1
|
Gelli HP, Vazquez-Uribe R, Buckley ST, Andersen JT, Alexander Sommer MO. Advanced microbiome therapeutics for oral delivery of peptides and proteins: Advances, challenges, and opportunities. Adv Drug Deliv Rev 2025; 222:115603. [PMID: 40349728 DOI: 10.1016/j.addr.2025.115603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Revised: 05/01/2025] [Accepted: 05/06/2025] [Indexed: 05/14/2025]
Abstract
Peptide and protein medicines have changed the therapeutic landscape for many diseases, yet oral delivery remains a significant challenge due to enzymatic degradation, instability, and poor permeability in the gastrointestinal tract. Advanced Microbiome Therapeutics (AMTs) could overcome some of these barriers by producing and releasing therapeutic peptides directly in the gastrointestinal tract. AMTs can localize peptide production at the site of absorption, providing either sustained or controlled release while potentially reducing side effects associated with systemic administration. Here, this review assesses the status of AMTs for oral peptide delivery and discusses the potential integration of permeation enhancers, mucoadhesive systems, and receptor-mediated transport strategies to improve oral bioavailability further. Combining these approaches could pave the way for more widespread oral delivery strategies for peptide and protein medicines.
Collapse
Affiliation(s)
- Hitesh P Gelli
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | | | - Jan Terje Andersen
- Department of Pharmacology, University of Oslo, Oslo, Norway; Department of Immunology, Oslo University Hospital Rikshospitalet, Oslo, Norway; Precision Immunotherapy Alliance, University of Oslo, Oslo, Norway
| | | |
Collapse
|
2
|
Forti AM, Jones MA, Elbeyli DN, Butler ND, Kunjapur AM. Engineered orthogonal and obligate bacterial commensalism mediated by a non-standard amino acid. Nat Microbiol 2025:10.1038/s41564-025-01999-5. [PMID: 40312517 DOI: 10.1038/s41564-025-01999-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/30/2025] [Indexed: 05/03/2025]
Abstract
Microorganisms can be genetically engineered for intrinsic biological containment based on synthetic chemical provision. However, reliance on an exogenous chemical limits the contexts where a contained microorganism could survive. Here we design an orthogonal obligate commensalism in Escherichia coli that autonomously creates environments permissive for survival of a partner microbe. We engineer one E. coli strain (the producer) to biosynthesize a non-standard amino acid (nsAA) from simple carbon sources through heterologous expression. We engineer a second E. coli strain (the utilizer) to rely on the same nsAA for growth as a synthetic auxotroph, with a 14-day escape rate of 2.8 × 10-9 escapees per colony-forming unit. Co-culture experiments show utilizer dependence on the producer, with no escape detected during co-inoculation of ~107 colony-forming units of utilizer and a non-producer E. coli strain. Dependence is maintained within a simplified synthetic maize root-associated community. This work provides ecological insights and presents a potential biocontainment strategy independent of an exogenous chemical.
Collapse
Affiliation(s)
- Amanda M Forti
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA
| | - Michaela A Jones
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA
| | - Defne N Elbeyli
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA
| | - Neil D Butler
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA
| | - Aditya M Kunjapur
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA.
