1
|
Sun Q, Chen Z, Dong K, Lv T, Li X, Zhai D, Tang W, Chen T. A bifunctional catalyst of CoO/NBC composite for high-performance rechargeable flexible zinc-air battery. J Colloid Interface Sci 2025; 692:137537. [PMID: 40209424 DOI: 10.1016/j.jcis.2025.137537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/27/2025] [Accepted: 04/05/2025] [Indexed: 04/12/2025]
Abstract
Rechargeable flexible zinc-air batteries (ZABs) represent a promising energy-supply device for wearable electronics due to their low cost, safety and high energy density, but their electrochemical performance often suffers from the sluggish reaction kinetics of air electrode and poor moisture-retention ability of polymer electrolytes. Here, we report a type of high-performance rechargeable flexible ZABs endowed by an efficient bifunctional catalyst for air electrode and a high moisture-retention hydrogel electrolyte. The designed nitrogen-boron co-doped carbon nanotube arrays loaded with cobalt oxide nanoparticles (CoO/NBC) with abundant catalytic active sites and oriented structure provide its excellent electrochemical catalytic activities for both oxygen reduction reaction and oxygen evolution reaction. Based on the bifunctional catalyst of CoO/NBC, the developed rechargeable ZABs exhibit a high open-circuit voltage of 1.44 V and a high energy density of 920.0 Wh kg-1, which are superior than commercial Pt/C + RuO2 and most reported non-precious metal catalysts. Furthermore, a trehalose modified polyacrylamide hydrogel electrolytes (trehalose/PAAm) with high moisture-retention has been synthesized to construct flexible ZABs, which not only exhibit outstanding electrochemical performance (1.39 V and 824.8 Wh kg-1), but also show excellent stability even after 400 charge/discharge cycles or being bent to any angle.
Collapse
Affiliation(s)
- Quanhu Sun
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Zilin Chen
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Keyi Dong
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Tian Lv
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Xiao Li
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Dongmei Zhai
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Weiyang Tang
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Tao Chen
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
2
|
Saha T, Mehrotra S, Gupta P, Kumar A. Exosomal miRNA combined with anti-inflammatory hyaluronic acid-based 3D bioprinted hepatic patch promotes metabolic reprogramming in NAFLD-mediated fibrosis. Biomaterials 2025; 318:123140. [PMID: 39892017 DOI: 10.1016/j.biomaterials.2025.123140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 01/03/2025] [Accepted: 01/23/2025] [Indexed: 02/03/2025]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a complex metabolic disorder, where the underlying molecular mechanisms are mostly not well-understood and therefore, warrants the need for therapeutic interventions targeting several metabolic pathways as a unified response. Of late, promising outcomes have been observed with mesenchymal stem cell-derived exosomes. However, reduced bioavailability due to systemic delivery and the need for repeated fresh isolation hinders their feasibility for clinical applications. In this regard, an 'off-the-shelf' 3D bioprinted hyaluronic acid-based hepatic patch to deliver encapsulated exosomes alone/or with hepatocytes (as dual-therapy) is developed as a holistic approach for ameliorating the disease condition and promoting tissue regeneration. The bioprinted hepatic patch demonstrated sustained and localized release of exosomes (∼82 % in 21 days), and healthy liver tissue-like mechanical properties while being biocompatible and biodegradable. Assessment in NAFLD rat models displayed alleviation of the altered biochemical parameters such as fat deposition, deranged liver functions, disrupted lipid, glucose, and insulin metabolism along with a reduction in localized inflammation, and associated liver fibrosis. The study suggests that a synergistic effect between the miRNA population of released exosomes, cell therapy, and the bioprinted matrix materials is crucial in targeting multiple complex metabolic pathways associated with the severity of the disease.
Collapse
Affiliation(s)
- Triya Saha
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India
| | - Shreya Mehrotra
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India; Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India.
| | - Purva Gupta
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India
| | - Ashok Kumar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India; Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India; The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India; Centre for Nanosciences, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India; Centre of Excellence for Materials in Medicine, Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India.
| |
Collapse
|
3
|
Tang L, Huang Y, Wang Y, Zhao J, Lian H, Dong Y, Zhang Z, Hasebe Y. Highly stretchable, adhesive and conductive hydrogel for flexible and stable bioelectrocatalytic sensing layer of enzyme-based amperometric glucose biosensor. Bioelectrochemistry 2025; 163:108882. [PMID: 39671904 DOI: 10.1016/j.bioelechem.2024.108882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/30/2024] [Accepted: 12/04/2024] [Indexed: 12/15/2024]
Abstract
Highly stretchable, adhesive and conductive triblock hydrogel was synthesized and utilized as a flexible and stable bioelectrocatalytic sensing layer of enzyme-based amperometric glucose biosensor. The hydrogel was prepared through one-pot polymerization of 2-acrylamido-2-methyl-1-propanesulfonic acid, methacrylamide, and hydroxyethyl methacrylate. The physical and chemical properties of the hydrogel were characterized with X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy and electrochemical techniques. Glucose oxidase (GOx) and chitosan (CTS) embedded hydrogel was drop-coated on glassy carbon electrode (GCE) and screen printed graphite electrode (SPGE). The resulting GOx/CTS/hydrogel-GCE and GOx/CTS/hydrogel-SPGE exhibited excellent mediated bioelectrocatalytic oxidation current for glucose. The calibration curve of glucose by the GOx/CTS/hydrogel-GCE showed the linear range from 0.25 to 15 mM with the sensitivity of 27.0 µA mM-1 cm-2. This GOx/CTS/hydrogel-based sensing layer coated on the SPGE was stable against bending, and the response to glucose was almost same irrespective of the bending angles (0, 30, 60, and 90 degree). In addition, the response to glucose was not interfered by various organic and inorganic interfering species, allowed to detect glucose in goat serum. Furthermore, the GOx/CTS/hydrogel-GCE kept its original activity of 99.64 % during 30 days' storage under dry state in refrigerator.
Collapse
Affiliation(s)
- Linghui Tang
- School of Chemical Engineering, University of Science and Technology Liaoning, 189 Qianshan Middle Road, High-Tech Zone, Anshan, Liaoning 114051, China
| | - Yufeng Huang
- School of International Education, University of Science and Technology Liaoning, 189 Qianshan Middle Road, High-Tech Zone, Anshan, Liaoning 114051, China
| | - Yue Wang
- School of Chemical Engineering, University of Science and Technology Liaoning, 189 Qianshan Middle Road, High-Tech Zone, Anshan, Liaoning 114051, China.
| | - Jifan Zhao
- School of Chemical Engineering, University of Science and Technology Liaoning, 189 Qianshan Middle Road, High-Tech Zone, Anshan, Liaoning 114051, China
| | - Huiyong Lian
- School of International Education, University of Science and Technology Liaoning, 189 Qianshan Middle Road, High-Tech Zone, Anshan, Liaoning 114051, China
| | - Yan Dong
- School of Chemical Engineering, University of Science and Technology Liaoning, 189 Qianshan Middle Road, High-Tech Zone, Anshan, Liaoning 114051, China.
| | - Zhiqiang Zhang
- School of Chemical Engineering, University of Science and Technology Liaoning, 189 Qianshan Middle Road, High-Tech Zone, Anshan, Liaoning 114051, China
| | - Yasushi Hasebe
- Department of Life Science and Green Chemistry, Faculty of Engineering, Saitama Institute of Technology, 1690, Fusaiji, Fukaya, Saitama 369-0293, Japan.
| |
Collapse
|
4
|
Gu W, Ye X, Xie X, Tan B, Qi T, Liao J. Bilayer hydrogel microneedles with mild photothermal effect promote infectious skin regeneration. J Mater Chem B 2025. [PMID: 40434095 DOI: 10.1039/d5tb00319a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2025]
Abstract
The misuse of antibiotics and the development of bacterial resistance remain "bottlenecks" in the treatment of infected wounds. Photothermal therapy (PTT) is a new type of non-invasive treatment technology; as the temperature increases, the survival rate of bacteria decreases. When the photothermal temperature rises approximately or over 50 °C, it may cause irreversible damage to normal tissues, which is detrimental to collagen deposition and blood vessel formation, and even affects the healing effect. So we used a strategy combining mild photothermal therapy (MPTT) (approximately 45 °C) and drug release to improve the microenvironment of wound infection and promote repair of skin defects. Therefore, we innovatively designed a bilayer hydrogel microneedle (FG MN) with the chitosan/aldoxylated polyethylene glycol/sodium alginate/Cu2+ (CPSC) hydrogel baseplate, meanwhile, the drug 5-fluorouracil (5-FU) and photothermal gold nanorods (GNRs) were introduced into the needle tips. The upper hydrogel substrate induced tissue regeneration and the lower needle tips dissolved quickly to facilitate drug delivery. After 5 minutes of laser irradiation using 808 nm near-infrared (NIR), the temperature of FG MNs increased, which triggered the release of 5-FU. In vitro, they achieved 99% antimicrobial efficiency and biofilm inhibition, as well as significant pro-angiogenic ability. Meanwhile, they showed accelerated wound healing, promotion of granulation tissue neogenesis and collagen deposition in animal models of infected wounds in vivo. Thus, this study presents an advanced delivery system with light-triggered antimicrobial activity, which provides new inspiration for the treatment of infected wounds in a reparative manner.
Collapse
Affiliation(s)
- Wanrong Gu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Xiuwen Ye
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Xi Xie
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Bowen Tan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Tingting Qi
- Department of Pharmacy, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, 610041, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center, Chengdu, 610041, China
| | - Jinfeng Liao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
5
|
Su G, Peng J, Li L, Chen Z, Xin Z, Feng J, Zhou Y, Zhao Y, Lu Z, Sun M, Zhou T, Rao H. Load-Bearing Organogels: Hierarchical Anisotropic Composite Structure for High Mechanical Toughness and Antifatigue-Fracture Capability under Extreme Conditions. ACS NANO 2025; 19:16760-16774. [PMID: 40273305 DOI: 10.1021/acsnano.5c01482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Gels with excellent mechanical properties and antifatigue-fracture capability are attractive materials for load-bearing applications; however, at extreme temperatures, they still suffer from catastrophic failure caused by freezing- or dehydration-induced crack propagation. Here, we present a series of hierarchical anisotropic composite organogels that are strong yet tough and antifatigue-fracture over a wide temperature range (-30 to 60 °C) through the combination strategies of freezing-casting, annealing, and solvent exchange with polyols. Such a hybrid design endows the gels with anisotropic and hierarchical structures and excellent tolerance to extreme temperatures, thus guaranteeing efficient energy dissipation and crack propagation resistance under both ambient and harsh conditions. For instance, the organogel obtained via solvent exchange with glycerol exhibited high strength (22.6 MPa), toughness (198.0 MJ/m3), fatigue threshold (6.92 kJ/m2), and particularly, a superhigh fracture energy (665.7 kJ/m2), which is even higher than anhydrous elastomers, metals, and alloys. Importantly, these values were further boosted at extreme temperatures, such as fatigue thresholds of 8.01 and 9.77 kJ/m2 at -30 and 60 °C, respectively. This work offers an attractive strategy for fabricating gel materials that are reliable for load-bearing applications under extreme conditions.
Collapse
Affiliation(s)
- Gehong Su
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, China
- National Key Laboratory of Advanced Polymer Materials, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Junjie Peng
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, China
| | - Lan Li
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, China
| | - Zhishuo Chen
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, China
| | - Zhijiang Xin
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, China
| | - Jin Feng
- National Key Laboratory of Advanced Polymer Materials, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Yaping Zhou
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, China
| | - Yongpeng Zhao
- College of Mechanical and Electrical Engineering, Sichuan Agricultural University, Ya'an 625014, China
| | - Zhiwei Lu
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, China
| | - Mengmeng Sun
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, China
| | - Tao Zhou
- National Key Laboratory of Advanced Polymer Materials, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Hanbing Rao
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, China
| |
Collapse
|
6
|
Wang Y, Huang Z, Li C, Dai O, Li M, Liu C, Hong W, Lei X, Wei H, Zhou T, Tong C, Qiu C, Pang J. Design and applications of antifreeze polysaccharide-based hydrogels for cryoprotection and biotechnological advancements: A review. Int J Biol Macromol 2025; 310:143317. [PMID: 40254201 DOI: 10.1016/j.ijbiomac.2025.143317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 04/11/2025] [Accepted: 04/16/2025] [Indexed: 04/22/2025]
Abstract
Polysaccharide-based hydrogels possess desirable characteristics such as flexibility, biocompatibility, and biodegradability. Nevertheless, these hydrogels frequently lose their inherent traits and functionality under low-temperature circumstances, which significantly restricts their potential applications in cold environments. Antifreeze hydrogels provide a promising solution to this challenge by maintaining their properties at cold temperatures, showcasing remarkable advantages. This review commences with a bibliometric analysis via VOS Viewer to acquire a comprehensive comprehension of the development tendencies in antifreeze hydrogels. It subsequently summarizes diverse antifreeze mechanisms in polysaccharide-based hydrogels, encompassing solute ion modification, organic alcohol modification, ion gels, eutectic gels, and intrinsic antifreeze properties through molecular chain polymerization. Additionally, the review explores the applications of antifreeze hydrogels in food preservation, flexible wearable devices, and energy storage. Finally, the future directions for the development of antifreeze polysaccharide-based hydrogels are deliberated, with an emphasis on the utilization of natural polysaccharide resources to create hydrogels that integrate antifreeze performance, mechanical properties, and stability, thereby facilitating advancements in related industries.
Collapse
Affiliation(s)
- Yueguang Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zifeng Huang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Charlie Li
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, CA, USA
| | - Oujun Dai
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Meining Li
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chengchu Liu
- University of Maryland-UME Sea Grant Extension Program, College Park, MD 20742, USA
| | - Wanxin Hong
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xin Lei
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hanyu Wei
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Taoyi Zhou
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Cailing Tong
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Chao Qiu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Jie Pang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
7
|
Xue L, An R, Zhao J, Qiu M, Wang Z, Ren H, Yu D, Zhu X. Self-Healing Hydrogels: Mechanisms and Biomedical Applications. MedComm (Beijing) 2025; 6:e70181. [PMID: 40276645 PMCID: PMC12018771 DOI: 10.1002/mco2.70181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 03/15/2025] [Accepted: 03/25/2025] [Indexed: 04/26/2025] Open
Abstract
Hydrogels have emerged as dependable candidates for tissue repair because of their exceptional biocompatibility and tunable mechanical properties. However, conventional hydrogels are vulnerable to damage owing to mechanical stress and environmental factors that compromise their structural integrity and reduce their lifespan. In contrast, self-healing hydrogels with their inherent ability to restore structure and function autonomously offer prolonged efficacy and enhanced appeal. These hydrogels can be engineered into innovative forms including stimulus-responsive, self-degradable, injectable, and drug-loaded variants, thereby enhancing their applicability in wound healing, drug delivery, and tissue engineering. This review summarizes the categories and mechanisms of self-healing hydrogels, along with their biomedical applications, including tissue repair, drug delivery, and biosensing. Tissue repair includes wound healing, bone-related repair, nerve repair, and cardiac repair. Additionally, we explored the challenges that self-healing hydrogels continue to face in tissue repair and presented a forward-looking perspective on their development. Consequently, it is anticipated that self-healing hydrogels will be progressively designed and developed for applications that extend beyond tissue repair to a broader range of biomedical applications.
