1
|
Gao M, Liu Y, Zhao L, Chen J, Wan W, Yuan Z, Li L, Huang Y, Wang Y, Zheng Y. Cell Surface-Tethered Nucleic Acid Therapeutics Program Robust and Tumor-Responsive Enhancement of Adoptive Cell Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2419969. [PMID: 40318090 DOI: 10.1002/adma.202419969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 04/05/2025] [Indexed: 05/07/2025]
Abstract
The efficacy of adoptive T cell therapy (ACT) against solid tumors is significantly limited by the immunosuppressive tumor microenvironment (TME). Systemic administration of immunostimulants provides inadequate support to ACT cells and often elicits systemic toxicities. Here we present cell-surface-anchored nucleic acid therapeutics (NATs) to robustly enhance ACT through synergistic blockade of immunosuppressive adenosine and PD-1/PD-L1 pathways in tumors. Two distinct NATs-DNA aptamers targeting PD-L1 (aptPD-L1) and ATP (aptATP)-are engineered to form partially-hybridized duplexes (aptDual) that can efficiently anchor to cell surface before transfer. Backpacked aptDual spatial-temporally co-localize with ACT cells in vivo and jointly infiltrate the ATP-rich TME. Upon binding with ATP, aptDual dissociates to responsively release aptPD-L1. Concurrently, aptATP scavenges extracellular ATP and its metabolite adenosine to disrupt the inhibitory adenosinergic axis, thereby sensitizing ACT cells to immune checkpoint blockade by aptPD-L1. This dual inhibition elicited a remarkable 40-fold increase in functional tumor-infiltrating ACT cells, substantially boosting the efficacy of TCR-T and CAR-T cells in multiple solid tumor models, even in immunologically "cold" tumors. NAT backpacks provide a facile, versatile, and safe strategy to augment various ACTs against solid tumors.
Collapse
Affiliation(s)
- Mengqian Gao
- The Fourth Affiliated Hospital of Soochow University, College of Pharmaceutical Sciences, Suzhou Medical College of Soochow University, Soochow University, Suzhou, 215123, P. R. China
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou, 215123, P. R. China
| | - Yingyu Liu
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310000, P. R. China
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, 310022, P. R. China
| | - Lei Zhao
- The Fourth Affiliated Hospital of Soochow University, College of Pharmaceutical Sciences, Suzhou Medical College of Soochow University, Soochow University, Suzhou, 215123, P. R. China
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou, 215123, P. R. China
| | - Jin Chen
- The Fourth Affiliated Hospital of Soochow University, College of Pharmaceutical Sciences, Suzhou Medical College of Soochow University, Soochow University, Suzhou, 215123, P. R. China
| | - Wenjun Wan
- The Fourth Affiliated Hospital of Soochow University, College of Pharmaceutical Sciences, Suzhou Medical College of Soochow University, Soochow University, Suzhou, 215123, P. R. China
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou, 215123, P. R. China
| | - Ze Yuan
- The Fourth Affiliated Hospital of Soochow University, College of Pharmaceutical Sciences, Suzhou Medical College of Soochow University, Soochow University, Suzhou, 215123, P. R. China
| | - Lingyu Li
- The Fourth Affiliated Hospital of Soochow University, College of Pharmaceutical Sciences, Suzhou Medical College of Soochow University, Soochow University, Suzhou, 215123, P. R. China
| | - Yulun Huang
- The Fourth Affiliated Hospital of Soochow University, College of Pharmaceutical Sciences, Suzhou Medical College of Soochow University, Soochow University, Suzhou, 215123, P. R. China
| | - Yajun Wang
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310000, P. R. China
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, 310022, P. R. China
| | - Yiran Zheng
- The Fourth Affiliated Hospital of Soochow University, College of Pharmaceutical Sciences, Suzhou Medical College of Soochow University, Soochow University, Suzhou, 215123, P. R. China
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
2
|
Hu W, Bian Y, Ji H. TIL Therapy in Lung Cancer: Current Progress and Perspectives. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2409356. [PMID: 39422665 PMCID: PMC11633538 DOI: 10.1002/advs.202409356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/03/2024] [Indexed: 10/19/2024]
Abstract
Lung cancer remains the most prevalent malignant tumor worldwide and is the leading cause of cancer-related mortality. Although immune checkpoint blockade has revolutionized the treatment of advanced lung cancer, many patients still do not respond well, often due to the lack of functional T cell infiltration. Adoptive cell therapy (ACT) using expanded immune cells has emerged as an important therapeutic modality. Tumor-infiltrating lymphocytes (TIL) therapy is one form of ACT involving the administration of expanded and activated autologous T cells derived from surgically resected cancer tissues and reinfusion into patients and holds great therapeutic potential for lung cancer. In this review, TIL therapy is introduced and its suitability for lung cancer is discussed. Then its historical and clinical developments are summarized, and the methods developed up-to-date to identify tumor-recognizing TILs and optimize TIL composition. Some perspectives toward future TIL therapy for lung cancer are also provided.
Collapse
Affiliation(s)
- Weilei Hu
- Key Laboratory of Systems Health Science of Zhejiang ProvinceSchool of Life ScienceHangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhou310024China
- Key Laboratory of Multi‐Cell SystemsShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghai200031China
- University of Chinese Academy of SciencesBeijing100049China
| | - Yifei Bian
- Key Laboratory of Multi‐Cell SystemsShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghai200031China
- University of Chinese Academy of SciencesBeijing100049China
| | - Hongbin Ji
- Key Laboratory of Systems Health Science of Zhejiang ProvinceSchool of Life ScienceHangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhou310024China
- Key Laboratory of Multi‐Cell SystemsShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghai200031China
- University of Chinese Academy of SciencesBeijing100049China
- School of Life Science and TechnologyShanghai Tech UniversityShanghai200120China
| |
Collapse
|
3
|
Han J, Wang H. Cytokine-overexpressing dendritic cells for cancer immunotherapy. Exp Mol Med 2024; 56:2559-2568. [PMID: 39617785 DOI: 10.1038/s12276-024-01353-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/11/2024] [Indexed: 12/28/2024] Open
Abstract
Dendritic cells (DCs), the main type of antigen-presenting cells in the body, act as key mediators of adaptive immunity by sampling antigens from diseased cells for the subsequent priming of antigen-specific T and B cells. While DCs can secrete a diverse array of cytokines that profoundly shape the immune milieu, exogenous cytokines are often needed to maintain the survival, proliferation, and differentiation of DCs, T cells, and B cells. However, conventional cytokine therapies for cancer treatment are limited by their low therapeutic benefit and severe side effects. The overexpression of cytokines in DCs, followed by paracrine release or membrane display, has emerged as a viable approach for controlling the exposure of cytokines to interacting DCs and T/B cells. This approach can potentially reduce the necessary dose of cytokines and associated side effects to achieve comparable or enhanced antitumor efficacy. Various strategies have been developed to enable the overexpression or chemical conjugation of cytokines on DCs for the subsequent modulation of DC-T/B-cell interactions. This review provides a brief overview of strategies that enable the overexpression of cytokines in or on DCs via genetic engineering or chemical modification methods and discusses the promise of cytokine-overexpressing DCs for the development of new-generation cancer immunotherapy.