| |
Collapse
|
3
|
Huang Y, Zhang P, Wang H, Chen Y, Liu T, Luo X. Genetic Code Expansion: Recent Developments and Emerging Applications. Chem Rev 2025; 125:523-598. [PMID: 39737807 PMCID: PMC11758808 DOI: 10.1021/acs.chemrev.4c00216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 12/02/2024] [Accepted: 12/09/2024] [Indexed: 01/01/2025]
Abstract
The concept of genetic code expansion (GCE) has revolutionized the field of chemical and synthetic biology, enabling the site-specific incorporation of noncanonical amino acids (ncAAs) into proteins, thus opening new avenues in research and applications across biology and medicine. In this review, we cover the principles of GCE, including the optimization of the aminoacyl-tRNA synthetase (aaRS)/tRNA system and the advancements in translation system engineering. Notable developments include the refinement of aaRS/tRNA pairs, enhancements in screening methods, and the biosynthesis of noncanonical amino acids. The applications of GCE technology span from synthetic biology, where it facilitates gene expression regulation and protein engineering, to medicine, with promising approaches in drug development, vaccine production, and gene editing. The review concludes with a perspective on the future of GCE, underscoring its potential to further expand the toolkit of biology and medicine. Through this comprehensive review, we aim to provide a detailed overview of the current state of GCE technology, its challenges, opportunities, and the frontier it represents in the expansion of the genetic code for novel biological research and therapeutic applications.
Collapse
Affiliation(s)
- Yujia Huang
- State
Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular
and Cellular Pharmacology, School of Pharmaceutical Sciences, Chemical
Biology Center, Peking University, Beijing 100191, China
| | - Pan Zhang
- Shenzhen
Key Laboratory for the Intelligent Microbial Manufacturing of Medicines,
Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic
Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese
Academy of Sciences, Shenzhen 518055, P.R. China
| | - Haoyu Wang
- State
Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular
and Cellular Pharmacology, School of Pharmaceutical Sciences, Chemical
Biology Center, Peking University, Beijing 100191, China
| | - Yan Chen
- Shenzhen
Key Laboratory for the Intelligent Microbial Manufacturing of Medicines,
Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic
Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese
Academy of Sciences, Shenzhen 518055, P.R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Tao Liu
- State
Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular
and Cellular Pharmacology, School of Pharmaceutical Sciences, Chemical
Biology Center, Peking University, Beijing 100191, China
| | - Xiaozhou Luo
- Shenzhen
Key Laboratory for the Intelligent Microbial Manufacturing of Medicines,
Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic
Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese
Academy of Sciences, Shenzhen 518055, P.R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
4
|
Anderson SR, Gopal MR, Spangler AP, Jones MA, Wyllis DR, Kunjapur AM. A One-Pot Biocatalytic Cascade to Access Diverse L-Phenylalanine Derivatives from Aldehydes or Carboxylic Acids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.06.627276. [PMID: 39677605 PMCID: PMC11643118 DOI: 10.1101/2024.12.06.627276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Non-standard amino acids (nsAAs) that are L-phenylalanine derivatives with aryl ring functionalization have long been harnessed in natural product synthesis, therapeutic peptide synthesis, and diverse applications of genetic code expansion. Yet, to date these chiral molecules have often been the products of poorly enantioselective and environmentally harsh organic synthesis routes. Here, we reveal the broad specificity of multiple natural pyridoxal 5'-phosphate (PLP)-dependent enzymes, specifically an L-threonine transaldolase, a phenylserine dehydratase, and an aminotransferase, towards substrates that contain aryl side chains with diverse substitutions. We exploit this tolerance to construct a one-pot biocatalytic cascade that achieves high-yield synthesis of 18 diverse L-phenylalanine derivatives from aldehydes under mild aqueous reaction conditions. We demonstrate addition of a carboxylic acid reductase module to this cascade to enable the biosynthesis of L-phenylalanine derivatives from carboxylic acids that may be less expensive or less reactive than the corresponding aldehydes. Finally, we investigate the scalability of the cascade by developing a lysate-based route for preparative-scale synthesis of 4-formyl-L-phenylalanine, a nsAA with a bio-orthogonal handle that is not readily market-accessible. Overall, this work offers an efficient, versatile, and scalable route with the potential to lower manufacturing cost and democratize synthesis for many valuable nsAAs.