Collapse
Affiliation(s)
- Lingling Xue
- Department of Hepatobiliary SurgeryHepatobiliary InstituteNanjing Drum Tower HospitalMedical SchoolNanjing UniversityNanjingChina
| | - Ran An
- Department of Hepatobiliary SurgeryHepatobiliary InstituteNanjing Drum Tower HospitalMedical SchoolNanjing UniversityNanjingChina
| | - Junqi Zhao
- Department of Hepatobiliary SurgeryHepatobiliary InstituteNanjing Drum Tower HospitalMedical SchoolNanjing UniversityNanjingChina
| | - Mengdi Qiu
- Department of Hepatobiliary SurgeryHepatobiliary InstituteNanjing Drum Tower HospitalMedical SchoolNanjing UniversityNanjingChina
| | - Zhongxia Wang
- Department of Hepatobiliary SurgeryHepatobiliary InstituteNanjing Drum Tower HospitalMedical SchoolNanjing UniversityNanjingChina
| | - Haozhen Ren
- Department of Hepatobiliary SurgeryHepatobiliary InstituteNanjing Drum Tower HospitalMedical SchoolNanjing UniversityNanjingChina
| | - Decai Yu
- Department of Hepatobiliary SurgeryHepatobiliary InstituteNanjing Drum Tower HospitalMedical SchoolNanjing UniversityNanjingChina
| | - Xinhua Zhu
- Department of Hepatobiliary SurgeryHepatobiliary InstituteNanjing Drum Tower HospitalMedical SchoolNanjing UniversityNanjingChina
| |
Collapse
|
8
|
An B, Cui H, Wang M, Li Z, Li J. Hydrogel tissue adhesive: Adhesion strategy and application. Colloids Surf B Biointerfaces 2025; 253:114755. [PMID: 40344744 DOI: 10.1016/j.colsurfb.2025.114755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2025] [Revised: 04/23/2025] [Accepted: 04/29/2025] [Indexed: 05/11/2025]
Abstract
Hydrogel tissue adhesives have emerged as a promising alternative to conventional wound closure methods such as sutures and staples due to their operational simplicity demonstrated biocompatibility and capacity for multifunctional integration. However, complex and variable tissue microenvironments and dynamic adhesion surfaces still challenge the actual adhesion performance of adhesives, especially natural polymer-based adhesives. In addition, to expand the application of adhesives in biomedical fields, there is an urgent need to further improve tissue adhesion performance through composition design, adhesion mechanism research and bioeffect development. This review focuses on the adhesive properties of adhesives and their applications in biomedical fields. Adhesion-cohesion equilibria, forms of adhesion failure, methods for improving cohesion and various interfacial adhesion mechanisms are presented. Moreover, practical biomedical applications of tissue adhesives are reviewed, focusing on skin, heart, stomach, liver, and cornea. Finally, this review looks ahead to a new generation of multi-functional, strong adhesion tissue adhesives, in the hope of providing inspiration to those working in the field.
Collapse
Affiliation(s)
- Boyuan An
- Henan Eye Hospital, Henan Provincial People's Hospital of Zhengzhou University, Zhengzhou 450003, China; School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Haohao Cui
- Henan Eye Hospital, Henan Provincial People's Hospital of Zhengzhou University, Zhengzhou 450003, China; School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Mengke Wang
- Henan Eye Hospital, Henan Provincial People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Zhanrong Li
- Henan Eye Hospital, Henan Provincial People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Jingguo Li
- Henan Eye Hospital, Henan Provincial People's Hospital of Zhengzhou University, Zhengzhou 450003, China; School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
9
|
Liu W, Tan Y, Peng T, Zeng S, Zhang N, Zhong H, Mai Y. Hydrogel Electrolyte Film with Low-Temperature Adaptability for Flexible Quasi-Solid-State Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2502243. [PMID: 40296501 DOI: 10.1002/smll.202502243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/05/2025] [Indexed: 04/30/2025]
Abstract
Considering the merits and shortcomings of conventional hydrogels in terms of low-temperature adaptability, a new type of hydrogel electrolyte, reinforced by hydrogen bonding and containing just 6.8% water, is fabricated. This hydrogel film exhibits a high ionic conductivity of 3.9 mS cm-1 at room temperature and maintains its flexibility even at -40 °C. The hydrogel-based quasi-solid-state cell shows good cyclic stability performance, retaining 80.3% of its initial capacity after 800 cycles. Furthermore, it performs well in sub-zero conditions, retaining 89.6% of its capacity at -30 °C (0.5C) and releasing 56.4 mAh g-1 at -40 °C (0.1C). Notably, the cyclic stability of the LTE-based flexible full cell maintains well even under 180° bending and 15% stretching. This can be attributed to the polymer network with hydrophilic groups, which disrupts the hydrogen-bond networks of original water molecules and forms abundant new hydrogen bonding interactions between the polymer chains and water molecules. These interactions are crucial for improving low-temperature adaptability. Overall, this work offers a promising approach to creating low-temperature adaptable hydrogels that can be used to develop wearable energy-storage devices.
Collapse
Affiliation(s)
- Wei Liu
- Institute of New Energy Technology, College of Physics and Optoelectronic Engineering, Jinan University, Guangzhou, 510006, China
| | - Yingxiang Tan
- Institute of New Energy Technology, College of Physics and Optoelectronic Engineering, Jinan University, Guangzhou, 510006, China
| | - Tao Peng
- Institute of New Energy Technology, College of Physics and Optoelectronic Engineering, Jinan University, Guangzhou, 510006, China
| | - Shuaibo Zeng
- Guangdong Polytechnic Normal University, Guangzhou, 510632, China
| | - Nan Zhang
- Institute of New Energy Technology, College of Physics and Optoelectronic Engineering, Jinan University, Guangzhou, 510006, China
| | - Hai Zhong
- Institute of New Energy Technology, College of Physics and Optoelectronic Engineering, Jinan University, Guangzhou, 510006, China
| | - Yaohua Mai
- Institute of New Energy Technology, College of Physics and Optoelectronic Engineering, Jinan University, Guangzhou, 510006, China
| |
Collapse
|
10
|
Shakouripour F, Olad A, Bayramoglu G. Preparation of interpenetrating networks from chitosan and poly(hydroxypropyl methacrylate) or p(hydroxyethyl methacrylate) for controlled release of doxorubicin and curcumin: Investigation of potential use in wound dressing. Int J Biol Macromol 2025; 301:140929. [PMID: 39947546 DOI: 10.1016/j.ijbiomac.2025.140929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 01/26/2025] [Accepted: 02/10/2025] [Indexed: 02/26/2025]
Abstract
The IPNs hydrogel films based on chitosan (CS), 2-hydroxyethyl methacrylate (HEMA), and 2-hydroxypropyl methacrylate (HPMA) were prepared, and their potential for drug delivery and wound dressing was evaluated. The characterizations of the IPNs were examined through swelling tests, FTIR, DSC, SEM, mechanical properties, and BET analyses. The percent swelling of the CS/p(HEMA)1 and CS/p(HPMA)1 were obtained as 240 % and 110 %, respectively. The release behavior of prepared hydrogel formulations was investigated in two different pH values for DOX and CUR at pH 5.5 and 7.4, respectively, at varying drug concentrations. In vitro, drug release profiles revealed a time-dependent release pattern, with a maximum release observed at 48 h for all formulations. Among the IPNs, CS/p(HEMA)1 formulation containing CS/HEMA in a 1:1 ratio showed the highest drug release rates of 76.0 % for doxorubicin and 75.5 % for curcumin. MTT assays revealed that the IPNs formulations exhibit enhanced interaction with drugs, leading to an improved drug release rate. A marked decrease in cell viability was observed as the concentration of both drugs increased for testing the ATCC-CRL 2451 leukemia cell line in the prepared formulations. These findings highlight the potential of these composite hydrogels as efficient drug delivery systems for wound dressing applications.
Collapse
Affiliation(s)
- Fatemeh Shakouripour
- Biochemical Processing and Biomaterial Research Laboratory, Gazi University, 06500 Teknikokullar, Ankara, Turkey; Polymer Composite Research Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Ali Olad
- Polymer Composite Research Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Gulay Bayramoglu
- Biochemical Processing and Biomaterial Research Laboratory, Gazi University, 06500 Teknikokullar, Ankara, Turkey; Department of Chemistry, Faculty of Sciences, Gazi University, 06500 Teknikokullar, Ankara, Turkey.
| |
Collapse
|
11
|
Tang B, Hu J, Zhao Z, Li S, Lv H, Yang X. Puncture-resistant hydrogels with high mechanical performance achieved by the supersaturated salt. MATERIALS HORIZONS 2025. [PMID: 40145232 DOI: 10.1039/d4mh01862a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
Sufficient mechanical performance is the basic requirement for load-bearing and damage-resistant materials. However, the simultaneous optimization of mechanical properties is usually difficult in a single hydrogel. Herein, a supersaturated salt was employed to enhance the mechanical performance and damage resistance of hydrogels. By immersing the pre-formed hydrogel based on hydrophobic associations into supersaturated Na2SO4 solution (3.3 M), high-density and strong hydrophobic associations were constructed simultaneously in the network due to the contraction of hydrophilic chains and improvement of hydrophobic associations. Compared to the pristine hydrogel, this salt-treated hydrogel was transparent and showed a simultaneous enhancement in stiffness (E of 253 ± 7 MPa), strength (σ of 12.65 ± 0.07 MPa), and toughness (Γ of 19.6 ± 3.2 MJ m-3). It also displayed remarkable puncture and tear resistance with a puncture force of 66 N, a puncture energy of 370 mJ, and a tearing energy of 34 kJ m-2. This work provides a simple method to simultaneously optimize the contradictory mechanical properties and puncture resistance in a single hydrogel.
Collapse
Affiliation(s)
- Bo Tang
- State Key Laboratory of Polymer Science and Technology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Jinzhai Road No 96, Hefei, 230026, P. R. China
| | - Jian Hu
- State Key Laboratory of Polymer Science and Technology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Jinzhai Road No 96, Hefei, 230026, P. R. China
| | - Zijian Zhao
- State Key Laboratory of Polymer Science and Technology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Jinzhai Road No 96, Hefei, 230026, P. R. China
| | - Shuo Li
- State Key Laboratory of Polymer Science and Technology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Jinzhai Road No 96, Hefei, 230026, P. R. China
| | - Hongying Lv
- State Key Laboratory of Polymer Science and Technology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.
| | - Xiaoniu Yang
- State Key Laboratory of Polymer Science and Technology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Jinzhai Road No 96, Hefei, 230026, P. R. China
| |
Collapse
|
12
|
Zhang X, Li D, Yang X, Wang L, Li G, Wong TW, Li T, Yang W, Luo Z. Hydro-locking in hydrogel for extreme temperature tolerance. Science 2025; 387:967-973. [PMID: 40014727 DOI: 10.1126/science.adq2711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/28/2024] [Accepted: 01/03/2025] [Indexed: 03/01/2025]
Abstract
Hydrogels consist of cross-linked polymers that are highly swollen with water. Water evaporation or freezing during temperature changes may lead to stiff and brittle hydrogels. We introduce a strategy called "hydro-locking," which involves immobilizing the water molecules within the polymer network of the hydrogel. This is accomplished by establishing robust connections between water molecules and the polymer by using sulfuric acid. A sacrificial network is introduced to shield the prime polymer network from collapsing. Under the hydro-locking mode, an alginate-polyacrylamide double-network hydrogel remains soft and stretchable within a temperature range that spans from -115° to 143°C. The strategy works with a range of hydrogels and solutions and may enable the preservation and observation of materials or even living organisms at extreme temperatures.
Collapse
Affiliation(s)
- Xiaochen Zhang
- College of Biosystems Engineering and Food Science, Key Laboratory of Ago-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
| | - Dong Li
- College of Biosystems Engineering and Food Science, Key Laboratory of Ago-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
| | - Xuxu Yang
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou, China
- State Key Laboratory of Fluid Power and Mechatronic Systems, Hangzhou, China
- Innovation Center for Postharvest Agro-Products Technology, Zhejiang University, Hangzhou, China
- Institute of Fundamental and Transdisciplinary Research, Zhejiang University, Hangzhou, China
| | - Lei Wang
- College of Biosystems Engineering and Food Science, Key Laboratory of Ago-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
| | - Guo Li
- College of Biosystems Engineering and Food Science, Key Laboratory of Ago-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
| | - Tuck-Whye Wong
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou, China
| | - Tiefeng Li
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou, China
- State Key Laboratory of Fluid Power and Mechatronic Systems, Hangzhou, China
- Institute of Fundamental and Transdisciplinary Research, Zhejiang University, Hangzhou, China
| | - Wei Yang
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou, China
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science, Key Laboratory of Ago-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
- Innovation Center for Postharvest Agro-Products Technology, Zhejiang University, Hangzhou, China
| |
Collapse
|
13
|
Wang S, Yu Z, Sun X, Panahi‐Sarmad M, Yang P, Zhu P, Zhu Y, Liu H, Jiang F. A Universal Strategy to Mitigate Microphase Separation via Cellulose Nanocrystal Hydration in Fabricating Strong, Tough, and Fatigue-Resistant Hydrogels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2416916. [PMID: 39969391 PMCID: PMC11837898 DOI: 10.1002/adma.202416916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/18/2024] [Indexed: 02/20/2025]
Abstract
As a common natural phenomenon, phase separation is exploited for the development of high-performance hydrogels. Using supersaturated salt to create microphase-separated hydrogels with strengthened mechanical properties has gained widespread attention. However, such strengthened hydrogel loses its intrinsic flexibility, making the phase separation strategy unsuitable for the fabrication of stretchable and tough hydrogels. Here, a phase-engineering design strategy is introduced to produce stretchable yet tough hydrogels using supersaturated NaAc salt, by leveraging the hydration effect of cellulose nanocrystal (CNC) to mitigate microphase separation. The CNC-mitigated microphase-separated hydrogel presents unprecedented mechanical properties, for example, tensile strength of 1.8 MPa with a fracture strain of 4730%, toughness of 43.1 MJ m-3, fracture energy of 75.4 kJ m-2, and fatigue threshold up to 3884.7 J m-2. Furthermore, this approach is universal in synthesizing various microphase separation-enhanced polymer gels, including polyacrylic acid, poly(acrylic acid-co-acrylamide), gelatin, and alginate. These advancements provide insights into the incorporation of CNC-mediated microphase separation structures in hydrogels, which will foster the future development of high-performance soft materials.
