoustic energy into convenient commercially-available glass tubes for manipulating particles and fluids. Herein, we have constructed a capillary-based SAW acoustofluidic device for multifunctional fluidic and particle manipulation. This device integrates a converging interdigitated transducer to generate focused SAWs on a piezoelectric chip, as well as a glass capillary that transports particles and fluids. To understand the actuation mechanisms underlying this device, we performed finite element simulations by considering piezoelectric, solid mechanic, and pressure acoustic physics. This experimental study shows that the capillary-based SAW acoustofluidic device can perform multiple functions including enriching particles, patterning particles, transporting particles and fluids, as well as generating droplets with controlled sizes. Given the usefulness of these functions, we expect that this acoustofluidic device can be useful in applications such as pharmaceutical manufacturing, biofabrication, and bioanalysis.
Collapse
Affiliation(s)
- Zhichao Pei
- Department of Mechanical and Electrical Engineering, Harbin Institute of Technology, Harbin, 150080, China
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Zhenhua Tian
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, VA, 24060, USA
| | - Shujie Yang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Liang Shen
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Nanjing Hao
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Ty D. Naquin
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Teng Li
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, VA, 24060, USA
| | - Lining Sun
- Department of Mechanical and Electrical Engineering, Harbin Institute of Technology, Harbin, 150080, China
| | - Weibin Rong
- Department of Mechanical and Electrical Engineering, Harbin Institute of Technology, Harbin, 150080, China
| | - Tony Jun Huang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
29
|
Liu L, Cui J, Chen P, Fatima Z, Xing Y, Liu H, Ren X, Li D. Controllable concentric electric field line distribution for simultaneous separation of DNA. J Chromatogr A 2024; 1727:464990. [PMID: 38744188 DOI: 10.1016/j.chroma.2024.464990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024]
Abstract
An approach for the controllable separation and concentration of nucleic acid using a circular nonuniform electric field was proposed and developed. Using six different lengths of DNA molecules as standard samples, the distribution of the gradient electric field was increased from the outer circular electrode to the inner rod-shaped electrode, contributing to the migration of DNA molecules at a velocity gradient towards the region with the strongest inner electric field. The DNA molecules were arranged in a distribution of concentric circles that aligned with the distribution of concentric equipotential lines. The concentration of DNA multiplied with the alternation of radius. As a result, this platform allowed simultaneous DNA separation, achieving a resolution range of 1.17-3.03 through an extended electrophoresis time, resulting in enhanced concentration factors of 1.08-6.27. Moreover, the manipulation of the relative height of the inner and outer electrodes enabled precise control over the distribution and the deflection degree of electric field lines, leading to accurate control over DNA deflection.
Collapse
Affiliation(s)
- Lu Liu
- Department of Pathology and Key Laboratory of Pathobiology, State Ethnic Affairs Commission, Medical College, Yanbian University, Park Road 977, Yanji, Jilin Province 133002, China; Department of Chemistry, Yanbian University, Park Road 977, Yanji, Jilin Province 133002, China; Key Laboratory of Agrifood Quality and Safety Evaluation, Yanbian University, Yanji, Jilin Province 133002, China
| | - Jiaxuan Cui
- Department of Chemistry, Yanbian University, Park Road 977, Yanji, Jilin Province 133002, China
| | - Peng Chen
- Department of Chemistry, Yanbian University, Park Road 977, Yanji, Jilin Province 133002, China
| | - Zakia Fatima
- Department of Chemistry, Yanbian University, Park Road 977, Yanji, Jilin Province 133002, China
| | - Yuhang Xing
- Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University, Park Road 977, Yanji, Jilin Province 133002, China
| | - Huwei Liu
- College of Life Sciences, Wuchang University of Technology, Wuhan, China
| | - Xiangshan Ren
- Department of Pathology and Key Laboratory of Pathobiology, State Ethnic Affairs Commission, Medical College, Yanbian University, Park Road 977, Yanji, Jilin Province 133002, China; Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University, Park Road 977, Yanji, Jilin Province 133002, China.
| | - Donghao Li
- Department of Chemistry, Yanbian University, Park Road 977, Yanji, Jilin Province 133002, China; Key Laboratory of Agrifood Quality and Safety Evaluation, Yanbian University, Yanji, Jilin Province 133002, China; Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University, Park Road 977, Yanji, Jilin Province 133002, China.
| |
Collapse
|
30
|
Ma C, Xu Z, Hao K, Fan L, Du W, Gao Z, Wang C, Zhang Z, Li N, Li Q, Gao Q, Yu C. Rapid isolation method for extracellular vesicles based on Fe 3O 4@ZrO 2. Front Bioeng Biotechnol 2024; 12:1399689. [PMID: 39045537 PMCID: PMC11263208 DOI: 10.3389/fbioe.2024.1399689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/20/2024] [Indexed: 07/25/2024] Open
Abstract
Extracellular vesicles (EVs) are pivotal in intercellular communication, disease mechanisms. Despite numerous methods for EVs isolation, challenges persist in yield, purity, reproducibility, cost, time, and automation. We introduce a EVs isolation technique using Fe3O4@ZrO2 beads, leveraging ZrO2-phosphate interaction. The results indicated that EVs were efficiently separated from large volumes of samples in 30 minutes without preconcentration. Our method demonstrated capture efficiency (74%-78%) compared to ultracentrifugation, purity (97%), and reproducibility (0.3%-0.5%), with excellent linearity (R2 > 0.99). EVs from urine samples showed altered expression of miRNAs. The logistic regression model achieved an AUC of 0.961, sensitivity of 0.92, and specificity of 0.94. With potential for automation, this magnetic bead-based method holds promise for clinical applications, offering an efficient and reliable tool for EVs research and clinical studies.