Collapse
|
5
|
Xu W, Teng Y, Zhou S. Towards the first synthetic eukaryotic cell. BIOSAFETY AND HEALTH 2024; 6:376-382. [PMID: 40078978 PMCID: PMC11895034 DOI: 10.1016/j.bsheal.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 11/06/2024] [Accepted: 11/10/2024] [Indexed: 03/14/2025] Open
Abstract
With the rapid advance in synthetic biology and the expanding field of synthetic genomics, the realization of a redesigned yeast genome has become an achievable milestone. Multiple eukaryotic chromosomes, meticulously designed and synthesized, are now being systematically integrated to create an entirely synthetic eukaryotic cell. This comprehensive review examines the fundamental design principles and construction strategies, highlighting critical technological breakthroughs in pursuing the first synthetic eukaryotic cell. Additionally, it underscores the critical contributions of the Sc2.0 project, which has provided essential tools and engineered cellular platforms that have significantly accelerated research and industrial progress. The ethical and legal implications arising from synthetic eukaryotic life are also explored, offering insights into future research directions for synthetic eukaryotic genomes. The remarkable advances in deoxyribonucleic acid synthesis hold immense potential, promising to unlock new opportunities across medicine, industry, agriculture, and research.
Collapse
Affiliation(s)
- Wangyue Xu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yue Teng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Sijie Zhou
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
6
|
Gates EG, Crook N. The biochemical mechanisms of plastic biodegradation. FEMS Microbiol Rev 2024; 48:fuae027. [PMID: 39500541 PMCID: PMC11644497 DOI: 10.1093/femsre/fuae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 10/23/2024] [Accepted: 11/02/2024] [Indexed: 12/15/2024] Open
Abstract
Since the invention of the first synthetic plastic, an estimated 12 billion metric tons of plastics have been manufactured, 70% of which was produced in the last 20 years. Plastic waste is placing new selective pressures on humans and the organisms we depend on, yet it also places new pressures on microorganisms as they compete to exploit this new and growing source of carbon. The limited efficacy of traditional recycling methods on plastic waste, which can leach into the environment at low purity and concentration, indicates the utility of this evolving metabolic activity. This review will categorize and discuss the probable metabolic routes for each industrially relevant plastic, rank the most effective biodegraders for each plastic by harmonizing and reinterpreting prior literature, and explain the experimental techniques most often used in plastic biodegradation research, thus providing a comprehensive resource for researchers investigating and engineering plastic biodegradation.
Collapse
Affiliation(s)
- Ethan G Gates
- Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27606, United States
| | - Nathan Crook
- Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27606, United States
| |
Collapse
|
7
|
Karbalaei-Heidari HR, Budisa N. Advanced and Safe Synthetic Microbial Chassis with Orthogonal Translation System Integration. ACS Synth Biol 2024; 13:2992-3002. [PMID: 39151168 DOI: 10.1021/acssynbio.4c00437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2024]
Abstract
Through the use of CRISPR-assisted transposition, we have engineered a safe Escherichia coli chassis that integrates an orthogonal translation system (OTS) directly into the chromosome. This approach circumvents the limitations and genetic instability associated with conventional plasmid vectors. Precision in genome modification is crucial for the top-down creation of synthetic cells, especially in the orthogonalization of vital cellular processes, such as metabolism and protein translation. Here, we targeted multiple loci in the E. coli chromosome to integrate the OTS simultaneously, creating a synthetic auxotrophic chassis with an altered genetic code to establish a reliable, robust, and safe synthetic protein producer. Our OTS-integrated chassis enabled the site-specific incorporation of m-oNB-Dopa through in-frame amber stop codon readthrough. This allowed for the expression of advanced underwater bioglues containing Dopa-Lysine motifs, which are crucial for wound healing and tissue regeneration. Additionally, we have enhanced the expression process by incorporating scaffold-stabilizing fluoroprolines into bioglues, utilizing our chassis, which has been modified through metabolic engineering (i.e., by introducing proline auxotrophy). We also engineered a synthetic auxotroph reliant on caged Dopa, creating a genetic barrier (genetic firewall) between the synthetic cells and their surroundings, thereby boosting their stability and safety.