Collapse
Affiliation(s)
- Siheng Wang
- Key Laboratory of Biomass Energy and MaterialJiangsu Province; Key Laboratory of Chemical Engineering of Forest ProductsNational Forestry and Grassland AdministrationNational Engineering Research Center of Low‐Carbon Processing and Utilization of Forest Biomass; Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest ResourcesInstitute of Chemical Industry of Forest ProductsChinese Academy of ForestryNanjing210042China
- Sustainable Functional Biomaterials LaboratoryBioproducts InstituteDepartment of Wood ScienceUniversity of British ColumbiaVancouverBCV6T 1Z4Canada
| | - Zhengyang Yu
- Sustainable Functional Biomaterials LaboratoryBioproducts InstituteDepartment of Wood ScienceUniversity of British ColumbiaVancouverBCV6T 1Z4Canada
| | - Xia Sun
- Sustainable Functional Biomaterials LaboratoryBioproducts InstituteDepartment of Wood ScienceUniversity of British ColumbiaVancouverBCV6T 1Z4Canada
| | - Mahyar Panahi‐Sarmad
- Sustainable Functional Biomaterials LaboratoryBioproducts InstituteDepartment of Wood ScienceUniversity of British ColumbiaVancouverBCV6T 1Z4Canada
| | - Pu Yang
- Sustainable Functional Biomaterials LaboratoryBioproducts InstituteDepartment of Wood ScienceUniversity of British ColumbiaVancouverBCV6T 1Z4Canada
| | - Penghui Zhu
- Sustainable Functional Biomaterials LaboratoryBioproducts InstituteDepartment of Wood ScienceUniversity of British ColumbiaVancouverBCV6T 1Z4Canada
| | - Yeling Zhu
- Sustainable Functional Biomaterials LaboratoryBioproducts InstituteDepartment of Wood ScienceUniversity of British ColumbiaVancouverBCV6T 1Z4Canada
| | - He Liu
- Key Laboratory of Biomass Energy and MaterialJiangsu Province; Key Laboratory of Chemical Engineering of Forest ProductsNational Forestry and Grassland AdministrationNational Engineering Research Center of Low‐Carbon Processing and Utilization of Forest Biomass; Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest ResourcesInstitute of Chemical Industry of Forest ProductsChinese Academy of ForestryNanjing210042China
| | - Feng Jiang
- Sustainable Functional Biomaterials LaboratoryBioproducts InstituteDepartment of Wood ScienceUniversity of British ColumbiaVancouverBCV6T 1Z4Canada
| |
Collapse
|
14
|
Zhang X, Lin Y, Shen S, Du Z, Lin Z, Zhou P, Huang H, Lyu X, Zou Z. Intrinsic Anti-Freezing, Tough, and Transparent Hydrogels for Smart Optical and Multi-Modal Sensing Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2413856. [PMID: 39780553 DOI: 10.1002/adma.202413856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/24/2024] [Indexed: 01/11/2025]
Abstract
Hydrogels have received great attention due to their molecular designability and wide application range. However, they are prone to freeze at low temperatures due to the existence of mass water molecules, which can damage their flexibility and transparency, greatly limiting their use in cold environments. Although adding cryoprotectants can reduce the freezing point of hydrogels, it may also deteriorate the mechanical properties and face the risk of cryoprotectant leakage. Herein, the microphase-separated structures of hydrogels are regulated to confine water molecules in sub-6 nm nanochannels and increase the proportion of bound water, endowing the hydrogels with intrinsic anti-freezing properties, high mechanical strength, good stretchability, remarkable fracture energy, and puncture resistance. Even after being kept in liquid nitrogen for 1000 h, the hydrogel still maintains good transparency. The hydrogel can exhibit excellent low-temperature shape memory and intelligent optical waveguide properties. Additionally, the hydrogel can be assembled into strain and pressure sensors for flexible sensing at both room and low temperatures. The intrinsically anti-freezing microphase-separated hydrogel offers broad prospects in low-temperature electronic and optical applications.
Collapse
Affiliation(s)
- Xinyue Zhang
- Key Laboratory of Advanced Materials Technologies, International (HongKong Macao and Taiwan) Joint Laboratory on Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Ye Lin
- Key Laboratory of Advanced Materials Technologies, International (HongKong Macao and Taiwan) Joint Laboratory on Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Shengtao Shen
- Key Laboratory of Advanced Materials Technologies, International (HongKong Macao and Taiwan) Joint Laboratory on Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Zehang Du
- Key Laboratory of Advanced Materials Technologies, International (HongKong Macao and Taiwan) Joint Laboratory on Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Ziqing Lin
- Key Laboratory of Advanced Materials Technologies, International (HongKong Macao and Taiwan) Joint Laboratory on Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Piaopiao Zhou
- Department of Critical Care Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, China
| | - Hanlin Huang
- Key Laboratory of Advanced Materials Technologies, International (HongKong Macao and Taiwan) Joint Laboratory on Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, China
| | - Xiaolin Lyu
- Key Laboratory of Advanced Materials Technologies, International (HongKong Macao and Taiwan) Joint Laboratory on Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, China
| | - Zhigang Zou
- Key Laboratory of Advanced Materials Technologies, International (HongKong Macao and Taiwan) Joint Laboratory on Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, China
- Eco-materials and Renewable Energy Research Center, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
15
|
Xie J, Yue C, Chen S, Jiang Z, Wu S, Yang W, Zhang K, Chen T, Wang Y, Lu W. Electrothermally powered synergistic fluorescence-colour/3D-shape changeable polymer gel systems for rewritable and programmable information display. MATERIALS HORIZONS 2025; 12:487-498. [PMID: 39480658 DOI: 10.1039/d4mh01172d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Intelligent luminescent materials for rewritable and programmable information display have long been expected to be used to address potential environmental concerns stemming from the extensive use of disposable displays. However, most reported luminescence-colour changeable examples are chemically responsive and not well programmed to sequentially deliver different information within a single system. Additionally, they may suffer from residual chemical accumulation caused by the repeated addition of chemical inks and usually have poor rewritability. Herein, we draw inspiration from the bioelectricity-triggered information display mechanism of chameleon skin to report a robust electrothermally powered polymer gel actuator consisting of one soft conductive graphene/PDMS film and one humidity-responsive fluorescence-colour changeable CD-functionalized polymer (PAHCDs) gel layer. Owing to the good electrocaloric effect of the bottom graphene film and excellent hygroscopicity of the top PAHCDs gel layer, the as-designed actuator could be facilely controlled to exhibit reversible and synergistic 3D-shape/fluorescence-colour changeable behaviours in response to alternating electricity and humidity stimuli. On this basis, robust rewritable information display systems are fabricated, which enable not only on-demand delivery of written information, but also facile rewriting of lots of different information by the synergization of electroheat/humidity-triggered local 3D-deformation and fluorescence-colour changes. This work opens new avenues of research into rewritable information display and potentially inspires the future development of intelligent luminescent materials.
Collapse
Affiliation(s)
- Junni Xie
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, People's Republic of China
| | - Chaojun Yue
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China.
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, People's Republic of China
| | - Shaohuang Chen
- Sustainable Materials and Chemistry, Department of Wood Technology and Wood-based Composites, University of Göttingen, Göttingen 37077, Germany.
| | - Zhenyi Jiang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, People's Republic of China
| | - Shuangshuang Wu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, People's Republic of China
| | - Weiqing Yang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, People's Republic of China
| | - Kai Zhang
- Sustainable Materials and Chemistry, Department of Wood Technology and Wood-based Composites, University of Göttingen, Göttingen 37077, Germany.
| | - Tao Chen
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, People's Republic of China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology Ministry of Education, Hangzhou Normal University, Hangzhou 311121, People's Republic of China
| | - Yunan Wang
- Zhejiang Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 Zhongguan Road, Ningbo 315201, People's Republic of China.
| | - Wei Lu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, People's Republic of China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology Ministry of Education, Hangzhou Normal University, Hangzhou 311121, People's Republic of China
| |
Collapse
|
16
|
Zhang J, Zhang M, Wan H, Zhou J, Lu A. Coordinatively stiffen and toughen polymeric gels via the synergy of crystal-domain cross-linking and chelation cross-linking. Nat Commun 2025; 16:320. [PMID: 39746978 PMCID: PMC11695677 DOI: 10.1038/s41467-024-55245-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 12/05/2024] [Indexed: 01/04/2025] Open
Abstract
Polymer gels have been widely used in flexible electronics, soft machines and impact protection materials. Conventional gels usually suffer from the inherent conflict between stiffness and toughness, severely hampering their applications. This work proposes a facile yet versatile strategy to break through this trade-off via the synergistic effect of crystal-domain cross-linking and chelation cross-linking, without the need for specific structure design or adding other reinforcements. Both effects are proven to boost the mechanical performance of the originally weak gel, and result in a stiff and tough conductive gel, achieving significant enhancements in elastic modulus and toughness by up to 366-, and 104-folds, respectively. The resultant gel achieves coordinatively enhanced stiffness (110.26 MPa) and toughness (219.93 MJ m-3), reconciling the challenging trade-off between them. In addition, the presented strategy is found generalizable to a variety of metal ions and polymers, offering a promising way to expand the applicability of gels.
Collapse
Affiliation(s)
- Jipeng Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Miaoqian Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Huixiong Wan
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Jinping Zhou
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Ang Lu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, People's Republic of China.
| |
Collapse
|
17
|
Gu Y, Xu C, Wang Y, Luo J, Shi D, Wu W, Chen L, Jin Y, Jiang B, Chen C. Compressible, anti-fatigue, extreme environment adaptable, and biocompatible supramolecular organohydrogel enabled by lignosulfonate triggered noncovalent network. Nat Commun 2025; 16:160. [PMID: 39747042 PMCID: PMC11696470 DOI: 10.1038/s41467-024-55530-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 12/16/2024] [Indexed: 01/04/2025] Open
Abstract
Achieving a synergy of biocompatibility and extreme environmental adaptability with excellent mechanical property remains challenging in the development of synthetic materials. Herein, a "bottom-up" solution-interface-induced self-assembly strategy is adopted to develop a compressible, anti-fatigue, extreme environment adaptable, biocompatible, and recyclable organohydrogel composed of chitosan-lignosulfonate-gelatin by constructing noncovalent bonded conjoined network. The ethylene glycol/water solvent induced lignosulfonate nanoparticles function as bridge in chitosan/gelation network, forming multiple interfacial interactions that can effectively dissipate energy. The organohydrogel exhibits high compressive strength (54 MPa) and toughness (3.54 MJ/m3), 100 and 70 times higher than those of pure chitosan/gelatin hydrogel, meanwhile, excellent self-recovery and fatigue resistance properties. Even when subjected to severe compression up to a strain of 0.5 for 500,000 cycles, the organohydrogel still remains intact. This organohydrogel also demonstrates notable biocompatibility both in vivo and vitro, environment adaptability at low temperature, as well as recyclability. Such all natural organohydrogel provides a promising route towards the development of high-performance load-bearing materials.
Collapse
Affiliation(s)
- Yihui Gu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China
- Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Hubei Provincial Engineering Research Center of Emerging Functional Coating Materials, School of Resource and Environmental Sciences, Wuhan University, Wuhan, 430079, China
| | - Chao Xu
- Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Hubei Provincial Engineering Research Center of Emerging Functional Coating Materials, School of Resource and Environmental Sciences, Wuhan University, Wuhan, 430079, China
| | - Yilin Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Jing Luo
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Dongsheng Shi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Wenjuan Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Lu Chen
- Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Hubei Provincial Engineering Research Center of Emerging Functional Coating Materials, School of Resource and Environmental Sciences, Wuhan University, Wuhan, 430079, China
| | - Yongcan Jin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| | - Bo Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| | - Chaoji Chen
- Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Hubei Provincial Engineering Research Center of Emerging Functional Coating Materials, School of Resource and Environmental Sciences, Wuhan University, Wuhan, 430079, China.
| |
Collapse
|
18
|
Lee J, Kim S, Kim JW, Kim J, Choi Y, Park M, Kim DS, Lee H, Kim S, Kim Y, Ha JS. Self-Healing and Antifreezing/Antidrying Conductive Eutectohydrogel-Based Biosignal Monitoring Multisensors with Integrated Supercapacitor. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409365. [PMID: 39574407 DOI: 10.1002/smll.202409365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Indexed: 01/23/2025]
Abstract
A novel self-healing and antifreezing/antidrying conductive eutectohydrogel, ideal for wearable multifunctional sensors and supercapacitors, is reported. Conductive eutectohydrogel with self-healing and facilely tunable mechanical performance is obtained by incorporation of trehalose and phytic acid as reversible cross-linkers into a polyacrylamide network, forming the dynamic hydrogen bonding and electrostatic interactions. Furthermore, combined use of deep eutectic solvent with water ensures the air stability as well as the antifreezing/antidrying characteristics. The synthesized eutectohydrogel exhibits a self-healing efficiency of 90.7% after 24 h at room temperature, Young's modulus of 140.9 kPa, and strain at break of 352.8%. With the eutectohydrogel as a versatile platform, self-healing strain and temperature sensors, electrocardiogram electrodes, and supercapacitor are fabricated, recovering the device performance after self-healing from complete bisection and exhibiting stable performance over a wide temperature range from -20 to 50 °C. With a vertically integrated patch device of supercapacitor and strain sensor attached onto skin, various body movements are successfully detected using the energy stored in the supercapacitor, without performance degradation even after self-healing from complete bisection of the full patch device. This work demonstrates high potential application of the synthesized eutectohydrogel to flexible wearable devices featuring durability and longevity.
