1
|
Li W, Qiu X, Chen J, Chen K, Chen M, Wang Y, Sun W, Su J, Chen Y, Liu X, Chu C, Wang J. Disentangling the Switching Behavior in Functional Connectivity Dynamics in Autism Spectrum Disorder: Insights from Developmental Cohort Analysis and Molecular-Cellular Associations. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2403801. [PMID: 40344520 DOI: 10.1002/advs.202403801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 04/21/2025] [Indexed: 05/11/2025]
Abstract
Characterizing the transition or switching behavior between multistable brain states in functional connectivity dynamics (FCD) holds promise for uncovering the underlying neuropathology of Autism Spectrum Disorder (ASD). However, whether and how switching behaviors in FCD change in patients with developmental ASD, as well as their cellular and molecular basis, remains unexplored. This study develops a region-wise FCD switching index (RFSI) to investigate the drivers of FCD. This work finds that brain regions within the salience, default mode, and frontoparietal networks serve as abnormal drivers of FCD in ASD across different developmental stages. Additionally, changes in RFSI at different developmental stages of ASD correlated with transcriptomic profiles and neurotransmitter density maps. Importantly, the abnormal RFSI identifies in humans has also been observed in genetically edited ASD monkeys. Finally, single-nucleus RNA sequencing data from patients with developmental ASD are analyzed and aberrant switching behaviors in FCD may be mediated by somatostatin-expressing interneurons and altered differentiation patterns in astrocyte State2. In conclusion, this study provides the first evidence of abnormal drivers of FCD across different stages of ASD and their associated cellular and molecular mechanisms. These findings deepen the understanding of ASD neuropathology and offer valuable insights into treatment strategies.
Collapse
Affiliation(s)
- Wei Li
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, China
- Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Xia Qiu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, China
| | - Jin Chen
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, China
| | - Kexuan Chen
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China
| | - Meiling Chen
- Department of Clinical Psychology, the First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650500, China
| | - Yinyan Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Wenjie Sun
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, China
| | - Jing Su
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yongchang Chen
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, China
| | - Xiaobao Liu
- Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Congying Chu
- Brainnetome Center & National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jiaojian Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, 650500, China
| |
Collapse
|
2
|
Bolt T, Wang S, Nomi JS, Setton R, Gold BP, deB Frederick B, Yeo BTT, Chen JJ, Picchioni D, Duyn JH, Spreng RN, Keilholz SD, Uddin LQ, Chang C. Autonomic physiological coupling of the global fMRI signal. Nat Neurosci 2025:10.1038/s41593-025-01945-y. [PMID: 40335772 DOI: 10.1038/s41593-025-01945-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 03/12/2025] [Indexed: 05/09/2025]
Abstract
The brain is closely attuned to visceral signals from the body's internal environment, as evidenced by the numerous associations between neural, hemodynamic and peripheral physiological signals. Here we show that a major mode of these brain-body cofluctuations can be captured by a single spatiotemporal pattern. Across several independent samples, as well as single-echo and multi-echo functional magnetic resonance imaging (fMRI) data acquisition sequences, we identify widespread cofluctuations in the low-frequency range (0.01-0.1 Hz) between resting-state global fMRI signals, electroencephalogram (EEG) activity, and a host of peripheral autonomic signals spanning cardiovascular, pulmonary, exocrine and smooth muscle systems. The same brain-body cofluctuations observed at rest are elicited by cued deep breathing and intermittent sensory stimuli, as well as spontaneous phasic EEG events during sleep. Furthermore, we show that the spatial structure of global fMRI signals is maintained under experimental suppression of end-tidal carbon dioxide variations, suggesting that respiratory-driven fluctuations in arterial CO2 accompanying arousal cannot fully explain the origin of these signals in the brain. These findings suggest that the global fMRI signal is a substantial component of the arousal response governed by the autonomic nervous system.
Collapse
Affiliation(s)
- Taylor Bolt
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA.
| | - Shiyu Wang
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Jason S Nomi
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Roni Setton
- Department of Psychology, Harvard University, Boston, MA, USA
| | - Benjamin P Gold
- Departments of Electrical and Computer Engineering and Computer Science, Vanderbilt University, Nashville, TN, USA
| | | | - B T Thomas Yeo
- Centre for Translational MR Research, Centre for Sleep & Cognition, Department of Electrical & Computer Engineering, N.1 Institute for Health and Institute for Digital Medicine, National University of Singapore, Singapore, Singapore
| | - J Jean Chen
- Rotman Research Institute, Baycrest Health Sciences, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Dante Picchioni
- Advanced MRI Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Jeff H Duyn
- Advanced MRI Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - R Nathan Spreng
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Shella D Keilholz
- Biomedical Engineering, Emory University/Georgia Institute of Technology, Atlanta, GA, USA
| | - Lucina Q Uddin
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
- Department of Psychology, University of California Los Angeles, Los Angeles, CA, USA
| | - Catie Chang
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Departments of Electrical and Computer Engineering and Computer Science, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
3
|
Dimakou A, Pezzulo G, Zangrossi A, Corbetta M. The predictive nature of spontaneous brain activity across scales and species. Neuron 2025; 113:1310-1332. [PMID: 40101720 DOI: 10.1016/j.neuron.2025.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/30/2025] [Accepted: 02/12/2025] [Indexed: 03/20/2025]
Abstract
Emerging research suggests the brain operates as a "prediction machine," continuously anticipating sensory, motor, and cognitive outcomes. Central to this capability is the brain's spontaneous activity-ongoing internal processes independent of external stimuli. Neuroimaging and computational studies support that this activity is integral to maintaining and refining mental models of our environment, body, and behaviors, akin to generative models in computation. During rest, spontaneous activity expands the variability of potential representations, enhancing the accuracy and adaptability of these models. When performing tasks, internal models direct brain regions to anticipate sensory and motor states, optimizing performance. This review synthesizes evidence from various species, from C. elegans to humans, highlighting three key aspects of spontaneous brain activity's role in prediction: the similarity between spontaneous and task-related activity, the encoding of behavioral and interoceptive priors, and the high metabolic cost of this activity, underscoring prediction as a fundamental function of brains across species.
Collapse
Affiliation(s)
- Anastasia Dimakou
- Padova Neuroscience Center, Padova, Italy; Veneto Institute of Molecular Medicine, VIMM, Padova, Italy
| | - Giovanni Pezzulo
- Institute of Cognitive Sciences and Technologies, National Research Council, Rome, Italy
| | - Andrea Zangrossi
- Padova Neuroscience Center, Padova, Italy; Department of General Psychology, University of Padova, Padova, Italy
| | - Maurizio Corbetta
- Padova Neuroscience Center, Padova, Italy; Veneto Institute of Molecular Medicine, VIMM, Padova, Italy; Department of Neuroscience, University of Padova, Padova, Italy.
| |
Collapse
|
4
|
Zhang Y, Martinez-Cedillo AP, Mason HT, Vuong QC, Garcia-de-Soria MC, Mullineaux D, Knight MI, Geangu E. An automatic sustained attention prediction (ASAP) method for infants and toddlers using wearable device signals. Sci Rep 2025; 15:13298. [PMID: 40247023 PMCID: PMC12006380 DOI: 10.1038/s41598-025-96794-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 03/28/2025] [Indexed: 04/19/2025] Open
Abstract
Sustained attention (SA) is a critical cognitive ability that emerges in infancy and affects various aspects of development. Research on SA typically occurs in lab settings, which may not reflect infants' real-world experiences. Infant wearable technology can collect multimodal data in natural environments, including physiological signals for measuring SA. Here we introduce an automatic sustained attention prediction (ASAP) method that harnesses electrocardiogram (ECG) and accelerometer (Acc) signals. Data from 75 infants (6- to 36-months) were recorded during different activities, with some activities emulating those occurring in the natural environment (i.e., free play). Human coders annotated the ECG data for SA periods validated by fixation data. ASAP was trained on temporal and spectral features from the ECG and Acc signals to detect SA, performing consistently across age groups. To demonstrate ASAP's applicability, we investigated the relationship between SA and perceptual features-saliency and clutter-measured from egocentric free-play videos. Results showed that saliency in infants' and toddlers' views increased during attention periods and decreased with age for attention but not inattention. We observed no differences between ASAP attention detection and human-coded SA periods, demonstrating that ASAP effectively detects SA in infants during free play. Coupled with wearable sensors, ASAP provides unprecedented opportunities for studying infant development in real-world settings.
Collapse
Affiliation(s)
- Yisi Zhang
- Department of Psychological and Cognitive Sciences, Tsinghua University, Beijing, 100084, People's Republic of China
| | - A Priscilla Martinez-Cedillo
- Department of Psychology, University of York, York, YO10 5DD, England
- Department of Psychology, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, England
| | - Harry T Mason
- School of Physics, Engineering and Technology, University of York, York, YO10 5DD, England
- Bristol Medical School, University of Bristol, Oakfield House, Bristol, BS8 2BN, England
| | - Quoc C Vuong
- Bioscience Institute, Newcastle University, Newcastle Upon Tyne, NE1 7RU, England
- School of Psychology, Newcastle University, Newcastle Upon Tyne, NE1 7RU, England
| | - M Carmen Garcia-de-Soria
- Department of Psychology, University of York, York, YO10 5DD, England
- Department of Psychology, University of Aberdeen, Aberdeen, UK
| | - David Mullineaux
- Department of Mathematics, University of York, York, YO10 5DD, England
| | - Marina I Knight
- Department of Mathematics, University of York, York, YO10 5DD, England
| | - Elena Geangu
- Department of Psychology, University of York, York, YO10 5DD, England.
| |
Collapse
|
5
|
Krimmel SR, Laumann TO, Chauvin RJ, Hershey T, Roland JL, Shimony JS, Willie JT, Norris SA, Marek S, N Van A, Wang A, Monk J, Scheidter KM, Whiting FI, Ramirez-Perez N, Metoki A, Baden NJ, Kay BP, Siegel JS, Nahman-Averbuch H, Snyder AZ, Fair DA, Lynch CJ, Raichle ME, Gordon EM, Dosenbach NUF. The human brainstem's red nucleus was upgraded to support goal-directed action. Nat Commun 2025; 16:3398. [PMID: 40210909 PMCID: PMC11986128 DOI: 10.1038/s41467-025-58172-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 03/13/2025] [Indexed: 04/12/2025] Open
Abstract
The red nucleus, a large brainstem structure, coordinates limb movement for locomotion in quadrupedal animals. In humans, its pattern of anatomical connectivity differs from that of quadrupeds, suggesting a different purpose. Here, we apply our most advanced resting-state functional connectivity based precision functional mapping in highly sampled individuals (n = 5), resting-state functional connectivity in large group-averaged datasets (combined n ~ 45,000), and task based analysis of reward, motor, and action related contrasts from group-averaged datasets (n > 1000) and meta-analyses (n > 14,000 studies) to precisely examine red nucleus function. Notably, red nucleus functional connectivity with motor-effector networks (somatomotor hand, foot, and mouth) is minimal. Instead, connectivity is strongest to the action-mode and salience networks, which are important for action/cognitive control and reward/motivated behavior. Consistent with this, the red nucleus responds to motor planning more than to actual movement, while also responding to rewards. Our results suggest the human red nucleus implements goal-directed behavior by integrating behavioral valence and action plans instead of serving a pure motor-effector function.
Collapse
Affiliation(s)
- Samuel R Krimmel
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA.
| | - Timothy O Laumann
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Roselyne J Chauvin
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Tamara Hershey
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Psychological & Brain Sciences, Washington University, St. Louis, MO, USA
| | - Jarod L Roland
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Joshua S Shimony
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jon T Willie
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, USA
- National Center for Adaptive Neurotechnologies, St. Louis, MO, USA
| | - Scott A Norris
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Scott Marek
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Andrew N Van
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
| | - Anxu Wang
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
- Division of Computation and Data Science, Washington University, St. Louis, MO, USA
| | - Julia Monk
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kristen M Scheidter
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Forrest I Whiting
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Nadeshka Ramirez-Perez
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Athanasia Metoki
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Noah J Baden
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Benjamin P Kay
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Joshua S Siegel
- Department of Psychiatry, New York University Grossman School of Medicine, New York, New York, USA
| | - Hadas Nahman-Averbuch
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Abraham Z Snyder
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Damien A Fair
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
- Institute of Child Development, University of Minnesota, Minneapolis, MN, USA
| | - Charles J Lynch
- Department of Psychiatry, Weill Cornell Medicine, New York, New York, USA
| | - Marcus E Raichle
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Psychological & Brain Sciences, Washington University, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - Evan M Gordon
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Nico U F Dosenbach
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA.
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Psychological & Brain Sciences, Washington University, St. Louis, MO, USA.
- Department of Biomedical Engineering, Washington University, St. Louis, MO, USA.
- Program in Occupational Therapy, Washington University, St. Louis, MO, USA.
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
6
|
Liao Q, Dai Z, Pei C, Zhang H, Hua L, Sheng J, Zhou H, Yao Z, Lu Q. Increased Modulation of Low-Frequency Cardiac Rhythms on Resting-State Left Insula Alpha Oscillations in Major Depressive Disorder: Evidence from a Magnetoencephalography Study. J Neurosci 2025; 45:e1327242025. [PMID: 39952669 PMCID: PMC11968527 DOI: 10.1523/jneurosci.1327-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 12/22/2024] [Accepted: 01/17/2025] [Indexed: 02/17/2025] Open
Abstract
A growing body of evidence suggests that the link between the cardiac autonomic nervous system (ANS) and the central nervous system (CNS) is crucial to the onset and development of major depressive disorder (MDD), affecting perception, cognition, and emotional processing. The bottom-up heart-brain communication pathway plays a significant role in this process. Previous studies have shown that slow-frequency oscillations of peripheral signals (e.g., respiration, stomach) can influence faster neural activities in the CNS via phase-amplitude coupling (PAC). However, the understanding of heart-brain coupling remains limited. Additionally, while MDD patients exhibit altered brain activity patterns, little is known about how heart rate variability (HRV) affects brain oscillations. Therefore, we used PAC to investigate heart-brain coupling and its association with depression. We recorded MEG and ECG data from 55 MDD patients (35 females) and 52 healthy subjects (28 females) at rest and evaluated heart-brain PAC at a broadband level. The results showed that the low-frequency component of HRV (HRV-LF) significantly modulated MEG alpha power (10 Hz) in humans. Compared with the healthy group, the MDD group exhibited more extensive heart-brain coupling cortical networks, including the pars triangularis. LF-alpha coupling was observed in the bilateral insula in both groups. Notably, results revealed a significantly increased sympathetic-dominated HRV-LF modulation effect on left insula alpha oscillations, along with increased depressive severity. These findings suggest that MDD patients may attempt to regulate their internal state through enhanced heart-brain modulation, striving to restore normal physiological and psychological balance.