Collapse
Affiliation(s)
- Cuidie Ma
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Zhihui Xu
- Beijing Hotgen Biotech Co., Ltd., Beijing, China
| | - Kun Hao
- Beijing Hotgen Biotech Co., Ltd., Beijing, China
| | - Lingling Fan
- Beijing Hotgen Biotech Co., Ltd., Beijing, China
| | - Wenqian Du
- Beijing Hotgen Biotech Co., Ltd., Beijing, China
| | - Zhan Gao
- Department of Urology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chong Wang
- Department of Clinical Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zheng Zhang
- Department of Clinical Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Ningxia Li
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xi’an Medical University, Xi’an, Shaanxi, China
| | - Qi Li
- Department of Clinical Laboratory, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qi Gao
- Beijing Hotgen Biotech Co., Ltd., Beijing, China
| | - Changyuan Yu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
31
|
Fan X, Zhang Y, Liu W, Shao M, Gong Y, Wang T, Xue S, Nian R. A comprehensive review of engineered exosomes from the preparation strategy to therapeutic applications. Biomater Sci 2024; 12:3500-3521. [PMID: 38828621 DOI: 10.1039/d4bm00558a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Exosomes exhibit high bioavailability, biological stability, targeted specificity, low toxicity, and low immunogenicity in shuttling various bioactive molecules such as proteins, lipids, RNA, and DNA. Natural exosomes, however, have limited production, targeting abilities, and therapeutic efficacy in clinical trials. On the other hand, engineered exosomes have demonstrated long-term circulation, high stability, targeted delivery, and efficient intracellular drug release, garnering significant attention. The engineered exosomes bring new insights into developing next-generation drug delivery systems and show enormous potential in therapeutic applications, such as tumor therapies, diabetes management, cardiovascular disease, and tissue regeneration and repair. In this review, we provide an overview of recent advancements associated with engineered exosomes by focusing on the state-of-the-art strategies for cell engineering and exosome engineering. Exosome isolation methods, including traditional and emerging approaches, are systematically compared along with advancements in characterization methods. Current challenges and future opportunities are further discussed in terms of the preparation and application of engineered exosomes.
Collapse
Affiliation(s)
- Xiying Fan
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189, Songling Road, Qingdao 266101, China.
- Shandong Energy Institute, No. 189, Songling Road, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, No. 189, Songling Road, Qingdao 266101, China
| | - Yiwen Zhang
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189, Songling Road, Qingdao 266101, China.
- Shandong Energy Institute, No. 189, Songling Road, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, No. 189, Songling Road, Qingdao 266101, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Beijing 100049, People's Republic of China
| | - Wenshuai Liu
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189, Songling Road, Qingdao 266101, China.
- Shandong Energy Institute, No. 189, Songling Road, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, No. 189, Songling Road, Qingdao 266101, China
| | - Mingzheng Shao
- Research Center on Advanced Chemical Engineering and Energy Materials, China University of Petroleum (East China), Qingdao 266580, P. R. China.
| | - Yibo Gong
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189, Songling Road, Qingdao 266101, China.
- Shandong Energy Institute, No. 189, Songling Road, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, No. 189, Songling Road, Qingdao 266101, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Beijing 100049, People's Republic of China
| | - Tingya Wang
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189, Songling Road, Qingdao 266101, China.
- Shandong Energy Institute, No. 189, Songling Road, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, No. 189, Songling Road, Qingdao 266101, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Beijing 100049, People's Republic of China
| | - Song Xue
- Research Center on Advanced Chemical Engineering and Energy Materials, China University of Petroleum (East China), Qingdao 266580, P. R. China.
| | - Rui Nian
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189, Songling Road, Qingdao 266101, China.
- Shandong Energy Institute, No. 189, Songling Road, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, No. 189, Songling Road, Qingdao 266101, China
| |
Collapse
|
32
|
Ma Z, Xia J, Upreti N, David E, Rufo J, Gu Y, Yang K, Yang S, Xu X, Kwun J, Chambers E, Huang TJ. An acoustofluidic device for the automated separation of platelet-reduced plasma from whole blood. MICROSYSTEMS & NANOENGINEERING 2024; 10:83. [PMID: 38915828 PMCID: PMC11194281 DOI: 10.1038/s41378-024-00707-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/07/2024] [Accepted: 04/02/2024] [Indexed: 06/26/2024]
Abstract
Separating plasma from whole blood is an important sample processing technique required for fundamental biomedical research, medical diagnostics, and therapeutic applications. Traditional protocols for plasma isolation require multiple centrifugation steps or multiunit microfluidic processing to sequentially remove large red blood cells (RBCs) and white blood cells (WBCs), followed by the removal of small platelets. Here, we present an acoustofluidic platform capable of efficiently removing RBCs, WBCs, and platelets from whole blood in a single step. By leveraging differences in the acoustic impedances of fluids, our device generates significantly greater forces on suspended particles than conventional microfluidic approaches, enabling the removal of both large blood cells and smaller platelets in a single unit. As a result, undiluted human whole blood can be processed by our device to remove both blood cells and platelets (>90%) at low voltages (25 Vpp). The ability to successfully remove blood cells and platelets from plasma without altering the properties of the proteins and antibodies present creates numerous potential applications for our platform in biomedical research, as well as plasma-based diagnostics and therapeutics. Furthermore, the microfluidic nature of our device offers advantages such as portability, cost efficiency, and the ability to process small-volume samples.
Collapse
Affiliation(s)
- Zhehan Ma
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC USA
| | - Jianping Xia
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC USA
| | - Neil Upreti
- Department of Biomedical Engineering, Duke University, Durham, NC USA
| | - Emeraghi David
- Department of Pediatrics, Duke University, Durham, NC USA
| | - Joseph Rufo
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC USA
| | - Yuyang Gu
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC USA
| | - Kaichun Yang
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC USA
| | - Shujie Yang
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC USA
| | - Xiangchen Xu
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC USA
| | - Jean Kwun
- Duke Transplant Center, Department of Surgery, Duke University School of Medicine, Durham, NC USA
| | | | - Tony Jun Huang
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC USA
| |
Collapse
|
33
|
Wei W, Wang Z, Wang B, Pang W, Yang Q, Duan X. Concentration of Microparticles/Cells Based on an Ultra-Fast Centrifuge Virtual Tunnel Driven by a Novel Lamb Wave Resonator Array. BIOSENSORS 2024; 14:280. [PMID: 38920584 PMCID: PMC11202289 DOI: 10.3390/bios14060280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/17/2024] [Accepted: 05/25/2024] [Indexed: 06/27/2024]
Abstract
The µTAS/LOC, a highly integrated microsystem, consolidates multiple bioanalytical functions within a single chip, enhancing efficiency and precision in bioanalysis and biomedical operations. Microfluidic centrifugation, a key component of LOC devices, enables rapid capture and enrichment of tiny objects in samples, improving sensitivity and accuracy of detection and diagnosis. However, microfluidic systems face challenges due to viscosity dominance and difficulty in vortex formation. Acoustic-based centrifugation, particularly those using surface acoustic waves (SAWs), have shown promise in applications such as particle concentration, separation, and droplet mixing. However, challenges include accurate droplet placement, energy loss from off-axis positioning, and limited energy transfer from low-frequency SAW resonators, restricting centrifugal speed and sample volume. In this work, we introduce a novel ring array composed of eight Lamb wave resonators (LWRs), forming an Ultra-Fast Centrifuge Tunnel (UFCT) in a microfluidic system. The UFCT eliminates secondary vortices, concentrating energy in the main vortex and maximizing acoustic-to-streaming energy conversion. It enables ultra-fast centrifugation with a larger liquid capacity (50 μL), reduced power usage (50 mW) that is one order of magnitude smaller than existing devices, and greater linear speed (62 mm/s), surpassing the limitations of prior methods. We demonstrate successful high-fold enrichment of 2 μm and 10 μm particles and explore the UFCT's potential in tissue engineering by encapsulating cells in a hydrogel-based micro-organ with a ring structure, which is of great significance for building more complex manipulation platforms for particles and cells in a bio-compatible and contactless manner.