Collapse
Affiliation(s)
- Jinyoung Lee
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Somin Kim
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Jung Wook Kim
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Jiyoon Kim
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Yeonji Choi
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Mihyeon Park
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Dong Sik Kim
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Hanchan Lee
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Seojin Kim
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Yongju Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Jeong Sook Ha
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| |
Collapse
|
19
|
Ma Q, Xiong J, Zhou Y, Zhang S, Wang J, Li W, Zou X, Yan F. Predicting Fatigue Damage in Hydrogels Through Force-Induced Luminescence Enhancement. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2413874. [PMID: 39520329 DOI: 10.1002/adma.202413874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Fatigue damage of polymers occurs under long-term load cycling, resulting in irreversible fracture failure, which is difficult to predict. The real-time monitoring of material fatigue damage is of great significance. Here, tough hydrogels are prepared with force-induced confined luminescence enhancement of carbonated polymer quantum dot (CPD) clusters to realize the visualization of fracture process and the monitoring of fatigue damage. The enhanced interactions induced by force between the clusters and the polymer in the confined space inhibit the non-radiative leaps and promote the radiative leaps to quantify the fatigue damage into optical signals. Rigid CPDs with abundant active sites on the surface can form dynamic reversible bonds with polymer and dissipate stress concentration, which significantly enhances the crack propagation strain (8000%) and fracture energy (26.4 kJ m-2) of hydrogels. CPD hydrogels have a wide range of applications in novel information encryption and luminescent robotics.
Collapse
Affiliation(s)
- Qi Ma
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Jiaofeng Xiong
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Yawen Zhou
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Shilong Zhang
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Jiayu Wang
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Weizheng Li
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xiuyang Zou
- Jiangsu Engineering Research Center for Environmental Functional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, 223300, China
| | - Feng Yan
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
20
|
Mao S, Han X, Huang Z, Li H, Ma T. Coordination and Hydrogen Bond Chemistry in Tungsten Oxide@Polyaniline Composite toward High-Capacity Aqueous Ammonium Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405592. [PMID: 39155416 PMCID: PMC11657061 DOI: 10.1002/smll.202405592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/09/2024] [Indexed: 08/20/2024]
Abstract
Aqueous ammonium ion batteries (AAIBs) have garnered significant attention due to their unique energy storage mechanism. However, their progress is hindered by the relatively low capacities of NH4 + host materials. Herein, the study proposes an electrodeposited tungsten oxide@polyaniline (WOx@PANI) composite electrode as a NH4 + host, which achieves an ultrahigh capacity of 280.3 mAh g-1 at 1 A g-1, surpassing the vast majority of previously reported NH4 + host materials. The synergistic interaction of coordination chemistry and hydrogen bond chemistry between the WOx and PANI enhances the charge storage capacity. Experimental results indicate that the strong interfacial coordination bonding (N: →W6+) effectively modulates the chemical environment of W atoms, enhances the protonation level of PANI, and thus consequently the conductivity and stability of the composites. Spectroscopy analysis further reveals a unique NH4 +/H+ co-insertion mechanism, in which the interfacial hydrogen bond network (N-H···O) accelerates proton involvement in the energy storage process and activates the Grotthuss hopping conduction of H+ between the hydrated tungsten oxide layers. This work opens a new avenue to achieving high-capacity NH4 + storage through interfacial chemistry interactions, overcoming the capacity limitations of NH4 + host materials for aqueous energy storage.
Collapse
Affiliation(s)
- Shuai Mao
- Institute of Clean Energy ChemistryKey Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials of Liaoning ProvinceCollege of ChemistryLiaoning UniversityShenyang110036China
| | - Xu Han
- Engineering Laboratory of Advanced Energy MaterialsNingbo Institute of Materials Technology and Engineering Chinese Academy of SciencesNingbo315201China
| | - Zi‐Hang Huang
- Institute of Clean Energy ChemistryKey Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials of Liaoning ProvinceCollege of ChemistryLiaoning UniversityShenyang110036China
| | - Hui Li
- Institute of Clean Energy ChemistryKey Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials of Liaoning ProvinceCollege of ChemistryLiaoning UniversityShenyang110036China
- Centre for Atomaterials and Nanomanufacturing (CAN), School of ScienceRMIT UniversityMelbourneVIC3000Australia
| | - Tianyi Ma
- Centre for Atomaterials and Nanomanufacturing (CAN), School of ScienceRMIT UniversityMelbourneVIC3000Australia
| |
Collapse
|
21
|
Sun F, Zhang J, Liu T, Yao H, Wang L, Meng H, Gao Y, Cao Y, Yao B, Xu J, Fu J. A Versatile Microporous Design toward Toughened yet Softened Self-Healing Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2410650. [PMID: 39460439 DOI: 10.1002/adma.202410650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/09/2024] [Indexed: 10/28/2024]
Abstract
Realizing the full potential of self-healing materials in stretchable electronics necessitates not only low modulus to enable high adaptivity, but also high toughness to resist crack propagation. However, existing toughening strategies for soft self-healing materials have only modestly improves mechanical dissipation near the crack tip (ГD), and invariably compromise the material's inherent softness and autonomous healing capabilities. Here, a synthetic microporous architecture is demonstrated that unprecedently toughens and softens self-healing materials without impacting their intrinsic self-healing kinetics. This microporous structure spreads energy dissipation across the entire material through a bran-new dissipative mode of adaptable crack movement (ГA), which substantially increases the fracture toughness by 31.6 times, from 3.19 to 100.86 kJ m-2, and the fractocohesive length by 20.7 times, from 0.59 mm to 12.24 mm. This combination of unprecedented fracture toughness (100.86 kJ m-2) and centimeter-scale fractocohesive length (1.23 cm) surpasses all previous records for synthetic soft self-healing materials and even exceeds those of light alloys. Coupled with significantly enhanced softness (0.43 MPa) and nearly perfect autonomous self-healing efficiency (≈100%), this robust material is ideal for constructing durable kirigami electronics for wearable devices.
Collapse
Affiliation(s)
- FuYao Sun
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - JingYi Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Tong Liu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Hai Yao
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Lin Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - HengYu Meng
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - YunLong Gao
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - YanFeng Cao
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - BoWen Yao
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - JianHua Xu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - JiaJun Fu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| |
Collapse
|
22
|
Sheng Y, Li Z, Gao D, Niu P, Gao X, Huang Y, Li C, Qiu J, Zhang R, Sun Y. A Stretchable Conductive Material with High Fatigue Resistance for Strain Sensors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:63840-63850. [PMID: 39512067 DOI: 10.1021/acsami.4c13654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Intrinsically stretchable conductive materials based on elastic substrates and conductive components play important roles in biomedical applications, such as exercise rehabilitation monitoring and disease prediction. A persistent challenge is to combine high fatigue resistance with excellent mechanical properties in stretchable conductive materials. Herein, we present a stretchable conductive material with both good fatigue resistance and high tensile properties (∼3170%) based on poly(acrylic acid)-phytic acid-trehalose-polypyrrole (denoted as PPTP). The as-prepared PPTP hydrogel electrode showed no obvious cracking or delamination after 400 loading and unloading cycles and maintained good electrical signal transmission function after 1000 cycles. We further collected stable signals for human motion and handwriting using the stretchable hydrogel electrode as a strain sensor, demonstrating the potential application of the PPTP stretchable hydrogel electrode in biomedicine.
Collapse
Affiliation(s)
- Yujing Sheng
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
- Institute of Medical Engineering and Interdisciplinary Research, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Zenghao Li
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
- Institute of Medical Engineering and Interdisciplinary Research, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Duanmin Gao
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Panhong Niu
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Xingfa Gao
- Institute of Medical Engineering and Interdisciplinary Research, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
- Medical Engineering and Technology Research Center, School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, China
| | - Yuzhen Huang
- Institute of Medical Engineering and Interdisciplinary Research, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
- Medical Engineering and Technology Research Center, School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, China
| | - Chuan Li
- Department of Biomedical Engineering, Yang Ming Chiao Tung University, Taipei 112304, China
| | - Jianfeng Qiu
- Medical Engineering and Technology Research Center, School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, China
| | - Ruliang Zhang
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Yinglun Sun
- Institute of Medical Engineering and Interdisciplinary Research, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
- Medical Engineering and Technology Research Center, School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, China
| |
Collapse
|
23
|
Li L, Luo D, Luo S, Yue J, Li X, Chen L, Chen X, Wen B, Luo X, Li Y, Huang W, Chen C. Heteroaggregation, disaggregation, and migration of nanoplastics with nanosized activated carbon in aquatic environments: Effects of particle property, water chemistry, and hydrodynamic condition. WATER RESEARCH 2024; 266:122399. [PMID: 39276480 DOI: 10.1016/j.watres.2024.122399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/23/2024] [Accepted: 09/04/2024] [Indexed: 09/17/2024]
Abstract
Nanosized activated carbon (NAC) as emerging engineered nanomaterials may interact with nanoplastics prevalent in aquatic environments to affect their fate and transport. This study investigated the effects of particle property (charge and concentration), water chemistry [electrolytes, pH, humic acid (HA), and sodium alginate (SA)], and hydrodynamic condition [wave (i.e., sonication) and turbulence (i.e., stirring)] on the heteroaggregation, disaggregation, and migration of NAC with positively charged amino-modified polystyrene (APS) or negatively charged bare polystyrene (BPS) nanoplastics. The homoaggregation rate of APS was slower than its heteroaggregation rate with NAC, with critical coagulation concentrations (CCC) decreasing at higher NAC concentrations. However, the homoaggregation rate of BPS was intermediate between its heteroaggregation rates under low (10 mg/L) and high (40 mg/L) NAC concentrations. The heteroaggregation rate of APS+NAC enhanced as pH increasing from 3 to 10, whereas the opposite trend was observed for BPS+NAC. In NaCl solution or at CaCl2 concentration below 2.5 mM, HA stabilized APS+NAC and BPS+NAC via steric hindrance more effectively than SA. Above 2.5 mM CaCl2, SA destabilized APS+NAC and BPS+NAC by calcium bridging more strongly than HA. The migration process of heteroaggregates was simulated in nearshore environments. The simulation suggests that without hydrodynamic disturbance, APS+NAC (971 m) may travel farther than BPS+NAC (901 m). Mild wave (30-s sonication) and intense turbulence (1500-rpm stirring) could induce disaggregation of heteroaggregates, thus potentially extending the migration distances of APS+NAC and BPS+NAC to 1611 and 2160 m, respectively. Conversely, intense wave (20-min sonication) and mild turbulence (150-rpm stirring) may further promote aggregation of heteroaggregates, shortening the migration distances of APS+NAC and BPS+NAC to 262 and 552 m, respectively. Particle interactions mainly involved van der Waals attraction, electrostatic repulsion, steric hindrance, calcium bridging, π-π interactions, hydrogen bonding, and hydrophobic interactions. These findings highlight the important influence of NAC on the fate, transport, and risks of nanoplastics in aquatic environments.
Collapse
Affiliation(s)
- Lihua Li
- College of Natural Resources and Environment, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, 483 Wushan Road, Guangzhou, Guangdong 510642, China
| | - Dan Luo
- College of Natural Resources and Environment, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, 483 Wushan Road, Guangzhou, Guangdong 510642, China
| | - Shijie Luo
- College of Natural Resources and Environment, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, 483 Wushan Road, Guangzhou, Guangdong 510642, China
| | - Jiale Yue
- College of Natural Resources and Environment, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, 483 Wushan Road, Guangzhou, Guangdong 510642, China
| | - Xinzhi Li
- College of Natural Resources and Environment, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, 483 Wushan Road, Guangzhou, Guangdong 510642, China
| | - Lianrong Chen
- College of Natural Resources and Environment, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, 483 Wushan Road, Guangzhou, Guangdong 510642, China
| | - Xin Chen
- College of Natural Resources and Environment, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, 483 Wushan Road, Guangzhou, Guangdong 510642, China
| | - Bowen Wen
- College of Natural Resources and Environment, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, 483 Wushan Road, Guangzhou, Guangdong 510642, China
| | - Xitian Luo
- College of Natural Resources and Environment, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, 483 Wushan Road, Guangzhou, Guangdong 510642, China
| | - Yongtao Li
- College of Natural Resources and Environment, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, 483 Wushan Road, Guangzhou, Guangdong 510642, China
| | - Weilin Huang
- Department of Environmental Sciences, Rutgers, The State University of New Jersey, 14 College Farm Road, New Brunswick, NJ 08901, United States
| | - Chengyu Chen
- College of Natural Resources and Environment, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, 483 Wushan Road, Guangzhou, Guangdong 510642, China.
| |
Collapse
|
24
|
Lu YN, Mo K, Liang XH, Xie JS, Yang Y, Zheng L, Gu M, Liu XR, Lu Y, Ge J. High Ion-Conductive Hydrogel: Soft, Elastic, with Wide Humidity Tolerance and Long-Term Stability. ACS APPLIED MATERIALS & INTERFACES 2024; 16:60992-61003. [PMID: 39442923 DOI: 10.1021/acsami.4c12851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Ion-conductive hydrogels have received great attention due to their significant potential in flexible electronics. However, achieving hydrogels that simultaneously possess high ionic conductivity and stability under varying humidity conditions remains a challenge, limiting their practical applications. Herein, we propose a thermally controlled chemical cross-linking strategy to prepare an elastic and conductive hydrogel (ECH) of poly(vinyl alcohol) (PVA) with high content of H2SO4. The covalent cross-links formed effectively tackle the instability issue in high humidity of physically cross-linked PVA/H2SO4 hydrogels with high ionic conductivity, which were previously developed via the polymer-in-salt strategy. We systematically investigated the reaction conditions and clarified the methods to optimize the hydroxyl dehydration of PVA, resulting in excellent mechanical properties and ion conductivity simultaneously. The ECH demonstrates impressive ionic conductivity (up to 392 ± 49 mS cm-1) and elasticity (over 80% resilience upon stretching and compression after being equilibrated at various humidity levels for 24 days). Thanks to the excellent water retention of the high H2SO4 content, the ECH maintains an ionic conductivity exceeding 210 mS cm-1 for over 420 days at 50% relative humidity (RH) and retains over 100 mS cm-1 even after 3 days under extremely dry conditions (7% RH). These remarkable properties make the ECH an ideal candidate for applications requiring reliable ionic conductivity in diverse environmental conditions. Additionally, we demonstrated that the ECH can function as a stretchable Joule heater with high conformability for heating up objects with curved surfaces. The heating rate could reach a fast rate of ∼12 °C s-1 even when a human-safe alternating current voltage is below 36 V, attributed to the high ionic conductivity. We believe that the high performance and ease of fabrication make our hydrogels a promising candidate for use as electrolytes in flexible energy storage devices, electrolyte gates in electrochemical transistors, and artificial skin, which often face long-term stability challenges under varying humidity conditions.