Collapse
Affiliation(s)
- Joonsu Han
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Hua Wang
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Cancer Center at Illinois (CCIL), Urbana, IL, USA.
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Carle College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
4
|
Dacheux MA, Norman DD, Shin Y, Tigyi GJ, Lee SC. Deleting autotaxin in LysM+ myeloid cells impairs innate tumor immunity in models of metastatic melanoma. iScience 2024; 27:110971. [PMID: 39398245 PMCID: PMC11467674 DOI: 10.1016/j.isci.2024.110971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 08/04/2024] [Accepted: 09/13/2024] [Indexed: 10/15/2024] Open
Abstract
Autotaxin (ATX) is a lysophospholipase D that generates lysophosphatidic acid (LPA) and regulates cancer metastasis, therapeutic resistance, and tumor immunity. We found that myeloid cells in human melanoma biopsies abundantly express ATX and investigated its role in modulating innate tumor immunity using two models of melanoma metastasis-spontaneous and experimental. Targeted knockout of ATX in LysM+ myeloid cells in mice (LysM-KO) reduced both spontaneous and experimental B16-F10 melanoma metastases by ≥ 50%. Immunoprofiling revealed differences in M2-like alveolar macrophages, neutrophils and regulatory T cells in the metastatic lungs of LysM-WT versus LysM-KO that are model-dependent. These differences extend systemically, with LysM-KO mice bearing experimental metastasis having fewer neutrophils in the spleen than LysM-WT mice. Our results show that (1) LysM+ myeloid cells are an important source of ATX/LPA that promote melanoma metastasis by altering innate tumor immunity, and (2) intratumor and systemic immune profiles vary dynamically during disease progression and are model-dependent.
Collapse
Affiliation(s)
- Mélanie A. Dacheux
- Department of Physiology, University of Tennessee Health Science Center Memphis, 3N. Dunlap Street, Memphis, TN 38163, USA
| | - Derek D. Norman
- Department of Physiology, University of Tennessee Health Science Center Memphis, 3N. Dunlap Street, Memphis, TN 38163, USA
| | - Yoojin Shin
- Department of Physiology, University of Tennessee Health Science Center Memphis, 3N. Dunlap Street, Memphis, TN 38163, USA
| | - Gábor J. Tigyi
- Department of Physiology, University of Tennessee Health Science Center Memphis, 3N. Dunlap Street, Memphis, TN 38163, USA
| | - Sue Chin Lee
- Department of Physiology, University of Tennessee Health Science Center Memphis, 3N. Dunlap Street, Memphis, TN 38163, USA
| |
Collapse
|
5
|
Ding Q, Weng Y, Li Y, Lin W, Lin X, Lin T, Yang H, Xu W, Wang J, Ying H, Qiu S. Inhibition of PNCK inflames tumor microenvironment and sensitizes head and neck squamous cell carcinoma to immune checkpoint inhibitors. J Immunother Cancer 2024; 12:e009893. [PMID: 39395840 PMCID: PMC11474745 DOI: 10.1136/jitc-2024-009893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2024] [Indexed: 10/14/2024] Open
Abstract
BACKGROUND The landscape of the tumor microenvironment (TME) is intricately linked to the development of head and neck squamous cell carcinoma (HNSCC) and significantly influences immunotherapy efficacy. Recent research has underscored the pivotal role of PNCK in cancer progression, yet its relationship with immunotherapy remains elusive. METHODS We leveraged sequencing data from our cohort and public databases to evaluate PNCK expression, prognostic significance, and immune efficacy prediction. In vitro and in vivo experiments explored the role of PNCK in HNSCC progression. Animal models assessed the therapeutic effects and survival benefits of PNCK knockdown combined with immune checkpoint inhibitors (ICIs). Single-cell transcriptomics analyzed the impact of PNCK on the TME, and proteomic studies elucidated the mechanisms. RESULTS PNCK exerts multifaceted critical roles in the progression of HNSCC. Lower PNCK expression is associated with improved prognosis, enhanced immune cell infiltration, and increased responsiveness to ICIs. Conversely, PNCK promotes HNSCC cell migration, invasion, proliferation, colony formation, zebrafish angiogenesis, and tumor growth in mice. Moreover, targeting PNCK enhances sensitivity to ICIs and leads to significant alterations in the T-cell and B-cell ratios within the TME. These changes are attributed to the inhibition of nuclear transcription of PNCK-phosphorylated ZEB1, which restricts cytokine release and inflames the immune microenvironment to regulate the TME. CONCLUSIONS Inhibition of PNCK may be a potential strategy for treating HNSCC, as it may activate the immune response and improve the TME, thereby enhancing the efficacy of immunotherapy for HNSCC patients.
Collapse
Affiliation(s)
- Qin Ding
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian, China
| | - Youliang Weng
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian, China
| | - Ying Li
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian, China
| | - Wanzun Lin
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian, China
| | - Xiaosan Lin
- Department of Stomatology, Affiliated Fuzhou First Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Tingting Lin
- Department of Medical and Radiation Oncology, Affiliated Sanming First Hospital, Fujian Medical University, Sanming, Fujian, China
| | - Hanxuan Yang
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian, China
| | - Wenqian Xu
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian, China
| | - Jianming Wang
- Innovation Center for Cancer Research, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, Fujian, China
- Fujian Key Laboratory of Advanced Technology for Cancer Screening and Early Diagnosis, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, Fujian, China
| | - Hongmei Ying
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Clinical Research Center for Radiation Oncology, Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| | - Sufang Qiu
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian, China
| |
Collapse
|
6
|
Strobl S, Zucchetta D, Vašíček T, Monti A, Ruda A, Widmalm G, Heine H, Zamyatina A. Nonreducing Sugar Scaffold Enables the Development of Immunomodulatory TLR4-specific LPS Mimetics with Picomolar Potency. Angew Chem Int Ed Engl 2024; 63:e202408421. [PMID: 38870340 DOI: 10.1002/anie.202408421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/15/2024]
Abstract
Innate immune defense mechanisms against infection and cancer encompass the modulation of pattern recognition receptor (PRR)-mediated inflammation, including upregulation of various transcription factors and the activation of pro-inflammatory pathways important for immune surveillance. Dysfunction of PRRs-mediated signaling has been implicated in cancer and autoimmune diseases, while the overactivation of PRRs-driven responses during infection can lead to devastating consequences such as acute lung injury or sepsis. We used crystal structure-based design to develop immunomodulatory lipopolysaccharide (LPS) mimetics targeting one of the ubiquitous PRRs, Toll-like Receptor 4 (TLR4). Taking advantage of an exo-anomeric conformation and specific molecular shape of synthetic nonreducing β,β-diglucosamine, which was investigated by NMR, we developed two sets of lipid A mimicking glycolipids capable of either potently activating innate immune responses or inhibiting pro-inflammatory signaling. Stereoselective 1,1'-glycosylation towards fully orthogonally protected nonreducing GlcNβ(1↔1')βGlcN followed by stepwise assembly of differently functionalised phosphorylated glycolipids provided biologically active molecules that were evaluated for their ability to trigger or to inhibit cellular innate immune responses. Two LPS mimetics, identified as potent TLR4-specific inducers of the intracellular signaling pathways, serve as vaccine adjuvant- and immunotherapy candidates, while anionic glycolipids with TLR4-inhibitory potential hold therapeutic promise for the management of acute or chronic inflammation.