Collapse
Affiliation(s)
| | | | | | | | - Qingrui Yang
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin 300072, China; (W.W.); (Z.W.); (B.W.); (W.P.)
| | - Xuexin Duan
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin 300072, China; (W.W.); (Z.W.); (B.W.); (W.P.)
| |
Collapse
|
34
|
Chen M, Pei Z, Wang Y, Song F, Zhong J, Wang C, Ma Y. Small extracellular vesicles' enrichment from biological fluids using an acoustic trap. Analyst 2024; 149:3169-3177. [PMID: 38639189 DOI: 10.1039/d4an00034j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Small extracellular vesicles (sEVs), a form of extracellular vesicles, are lipid bilayered structures released by all cells. Large-scale studies on sEVs from clinical samples are necessary, but a major obstacle is the lack of rapid, reproducible, efficient, and low-cost methods to enrich sEVs. Acoustic microfluidics have the advantage of being label-free and biocompatible, which have been reported to successfully enrich sEVs. In this paper, we present a highly efficient acoustic microfluidic trap that can offer low and large volume compatible ways of enriching sEVs from biological fluids by flexible structure design. It uses the idea of pre-loading larger seed particles in the acoustic trap to enable sub-micron particle capturing. The microfluidic chip is actuated using a piezoelectric plate transducer attached to a silicon-glass bonding plate with circular cavities. Each cavity works as a resonant unit, excited at the frequency of both the half wave resonance in the main plane and inverted quarter wave resonance in the depth direction, which has the ability to strongly trap seed particles at the center, thereby improving the subsequent nanoparticle capture efficiency. Mean trapping efficiencies of 35.62% and 64.27% were obtained using 60 nm and 100 nm nanobeads, respectively. By the use of this technology, we have successfully enriched sEVs from cell culture conditioned media and blood plasma at a flow rate of 10 μL min-1. The isolated sEV subpopulations are characterized by NTA and TEM, and their protein cargo is determined by WB. This acoustic trapping chip provides a rapid and robust method to enrich sEVs from biofluids with high reproducibility and sufficient quantities. Therefore, it can serve as a new tool for biological and clinical research such as cancer diagnosis and drug delivery.
Collapse
Affiliation(s)
- Mengli Chen
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China.
| | - Zhiguo Pei
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China.
| | - Yao Wang
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China.
| | - Feifei Song
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China.
| | - Jinfeng Zhong
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China.
| | - Ce Wang
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China.
| | - Yuting Ma
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China.
| |
Collapse
|
35
|
Guo H, Wang D, Feng S, Zhang K, Luo Y, Zhao J. A novel viscoelastic microfluidic platform for nanoparticle/small extracellular vesicle separation through viscosity gradient-induced migration. BIOMICROFLUIDICS 2024; 18:034107. [PMID: 38947280 PMCID: PMC11210975 DOI: 10.1063/5.0208417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/05/2024] [Indexed: 07/02/2024]
Abstract
Small extracellular vesicles (sEVs) are extracellular vesicles with diameters ranging from 30 to 150 nm, harboring proteins and nucleic acids that reflect their source cells and act as vital mediators of intercellular communication. The comprehensive analysis of sEVs is hindered by the complex composition of biofluids that contain various extracellular vesicles. Conventional separation methods, such as ultracentrifugation and immunoaffinity capture, face routine challenges in operation complexity, cost, and compromised recovery rates. Microfluidic technologies, particularly viscoelastic microfluidics, offer a promising alternative for sEV separation due to its field-free nature, fast and simple operation procedure, and minimal sample consumption. In this context, we here introduce an innovative viscoelastic approach designed to exploit the viscosity gradient-induced force with size-dependent characteristics, thereby enabling the efficient separation of nano-sized particles and sEVs from larger impurities. We first seek to illustrate the underlying mechanism of the viscosity gradient-induced force, followed by experimental validation with fluorescent nanoparticles demonstrating separation results consistent with qualitative analysis. We believe that this work is the first to report such viscosity gradient-induced phenomenon in the microfluidic context. The presented approach achieves ∼80% for both target purity and recovery rate. We further demonstrate effective sEV separation using our device to showcase its efficacy in the real biological context, highlighting its potential as a versatile, label-free platform for sEV analysis in both fundamental biological research and clinical applications.
Collapse
Affiliation(s)
| | | | | | - Kaihuan Zhang
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Yuan Luo
- Authors to whom correspondence should be addressed: and
| | - Jianlong Zhao
- Authors to whom correspondence should be addressed: and
| |
Collapse
|
36
|
Wang Y, Wei W, Guan X, Yang Y, Tang B, Guo W, Sun C, Duan X. A Microflow Cytometer Enabled by Monolithic Integration of a Microreflector with an Acoustic Resonator. ACS Sens 2024; 9:1428-1437. [PMID: 38382073 DOI: 10.1021/acssensors.3c02530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Current microflow cytometers suffer from complicated fluidic integration and low fluorescence collection efficiency, resulting in reduced portability and sensitivity. Herein, we demonstrated a new flow cell design based on an on-chip monolithically integrated microreflector with a bulk acoustic wave resonator (MBAW). It enables simultaneous 3D particle focusing and fluorescence enhancement without using shear flow. Benefited by the on-chip microreflector, the captured fluorescence intensity was 1.8-fold greater than that of the Si substrate and 8.3-fold greater than that of the SiO2 substrate, greatly improving the detection sensitivity. Combined with the contactless acoustic streaming-based focusing, particle sensing with a coefficient of variation as low as 6.1% was achieved. We also demonstrated the difference between live and dead cells and performed a cell cycle assay using the as-developed microflow cytometry. This monolithic integrated MBAW provides a new type of opto-acoustofluidic system and has the potential to be a highly integrated, highly sensitive flow cytometer for applications such as in vitro diagnostics and point of care.