Collapse
Affiliation(s)
- Yan-Na Lu
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Kai Mo
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xue-Hang Liang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Jia-Sen Xie
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Ying Yang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Lin Zheng
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Mingwei Gu
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xiang-Ru Liu
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yunjie Lu
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Jin Ge
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
25
|
Zhu H, Li K. A Facile One-Step Self-Assembly Strategy for Novel Carbon Dots Supramolecular Crystals with Ultralong Phosphorescence Controlled by NH 4. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402236. [PMID: 38970543 DOI: 10.1002/smll.202402236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/17/2024] [Indexed: 07/08/2024]
Abstract
A new methodological design is proposed for carbon dots (CDs)-based crystallization-induced phosphorescence (CIP) materials via one-step self-assembled packaging controlled by NH4 +. O-phenylenediamine (o-PD) as a nitrogen/carbon source and the ammonium salts as oxidants are used to obtain CDs supramolecular crystals with a well-defined staircase-like morphology, pink fluorescence and ultralong green room-temperature phosphorescence (RTP) (733.56 ms) that is the first highest value for CDs-based CIP materials using pure nitrogen/carbon source by one-step packaging. Wherein, NH4 + and o-PD-derived oxidative polymers are prerequisites for self-assembled crystallization so as to receive the ultralong RTP. Density functional theory calculation indicates that NH4 + tends to anchor to the dimer on the surface state of CDs and guides CDs to cross-arrange in an X-type stacking mode, leading to the spatially separated frontier orbitals and the through-space charge transfer (TSCT) excited state in turn. Such a self-assembled mode contributes to both the small singlet-triplet energy gap (ΔEST) and the fast inter-system crossing (ISC) process that is directly related to ultralong RTP. This work not only proposes a new strategy to prepare CDs-based CIP materials in one step but also reveals the potential for the self-assembled behavior controlled by NH4 +.
Collapse
Affiliation(s)
- Hanping Zhu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Kang Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| |
Collapse
|
26
|
Bao Q, Li H, Rong Y, Fei J, Zhang X, Zhao Z, An J, Huang X. High-tear resistant gels crosslinked by DA@CNC for 3D printing flexible wearable devices. Int J Biol Macromol 2024; 281:135711. [PMID: 39349338 DOI: 10.1016/j.ijbiomac.2024.135711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/30/2024] [Accepted: 09/14/2024] [Indexed: 10/02/2024]
Abstract
Photocurable gels have broad application prospects in biomedicine, bionics, flexible wearable devices and other fields. However, there are still some problems in the current photocurable gels, such as notch sensitivity, that is, poor tear resistance. In this study, we provided a photocurable gel with excellent tear resistance. The gel prepolymer is mainly composed of hydroxymethylacrylamide (NAM) and cellulose nanocrystals (CNC) modified with dopamine hydrochloride (DA), referred to as DA@CNC. After photocuring, the prepared gels show excellent mechanical properties such as tear resistance, elasticity and toughness. The introduction of DA@CNC not only endows gels with a large amount of energy dissipation through hydrogen bond crosslinking, but also effectively resists crack expansion as a nano-sized reinforcing phase, which greatly improves the tear resistance of the gels. Even at a 40 % gap, the elongation at break of the gel can still reach 1445 %. In addition, the DA can endow the gel with good electrical conductivity and excellent sensitivity (GF = 23.8). Some flexible wearable devices like finger sleeve and wristband can be customized by photocurable 3D printing using the gel with high toughness. This high-performance gel has great application potential in flexible wearable devices.
Collapse
Affiliation(s)
- Qingbo Bao
- Shanxi Provincial Coal Central Hospital, Taiyuan, PR China
| | - Huijie Li
- Key Laboratory of Medical Metal Materials of Shanxi Province, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Youjie Rong
- Key Laboratory of Medical Metal Materials of Shanxi Province, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Jianhua Fei
- Key Laboratory of Medical Metal Materials of Shanxi Province, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Xiaomin Zhang
- Key Laboratory of Medical Metal Materials of Shanxi Province, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Zhuang Zhao
- Key Laboratory of Medical Metal Materials of Shanxi Province, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Jian An
- Shanxi Provincial Coal Central Hospital, Taiyuan, PR China.
| | - Xiaobo Huang
- Key Laboratory of Medical Metal Materials of Shanxi Province, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China.
| |
Collapse
|
27
|
Yang S, Wu Q, Li Y, Luo F, Zhang J, Chen K, You Y, Huang J, Xie H, Chen Y. A Bio-Inspired Multifunctional Hydrogel Network with Toughly Interfacial Chemistry for Dendrite-Free Flexible Zinc Ion Battery. Angew Chem Int Ed Engl 2024; 63:e202409160. [PMID: 39113640 DOI: 10.1002/anie.202409160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/08/2024] [Indexed: 09/26/2024]
Abstract
Flexible and high-performance aqueous zinc-ion batteries (ZIBs), coupled with low cost and safe, are considered as one of the most promising energy storage candidates for wearable electronics. Hydrogel electrolytes present a compelling alternative to liquid electrolytes due to their remarkable flexibility and clear advantages in mitigating parasitic side reactions. However, hydrogel electrolytes suffer from poor mechanical properties and interfacial chemistry, which limits them to suppressed performance levels in flexible ZIBs, especially under harsh mechanical strains. Herein, a bio-inspired multifunctional hydrogel electrolyte network (polyacrylamide (PAM)/trehalose) with improved mechanical and adhesive properties was developed via a simple trehalose network-repairing strategy to stabilize the interfacial chemistry for dendrite-free and long-life flexible ZIBs. As a result, the trehalose-modified PAM hydrogel exhibits a superior strength and stretchability up to 100 kPa and 5338 %, respectively, as well as strong adhesive properties to various substrates. Also, the PAM/trehalose hydrogel electrolyte provides superior anti-corrosion capability for Zn anode and regulates Zn nucleation/growth, resulting in achieving a high Coulombic efficiency of 98.8 %, and long-term stability over 2400 h. Importantly, the flexible Zn//MnO2 pouch cell exhibits excellent cycling performance under different bending conditions, which offers a great potential in flexible energy-related applications and beyond.
Collapse
Affiliation(s)
- Song Yang
- Department of Polymeric Materials & Engineering, College of Materials & Metallurgy, Guizhou University, Huaxi District, 550025, Guiyang, China
| | - Qing Wu
- Department of Polymeric Materials & Engineering, College of Materials & Metallurgy, Guizhou University, Huaxi District, 550025, Guiyang, China
| | - Yue Li
- Department of Polymeric Materials & Engineering, College of Materials & Metallurgy, Guizhou University, Huaxi District, 550025, Guiyang, China
| | - Fusheng Luo
- Department of Polymeric Materials & Engineering, College of Materials & Metallurgy, Guizhou University, Huaxi District, 550025, Guiyang, China
| | - Jinlong Zhang
- Department of Polymeric Materials & Engineering, College of Materials & Metallurgy, Guizhou University, Huaxi District, 550025, Guiyang, China
| | - Kui Chen
- Department of Polymeric Materials & Engineering, College of Materials & Metallurgy, Guizhou University, Huaxi District, 550025, Guiyang, China
| | - Yang You
- Department of Polymeric Materials & Engineering, College of Materials & Metallurgy, Guizhou University, Huaxi District, 550025, Guiyang, China
| | - Jun Huang
- Department of Polymeric Materials & Engineering, College of Materials & Metallurgy, Guizhou University, Huaxi District, 550025, Guiyang, China
| | - Haibo Xie
- Department of Polymeric Materials & Engineering, College of Materials & Metallurgy, Guizhou University, Huaxi District, 550025, Guiyang, China
| | - Yiwang Chen
- Institute of Polymers and Energy Chemistry (IPEC)/, Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC), Nanchang University, 999 Xuefu Avenue, 330031, Nanchang, China
- Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, 330022, Nanchang, China
| |
Collapse
|
28
|
Zhang Y, Wang Y, Dong Z, Wang Y, Liu Y, Cao X, Zhang Z, Xu C, Wang N, Liu Y. Boosting uranium extraction from Seawater by micro-redox reactors anchored in a seaweed-like adsorbent. Nat Commun 2024; 15:9124. [PMID: 39443537 PMCID: PMC11500014 DOI: 10.1038/s41467-024-53366-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024] Open
Abstract
Efficient extraction of uranium from seawater is expected to provide virtually infinite fuel sources to power nuclear reactors and thus enable sustainable development of nuclear energy. The extraction efficiency for uranium greatly depends on the availability of active adsorption sites on the adsorbents. Maximization of the utilization rate of the binding sites in the adsorbent is vital for improving adsorption capacity. Herein, micro-redox reactors functioned by Cu(I)/Cu(II) conversion are constructed internally in an adsorbent bearing both amidoxime and carboxyl groups to induce active regeneration of the inactivated binding sites to enhance uranium capture. This adsorbent has high adsorption capacity (962.40 mg-U/g-Ads), superior anti-fouling ability as well as excellent uranium uptake (14.62 mg-U/g-Ads) in natural seawater after 56 days, placing it at the top of high-performance sorbent materials for uranium harvest from seawater.
Collapse
Affiliation(s)
- Yinshan Zhang
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi, PR China
- School of Nuclear Science and Engineering, East China University of Technology, Nanchang, Jiangxi, PR China
| | - Yingcai Wang
- School of Nuclear Science and Engineering, East China University of Technology, Nanchang, Jiangxi, PR China.
| | - Zhimin Dong
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi, PR China
- School of Nuclear Science and Engineering, East China University of Technology, Nanchang, Jiangxi, PR China
| | - Youqun Wang
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi, PR China
- School of Nuclear Science and Engineering, East China University of Technology, Nanchang, Jiangxi, PR China
| | - Yuhui Liu
- School of Nuclear Science and Engineering, East China University of Technology, Nanchang, Jiangxi, PR China
| | - Xiaohong Cao
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi, PR China
| | - Zhibin Zhang
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi, PR China.
| | - Chao Xu
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, PR China.
| | - Ning Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea Hainan University, Haikou, Hainan, PR China
| | - Yunhai Liu
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi, PR China.
- School of Nuclear Science and Engineering, East China University of Technology, Nanchang, Jiangxi, PR China.
| |
Collapse
|
29
|
Zeng J, Fang H, Pan H, Gu H, Zhang K, Song Y. Rapidly Gelled Lipoic Acid-Based Supramolecular Hydrogel for 3D Printing of Adhesive Bandage. ACS APPLIED MATERIALS & INTERFACES 2024; 16:53515-53531. [PMID: 39319463 DOI: 10.1021/acsami.4c11704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Developing a strongly adhesive, easily removable, and robust bandage is valuable in trauma emergencies. Poly(lipoic acid) (PLA)-based adhesives with good mechanical properties have been well-developed through a thermal ring-opening polymerization (ROP) method that is easiness. However, the additive manufacturing of PLA-based adhesives remains a challenge. Herein, α-lipoic acid (LA) and trometamol (Tris) are found to rapidly form a supramolecular hydrogel at room temperature with injectability and 3D printing potential. Meanwhile, the synthesized LA-grafted hyaluronic acid and cellulose nanocrystals are involved not only to optimize the extrusion of 3D printing but also to effectively promote fidelity and prevent the inverse closed-loop depolymerization of PLA in water. The hydrogel bandage exhibits strong adhesion to skin while it can be removed with no residue by water flushing, showing protection to neo-tissue during dressing replacement. The in vivo application of the hydrogel bandage significantly promoted wound healing by closing the wound, forming a physical barrier, and providing an anti-inflammatory effect, showing great potential in future clinical applications.
Collapse
Affiliation(s)
- Jiujiang Zeng
- Department of Emergency, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, P. R. China
| | - Haowei Fang
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, P. R. China
| | - Haiyang Pan
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, P. R. China
| | - Huijie Gu
- Department of Orthopedics, Minhang Hospital, Fudan University, Shanghai 201199, P. R. China
| | - Kunxi Zhang
- Department of Emergency, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, P. R. China
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, P. R. China
| | - Yanli Song
- Department of Emergency, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, P. R. China
| |
Collapse
|
30
|
Li M, Pu J, Cao Q, Zhao W, Gao Y, Meng T, Chen J, Guan C. Recent advances in hydrogel-based flexible strain sensors for harsh environment applications. Chem Sci 2024:d4sc05295a. [PMID: 39430943 PMCID: PMC11488682 DOI: 10.1039/d4sc05295a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/08/2024] [Indexed: 10/22/2024] Open
Abstract
Flexible strain sensors are broadly investigated in electronic skins and human-machine interaction due to their light weight, high sensitivity, and wide sensing range. Hydrogels with unique three-dimensional network structures are widely used in flexible strain sensors for their exceptional flexibility and adaptability to mechanical deformation. However, hydrogels often suffer from damage, hardening, and collapse under harsh conditions, such as extreme temperatures and humidity levels, which lead to sensor performance degradation or even failure. In addition, the failure mechanism in extreme environments remains unclear. In this review, the performance degradation and failure mechanism of hydrogel flexible strain sensors under various harsh conditions are examined. Subsequently, strategies towards the environmental tolerance of hydrogel flexible strain sensors are summarized. Finally, the current challenges of hydrogel flexible strain sensors in harsh environments are discussed, along with potential directions for future development and applications.
Collapse
Affiliation(s)
- Miaoyu Li
- Institute of Flexible Electronics and Intelligent Textile, Xi'an Polytechnic University Xi'an 710048 P. R. China
- School of Textile Science and Engineering, Xi'an Polytechnic University Xi'an 710048 P. R. China
| | - Jie Pu
- Institute of Flexible Electronics, Northwestern Polytechnical University Xi'an 710072 P. R. China
| | - Qinghe Cao
- Institute of Flexible Electronics, Northwestern Polytechnical University Xi'an 710072 P. R. China
| | - Wenbo Zhao
- Institute of Flexible Electronics, Northwestern Polytechnical University Xi'an 710072 P. R. China
| | - Yong Gao
- Institute of Flexible Electronics, Northwestern Polytechnical University Xi'an 710072 P. R. China
| | - Ting Meng
- Institute of Flexible Electronics, Northwestern Polytechnical University Xi'an 710072 P. R. China
| | - Jipeng Chen
- Institute of Flexible Electronics, Northwestern Polytechnical University Xi'an 710072 P. R. China
| | - Cao Guan
- Institute of Flexible Electronics and Intelligent Textile, Xi'an Polytechnic University Xi'an 710048 P. R. China
- Institute of Flexible Electronics, Northwestern Polytechnical University Xi'an 710072 P. R. China
| |
Collapse
|
31
|
Zhang S, Guo F, Gao X, Yang M, Huang X, Zhang D, Li X, Zhang Y, Shang Y, Cao A. High-Strength, Antiswelling Directional Layered PVA/MXene Hydrogel for Wearable Devices and Underwater Sensing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405880. [PMID: 39162177 PMCID: PMC11496995 DOI: 10.1002/advs.202405880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/17/2024] [Indexed: 08/21/2024]
Abstract
Hydrogel sensors are widely utilized in soft robotics and tissue engineering due to their excellent mechanical properties and biocompatibility. However, in high-water environments, traditional hydrogels can experience significant swelling, leading to decreased mechanical and electrical performance, potentially losing shape, and sensing capabilities. This study addresses these challenges by leveraging the Hofmeister effect, coupled with directional freezing and salting-out techniques, to develop a layered, high-strength, tough, and antiswelling PVA/MXene hydrogel. In particular, the salting-out process enhances the self-entanglement of PVA, resulting in an S-PM hydrogel with a tensile strength of up to 2.87 MPa. Furthermore, the S-PM hydrogel retains its structure and strength after 7 d of swelling, with only a 6% change in resistance. Importantly, its sensing performance is improved postswelling, a capability rarely achievable in traditional hydrogels. Moreover, the S-PM hydrogel demonstrates faster response times and more stable resistance change rates in underwater tests, making it crucial for long-term continuous monitoring in challenging aquatic environments, ensuring sustained operation and monitoring.