Collapse
Affiliation(s)
- Qian Liao
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, People's Republic of China
- Child Development and Learning Science, Key Laboratory of Ministry of Education, Nanjing 210096, People's Republic of China
| | - Zhongpeng Dai
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, People's Republic of China
- Child Development and Learning Science, Key Laboratory of Ministry of Education, Nanjing 210096, People's Republic of China
| | - Cong Pei
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, People's Republic of China
- Child Development and Learning Science, Key Laboratory of Ministry of Education, Nanjing 210096, People's Republic of China
| | - Han Zhang
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, People's Republic of China
- Child Development and Learning Science, Key Laboratory of Ministry of Education, Nanjing 210096, People's Republic of China
| | - Lingling Hua
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Junling Sheng
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Hongliang Zhou
- Department of Psychology, the Affiliated Hospital of Jiangnan University, Wuxi City 214122, People's Republic of China
| | - Zhijian Yao
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China
- Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing 210093, People's Republic of China
| | - Qing Lu
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, People's Republic of China
- Child Development and Learning Science, Key Laboratory of Ministry of Education, Nanjing 210096, People's Republic of China
| |
Collapse
|
7
|
Campo FF, Brattico E, Miguel V, Magalhaes V, Nigro S, Tafuri B, Logroscino G, Cabral J. Cognitive reserve linked to network-specific brain-ventricle coupling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.04.631289. [PMID: 39803532 PMCID: PMC11722378 DOI: 10.1101/2025.01.04.631289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Despite showing significant impact in cognitive preservation, the relationship between brain activity captured with functional Magnetic Resonance Imaging (fMRI) in gray matter and ventricular cerebrospinal fluid dynamics remains poorly understood. We analyzed 599 fMRI scans from 163 elderly participants at rest with varying degrees of cognitive impairment employing a unified phase coupling analysis that breaks from convention by incorporating both tissue and ventricular signal fluctuations. This whole-brain approach identified distinct brain-ventricle coupling modes that differentiate between cognitive status groups and correlate with specific cognitive abilities. Beyond the previously reported anti-phase coupling between global brain signals and ventricles-which we confirm occurs more frequently in cognitively normal controls-our analysis method uncovered additional coupling modes where signals in specific brain networks temporarily align with ventricle signals. At the cortical level, these modes reveal patterns corresponding to known resting-state networks: one overlapping with the Default Mode Network occurs significantly less frequently in Alzheimer's Disease patients, while another revealing the Frontoparietal Network correlates positively with memory scores. Our findings demonstrate that different brain-ventricle coupling modes correlate with specific cognitive domains, with particular modes predicting memory, executive function, and visuospatial abilities. The coupling between signals in brain ventricles and established resting-state networks challenges our current understanding of functional network formation, suggesting an integral link with brain fluid motion. This reconceptualization of brain dynamics through the lens of fluid-tissue interactions establishes a fundamental physical basis for cognitive preservation, suggesting that therapeutic interventions targeting these interactions may prove more effective than approaches focused solely on cellular or molecular mechanisms.
Collapse
|
8
|
Yang Y, Leopold DA, Duyn JH, Sipe GO, Liu X. Sensory Encoding Alternates With Hippocampal Ripples across Cycles of Forebrain Spiking Cascades. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2406224. [PMID: 40017060 PMCID: PMC12021030 DOI: 10.1002/advs.202406224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 11/08/2024] [Indexed: 03/01/2025]
Abstract
The brain's response to external events depends on its internal arousal states, which are dynamically governed by neuromodulatory systems and have recently been linked to coordinated spike timing cascades in widespread brain networks. At rest, both arousal fluctuations and spiking cascades are evident throughout the forebrain and play out over multisecond time scales. Here, by analyzing large-scale neural recording data collected by the Allen Institute, it is demonstrated that these intrinsic processes persist across the mouse brain even during periods of continuous visual stimulation. In the stationary animal, each quasi-periodic cascade cycle systematically influenced 1) the efficacy of encoding in visually responsive brain areas and 2) the incidence of memory-related hippocampal ripples. During this cycle, the phase of high arousal is marked by high efficiency in visual encoding whereas the phase of low arousal is marked by the occurrence of hippocampal ripples. However, during bouts of active locomotion, this cycle is abolished and brain maintained a state of elevated visual coding efficiency, with ripples being nearly absent. It is hypothesized that the infra-slow cascade dynamics reflect an adaptive cycle of alternating exteroceptive sensory sampling and internal mnemonic function that persistently pervades the forebrain, only stopping during active exploration of the environment.
Collapse
Affiliation(s)
- Yifan Yang
- Department of Biomedical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - David A. Leopold
- Neurophysiology Imaging FacilityNational Institute of Mental HealthNational Institute of Neurological. Disorders and Strokeand National Eye InstituteNational Institutes of HealthBethesdaMD20892USA
- Section on Cognitive Neurophysiology and ImagingSystems Neurodevelopment LaboratoryNational Institute of Mental HealthNational Institutes of HealthBethesdaMD20892USA
| | - Jeff H. Duyn
- Advanced MRI SectionLaboratory of Functional and Molecular ImagingNational Institute of Neurological Disorders and StrokeNational Institutes of HealthBethesdaMD20892USA
| | - Grayson O. Sipe
- Department of BiologyThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Xiao Liu
- Department of Biomedical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
- Institute for Computational and Data SciencesThe Pennsylvania State UniversityUniversity ParkPA16802USA
| |
Collapse
|
9
|
Jun S, Altmann A, Sadaghiani S. Modulatory Neurotransmitter Genotypes Shape Dynamic Functional Connectome Reconfigurations. J Neurosci 2025; 45:e1939242025. [PMID: 39843237 PMCID: PMC11884390 DOI: 10.1523/jneurosci.1939-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/04/2024] [Accepted: 01/09/2025] [Indexed: 01/24/2025] Open
Abstract
Dynamic reconfigurations of the functional connectome across different connectivity states are highly heritable, predictive of cognitive abilities, and linked to mental health. Despite their established heritability, the specific polymorphisms that shape connectome dynamics are largely unknown. Given the widespread regulatory impact of modulatory neurotransmitters on functional connectivity, we comprehensively investigated a large set of single nucleotide polymorphisms (SNPs) of their receptors, metabolic enzymes, and transporters in 674 healthy adult subjects (347 females) from the Human Connectome Project. Preregistered modulatory neurotransmitter SNPs and dynamic connectome features entered a Stability Selection procedure with resampling. We found that specific subsets of these SNPs explain individual differences in temporal phenotypes of fMRI-derived connectome dynamics for which we previously established heritability. Specifically, noradrenergic polymorphisms explained Fractional Occupancy, i.e., the proportion of time spent in each connectome state, and cholinergic polymorphisms explained Transition Probability, i.e., the probability to transition between state pairs, respectively. This work identifies specific genetic effects on connectome dynamics via the regulatory impact of modulatory neurotransmitter systems. Our observations highlight the potential of dynamic connectome features as endophenotypes for neurotransmitter-focused precision psychiatry.
Collapse
Affiliation(s)
- Suhnyoung Jun
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
- Psychology Department, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Andre Altmann
- Department of Medical Physics, Centre for Medical Image Computing (CMIC), University College London, London WC1V 6LJ, United Kingdom
| | - Sepideh Sadaghiani
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
- Psychology Department, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| |
Collapse
|
10
|
Dosenbach NUF, Raichle ME, Gordon EM. The brain's action-mode network. Nat Rev Neurosci 2025; 26:158-168. [PMID: 39743556 DOI: 10.1038/s41583-024-00895-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2024] [Indexed: 01/04/2025]
Abstract
The brain is always intrinsically active, using energy at high rates while cycling through global functional modes. Awake brain modes are tied to corresponding behavioural states. During goal-directed behaviour, the brain enters an action-mode of function. In the action-mode, arousal is heightened, attention is focused externally and action plans are created, converted to goal-directed movements and continuously updated on the basis of relevant feedback, such as pain. Here, we synthesize classical and recent human and animal evidence that the action-mode of the brain is created and maintained by an action-mode network (AMN), which we had previously identified and named the cingulo-opercular network on the basis of its anatomy. We discuss how rather than continuing to name this network anatomically, annotating it functionally as controlling the action-mode of the brain increases its distinctiveness from spatially adjacent networks and accounts for the large variety of the associated functions of an AMN, such as increasing arousal, processing of instructional cues, task general initiation transients, sustained goal maintenance, action planning, sympathetic drive for controlling physiology and internal organs (connectivity to adrenal medulla), and action-relevant bottom-up signals such as physical pain, errors and viscerosensation. In the functional mode continuum of the awake brain, the AMN-generated action-mode sits opposite the default-mode for self-referential, emotional and memory processing, with the default-mode network and AMN counterbalancing each other as yin and yang.
Collapse
Affiliation(s)
- Nico U F Dosenbach
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA.
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Psychological & Brain Sciences, Washington University, St. Louis, MO, USA.
- Department of Biomedical Engineering, Washington University, St. Louis, MO, USA.
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, USA.
| | - Marcus E Raichle
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Psychological & Brain Sciences, Washington University, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - Evan M Gordon
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
11
|
Raut RV, Rosenthal ZP, Wang X, Miao H, Zhang Z, Lee JM, Raichle ME, Bauer AQ, Brunton SL, Brunton BW, Kutz JN. Arousal as a universal embedding for spatiotemporal brain dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.11.06.565918. [PMID: 38187528 PMCID: PMC10769245 DOI: 10.1101/2023.11.06.565918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Neural activity in awake organisms shows widespread and spatiotemporally diverse correlations with behavioral and physiological measurements. We propose that this covariation reflects in part the dynamics of a unified, multidimensional arousal-related process that regulates brain-wide physiology on the timescale of seconds. By framing this interpretation within dynamical systems theory, we arrive at a surprising prediction: that a single, scalar measurement of arousal (e.g., pupil diameter) should suffice to reconstruct the continuous evolution of multidimensional, spatiotemporal measurements of large-scale brain physiology. To test this hypothesis, we perform multimodal, cortex-wide optical imaging and behavioral monitoring in awake mice. We demonstrate that spatiotemporal measurements of neuronal calcium, metabolism, and brain blood-oxygen can be accurately and parsimoniously modeled from a low-dimensional state-space reconstructed from the time history of pupil diameter. Extending this framework to behavioral and electrophysiological measurements from the Allen Brain Observatory, we demonstrate the ability to integrate diverse experimental data into a unified generative model via mappings from an intrinsic arousal manifold. Our results support the hypothesis that spontaneous, spatially structured fluctuations in brain-wide physiology-widely interpreted to reflect regionally-specific neural communication-are in large part reflections of an arousal-related process. This enriched view of arousal dynamics has broad implications for interpreting observations of brain, body, and behavior as measured across modalities, contexts, and scales.
Collapse
Affiliation(s)
- Ryan V. Raut
- Allen Institute, Seattle, WA, USA
- Department of Physiology & Biophysics, University of Washington, Seattle, WA, USA
| | - Zachary P. Rosenthal
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Xiaodan Wang
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Hanyang Miao
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Zhanqi Zhang
- Department of Computer Science & Engineering, University of California San Diego, La Jolla, CA, USA
| | - Jin-Moo Lee
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Marcus E. Raichle
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO, USA
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Adam Q. Bauer
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Steven L. Brunton
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
| | | | - J. Nathan Kutz
- Department of Applied Mathematics, University of Washington, Seattle, WA, USA
| |
Collapse
|
12
|
Alberti F, Menardi A, Margulies DS, Vallesi A. Understanding the Link Between Functional Profiles and Intelligence Through Dimensionality Reduction and Graph Analysis. Hum Brain Mapp 2025; 46:e70149. [PMID: 39981715 PMCID: PMC11843225 DOI: 10.1002/hbm.70149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/27/2024] [Accepted: 01/17/2025] [Indexed: 02/22/2025] Open
Abstract
There is a growing interest in neuroscience for how individual-specific structural and functional features of the cortex relate to cognitive traits. This work builds on previous research which, by using classical high-dimensional approaches, has proven that the interindividual variability of functional connectivity (FC) profiles reflects differences in fluid intelligence. To provide an additional perspective into this relationship, the present study uses a recent framework for investigating cortical organization: functional gradients. This approach places local connectivity profiles within a common low-dimensional space whose axes are functionally interpretable dimensions. Specifically, this study uses a data-driven approach to model the association between FC variability and interindividual differences in intelligence. For one of these loci, in the right ventral-lateral prefrontal cortex (vlPFC), we describe an association between fluid intelligence and the relative functional distance of this area from sensory and high-cognition systems. Furthermore, the topological properties of this region indicate that, with decreasing functional affinity with high-cognition systems, vlPFC functional connections are more evenly distributed across all networks. Participating in multiple functional networks may reflect a better ability to coordinate sensory and high-order cognitive systems.
Collapse
Affiliation(s)
- Francesco Alberti
- Integrative Neuroscience and Cognition Center (UMR 8002)Centre National del la Recherche ScientifiqueParisFrance
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical NeurosciencesUniversity of OxfordUnited Kingdom
| | - Arianna Menardi
- Department of NeuroscienceUniversity of PadovaPadovaItaly
- Padova Neurosciene CenterUniversity of PadovaPadovaItaly
| | - Daniel S. Margulies
- Integrative Neuroscience and Cognition Center (UMR 8002)Centre National del la Recherche ScientifiqueParisFrance
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical NeurosciencesUniversity of OxfordUnited Kingdom
| | - Antonino Vallesi
- Department of NeuroscienceUniversity of PadovaPadovaItaly
- Padova Neurosciene CenterUniversity of PadovaPadovaItaly
| |
Collapse
|
13
|
Sabat M, de Dampierre C, Tallon-Baudry C. Evidence for domain-general arousal from semantic and neuroimaging meta-analyses reconciles opposing views on arousal. Proc Natl Acad Sci U S A 2025; 122:e2413808122. [PMID: 39899711 PMCID: PMC11831115 DOI: 10.1073/pnas.2413808122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 12/13/2024] [Indexed: 02/05/2025] Open
Abstract
Arousal refers to changes in brain-body state underpinning motivated behavior but lacks a proper definition and taxonomy. Neuroscience and psychology textbooks offer surprisingly different views on what arousal is, from a global brain-wide modulation of neuronal activity to a multidimensional construct, with specific brain-body patterns tuned to a given situation. The huge number of scientific articles mentioning arousal (~50,000) highlights the importance of the concept but also explains why such a vast literature has never been systematically reviewed so far. Here, we leverage the tools of natural language processing to probe the nature of arousal in a data-driven, comprehensive manner. We show that arousal comes in seven varieties: cognitive, emotional, physiological, sexual, related to stress disorders, to sleep, or to sleep disorders. We then ask whether domain-general arousal exists at the cortical level, and run meta-analyses of the brain imaging literature to reveal that all varieties of arousal, except arousal in sleep disorders for lack of data, converge onto a cortical network composed of the presupplementary motor area and the left and right dorsal anterior insula. More precisely, we find that activity in dysgranular insular area 7 (Jülich atlas), the region with the highest convergence across varieties of arousal, is also specifically associated with arousal. The domain-general arousal network might trigger the reorganization of large-scale brain networks-a global mechanism-resulting in a context-specific configuration-in line with the multidimensional view. Future taxonomies of arousal refining the alignment between concepts and data should include domain-general arousal as a central component.