Collapse
Affiliation(s)
- Hamid Reza Karbalaei-Heidari
- Laboratory for Chemical Synthetic Biology and Xenobiology, Department of Chemistry, University of Manitoba, 144 Dysart Road, Winnipeg, Manitoba, Canada R3T 2N2
| | - Nediljko Budisa
- Laboratory for Chemical Synthetic Biology and Xenobiology, Department of Chemistry, University of Manitoba, 144 Dysart Road, Winnipeg, Manitoba, Canada R3T 2N2
| |
Collapse
|
8
|
Armstrong A, Isalan M. Engineering bacterial theranostics: from logic gates to in vivo applications. Front Bioeng Biotechnol 2024; 12:1437301. [PMID: 39359265 PMCID: PMC11444965 DOI: 10.3389/fbioe.2024.1437301] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/05/2024] [Indexed: 10/04/2024] Open
Abstract
Over the past 2 decades, rapid advances in synthetic biology have enabled the design of increasingly intricate and biologically relevant systems with broad applications in healthcare. A growing area of interest is in designing bacteria that sense and respond to endogenous disease-associated signals, creating engineered theranostics that function as disease surveyors for human health. In particular, engineered cells hold potential in facilitating greatly enhanced temporal and spatial control over the release of a range of therapeutics. Such systems are particularly useful for targeting challenging, under-drugged disease targets in a more nuanced manner than is currently possible. This review provides an overview of the recent advances in the design, delivery, and dynamics of bacterial theranostics to enable safe, robust, and genetically tractable therapies to treat disease. It outlines the primary challenges in theranostic clinical translation, proposes strategies to overcome these issues, and explores promising future avenues for the field.
Collapse
Affiliation(s)
- Angus Armstrong
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Mark Isalan
- Department of Life Sciences, Imperial College London, London, United Kingdom
- Imperial College Centre for Synthetic Biology, Imperial College London, London, United Kingdom
| |
Collapse
|
9
|
Kozaeva E, Eida AA, Gunady EF, Dangl JL, Conway JM, Brophy JA. Roots of synthetic ecology: microbes that foster plant resilience in the changing climate. Curr Opin Biotechnol 2024; 88:103172. [PMID: 39029405 DOI: 10.1016/j.copbio.2024.103172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/11/2024] [Accepted: 06/26/2024] [Indexed: 07/21/2024]
Abstract
Microbes orchestrate nearly all major biogeochemical processes. The ability to program their influence on plant growth and development is attractive for sustainable agriculture. However, the complexity of microbial ecosystems and our limited understanding of the mechanisms by which plants and microbes interact with each other and the environment make it challenging to use microbiomes to influence plant growth. Novel technologies at the intersection of microbial ecology, systems biology, and bioengineering provide new tools to probe the role of plant microbiomes across environments. Here, we summarize recent studies on plant and microbe responses to abiotic stresses, showcasing key molecules and micro-organisms that are important for plant health. We highlight opportunities to use synthetic microbial communities to understand the complexity of plant-microbial interactions and discuss future avenues of programming ecology to improve plant and ecosystem health.
Collapse
Affiliation(s)
- Ekaterina Kozaeva
- Department of Bioengineering, Stanford University, Stanford, CA, USA; Section of Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Abdul Aziz Eida
- Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ella F Gunady
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Jeffery L Dangl
- Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Jonathan M Conway
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA.