Collapse
Affiliation(s)
- Shipeng Zhang
- School of Physics and Laboratory of Zhongyuan LightZhengzhou UniversityZhengzhou450052China
| | - Fengmei Guo
- School of Physics and Laboratory of Zhongyuan LightZhengzhou UniversityZhengzhou450052China
| | - Xue Gao
- Luoyang Institute of Science and TechnologySchool of Intelligent ManufacturingLuoyang471023China
| | - Mengdan Yang
- School of Physics and Laboratory of Zhongyuan LightZhengzhou UniversityZhengzhou450052China
| | - Xinguang Huang
- School of Physics and Laboratory of Zhongyuan LightZhengzhou UniversityZhengzhou450052China
| | - Ding Zhang
- School of Physics and Laboratory of Zhongyuan LightZhengzhou UniversityZhengzhou450052China
| | - Xinjian Li
- School of Physics and Laboratory of Zhongyuan LightZhengzhou UniversityZhengzhou450052China
| | - Yingjiu Zhang
- School of Physics and Laboratory of Zhongyuan LightZhengzhou UniversityZhengzhou450052China
| | - Yuanyuan Shang
- School of Physics and Laboratory of Zhongyuan LightZhengzhou UniversityZhengzhou450052China
| | - Anyuan Cao
- School of Materials Science and EngineeringPeking UniversityBeijing100871China
| |
Collapse
|
32
|
Duan J, Fan W, Xu Z, Cui L, Wang Z, Nie Z, Sui K. Polyelectrolyte-Mediated Modulation of Spatial Internal Stresses of Hydrogels for Complex 3D Actuators. Angew Chem Int Ed Engl 2024; 63:e202410383. [PMID: 38922734 DOI: 10.1002/anie.202410383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024]
Abstract
Hydrogel actuators with complex 3D initial shapes show numerous important applications, but it remains challenging to fabricate such actuators. This article describes a polyelectrolyte-based strategy for modulating small-scale internal stresses within hydrogels to construct complex actuators with tailored 3D initial shapes. Introducing polyelectrolytes into precursor solutions significantly enhances the volume shrinkage of hydrogel networks during polymerization, allowing us to modulate internal stresses. Photopolymerization of these polyelectrolyte-containing solutions through a mask produces mechanically strong hydrogel sheets with large patterned internal stresses. Consequently, these hydrogel sheets attain complex 3D initial shapes at equilibrium, in contrast to the planar initial configuration of 2D actuators. We demonstrate that these 3D actuators can reversibly transform into other 3D shapes (i.e., 3D-to-3D shape transformations) in response to external stimuli. Additionally, we develop a predictive model based on the Flory-Rehner theory to analyze the polyelectrolyte-mediated shrinking behaviors of hydrogel networks during polymerization, allowing precise modulation of shrinkage and internal stress. This polyelectrolyte-boosted shrinking mechanism paves a route to the fabrication of high-performance 3D hydrogel actuators.
Collapse
Affiliation(s)
- Jinghua Duan
- State Key Laboratory of Bio-fibers and Eco-textiles College of Materials Science and Engineering Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological textiles Institute of Marine Biobased Materials, Qingdao University, Qingdao, 266071, P. R. China
| | - Wenxin Fan
- State Key Laboratory of Bio-fibers and Eco-textiles College of Materials Science and Engineering Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological textiles Institute of Marine Biobased Materials, Qingdao University, Qingdao, 266071, P. R. China
| | - Zihan Xu
- State Key Laboratory of Bio-fibers and Eco-textiles College of Materials Science and Engineering Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological textiles Institute of Marine Biobased Materials, Qingdao University, Qingdao, 266071, P. R. China
| | - Lu Cui
- State Key Laboratory of Bio-fibers and Eco-textiles College of Materials Science and Engineering Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological textiles Institute of Marine Biobased Materials, Qingdao University, Qingdao, 266071, P. R. China
| | - Ziyou Wang
- State Key Laboratory of Bio-fibers and Eco-textiles College of Materials Science and Engineering Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological textiles Institute of Marine Biobased Materials, Qingdao University, Qingdao, 266071, P. R. China
| | - Zhihong Nie
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China
| | - Kunyan Sui
- State Key Laboratory of Bio-fibers and Eco-textiles College of Materials Science and Engineering Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological textiles Institute of Marine Biobased Materials, Qingdao University, Qingdao, 266071, P. R. China
| |
Collapse
|
33
|
Xu C, Chen Y, Zhao S, Li D, Tang X, Zhang H, Huang J, Guo Z, Liu W. Mechanical Regulation of Polymer Gels. Chem Rev 2024; 124:10435-10508. [PMID: 39284130 DOI: 10.1021/acs.chemrev.3c00498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
The mechanical properties of polymer gels devote to emerging devices and machines in fields such as biomedical engineering, flexible bioelectronics, biomimetic actuators, and energy harvesters. Coupling network architectures and interactions has been explored to regulate supportive mechanical characteristics of polymer gels; however, systematic reviews correlating mechanics to interaction forces at the molecular and structural levels remain absent in the field. This review highlights the molecular engineering and structural engineering of polymer gel mechanics and a comprehensive mechanistic understanding of mechanical regulation. Molecular engineering alters molecular architecture and manipulates functional groups/moieties at the molecular level, introducing various interactions and permanent or reversible dynamic bonds as the dissipative energy. Molecular engineering usually uses monomers, cross-linkers, chains, and other additives. Structural engineering utilizes casting methods, solvent phase regulation, mechanochemistry, macromolecule chemical reactions, and biomanufacturing technology to construct and tailor the topological network structures, or heterogeneous modulus compositions. We envision that the perfect combination of molecular and structural engineering may provide a fresh view to extend exciting new perspectives of this burgeoning field. This review also summarizes recent representative applications of polymer gels with excellent mechanical properties. Conclusions and perspectives are also provided from five aspects of concise summary, mechanical mechanism, biofabrication methods, upgraded applications, and synergistic methodology.
Collapse
Affiliation(s)
- Chenggong Xu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Chen
- Key Laboratory of Instrumentation Science and Dynamic Measurement, Ministry of Education, North University of China, Taiyuan 030051, China
| | - Siyang Zhao
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Deke Li
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- School of materials engineering, Lanzhou Institute of Technology, Lanzhou 730000, China
| | - Xing Tang
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubeu University, Wuhan 430062, China
| | - Haili Zhang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubeu University, Wuhan 430062, China
| | - Jinxia Huang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Zhiguang Guo
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubeu University, Wuhan 430062, China
| | - Weimin Liu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
34
|
Shamiya Y, Chakraborty A, Zahid AA, Bainbridge N, Guan J, Feng B, Pjontek D, Chakrabarti S, Paul A. Ascorbyl palmitate nanofiber-reinforced hydrogels for drug delivery in soft issues. COMMUNICATIONS MATERIALS 2024; 5:197. [PMID: 39309138 PMCID: PMC11415299 DOI: 10.1038/s43246-024-00641-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 09/16/2024] [Indexed: 09/25/2024]
Abstract
Nanofiber-based hydrogel delivery systems have recently shown great potential in biomedical applications, specifically due to their high surface-to-volume ratio of ultra-fine nanofibers and their ability to carry low solubility drugs. Herein, we introduce a visible light-triggered in situ-gelling drug vehicle (GAP Gel) composed of ascorbyl palmitate (AP) nanofibers and gelatin methacryloyl polymer. AP nanofibers form self-assembled structures through intermolecular interactions with a hydrophobic drug-loading core. We demonstrate that the hydrophilic periphery of AP nanofibers allows them to interact with other hydrophilic molecules via hydrogen bonds. The presence of AP nanofibers significantly enhances the viscoelasticity of GAP Gel in a concentration-dependent manner. Further, GAP Gel shows in vitro biocompatibility and sustained drug delivery efficacy when loaded with a hydrophobic antibiotic. Likewise, GAP Gel shows excellent in vivo biocompatibility when implanted in immunocompetent mice in various forms. Lastly, GAP Gels maintain cell viability when cultured in a 3D-environment over 7 days, establishing it as a promising and versatile hydrogel platform for the delivery of biotherapeutics.
Collapse
Affiliation(s)
- Yasmeen Shamiya
- Department of Chemistry, The University of Western Ontario, London, ON Canada
| | - Aishik Chakraborty
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON Canada
- Collaborative Specialization in Muscoskeletal Health Research and Bone and Joint Institute, The University of Western Ontario, London, ON Canada
| | - Alap Ali Zahid
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON Canada
| | - Nicholas Bainbridge
- Department of Chemistry, The University of Western Ontario, London, ON Canada
| | - Jingyuan Guan
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON Canada
| | - Biao Feng
- Department of Pathology and Laboratory Medicine, The University of Western Ontario, London, ON Canada
| | - Dominic Pjontek
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON Canada
| | - Subrata Chakrabarti
- Department of Pathology and Laboratory Medicine, The University of Western Ontario, London, ON Canada
| | - Arghya Paul
- Department of Chemistry, The University of Western Ontario, London, ON Canada
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON Canada
| |
Collapse
|
35
|
Ye T, Chai M, Wang Z, Shao T, Liu J, Shi X. 3D-Printed Hydrogels with Engineered Nanocrystalline Domains as Functional Vascular Constructs. ACS NANO 2024; 18:25765-25777. [PMID: 39231281 DOI: 10.1021/acsnano.4c08359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Three-dimensionally printed (3DP) hydrogel-based vascular constructs have been investigated in response to the impaired function of blood vessels or organs by replicating exactly the 3D structural geometry to approach their function. However, they are still challenged by their intrinsic brittleness, which could not sustain the suture piercing and enable the long-term structural and functional stability during the direct contact with blood. Here, we reported the high-fidelity digital light processing (DLP) 3D printing of hydrogel-based vascular constructs from poly(vinyl alcohol)-based inks, followed by mechanical strengthening through engineering the nanocrystalline domains and subsequent surface modification. The as-prepared high-precision hydrogel vascular constructs were imparted with highly desirable mechanical robustness, suture tolerance, swelling resistance, antithrombosis, and long-term patency. Notably, the hydrogel-based bionic vein grafts, with precise valve structures, exhibited excellent control over the unidirectional flow and successfully fulfilled the biological functionalities and patency during a 4-week implantation within the deep veins of beagles, thus corroborating the promising potential for treating chronic venous insufficiency.
Collapse
Affiliation(s)
- Tan Ye
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P. R. China
| | - Muyuan Chai
- Dongguan Key Laboratory of Smart Biomaterials and Regenerative Medicine, The Tenth Affiliated Hospital, Southern Medical University, Dongguan 523000, P. R. China
| | - Zhenxing Wang
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P. R. China
| | - Tingru Shao
- Department of Oral & Maxillofacial Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, P. R. China
| | - Ji Liu
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Xuetao Shi
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P. R. China
| |
Collapse
|
36
|
Diao S, Meng L, Pelicano CM, Huang J, Tian Z, Lai F, Liu T, Cao S. Rapid Photothermal-Responsive Soft Hydrogel Actuator Contained Ti 3C 2T x MXene and Laponite Clay with Enhanced Mechanical Properties. ACS APPLIED MATERIALS & INTERFACES 2024; 16:44067-44076. [PMID: 39133189 DOI: 10.1021/acsami.4c09539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Photothermal responsive hydrogels are widely used in bionic soft actuators due to their remote-controlled capabilities and flexibility. However, their weak mechanical properties and limited responsiveness hinder their potential applications. To overcome this, we developed an innovative laponite/MXene/PNIPAm (LxMyPN) nanocomposite hydrogel that is mechanically robust and exhibits excellent photothermally responsive properties based on abundant hydrogen bonds. Notably, laponite clay is used as a co-cross-linking agent to improve the mechanical properties of LxMyPN hydrogel, while MXene nanosheets are added to promote the photothermal responsiveness. The resulting L3M0.4PN nanocomposite hydrogel exhibits enhanced mechanical properties, with a compressive strength of 0.201 MPa, a tensile strength of 90 kPa, and a fracture toughness of 27.25 kJ m-2. In addition, the L3M0.4PN hydrogel displays a deswelling ratio of 73.6% within 60 s and experiences an excellent volume shrinkage of 82.4% under light irradiation. Furthermore, hydrogel actuators with fast response behaviors are constructed and employed as grippers capable of grasping and releasing target objects. Overall, this high-strength and fast-responsive hydrogel actuator is beneficial to paving the way for remote controlled soft robots.
Collapse
Affiliation(s)
- Siyuan Diao
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Lili Meng
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Christian Mark Pelicano
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, Potsdam 14476, Germany
| | - Jiajia Huang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Zhihong Tian
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng 475004, P. R. China
| | - Feili Lai
- Department of Chemistry, KU Leuven, Leuven 3001, Belgium
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Tianxi Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Shaokui Cao
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| |
Collapse
|
37
|
Qiao L, Zhang P, Yu Y, Jia X, Song H, Zhong S, Liu J. Constructing Dynamic Cross-Linking Networks as Durable Bifunctional Coating for Highly Stable Zinc Anodes. Chemistry 2024; 30:e202401693. [PMID: 38837262 DOI: 10.1002/chem.202401693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/21/2024] [Accepted: 06/03/2024] [Indexed: 06/07/2024]
Abstract
The serious dendrite growth and H2O-induced side reactions on the Zn electrode lead to a significant fading in the cycling performance, hindering the development of commercial applications of aqueous Zn-ion batteries (AZIBs). Herein, a novel bifunctional network coating of dynamically cross-linking sodium alginate with trehalose has been rationally constructed on the Zn anode (Zn@AT). Firstly, the AT coating possesses abundant zinophilic oxygen-containing functional groups, which are able to induce uniform Zn2+ ion flux. Secondly, the AT coating as a solid barrier can effectively inhibit H2O-induced side reactions by lowering the activity of H2O molecules. More specially, based on the dynamic cross-linking, AT network coating is endowed with self-healing capacity during cycling for durable battery operation. Consequentially, Zn@AT anodes in symmetric cells can cycle stably for 2787 h at 2 mA cm-2/2 mAh cm-2, and even achieve a significantly long cycle performance of 1087 h at large charge/discharge depths of 10 mA cm-2/10 mAh cm-2. Moreover, the Zn@AT//MnO2 full cell shows excellent specific capacity of 175 mAh g-1 after 400 cycles. This study lights an effective strategy to enhance the durability of Zn electrodes in AZIBs.
