1
|
Mandal R, Yun S, Wurster K, Dollekamp E, Shondo JN, Pryds N. Recent Advancement in Ferroic Freestanding Oxide Nanomembranes. NANO LETTERS 2025; 25:5541-5549. [PMID: 40162740 DOI: 10.1021/acs.nanolett.5c00696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Ferroic and multiferroic oxides have been of significant interest for the last four decades due to their tremendous potential for next-generation memory and computational technologies. Possessing multiple ferroic orders with strong coupling between them erects a new way toward fast and low voltage switching. The major challenge is the scarcity of multiferroic materials at room temperature operation with a high coupling strength and robust ferroic orderings. Integration of existing multiferroics, mostly complex oxides, into the silicon-based platform also poses a major challenge. The recent development of freestanding oxide membranes offers a versatile solution for new and novel strategies to develop new materials. In this mini-review, we summarize the significant developments that happened in very recent years with ferroic oxide nanomembranes. We outline different approaches that have been implemented in the freestanding membranes to modulate the ferroic orderings, magnetism, ferroelectricity, and ferroelasticity. Along with the well-developed methods, such as bending and stretching of the membranes, we also emphasize the strength of twisting as a promising way to design and tune novel multiferroic orderings.
Collapse
Affiliation(s)
- Rajesh Mandal
- Department of Energy Conversion and Storage, Technical University of Denmark (DTU), Fysikvej, 310, 2800 Kgs. Lyngby, Denmark
| | - Shinhee Yun
- Department of Energy Conversion and Storage, Technical University of Denmark (DTU), Fysikvej, 310, 2800 Kgs. Lyngby, Denmark
| | - Katja Wurster
- Department of Energy Conversion and Storage, Technical University of Denmark (DTU), Fysikvej, 310, 2800 Kgs. Lyngby, Denmark
| | - Edwin Dollekamp
- Department of Energy Conversion and Storage, Technical University of Denmark (DTU), Fysikvej, 310, 2800 Kgs. Lyngby, Denmark
| | - Josiah N Shondo
- Department of Energy Conversion and Storage, Technical University of Denmark (DTU), Fysikvej, 310, 2800 Kgs. Lyngby, Denmark
| | - Nini Pryds
- Department of Energy Conversion and Storage, Technical University of Denmark (DTU), Fysikvej, 310, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
2
|
Shen J, Quigley L, Barnard JP, Lu P, Tsai BK, Zemlyanov D, Zhang Y, Sheng X, Gan J, Moceri M, Hu Z, Huang J, Shen C, Deitz J, Zhang X, Wang H. Epitaxial Thin Film Growth on Recycled SrTiO 3 Substrates Toward Sustainable Processing of Complex Oxides. SMALL METHODS 2025; 9:e2401148. [PMID: 39468802 PMCID: PMC12020353 DOI: 10.1002/smtd.202401148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/13/2024] [Indexed: 10/30/2024]
Abstract
Complex oxide thin films cover a range of physical properties and multifunctionalities that are critical for logic, memory, and optical devices. Typically, the high-quality epitaxial growth of these complex oxide thin films requires single crystalline oxide substrates such as SrTiO3 (STO), MgO, LaAlO3, a-Al2O3, and many others. Recent successes in transferring these complex oxides as free-standing films not only offer great opportunities in integrating complex oxides on other devices, but also present enormous opportunities in recycling the deposited substrates after transfer for cost-effective and sustainable processing of complex oxide thin films. In this work, the surface modification effects introduced on the recycled STO are investigated, and their impacts on the microstructure and properties of subsequently grown epitaxial oxide thin films are assessed and compared with those grown on the pristine substrates. Detailed analyses using high-resolution scanning transmission electron microscopy and geometric phase analysis demonstrate distinct strain states on the surfaces of the recycled STO versus the pristine substrates, suggesting a pre-strain state in the recycled STO substrates due to the previous deposition layer. These findings offer opportunities in growing highly mismatched oxide films on the recycled STO substrates with enhanced physical properties. Specifically, yttrium iron garnet (Y3Fe5O12) films grown on recycled STO present different ferromagnetic responses compared to that on the pristine substrates, underscoring the effects of surface modification. The study demonstrates the feasibility of reuse and redeposition using recycled substrates. Via careful handling and preparation, high-quality epitaxial thin films can be grown on recycled substrates with comparable or even better structural and physical properties toward sustainable process of complex oxide devices.