Collapse
Affiliation(s)
- Yaping Wang
- State Key Laboratory of Precision Measuring Technology & Instruments and College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Wei Wei
- State Key Laboratory of Precision Measuring Technology & Instruments and College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Xieruiqi Guan
- State Key Laboratory of Precision Measuring Technology & Instruments and College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Yang Yang
- State Key Laboratory of Precision Measuring Technology & Instruments and College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Bingyi Tang
- State Key Laboratory of Precision Measuring Technology & Instruments and College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Wenlan Guo
- State Key Laboratory of Precision Measuring Technology & Instruments and College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Chen Sun
- State Key Laboratory of Precision Measuring Technology & Instruments and College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Xuexin Duan
- State Key Laboratory of Precision Measuring Technology & Instruments and College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
37
|
Rufo J, Zhang P, Wang Z, Gu Y, Yang K, Rich J, Chen C, Zhong R, Jin K, He Y, Xia J, Li K, Wu J, Ouyang Y, Sadovsky Y, Lee LP, Huang TJ. High-yield and rapid isolation of extracellular vesicles by flocculation via orbital acoustic trapping: FLOAT. MICROSYSTEMS & NANOENGINEERING 2024; 10:23. [PMID: 38317693 PMCID: PMC10838941 DOI: 10.1038/s41378-023-00648-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/01/2023] [Accepted: 11/11/2023] [Indexed: 02/07/2024]
Abstract
Extracellular vesicles (EVs) have been identified as promising biomarkers for the noninvasive diagnosis of various diseases. However, challenges in separating EVs from soluble proteins have resulted in variable EV recovery rates and low purities. Here, we report a high-yield ( > 90%) and rapid ( < 10 min) EV isolation method called FLocculation via Orbital Acoustic Trapping (FLOAT). The FLOAT approach utilizes an acoustofluidic droplet centrifuge to rotate and controllably heat liquid droplets. By adding a thermoresponsive polymer flocculant, nanoparticles as small as 20 nm can be rapidly and selectively concentrated at the center of the droplet. We demonstrate the ability of FLOAT to separate urinary EVs from the highly abundant Tamm-Horsfall protein, addressing a significant obstacle in the development of EV-based liquid biopsies. Due to its high-yield nature, FLOAT reduces biofluid starting volume requirements by a factor of 100 (from 20 mL to 200 µL), demonstrating its promising potential in point-of-care diagnostics.
Collapse
Affiliation(s)
- Joseph Rufo
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC USA
| | - Peiran Zhang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC USA
| | - Zeyu Wang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC USA
| | - Yuyang Gu
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC USA
| | - Kaichun Yang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC USA
| | - Joseph Rich
- Department of Biomedical Engineering, Duke University, Durham, NC USA
| | - Chuyi Chen
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC USA
| | - Ruoyu Zhong
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC USA
| | - Ke Jin
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC USA
| | - Ye He
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC USA
| | - Jianping Xia
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC USA
| | - Ke Li
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC USA
| | - Jiarong Wu
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC USA
| | - Yingshi Ouyang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA USA
| | - Yoel Sadovsky
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA USA
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA USA
| | - Luke P. Lee
- Renal Division and Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
- Department of Bioengineering, Department of Electrical Engineering and Computer Science, University of California, Berkeley, Berkeley, CA USA
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Korea
| | - Tony Jun Huang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC USA
| |
Collapse
|
38
|
Wu Z, Cai H, Tian C, Ao Z, Jiang L, Guo F. Exploiting Sound for Emerging Applications of Extracellular Vesicles. NANO RESEARCH 2024; 17:462-475. [PMID: 38712329 PMCID: PMC11073796 DOI: 10.1007/s12274-023-5840-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/08/2024]
Abstract
Extracellular vesicles are nano- to microscale, membrane-bound particles released by cells into extracellular space, and act as carriers of biomarkers and therapeutics, holding promising potential in translational medicine. However, the challenges remain in handling and detecting extracellular vesicles for disease diagnosis as well as exploring their therapeutic capability for disease treatment. Here, we review the recent engineering and technology advances by leveraging the power of sound waves to address the challenges in diagnostic and therapeutic applications of extracellular vesicles and biomimetic nanovesicles. We first introduce the fundamental principles of sound waves for understanding different acoustic-assisted extracellular vesicle technologies. We discuss the acoustic-assisted diagnostic methods including the purification, manipulation, biosensing, and bioimaging of extracellular vesicles. Then, we summarize the recent advances in acoustically enhanced therapeutics using extracellular vesicles and biomimetic nanovesicles. Finally, we provide perspectives into current challenges and future clinical applications of the promising extracellular vesicles and biomimetic nanovesicles powered by sound.