Collapse
Affiliation(s)
- Magdalena Sabat
- Laboratoire de Neurosciences Cognitives et Computationnelles, Département d’études cognitives, INSERM, Ecole Normale Supérieure, Paris Sciences Lettres University, Paris75005, France
- Laboratoire des systèmes perceptifs, Département d’études cognitives, École normale supérieure, Paris Sciences Lettres University, Paris75005, France
| | - Charles de Dampierre
- Institut Jean Nicod, CNRS, Ecole des Hautes Etudes en Sciences Sociales, Département d’études cognitives, École normale supérieure, Paris Sciences Lettres University, Paris75005, France
| | - Catherine Tallon-Baudry
- Laboratoire de Neurosciences Cognitives et Computationnelles, Département d’études cognitives, INSERM, Ecole Normale Supérieure, Paris Sciences Lettres University, Paris75005, France
| |
Collapse
|
14
|
Byeon K, Park H, Park S, Cluce J, Mehta K, Cieslak M, Cui Z, Hong SJ, Chang C, Smallwood J, Satterthwaite TD, Milham MP, Xu T. Developmental Variations in Recurrent Spatiotemporal Brain Propagations from Childhood to Adulthood. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.04.635765. [PMID: 39975397 PMCID: PMC11838599 DOI: 10.1101/2025.02.04.635765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The brain undergoes profound structural and functional transformations from childhood to adolescence. Convergent evidence suggests that neurodevelopment proceeds in a hierarchical manner, characterized by heterogeneous maturation patterns across brain regions and networks. However, the maturation of the intrinsic spatiotemporal propagations of brain activity remains largely unexplored. This study aims to bridge this gap by delineating spatiotemporal propagations from childhood to early adulthood. By leveraging a recently developed approach that captures time-lag dynamic propagations, we characterized intrinsic dynamic propagations along three axes: sensory-association (S-A), 'task-positive' to default networks (TP-D), and somatomotor-visual (SM-V) networks, which progress towards adult-like brain dynamics from childhood to early adulthood. Importantly, we demonstrated that as participants mature, there is a prolonged occurrence of the S-A and TP-D propagation states, indicating that they spend more time in these states. Conversely, the prevalence of SM-V propagation states declines during development. Notably, top-down propagations along the S-A axis exhibited an age-dependent increase in occurrence, serving as a superior predictor of cognitive scores compared to bottom-up S-A propagation. These findings were replicated across two independent cohorts (N = 677 in total), emphasizing the robustness and generalizability of these findings. Our results provide new insights into the emergence of adult-like functional dynamics during youth and their role in supporting cognition.
Collapse
Affiliation(s)
| | - Hyunjin Park
- School of Electronic and Electrical Engineering, Sungkyunkwan University, Suwon, South Korea
- IBS Center for Neuroscience Imaging Research, Sungkyunkwan University, Suwon, South Korea
| | - Shinwon Park
- Child Mind Institute, New York, NY, United States
| | - Jon Cluce
- Child Mind Institute, New York, NY, United States
| | - Kahini Mehta
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Penn-CHOP Lifespan Brain Institute, Children’s Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Matthew Cieslak
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Penn-CHOP Lifespan Brain Institute, Children’s Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zaixu Cui
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| | - Seok-Jun Hong
- Child Mind Institute, New York, NY, United States
- IBS Center for Neuroscience Imaging Research, Sungkyunkwan University, Suwon, South Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, South Korea
| | - Catie Chang
- Departments of Electrical and Computer Engineering, Computer Science, and Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
| | | | - Theodore D. Satterthwaite
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Penn-CHOP Lifespan Brain Institute, Children’s Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael P. Milham
- Child Mind Institute, New York, NY, United States
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, United States
| | - Ting Xu
- Child Mind Institute, New York, NY, United States
| |
Collapse
|
15
|
Sargent K, Martinez E, Reed A, Guha A, Bartholomew M, Diehl C, Chang C, Salama S, Subotnik K, Ventura J, Nuechterlein K, Miller G, Yee C. Brain-body dysconnectivity: deficient autonomic regulation of cortical function in first-episode schizophrenia. Psychol Med 2025; 55:e1. [PMID: 39901867 PMCID: PMC11964094 DOI: 10.1017/s0033291724003428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/27/2024] [Accepted: 11/30/2024] [Indexed: 02/05/2025]
Abstract
BACKGROUND An accumulating body of evidence indicates that peripheral physiological rhythms help regulate and organize large-scale brain activity. Given that schizophrenia (SZ) is characterized by marked abnormalities in oscillatory cortical activity as well as changes in autonomic function, the present study aimed to identify mechanisms by which central and autonomic nervous system deficits may be related. We evaluated phase-amplitude coupling (PAC) as a physiological mechanism through which autonomic nervous system (ANS) and central nervous system (CNS) activity are integrated and that may be disrupted in SZ. METHODS PAC was measured between high-frequency heart rate variability (HF-HRV) as an index of parasympathetic activity and electroencephalography (EEG) oscillations in 36 individuals with first-episode SZ and 38 healthy comparison participants at rest. RESULTS HRV-EEG coupling was lower in SZ in the alpha and theta bands, and HRV-EEG coupling uniquely predicted group membership, whereas HRV and EEG power alone did not. HRV-EEG coupling in the alpha band correlated with measures of sustained attention in SZ. Granger causality analyses indicated a stronger heart-to-brain effect than brain-to-heart effect, consistent across groups. CONCLUSIONS Lower HRV-EEG coupling provides evidence of deficient autonomic regulation of cortical activity in SZ, suggesting that patterns of dysconnectivity observed in brain networks extend to brain-body interactions. Deficient ANS-CNS integration in SZ may foster a breakdown in the spatiotemporal organization of cortical activity, which may contribute to core cognitive impairments in SZ such as dysregulated attention. These findings encourage pursuit of therapies targeting autonomic function for the treatment of SZ.
Collapse
Affiliation(s)
- Kaia Sargent
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Emily Martinez
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Alexandra Reed
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Anika Guha
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Morgan Bartholomew
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Caroline Diehl
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Christine Chang
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sarah Salama
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kenneth Subotnik
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA
| | - Joseph Ventura
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA
| | - Keith Nuechterlein
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA
| | - Gregory Miller
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA
| | - Cindy Yee
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
16
|
Xu N, Yousefi B, Anumba N, LaGrow TJ, Zhang X, Keilholz S. QPPLab: A generally applicable software package for detecting, analyzing, and visualizing large-scale quasiperiodic spatiotemporal patterns (QPPs) of brain activity. SOFTWAREX 2025; 29:102067. [PMID: 39973967 PMCID: PMC11839147 DOI: 10.1016/j.softx.2025.102067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Quasi-periodic patterns (QPPs) are prominent spatiotemporal brain dynamics observed in functional neuroimaging data, reflecting the alternation of high and low activity across brain regions and their propagation along cortical gradients. QPPs have been linked to neural processes such as attention, arousal fluctuations, and cognitive function. Despite their significance, existing QPP analysis tools are limited by study-specific parameters and complex workflows. To address these challenges, we present QPPLab , an open-source MATLAB-based toolbox for detecting, analyzing, and visualizing QPPs from fMRI time series. QPPLab integrates correlation-based iterative algorithms, supports customizable parameter settings, and features automated workflows to simplify analysis. Processing times vary depending on dataset size and the selected mode, with the fast detection mode completing analyses that can be 4-6 times faster than the robust detection mode. Results include spatiotemporal templates of QPPs, sliding correlation time courses, and functional connectivity maps. By reducing manual parameter adjustments and providing user-friendly tools, QPPLab enables researchers to efficiently study QPPs across diverse datasets and species, advancing our understanding of intrinsic brain dynamics.
Collapse
Affiliation(s)
- Nan Xu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
- Fischell Department of Bioengineering, Electrical and Computer Engineering, University of Maryland, College Park, MD, United States
| | - Behnaz Yousefi
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Nmachi Anumba
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Theodore J LaGrow
- Electrical and Computer Engineering, Georgia Tech, Atlanta, GA, United States
| | - Xiaodi Zhang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Shella Keilholz
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| |
Collapse
|
17
|
Liang Q, Zhou Z, Chen S, Lin S, Lin X, Li Y, Zhang Y, Peng B, Hou G, Qiu Y. Symptom-based depression subtypes: brain dynamic specificity and its association with gene expression profiles. Transl Psychiatry 2025; 15:33. [PMID: 39875399 PMCID: PMC11775246 DOI: 10.1038/s41398-025-03238-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 12/13/2024] [Accepted: 01/14/2025] [Indexed: 01/30/2025] Open
Abstract
At least 227 combinations of symptoms meet the criteria for Major Depressive Disorder (MDD). However, in clinical practice, patients consistently present symptoms in a regular rather than random manner, and the neural basis underlying the MDD subtypes remains unclear. To help clarify the neural basis, patients with MDD were clustered by symptom combinations to investigate the neural underpinning of each subtype using functional resonance imaging (fMRI). Four symptom-based subtypes of MDD were identified using latent profile analysis according to the clinical scales. Subsequently, brain dynamics were evaluated using fMRI, and the dysregulations in attention and limbic network were observed among the subtypes. Correlation between brain dynamics and symptom combinations was then assessed via canonical correlation analysis (CCA). The brain-symptom correlation was higher when evaluated in subtypes (r = 0.77 to 0.92) compared to the entire group (r = 0.5). The loading weight in CCA showed that dynamics in transmodal networks contributed the most to the correlation in the subtypes characterized by typical depression symptoms, whereas unimodal networks contributed the most to subtypes characterized by anxiety and insomnia. Finally, gene expression underlying the CCA model, along with its biological encoding process, performed using a postmortem gene expression atlas revealed distinct gene enrichments for different subtypes. These findings highlight that distinct symptom clusters in MDD have specific neural correlates, providing insights into depression's heterogeneous diagnosis and precision medicine opportunities.
Collapse
Affiliation(s)
- Qunjun Liang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518060, People's Republic of China
- Department of Radiology, Shenzhen Nanshan People's Hospital, Taoyuan AVE 89, Nanshan district, Shenzhen, 518000, People's Republic of China
| | - Zhifeng Zhou
- Department of Radiology, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, No.1080, Cuizhu Road, Luohu District, Shenzhen, 518020, People's Republic of China
| | - Shengli Chen
- Department of Radiology, Shenzhen Nanshan People's Hospital, Taoyuan AVE 89, Nanshan district, Shenzhen, 518000, People's Republic of China
| | - Shiwei Lin
- Department of Radiology, Shenzhen Nanshan People's Hospital, Taoyuan AVE 89, Nanshan district, Shenzhen, 518000, People's Republic of China
| | - Xiaoshan Lin
- Department of Radiology, Shenzhen Nanshan People's Hospital, Taoyuan AVE 89, Nanshan district, Shenzhen, 518000, People's Republic of China
| | - Ying Li
- Department of Radiology, Shenzhen Nanshan People's Hospital, Taoyuan AVE 89, Nanshan district, Shenzhen, 518000, People's Republic of China
| | - Yingli Zhang
- Department of Depressive Disorders, Shenzhen Mental Health Center, Shenzhen Kangning Hospital, No.1080, Cuizhu Road, Luohu District, Shenzhen, 518020, People's Republic of China
| | - Bo Peng
- Department of Depressive Disorders, Shenzhen Mental Health Center, Shenzhen Kangning Hospital, No.1080, Cuizhu Road, Luohu District, Shenzhen, 518020, People's Republic of China
| | - Gangqiang Hou
- Department of Radiology, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, No.1080, Cuizhu Road, Luohu District, Shenzhen, 518020, People's Republic of China.
| | - Yingwei Qiu
- Department of Radiology, Shenzhen Nanshan People's Hospital, Taoyuan AVE 89, Nanshan district, Shenzhen, 518000, People's Republic of China.
| |
Collapse
|
18
|
Sihn D, Kim J, Kim MJ, Kim SP. The intrinsic propagation directionality of fMRI infra-slow activity during visual tasks. Neuroscience 2025; 564:52-59. [PMID: 39561955 DOI: 10.1016/j.neuroscience.2024.11.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/12/2024] [Accepted: 11/15/2024] [Indexed: 11/21/2024]
Abstract
The temporal order of propagation in the blood-oxygen-level-dependent (BOLD) infra-slow activity (ISA, 0.01-0.1 Hz) of functional magnetic resonance imaging (fMRI) can indicate the functional organization of the brain. While prior studies have revealed the temporal order of propagation of BOLD ISA during rest, how it emerges during cognitive tasks remains unclear. Furthermore, its differences between the gray and white matters at the whole-brain scale are unexplored. In this study, we probed the propagation of BOLD ISA using a publicly available fMRI dataset from participants performing visual detection and discrimination tasks (N = 46, 29 females). We examined the temporal order of propagation based on ISA oscillatory phase differences among brain parcels. During visual task performance, ISA in both the gray and white matters propagated in a direction from the visual cortex to the association cortex, including the default mode network (DMN). This result differs from the previously reported propagation direction during rest that traveled from the visual and somatosensory cortices to the DMN, suggesting that the functional organization may change when performing cognitive tasks. In addition, the propagation in the white matter represented more complex patterns than that in the gray matter, exhibiting that the cingulum preceded DMN. Our results may help the understanding of how task performance alters the sensory-DMN propagation according of ISA.
Collapse
Affiliation(s)
- Duho Sihn
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Junsuk Kim
- School of Information Convergence, Kwangwoon University, Seoul 01897, Republic of Korea.
| | - Myung Joon Kim
- Department of Big Data Application, Hannam University, Daejeon 34430, Republic of Korea
| | - Sung-Phil Kim
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea.
| |
Collapse
|
19
|
Abraham I, Shahsavarani S, Zimmerman B, Husain FT, Baryshnikov Y. Hemodynamic cortical ripples through cyclicity analysis. Netw Neurosci 2024; 8:1105-1128. [PMID: 39735496 PMCID: PMC11674492 DOI: 10.1162/netn_a_00392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 05/23/2024] [Indexed: 12/31/2024] Open
Abstract
A fine-grained understanding of dynamics in cortical networks is crucial to unpacking brain function. Resting-state functional magnetic resonance imaging (fMRI) gives rise to time series recordings of the activity of different brain regions, which are aperiodic and lack a base frequency. Cyclicity analysis, a novel technique robust under time reparametrizations, is effective in recovering the temporal ordering of such time series, collectively considered components of a multidimensional trajectory. Here, we extend this analytical method for characterizing the dynamic interaction between distant brain regions and apply it to the data from the Human Connectome Project. Our analysis detected cortical traveling waves of activity propagating along a spatial axis, resembling cortical hierarchical organization with consistent lead-lag relationships between specific brain regions in resting-state scans. In fMRI scans involving tasks, we observed short bursts of task-modulated strong temporal ordering that dominate overall lead-lag relationships between pairs of regions in the brain that align temporally with stimuli from the tasks. Our results suggest a possible role played by waves of excitation sweeping through brain regions that underlie emergent cognitive functions.