Collapse
Affiliation(s)
- Jianan Shen
- School of Materials EngineeringPurdue UniversityWest LafayetteIndiana47907United States
| | - Lizabeth Quigley
- School of Materials EngineeringPurdue UniversityWest LafayetteIndiana47907United States
| | - James P. Barnard
- School of Materials EngineeringPurdue UniversityWest LafayetteIndiana47907United States
| | - Ping Lu
- Sandia National LaboratoryAlbuquerqueNew Mexico87185United States
| | - Benson Kunhung Tsai
- School of Materials EngineeringPurdue UniversityWest LafayetteIndiana47907United States
| | - Dmitry Zemlyanov
- Birck Nanotechnology CenterPurdue UniversityWest LafayetteIndiana47907United States
| | - Yizhi Zhang
- School of Materials EngineeringPurdue UniversityWest LafayetteIndiana47907United States
| | - Xuanyu Sheng
- School of Materials EngineeringPurdue UniversityWest LafayetteIndiana47907United States
| | - Jeremy Gan
- School of Materials EngineeringPurdue UniversityWest LafayetteIndiana47907United States
| | - Matteo Moceri
- School of Materials EngineeringPurdue UniversityWest LafayetteIndiana47907United States
| | - Zedong Hu
- Elmore Family School of Electrical and Computer EngineeringPurdue UniversityWest LafayetteIndiana47907United States
| | - Jialong Huang
- School of Materials EngineeringPurdue UniversityWest LafayetteIndiana47907United States
| | - Chao Shen
- School of Materials EngineeringPurdue UniversityWest LafayetteIndiana47907United States
| | - Julia Deitz
- Sandia National LaboratoryAlbuquerqueNew Mexico87185United States
| | - Xinghang Zhang
- School of Materials EngineeringPurdue UniversityWest LafayetteIndiana47907United States
| | - Haiyan Wang
- School of Materials EngineeringPurdue UniversityWest LafayetteIndiana47907United States
- Elmore Family School of Electrical and Computer EngineeringPurdue UniversityWest LafayetteIndiana47907United States
| |
Collapse
|
3
|
Kim J, Qi Y, Kumar A, Tang YL, Xu M, Takenaka H, Zhu M, Tian Z, Ramesh R, LeBeau JM, Rappe AM, Martin LW. Size-driven phase evolution in ultrathin relaxor films. NATURE NANOTECHNOLOGY 2025; 20:478-486. [PMID: 39934648 DOI: 10.1038/s41565-025-01863-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 01/09/2025] [Indexed: 02/13/2025]
Abstract
Relaxor ferroelectrics (relaxors) are a special class of ferroelectrics with polar nanodomains (PNDs), which present characteristics such as slim hysteresis loops and strong dielectric relaxation. Applications such as nanoelectromechanical systems, capacitive-energy storage and pyroelectric-energy harvesters require thin-film relaxors. Hence, understanding relaxor behaviour in the ultrathin limit is of both fundamental and technological importance. Here the evolution of relaxor phases and PNDs with thickness is explored in prototypical thin relaxor films. Epitaxial 0.68PbMg1/3Nb2/3O3-0.32PbTiO3 films of various nanometre thicknesses are grown by pulsed-laser deposition and characterized by ferroelectric and dielectric measurements, temperature-dependent synchrotron X-ray diffuse scattering, scanning transmission electron microscopy and molecular dynamics simulations. As the film thickness approaches the length of the long axis of the PNDs (25-30 nm), electrostatically driven phase instabilities induce their rotation towards the plane of the films, stabilize the relaxor behaviour and give rise to anisotropic phase evolution along the out-of-plane and in-plane directions. The complex anisotropic evolution of relaxor properties ends in a collapse of the relaxor behaviour when the film thickness reaches the smallest dimension of the PNDs (6-10 nm). These findings establish that PNDs define the critical length scale for the evolution of relaxor behaviour at the nanoscale.