| | | |
Collapse
|
10
|
George DR, Danciu M, Davenport PW, Lakin MR, Chappell J, Frow EK. A bumpy road ahead for genetic biocontainment. Nat Commun 2024; 15:650. [PMID: 38245521 PMCID: PMC10799865 DOI: 10.1038/s41467-023-44531-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 12/18/2023] [Indexed: 01/22/2024] Open
Affiliation(s)
- Dalton R George
- School for the Future of Innovation in Society, Arizona State University, Tempe, AZ, 85287, USA
- School of Biological & Health Systems Engineering, Arizona State University, Tempe, AZ, 85287, USA
| | - Mark Danciu
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Peter W Davenport
- Department of Computer Science, University of New Mexico, Albuquerque, NM, 87131, USA
- Center for Biomedical Engineering, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Matthew R Lakin
- Department of Computer Science, University of New Mexico, Albuquerque, NM, 87131, USA
- Center for Biomedical Engineering, University of New Mexico, Albuquerque, NM, 87131, USA
- Department of Chemical & Biological Engineering, University of New Mexico, Albuquerque, NM, 87131, USA
| | - James Chappell
- Department of Biosciences & Department of Bioengineering, Rice University, Houston, TX, 77005, USA
| | - Emma K Frow
- School for the Future of Innovation in Society, Arizona State University, Tempe, AZ, 85287, USA.
- School of Biological & Health Systems Engineering, Arizona State University, Tempe, AZ, 85287, USA.
| |
Collapse
|
11
|
Pottie I, Vázquez Fernández R, Van de Wiele T, Briers Y. Phage lysins for intestinal microbiome modulation: current challenges and enabling techniques. Gut Microbes 2024; 16:2387144. [PMID: 39106212 PMCID: PMC11305034 DOI: 10.1080/19490976.2024.2387144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/05/2024] [Accepted: 07/26/2024] [Indexed: 08/09/2024] Open
Abstract
The importance of the microbiota in the intestinal tract for human health has been increasingly recognized. In this perspective, microbiome modulation, a targeted alteration of the microbial composition, has gained interest. Phage lysins, peptidoglycan-degrading enzymes encoded by bacteriophages, are a promising new class of antibiotics currently under clinical development for treating bacterial infections. Due to their high specificity, lysins are considered microbiome-friendly. This review explores the opportunities and challenges of using lysins as microbiome modulators. First, the high specificity of endolysins, which can be further modulated using protein engineering or targeted delivery methods, is discussed. Next, obstacles and possible solutions to assess the microbiome-friendliness of lysins are considered. Finally, lysin delivery to the intestinal tract is discussed, including possible delivery methods such as particle-based and probiotic vehicles. Mapping the hurdles to developing lysins as microbiome modulators and identifying possible ways to overcome these hurdles can help in their development. In this way, the application of these innovative antimicrobial agents can be expanded, thereby taking full advantage of their characteristics.
Collapse
Affiliation(s)
- Iris Pottie
- Laboratory of Applied Biotechnology, Department of Biotechnology, Ghent University, Gent, Belgium
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| | - Roberto Vázquez Fernández
- Laboratory of Applied Biotechnology, Department of Biotechnology, Ghent University, Gent, Belgium
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Tom Van de Wiele
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| | - Yves Briers
- Laboratory of Applied Biotechnology, Department of Biotechnology, Ghent University, Gent, Belgium
| |
Collapse
|
12
|
Chang T, Ding W, Yan S, Wang Y, Zhang H, Zhang Y, Ping Z, Zhang H, Huang Y, Zhang J, Wang D, Zhang W, Xu X, Shen Y, Fu X. A robust yeast biocontainment system with two-layered regulation switch dependent on unnatural amino acid. Nat Commun 2023; 14:6487. [PMID: 37838746 PMCID: PMC10576815 DOI: 10.1038/s41467-023-42358-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 10/09/2023] [Indexed: 10/16/2023] Open
Abstract
Synthetic auxotrophy in which cell viability depends on the presence of an unnatural amino acid (unAA) provides a powerful strategy to restrict unwanted propagation of genetically modified organisms (GMOs) in open environments and potentially prevent industrial espionage. Here, we describe a generic approach for robust biocontainment of budding yeast dependent on unAA. By understanding escape mechanisms, we specifically optimize our strategies by introducing designed "immunity" to the generation of amber-suppressor tRNAs and developing the transcriptional- and translational-based biocontainment switch. We further develop a fitness-oriented screening method to easily obtain multiplex safeguard strains that exhibit robust growth and undetectable escape frequency (<~10-9) on solid media for 14 days. Finally, we show that employing our multiplex safeguard system could restrict the proliferation of strains of interest in a real fermentation scenario, highlighting the great potential of our yeast biocontainment strategy to protect the industrial proprietary strains.