Collapse
Affiliation(s)
- Ivan Abraham
- Coordinated Science Laboratory, University of Illinois, Urbana-Champaign, Urbana, USA
| | | | - Benjamin Zimmerman
- Helfgott Institute, National University of Natural Medicine, Portland, USA
| | - Fatima T. Husain
- Beckman Institute for Advanced Science & Technology, University of Illinois, Urbana-Champaign, USA
- Department of Speech & Hearing Science, University of Illinois, Urbana-Champaign, Urbana, USA
| | - Yuliy Baryshnikov
- Coordinated Science Laboratory, University of Illinois, Urbana-Champaign, Urbana, USA
- Department of Mathematics, University of Illinois, Urbana-Champaign, USA
| |
Collapse
|
20
|
Anand SA, Sogukpinar F, Monosov IE. Arousal effects on oscillatory dynamics in the non-human primate brain. Cereb Cortex 2024; 34:bhae473. [PMID: 39704245 PMCID: PMC11659775 DOI: 10.1093/cercor/bhae473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 11/03/2024] [Accepted: 11/25/2024] [Indexed: 12/21/2024] Open
Abstract
Arousal states are thought to influence many aspects of cognition and behavior by broadly modulating neural activity. Many studies have observed arousal-related modulations of alpha (~8 to 15 Hz) and gamma (~30 to 50 Hz) power and coherence in local field potentials across relatively small groups of brain regions. However, the global pattern of arousal-related oscillatory modulation in local field potentials is yet to be fully elucidated. We simultaneously recorded local field potentials in numerous cortical and subcortical regions in the primate brain and assessed oscillatory activity and inter-regional coherence associated with arousal state. In high arousal states, we found a uniquely strong and coherent gamma oscillation between the amygdala and basal forebrain. In low arousal rest-like states, a relative increase in coherence at alpha frequencies was present across sampled brain regions, with the notable exception of the medial temporal lobe. We consider how these patterns of activity may index arousal-related brain states that support the processing of incoming sensory stimuli during high arousal states and memory-related functions during rest.
Collapse
Affiliation(s)
- Shashank A Anand
- School of Medicine, Washington University in St. Louis, Fort Neuroscience Research Building, 4370 Duncan Ave., St. Louis, MO 63110, United States
- McKelvey School of Engineering, Washington University in St. Louis, One Brookings Drive., St. Louis, MO 63130, United States
| | - Fatih Sogukpinar
- McKelvey School of Engineering, Washington University in St. Louis, One Brookings Drive., St. Louis, MO 63130, United States
| | - Ilya E Monosov
- School of Medicine, Washington University in St. Louis, Fort Neuroscience Research Building, 4370 Duncan Ave., St. Louis, MO 63110, United States
- McKelvey School of Engineering, Washington University in St. Louis, One Brookings Drive., St. Louis, MO 63130, United States
- Department of Neuroscience, Washington University in St. Louis, Fort Neuroscience Research Building, 4370 Duncan Ave., St. Louis, MO 63110, United States
| |
Collapse
|
21
|
Nobukawa S, Shirama A, Takahashi T, Toda S. Recent trends in multiple metrics and multimodal analysis for neural activity and pupillometry. Front Neurol 2024; 15:1489822. [PMID: 39687402 PMCID: PMC11646859 DOI: 10.3389/fneur.2024.1489822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/13/2024] [Indexed: 12/18/2024] Open
Abstract
Recent studies focusing on neural activity captured by neuroimaging modalities have provided various metrics for elucidating the functional networks and dynamics of the entire brain. Functional magnetic resonance imaging (fMRI) can depict spatiotemporal functional neural networks and dynamic characteristics due to its excellent spatial resolution. However, its temporal resolution is limited. Neuroimaging modalities such as electroencephalography (EEG) and magnetoencephalography (MEG), which have higher temporal resolutions, are utilized for multi-temporal scale and multi-frequency-band analyzes. With this advantage, numerous EEG/MEG-bases studies have revealed the frequency-band specific functional networks involving dynamic functional connectivity and multiple temporal-scale time-series patterns of neural activity. In addition to analyzing neural data, the examination of behavioral data can unveil additional aspects of brain activity through unimodal and multimodal data analyzes performed using appropriate integration techniques. Among the behavioral data assessments, pupillometry can provide comprehensive spatial-temporal-specific features of neural activity. In this perspective, we summarize the recent progress in the development of metrics for analyzing neural data obtained from neuroimaging modalities such as fMRI, EEG, and MEG, as well as behavioral data, with a special focus on pupillometry data. First, we review the typical metrics of neural activity, emphasizing functional connectivity, complexity, dynamic functional connectivity, and dynamic state transitions of whole-brain activity. Second, we examine the metrics related to the time-series data of pupillary diameters and discuss the possibility of multimodal metrics that combine neural and pupillometry data. Finally, we discuss future perspectives on these multiple and multimodal metrics.
Collapse
Affiliation(s)
- Sou Nobukawa
- Department of Computer Science, Chiba Institute of Technology, Narashino, Chiba, Japan
- Graduate School of Information and Computer Science, Chiba Institute of Technology, Narashino, Chiba, Japan
- Research Center for Mathematical Engineering, Chiba Institute of Technology, Narashino, Chiba, Japan
- Department of Preventive Intervention for Psychiatric Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Aya Shirama
- Department of Preventive Intervention for Psychiatric Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Tetsuya Takahashi
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
- Department of Neuropsychiatry, University of Fukui, Fukui, Japan
- Uozu Shinkei Sanatorium, Uozu, Toyama, Japan
| | - Shigenobu Toda
- Department of Psychiatry, Shizuoka Psychiatric Medical Center, Shizuoka, Japan
- Department of Psychiatry and Behavioral Science, Kanazawa University, Kanazawa, Japan
- Department of Psychiatry, Showa University, Tokyo, Japan
| |
Collapse
|
22
|
Ilan Y. Free Will as Defined by the Constrained Disorder Principle: a Restricted, Mandatory, Personalized, Regulated Process for Decision-Making. Integr Psychol Behav Sci 2024; 58:1843-1875. [PMID: 38900370 PMCID: PMC11638301 DOI: 10.1007/s12124-024-09853-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2024] [Indexed: 06/21/2024]
Abstract
The concept of free will has challenged physicists, biologists, philosophers, and other professionals for decades. The constrained disorder principle (CDP) is a fundamental law that defines systems according to their inherent variability. It provides mechanisms for adapting to dynamic environments. This work examines the CDP's perspective of free will concerning various free will theories. Per the CDP, systems lack intentions, and the "freedom" to select and act is built into their design. The "freedom" is embedded within the response range determined by the boundaries of the systems' variability. This built-in and self-generating mechanism enables systems to cope with perturbations. According to the CDP, neither dualism nor an unknown metaphysical apparatus dictates choices. Brain variability facilitates cognitive adaptation to complex, unpredictable situations across various environments. Human behaviors and decisions reflect an underlying physical variability in the brain and other organs for dealing with unpredictable noises. Choices are not predetermined but reflect the ongoing adaptation processes to dynamic prssu½res. Malfunctions and disease states are characterized by inappropriate variability, reflecting an inability to respond adequately to perturbations. Incorporating CDP-based interventions can overcome malfunctions and disease states and improve decision processes. CDP-based second-generation artificial intelligence platforms improve interventions and are being evaluated to augment personal development, wellness, and health.
Collapse
Affiliation(s)
- Yaron Ilan
- Faculty of Medicine, Hebrew University and Department of Medicine, Hadassah Medical Center, Jerusalem, Israel.
| |
Collapse
|
23
|
Liang Q, Xu Z, Chen S, Lin S, Lin X, Li Y, Zhang Y, Peng B, Hou G, Qiu Y. Temporal dysregulation of the somatomotor network in agitated depression. Brain Commun 2024; 6:fcae425. [PMID: 39659972 PMCID: PMC11630518 DOI: 10.1093/braincomms/fcae425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 09/05/2024] [Accepted: 11/25/2024] [Indexed: 12/12/2024] Open
Abstract
Agitated depression (A-MDD) is a severe subtype of major depressive disorder, with an increased risk of suicidality and the potential to evolve into bipolar disorder. Despite its clinical significance, the neural basis remains unclear. We hypothesize that psychomotor agitation, marked by pressured speech and racing thoughts, is linked to disruptions in brain dynamics. To test this hypothesis, we examined brain dynamics using time delay estimation and edge-centre time series, as well as dynamic connections between the somatomotor network (SMN) and the default mode network in 44 patients with A-MDD, 75 with non-agitated MDD (NA-MDD), and 94 healthy controls. Our results revealed that the neural co-activity duration was shorter in the A-MDD group compared with both the NA-MDD and controls (A-MDD versus NA-MDD: t = 2.295; A-MDD versus controls: t = 2.192, all P < 0.05). In addition, the dynamic of neural fluctuation in SMN altered in the A-MDD group than in the NA-MDD group (t = -2.616, P = 0.011) and was correlated with agitation severity (β = -0.228, P = 0.011). The inter-network connection was reduced in the A-MDD group compared with the control group (t = 2.102, P = 0.037), especially at low-amplitude time points (t = 2.139, P = 0.034). These findings indicate rapid neural fluctuations and disrupted dynamic coupling between the SMN and default mode network in A-MDD, potentially underlying the psychomotor agitation characteristic of this subtype. These insights contribute to a more nuanced understanding of the heterogeneity of depression and have implications for differential diagnosis and treatment strategies.
Collapse
Affiliation(s)
- Qunjun Liang
- Department of Radiology, Shenzhen Nanshan People’s Hospital, Shenzhen University, Shenzhen 518000, People’s Republic of China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, People’s Republic of China
| | - Ziyun Xu
- Department of Radiology, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen 518020, People’s Republic of China
| | - Shengli Chen
- Department of Radiology, Shenzhen Nanshan People’s Hospital, Shenzhen University, Shenzhen 518000, People’s Republic of China
| | - Shiwei Lin
- Department of Radiology, Shenzhen Nanshan People’s Hospital, Shenzhen University, Shenzhen 518000, People’s Republic of China
| | - Xiaoshan Lin
- Department of Radiology, Shenzhen Nanshan People’s Hospital, Shenzhen University, Shenzhen 518000, People’s Republic of China
| | - Ying Li
- Department of Radiology, Shenzhen Nanshan People’s Hospital, Shenzhen University, Shenzhen 518000, People’s Republic of China
| | - Yingli Zhang
- Department of Depression, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen 518020, People’s Republic of China
| | - Bo Peng
- Department of Depression, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen 518020, People’s Republic of China
| | - Gangqiang Hou
- Department of Radiology, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen 518020, People’s Republic of China
| | - Yingwei Qiu
- Department of Radiology, Shenzhen Nanshan People’s Hospital, Shenzhen University, Shenzhen 518000, People’s Republic of China
| |
Collapse
|
24
|
Jacob LPL, Bailes SM, Williams SD, Stringer C, Lewis LD. Brainwide hemodynamics predict neural rhythms across sleep and wakefulness in humans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.29.577429. [PMID: 38352426 PMCID: PMC10862763 DOI: 10.1101/2024.01.29.577429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
The brain exhibits rich oscillatory dynamics that play critical roles in vigilance and cognition, such as the neural rhythms that define sleep. These rhythms continuously fluctuate, signaling major changes in vigilance, but the brainwide dynamics underlying these oscillations are unknown. Using simultaneous EEG and fast fMRI in humans drifting between sleep and wakefulness, we developed a machine learning approach to investigate which brainwide fMRI networks predict alpha (8-12 Hz) and delta (1-4 Hz) fluctuations. We predicted moment-to-moment EEG power variations from fMRI activity in held-out subjects, and found that information about alpha rhythms was highly separable in two networks linked to arousal and visual systems. Conversely, delta rhythms were diffusely represented on a large spatial scale across the cortex. These results identify the large-scale network patterns that underlie alpha and delta rhythms, and establish a novel framework for investigating multimodal, brainwide dynamics.
Collapse
Affiliation(s)
- Leandro P. L. Jacob
- Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sydney M. Bailes
- Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Boston University, Boston, MA, USA
| | - Stephanie D. Williams
- Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Boston University, Boston, MA, USA
| | | | - Laura D. Lewis
- Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston MA USA
| |
Collapse
|
25
|
Liang Q, Xu Z, Chen S, Lin S, Lin X, Li Y, Zhang Y, Peng B, Hou G, Qiu Y. Spatiotemporal discoordination of brain spontaneous activity in major depressive disorder. J Affect Disord 2024; 365:134-143. [PMID: 39154985 DOI: 10.1016/j.jad.2024.08.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/03/2024] [Accepted: 08/10/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND Major depressive disorder (MDD) is a widespread mental health issue, impacting spatial and temporal aspects of brain activity. The neural mechanisms behind MDD remain unclear. To address this gap, we introduce a novel measure, spatiotemporal topology (SPT), capturing both the hierarchy and dynamic attributes of brain activity in depressive disorder patients. METHODS We analyzed fMRI data from 285 MDD inpatients and 141 healthy controls (HC). SPT was assessed by coupling brain gradient measurement and time delay estimation. A nested machine learning process distinguished between MDD and HC using SPT. Person's correlation tested the link between SPT's and symptom severity, and another machine learning method predicted the gap between patients' chronological and brain age. RESULTS SPT demonstrated significant differences between patients and healthy controls (F = 2.944, p < 0.001). Machine learning approaches revealed SPT's ability to discriminate between patients and healthy controls (Accuracy = 0.65, Sensitivity = 0.67, Specificity = 0.64). Moreover, SPT correlated with the severity of depression symptom (r = 0.32. pFDR = 0.045) and predicted the gap between patients' chronological age and brain age (r = 0.756, p < 0.001). LIMITATIONS Evaluation of brain dynamics was constrained by MRI temporal resolution. CONCLUSIONS Our study introduces SPT as a promising metric to characterize the spatiotemporal signature of brain function, providing insights into deviant brain activity associated with depressive disorders and advancing our understanding of their psychopathological mechanisms.