Collapse
Affiliation(s)
- Jieun Kim
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA, USA
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Yubo Qi
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
- Department of Physics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Abinash Kumar
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yun-Long Tang
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, China
| | - Michael Xu
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Hiroyuki Takenaka
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Menglin Zhu
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Zishen Tian
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA, USA
- Rice Advanced Materials Institute, Rice University, Houston, TX, USA
| | - Ramamoorthy Ramesh
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA, USA
- Department of Physics, University of California Berkeley, Berkeley, CA, USA
- Department of Materials Science and Nanoengineering, Rice University, Houston, TX, USA
- Department of Physics and Astronomy, Rice University, Houston, TX, USA
- Rice Advanced Materials Institute, Rice University, Houston, TX, USA
| | - James M LeBeau
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Andrew M Rappe
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Lane W Martin
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Department of Materials Science and Nanoengineering, Rice University, Houston, TX, USA.
- Department of Physics and Astronomy, Rice University, Houston, TX, USA.
- Rice Advanced Materials Institute, Rice University, Houston, TX, USA.
- Department of Chemistry, Rice University, Houston, TX, USA.
| |
Collapse
|
4
|
Choo S, Varshney S, Liu H, Sharma S, James RD, Jalan B. From oxide epitaxy to freestanding membranes: Opportunities and challenges. SCIENCE ADVANCES 2024; 10:eadq8561. [PMID: 39661695 PMCID: PMC11633760 DOI: 10.1126/sciadv.adq8561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 11/04/2024] [Indexed: 12/13/2024]
Abstract
Motivated by the growing demand to integrate functional oxides with dissimilar materials, numerous studies have been undertaken to detach a functional oxide film from its original substrate, effectively forming a membrane, which can then be affixed to the desired host material. This review article is centered on the synthesis of functional oxide membranes, encompassing various approaches to their synthesis, exfoliation, and transfer techniques. First, we explore the characteristics of thin-film growth techniques with emphasis on molecular beam epitaxy. We then examine the fundamental principles and pivotal factors underlying three key approaches of creating membranes: (i) chemical lift-off, (ii) the two-dimensional layer-assisted lift-off, and (iii) spalling. We review the methods of exfoliation and transfer for each approach. Last, we provide an outlook into the future of oxide membranes, highlighting their applications and emerging properties.
Collapse
Affiliation(s)
- Sooho Choo
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - Shivasheesh Varshney
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - Huan Liu
- Department of Aerospace Engineering and Mechanics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Shivam Sharma
- Department of Aerospace Engineering and Mechanics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Richard D. James
- Department of Aerospace Engineering and Mechanics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Bharat Jalan
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
5
|
Zou X, Bai Y, Dai Y, Huang B, Niu C. Robust second-order topological insulator in 2D van der Waals magnet CrI 3. MATERIALS HORIZONS 2024; 11:6416-6422. [PMID: 39377101 DOI: 10.1039/d4mh00620h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
CrI3 offers an intriguing platform for exploring fundamental physics and the innovative design of spintronics devices in two-dimensional (2D) magnets, and moreover has been instrumental in the study of topological physics. However, the 2D CrI3 monolayer and bilayers have long been thought to be topologically trivial. Here we uncover a hidden facet of the band topology of 2D CrI3 by showing that both the CrI3 monolayer and bilayers are second-order topological insulators (SOTIs) with a nonzero second Stiefel-Whitney number w2 = 1. Furthermore, the topologically nontrivial nature can be explicitly confirmed via the emergence of floating edge states and in-gap corner states. Remarkably, in contrast to most known magnetic topological states, we put forward that the SOTIs in 2D CrI3 monolayer and bilayers are highly robust against magnetic transitions, which remain intact under both ferromagnetic and antiferromagnetic configurations. These interesting predictions not only provide a comprehensive understanding of the band topology of 2D CrI3 but also offer a favorable platform to realize magnetic SOTIs for spintronics applications.
Collapse
Affiliation(s)
- Xiaorong Zou
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.
| | - Yingxi Bai
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.
| | - Ying Dai
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.
| | - Baibiao Huang
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.
| | - Chengwang Niu
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.