Collapse
Affiliation(s)
- Sebastian Strobl
- Department of Chemistry, BOKU University, Muthgasse 18, Vienna, A-1190, Austria
| | - Daniele Zucchetta
- Department of Chemistry, BOKU University, Muthgasse 18, Vienna, A-1190, Austria
| | - Tomáš Vašíček
- Department of Chemistry, BOKU University, Muthgasse 18, Vienna, A-1190, Austria
| | - Alessandro Monti
- Department of Chemistry, BOKU University, Muthgasse 18, Vienna, A-1190, Austria
| | - Alessandro Ruda
- Department of Organic Chemistry, Stockholm University, S-106 91, Stockholm, Sweden
| | - Göran Widmalm
- Department of Organic Chemistry, Stockholm University, S-106 91, Stockholm, Sweden
| | - Holger Heine
- Research Group Innate Immunity, Research Center Borstel, Leibniz Lung Center, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Parkallee 22, Borstel, 23845, Germany
| | - Alla Zamyatina
- Department of Chemistry, BOKU University, Muthgasse 18, Vienna, A-1190, Austria
| |
Collapse
|
7
|
Xu EJK, Smith BE, Conce Alberto WD, Walsh MJ, Lim B, Hoffman MT, Qiang L, Dong J, Garmilla A, Zhao QH, Perez CR, Gaglione SA, Dobson CS, Dougan M, Dougan SK, Birnbaum ME. Peptide-MHC-targeted retroviruses enable in vivo expansion and gene delivery to tumor-specific T cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.18.613594. [PMID: 39345591 PMCID: PMC11429759 DOI: 10.1101/2024.09.18.613594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Tumor-infiltrating-lymphocyte (TIL) therapy has demonstrated that endogenous T cells can be harnessed to initiate an effective anti-tumor response. Despite clinical promise, current TIL production protocols involve weeks-long ex vivo expansions which can affect treatment efficacy. Therefore, additional tools are needed to engineer endogenous tumor-specific T cells to have increased potency while mitigating challenges of manufacturing. Here, we present a strategy for pseudotyping retroviral vectors with peptide-major histocompatibility complexes (pMHC) for antigen-specific gene delivery to CD8 T cells and examine the efficacy of these transduced cells in immunocompetent mouse models. We demonstrate that pMHC-targeted viruses are able to specifically deliver function-enhancing cargoes while simultaneously activating and expanding anti-tumor T cells. The specificity of these viral vectors enables in vivo engineering of tumor-specific T cells, circumventing ex vivo manufacturing processes and improving overall survival in B16F10-bearing mice. Altogether, we have established that pMHC-targeted viruses are efficient vectors for reprogramming and expanding tumor-specific populations of T cells directly in vivo , with the potential to substantially streamline engineered cell therapy production for a variety of applications.
Collapse
|
8
|
Sauer K, Rakhra K, Wu K, Mehta NK, Michaelson JS, Baeuerle PA. Intratumoral injection and retention hold promise to improve cytokine therapies for cancer. Front Oncol 2024; 14:1456658. [PMID: 39252938 PMCID: PMC11381304 DOI: 10.3389/fonc.2024.1456658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/02/2024] [Indexed: 09/11/2024] Open
Abstract
As powerful activators of the immune system, cytokines have been extensively explored for treating various cancers. But despite encouraging advances and some drug approvals, the broad adoption of cytokine therapies in the clinic has been limited by low response rates and sometimes severe toxicities. This in part reflects an inefficient biodistribution to tumors or a pleiotropic action on bystander cells and tissues. Here, we first review these issues and then argue for the intratumoral delivery of engineered cytokine fusion proteins that have been optimized for tumor retention as a potential solution to overcome these limitations and realize the potential of cytokines as highly effective therapeutics for cancer.
Collapse
Affiliation(s)
| | - Kavya Rakhra
- Cullinan Therapeutics, Cambridge, MA, United States
| | - Kaida Wu
- Cullinan Therapeutics, Cambridge, MA, United States
| | | | | | - Patrick A Baeuerle
- Cullinan Therapeutics, Cambridge, MA, United States
- Institute of Immunology, Ludwig Maximilians Universitaet Muenchen, Planegg, Germany
| |
Collapse
|
9
|
Haanen J, Los C, Phan GQ, Betof Warner A. Adoptive Cell Therapy for Solid Tumors: Current Status in Melanoma and Next-Generation Therapies. Am Soc Clin Oncol Educ Book 2024; 44:e431608. [PMID: 38776509 DOI: 10.1200/edbk_431608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Lifileucel or TIL has recently been FDA approved for metastatic melanoma patients as first cell therapy for a solid tumor. We discuss roll-out of TIL as new SOC and other upcoming new cell therapies.
Collapse
Affiliation(s)
- John Haanen
- Division of Medical Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Department of Medical Oncology, Leiden University Medical Center, Leiden, the Netherlands
- Division of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Christy Los
- Division of Medical Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Giao Q Phan
- Division of Surgical Oncology, UConn Health, Neag Cancer Center, Farmington, CT
| | - Allison Betof Warner
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
10
|
Liao J, Pan H, Huang G, Gong H, Chen Z, Yin T, Zhang B, Chen T, Zheng M, Cai L. T cell cascade regulation initiates systemic antitumor immunity through living drug factory of anti-PD-1/IL-12 engineered probiotics. Cell Rep 2024; 43:114086. [PMID: 38598335 DOI: 10.1016/j.celrep.2024.114086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/26/2024] [Accepted: 03/26/2024] [Indexed: 04/12/2024] Open
Abstract
Immune checkpoint blockade (ICB) has revolutionized cancer therapy but only works in a subset of patients due to the insufficient infiltration, persistent exhaustion, and inactivation of T cells within a tumor. Herein, we develop an engineered probiotic (interleukin [IL]-12 nanoparticle Escherichia coli Nissle 1917 [INP-EcN]) acting as a living drug factory to biosynthesize anti-PD-1 and release IL-12 for initiating systemic antitumor immunity through T cell cascade regulation. Mechanistically, INP-EcN not only continuously biosynthesizes anti-PD-1 for relieving immunosuppression but also effectively cascade promote T cell activation, proliferation, and infiltration via responsive release of IL-12, thus reaching a sufficient activation threshold to ICB. Tumor targeting and colonization of INP-EcNs dramatically increase local drug accumulations, significantly inhibiting tumor growth and metastasis compared to commercial inhibitors. Furthermore, immune profiling reveals that anti-PD-1/IL-12 efficiently cascade promote antitumor effects in a CD8+ T cell-dependent manner, clarifying the immune interaction of ICB and cytokine activation. Ultimately, such engineered probiotics achieve a potential paradigm shift from T cell exhaustion to activation and show considerable promise for antitumor bio-immunotherapy.