Collapse
Affiliation(s)
- Zhuhao Wu
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN 47405, United States
| | - Hongwei Cai
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN 47405, United States
| | - Chunhui Tian
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN 47405, United States
| | - Zheng Ao
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN 47405, United States
| | - Lei Jiang
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN 47405, United States
| | - Feng Guo
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN 47405, United States
| |
Collapse
|
39
|
Zhang D, Hu Y, Gao R, Ge S, Zhang J, Zhang X, Xia N. Numerical and experimental investigation on the performance of rapid ultrasonic-assisted nucleic acid extraction based on dispersive two-phase flow. Anal Chim Acta 2024; 1288:342176. [PMID: 38220306 DOI: 10.1016/j.aca.2023.342176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/11/2023] [Accepted: 12/21/2023] [Indexed: 01/16/2024]
Abstract
BACKGROUND Nucleic acid extraction (NAE) is an essential step in the whole process of nucleic acid detection (NAT). Traditional manual extraction methods are time-consuming and laborious, unfavorable to the point-of-care testing of nucleic acids. Ultrasound has been emphasized due to its noncontact and easy-to-manipulate characteristics, and integration with microfluidic chip can realize rapid NAE through acoustic streaming effect. The uniformity of magnetic bead mixing in this process is a critical factor affecting the extraction effect. In this study, we developed an ultrasound-assisted NAE technique based on the magnetic bead method and optimized the chip structure to achieve rapid NAE. RESULT We use ultrasonic-assisted coupled with magnetic bead method for ultra-fast NAE. The mixing process of magnetic beads driven by acoustic streaming is simulated by a dispersive two-phase flow model, and the ultrasonic incidence angle (θin), cone structure aspect ratio (Dc/Hc) and sheet structure thickness (Hp) are optimized to enhance the mixing performance. Furthermore, the effectiveness of NAE is validated by utilizing quantitative real-time PCR (qPCR) detection. The findings reveal that a θin value of 10° yields superior mixing performance compared to other incidence angles, resulting in a maximum increase of 84 % in mixing intensity. When Dc/Hc = 0.5 and Hp = 0.5 mm, the maximum mixing index in the localized region of the chamber after 1 s of ultrasound action can reach 83.6 % and 92.5 %, respectively. Compared to the original chamber, the CT values extracted after 5 s of ultrasound action shifted forward by up to 1.9 ct and 4.1 ct, respectively. SIGNIFICANCE The dispersed two-phase flow model can effectively simulate the mixing process of magnetic beads, which plays an important role in assisting the structural design of chip extraction chambers. The single-step mixing of ultrasound-assisted NAE takes only 15s to achieve an extraction performance comparable to manual extraction. The extraction process can be completed within 7 min after integrating this technology with microfluidic chips and automated equipment, providing a solution for automated and efficient NAE.
Collapse
Affiliation(s)
- Dongxu Zhang
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases,State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics,National Innovation Platform for Industry-Education Integration in Vaccine Research,the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences,Xiamen University, Xiamen, Fujian, China
| | - Yang Hu
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases,State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics,National Innovation Platform for Industry-Education Integration in Vaccine Research,the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences,Xiamen University, Xiamen, Fujian, China; Discipline of Intelligent Instrument and Equipment, Xiamen University, Fujian, China; Department of Experimental Medicine, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Runxin Gao
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases,State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics,National Innovation Platform for Industry-Education Integration in Vaccine Research,the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences,Xiamen University, Xiamen, Fujian, China; Department of Experimental Medicine, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Shengxiang Ge
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases,State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics,National Innovation Platform for Industry-Education Integration in Vaccine Research,the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences,Xiamen University, Xiamen, Fujian, China
| | - Jun Zhang
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases,State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics,National Innovation Platform for Industry-Education Integration in Vaccine Research,the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences,Xiamen University, Xiamen, Fujian, China
| | - Xianglei Zhang
- School of Mechanical and Electrical Engineering, Wenzhou University, Wenzhou, Zhejiang, China.
| | - Ningshao Xia
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases,State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics,National Innovation Platform for Industry-Education Integration in Vaccine Research,the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences,Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
40
|
Gorgzadeh A, Nazari A, Ali Ehsan Ismaeel A, Safarzadeh D, Hassan JAK, Mohammadzadehsaliani S, Kheradjoo H, Yasamineh P, Yasamineh S. A state-of-the-art review of the recent advances in exosome isolation and detection methods in viral infection. Virol J 2024; 21:34. [PMID: 38291452 PMCID: PMC10829349 DOI: 10.1186/s12985-024-02301-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/22/2024] [Indexed: 02/01/2024] Open
Abstract
Proteins, RNA, DNA, lipids, and carbohydrates are only some of the molecular components found in exosomes released by tumor cells. They play an essential role in healthy and diseased cells as messengers of short- and long-distance intercellular communication. However, since exosomes are released by every kind of cell and may be found in blood and other bodily fluids, they may one day serve as biomarkers for a wide range of disorders. In many pathological conditions, including cancer, inflammation, and infection, they play a role. It has been shown that the biogenesis of exosomes is analogous to that of viruses and that the exosomal cargo plays an essential role in the propagation, dissemination, and infection of several viruses. Bidirectional modulation of the immune response is achieved by the ability of exosomes associated with viruses to facilitate immunological escape and stimulate the body's antiviral immune response. Recently, exosomes have received a lot of interest due to their potential therapeutic use as biomarkers for viral infections such as human immunodeficiency virus (HIV), Hepatitis B virus (HBV), Hepatitis C virus (HCV), Epstein-Barr virus (EBV), and SARS-CoV-2. This article discusses the purification procedures and detection techniques for exosomes and examines the research on exosomes as a biomarker of viral infection.
Collapse
Affiliation(s)
| | - Ahmad Nazari
- Tehran University of Medical Sciences, Tehran, Iran
| | | | - Diba Safarzadeh
- Vocational School of Health Service, Near East University, Nicosia, Cyprus
| | - Jawad A K Hassan
- National University of Science and Technology, Nasiriyah, Dhi Qar, Iraq
| | | | | | - Pooneh Yasamineh
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Saman Yasamineh
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
| |
Collapse
|
41
|
Ma X, Chen Z, Chen W, Chen Z, Meng X. Exosome subpopulations: The isolation and the functions in diseases. Gene 2024; 893:147905. [PMID: 37844851 DOI: 10.1016/j.gene.2023.147905] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/26/2023] [Accepted: 10/13/2023] [Indexed: 10/18/2023]
Abstract
Exosomes are nanoscale extracellular vesicles secreted by cells. Exosomes mediate intercellular communication by releasing their bioactive contents (e.g., DNAs, RNAs, lipids, proteins, and metabolites). The components of exosomes are regulated by the producing cells of exosomes. Due to their diverse origins, exosomes are highly heterogeneous in size, content, and function. Depending on these characteristics, exosomes can be divided into multiple subpopulations which have different functions. Efficient enrichment of specific subpopulations of exosomes helps to investigate their biological functions. Accordingly, numerous techniques have been developed to isolate specific subpopulations of exosomes. This review systematically introduces emerging new technologies for the isolation of different exosome subpopulations and summarizes the critical role of specific exosome subpopulations in diseases, especially in tumor occurrence and progression.