| |
Collapse
|
6
|
Wang Z, Wang Q, Gong W, Chen A, Islam A, Quan L, Woehl TJ, Yan Q, Ren S. Magnet-in-ferroelectric crystals exhibiting photomultiferroicity. Proc Natl Acad Sci U S A 2024; 121:e2322361121. [PMID: 38625947 PMCID: PMC11046584 DOI: 10.1073/pnas.2322361121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/18/2024] [Indexed: 04/18/2024] Open
Abstract
Growing crystallographically incommensurate and dissimilar organic materials is fundamentally intriguing but challenging for the prominent cross-correlation phenomenon enabling unique magnetic, electronic, and optical functionalities. Here, we report the growth of molecular layered magnet-in-ferroelectric crystals, demonstrating photomanipulation of interfacial ferroic coupling. The heterocrystals exhibit striking photomagnetization and magnetoelectricity, resulting in photomultiferroic coupling and complete change of their color while inheriting ferroelectricity and magnetism from the parent phases. Under a light illumination, ferromagnetic resonance shifts of 910 Oe are observed in heterocrystals while showing a magnetization change of 0.015 emu/g. In addition, a noticeable magnetization change (8% of magnetization at a 1,000 Oe external field) in the vicinity of ferro-to-paraelectric transition is observed. The mechanistic electric-field-dependent studies suggest the photoinduced ferroelectric field effect responsible for the tailoring of photo-piezo-magnetism. The crystallographic analyses further evidence the lattice coupling of a magnet-in-ferroelectric heterocrystal system.
Collapse
Affiliation(s)
- Zhongxuan Wang
- Department of Materials Science and Engineering, University of Maryland, College Park, MD20742
| | - Qian Wang
- Department of Chemistry, Virginia Tech, Blacksburg, VA24060
| | - Weiyi Gong
- Department of Physics, Northeastern University, Boston, MA02115
| | - Amy Chen
- Department of Materials Science and Engineering, University of Maryland, College Park, MD20742
| | - Abdullah Islam
- Department of Materials Science and Engineering, University of Maryland, College Park, MD20742
| | - Lina Quan
- Department of Chemistry, Virginia Tech, Blacksburg, VA24060
- Department of Materials and Science Engineering, Virginia Tech, Blacksburg, VA24060
| | - Taylor J. Woehl
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD20742
| | - Qimin Yan
- Department of Physics, Northeastern University, Boston, MA02115
| | - Shenqiang Ren
- Department of Materials Science and Engineering, University of Maryland, College Park, MD20742
| |
Collapse
|
7
|
Zhang Y, Sun W, Cao K, Yang XX, Yang Y, Lu S, Du A, Hu C, Feng C, Wang Y, Cai J, Cui B, Piao HG, Zhao W, Zhao Y. Electric-field control of nonvolatile resistance state of perpendicular magnetic tunnel junction via magnetoelectric coupling. SCIENCE ADVANCES 2024; 10:eadl4633. [PMID: 38640249 PMCID: PMC11029801 DOI: 10.1126/sciadv.adl4633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/15/2024] [Indexed: 04/21/2024]
Abstract
Magnetic tunnel junctions (MTJs) are the core elements of spintronic devices. Now, the mainstream writing operation of MTJs mainly relies on electric current with high energy dissipation, which can be greatly reduced if an electric field is used instead. In this regard, strain-mediated multiferroic heterostructure composed of MTJ and ferroelectrics are promising with the advantages of room temperature and magnetic field-free as already demonstrated by MTJ with in-plane magnetic anisotropy. However, there is no such report on the perpendicular MTJs (p-MTJs), which have been commercialized. Here, we investigate electric-field control of resistance state of MgO-based p-MTJs in multiferroic heterostructures. A remarkable and nonvolatile manipulation of resistance is demonstrated at room temperature without magnetic field assistance. Through various characterizations and micromagnetic simulation, the manipulation mechanism is uncovered. Our work provides an effective avenue for manipulating p-MTJ resistance by electric fields and is notable for high density and ultralow power spintronic devices.