Collapse
Affiliation(s)
- Jianhong Liao
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Laboratory of Biomedical Imaging Science and System, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China
| | - Hong Pan
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Laboratory of Biomedical Imaging Science and System, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China.
| | - Guojun Huang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Laboratory of Biomedical Imaging Science and System, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China
| | - Han Gong
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Laboratory of Biomedical Imaging Science and System, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China
| | - Ze Chen
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Laboratory of Biomedical Imaging Science and System, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China
| | - Ting Yin
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Laboratory of Biomedical Imaging Science and System, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China
| | - Baozhen Zhang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Laboratory of Biomedical Imaging Science and System, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China
| | - Tingtao Chen
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China.
| | - Mingbin Zheng
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Laboratory of Biomedical Imaging Science and System, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China; National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518112, China.
| | - Lintao Cai
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Laboratory of Biomedical Imaging Science and System, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China; Sino-Euro Center of Biomedicine and Health, Luohu Shenzhen 518024, China.
| |
Collapse
|
11
|
Zhang T, Tai Z, Miao F, Zhang X, Li J, Zhu Q, Wei H, Chen Z. Adoptive cell therapy for solid tumors beyond CAR-T: Current challenges and emerging therapeutic advances. J Control Release 2024; 368:372-396. [PMID: 38408567 DOI: 10.1016/j.jconrel.2024.02.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/05/2024] [Accepted: 02/23/2024] [Indexed: 02/28/2024]
Abstract
Adoptive cellular immunotherapy using immune cells expressing chimeric antigen receptors (CARs) is a highly specific anti-tumor immunotherapy that has shown promise in the treatment of hematological malignancies. However, there has been a slow progress toward the treatment of solid tumors owing to the complex tumor microenvironment that affects the localization and killing ability of the CAR cells. Solid tumors with a strong immunosuppressive microenvironment and complex vascular system are unaffected by CAR cell infiltration and attack. To improve their efficacy toward solid tumors, CAR cells have been modified and upgraded by "decorating" and "pruning". This review focuses on the structure and function of CARs, the immune cells that can be engineered by CARs and the transformation strategies to overcome solid tumors, with a view to broadening ideas for the better application of CAR cell therapy for the treatment of solid tumors.
Collapse
Affiliation(s)
- Tingrui Zhang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China; Medical Guarantee Center, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China; School of Medicine, Shanghai University, Shanghai 200444, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai 200443, China
| | - Zongguang Tai
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai 200443, China; Department of Pharmacy, First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Fengze Miao
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai 200443, China
| | - Xinyue Zhang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai 200443, China
| | - Jiadong Li
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai 200443, China
| | - Hua Wei
- Medical Guarantee Center, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China.
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China; School of Medicine, Shanghai University, Shanghai 200444, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai 200443, China.
| |
Collapse
|
12
|
Liu M, Hu S, Yan N, Popowski KD, Cheng K. Inhalable extracellular vesicle delivery of IL-12 mRNA to treat lung cancer and promote systemic immunity. NATURE NANOTECHNOLOGY 2024; 19:565-575. [PMID: 38212521 DOI: 10.1038/s41565-023-01580-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 11/21/2023] [Indexed: 01/13/2024]
Abstract
Lung carcinoma is one of the most common cancers and has one of the lowest survival rates in the world. Cytokines such as interleukin-12 (IL-12) have demonstrated considerable potential as robust tumour suppressors. However, their applications are limited due to off-target toxicity. Here we report on a strategy involving the inhalation of IL-12 messenger RNA, encapsulated within extracellular vesicles. Inhalation and preferential uptake by cancer cells results in targeted delivery and fewer systemic side effects. The IL-12 messenger RNA generates interferon-γ production in both innate and adaptive immune-cell populations. This activation consequently incites an intense activation state in the tumour microenvironment and augments its immunogenicity. The increased immune response results in the expansion of tumour cytotoxic immune effector cells, the formation of immune memory, improved antigen presentation and tumour-specific T cell priming. The strategy is demonstrated against primary neoplastic lesions and provides profound protection against subsequent tumour rechallenge. This shows the potential for locally delivered cytokine-based immunotherapies to address orthotopic and metastatic lung tumours.
Collapse
Affiliation(s)
- Mengrui Liu
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Shiqi Hu
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Na Yan
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Kristen D Popowski
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill/Raleigh, NC, USA
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA
| | - Ke Cheng
- Department of Biomedical Engineering, Columbia University, New York, NY, USA.
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA.
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill/Raleigh, NC, USA.
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
13
|
Khafaga AF, Gaballa MMS, Karam R, Shoulah SA, Shamma RN, Khalifa NE, Farrag NE, Noreldin AE. Synergistic therapeutic strategies and engineered nanoparticles for anti-vascular endothelial growth factor therapy in cancer. Life Sci 2024; 341:122499. [PMID: 38342375 DOI: 10.1016/j.lfs.2024.122499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/29/2024] [Accepted: 02/07/2024] [Indexed: 02/13/2024]
Abstract
Angiogenesis is one of the defining characteristics of cancer. Vascular endothelial growth factor (VEGF) is crucial for the development of angiogenesis. A growing interest in cancer therapy is being caused by the widespread use of antiangiogenic drugs in treating several types of human cancer. However, this therapeutic approach can worsen resistance, invasion, and overall survival. As we proceed, refining combination strategies and addressing the constraint of targeted treatments are paramount. Therefore, major challenges in using novel combinations of antiangiogenic agents with cytotoxic treatments are currently focused on illustrating the potential of synergistic therapeutic strategies, alongside advancements in nanomedicine and gene therapy, present opportunities for more precise interference with angiogenesis pathways and tumor environments. Nanoparticles have the potential to regulate several crucial activities and improve several drug limitations such as lack of selectivity, non-targeted cytotoxicity, insufficient drug delivery at tumor sites, and multi-drug resistance based on their unique features. The goal of this updated review is to illustrate the enormous potential of novel synergistic therapeutic strategies and the targeted nanoparticles as an alternate strategy for t treating a variety of tumors employing antiangiogenic therapy.