Collapse
Affiliation(s)
- Qunjun Liang
- Department of Medical Imaging, Huazhong University of Science and Technology Union Shenzhen Hospital, Taoyuan AVE 89, Nanshan District, Shenzhen 518000, People's Republic of China; Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, People's Republic of China
| | - Ziyun Xu
- Neuropsychiatry Imaging Center, Department of Radiology, Shenzhen Mental Health Center, Shenzhen Kangning Hospital, Shenzhen 518020, People's Republic of China
| | - Shengli Chen
- Department of Medical Imaging, Huazhong University of Science and Technology Union Shenzhen Hospital, Taoyuan AVE 89, Nanshan District, Shenzhen 518000, People's Republic of China
| | - Shiwei Lin
- Department of Medical Imaging, Huazhong University of Science and Technology Union Shenzhen Hospital, Taoyuan AVE 89, Nanshan District, Shenzhen 518000, People's Republic of China
| | - Xiaoshan Lin
- Department of Medical Imaging, Huazhong University of Science and Technology Union Shenzhen Hospital, Taoyuan AVE 89, Nanshan District, Shenzhen 518000, People's Republic of China
| | - Ying Li
- Department of Medical Imaging, Huazhong University of Science and Technology Union Shenzhen Hospital, Taoyuan AVE 89, Nanshan District, Shenzhen 518000, People's Republic of China
| | - Yingli Zhang
- Department of Depressive Disorder, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, Guangdong 518020, People's Republic of China
| | - Bo Peng
- Department of Depressive Disorder, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, Guangdong 518020, People's Republic of China
| | - Gangqiang Hou
- Neuropsychiatry Imaging Center, Department of Radiology, Shenzhen Mental Health Center, Shenzhen Kangning Hospital, Shenzhen 518020, People's Republic of China.
| | - Yingwei Qiu
- Department of Medical Imaging, Huazhong University of Science and Technology Union Shenzhen Hospital, Taoyuan AVE 89, Nanshan District, Shenzhen 518000, People's Republic of China.
| |
Collapse
|
26
|
Han F, Liu X, Yang Y, Liu X. Sex-specific age-related differences in cerebrospinal fluid clearance assessed by resting-state functional magnetic resonance imaging. Neuroimage 2024; 302:120905. [PMID: 39461604 DOI: 10.1016/j.neuroimage.2024.120905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 10/29/2024] Open
Abstract
Cerebrospinal fluid (CSF) flow may assist the clearance of brain wastes, such as amyloid-β (Aβ) and tau, and thus play an important role in aging and dementias. However, a lack of non-invasive tools to assess the CSF dynamics-related clearance in humans hindered the understanding of the relevant changes in healthy aging. The global infra-slow (<0.1 Hz) brain activity measured by the global mean resting-state fMRI signal (gBOLD) was recently found to be coupled by large CSF movements. This coupling has been found to correlate with various pathologies of Alzheimer's disease (AD), particularly Aβ pathology, linking it to waste clearance. Using resting-state fMRI data from a group of 719 healthy aging participants, we examined the sex-specific differences of the gBOLD-CSF coupling over a wide age range between 36-100 years of age. We found that this coupling index remains stable before around age 55 and then starts to decline afterward, particularly in females. Menopause may contribute to the accelerated decline in females.
Collapse
Affiliation(s)
- Feng Han
- Department of Biomedical Engineering, The Pennsylvania State University, PA, USA
| | - Xufu Liu
- Department of Biomedical Engineering, The Pennsylvania State University, PA, USA
| | - Yifan Yang
- Department of Biomedical Engineering, The Pennsylvania State University, PA, USA
| | - Xiao Liu
- Department of Biomedical Engineering, The Pennsylvania State University, PA, USA; Institute for Computational and Data Sciences, The Pennsylvania State University, PA, USA.
| |
Collapse
|
27
|
Pourmotabbed H, Martin CG, Goodale SE, Doss DJ, Wang S, Bayrak RG, Kang H, Morgan VL, Englot DJ, Chang C. Multimodal state-dependent connectivity analysis of arousal and autonomic centers in the brainstem and basal forebrain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.11.623092. [PMID: 39605337 PMCID: PMC11601260 DOI: 10.1101/2024.11.11.623092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Vigilance is a continuously altering state of cortical activation that influences cognition and behavior and is disrupted in multiple brain pathologies. Neuromodulatory nuclei in the brainstem and basal forebrain are implicated in arousal regulation and are key drivers of widespread neuronal activity and communication. However, it is unclear how their large-scale brain network architecture changes across dynamic variations in vigilance state (i.e., alertness and drowsiness). In this study, we leverage simultaneous EEG and 3T multi-echo functional magnetic resonance imaging (fMRI) to elucidate the vigilance-dependent connectivity of arousal regulation centers in the brainstem and basal forebrain. During states of low vigilance, most of the neuromodulatory nuclei investigated here exhibit a stronger global correlation pattern and greater connectivity to the thalamus, precuneus, and sensory and motor cortices. In a more alert state, the nuclei exhibit the strongest connectivity to the salience, default mode, and auditory networks. These vigilance-dependent correlation patterns persist even after applying multiple preprocessing strategies to reduce systemic vascular effects. To validate our findings, we analyze two large 3T and 7T fMRI datasets from the Human Connectome Project and demonstrate that the static and vigilance-dependent connectivity profiles of the arousal nuclei are reproducible across 3T multi-echo, 3T single-echo, and 7T single-echo fMRI modalities. Overall, this work provides novel insights into the role of neuromodulatory systems in vigilance-related brain activity.
Collapse
Affiliation(s)
- Haatef Pourmotabbed
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Surgery and Engineering, Vanderbilt University, Nashville, TN, USA
| | - Caroline G. Martin
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Surgery and Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
| | - Sarah E. Goodale
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Surgery and Engineering, Vanderbilt University, Nashville, TN, USA
| | - Derek J. Doss
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Surgery and Engineering, Vanderbilt University, Nashville, TN, USA
| | - Shiyu Wang
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Surgery and Engineering, Vanderbilt University, Nashville, TN, USA
| | - Roza G. Bayrak
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Surgery and Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
| | - Hakmook Kang
- Department of Biostatistics, Vanderbilt University, Nashville, TN, USA
| | - Victoria L. Morgan
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Surgery and Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Dario J. Englot
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Surgery and Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Catie Chang
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Surgery and Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
28
|
Padawer-Curry JA, Krentzman OJ, Kuo CC, Wang X, Bice AR, Nicol GE, Snyder AZ, Siegel JS, McCall JG, Bauer AQ. Psychedelic 5-HT2A receptor agonism: neuronal signatures and altered neurovascular coupling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.23.559145. [PMID: 39605498 PMCID: PMC11601243 DOI: 10.1101/2023.09.23.559145] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Psychedelics hold therapeutic promise for mood disorders due to rapid, sustained results. Human neuroimaging studies have reported dramatic serotonin-2A receptor-(5-HT2AR)-dependent changes in functional brain reorganization that presumably reflect neuromodulation. However, the potent vasoactive effects of serotonin have been overlooked. We found psilocybin-mediated alterations to fMRI-HRFs in humans, suggesting potentially altered NVC. To assess the neuronal, hemodynamic, and neurovascular coupling (NVC) effects of the psychedelic 5-HT2AR agonist, 2,5-Dimethoxy-4-iodoamphetamine (DOI), wide-field optical imaging (WFOI) was used in awake Thy1-jRGECO1a mice during stimulus-evoked and resting-state conditions. While DOI partially altered tasked-based NVC, more pronounced NVC alterations occurred under resting-state conditions and were strongest in association regions. Further, calcium and hemodynamic activity reported different accounts of RSFC changes under DOI. Co-administration of DOI and the 5-HT2AR antagonist, MDL100907, reversed many of these effects. Dissociation between neuronal and hemodynamic signals emphasizes a need to consider neurovascular effects of psychedelics when interpreting blood-oxygenation-dependent neuroimaging measures.
Collapse
|
29
|
Grujic N, Polania R, Burdakov D. Neurobehavioral meaning of pupil size. Neuron 2024; 112:3381-3395. [PMID: 38925124 DOI: 10.1016/j.neuron.2024.05.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/22/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024]
Abstract
Pupil size is a widely used metric of brain state. It is one of the few signals originating from the brain that can be readily monitored with low-cost devices in basic science, clinical, and home settings. It is, therefore, important to investigate and generate well-defined theories related to specific interpretations of this metric. What exactly does it tell us about the brain? Pupils constrict in response to light and dilate during darkness, but the brain also controls pupil size irrespective of luminosity. Pupil size fluctuations resulting from ongoing "brain states" are used as a metric of arousal, but what is pupil-linked arousal and how should it be interpreted in neural, cognitive, and computational terms? Here, we discuss some recent findings related to these issues. We identify open questions and propose how to answer them through a combination of well-defined tasks, neurocomputational models, and neurophysiological probing of the interconnected loops of causes and consequences of pupil size.
Collapse
Affiliation(s)
- Nikola Grujic
- Neurobehavioural Dynamics Lab, ETH Zürich, Department of Health Sciences and Technology, Schorenstrasse 16, 8603 Schwerzenbach, Switzerland.
| | - Rafael Polania
- Decision Neuroscience Lab, ETH Zürich, Department of Health Sciences and Technology, Winterthurstrasse 190, 8057 Zürich, Switzerland
| | - Denis Burdakov
- Neurobehavioural Dynamics Lab, ETH Zürich, Department of Health Sciences and Technology, Schorenstrasse 16, 8603 Schwerzenbach, Switzerland.
| |
Collapse
|
30
|
Tuunanen J, Helakari H, Huotari N, Väyrynen T, Järvelä M, Kananen J, Kivipää A, Raitamaa L, Ebrahimi SM, Kallio M, Piispala J, Kiviniemi V, Korhonen V. Cardiovascular and vasomotor pulsations in the brain and periphery during awake and NREM sleep in a multimodal fMRI study. Front Neurosci 2024; 18:1457732. [PMID: 39440186 PMCID: PMC11493778 DOI: 10.3389/fnins.2024.1457732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024] Open
Abstract
Introduction The cerebrospinal fluid dynamics in the human brain are driven by physiological pulsations, including cardiovascular pulses and very low-frequency (< 0.1 Hz) vasomotor waves. Ultrafast functional magnetic resonance imaging (fMRI) facilitates the simultaneous measurement of these signals from venous and arterial compartments independently with both classical venous blood oxygenation level dependent (BOLD) and faster arterial spin-phase contrast. Methods In this study, we compared the interaction of these two pulsations in awake and sleep using fMRI and peripheral fingertip photoplethysmography in both arterial and venous signals in 10 healthy subjects (5 female). Results Sleep increased the power of brain cardiovascular pulsations, decreased peripheral pulsation, and desynchronized them. However, vasomotor waves increase power and synchronicity in both brain and peripheral signals during sleep. Peculiarly, lag between brain and peripheral vasomotor signals reversed in sleep within the default mode network. Finally, sleep synchronized cerebral arterial vasomotor waves with venous BOLD waves within distinct parasagittal brain tissue. Discussion These changes in power and pulsation synchrony may reflect systemic sleep-related changes in vascular control between the periphery and brain vasculature, while the increased synchrony of arterial and venous compartments may reflect increased convection of regional neurofluids in parasagittal areas in sleep.
Collapse
Affiliation(s)
- Johanna Tuunanen
- Department of Diagnostic Radiology, Oulu Functional NeuroImaging (OFNI), Oulu University Hospital, Oulu, Finland
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
- Medical Research Center (MRC), Oulu University Hospital, Oulu, Finland
| | - Heta Helakari
- Department of Diagnostic Radiology, Oulu Functional NeuroImaging (OFNI), Oulu University Hospital, Oulu, Finland
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
- Medical Research Center (MRC), Oulu University Hospital, Oulu, Finland
| | - Niko Huotari
- Department of Diagnostic Radiology, Oulu Functional NeuroImaging (OFNI), Oulu University Hospital, Oulu, Finland
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
- Medical Research Center (MRC), Oulu University Hospital, Oulu, Finland
| | - Tommi Väyrynen
- Department of Diagnostic Radiology, Oulu Functional NeuroImaging (OFNI), Oulu University Hospital, Oulu, Finland
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
- Medical Research Center (MRC), Oulu University Hospital, Oulu, Finland
| | - Matti Järvelä
- Department of Diagnostic Radiology, Oulu Functional NeuroImaging (OFNI), Oulu University Hospital, Oulu, Finland
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
- Medical Research Center (MRC), Oulu University Hospital, Oulu, Finland
| | - Janne Kananen
- Department of Diagnostic Radiology, Oulu Functional NeuroImaging (OFNI), Oulu University Hospital, Oulu, Finland
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
- Medical Research Center (MRC), Oulu University Hospital, Oulu, Finland
- Clinical Neurophysiology, Oulu University Hospital, Oulu, Finland
| | - Annastiina Kivipää
- Department of Diagnostic Radiology, Oulu Functional NeuroImaging (OFNI), Oulu University Hospital, Oulu, Finland
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
- Medical Research Center (MRC), Oulu University Hospital, Oulu, Finland
| | - Lauri Raitamaa
- Department of Diagnostic Radiology, Oulu Functional NeuroImaging (OFNI), Oulu University Hospital, Oulu, Finland
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
- Medical Research Center (MRC), Oulu University Hospital, Oulu, Finland
| | - Seyed-Mohsen Ebrahimi
- Department of Diagnostic Radiology, Oulu Functional NeuroImaging (OFNI), Oulu University Hospital, Oulu, Finland
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
- Medical Research Center (MRC), Oulu University Hospital, Oulu, Finland
| | - Mika Kallio
- Medical Research Center (MRC), Oulu University Hospital, Oulu, Finland
- Clinical Neurophysiology, Oulu University Hospital, Oulu, Finland
| | - Johanna Piispala
- Medical Research Center (MRC), Oulu University Hospital, Oulu, Finland
- Clinical Neurophysiology, Oulu University Hospital, Oulu, Finland
| | - Vesa Kiviniemi
- Department of Diagnostic Radiology, Oulu Functional NeuroImaging (OFNI), Oulu University Hospital, Oulu, Finland
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
- Medical Research Center (MRC), Oulu University Hospital, Oulu, Finland
| | - Vesa Korhonen
- Department of Diagnostic Radiology, Oulu Functional NeuroImaging (OFNI), Oulu University Hospital, Oulu, Finland
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
- Medical Research Center (MRC), Oulu University Hospital, Oulu, Finland
| |
Collapse
|
31
|
Gutierrez-Barragan D, Ramirez JSB, Panzeri S, Xu T, Gozzi A. Evolutionarily conserved fMRI network dynamics in the mouse, macaque, and human brain. Nat Commun 2024; 15:8518. [PMID: 39353895 PMCID: PMC11445567 DOI: 10.1038/s41467-024-52721-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 09/13/2024] [Indexed: 10/03/2024] Open
Abstract
Evolutionarily relevant networks have been previously described in several mammalian species using time-averaged analyses of fMRI time-series. However, fMRI network activity is highly dynamic and continually evolves over timescales of seconds. Whether the dynamic organization of resting-state fMRI network activity is conserved across mammalian species remains unclear. Using frame-wise clustering of fMRI time-series, we find that intrinsic fMRI network dynamics in awake male macaques and humans is characterized by recurrent transitions between a set of 4 dominant, neuroanatomically homologous fMRI coactivation modes (C-modes), three of which are also plausibly represented in the male rodent brain. Importantly, in all species C-modes exhibit species-invariant dynamic features, including preferred occurrence at specific phases of fMRI global signal fluctuations, and a state transition structure compatible with infraslow coupled oscillator dynamics. Moreover, dominant C-mode occurrence reconstitutes the static organization of the fMRI connectome in all species, and is predictive of ranking of corresponding fMRI connectivity gradients. These results reveal a set of species-invariant principles underlying the dynamic organization of fMRI networks in mammalian species, and offer novel opportunities to relate fMRI network findings across the phylogenetic tree.