Collapse
Affiliation(s)
- Xinyi Ma
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China; Zhejiang Provincial Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China; Department of Thoracic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo University, China
| | - Zhenhua Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China; Zhejiang Provincial Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China; Department of Thoracic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo University, China
| | - Wei Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China; Zhejiang Provincial Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China; Department of Thoracic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo University, China
| | - Ziyuan Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China; Zhejiang Provincial Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China; Department of Thoracic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo University, China
| | - Xiaodan Meng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China; Zhejiang Provincial Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China; Department of Thoracic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo University, China.
| |
Collapse
|
42
|
Shen Y, Gwak H, Han B. Advanced manufacturing of nanoparticle formulations of drugs and biologics using microfluidics. Analyst 2024; 149:614-637. [PMID: 38083968 PMCID: PMC10842755 DOI: 10.1039/d3an01739g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Numerous innovative nanoparticle formulations of drugs and biologics, named nano-formulations, have been developed in the last two decades. However, methods for their scaled-up production are still lagging, as the amount needed for large animal tests and clinical trials is typically orders of magnitude larger. This manufacturing challenge poses a critical barrier to successfully translating various nano-formulations. This review focuses on how microfluidics technology has become a powerful tool to overcome this challenge by synthesizing various nano-formulations with improved particle properties and product purity in large quantities. This microfluidic-based manufacturing is enabled by microfluidic mixing, which is capable of the precise and continuous control of the synthesis of nano-formulations. We further discuss the specific applications of hydrodynamic flow focusing, a staggered herringbone micromixer, a T-junction mixer, a micro-droplet generator, and a glass capillary on various types of nano-formulations of polymeric, lipid, inorganic, and nanocrystals. Various separation and purification microfluidic methods to enhance the product purity are reviewed, including acoustofluidics, hydrodynamics, and dielectrophoresis. We further discuss the challenges of microfluidics being used by broader research and industrial communities. We also provide future outlooks of its enormous potential as a decentralized approach for manufacturing nano-formulations.
Collapse
Affiliation(s)
- Yingnan Shen
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| | - Hogyeong Gwak
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| | - Bumsoo Han
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA.
- Purdue University Institute for Cancer Research, West Lafayette, IN, 47907, USA
| |
Collapse
|
43
|
Luo Y, Xu T. Ultrasound-Induced Enrichment of Ultra-Trace miRNA Biosensing in Nanoliter Samples. Methods Mol Biol 2024; 2822:25-36. [PMID: 38907909 DOI: 10.1007/978-1-0716-3918-4_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
The rapid and accurate analysis of micro-samples is a crucial foundation for precision medicine, particularly for early screening and monitoring of cancer, where it holds significant importance. Ultrasound-based multifunctional biocompatible manipulation techniques have been extensively applied in a variety of biomedical fields, providing insights for the development of rapid, cost-effective, and accurate biomarker detection strategies. In this chapter, we combine ultrasound-based gradient pressure fields with functionalized microsphere enrichment to develop a biosensing method for ultra-trace miRNA enrichment in nanoliter samples without PCR. This system relies on inexpensive capillaries, enabling simultaneous visual imaging and trace sample detection.
Collapse
Affiliation(s)
- Yong Luo
- The Institute for Advanced Study (IAS), Shenzhen University, Shenzhen, Guangdong, People's Republic of China
- Beijing Key Laboratory for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing, People's Republic of China
| | - Tailin Xu
- The Institute for Advanced Study (IAS), Shenzhen University, Shenzhen, Guangdong, People's Republic of China.
| |
Collapse
|
44
|
Rich J, Cole B, Li T, Lu B, Fu H, Smith BN, Xia J, Yang S, Zhong R, Doherty JL, Kaneko K, Suzuki H, Tian Z, Franklin AD, Huang TJ. Aerosol jet printing of surface acoustic wave microfluidic devices. MICROSYSTEMS & NANOENGINEERING 2024; 10:2. [PMID: 38169478 PMCID: PMC10757899 DOI: 10.1038/s41378-023-00606-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/17/2023] [Accepted: 09/06/2023] [Indexed: 01/05/2024]
Abstract
The addition of surface acoustic wave (SAW) technologies to microfluidics has greatly advanced lab-on-a-chip applications due to their unique and powerful attributes, including high-precision manipulation, versatility, integrability, biocompatibility, contactless nature, and rapid actuation. However, the development of SAW microfluidic devices is limited by complex and time-consuming micro/nanofabrication techniques and access to cleanroom facilities for multistep photolithography and vacuum-based processing. To simplify the fabrication of SAW microfluidic devices with customizable dimensions and functions, we utilized the additive manufacturing technique of aerosol jet printing. We successfully fabricated customized SAW microfluidic devices of varying materials, including silver nanowires, graphene, and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS). To characterize and compare the acoustic actuation performance of these aerosol jet printed SAW microfluidic devices with their cleanroom-fabricated counterparts, the wave displacements and resonant frequencies of the different fabricated devices were directly measured through scanning laser Doppler vibrometry. Finally, to exhibit the capability of the aerosol jet printed devices for lab-on-a-chip applications, we successfully conducted acoustic streaming and particle concentration experiments. Overall, we demonstrated a novel solution-based, direct-write, single-step, cleanroom-free additive manufacturing technique to rapidly develop SAW microfluidic devices that shows viability for applications in the fields of biology, chemistry, engineering, and medicine.