Collapse
Affiliation(s)
- Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina 22758, Egypt.
| | - Mohamed M S Gaballa
- Department of Pathology, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt.
| | - Reham Karam
- Department of Virology, Faculty of Veterinary Medicine, Mansoura University, 35511, Egypt.
| | - Salma A Shoulah
- Department of Animal Medicine (Infectious Diseases), Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt.
| | - Rehab N Shamma
- Department of Pharmaceutics & Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
| | - Norhan E Khalifa
- Department of Physiology, Faculty of Veterinary Medicine, Matrouh University, Matrouh 51511, Egypt.
| | - Nehal E Farrag
- Faculty of Veterinary Medicine, Alexandria University, Edfina 22758, Egypt.
| | - Ahmed E Noreldin
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt.
| |
Collapse
|
14
|
Kagoya Y. Cytokine signaling in chimeric antigen receptor T-cell therapy. Int Immunol 2024; 36:49-56. [PMID: 37591521 PMCID: PMC10872714 DOI: 10.1093/intimm/dxad033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/15/2023] [Indexed: 08/19/2023] Open
Abstract
Adoptive immunotherapy using chimeric antigen-receptor (CAR)-engineered T cells can induce robust antitumor responses against hematologic malignancies. However, its efficacy is not durable in the majority of the patients, warranting further improvement of T-cell functions. Cytokine signaling is one of the key cascades regulating T-cell survival and effector functions. In addition to cytokines that use the common γ chain as a receptor subunit, multiple cytokines regulate T-cell functions directly or indirectly. Modulating cytokine signaling in CAR-T cells by genetic engineering is one promising strategy to augment their therapeutic efficacy. These strategies include ectopic expression of cytokines, cytokine receptors, and synthetic molecules that mimic endogenous cytokine signaling. Alternatively, autocrine IL-2 signaling can be augmented through reprogramming of CAR-T cell properties through transcriptional and epigenetic modification. On the other hand, cytokine production by CAR-T cells triggers systemic inflammatory responses, which mainly manifest as adverse events such as cytokine-release syndrome (CRS) and neurotoxicity. In addition to inhibiting direct inflammatory mediators such as IL-6 and IL-1 released from activated macrophages, suppression of T-cell-derived cytokines associated with the priming of macrophages can be accomplished through genetic modification of CAR-T cells. In this review, I will outline recently developed synthetic biology approaches to exploit cytokine signaling to enhance CAR-T cell functions. I will also discuss therapeutic target molecules to prevent or alleviate CAR-T cell-related toxicities.
Collapse
Affiliation(s)
- Yuki Kagoya
- Division of Tumor Immunology, Institute for Advanced Medical Research, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| |
Collapse
|
15
|
Wu L, Hong X, Yang C, Yang Y, Li W, Lu L, Cai M, Cao D, Zhuang G, Deng L. Noncanonical MAVS signaling restrains dendritic cell-driven antitumor immunity by inhibiting IL-12. Sci Immunol 2023; 8:eadf4919. [PMID: 38039379 DOI: 10.1126/sciimmunol.adf4919] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 10/06/2023] [Indexed: 12/03/2023]
Abstract
Mitochondrial antiviral signaling protein (MAVS)-mediated cytosolic RNA sensing plays a central role in tumor immunogenicity. However, the effects of host MAVS signaling on antitumor immunity remain unclear. Here, we demonstrate that the host MAVS pathway supports tumor growth and impairs antitumor immunity, whereas MAVS deficiency in dendritic cells (DCs) promotes tumor-reactive CD8+ T cell responses. Specifically, CD8+ T cell priming capacity was enhanced by MAVS ablation in a type I interferon-independent, but IL-12-dependent, manner. Mechanistically, loss of the RIG-I/MAVS cascade activated the noncanonical NF-κB pathway and in turn induced IL-12 production by DCs. MAVS-restrained IL-12 promoted cross-talk between CD8+ T cells and DCs, which was licensed by IFN-γ. Moreover, ablation of host MAVS sensitized tumors to immunotherapy and attenuated radiation resistance, thereby facilitating the maintenance of effector CD8+ T cells. These findings demonstrate that the host MAVS pathway acts as an immune regulator of DC-driven antitumor immunity and support the development of immunotherapies that antagonize MAVS signaling in DCs.
Collapse
Affiliation(s)
- Lingling Wu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaochuan Hong
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chao Yang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuanqin Yang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wenwen Li
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lu Lu
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Meichun Cai
- Shanghai Key Laboratory of Gynecologic Oncology, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 200217, Shanghai, China
| | - Dongqing Cao
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Guanglei Zhuang
- Shanghai Key Laboratory of Gynecologic Oncology, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 200217, Shanghai, China
| | - Liufu Deng
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
16
|
Fang L, Yuan S, Wang M, Zhang C, Wang X, Li H, Yang J, Li W, Sun N, Zhang Q, Zhang Y, Chai D, Li H, Zheng J, Wang G. Recombinant oncolytic adenovirus armed with CCL5, IL-12, and IFN-γ promotes CAR-T infiltration and proliferation in vivo to eradicate local and distal tumors. Cell Death Discov 2023; 9:328. [PMID: 37660142 PMCID: PMC10475122 DOI: 10.1038/s41420-023-01626-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/16/2023] [Accepted: 08/23/2023] [Indexed: 09/04/2023] Open
Abstract
The efficacy of chimeric antigen receptor T (CAR-T) cells for solid tumors remains unsatisfactory due to the limited tumor infiltration and immunosuppressive microenvironment. To overcome these limitations, the genetically engineered recombinant oncolytic adenoviruses (OAVs) that conditionally replicate in tumor cells were developed to modify the tumor microenvironment (TME) to facilitate CAR-T-mediated tumor eradication. Here in the present study, a novel recombinant OAV carrying CCL5, IL12, and IFN-γ controlled by Ki67 promoter was constructed (named AdKi67-C3). The antitumor activity of AdKi67-C3 was tested in vitro and in vivo by using mono administration or combing with CAR-T cells targeting B7H3. It proved that CCL5 expressed by AdKi67-C3 indeed induced more CAR-T migration in vitro and CAR-T infiltration in tumor mass in vivo. Meanwhile, cytokines of IFN-γ and IL12 secreted by AdKi67-C3-infected tumor cells significantly promoted proliferation and persistence of CAR-T cells in vitro and in vivo. In tumor-bearing xenograft mouse models of kidney, prostate or pancreatic cancer, local pretreatment with AdKi67-C3 dramatically enhanced CAR-T cell efficacy and eliminated local and distant tumors. More importantly, mice achieving complete tumor regression resisted to re-challenge with the same tumor cells, suggesting establishment of long-term antitumor immune response. Therefore, OAVs armored with cytokines could be developed as a bioenhancer to defeat the immunosuppressive microenvironment and improve therapeutic efficacy of CAR-T in solid tumors.
Collapse
Affiliation(s)
- Lin Fang
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu, 221002, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Sen Yuan
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
- Cancer Center of Xuzhou No.1 People's Hospital, Xuzhou, Jiangsu, China
| | - Meng Wang
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu, 221002, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Chen Zhang
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
- Department of Oncology, The First People's Hospital of Yancheng, Xuzhou, Jiangsu, China
| | - Xueyan Wang
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Hailong Li
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu, 221002, China
| | - Jie Yang
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu, 221002, China
| | - Wanjing Li
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Nan Sun
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu, 221002, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Qi Zhang
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Yuxin Zhang
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Dafei Chai
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu, 221002, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Huizhong Li
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu, 221002, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Junnian Zheng
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu, 221002, China.