Collapse
Affiliation(s)
- Daniel Gutierrez-Barragan
- Functional Neuroimaging Lab, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems, Rovereto, Italy
| | - Julian S B Ramirez
- Center for the Developing Brain. Child Mind Institute, New York, NY, USA
| | - Stefano Panzeri
- Institute for Neural Information Processing, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Ting Xu
- Center for the Developing Brain. Child Mind Institute, New York, NY, USA
| | - Alessandro Gozzi
- Functional Neuroimaging Lab, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems, Rovereto, Italy.
| |
Collapse
|
32
|
Royer J, Paquola C, Valk SL, Kirschner M, Hong SJ, Park BY, Bethlehem RAI, Leech R, Yeo BTT, Jefferies E, Smallwood J, Margulies D, Bernhardt BC. Gradients of Brain Organization: Smooth Sailing from Methods Development to User Community. Neuroinformatics 2024; 22:623-634. [PMID: 38568476 DOI: 10.1007/s12021-024-09660-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2024] [Indexed: 11/21/2024]
Abstract
Multimodal neuroimaging grants a powerful in vivo window into the structure and function of the human brain. Recent methodological and conceptual advances have enabled investigations of the interplay between large-scale spatial trends - or gradients - in brain structure and function, offering a framework to unify principles of brain organization across multiple scales. Strong community enthusiasm for these techniques has been instrumental in their widespread adoption and implementation to answer key questions in neuroscience. Following a brief review of current literature on this framework, this perspective paper will highlight how pragmatic steps aiming to make gradient methods more accessible to the community propelled these techniques to the forefront of neuroscientific inquiry. More specifically, we will emphasize how interest for gradient methods was catalyzed by data sharing, open-source software development, as well as the organization of dedicated workshops led by a diverse team of early career researchers. To this end, we argue that the growing excitement for brain gradients is the result of coordinated and consistent efforts to build an inclusive community and can serve as a case in point for future innovations and conceptual advances in neuroinformatics. We close this perspective paper by discussing challenges for the continuous refinement of neuroscientific theory, methodological innovation, and real-world translation to maintain our collective progress towards integrated models of brain organization.
Collapse
Affiliation(s)
- Jessica Royer
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada.
| | - Casey Paquola
- Institute for Neuroscience and Medicine (INM-7), Forschungszentrum Jülich, Jülich, Germany
| | - Sofie L Valk
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Matthias Kirschner
- Division of Adult Psychiatry, Department of Psychiatry, University Hospitals of Geneva, Thonex, Switzerland
| | - Seok-Jun Hong
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea
- Center for the Developing Brain, Child Mind Institute, New York, USA
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
| | - Bo-Yong Park
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea
- Department of Data Science, Inha University, Incheon, South Korea
- Department of Statistics and Data Science, Inha University, Incheon, South Korea
| | | | - Robert Leech
- Centre for Neuroimaging Science, King's College London, London, UK
| | - B T Thomas Yeo
- Centre for Sleep & Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
- Institute for Health & Institute for Digital Medicine, National University of Singapore, Singapore, Singapore
- Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore, Singapore
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | | | | | - Daniel Margulies
- Integrative Neuroscience and Cognition Center (UMR 8002), Centre National de la Recherche Scientifique (CNRS), Université de Paris, Paris, France
| | - Boris C Bernhardt
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| |
Collapse
|
33
|
Sihn D, Kim SP. Enhanced Correlation between Arousal and Infra-Slow Brain Activity in Experienced Meditators. Brain Sci 2024; 14:981. [PMID: 39451995 PMCID: PMC11506050 DOI: 10.3390/brainsci14100981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND/OBJECTIVES Meditation induces changes in the nervous system, which presumably underpin positive psychological and physiological effects. Such neural changes include alterations in the arousal fluctuation, as well as in infraslow brain activity (ISA, <0.1 Hz). Furthermore, it is known that fluctuations of arousal over time correlate with the oscillatory phase of ISA. However, whether this arousal-ISA correlation changes after meditation practices remains unanswered.; Methods: The present study aims to address this question by analyzing a publicly available electroencephalogram (EEG) dataset recorded during meditation sessions in the groups of experienced meditators and novices. The arousal fluctuation is measured by galvanic skin responses (GSR), and arousal-ISA correlations are measured by phase synchronization between GSR and EEG ISAs.; Results: While both groups exhibit arousal-ISA correlations, experienced meditators display higher correlations than novices. These increased arousal-ISA correlations in experienced meditators manifest more clearly when oscillatory phase differences between GSR and EEG ISAs are either 0 or π radians. As such, we further investigate the characteristics of these phase differences with respect to spatial distribution over the brain. We found that brain regions with the phase difference of either 0 or π radians form distinct spatial clusters, and that these clusters are spatially correlated with functional organization estimated by the principal gradient, based on functional connectivity.; Conclusions: Since increased arousal-ISA correlations reflect enhanced global organization of the central and autonomic nervous systems, our findings imply that the positive effects of meditation might be mediated by enhanced global organization of the nervous system.
Collapse
Affiliation(s)
| | - Sung-Phil Kim
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| |
Collapse
|
34
|
Wang X, Padawer-Curry JA, Bice AR, Kim B, Rosenthal ZP, Lee JM, Goyal MS, Macauley SL, Bauer AQ. Spatiotemporal relationships between neuronal, metabolic, and hemodynamic signals in the awake and anesthetized mouse brain. Cell Rep 2024; 43:114723. [PMID: 39277861 PMCID: PMC11523563 DOI: 10.1016/j.celrep.2024.114723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 07/08/2024] [Accepted: 08/21/2024] [Indexed: 09/17/2024] Open
Abstract
Neurovascular coupling (NVC) and neurometabolic coupling (NMC) provide the basis for functional magnetic resonance imaging and positron emission tomography to map brain neurophysiology. While increases in neuronal activity are often accompanied by increases in blood oxygen delivery and oxidative metabolism, these observations are not the rule. This decoupling is important when interpreting brain network organization (e.g., resting-state functional connectivity [RSFC]) because it is unclear whether changes in NMC/NVC affect RSFC measures. We leverage wide-field optical imaging in Thy1-jRGECO1a mice to map cortical calcium activity in pyramidal neurons, flavoprotein autofluorescence (representing oxidative metabolism), and hemodynamic activity during wake and ketamine/xylazine anesthesia. Spontaneous dynamics of all contrasts exhibit patterns consistent with RSFC. NMC/NVC relative to excitatory activity varies over the cortex. Ketamine/xylazine profoundly alters NVC but not NMC. Compared to awake RSFC, ketamine/xylazine affects metabolic-based connectomes moreso than hemodynamic-based measures of RSFC. Anesthesia-related differences in NMC/NVC timing do not appreciably alter RSFC structure.
Collapse
Affiliation(s)
- Xiaodan Wang
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University in Saint Louis, St. Louis, MO 63130, USA
| | - Jonah A Padawer-Curry
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Imaging Sciences Program, Washington University in Saint Louis, St. Louis, MO 63130, USA
| | - Annie R Bice
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Byungchan Kim
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Zachary P Rosenthal
- Department of Psychiatry, University of Pennsylvania Health System Penn Medicine, Philadelphia, PA 19104, USA
| | - Jin-Moo Lee
- Department of Biomedical Engineering, Washington University in Saint Louis, St. Louis, MO 63130, USA; Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Manu S Goyal
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Shannon L Macauley
- Department of Physiology, University of Kentucky, Lexington, KY 40508, USA
| | - Adam Q Bauer
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University in Saint Louis, St. Louis, MO 63130, USA; Imaging Sciences Program, Washington University in Saint Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
35
|
Davis ZW, Busch A, Steward C, Muller L, Reynolds J. Horizontal cortical connections shape intrinsic traveling waves into feature-selective motifs that regulate perceptual sensitivity. Cell Rep 2024; 43:114707. [PMID: 39243374 PMCID: PMC11485754 DOI: 10.1016/j.celrep.2024.114707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/25/2024] [Accepted: 08/16/2024] [Indexed: 09/09/2024] Open
Abstract
Intrinsic cortical activity forms traveling waves that modulate sensory-evoked responses and perceptual sensitivity. These intrinsic traveling waves (iTWs) may arise from the coordination of synaptic activity through long-range feature-dependent horizontal connectivity within cortical areas. In a spiking network model that incorporates feature-selective patchy connections, we observe iTW motifs that result from shifts in excitatory/inhibitory balance as action potentials traverse these patchy connections. To test whether feature-selective motifs occur in vivo, we examined data recorded in the middle temporal visual area (Area MT) of marmosets performing a visual detection task. We find that some iTWs form motifs that are feature selective, exhibiting direction-selective modulations in spiking activity. Further, motifs modulate the gain of target-evoked responses and perceptual sensitivity if the target matches the preference of the motif. These results suggest that iTWs are shaped by the patchy horizontal fiber projections in the cortex and can regulate neural and perceptual sensitivity in a feature-selective manner.
Collapse
Affiliation(s)
- Zachary W Davis
- The Salk Institute for Biological Studies, La Jolla, CA 92037, USA; John Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT 84112, USA.
| | - Alexandra Busch
- Department of Applied Mathematics, Western University, London, ON N6A 3K7, Canada; Brain and Mind Institute, Western University, London, ON N6A 3K7, Canada
| | - Christopher Steward
- Department of Applied Mathematics, Western University, London, ON N6A 3K7, Canada; Brain and Mind Institute, Western University, London, ON N6A 3K7, Canada
| | - Lyle Muller
- Department of Applied Mathematics, Western University, London, ON N6A 3K7, Canada; Brain and Mind Institute, Western University, London, ON N6A 3K7, Canada
| | - John Reynolds
- The Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| |
Collapse
|
36
|
Kim J, Gim S, Yoo SBM, Woo CW. A computational mechanism of cue-stimulus integration for pain in the brain. SCIENCE ADVANCES 2024; 10:eado8230. [PMID: 39259795 PMCID: PMC11389792 DOI: 10.1126/sciadv.ado8230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 08/02/2024] [Indexed: 09/13/2024]
Abstract
The brain integrates information from pain-predictive cues and noxious inputs to construct the pain experience. Although previous studies have identified neural encodings of individual pain components, how they are integrated remains elusive. Here, using a cue-induced pain task, we examined temporal functional magnetic resonance imaging activities within the state space, where axes represent individual voxel activities. By analyzing the features of these activities at the large-scale network level, we demonstrated that overall brain networks preserve both cue and stimulus information in their respective subspaces within the state space. However, only higher-order brain networks, including limbic and default mode networks, could reconstruct the pattern of participants' reported pain by linear summation of subspace activities, providing evidence for the integration of cue and stimulus information. These results suggest a hierarchical organization of the brain for processing pain components and elucidate the mechanism for their integration underlying our pain perception.
Collapse
Affiliation(s)
- Jungwoo Kim
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, South Korea
| | - Suhwan Gim
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, South Korea
| | - Seng Bum Michael Yoo
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, South Korea
- Department of Neurosurgery and McNair Scholar Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Choong-Wan Woo
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, South Korea
- Life-inspired Neural Network for Prediction and Optimization Research Group, Suwon, South Korea
| |
Collapse
|
37
|
Gavenas J, Rutishauser U, Schurger A, Maoz U. Slow ramping emerges from spontaneous fluctuations in spiking neural networks. Nat Commun 2024; 15:7285. [PMID: 39179554 PMCID: PMC11344096 DOI: 10.1038/s41467-024-51401-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 08/05/2024] [Indexed: 08/26/2024] Open
Abstract
The capacity to initiate actions endogenously is critical for goal-directed behavior. Spontaneous voluntary actions are typically preceded by slow-ramping activity in medial frontal cortex that begins around two seconds before movement, which may reflect spontaneous fluctuations that influence action timing. However, the mechanisms by which these slow ramping signals emerge from single-neuron and network dynamics remain poorly understood. Here, we developed a spiking neural-network model that produces spontaneous slow ramping activity in single neurons and population activity with onsets ~2 s before threshold crossings. A key prediction of our model is that neurons that ramp together have correlated firing patterns before ramping onset. We confirmed this model-derived hypothesis in a dataset of human single neuron recordings from medial frontal cortex. Our results suggest that slow ramping signals reflect bounded spontaneous fluctuations that emerge from quasi-winner-take-all dynamics in clustered networks that are temporally stabilized by slow-acting synapses.
Collapse
Affiliation(s)
- Jake Gavenas
- Institute for Interdisciplinary Brain and Behavioral Sciences, Chapman University, Orange, CA, USA.
- Schmid College of Science and Technology, Chapman University, Orange, CA, USA.
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - Ueli Rutishauser
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Aaron Schurger
- Institute for Interdisciplinary Brain and Behavioral Sciences, Chapman University, Orange, CA, USA
- Crean College of Health and Behavioral Sciences, Chapman University, Orange, CA, USA
- INSERM U992, Cognitive Neuroimaging Unit, NeuroSpin Center, Gif sur Yvette, 91191, France
- Commissariat à l'Energie Atomique, Direction des Sciences du Vivant, I2BM, NeuroSpin Center, Gif sur Yvette, 91191, France
| | - Uri Maoz
- Institute for Interdisciplinary Brain and Behavioral Sciences, Chapman University, Orange, CA, USA.
- Schmid College of Science and Technology, Chapman University, Orange, CA, USA.
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
- Crean College of Health and Behavioral Sciences, Chapman University, Orange, CA, USA.
- Fowler School of Engineering, Chapman University, Orange, CA, USA.
- Anderson School of Management, University of California, Los Angeles, CA, USA.
| |
Collapse
|
38
|
Huber D, Rabl L, Orsini C, Labek K, Viviani R. The fMRI global signal and its association with the signal from cranial bone. Neuroimage 2024; 297:120754. [PMID: 39059682 DOI: 10.1016/j.neuroimage.2024.120754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/21/2024] [Accepted: 07/24/2024] [Indexed: 07/28/2024] Open
Abstract
The nature of the global signal, i.e. the average signal from sequential functional imaging scans of the brain or the cortex, is not well understood, but is thought to include vascular and neural components. Using resting state data, we report on the strong association between the global signal and the average signal from the part of the volume that includes the cranial bone and subdural vessels and venous collectors, separated from each other and the subdural space by multispectral segmentation procedures. While subdural vessels carried a signal with a phase delay relative to the cortex, the association with the cortical signal was strongest in the parts of the scan corresponding to the laminae of the cranial bone, reaching 80% shared variance in some individuals. These findings suggest that in resting state data vascular components may play a prominent role in the genesis of fluctuations of the global signal. Evidence from other studies on the existence of neural sources of the global signal suggests that it may reflect the action of multiple mechanisms (including cerebrovascular reactivity and autonomic control) concurrently acting to regulate global cerebral perfusion.