Collapse
Affiliation(s)
- Yike Zhang
- Department of Physics and State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua University, Beijing 100084, China
- Frontier Science Center for Quantum Information, Tsinghua University, Beijing 100084, China
| | - Weideng Sun
- Department of Physics and State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua University, Beijing 100084, China
- Frontier Science Center for Quantum Information, Tsinghua University, Beijing 100084, China
| | - Kaihua Cao
- Fert Beijing Institute, School of Integrated Science and Engineering, Beihang University, Beijing 100191, China
| | - Xiao-Xue Yang
- Department of Physics, Yanbian University, Yanji 133002, China
| | - Yongqiang Yang
- Faculty of Physics and Electronic Science, Hubei University, Wuhan 430062, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Shiyang Lu
- Fert Beijing Institute, School of Integrated Science and Engineering, Beihang University, Beijing 100191, China
| | - Ao Du
- Fert Beijing Institute, School of Integrated Science and Engineering, Beihang University, Beijing 100191, China
| | - Chaoqun Hu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ce Feng
- Department of Physics and State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua University, Beijing 100084, China
- Frontier Science Center for Quantum Information, Tsinghua University, Beijing 100084, China
| | - Yutong Wang
- Department of Physics and State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua University, Beijing 100084, China
- Frontier Science Center for Quantum Information, Tsinghua University, Beijing 100084, China
| | - Jianwang Cai
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baoshan Cui
- Key Laboratory for Magnetism and Magnetic Materials of Ministry of Education, Lanzhou University, Lanzhou 730000, China
| | - Hong-Guang Piao
- Department of Physics, Yanbian University, Yanji 133002, China
| | - Weisheng Zhao
- Fert Beijing Institute, School of Integrated Science and Engineering, Beihang University, Beijing 100191, China
| | - Yonggang Zhao
- Department of Physics and State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua University, Beijing 100084, China
- Frontier Science Center for Quantum Information, Tsinghua University, Beijing 100084, China
| |
Collapse
|
8
|
Sun W, Zhang Y, Cao K, Lu S, Du A, Huang H, Zhang S, Hu C, Feng C, Liang W, Liu Q, Mi S, Cai J, Lu Y, Zhao W, Zhao Y. Electric field control of perpendicular magnetic tunnel junctions with easy-cone magnetic anisotropic free layers. SCIENCE ADVANCES 2024; 10:eadj8379. [PMID: 38579008 PMCID: PMC10997210 DOI: 10.1126/sciadv.adj8379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 03/05/2024] [Indexed: 04/07/2024]
Abstract
Magnetic tunnel junctions (MTJs) are the core element of spintronic devices. Currently, the mainstream writing operation of MTJs is based on electric current with high energy dissipation, and it can be notably reduced if an electric field is used instead. In this regard, it is promising for electric field control of MTJ in the multiferroic heterostructure composed of MTJ and ferroelectrics via strain-mediated magnetoelectric coupling. However, there are only reports on MTJs with in-plane anisotropy so far. Here, we investigate electric field control of the resistance state of MgO-based perpendicular MTJs with easy-cone anisotropic free layers through strain-mediated magnetoelectric coupling in multiferroic heterostructures. A remarkable, nonvolatile, and reversible modulation of resistance at room temperature is demonstrated. Through local reciprocal space mapping under different electric fields for Pb(Mg1/3Nb2/3)0.7Ti0.3O3 beneath the MTJ pillar, the modulation mechanism is deduced. Our work represents a crucial step toward electric field control of spintronic devices with non-in-plane magnetic anisotropy.
Collapse
Affiliation(s)
- Weideng Sun
- Department of Physics and State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua University, Beijing 100084, China
- Frontier Science Center for Quantum Information, Tsinghua University, Beijing 100084, China
| | - Yike Zhang
- Department of Physics and State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua University, Beijing 100084, China
- Frontier Science Center for Quantum Information, Tsinghua University, Beijing 100084, China
| | - Kaihua Cao
- Fert Beijing Institute, School of Integrated Science and Engineering, Beihang University, Beijing 100191, China
| | - Shiyang Lu
- Fert Beijing Institute, School of Integrated Science and Engineering, Beihang University, Beijing 100191, China
| | - Ao Du
- Fert Beijing Institute, School of Integrated Science and Engineering, Beihang University, Beijing 100191, China
| | - Haoliang Huang
- Anhui Laboratory of Advanced Photon Science and Technology and Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Sen Zhang
- College of Science, National University of Defense Technology, Changsha 410073, China
| | - Chaoqun Hu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ce Feng