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China.
| | - Gang Wang
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China.
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu, 221002, China.
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China.
| |
Collapse
|
17
|
Anderson KG, Braun DA, Buqué A, Gitto SB, Guerriero JL, Horton B, Keenan BP, Kim TS, Overacre-Delgoffe A, Ruella M, Triplett TA, Veeranki O, Verma V, Zhang F. Leveraging immune resistance archetypes in solid cancer to inform next-generation anticancer therapies. J Immunother Cancer 2023; 11:e006533. [PMID: 37399356 PMCID: PMC10314654 DOI: 10.1136/jitc-2022-006533] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2023] [Indexed: 07/05/2023] Open
Abstract
Anticancer immunotherapies, such as immune checkpoint inhibitors, bispecific antibodies, and chimeric antigen receptor T cells, have improved outcomes for patients with a variety of malignancies. However, most patients either do not initially respond or do not exhibit durable responses due to primary or adaptive/acquired immune resistance mechanisms of the tumor microenvironment. These suppressive programs are myriad, different between patients with ostensibly the same cancer type, and can harness multiple cell types to reinforce their stability. Consequently, the overall benefit of monotherapies remains limited. Cutting-edge technologies now allow for extensive tumor profiling, which can be used to define tumor cell intrinsic and extrinsic pathways of primary and/or acquired immune resistance, herein referred to as features or feature sets of immune resistance to current therapies. We propose that cancers can be characterized by immune resistance archetypes, comprised of five feature sets encompassing known immune resistance mechanisms. Archetypes of resistance may inform new therapeutic strategies that concurrently address multiple cell axes and/or suppressive mechanisms, and clinicians may consequently be able to prioritize targeted therapy combinations for individual patients to improve overall efficacy and outcomes.
Collapse
Affiliation(s)
- Kristin G Anderson
- Department of Microbiology, Immunology and Cancer Biology, Obstetrics and Gynecology, Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia, USA
- University of Virginia Comprehensive Cancer Center, University of Virginia, Charlottesville, Virginia, USA
| | - David A Braun
- Center of Molecular and Cellular Oncology, Yale University Yale Cancer Center, New Haven, Connecticut, USA
| | - Aitziber Buqué
- Department of Radiation Oncology, Weill Cornell Medical College, New York, New York, USA
| | - Sarah B Gitto
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jennifer L Guerriero
- Division of Breast Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Brendan Horton
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Bridget P Keenan
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, California, USA
| | - Teresa S Kim
- Department of Surgery, University of Washington, Seattle, Washington, USA
| | - Abigail Overacre-Delgoffe
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Marco Ruella
- Department of Medicine, Division of Hematology and Oncology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Todd A Triplett
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, Texas, USA
| | - Omkara Veeranki
- Medical Affairs and Clinical Development, Caris Life Sciences Inc, Irving, Texas, USA
| | - Vivek Verma
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- The Hormel Institute, University of Minnesota, Austin, Minnesota, USA
| | - Fan Zhang
- Department of Pharmaceutics, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
18
|
Gerhardt L, Hong MMY, Yousefi Y, Figueredo R, Maleki Vareki S. IL-12 and IL-27 Promote CD39 Expression on CD8+ T Cells and Differentially Regulate the CD39+CD8+ T Cell Phenotype. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1598-1606. [PMID: 37000461 PMCID: PMC10152038 DOI: 10.4049/jimmunol.2200897] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/10/2023] [Indexed: 04/01/2023]
Abstract
Tumor-specific CD8+ T cells are critical components of antitumor immunity; however, factors that modulate their phenotype and function have not been completely elucidated. Cytokines IL-12 and IL-27 have recognized roles in promoting CD8+ T cells' effector function and mediated antitumor responses. Tumor-specific CD8+ tumor-infiltrating lymphocytes (TILs) can be identified based on surface expression of CD39, whereas bystander CD8+ TILs do not express this enzyme. It is currently unclear how and why tumor-specific CD8+ T cells uniquely express CD39. Given the important roles of IL-12 and IL-27 in promoting CD8+ T cell functionality, we investigated whether these cytokines could modulate CD39 expression on these cells. Using in vitro stimulation assays, we identified that murine splenic CD8+ T cells differentially upregulate CD39 in the presence of IL-12 and IL-27. Subsequently, we assessed the exhaustion profile of IL-12- and IL-27-induced CD39+CD8+ T cells. Despite the greatest frequency of exhausted CD39+CD8+ T cells after activation with IL-12, as demonstrated by the coexpression of TIM-3+PD-1+LAG-3+ and reduced degranulation capacity, these cells retained the ability to produce IFN-γ. IL-27-induced CD39+CD8+ T cells expressed PD-1 but did not exhibit a terminally exhausted phenotype. IL-27 was able to attenuate IL-12-mediated inhibitory receptor expression on CD39+CD8+ T cells but did not rescue degranulation ability. Using an immunogenic neuro-2a mouse model, inhibiting IL-12 activity reduced CD39+CD8+ TIL frequency compared with controls without changing the overall CD8+ TIL frequency. These results provide insight into immune regulators of CD39 expression on CD8+ T cells and further highlight the differential impact of CD39-inducing factors on the phenotype and effector functions of CD8+ T cells.
Collapse
Affiliation(s)
- Lara Gerhardt
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Megan M. Y. Hong
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Yeganeh Yousefi
- London Regional Cancer Program, Lawson Health Research Institute, London, Ontario, Canada
| | - Rene Figueredo
- Department of Oncology, Western University, London, Ontario, Canada
| | - Saman Maleki Vareki
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
- London Regional Cancer Program, Lawson Health Research Institute, London, Ontario, Canada
- Department of Oncology, Western University, London, Ontario, Canada
| |
Collapse
|
19
|
Barnwal A, Ganguly S, Bhattacharyya J. Multifaceted Nano-DEV-IL for Sustained Release of IL-12 to Avert the Immunosuppressive Tumor Microenvironment and IL-12-Associated Toxicities. ACS APPLIED MATERIALS & INTERFACES 2023; 15:20012-20026. [PMID: 37068138 DOI: 10.1021/acsami.3c02934] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Interleukin-12 (IL-12) demonstrates potent antitumor activity by enhancing Th1/Th2 response, facilitating cytotoxic T-cell (CTL) recruitment into tumors, inhibiting tumor angiogenesis, and depleting immunosuppressive cells in the tumor microenvironment (TME). Despite having encouraging preclinical and some clinical results, further development of IL-12 is limited because dose-limiting toxicity is observed in early clinical trials with systemic administration of recombinant human IL-12. Hence, strategies aiming to lower the toxicity and to improve response rates are unmet needs. In this study, IL-12 was encapsulated in extracellular vesicles derived from mature dendritic cells (DEVs) activated with tumor antigens. IL-12-encapsulated DEVs (DEV-IL) delayed the growth of murine glioblastoma by facilitating the recruitment of CD8 T-cells, NK-cells, and DCs and effectively depleting immunosuppressive cells in the TME. DEV-IL shifted the Th1/Th2 ratio toward dominating Th1 cytokines which further led to the inhibition of angiogenesis. In addition, DEV-IL also modulated systemic immunity by enhancing CTL activity and the levels of proinflammatory cytokines in the spleen. Interestingly, DEV-IL did not impart hepatic and immunotoxicity which was observed with free IL-12 administration. Hence, our study established DEV-IL as a potent platform for the sustained delivery of cytokines and could be a promising immunotherapeutic strategy for the treatment of cancer.