Collapse
Affiliation(s)
- Tiantian Chang
- College of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
- BGI Research, Shenzhen, 518083, China
| | - Weichao Ding
- College of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
- BGI Research, Shenzhen, 518083, China
- BGI Research, Changzhou, 213299, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI Research, Shenzhen, 518083, China
| | - Shirui Yan
- BGI Research, Shenzhen, 518083, China
- BGI Research, Changzhou, 213299, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI Research, Shenzhen, 518083, China
| | - Yun Wang
- BGI Research, Shenzhen, 518083, China
- BGI Research, Changzhou, 213299, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI Research, Shenzhen, 518083, China
| | - Haoling Zhang
- BGI Research, Shenzhen, 518083, China
- BGI Research, Changzhou, 213299, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI Research, Shenzhen, 518083, China
| | - Yu Zhang
- BGI Research, Shenzhen, 518083, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI Research, Shenzhen, 518083, China
| | - Zhi Ping
- BGI Research, Shenzhen, 518083, China
- BGI Research, Changzhou, 213299, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI Research, Shenzhen, 518083, China
| | - Huiming Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
- BGI Research, Shenzhen, 518083, China
| | - Yijian Huang
- College of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
- BGI Research, Shenzhen, 518083, China
| | - Jiahui Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
- BGI Research, Shenzhen, 518083, China
| | - Dan Wang
- Guangdong Provincial Key Laboratory of Interdisciplinary Research and Application for Data Science, BNU-HKBU United International College, Zhuhai, 519087, China
- BNU-HKBU United International College, Zhuhai, 519087, China
| | - Wenwei Zhang
- BGI Research, Shenzhen, 518083, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI Research, Shenzhen, 518083, China
| | - Xun Xu
- BGI Research, Shenzhen, 518083, China
- BGI Research, Changzhou, 213299, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI Research, Shenzhen, 518083, China
| | - Yue Shen
- College of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China.
- BGI Research, Shenzhen, 518083, China.
- BGI Research, Changzhou, 213299, China.
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI Research, Shenzhen, 518083, China.
| | - Xian Fu
- BGI Research, Shenzhen, 518083, China.
- BGI Research, Changzhou, 213299, China.
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI Research, Shenzhen, 518083, China.
| |
Collapse
|
13
|
Sen S, Kunjapur AM. Coordinated microbial lysis bursts into the drug delivery scene. Trends Biotechnol 2023; 41:295-297. [PMID: 36710129 DOI: 10.1016/j.tibtech.2023.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/30/2023]
Abstract
To address limitations in dosing and releasing cargo from engineered microbes, Din et al. harnessed a previously designed oscillatory genetic circuit to achieve the synchronized release of cancer-killing protein payloads. Here, we briefly recap this study published in 2016 and its transformative impact on the field.