- Department of Physics and State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua University, Beijing 100084, China
- Frontier Science Center for Quantum Information, Tsinghua University, Beijing 100084, China
| | - Wenhui Liang
- Department of Physics and State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua University, Beijing 100084, China
- Frontier Science Center for Quantum Information, Tsinghua University, Beijing 100084, China
| | - Quan Liu
- Department of Physics and State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua University, Beijing 100084, China
- Frontier Science Center for Quantum Information, Tsinghua University, Beijing 100084, China
| | - Shu Mi
- Department of Physics and State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua University, Beijing 100084, China
- Frontier Science Center for Quantum Information, Tsinghua University, Beijing 100084, China
| | - Jianwang Cai
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yalin Lu
- Anhui Laboratory of Advanced Photon Science and Technology and Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Weisheng Zhao
- Fert Beijing Institute, School of Integrated Science and Engineering, Beihang University, Beijing 100191, China
| | - Yonggang Zhao
- Department of Physics and State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua University, Beijing 100084, China
- Frontier Science Center for Quantum Information, Tsinghua University, Beijing 100084, China
| |
Collapse
|
9
|
Eom J, Lee IH, Kee JY, Cho M, Seo J, Suh H, Choi HJ, Sim Y, Chen S, Chang HJ, Baek SH, Petrovic C, Ryu H, Jang C, Kim YD, Yang CH, Seong MJ, Lee JH, Park SY, Choi JW. Voltage control of magnetism in Fe 3-xGeTe 2/In 2Se 3 van der Waals ferromagnetic/ferroelectric heterostructures. Nat Commun 2023; 14:5605. [PMID: 37699895 PMCID: PMC10497543 DOI: 10.1038/s41467-023-41382-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 09/03/2023] [Indexed: 09/14/2023] Open
Abstract
We investigate the voltage control of magnetism in a van der Waals (vdW) heterostructure device consisting of two distinct vdW materials, the ferromagnetic Fe3-xGeTe2 and the ferroelectric In2Se3. It is observed that gate voltages applied to the Fe3-xGeTe2/In2Se3 heterostructure device modulate the magnetic properties of Fe3-xGeTe2 with significant decrease in coercive field for both positive and negative voltages. Raman spectroscopy on the heterostructure device shows voltage-dependent increase in the in-plane In2Se3 and Fe3-xGeTe2 lattice constants for both voltage polarities. Thus, the voltage-dependent decrease in the Fe3-xGeTe2 coercive field, regardless of the gate voltage polarity, can be attributed to the presence of in-plane tensile strain. This is supported by density functional theory calculations showing tensile-strain-induced reduction of the magnetocrystalline anisotropy, which in turn decreases the coercive field. Our results demonstrate an effective method to realize low-power voltage-controlled vdW spintronic devices utilizing the magnetoelectric effect in vdW ferromagnetic/ferroelectric heterostructures.
Collapse
Affiliation(s)
- Jaeun Eom
- Center for Spintronics, Korea Institute of Science and Technology (KIST), Seoul, 02792, Korea
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Korea
| | - In Hak Lee
- Center for Spintronics, Korea Institute of Science and Technology (KIST), Seoul, 02792, Korea
| | - Jung Yun Kee
- Center for Spintronics, Korea Institute of Science and Technology (KIST), Seoul, 02792, Korea
- Department of Physics, Soongsil University, Seoul, 06978, Korea
| | - Minhyun Cho
- Department of Physics and Department of Information Display, Kyung Hee University, Seoul, 02447, Korea
| | - Jeongdae Seo
- Department of Physics, KAIST, Daejeon, 34141, Korea
| | - Hoyoung Suh
- Advanced Analysis Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Hyung-Jin Choi
- Electronic Materials Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Korea
| | - Yumin Sim
- Department of Physics, Chung-Ang University, Seoul, 06974, Korea
| | - Shuzhang Chen
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, 11794-3800, USA
| | - Hye Jung Chang
- Advanced Analysis Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Seung-Hyub Baek
- Electronic Materials Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Korea
| | - Cedomir Petrovic
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, 11794-3800, USA
| | - Hyejin Ryu
- Center for Spintronics, Korea Institute of Science and Technology (KIST), Seoul, 02792, Korea
| | - Chaun Jang
- Center for Spintronics, Korea Institute of Science and Technology (KIST), Seoul, 02792, Korea
| | - Young Duck Kim
- Department of Physics and Department of Information Display, Kyung Hee University, Seoul, 02447, Korea
| | - Chan-Ho Yang
- Department of Physics, KAIST, Daejeon, 34141, Korea
| | - Maeng-Je Seong
- Department of Physics, Chung-Ang University, Seoul, 06974, Korea
| | - Jin Hong Lee
- Center for Spintronics, Korea Institute of Science and Technology (KIST), Seoul, 02792, Korea.
| | - Se Young Park
- Department of Physics, Soongsil University, Seoul, 06978, Korea.