Collapse
Affiliation(s)
- Liteng Qiao
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, 266042, P. R. China
| | - Pengfei Zhang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, 266042, P. R. China
| | - Yuanze Yu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, 266042, P. R. China
| | - Xu Jia
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, 266042, P. R. China
| | - Hongjiang Song
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, 266042, P. R. China
| | - Shengkui Zhong
- College of Marine Science and Technology, Hainan Tropical Ocean University, Sanya, Hainan, 572022, P. R. China
| | - Jie Liu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, 266042, P. R. China
| |
Collapse
|
38
|
Zhong D, Wang Z, Xu J, Liu J, Xiao R, Qu S, Yang W. A strategy for tough and fatigue-resistant hydrogels via loose cross-linking and dense dehydration-induced entanglements. Nat Commun 2024; 15:5896. [PMID: 39003311 PMCID: PMC11246433 DOI: 10.1038/s41467-024-50364-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 07/09/2024] [Indexed: 07/15/2024] Open
Abstract
Outstanding overall mechanical properties are essential for the successful utilization of hydrogels in advanced applications such as human-machine interfaces and soft robotics. However, conventional hydrogels suffer from fracture toughness-stiffness conflict and fatigue threshold-stiffness conflict, limiting their applicability. Simultaneously enhancing the fracture toughness, fatigue threshold, and stiffness of hydrogels, especially within a homogeneous single network structure, has proven to be a formidable challenge. In this work, we overcome this challenge through the design of a loosely cross-linked hydrogel with slight dehydration. Experimental results reveal that the slightly-dehydrated, loosely cross-linked polyacrylamide hydrogel, with an original/current water content of 87%/70%, exhibits improved mechanical properties, which is primarily attributed to the synergy between the long-chain structure and the dense dehydration-induced entanglements. Importantly, the creation of these microstructures does not require intricate design or processing. This simple approach holds significant potential for hydrogel applications where excellent anti-fracture and fatigue-resistant properties are necessary.
Collapse
Affiliation(s)
- Danming Zhong
- State Key Laboratory of Fluid Power & Mechatronic System, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Zhicheng Wang
- State Key Laboratory of Fluid Power & Mechatronic System, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Junwei Xu
- State Key Laboratory of Fluid Power & Mechatronic System, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Junjie Liu
- Applied Mechanics and Structure Safety Key Laboratory of Sichuan Province, School of Mechanics and Aerospace Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Rui Xiao
- State Key Laboratory of Fluid Power & Mechatronic System, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Shaoxing Qu
- State Key Laboratory of Fluid Power & Mechatronic System, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China.
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China.
| | - Wei Yang
- State Key Laboratory of Fluid Power & Mechatronic System, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
39
|
Ijaz I, Bukhari A, Gilani E, Nazir A, Zain H, Shaheen A, Shaik MR, Assal ME, Khan M. MXene, protein, and KCl-assisted ionic conductive hydrogels with excellent anti-freezing capabilities, self-adhesive, ultra-stretchability, and remarkable mechanical properties for a high-performance wearable flexible sensor. RSC Adv 2024; 14:21786-21798. [PMID: 38984257 PMCID: PMC11231829 DOI: 10.1039/d4ra02707h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/03/2024] [Indexed: 07/11/2024] Open
Abstract
Developing a hydrogel with switchable features and freeze tolerance is remarkably significant for designing flexible electronics to adjust various application needs. Herein, MXenes, AFPs (antifreeze proteins), and potassium chloride (KCl) were introduced to a polyacrylamide (PAM) polymer network to design an anti-freezing hydrogel. The ionic hydrogels are characterized by excellent ionic conductivity, presenting adjustable properties of remarkable mechanical strength and self-adhesion to meet individualized application demands. The capability of KCl and AFPs to inhibit ice crystals gives hydrogels with anti-icing properties under a low-temperature atmosphere. The PAM/MXene15/AFP30/KCl15 hydrogel demonstrated negligible hysteresis behavior, quick electromechanical response (0.10 s), and excellent sensitivity (gauge factor (GF) = 13.1 within the strain range of 1200-2000%). The resulting hydrogel could be immobilized on the animal or human skin to detect different body movements and physiological motions, offering reproducibility and precise accuracy as primary advantages. The approach of developing materials with tunable features, along with inorganic salt and the fish-inspired freeze-tolerance method, offers a new prospect for wearable gadgets.
Collapse
Affiliation(s)
- Irfan Ijaz
- School of Chemistry, Faculty of Basic Sciences and Mathematics, Minhaj University Lahore Lahore 54700 Pakistan
| | - Aysha Bukhari
- School of Chemistry, Faculty of Basic Sciences and Mathematics, Minhaj University Lahore Lahore 54700 Pakistan
| | - Ezaz Gilani
- School of Chemistry, Faculty of Basic Sciences and Mathematics, Minhaj University Lahore Lahore 54700 Pakistan
| | - Ammara Nazir
- School of Chemistry, Faculty of Basic Sciences and Mathematics, Minhaj University Lahore Lahore 54700 Pakistan
| | - Hina Zain
- Department of Chemistry, University of Cincinnati OH 45221 USA
| | - Attia Shaheen
- Institute for Advanced Study, Shenzhen University Shenzhen Guangdong P.R. China
| | - Mohammed Rafi Shaik
- Department of Chemistry, College of Science, King Saud University P. O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Mohamed E Assal
- Department of Chemistry, College of Science, King Saud University P. O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Mujeeb Khan
- Department of Chemistry, College of Science, King Saud University P. O. Box 2455 Riyadh 11451 Saudi Arabia
| |
Collapse
|
40
|
Wu Z, Li S, Qin X, Zheng L, Fang J, Wei L, Xu C, Li ZA, Wang X. Facile preparation of fatigue-resistant Mxene-reinforced chitosan cryogel for accelerated hemostasis and wound healing. Carbohydr Polym 2024; 334:121934. [PMID: 38553248 DOI: 10.1016/j.carbpol.2024.121934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/31/2024] [Accepted: 02/08/2024] [Indexed: 04/02/2024]
Abstract
The development of highly effective chitosan-based hemostatic materials that can be utilized for deep wound hemostasis remains a considerable challenge. In this study, a hemostatic antibacterial chitosan/N-hydroxyethyl acrylamide (NHEMAA)/Ti3C2Tx (CSNT) composite cryogel was facilely prepared through the physical interactions between the three components and the spontaneous condensation of NHEMAA. Because of the formation of strong crosslinked network, the CSNT cryogel showed a developed pore structure (~ 99.07 %) and superfast water/blood-triggered shape recovery, enabling it to fill the wound after contacting the blood. Its capillary effect, amino groups, negative charges, and affinity with lipid collectively induced rapid hemostasis, which was confirmed by in vitro and in vivo analysis. In addition, CSNT cryogel showed excellent photothermal antibacterial activities, high biosafety, and in vivo wound healing ability. Furthermore, the presence of chitosan effectively prevented the oxidation of MXene, thus enabling the long-term storage of the MXene-reinforced cryogel. Thus, our hemostatic cryogel demonstrates promising potential for clinical application and commercialization, as it combines high resilience, rapid hemostasis, efficient sterilization, long-term storage, and easy mass production.
Collapse
Affiliation(s)
- Zhengguo Wu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210000, China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510640, China
| | - Shanshan Li
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510640, China
| | - Xiaoqian Qin
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510640, China
| | - Lu Zheng
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510640, China
| | - Jiawei Fang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510640, China
| | - Lansheng Wei
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510640, China
| | - Changliang Xu
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Zhong Alan Li
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Xiaoying Wang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510640, China.
| |
Collapse
|
41
|
Xu Z, Lu J, Lu D, Li Y, Lei H, Chen B, Li W, Xue B, Cao Y, Wang W. Rapidly damping hydrogels engineered through molecular friction. Nat Commun 2024; 15:4895. [PMID: 38851753 PMCID: PMC11162443 DOI: 10.1038/s41467-024-49239-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/29/2024] [Indexed: 06/10/2024] Open
Abstract
Hydrogels capable of swift mechanical energy dissipation hold promise for a range of applications including impact protection, shock absorption, and enhanced damage resistance. Traditional energy absorption in such materials typically relies on viscoelastic mechanisms, involving sacrificial bond breakage, yet often suffers from prolonged recovery times. Here, we introduce a hydrogel designed for friction-based damping. This hydrogel features an internal structure that facilitates the motion of a chain walker within its network, effectively dissipating mechanical stress. The hydrogel network architecture allows for rapid restoration of its damping capacity, often within seconds, ensuring swift material recovery post-deformation. We further demonstrate that this hydrogel can significantly shield encapsulated cells from mechanical trauma under repetitive compression, owing to its proficient energy damping and rapid rebound characteristics. Therefore, this hydrogel has potential for dynamic load applications like artificial muscles and synthetic cartilage, expanding the use of hydrogel dampers in biomechanics and related areas.
Collapse
Affiliation(s)
- Zhengyu Xu
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, 210093, China
- Institute for Brain Sciences, Nanjing University, Nanjing, 210093, China
| | - Jiajun Lu
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, 210093, China
| | - Di Lu
- Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Yiran Li
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, 210093, China
| | - Hai Lei
- School of Physics, Zhejiang University, Hangzhou, 310027, China
| | - Bin Chen
- Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Wenfei Li
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, 210093, China
- Institute for Brain Sciences, Nanjing University, Nanjing, 210093, China
| | - Bin Xue
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, 210093, China.
| | - Yi Cao
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, 210093, China.
- Institute for Brain Sciences, Nanjing University, Nanjing, 210093, China.
- Chemistry and Biomedicine innovation center, Nanjing University, Nanjing, 210093, China.
| | - Wei Wang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, 210093, China.
- Institute for Brain Sciences, Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
42
|
Liu H, Zhang K, Wang S, Cai X. A Short-Range Ordered α-MoO 3 with Modulated Interlayer Structure via Hydrogen Bond Chemistry for NH 4 + Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310835. [PMID: 38126931 DOI: 10.1002/smll.202310835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Indexed: 12/23/2023]
Abstract
The layered orthorhombic molybdenum trioxide (α-MoO3) is a promising host material for NH4 + storage. But its electrochemical performances are still unsatisfactory due to the absence of fundamental understanding on the relationship between structure and property. Herein, NH4 + storage properties of α-MoO3 are elaborately studied. Electrochemistry together with ex situ physical characterizations uncover that irreversible H+/NH4 + co-intercalation in the initial cycle confines the electrochemically reactive domain to the near surface of α-MoO3 thus resulting in a low reversible NH4 + storage capacity. This issue can be resolved by decreasing ion diffusion pathway to construct short-range ordered α-MoO3 (SMO), which improves the specific capacity to 185 mAh g-1. SMO suffers from dissolution issue. In view of this the interlayer structure of SMO is reconstructed via hydrogen bond chemistry to reinforce the structural stability and it is discovered that the hydrogen bond network only with moderate intensity endows SMO with both high capacity and ability against dissolution. This work presents a new avenue to improve the NH4 + storage properties of α-MoO3 and highlights the important role of hydrogen bond intensity in optimizing electrochemical properties.
Collapse
Affiliation(s)
- Huan Liu
- Department of Chemistry, Northeastern University, Shenyang, Liaoning, 110819, China
- Department of Applied Chemistry, Dalian Polytechnic University, Dalian, Liaoning, 116034, China
| | - Kuixuan Zhang
- Department of Applied Chemistry, Dalian Polytechnic University, Dalian, Liaoning, 116034, China
| | - Shulan Wang
- Department of Chemistry, Northeastern University, Shenyang, Liaoning, 110819, China
| | - Xiang Cai
- Department of Applied Chemistry, Dalian Polytechnic University, Dalian, Liaoning, 116034, China
| |
Collapse
|
43
|
Wang L, Liu K, Cui S, Qiu L, Yang D, Nie J, Ma G. Dehydration-Toughing Dual-Solvent Gels with Viscoelastic Transition for Infectious Wound Treatment. Adv Healthc Mater 2024; 13:e2303655. [PMID: 38265971 DOI: 10.1002/adhm.202303655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/16/2024] [Indexed: 01/26/2024]
Abstract
The modulus of traditional biomedical hydrogels increases exponentially meditated by dehydration-stiffing mechanism, which leads to the failure of interface matching between hydrogels and soft tissue wounds. It is found in the study that the dual-solvent gels exhibit dehydration-toughening mechanism with the slowly increasing modulus that are always match the soft tissue wounds. Therefore, dual-solvent glycerol hydrogels (GCFen-gly DGHs) are prepared with hydrophobically modified catechol chitosan (hmCSC) and gelatin based on the supramolecular interactions. GCFen-gly DGHs exhibit excellent water retention capacity with a total solvent content exceeding 80%, permanent skin-like modulus within a range of 0.45 to 4.13 kPa, and stable photothermal antibacterial abilities against S, aureus, E. coli, as well as MRSA. Infectious full-thickness rat skin defect model and tissue section analysis indicate that GCFen-gly DGHs are able to accelerate infectious wound healing by alleviating the inflammatory response, promoting granulation tissue growth, re-epithelialization, collagen deposition, and vascular regeneration. As a result, GCFen-gly DGHs is expected to become the next-generation biological gel materials for infectious wound treatment.