Collapse
Affiliation(s)
- Sabyasachi Sen
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - Aditya M Kunjapur
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
14
|
Nyerges A, Vinke S, Flynn R, Owen SV, Rand EA, Budnik B, Keen E, Narasimhan K, Marchand JA, Baas-Thomas M, Liu M, Chen K, Chiappino-Pepe A, Hu F, Baym M, Church GM. A swapped genetic code prevents viral infections and gene transfer. Nature 2023; 615:720-727. [PMID: 36922599 PMCID: PMC10151025 DOI: 10.1038/s41586-023-05824-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 02/10/2023] [Indexed: 03/17/2023]
Abstract
Engineering the genetic code of an organism has been proposed to provide a firewall from natural ecosystems by preventing viral infections and gene transfer1-6. However, numerous viruses and mobile genetic elements encode parts of the translational apparatus7-9, potentially rendering a genetic-code-based firewall ineffective. Here we show that such mobile transfer RNAs (tRNAs) enable gene transfer and allow viral replication in Escherichia coli despite the genome-wide removal of 3 of the 64 codons and the previously essential cognate tRNA and release factor genes. We then establish a genetic firewall by discovering viral tRNAs that provide exceptionally efficient codon reassignment allowing us to develop cells bearing an amino acid-swapped genetic code that reassigns two of the six serine codons to leucine during translation. This amino acid-swapped genetic code renders cells resistant to viral infections by mistranslating viral proteomes and prevents the escape of synthetic genetic information by engineered reliance on serine codons to produce leucine-requiring proteins. As these cells may have a selective advantage over wild organisms due to virus resistance, we also repurpose a third codon to biocontain this virus-resistant host through dependence on an amino acid not found in nature10. Our results may provide the basis for a general strategy to make any organism safely resistant to all natural viruses and prevent genetic information flow into and out of genetically modified organisms.
Collapse
Affiliation(s)
- Akos Nyerges
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
| | - Svenja Vinke
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Regan Flynn
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Siân V Owen
- Department of Biomedical Informatics and Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Eleanor A Rand
- Department of Biomedical Informatics and Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Bogdan Budnik
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Eric Keen
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St Louis, MO, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, St Louis, MO, USA
| | | | - Jorge A Marchand
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Chemical Engineering, University of Washington, Seattle, WA, USA
| | | | - Min Liu
- GenScript USA Inc., Piscataway, NJ, USA
| | | | | | | | - Michael Baym
- Department of Biomedical Informatics and Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - George M Church
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
| |
Collapse
|
15
|
Huang Y, Lin X, Yu S, Chen R, Chen W. Intestinal Engineered Probiotics as Living Therapeutics: Chassis Selection, Colonization Enhancement, Gene Circuit Design, and Biocontainment. ACS Synth Biol 2022; 11:3134-3153. [PMID: 36094344 DOI: 10.1021/acssynbio.2c00314] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Intestinal probiotics are often used for the in situ treatment of diseases, such as metabolic disorders, tumors, and chronic inflammatory infections. Recently, there has been an increased emphasis on intelligent, customized treatments with a focus on long-term efficacy; however, traditional probiotic therapy has not kept up with this trend. The use of synthetic biology to construct gut-engineered probiotics as live therapeutics is a promising avenue in the treatment of specific diseases, such as phenylketonuria and inflammatory bowel disease. These studies generally involve a series of fundamental design issues: choosing an engineered chassis, improving the colonization ability of engineered probiotics, designing functional gene circuits, and ensuring the safety of engineered probiotics. In this review, we summarize the relevant past research, the progress of current research, and discuss the key issues that restrict the widespread application of intestinal engineered probiotic living therapeutics.