- Origin of Matter and Evolution of Galaxies (OMEG) Institute, Soongsil University, Seoul, 06978, Korea.
| | - Jun Woo Choi
- Center for Spintronics, Korea Institute of Science and Technology (KIST), Seoul, 02792, Korea.
| |
Collapse
|
10
|
Park S, Wang B, Yang T, Kim J, Saremi S, Zhao W, Guzelturk B, Sood A, Nyby C, Zajac M, Shen X, Kozina M, Reid AH, Weathersby S, Wang X, Martin LW, Chen LQ, Lindenberg AM. Light-Driven Ultrafast Polarization Manipulation in a Relaxor Ferroelectric. NANO LETTERS 2022; 22:9275-9282. [PMID: 36450036 DOI: 10.1021/acs.nanolett.2c02706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Relaxor ferroelectrics have been intensely studied for decades based on their unique electromechanical responses which arise from local structural heterogeneity involving polar nanoregions or domains. Here, we report first studies of the ultrafast dynamics and reconfigurability of the polarization in freestanding films of the prototypical relaxor 0.68PbMg1/3Nb2/3O3-0.32PbTiO3 (PMN-0.32PT) by probing its atomic-scale response via femtosecond-resolution, electron-scattering approaches. By combining these structural measurements with dynamic phase-field simulations, we show that femtosecond light pulses drive a change in both the magnitude and direction of the polarization vector within polar nanodomains on few-picosecond time scales. This study defines new opportunities for dynamic reconfigurable control of the polarization in nanoscale relaxor ferroelectrics.
Collapse
Affiliation(s)
- Suji Park
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California94025, United States
- SLAC National Accelerator Laboratory, Menlo Park, California94025, United States
| | - Bo Wang
- Department of Materials Science and Engineering, Penn State University, University Park, Pennsylvania16802, United States
| | - Tiannan Yang
- Department of Materials Science and Engineering, Penn State University, University Park, Pennsylvania16802, United States
| | - Jieun Kim
- Department of Materials Science and Engineering, UC Berkeley, Berkeley, California94720, United States
| | - Sahar Saremi
- Department of Materials Science and Engineering, UC Berkeley, Berkeley, California94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California94720, United States
| | - Wenbo Zhao
- Department of Materials Science and Engineering, UC Berkeley, Berkeley, California94720, United States
| | - Burak Guzelturk
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California94025, United States
| | - Aditya Sood
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California94025, United States
| | - Clara Nyby
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California94025, United States
| | - Marc Zajac
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California94025, United States
| | - Xiaozhe Shen
- SLAC National Accelerator Laboratory, Menlo Park, California94025, United States
| | - Michael Kozina
- SLAC National Accelerator Laboratory, Menlo Park, California94025, United States
| | - Alexander H Reid
- SLAC National Accelerator Laboratory, Menlo Park, California94025, United States
| | - Stephen Weathersby
- SLAC National Accelerator Laboratory, Menlo Park, California94025, United States
| | - Xijie Wang
- SLAC National Accelerator Laboratory, Menlo Park, California94025, United States
| | - Lane W Martin
- Department of Materials Science and Engineering, UC Berkeley, Berkeley, California94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California94720, United States
| | - Long-Qing Chen
- Department of Materials Science and Engineering, Penn State University, University Park, Pennsylvania16802, United States
| | - Aaron M Lindenberg
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California94025, United States
- Department of Materials Science and Engineering, Stanford University, Stanford, California94305, United States
- PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California94025, United States
| |
Collapse
|
11
|
Pesquera D, Fernández A, Khestanova E, Martin LW. Freestanding complex-oxide membranes. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:383001. [PMID: 35779514 DOI: 10.1088/1361-648x/ac7dd5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Complex oxides show a vast range of functional responses, unparalleled within the inorganic solids realm, making them promising materials for applications as varied as next-generation field-effect transistors, spintronic devices, electro-optic modulators, pyroelectric detectors, or oxygen reduction catalysts. Their stability in ambient conditions, chemical versatility, and large susceptibility to minute structural and electronic modifications make them ideal subjects of study to discover emergent phenomena and to generate novel functionalities for next-generation devices. Recent advances in the synthesis of single-crystal, freestanding complex oxide membranes provide an unprecedented opportunity to study these materials in a nearly-ideal system (e.g. free of mechanical/thermal interaction with substrates) as well as expanding the range of tools for tweaking their order parameters (i.e. (anti-)ferromagnetic, (anti-)ferroelectric, ferroelastic), and increasing the possibility of achieving novel heterointegration approaches (including interfacing dissimilar materials) by avoiding the chemical, structural, or thermal constraints in synthesis processes. Here, we review the recent developments in the fabrication and characterization of complex-oxide membranes and discuss their potential for unraveling novel physicochemical phenomena at the nanoscale and for further exploiting their functionalities in technologically relevant devices.