Collapse
Affiliation(s)
- Daniel Huber
- Institute of Psychology, University of Innsbruck, Innsbruck, Austria
| | - Luna Rabl
- Institute of Psychology, University of Innsbruck, Innsbruck, Austria
| | - Chiara Orsini
- Institute of Psychology, University of Innsbruck, Innsbruck, Austria
| | - Karin Labek
- Institute of Psychology, University of Innsbruck, Innsbruck, Austria
| | - Roberto Viviani
- Institute of Psychology, University of Innsbruck, Innsbruck, Austria; Psychiatry and Psychotherapy Clinic, University of Ulm, Ulm, Germany.
| |
Collapse
|
39
|
Bolt T, Wang S, Nomi JS, Setton R, Gold BP, Frederick BD, Yeo BTT, Chen JJ, Picchioni D, Spreng RN, Keilholz SD, Uddin LQ, Chang C. Widespread Autonomic Physiological Coupling Across the Brain-Body Axis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.01.19.524818. [PMID: 39131291 PMCID: PMC11312447 DOI: 10.1101/2023.01.19.524818] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The brain is closely attuned to visceral signals from the body's internal environment, as evidenced by the numerous associations between neural, hemodynamic, and peripheral physiological signals. We show that these brain-body co-fluctuations can be captured by a single spatiotemporal pattern. Across several independent samples, as well as single-echo and multi-echo fMRI data acquisition sequences, we identify widespread co-fluctuations in the low-frequency range (0.01 - 0.1 Hz) between resting-state global fMRI signals, neural activity, and a host of autonomic signals spanning cardiovascular, pulmonary, exocrine and smooth muscle systems. The same brain-body co-fluctuations observed at rest are elicited by arousal induced by cued deep breathing and intermittent sensory stimuli, as well as spontaneous phasic EEG events during sleep. Further, we show that the spatial structure of global fMRI signals is maintained under experimental suppression of end-tidal carbon dioxide (PETCO2) variations, suggesting that respiratory-driven fluctuations in arterial CO2 accompanying arousal cannot explain the origin of these signals in the brain. These findings establish the global fMRI signal as a significant component of the arousal response governed by the autonomic nervous system.
Collapse
Affiliation(s)
- Taylor Bolt
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Shiyu Wang
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Jason S Nomi
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Roni Setton
- Department of Psychology, Harvard University, Boston, MA, USA
| | - Benjamin P Gold
- Departments of Electrical and Computer Engineering and Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Blaise deB Frederick
- Brain Imaging Center McLean Hospital, Harvard Medical School, Belmont, Massachusetts
| | - B T Thomas Yeo
- Department of Electrical & Computer Engineering, Centre for Translational MR Research, Centre for Sleep & Cognition, N.1 Institute for Health and Institute for Digital Medicine, National University of Singapore, Singapore
| | - J Jean Chen
- Rotman Research Institute, Baycrest Health Sciences, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Dante Picchioni
- Advanced MRI Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health; Bethesda, MD, United States
| | - R Nathan Spreng
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | | | - Lucina Q Uddin
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
- Department of Psychology, University of California Los Angeles, Los Angeles, CA, USA
| | - Catie Chang
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Departments of Electrical and Computer Engineering and Computer Science, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
40
|
Luppi AI, Mediano PAM, Rosas FE, Allanson J, Pickard J, Carhart-Harris RL, Williams GB, Craig MM, Finoia P, Owen AM, Naci L, Menon DK, Bor D, Stamatakis EA. A synergistic workspace for human consciousness revealed by Integrated Information Decomposition. eLife 2024; 12:RP88173. [PMID: 39022924 PMCID: PMC11257694 DOI: 10.7554/elife.88173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
How is the information-processing architecture of the human brain organised, and how does its organisation support consciousness? Here, we combine network science and a rigorous information-theoretic notion of synergy to delineate a 'synergistic global workspace', comprising gateway regions that gather synergistic information from specialised modules across the human brain. This information is then integrated within the workspace and widely distributed via broadcaster regions. Through functional MRI analysis, we show that gateway regions of the synergistic workspace correspond to the human brain's default mode network, whereas broadcasters coincide with the executive control network. We find that loss of consciousness due to general anaesthesia or disorders of consciousness corresponds to diminished ability of the synergistic workspace to integrate information, which is restored upon recovery. Thus, loss of consciousness coincides with a breakdown of information integration within the synergistic workspace of the human brain. This work contributes to conceptual and empirical reconciliation between two prominent scientific theories of consciousness, the Global Neuronal Workspace and Integrated Information Theory, while also advancing our understanding of how the human brain supports consciousness through the synergistic integration of information.
Collapse
Affiliation(s)
- Andrea I Luppi
- Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
- University Division of Anaesthesia, School of Clinical Medicine, University of CambridgeCambridgeUnited Kingdom
| | - Pedro AM Mediano
- Department of Psychology, University of CambridgeCambridgeUnited Kingdom
| | - Fernando E Rosas
- Center for Psychedelic Research, Department of Brain Science, Imperial College LondonLondonUnited Kingdom
- Center for Complexity Science, Imperial College LondonLondonUnited Kingdom
- Data Science Institute, Imperial College LondonLondonUnited Kingdom
| | - Judith Allanson
- Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
- Department of Neurosciences, Cambridge University Hospitals NHS Foundation, Addenbrooke's HospitalCambridgeUnited Kingdom
| | - John Pickard
- Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
- Wolfson Brain Imaging Centre, University of CambridgeCambridgeUnited Kingdom
- Division of Neurosurgery, School of Clinical Medicine, University of Cambridge, Addenbrooke's HospitalCambridgeUnited Kingdom
| | - Robin L Carhart-Harris
- Center for Psychedelic Research, Department of Brain Science, Imperial College LondonLondonUnited Kingdom
- Psychedelics Division - Neuroscape, Department of Neurology, University of CaliforniaSan FranciscoUnited States
| | - Guy B Williams
- Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
- Wolfson Brain Imaging Centre, University of CambridgeCambridgeUnited Kingdom
| | - Michael M Craig
- Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
- University Division of Anaesthesia, School of Clinical Medicine, University of CambridgeCambridgeUnited Kingdom
| | - Paola Finoia
- Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
| | - Adrian M Owen
- Department of Psychology and Department of Physiology and Pharmacology, The Brain and Mind Institute, University of Western OntarioLondonCanada
| | - Lorina Naci
- Trinity College Institute of Neuroscience, School of Psychology, Lloyd Building, Trinity CollegeDublinIreland
| | - David K Menon
- University Division of Anaesthesia, School of Clinical Medicine, University of CambridgeCambridgeUnited Kingdom
- Wolfson Brain Imaging Centre, University of CambridgeCambridgeUnited Kingdom
| | - Daniel Bor
- Department of Psychology, University of CambridgeCambridgeUnited Kingdom
| | - Emmanuel A Stamatakis
- University Division of Anaesthesia, School of Clinical Medicine, University of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
41
|
Idesis S, Allegra M, Vohryzek J, Perl YS, Metcalf NV, Griffis JC, Corbetta M, Shulman GL, Deco G. Generative whole-brain dynamics models from healthy subjects predict functional alterations in stroke at the level of individual patients. Brain Commun 2024; 6:fcae237. [PMID: 39077378 PMCID: PMC11285191 DOI: 10.1093/braincomms/fcae237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/13/2024] [Accepted: 07/12/2024] [Indexed: 07/31/2024] Open
Abstract
Computational whole-brain models describe the resting activity of each brain region based on a local model, inter-regional functional interactions, and a structural connectome that specifies the strength of inter-regional connections. Strokes damage the healthy structural connectome that forms the backbone of these models and produce large alterations in inter-regional functional interactions. These interactions are typically measured by correlating the time series of the activity between two brain regions in a process, called resting functional connectivity. We show that adding information about the structural disconnections produced by a patient's lesion to a whole-brain model previously trained on structural and functional data from a large cohort of healthy subjects enables the prediction of the resting functional connectivity of the patient and fits the model directly to the patient's data (Pearson correlation = 0.37; mean square error = 0.005). Furthermore, the model dynamics reproduce functional connectivity-based measures that are typically abnormal in stroke patients and measures that specifically isolate these abnormalities. Therefore, although whole-brain models typically involve a large number of free parameters, the results show that, even after fixing those parameters, the model reproduces results from a population very different than that on which the model was trained. In addition to validating the model, these results show that the model mechanistically captures the relationships between the anatomical structure and the functional activity of the human brain.
Collapse
Affiliation(s)
- Sebastian Idesis
- Center for Brain and Cognition (CBC), Department of Information Technologies and Communications (DTIC), Pompeu Fabra University, Edifici Mercè Rodoreda, Barcelona, Catalonia 08005, Spain
| | - Michele Allegra
- Padova Neuroscience Center (PNC), University of Padova, Padova 35129, Italy
- Department of Physics and Astronomy ‘G. Galilei’, University of Padova, 35131 Padova, Italy
| | - Jakub Vohryzek
- Center for Brain and Cognition (CBC), Department of Information Technologies and Communications (DTIC), Pompeu Fabra University, Edifici Mercè Rodoreda, Barcelona, Catalonia 08005, Spain
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, OX3 9BX, Oxford, UK
| | - Yonatan Sanz Perl
- Center for Brain and Cognition (CBC), Department of Information Technologies and Communications (DTIC), Pompeu Fabra University, Edifici Mercè Rodoreda, Barcelona, Catalonia 08005, Spain
- Universidad de San Andrés, Centro de Neurociencias Cognitivias, NC1006ACC, Buenos Aires, Argentina
- National Scientific and Technical Research Council, C1425FQB, Buenos Aires, Argentina
- Institut du Cerveau et de la Moelle épinière, ICM, Hôpital Pitié Salpêtrière, 75013 Paris, France
| | - Nicholas V Metcalf
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Joseph C Griffis
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Maurizio Corbetta
- Padova Neuroscience Center (PNC), University of Padova, Padova 35129, Italy
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Neuroscience (DNS), University of Padova, Padova 35128, Italy
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- VIMM, Venetian Institute of Molecular Medicine (VIMM), Biomedical Foundation, Padova 35129, Italy
| | - Gordon L Shulman
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Gustavo Deco
- Center for Brain and Cognition (CBC), Department of Information Technologies and Communications (DTIC), Pompeu Fabra University, Edifici Mercè Rodoreda, Barcelona, Catalonia 08005, Spain
- Institució Catalana de Recerca I Estudis Avançats (ICREA), Barcelona, Catalonia 08010, Spain
| |
Collapse
|
42
|
Wu X, Zhang Y, Xue M, Li J, Li X, Cui Z, Gao JH, Yang G. Heritability of functional gradients in the human subcortico-cortical connectivity. Commun Biol 2024; 7:854. [PMID: 38997510 PMCID: PMC11245549 DOI: 10.1038/s42003-024-06551-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 07/04/2024] [Indexed: 07/14/2024] Open
Abstract
The human subcortex plays a pivotal role in cognition and is widely implicated in the pathophysiology of many psychiatric disorders. However, the heritability of functional gradients based on subcortico-cortical functional connectivity remains elusive. Here, leveraging twin functional MRI (fMRI) data from both the Human Connectome Project (n = 1023) and the Adolescent Brain Cognitive Development study (n = 936) datasets, we construct large-scale subcortical functional gradients and delineate an increased principal functional gradient pattern from unimodal sensory/motor networks to transmodal association networks. We observed that this principal functional gradient is heritable, and the strength of heritability exhibits a heterogeneous pattern along a hierarchical unimodal-transmodal axis in subcortex for both young adults and children. Furthermore, employing a machine learning framework, we show that this heterogeneous pattern of the principal functional gradient in subcortex can accurately discern the relationship between monozygotic twin pairs and dizygotic twin pairs with an accuracy of 76.2% (P < 0.001). The heritability of functional gradients is associated with the anatomical myelin proxied by MRI-derived T1-weighted/T2-weighted (T1w/T2w) ratio mapping in subcortex. This study provides new insights into the biological basis of subcortical functional hierarchy by revealing the structural and genetic properties of the subcortical functional gradients.
Collapse
Affiliation(s)
- Xinyu Wu
- Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Beijing, China
| | - Yu Zhang
- Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Beijing, China
| | - Mufan Xue
- Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Beijing, China
| | - Jinlong Li
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China
| | - Xuesong Li
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China
| | - Zaixu Cui
- Chinese Institute for Brain Research, Beijing, China
| | - Jia-Hong Gao
- Beijing City Key Lab for Medical Physics and Engineering, Institution of Heavy Ion Physics, School of Physics, Peking University, Beijing, China.
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
- McGovern Institute for Brain Research, Peking University, Beijing, China.
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China.
| | - Guoyuan Yang
- Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Beijing, China.
- School of Medical Technology, Beijing Institute of Technology, Beijing, China.
| |
Collapse
|
43
|
Popescu M, Popescu EA, DeGraba TJ, Hughes JD. Altered long-range functional connectivity in PTSD: Role of the infraslow oscillations of cortical activity amplitude envelopes. Clin Neurophysiol 2024; 163:22-36. [PMID: 38669765 DOI: 10.1016/j.clinph.2024.03.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/27/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024]
Abstract
OBJECTIVE Coupling between the amplitude envelopes (AEs) of regional cortical activity reflects mechanisms that coordinate the excitability of large-scale cortical networks. We used resting-state MEG recordings to investigate the association between alterations in the coupling of cortical AEs and symptoms of post-traumatic stress disorder (PTSD). METHODS Participants (n = 96) were service members with combat exposure and various levels of post-traumatic stress severity (PTSS). We assessed the correlation between PTSS and (1) coupling of broadband cortical AEs of beta band activity, (2) coupling of the low- (<0.5 Hz) and high-frequency (>0.5 Hz) components of the AEs, and (3) their time-varying patterns. RESULTS PTSS was associated with widespread hypoconnectivity assessed from the broadband AE fluctuations, which correlated with subscores for the negative thoughts and feelings/emotional numbing (NTF/EN) and hyperarousal clusters of symptoms. Higher NTF/EN scores were also associated with smaller increases in resting-state functional connectivity (rsFC) with time during the recordings. The distinct patterns of rsFC in PTSD were primarily due to differences in the coupling of low-frequency (infraslow) fluctuations of the AEs of beta band activity. CONCLUSIONS Our findings implicate the mechanisms underlying the regulation/coupling of infraslow oscillations in the alterations of rsFC assessed from broadband AEs and in PTSD symptomatology. SIGNIFICANCE Altered coordination of infraslow amplitude fluctuations across large-scale cortical networks can contribute to network dysfunction and may provide a target for treatment in PTSD.