Collapse
Affiliation(s)
- Joseph Rich
- Department of Biomedical Engineering, Duke University, Durham, NC 27708 USA
| | - Brian Cole
- Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708 USA
| | - Teng Li
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 USA
| | - Brandon Lu
- Department of Biomedical Engineering, Duke University, Durham, NC 27708 USA
| | - Hanyu Fu
- Department of Biomedical Engineering, Duke University, Durham, NC 27708 USA
| | - Brittany N. Smith
- Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708 USA
| | - Jianping Xia
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708 USA
| | - Shujie Yang
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708 USA
| | - Ruoyu Zhong
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708 USA
| | - James L. Doherty
- Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708 USA
| | - Kanji Kaneko
- Deptartment of Precision Mechanics, Faculty of Science and Engineering, Chuo University, Tokyo, 112-8551 Japan
| | - Hiroaki Suzuki
- Deptartment of Precision Mechanics, Faculty of Science and Engineering, Chuo University, Tokyo, 112-8551 Japan
| | - Zhenhua Tian
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 USA
| | - Aaron D. Franklin
- Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708 USA
- Department of Chemistry, Duke University, Durham, NC 27708 USA
| | - Tony Jun Huang
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708 USA
| |
Collapse
|
45
|
Wang Q, Maramizonouz S, Stringer Martin M, Zhang J, Ong HL, Liu Q, Yang X, Rahmati M, Torun H, Ng WP, Wu Q, Binns R, Fu Y. Acoustofluidic patterning in glass capillaries using travelling acoustic waves based on thin film flexible platform. ULTRASONICS 2024; 136:107149. [PMID: 37703751 DOI: 10.1016/j.ultras.2023.107149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/15/2023]
Abstract
Surface acoustic wave (SAW) technology has been widely used to manipulate microparticles and biological species, based on acoustic radiation force (ARF) and drag force induced by acoustic streaming, either by standing SAWs (SSAWs) or travelling SAWs (TSAWs). These acoustofluidic patterning functions can be achieved within a polymer chamber or a glass capillary with various cross-sections positioned along the wave propagating paths. In this paper, we demonstrated that microparticles can be aligned, patterned, and concentrated within both circular and rectangular glass capillaries using TSAWs based on a piezoelectric thin film acoustic wave platform. The glass capillary was placed at different angles along with the interdigital transducer directions. We systematically investigated effects of tilting angles and wave characteristics using numerical simulations in both circular and square shaped capillaries, and the patterning mechanisms were discussed and compared with those agitated under the SSAWs. We then experimentally verified the particle patterns within different glass capillaries using thin film ZnO SAW devices on aluminum (Al) sheets. Results show that the propagating SAWs can generate acoustic pressures and patterns in the fluid due to the diffractive effects, drag forces and ARF, as functions of the SAW device's resonant frequency and tilting angle. We demonstrated potential applications using this multiplexing, integrated, and flexible thin film-based platform, including patterning particles (1) inside multiple and successively positioned circular tubes; (2) inside a solidified hydrogel in the glass capillary; and (3) by wrapping a flexible ZnO/Al SAW device around the glass capillary.
Collapse
Affiliation(s)
- Qiaoyun Wang
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, School of Control Engineering, Northeastern University at Qinhuangdao, 066004, PR China; Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Sadaf Maramizonouz
- Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK; School of Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Mercedes Stringer Martin
- Department of Electrical and Electronic Engineering, School of Engineering, Cardiff University, Cardiff, CF24 3AA, UK
| | - Jikai Zhang
- Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Hui Ling Ong
- Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Qiang Liu
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, School of Control Engineering, Northeastern University at Qinhuangdao, 066004, PR China; Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Xin Yang
- Department of Electrical and Electronic Engineering, School of Engineering, Cardiff University, Cardiff, CF24 3AA, UK
| | - Mohammad Rahmati
- Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Hamdi Torun
- Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Wai Pang Ng
- Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Qiang Wu
- Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Richard Binns
- Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Yongqing Fu
- Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK.
| |
Collapse
|
46
|
Ghorbani R, Hosseinzadeh S, Azari A, Taghipour N, Soleimani M, Rahimpour A, Abbaszadeh HA. The Current Status and Future Direction of Extracellular Nano-vesicles in the Alleviation of Skin Disorders. Curr Stem Cell Res Ther 2024; 19:351-366. [PMID: 37073662 DOI: 10.2174/1574888x18666230418121053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/21/2023] [Accepted: 03/06/2023] [Indexed: 04/20/2023]
Abstract
Exosomes are extracellular vesicles (EVs) that originate from endocytic membranes. The transfer of biomolecules and biological compounds such as enzymes, proteins, RNA, lipids, and cellular waste disposal through exosomes plays an essential function in cell-cell communication and regulation of pathological and physiological processes in skin disease. The skin is one of the vital organs that makes up about 8% of the total body mass. This organ consists of three layers, epidermis, dermis, and hypodermis that cover the outer surface of the body. Heterogeneity and endogeneity of exosomes is an advantage that distinguishes them from nanoparticles and liposomes and leads to their widespread usage in the remedy of dermal diseases. The biocompatible nature of these extracellular vesicles has attracted the attention of many health researchers. In this review article, we will first discuss the biogenesis of exosomes, their contents, separation methods, and the advantages and disadvantages of exosomes. Then we will highlight recent developments related to the therapeutic applications of exosomes in the treatment of common skin disorders like atopic dermatitis, alopecia, epidermolysis bullosa, keloid, melanoma, psoriasis, and systemic sclerosis.
Collapse
Affiliation(s)
- Raziyeh Ghorbani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Simzar Hosseinzadeh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arezo Azari
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Niloofar Taghipour
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Soleimani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azam Rahimpour
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hojjat Allah Abbaszadeh
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
47
|
He Y, Yang S, Liu P, Li K, Jin K, Becker R, Zhang J, Lin C, Xia J, Ma Z, Ma Z, Zhong R, Lee LP, Huang TJ. Acoustofluidic Interfaces for the Mechanobiological Secretome of MSCs. Nat Commun 2023; 14:7639. [PMID: 37993431 PMCID: PMC10665559 DOI: 10.1038/s41467-023-43239-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 11/03/2023] [Indexed: 11/24/2023] Open
Abstract
While mesenchymal stem cells (MSCs) have gained enormous attention due to their unique properties of self-renewal, colony formation, and differentiation potential, the MSC secretome has become attractive due to its roles in immunomodulation, anti-inflammatory activity, angiogenesis, and anti-apoptosis. However, the precise stimulation and efficient production of the MSC secretome for therapeutic applications are challenging problems to solve. Here, we report on Acoustofluidic Interfaces for the Mechanobiological Secretome of MSCs: AIMS. We create an acoustofluidic mechanobiological environment to form reproducible three-dimensional MSC aggregates, which produce the MSC secretome with high efficiency. We confirm the increased MSC secretome is due to improved cell-cell interactions using AIMS: the key mediator N-cadherin was up-regulated while functional blocking of N-cadherin resulted in no enhancement of the secretome. After being primed by IFN-γ, the secretome profile of the MSC aggregates contains more anti-inflammatory cytokines and can be used to inhibit the pro-inflammatory response of M1 phenotype macrophages, suppress T cell activation, and support B cell functions. As such, the MSC secretome can be modified for personalized secretome-based therapies. AIMS acts as a powerful tool for improving the MSC secretome and precisely tuning the secretory profile to develop new treatments in translational medicine.