Collapse
Affiliation(s)
- Anjali Barnwal
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Delhi 110016, India
- Department of Biomedical Engineering, All India Institute of Medical Science, Delhi 110029, India
| | | | - Jayanta Bhattacharyya
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Delhi 110016, India
- Department of Biomedical Engineering, All India Institute of Medical Science, Delhi 110029, India
| |
Collapse
|
20
|
Toney NJ, Gatti-Mays ME, Tschernia NP, Strauss J, Gulley JL, Schlom J, Donahue RN. Immune correlates with response in patients with metastatic solid tumors treated with a tumor targeting immunocytokine NHS-IL12. Int Immunopharmacol 2023; 116:109736. [PMID: 37234190 PMCID: PMC10208359 DOI: 10.1016/j.intimp.2023.109736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
The immunocytokine NHS-IL12 delivers IL-12 to the tumor microenvironment by targeting DNA/histones in necrotic areas. The first-in-human clinical trial administered NHS-IL12 subcutaneously in 59 patients treated every four weeks (Q4W), with a maximum tolerated dose of 16.8 mcg/kg. The phase I study was expanded to include a high-exposure cohort that received bi-weekly treatment (Q2W) with two dose levels of NHS-IL12: 12.0 mcg/kg and 16.8 mcg/kg. Here, patients given NHS-IL12 were analyzed both prior to and early after treatment for effects on 10 serum soluble analytes, complete blood counts, and 158 peripheral immune subsets. Higher levels of immune activation were seen with a dose of 16.8 mcg/kg versus 12.0 mcg/kg in patients in the high-exposure cohort, as evidenced by greater increases in serum IFNγ, TNFα, and soluble PD-1, and greater increases in frequencies of peripheral ki67+ mature natural killer (NK), CD8+T, and NKT cells. Greater immune activation was also seen in the Q2W versus Q4W cohort, as demonstrated by greater increases in pro-inflammatory serum analytes, ki67+ CD8+ T, NK, and NKT cells, intermediate monocytes, and a greater decrease in CD73+ T cells. Specific immune analytes at baseline including lower levels of monocytes and plasmacytoid dendritic cells, and early changes after treatment such as an increase in refined NK cell subsets and total CD8+ T cells, associated with better clinical response. These findings may help to guide future schedule and dosing regimens of clinical studies of NHS-IL12 as monotherapy and in combination therapies.
Collapse
Affiliation(s)
- Nicole J Toney
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Margaret E Gatti-Mays
- The Pelotonia Institute for Immuno-Oncology, Division of Medical Oncology, The Ohio State University, Columbus OH, USA
| | - Nicholas P Tschernia
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Julius Strauss
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - James L Gulley
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jeffrey Schlom
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Renee N Donahue
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
21
|
Tas L, Jedema I, Haanen JB. Novel strategies to improve efficacy of treatment with tumor-infiltrating lymphocytes (TILs) for patients with solid cancers. Curr Opin Oncol 2023; 35:107-113. [PMID: 36607824 PMCID: PMC9894146 DOI: 10.1097/cco.0000000000000925] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
PURPOSE OF REVIEW Treatment with tumor-infiltrating lymphocytes (TILs) has shown remarkable clinical responses in patients with advanced solid tumors. Although the TIL production process is very robust, the original protocol stems from the early nineties and lacks effective selection for tumor-reactivity and functional activity. In this review we highlight the limitations of the current production process and give an overview of improvements that can be made to increase TIL efficacy. RECENT FINDINGS With the recent advances in single cell sequencing technologies, our understanding of the composition and phenotype of TILs in the tumor micro environment has majorly increased, which forms the basis for the development of new strategies to improve the TIL production process. Strategies involve selection for neoantigen-reactive TILs by cell sorting or selective expansion strategies. Furthermore, gene editing strategies like Clustered regularly interspaced short palindromic repeats-Cas (CRISPR-Cas9) can be used to increase TIL functionality. SUMMARY Although combining all the possible improvements into a next generation TIL product might be challenging, it is highly likely that those techniques will increase the clinical value of TIL therapy in the coming years.
Collapse
Affiliation(s)
- Liselotte Tas
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Inge Jedema
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - John B.A.G. Haanen
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
- Department of Clinical Oncology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| |
Collapse
|
22
|
Yousefpour P, Ni K, Irvine DJ. Targeted modulation of immune cells and tissues using engineered biomaterials. NATURE REVIEWS BIOENGINEERING 2023; 1:107-124. [PMID: 37772035 PMCID: PMC10538251 DOI: 10.1038/s44222-022-00016-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/28/2022] [Indexed: 09/30/2023]
Abstract
Therapies modulating the immune system offer the prospect of treating a wide range of conditions including infectious diseases, cancer and autoimmunity. Biomaterials can promote specific targeting of immune cell subsets in peripheral or lymphoid tissues and modulate the dosage, timing and location of stimulation, thereby improving safety and efficacy of vaccines and immunotherapies. Here we review recent advances in biomaterials-based strategies, focusing on targeting of lymphoid tissues, circulating leukocytes, tissue-resident immune cells and immune cells at disease sites. These approaches can improve the potency and efficacy of immunotherapies by promoting immunity or tolerance against different diseases.