Collapse
Affiliation(s)
- Yan Huang
- Team SZU-China at iGEM 2021, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Xiaojun Lin
- Team SZU-China at iGEM 2021, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Siyang Yu
- Team SZU-China at iGEM 2021, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Ruiyue Chen
- Team SZU-China at iGEM 2021, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Weizhao Chen
- Team SZU-China at iGEM 2021, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.,Shenzhen Key Laboratory for Microbial Gene Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
16
|
New opportunities for genetic code expansion in synthetic yeast. Curr Opin Biotechnol 2022; 75:102691. [DOI: 10.1016/j.copbio.2022.102691] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/23/2021] [Accepted: 01/18/2022] [Indexed: 12/19/2022]
|
17
|
Rottinghaus AG, Ferreiro A, Fishbein SRS, Dantas G, Moon TS. Genetically stable CRISPR-based kill switches for engineered microbes. Nat Commun 2022; 13:672. [PMID: 35115506 PMCID: PMC8813983 DOI: 10.1038/s41467-022-28163-5] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 01/13/2022] [Indexed: 12/13/2022] Open
Abstract
Microbial biocontainment is an essential goal for engineering safe, next-generation living therapeutics. However, the genetic stability of biocontainment circuits, including kill switches, is a challenge that must be addressed. Kill switches are among the most difficult circuits to maintain due to the strong selection pressure they impart, leading to high potential for evolution of escape mutant populations. Here we engineer two CRISPR-based kill switches in the probiotic Escherichia coli Nissle 1917, a single-input chemical-responsive switch and a 2-input chemical- and temperature-responsive switch. We employ parallel strategies to address kill switch stability, including functional redundancy within the circuit, modulation of the SOS response, antibiotic-independent plasmid maintenance, and provision of intra-niche competition by a closely related strain. We demonstrate that strains harboring either kill switch can be selectively and efficiently killed inside the murine gut, while strains harboring the 2-input switch are additionally killed upon excretion. Leveraging redundant strategies, we demonstrate robust biocontainment of our kill switch strains and provide a template for future kill switch development.
Collapse
Affiliation(s)
- Austin G Rottinghaus
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Aura Ferreiro
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Skye R S Fishbein
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Gautam Dantas
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA.
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA.
- Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO, USA.
| | - Tae Seok Moon
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, USA.
- Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
18
|
Danchin A. In vivo, in vitro and in silico: an open space for the development of microbe-based applications of synthetic biology. Microb Biotechnol 2022; 15:42-64. [PMID: 34570957 PMCID: PMC8719824 DOI: 10.1111/1751-7915.13937] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 09/14/2021] [Indexed: 12/24/2022] Open
Abstract
Living systems are studied using three complementary approaches: living cells, cell-free systems and computer-mediated modelling. Progresses in understanding, allowing researchers to create novel chassis and industrial processes rest on a cycle that combines in vivo, in vitro and in silico studies. This design-build-test-learn iteration loop cycle between experiments and analyses combines together physiology, genetics, biochemistry and bioinformatics in a way that keeps going forward. Because computer-aided approaches are not directly constrained by the material nature of the entities of interest, we illustrate here how this virtuous cycle allows researchers to explore chemistry which is foreign to that present in extant life, from whole chassis to novel metabolic cycles. Particular emphasis is placed on the importance of evolution.
Collapse
Affiliation(s)
- Antoine Danchin
- Kodikos LabsInstitut Cochin24 rue du Faubourg Saint‐JacquesParis75014France
| |
Collapse
|
19
|
Dickey RM, Forti AM, Kunjapur AM. Advances in engineering microbial biosynthesis of aromatic compounds and related compounds. BIORESOUR BIOPROCESS 2021; 8:91. [PMID: 38650203 PMCID: PMC10992092 DOI: 10.1186/s40643-021-00434-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/18/2021] [Indexed: 01/14/2023] Open
Abstract
Aromatic compounds have broad applications and have been the target of biosynthetic processes for several decades. New biomolecular engineering strategies have been applied to improve production of aromatic compounds in recent years, some of which are expected to set the stage for the next wave of innovations. Here, we will briefly complement existing reviews on microbial production of aromatic compounds by focusing on a few recent trends where considerable work has been performed in the last 5 years. The trends we highlight are pathway modularization and compartmentalization, microbial co-culturing, non-traditional host engineering, aromatic polymer feedstock utilization, engineered ring cleavage, aldehyde stabilization, and biosynthesis of non-standard amino acids. Throughout this review article, we will also touch on unmet opportunities that future research could address.
Collapse
Affiliation(s)
- Roman M Dickey
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, USA
| | - Amanda M Forti
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, USA
| | - Aditya M Kunjapur
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, USA.
| |
Collapse
|