Collapse
Affiliation(s)
- Ye He
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Shujie Yang
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Pengzhan Liu
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Ke Li
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Ke Jin
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Ryan Becker
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Jinxin Zhang
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Chuanchuan Lin
- Department of Blood Transfusion, Irradiation Biology Laboratory, Xinqiao Hospital, Chongqing, 400037, China
| | - Jianping Xia
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Zhehan Ma
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Zhiteng Ma
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Ruoyu Zhong
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Luke P Lee
- Harvard Medical School, Harvard University, Renal Division and Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA.
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, 94720, USA.
- Department of Electrical Engineering and Computer Science, University of California, Berkeley, Berkeley, CA, 94720, USA.
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Korea.
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, Korea.
| | - Tony Jun Huang
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
48
|
Wu Y, Zhao Y, Islam K, Zhou Y, Omidi S, Berdichevsky Y, Liu Y. Acoustofluidic Engineering of Functional Vessel-on-a-Chip. ACS Biomater Sci Eng 2023; 9:6273-6281. [PMID: 37787770 PMCID: PMC10646832 DOI: 10.1021/acsbiomaterials.3c00925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 09/18/2023] [Indexed: 10/04/2023]
Abstract
Construction of in vitro vascular models is of great significance to various biomedical research, such as pharmacokinetics and hemodynamics, and thus is an important direction in the tissue engineering field. In this work, a standing surface acoustic wave field was constructed to spatially arrange suspended endothelial cells into a designated acoustofluidic pattern. The cell patterning was maintained after the acoustic field was withdrawn within the solidified hydrogel. Then, interstitial flow was provided to activate vessel tube formation. In this way, a functional vessel network with specific vessel geometry was engineered on-chip. Vascular function, including perfusability and vascular barrier function, was characterized by microbead loading and dextran diffusion, respectively. A computational atomistic simulation model was proposed to illustrate how solutes cross the vascular membrane lipid bilayer. The reported acoustofluidic methodology is capable of facile and reproducible fabrication of the functional vessel network with specific geometry and high resolution. It is promising to facilitate the development of both fundamental research and regenerative therapy.
Collapse
Affiliation(s)
- Yue Wu
- Department
of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Yuwen Zhao
- Department
of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Khayrul Islam
- Department
of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Yuyuan Zhou
- Department
of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Saeed Omidi
- Department
of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Yevgeny Berdichevsky
- Department
of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
- Department
of Electrical and Computer Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Yaling Liu
- Department
of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
- Department
of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
49
|
Wu W, He J. Unveiling the functional paradigm of exosome-derived long non-coding RNAs (lncRNAs) in cancer: based on a narrative review and systematic review. J Cancer Res Clin Oncol 2023; 149:15219-15247. [PMID: 37578522 DOI: 10.1007/s00432-023-05273-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023]
Abstract
BACKGROUND AND PURPOSE The intricate mechanisms underlying intercellular communication within the tumor microenvironment remain largely elusive. Recently, attention has shifted towards exploring the intercellular signaling mediated by exosomal long non-coding RNAs (lncRNAs) within this context. This comprehensive systematic review aims to elucidate the functional paradigm of exosome-derived lncRNAs in cancer. MATERIALS AND METHODS The review provides a comprehensive narrative of lncRNA definition, characteristics, as well as the formation, sorting, and uptake processes of exosome-derived lncRNAs. Additionally, it describes comprehensive technology for exosome research and nucleic acid drug loading. This review further systematically examines the cellular origins, functional roles, and underlying mechanisms of exosome-derived lncRNAs in recipient cells within the cancer setting. RESULTS The functional paradigm of exosome-derived lncRNAs in cancer mainly depends on the source cells and sorting mechanism of exosomal lncRNAs, the recipient cells and uptake mechanisms of exosomal lncRNAs, and the specific molecular mechanisms of lncRNAs in recipient cells. The source cells of exosomal lncRNAs mainly involved in the current review included tumor cells, cancer stem cells, normal cells, macrophages, and cancer-associated fibroblasts. CONCLUSION This synthesis of knowledge offers valuable insights for accurately identifying exosomal lncRNAs with potential as tumor biomarkers. Moreover, it aids in the selection of appropriate targeting strategies and preclinical models, thereby facilitating the clinical translation of exosomal lncRNAs as promising therapeutic targets against cancer. Through a comprehensive understanding of the functional role of exosome-derived lncRNAs in cancer, this review paves the way for advancements in personalized medicine and improved treatment outcomes.
Collapse
Affiliation(s)
- Wenhan Wu
- Department of General Surgery (Gastrointestinal Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| | - Jia He
- Faculty Affairs and Human Resources Management Department, Southwest Medical University, Luzhou, China
| |
Collapse
|
50
|
Kolesnik K, Pham DQL, Fong J, Collins DJ. Thomson-Einstein's Tea Leaf Paradox Revisited: Aggregation in Rings. MICROMACHINES 2023; 14:2024. [PMID: 38004882 PMCID: PMC10672922 DOI: 10.3390/mi14112024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023]
Abstract
A distinct particle focusing spot occurs in the center of a rotating fluid, presenting an apparent paradox given the presence of particle inertia. It is recognized, however, that the presence of a secondary flow with a radial component drives this particle aggregation. In this study, we expand on the examination of this "Thomson-Einstein's tea leaf paradox" phenomenon, where we use a combined experimental and computational approach to investigate particle aggregation dynamics. We show that not only the rotational velocity, but also the vessel shape, have a significant influence on a particle's equilibrium position. We accordingly demonstrate the formation of a single focusing spot in a vessel center, as has been conclusively demonstrated elsewhere, but also the repeatable formation of stable ring-shaped particle arrangements.
Collapse
Affiliation(s)
- Kirill Kolesnik
- Department of Biomedical Engineering, University of Melbourne, Melbourne, VIC 3010, Australia; (K.K.); (J.F.)
| | - Daniel Quang Le Pham
- Department of Biomedical Engineering, University of Melbourne, Melbourne, VIC 3010, Australia; (K.K.); (J.F.)
| | - Jessica Fong
- Department of Biomedical Engineering, University of Melbourne, Melbourne, VIC 3010, Australia; (K.K.); (J.F.)
| | - David John Collins
- Department of Biomedical Engineering, University of Melbourne, Melbourne, VIC 3010, Australia; (K.K.); (J.F.)
- The Graeme Clark Institute, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|