Collapse
Affiliation(s)
- Parisa Yousefpour
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kaiyuan Ni
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Darrell J. Irvine
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Materials Science & Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| |
Collapse
|
23
|
Zhang J, Wang Z, Wang K, Xin D, Wang L, Fan Y, Xu Y. Increased Expression of SRSF1 Predicts Poor Prognosis in Multiple Myeloma. JOURNAL OF ONCOLOGY 2023; 2023:9998927. [PMID: 37206090 PMCID: PMC10191755 DOI: 10.1155/2023/9998927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/11/2022] [Accepted: 01/19/2023] [Indexed: 05/21/2023]
Abstract
Background Multiple myeloma (MM) is a clonal plasma cell disorder which still lacks sufficient prognostic factors. The serine/arginine-rich splicing factor (SRSF) family serves as an important splicing regulator in organ development. Among all members, SRSF1 plays an important role in cell proliferation and renewal. However, the role of SRSF1 in MM is still unknown. Methods SRSF1 was selected from the primary bioinformatics analysis of SRSF family members, and then we integrated 11 independent datasets and analyzed the relationship between SRSF1 expression and MM clinical characteristics. Gene set enrichment analysis (GSEA) was conducted to explore the potential mechanism of SRSF1 in MM progression. ImmuCellAI was used to estimate the abundance of immune infiltrating cells between the SRSF1high and SRSF1low groups. The ESTIMATE algorithm was used to evaluate the tumor microenvironment in MM. The expression of immune-related genes was compared between the groups. Additionally, SRSF1 expression was validated in clinical samples. SRSF1 knockdown was conducted to explore the role of SRSF1 in MM development. Results SRSF1 expression showed an increasing trend with the progression of myeloma. Besides, SRSF1 expression increased as the age, ISS stage, 1q21 amplification level, and relapse times increased. MM patients with higher SRSF1 expression had worse clinical features and poorer outcomes. Univariate and multivariate analysis indicated that upregulated SRSF1 expression was an independent poor prognostic factor for MM. Enrichment pathway analysis confirmed that SRSF1 takes part in the myeloma progression via tumor-associated and immune-related pathways. Several checkpoints and immune-activating genes were significantly downregulated in the SRSF1high groups. Furthermore, we detected that SRSF1 expression was significantly higher in MM patients than that in control donors. SRSF1 knockdown resulted in proliferation arrest in MM cell lines. Conclusion The expression value of SRSF1 is positively associated with myeloma progression, and high SRSF1 expression might be a poor prognostic biomarker in MM patients.
Collapse
Affiliation(s)
- Jiawei Zhang
- Department of Hematology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Zhejiang University Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Zanzan Wang
- Department of Hematology, Ningbo First Hospital, Ningbo 315010, China
| | - Kailai Wang
- Zhejiang University Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Dijia Xin
- Department of Hematology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Luyao Wang
- Department of Hematology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Yili Fan
- Department of Hematology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Yang Xu
- Department of Hematology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
24
|
Campbell JS, Pai SI. Human Papillomavirus-Directed Therapeutics for Human Papillomavirus-Associated Oropharyngeal Cancer. Cancer J 2022; 28:407-415. [PMID: 36165730 PMCID: PMC9718370 DOI: 10.1097/ppo.0000000000000621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
ABSTRACT Despite the availability of prophylactic human papillomavirus (HPV) vaccines, there is a growing incidence of HPV-associated head and neck squamous cell carcinomas (HPV-HNSCC) worldwide. The viral etiology of HPV-HNSCC provides an opportunity to develop personalized immune-based therapies, which target the unique viral- or tumor-specific proteins. Novel HPV-targeted immunotherapeutic approaches in clinical development are reviewed. Early results from these trials highlight new opportunities and potential challenges ahead. Immunotherapies for HPV-associated HNSCCs will require a tailored combinatorial approach based on preexisting mechanisms of host immune resistance. As the field continues to identify the relevant HPV types 16 and 18 immunogenic epitopes that are presented by diverse HLA class I alleles, improved HPV-targeted biologics and clinical monitoring tools can be developed and applied to a broader cancer patient population.
Collapse
Affiliation(s)
- Jean S. Campbell
- Center for Systems Biology, Massachusetts General Hospital, Boston, Massachusetts
- Division of Surgical Oncology, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Sara I Pai
- Center for Systems Biology, Massachusetts General Hospital, Boston, Massachusetts
- Division of Surgical Oncology, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
25
|
Okuma A, Ishida Y, Kawara T, Hisada S, Araki S. Secretory co-factors in next-generation cellular therapies for cancer. Front Immunol 2022; 13:907022. [PMID: 36059449 PMCID: PMC9433659 DOI: 10.3389/fimmu.2022.907022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Since chimeric antigen receptor (CAR) T-cell therapies for hematologic malignancies were approved by the U.S. Food and Drug Administration, numerous "next-generation" CAR T cells have been developed to improve their safety, efficacy, and applicability. Although some of these novel therapeutic strategies are promising, it remains difficult to apply these therapies to solid tumors and to control adverse effects, such as cytokine release syndrome and neurotoxicity. CAR T cells are generated using highly scalable genetic engineering techniques. One of the major strategies for producing next-generation CAR T cells involves the integration of useful co-factor(s) into the artificial genetic design of the CAR gene, resulting in next-generation CAR T cells that express both CAR and the co-factor(s). Many soluble co-factors have been reported for CAR T cells and their therapeutic effects and toxicity have been tested by systemic injection; therefore, CAR T cells harnessing secretory co-factors could be close to clinical application. Here, we review the various secretory co-factors that have been reported to improve the therapeutic efficacy of CAR T cells and ameliorate adverse events. In addition, we discuss the different co-factor expression systems that have been used to optimize their beneficial effects. Altogether, we demonstrate that combining CAR T cells with secretory co-factors will lead to next-generation CAR T-cell therapies that can be used against broader types of cancers and might provide advanced tools for more complicated synthetic immunotherapies.
Collapse
Affiliation(s)
- Atsushi Okuma
- Center for Exploratory Research, Research and Development Group, Hitachi Ltd., Kobe, Japan
| | | | | | | | | |
Collapse
|
26
|
Schwarz E, Carson WE. Analysis of potential biomarkers of response to IL‐12 therapy. J Leukoc Biol 2022; 112:557-567. [PMID: 35790025 PMCID: PMC9542878 DOI: 10.1002/jlb.5ru1221-675r] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/07/2022] [Indexed: 11/10/2022] Open
Abstract
IL‐12 is a proinflammatory cytokine capable of inducing a wide range of effects on both innate and adaptive immune responses. Its stimulatory effects on T cells and NK cells have led to its classification as a potential inducer of antitumor immunity. Clinical trials have been attempting to harness its immune‐stimulating capacity since the 1990s and have had much success despite notable toxicity issues early on. Several methods of IL‐12 delivery have been employed including i.v., s.c., and local administrations as well as plasmid and gene therapies. However, despite differing methods, dosages, and cancer types utilized in these clinical trials, there are still many patients who do not respond to IL‐12 therapy. This creates an opportunity for further investigation into the immunologic differences between responding and nonresponding patients in order to better understand the variable efficacy of IL‐12 therapy. This review focuses on a limited collection of IL‐12 clinical trials, which further analyzed these individual subsets and detected biologic variables correlating with differential patient responses. A comprehensive review of these potential biomarkers identified 7 analytes that correlated with beneficial patient responses in 3 or more clinical trials. These were increased levels of IFN‐γ, IP‐10, TNF‐α, MIP‐1α, MIG, and CD4+ and CD8+ T cells, with a decrease in VEGF, bFGF, FoxP3+ T regulatory cells, and M2 macrophages. These potential biomarkers highlight the possibility of identifying immunologic determinants of patient response to IL‐12 therapy to conserve valuable resources and benefit patients.
Collapse
Affiliation(s)
- Emily Schwarz
- Biomedical Sciences Graduate Program, College of Medicine The Ohio State University Columbus Ohio USA
| | - William E. Carson
- Comprehensive Cancer Center The Ohio State University Columbus Ohio USA
- Department of Surgery, Division of Surgical Oncology The Ohio State University Columbus Ohio USA
| |
Collapse
|