Collapse
Affiliation(s)
- Mihai Popescu
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Elena-Anda Popescu
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Thomas J DeGraba
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - John D Hughes
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, USA; Behavioral Biology Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA.
| |
Collapse
|
44
|
Yang C, Biswal B, Cui Q, Jing X, Ao Y, Wang Y. Frequency-dependent alterations of global signal topography in patients with major depressive disorder. Psychol Med 2024; 54:2152-2161. [PMID: 38362834 DOI: 10.1017/s0033291724000254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
BACKGROUND Major depressive disorder (MDD) is associated not only with disorders in multiple brain networks but also with frequency-specific brain activities. The abnormality of spatiotemporal networks in patients with MDD remains largely unclear. METHODS We investigated the alterations of the global spatiotemporal network in MDD patients using a large-sample multicenter resting-state functional magnetic resonance imaging dataset. The spatiotemporal characteristics were measured by the variability of global signal (GS) and its correlation with local signals (GSCORR) at multiple frequency bands. The association between these indicators and clinical scores was further assessed. RESULTS The GS fluctuations were reduced in patients with MDD across the full frequency range (0-0.1852 Hz). The GSCORR was also reduced in the MDD group, especially in the relatively higher frequency range (0.0728-0.1852 Hz). Interestingly, these indicators showed positive correlations with depressive scores in the MDD group and relative negative correlations in the control group. CONCLUSION The GS and its spatiotemporal effects on local signals were weakened in patients with MDD, which may impair inter-regional synchronization and related functions. Patients with severe depression may use the compensatory mechanism to make up for the functional impairments.
Collapse
Affiliation(s)
- Chengxiao Yang
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu 610066, China
| | - Bharat Biswal
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Qian Cui
- School of Public Affairs and Administration, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Xiujuan Jing
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu 610066, China
| | - Yujia Ao
- Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Yifeng Wang
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu 610066, China
| |
Collapse
|
45
|
Das SK, Sao AK, Biswal BB. Estimation of static and dynamic functional connectivity in resting-state fMRI using zero-frequency resonator. Hum Brain Mapp 2024; 45:e26606. [PMID: 38895977 PMCID: PMC11187872 DOI: 10.1002/hbm.26606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 11/28/2023] [Accepted: 12/29/2023] [Indexed: 06/21/2024] Open
Abstract
Resting-state functional magnetic resonance imaging (rs-fMRI) is increasingly being used to infer the functional organization of the brain. Blood oxygen level-dependent (BOLD) features related to spontaneous neuronal activity, are yet to be clearly understood. Prior studies have hypothesized that rs-fMRI is spontaneous event-related and these events convey crucial information about the neuronal activity in estimating resting state functional connectivity (FC). Attempts have been made to extract these temporal events using a predetermined threshold. However, the thresholding methods in addition to being very sensitive to noise, may consider redundant events or exclude the low-valued inflection points. Here, we extract the event-related temporal onsets from the rs-fMRI time courses using a zero-frequency resonator (ZFR). The ZFR reflects the transient behavior of the BOLD events at its output. The conditional rate (CR) of the BOLD events occurring in a time course with respect to a seed time course is used to derive static FC. The temporal activity around the estimated events called high signal-to-noise ratio (SNR) segments are also obtained in the rs-fMRI time course and are then used to compute static and dynamic FCs during rest. Coactivation pattern (CAP) is the dynamic FC obtained using the high SNR segments driven by the ZFR. The static FC demonstrates that the ZFR-based CR distinguishes the coactivation and non-coactivation scores well in the distribution. CAP analysis demonstrated the stable and longer dwell time dominant resting state functional networks with high SNR segments driven by the ZFR. Static and dynamic FC analysis underpins that the ZFR-driven temporal onsets of BOLD events derive reliable and consistent FCs in the resting brain using a subset of the time points.
Collapse
Affiliation(s)
- Sukesh Kumar Das
- School of Computing and Electrical EngineeringIndian Institute of Technology MandiMandiHimachal PradeshIndia
| | - Anil K. Sao
- Department of Computer Science and EngineeringIndian Institute of Technology BhilaiBhilaiChhattisgarhIndia
| | - Bharat B. Biswal
- Department of Biomedical EngineeringNew Jersey Institute of TechnologyNewarkNew JerseyUSA
| |
Collapse
|
46
|
Foster M, Scheinost D. Brain states as wave-like motifs. Trends Cogn Sci 2024; 28:492-503. [PMID: 38582654 DOI: 10.1016/j.tics.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 02/29/2024] [Accepted: 03/11/2024] [Indexed: 04/08/2024]
Abstract
There is ample evidence of wave-like activity in the brain at multiple scales and levels. This emerging literature supports the broader adoption of a wave perspective of brain activity. Specifically, a brain state can be described as a set of recurring, sequential patterns of propagating brain activity, namely a wave. We examine a collective body of experimental work investigating wave-like properties. Based on these works, we consider brain states as waves using a scale-agnostic framework across time and space. Emphasis is placed on the sequentiality and periodicity associated with brain activity. We conclude by discussing the implications, prospects, and experimental opportunities of this framework.
Collapse
Affiliation(s)
- Maya Foster
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
| | - Dustin Scheinost
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Department of Radiology and Biomedical Engineering, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
47
|
Anumba N, Kelberman MA, Pan W, Marriott A, Zhang X, Xu N, Weinshenker D, Keilholz S. The Effects of Locus Coeruleus Optogenetic Stimulation on Global Spatiotemporal Patterns in Rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.23.595327. [PMID: 38826205 PMCID: PMC11142206 DOI: 10.1101/2024.05.23.595327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Whole-brain intrinsic activity as detected by resting-state fMRI can be summarized by three primary spatiotemporal patterns. These patterns have been shown to change with different brain states, especially arousal. The noradrenergic locus coeruleus (LC) is a key node in arousal circuits and has extensive projections throughout the brain, giving it neuromodulatory influence over the coordinated activity of structurally separated regions. In this study, we used optogenetic-fMRI in rats to investigate the impact of LC stimulation on the global signal and three primary spatiotemporal patterns. We report small, spatially specific changes in global signal distribution as a result of tonic LC stimulation, as well as regional changes in spatiotemporal patterns of activity at 5 Hz tonic and 15 Hz phasic stimulation. We also found that LC stimulation had little to no effect on the spatiotemporal patterns detected by complex principal component analysis. These results show that the effects of LC activity on the BOLD signal in rats may be small and regionally concentrated, as opposed to widespread and globally acting.
Collapse
Affiliation(s)
- Nmachi Anumba
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Michael A Kelberman
- Department of Human Genetics, Emory University, Atlanta, GA, United States
- Molecular Cellular and Developmental Biology Department, University of Colorado Boulder, Boulder, CO, United States
| | - Wenju Pan
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Alexia Marriott
- Department of Human Genetics, Emory University, Atlanta, GA, United States
| | - Xiaodi Zhang
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Nan Xu
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - David Weinshenker
- Department of Human Genetics, Emory University, Atlanta, GA, United States
| | - Shella Keilholz
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| |
Collapse
|
48
|
Xie K, Royer J, Larivière S, Rodriguez-Cruces R, Frässle S, Cabalo DG, Ngo A, DeKraker J, Auer H, Tavakol S, Weng Y, Abdallah C, Arafat T, Horwood L, Frauscher B, Caciagli L, Bernasconi A, Bernasconi N, Zhang Z, Concha L, Bernhardt BC. Atypical connectome topography and signal flow in temporal lobe epilepsy. Prog Neurobiol 2024; 236:102604. [PMID: 38604584 DOI: 10.1016/j.pneurobio.2024.102604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 12/18/2023] [Accepted: 04/07/2024] [Indexed: 04/13/2024]
Abstract
Temporal lobe epilepsy (TLE) is the most common pharmaco-resistant epilepsy in adults. While primarily associated with mesiotemporal pathology, recent evidence suggests that brain alterations in TLE extend beyond the paralimbic epicenter and impact macroscale function and cognitive functions, particularly memory. Using connectome-wide manifold learning and generative models of effective connectivity, we examined functional topography and directional signal flow patterns between large-scale neural circuits in TLE at rest. Studying a multisite cohort of 95 patients with TLE and 95 healthy controls, we observed atypical functional topographies in the former group, characterized by reduced differentiation between sensory and transmodal association cortices, with most marked effects in bilateral temporo-limbic and ventromedial prefrontal cortices. These findings were consistent across all study sites, present in left and right lateralized patients, and validated in a subgroup of patients with histopathological validation of mesiotemporal sclerosis and post-surgical seizure freedom. Moreover, they were replicated in an independent cohort of 30 TLE patients and 40 healthy controls. Further analyses demonstrated that reduced differentiation related to decreased functional signal flow into and out of temporolimbic cortical systems and other brain networks. Parallel analyses of structural and diffusion-weighted MRI data revealed that topographic alterations were independent of TLE-related cortical thinning but partially mediated by white matter microstructural changes that radiated away from paralimbic circuits. Finally, we found a strong association between the degree of functional alterations and behavioral markers of memory dysfunction. Our work illustrates the complex landscape of macroscale functional imbalances in TLE, which can serve as intermediate markers bridging microstructural changes and cognitive impairment.
Collapse
Affiliation(s)
- Ke Xie
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Jessica Royer
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada; Analytical Neurophysiology Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Sara Larivière
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Raul Rodriguez-Cruces
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Stefan Frässle
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Donna Gift Cabalo
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Alexander Ngo
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Jordan DeKraker
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Hans Auer
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Shahin Tavakol
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Yifei Weng
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Chifaou Abdallah
- Analytical Neurophysiology Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Thaera Arafat
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Linda Horwood
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada; Analytical Neurophysiology Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Birgit Frauscher
- Analytical Neurophysiology Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada; Department of Neurology, Duke University School of Medicine and Department of Biomedical Engineering, Duke University Pratt School of Engineering, Durham, NC 27705, USA
| | - Lorenzo Caciagli
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Neurology, Inselspital, Sleep-Wake-Epilepsy-Center, Bern University Hospital, University of Bern, Bern, Switzerland; Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3 BG, United Kingdom
| | - Andrea Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Neda Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Zhiqiang Zhang
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Luis Concha
- Institute of Neurobiology, Universidad Nacional Autónoma de Mexico (UNAM), Queretaro, Mexico
| | - Boris C Bernhardt
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada.
| |
Collapse
|
49
|
Vohryzek J, Cabral J, Timmermann C, Atasoy S, Roseman L, Nutt DJ, Carhart-Harris RL, Deco G, Kringelbach ML. The flattening of spacetime hierarchy of the N,N-dimethyltryptamine brain state is characterized by harmonic decomposition of spacetime (HADES) framework. Natl Sci Rev 2024; 11:nwae124. [PMID: 38778818 PMCID: PMC11110867 DOI: 10.1093/nsr/nwae124] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 02/15/2024] [Accepted: 03/11/2024] [Indexed: 05/25/2024] Open
Abstract
The human brain is a complex system, whose activity exhibits flexible and continuous reorganization across space and time. The decomposition of whole-brain recordings into harmonic modes has revealed a repertoire of gradient-like activity patterns associated with distinct brain functions. However, the way these activity patterns are expressed over time with their changes in various brain states remains unclear. Here, we investigate healthy participants taking the serotonergic psychedelic N,N-dimethyltryptamine (DMT) with the Harmonic Decomposition of Spacetime (HADES) framework that can characterize how different harmonic modes defined in space are expressed over time. HADES demonstrates significant decreases in contributions across most low-frequency harmonic modes in the DMT-induced brain state. When normalizing the contributions by condition (DMT and non-DMT), we detect a decrease specifically in the second functional harmonic, which represents the uni- to transmodal functional hierarchy of the brain, supporting the leading hypothesis that functional hierarchy is changed in psychedelics. Moreover, HADES' dynamic spacetime measures of fractional occupancy, life time and latent space provide a precise description of the significant changes of the spacetime hierarchical organization of brain activity in the psychedelic state.
Collapse
Affiliation(s)
- Jakub Vohryzek
- Centre for Eudaimonia and Human Flourishing, Linacre College, Department of Psychiatry, University of Oxford, Oxford OX3 9BX, UK
- Department of Psychiatry, University of Oxford, Oxford OX3 7JX, UK
- Center for Music in the Brain, Aarhus University, Aarhus 8000, Denmark
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona 08005, Spain
| | - Joana Cabral
- Centre for Eudaimonia and Human Flourishing, Linacre College, Department of Psychiatry, University of Oxford, Oxford OX3 9BX, UK
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga 4710-057, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães 4710-057, Portugal
| | - Christopher Timmermann
- Centre for Psychedelic Research, Department of Brain Sciences, Imperial College London, London SW7 2AZ, UK
| | - Selen Atasoy
- Centre for Eudaimonia and Human Flourishing, Linacre College, Department of Psychiatry, University of Oxford, Oxford OX3 9BX, UK
- Department of Psychiatry, University of Oxford, Oxford OX3 7JX, UK
| | - Leor Roseman
- Centre for Psychedelic Research, Department of Brain Sciences, Imperial College London, London SW7 2AZ, UK
| | - David J Nutt
- Centre for Psychedelic Research, Department of Brain Sciences, Imperial College London, London SW7 2AZ, UK
| | - Robin L Carhart-Harris
- Centre for Psychedelic Research, Department of Brain Sciences, Imperial College London, London SW7 2AZ, UK
- Departments of Neurology and Psychiatry, University of California San Francisco, San Francisco 94143, USA
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona 08005, Spain
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Morten L Kringelbach
- Centre for Eudaimonia and Human Flourishing, Linacre College, Department of Psychiatry, University of Oxford, Oxford OX3 9BX, UK
- Department of Psychiatry, University of Oxford, Oxford OX3 7JX, UK
- Center for Music in the Brain, Aarhus University, Aarhus 8000, Denmark
| |
Collapse
|
50
|
Kozlowska K, Scher S. Recent advances in understanding the neurobiology of pediatric functional neurological disorder. Expert Rev Neurother 2024; 24:497-516. [PMID: 38591353 DOI: 10.1080/14737175.2024.2333390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 03/18/2024] [Indexed: 04/10/2024]
Abstract
INTRODUCTION Functional neurological disorder (FND) is a neuropsychiatric disorder that manifests in a broad array of functional motor, sensory, or cognitive symptoms, which arise from complex interactions between brain, mind, body, and context. Children with FND make up 10%-20% of presentations to neurology services in children's hospitals and up to 20% of adolescents admitted to hospital for the management of intractable seizures. AREAS COVERED The current review focuses on the neurobiology of pediatric FND. The authors present an overview of the small but growing body of research pertaining to the biological, emotion-processing, cognitive, mental health, physical health, and social system levels. EXPERT OPINION Emerging research suggests that pediatric FND is underpinned by aberrant changes within and between neuron-glial (brain) networks, with a variety of factors - on multiple system levels - contributing to brain network changes. In pediatric practice, adverse childhood experiences (ACEs) are commonly reported, and activation or dysregulation of stress-system components is a frequent finding. Our growing understanding of the neurobiology of pediatric FND has yielded important flow-on effects for assessing and diagnosing FND, for developing targeted treatment interventions, and for improving the treatment outcomes of children and adolescents with FND.
Collapse
Affiliation(s)
- Kasia Kozlowska
- The Children's Hospital at Westmead, Westmead, NSW, Australia
- Brain Dynamics Centre, Westmead Institute of Medical Research, Westmead, NSW, Australia
- University of Sydney Medical School, Camperdown, NSW, Australia
| | - Stephen Scher
- University of Sydney Medical School, Camperdown, NSW, Australia
- Department of Psychiatry, Harvard Medical School, Belmont, MA, USA
- McLean Hospital, Belmont, MA, USA
| |
Collapse
|