Collapse
Affiliation(s)
- David Pesquera
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST Campus UAB, Bellaterra, Barcelona 08193, Spain
| | - Abel Fernández
- Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, United States of America
| | | | - Lane W Martin
- Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, United States of America
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States of America
| |
Collapse
|
12
|
Highly heterogeneous epitaxy of flexoelectric BaTiO3-δ membrane on Ge. Nat Commun 2022; 13:2990. [PMID: 35637222 PMCID: PMC9151678 DOI: 10.1038/s41467-022-30724-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/12/2022] [Indexed: 11/08/2022] Open
Abstract
The integration of complex oxides with a wide spectrum of functionalities on Si, Ge and flexible substrates is highly demanded for functional devices in information technology. We demonstrate the remote epitaxy of BaTiO3 (BTO) on Ge using a graphene intermediate layer, which forms a prototype of highly heterogeneous epitaxial systems. The Ge surface orientation dictates the outcome of remote epitaxy. Single crystalline epitaxial BTO3-δ films were grown on graphene/Ge (011), whereas graphene/Ge (001) led to textured films. The graphene plays an important role in surface passivation. The remote epitaxial deposition of BTO3-δ follows the Volmer-Weber growth mode, with the strain being partially relaxed at the very beginning of the growth. Such BTO3-δ films can be easily exfoliated and transferred to arbitrary substrates like Si and flexible polyimide. The transferred BTO3-δ films possess enhanced flexoelectric properties with a gauge factor of as high as 1127. These results not only expand the understanding of heteroepitaxy, but also open a pathway for the applications of devices based on complex oxides. The integration of epitaxial complex oxides on semiconductor and flexible substrates is required but challenging. Here, the authors report the highly heterogeneous epitaxy of transferrable BaTiO3-δ membrane with enhanced flexoelectricity on Ge (011).
Collapse
|
13
|
Bok I, Haber I, Qu X, Hai A. In silico assessment of electrophysiological neuronal recordings mediated by magnetoelectric nanoparticles. Sci Rep 2022; 12:8386. [PMID: 35589877 PMCID: PMC9120189 DOI: 10.1038/s41598-022-12303-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 05/09/2022] [Indexed: 11/14/2022] Open
Abstract
Magnetoelectric materials hold untapped potential to revolutionize biomedical technologies. Sensing of biophysical processes in the brain is a particularly attractive application, with the prospect of using magnetoelectric nanoparticles (MENPs) as injectable agents for rapid brain-wide modulation and recording. Recent studies have demonstrated wireless brain stimulation in vivo using MENPs synthesized from cobalt ferrite (CFO) cores coated with piezoelectric barium titanate (BTO) shells. CFO-BTO core-shell MENPs have a relatively high magnetoelectric coefficient and have been proposed for direct magnetic particle imaging (MPI) of brain electrophysiology. However, the feasibility of acquiring such readouts has not been demonstrated or methodically quantified. Here we present the results of implementing a strain-based finite element magnetoelectric model of CFO-BTO core-shell MENPs and apply the model to quantify magnetization in response to neural electric fields. We use the model to determine optimal MENPs-mediated electrophysiological readouts both at the single neuron level and for MENPs diffusing in bulk neural tissue for in vivo scenarios. Our results lay the groundwork for MENP recording of electrophysiological signals and provide a broad analytical infrastructure to validate MENPs for biomedical applications.
Collapse
Affiliation(s)
- Ilhan Bok
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Institute for Translational Neuroengineering (WITNe), Madison, WI, USA
| | - Ido Haber
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Xiaofei Qu
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Aviad Hai
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, WI, USA.
- Grainger Institute for Engineering, University of Wisconsin-Madison, Madison, WI, USA.
- Wisconsin Institute for Translational Neuroengineering (WITNe), Madison, WI, USA.
| |
Collapse
|