Collapse
Affiliation(s)
- Liangyu Wang
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Kuilong Liu
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Shuai Cui
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, P. R. China
| | - Lin Qiu
- School of Pharmacy, Changzhou University, Changzhou, 213164, P. R. China
| | - Dongzhi Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, P. R. China
| | - Jun Nie
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Guiping Ma
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
44
|
Zhao G, Lu G, Fan H, Wei L, Yu Q, Li M, Li H, Yu N, Wang S, Lu M. Herbal Products-Powered Thermosensitive Hydrogel with Phototherapy and Microenvironment Reconstruction for Accelerating Multidrug-Resistant Bacteria-Infected Wound Healing. Adv Healthc Mater 2024; 13:e2400049. [PMID: 38416676 DOI: 10.1002/adhm.202400049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/27/2024] [Indexed: 03/01/2024]
Abstract
Wound healing and infection remain significant challenges due to the ineffectiveness against multidrug-resistant (MDR) bacteria and the complex oxidative wound microenvironments. To address these issues, thymoquinone-reinforced injectable and thermosensitive TQ@PEG-PAF-Cur hydrogels with dual functions of microenvironment reshaping and photodynamic therapy are developed. The hydrogel comprises natural compound thymoquinone (TQ) and poly (ethylene glycol)-block-poly (alanine-co-phenyl alanine) copolymers (PEG-PAF) conjugated with natural photosensitizer curcumin (Cur). The incorporation of TQ and Cur reduces the sol-to-gel transition temperature of TQ@PEG-PAF-Cur to 30°C, compared to PEG-PAF hydrogel (37°C), due to the formation of strong hydrogen bonding, matching the wound microenvironment temperature. Under blue light excitation, TQ@PEG-PAF-Cur generates significant amounts of reactive oxygen species such as H2O2, 1O2, and ·OH, exhibiting rapid and efficient bactericidal capacities against methicillin-resistant Staphylococcus aureus and broad spectrum β-lactamases Escherichia coli via photodynamic therapy (PDT). Additionally, Cur effectively inhibits the expressions of proinflammatory cytokines in skin tissue-forming cells. As a result, the composite hydrogel can rapidly transform into a gel to cover the wound, reshape the wound microenvironment, and accelerate wound healing in vivo. This collaborative antibacterial strategy provides valuable insights to guide the development of multifunctional materials for efficient wound healing.
Collapse
Affiliation(s)
- Gang Zhao
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, P. R. China
| | - Guanghua Lu
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, P. R. China
| | - Huizhen Fan
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, P. R. China
| | - Li Wei
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, P. R. China
| | - Qiang Yu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, P. R. China
| | - Ming Li
- Departments of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, P. R. China
| | - Hanqing Li
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, P. R. China
| | - Nuo Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Shen Wang
- Departments of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, P. R. China
| | - Min Lu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, P. R. China
| |
Collapse
|
45
|
Liang J, Xu J, Zheng J, Zhou L, Yang W, Liu E, Zhu Y, Zhou Q, Liu Y, Wang R, Liu Z. Bioinspired Mechanically Robust and Recyclable Hydrogel Microfibers Based on Hydrogen-Bond Nanoclusters. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401278. [PMID: 38622885 PMCID: PMC11186113 DOI: 10.1002/advs.202401278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/25/2024] [Indexed: 04/17/2024]
Abstract
Mechanically robust hydrogel fibers have demonstrated great potential in energy dissipation and shock-absorbing applications. However, developing such materials that are recyclable, energy-efficient, and environmentally friendly remains an enormous challenge. Herein, inspired by spider silk, a continuous and scalable method is introduced for spinning a polyacrylamide hydrogel microfiber with a hierarchical sheath-core structure under ambient conditions. Applying pre-stretch and twist in the as-spun hydrogel microfibers results in a tensile strength of 525 MPa, a toughness of 385 MJ m-3, and a damping capacity of 99%, which is attributed to the reinforcement of hydrogen-bond nanoclusters within the microfiber matrix. Moreover, it maintains both structural and mechanical stability for several days, and can be directly dissolved in water, providing a sustainable spinning dope for re-spinning into new microfibers. This work provides a new strategy for the spinning of robust and recyclable hydrogel-based fibrous materials.
Collapse
Affiliation(s)
- Jingye Liang
- School of Textile Science and EngineeringTiangong University399 West Binshui RoadTianjin300387China
| | - Jishuai Xu
- School of Textile Science and EngineeringTiangong University399 West Binshui RoadTianjin300387China
| | - Jingxuan Zheng
- School of Textile Science and EngineeringTiangong University399 West Binshui RoadTianjin300387China
| | - Lijuan Zhou
- School of Textile Science and EngineeringTiangong University399 West Binshui RoadTianjin300387China
| | - Weiping Yang
- School of Textile Science and EngineeringTiangong University399 West Binshui RoadTianjin300387China
| | - Enzhao Liu
- Tianjin Key Laboratory of Ionic‐Molecular Function of Cardiovascular diseaseDepartment of CardiologyTianjin Institute of Cardiologythe Second Hospital of Tianjin Medical UniversityTianjin300211China
| | - Yutian Zhu
- College of MaterialsChemistry and Chemical EngineeringHangzhou Normal UniversityHangzhou311121China
| | - Qiang Zhou
- Department of OrthopaedicsTianjin First Central HospitalNankai UniversityTianjinChina
| | - Yong Liu
- School of Textile Science and EngineeringTiangong University399 West Binshui RoadTianjin300387China
| | - Run Wang
- School of Textile Science and EngineeringTiangong University399 West Binshui RoadTianjin300387China
| | - Zunfeng Liu
- State Key Laboratory of Medicinal Chemical BiologyKey Laboratory of Functional Polymer MaterialsCollege of Chemistry Frontiers Science Center for New Organic MatterNankai University94 Weijin RoadTianjin300071China
| |
Collapse
|
46
|
Zhang X, Wang Y, Shi B, Bi D, Chang Q, Zhang L, Wu H. Strongly plasticized gelatin-based hydrogel for flexible encapsulation of complex-shaped electronic devices. iScience 2024; 27:109725. [PMID: 38706866 PMCID: PMC11066429 DOI: 10.1016/j.isci.2024.109725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/02/2024] [Accepted: 04/08/2024] [Indexed: 05/07/2024] Open
Abstract
The growth of environmentally sensitive complex-shaped electronic devices (ECEDs) has led to a surging demand for flexible electromagnetic wave (EMW) absorbers. Herein, the water loss property of hydrogel was ingeniously applied for the flexible encapsulation (FE) of ECEDs. To be specific, saturated state (SGT) hydrogels were prepared by chemical cross-linking, and the hydrogen bond dissipation network promoted FE. Additionally, SGT has an effective absorption bandwidth (EAB) of 6.04 GHz at 1.65 mm due to the presence of dipole polarization. With the loss of water, SGT transitions to its natural state (NGT), and the decreasing conductivity leads to better impedance matching. NGT exhibited a broader EAB (9.20 GHz at 2.65 mm) and also strength and lightness (density of 0.3 g cm-3). Furthermore, the semi-automatic reversible cyclic transformation between SGT and NGT gels further broadens application scenarios. GT gel combines self-encapsulation and self-optimized performance as a potential EMW absorber for FE.
Collapse
Affiliation(s)
- Xinyu Zhang
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary, School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China
| | - Yuntong Wang
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary, School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China
| | - Bin Shi
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary, School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan’an University, Yan’an, Shaanxi 716000, China
| | - Dongwei Bi
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary, School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China
| | - Qing Chang
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary, School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan’an University, Yan’an, Shaanxi 716000, China
| | - Limin Zhang
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary, School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China
| | - Hongjing Wu
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary, School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China
| |
Collapse
|
47
|
Wang Y, Yao A, Dou B, Huang C, Yang L, Liang J, Lan J, Lin S. Self-healing, environmentally stable and adhesive hydrogel sensor with conductive cellulose nanocrystals for motion monitoring and character recognition. Carbohydr Polym 2024; 332:121932. [PMID: 38431422 DOI: 10.1016/j.carbpol.2024.121932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/23/2024] [Accepted: 02/06/2024] [Indexed: 03/05/2024]
Abstract
Conductive hydrogel-based sensors offer diverse applications in artificial intelligence, wearable electronic devices and character recognition management. However, it remains a significant challenge to maintain their satisfactory performances under extreme climatic conditions. Herein, a stretchable, self-adhesive, self-healing and environmentally stable conductive hydrogel was developed through free radical polymerization of hydroxyethyl acrylate (HEA) and poly(ethylene glycol) methacrylate (PEG) as the skeleton, followed by the incorporation of polyaniline-coated cellulose nanocrystal (CNC@PANI) as the conductive and reinforced nanofiller. Encouragingly, the as-prepared hydrogel (CHP) exhibited decent mechanical strength, satisfactory self-adhesion, prominent self-healing property (95.04 % after 60 s), excellent anti-freezing performance (below -60 °C) and outstanding moisture retention. The assembled sensor derived from CHP hydrogel possessed a low detection limit (0.5 % strain), high strain sensitivity (GF = 1.68) and fast response time (96 ms). Remarkably, even in harsh environmental temperatures from -60 °C to 80 °C, it reliably detected subtle and large-scale human motion for a long-term process (>10,000 cycles), manifesting its exceptional environmental tolerance. More interestingly, this hydrogel-based sensor could be assembled into a "writing board" for accurate handwritten numeral recognition. Therefore, the as-obtained multifunctional hydrogel could be a promising material applied in human motion detection and character recognition platforms even in harsh surroundings.
Collapse
Affiliation(s)
- Yafang Wang
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China; High-Tech Organic Fibers Key Laboratory of Sichuan Province, Chengdu 610036, PR China
| | - Anrong Yao
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Baojie Dou
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Cuimin Huang
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Lin Yang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Juan Liang
- High-Tech Organic Fibers Key Laboratory of Sichuan Province, Chengdu 610036, PR China
| | - Jianwu Lan
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China.
| | - Shaojian Lin
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China; High-Tech Organic Fibers Key Laboratory of Sichuan Province, Chengdu 610036, PR China.
| |
Collapse
|
48
|
Juan CY, Zhang YS, Cheng JK, Chen YH, Lin HC, Yeh MY. Lysine-Triggered Polymeric Hydrogels with Self-Adhesion, Stretchability, and Supportive Properties. Polymers (Basel) 2024; 16:1388. [PMID: 38794581 PMCID: PMC11125877 DOI: 10.3390/polym16101388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/17/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Hydrogels, recognized for their flexibility and diverse characteristics, are extensively used in medical fields such as wearable sensors and soft robotics. However, many hydrogel sensors derived from biomaterials lack mechanical strength and fatigue resistance, emphasizing the necessity for enhanced formulations. In this work, we utilized acrylamide and polyacrylamide as the primary polymer network, incorporated chemically modified poly(ethylene glycol) (DF-PEG) as a physical crosslinker, and introduced varying amounts of methacrylated lysine (LysMA) to prepare a series of hydrogels. This formulation was labeled as poly(acrylamide)-DF-PEG-LysMA, abbreviated as pADLx, with x denoting the weight/volume percentage of LysMA. We observed that when the hydrogel contained 2.5% w/v LysMA (pADL2.5), compared to hydrogels without LysMA (pADL0), its stress increased by 642 ± 76%, strain increased by 1790 ± 95%, and toughness increased by 2037 ± 320%. Our speculation regarding the enhanced mechanical performance of the pADL2.5 hydrogel revolves around the synergistic effects arising from the co-polymerization of LysMA with acrylamide and the formation of multiple intermolecular hydrogen bonds within the network structures. Moreover, the acid, amine, and amide groups present in the LysMA molecules have proven to be instrumental contributors to the self-adhesion capability of the hydrogel. The validation of the pADL2.5 hydrogel's exceptional mechanical properties through rigorous tensile tests further underscores its suitability for use in strain sensors. The outstanding stretchability, adhesive strength, and fatigue resistance demonstrated by this hydrogel affirm its potential as a key component in the development of robust and reliable strain sensors that fulfill practical requirements.
Collapse
Affiliation(s)
- Chieh-Yun Juan
- Department of Chemistry, Chung Yuan Christian University, No. 200, Zhongbei Rd., Zhongli Dist., Taoyuan City 320314, Taiwan; (C.-Y.J.); (Y.-S.Z.)
| | - You-Sheng Zhang
- Department of Chemistry, Chung Yuan Christian University, No. 200, Zhongbei Rd., Zhongli Dist., Taoyuan City 320314, Taiwan; (C.-Y.J.); (Y.-S.Z.)
| | - Jen-Kun Cheng
- Department of Medical Research, MacKay Memorial Hospital, Taipei 10449, Taiwan;
- Department of Anesthesiology, MacKay Memorial Hospital, Taipei 10449, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City 25245, Taiwan
| | - Yu-Hsu Chen
- Department of Orthopedic Surgery, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan 330215, Taiwan
- Department of Biology and Anatomy, National Defense Medical Center, Taipei 114201, Taiwan
| | - Hsin-Chieh Lin
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
| | - Mei-Yu Yeh
- Department of Chemistry, Chung Yuan Christian University, No. 200, Zhongbei Rd., Zhongli Dist., Taoyuan City 320314, Taiwan; (C.-Y.J.); (Y.-S.Z.)
| |
Collapse
|
49
|
Yang P, Song Y, Sun J, Wei J, Li S, Guo X, Liu C, Shen C. Carboxymethyl cellulose and metal-organic frameworks immobilized into polyacrylamide hydrogel for ultrahigh efficient and selective adsorption U(VI) from seawater. Int J Biol Macromol 2024; 266:130996. [PMID: 38531521 DOI: 10.1016/j.ijbiomac.2024.130996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/04/2023] [Accepted: 03/17/2024] [Indexed: 03/28/2024]
Abstract
Metal-organic frameworks (MOF)-polymer hybrid hydrogel solves the processable forming of MOF powder and energy consumption of uranium extraction. However, the hybrid hydrogel by conventional synthesis methods inevitably lead to MOF agglomeration, poor filler-polymer interfacial compatibility and slowly adsorption. Herein, we designed that ZIF-67 was implanted into the carboxymethyl cellulose/polyacrylamide (CMC/PAM) by network-repairing strategy. The carboxyl and amino groups on the surface of CMC/PAM drive the uniform growth of ZIF-67 inside the CMC/PAM, which form an array of oriented and penetrating microchannels through coordination bonds. Our strategy eliminate the ZIF-67 agglomeration, increase the interfacial compatibility between MOF and polymer. The method also improve the free and fast diffusion of uranium in CMC/PAM/ZIF-67 hydrogel. According to the experimental, these enhancements synergistically enabled the CMC/PAM/ZIF-67 have a maximum adsorption capacity of 952 mg g-1. The adsorption process of CMC/PAM/ZIF-67 fits well with pseudo-second-order model and Langmuir isotherm. Meanwhile, the CMC/PAM/ZIF-67 maintain a high removal rate (87.3 %) and chemical stability even during ten adsorption-desorption cycles. It is worth noting that the adsorption amount of CMC/PAM/ZIF-67 in real seawater is 9.95 mg g-1 after 20 days, which is an ideal candidate adsorbent for uranium extraction from seawater.
Collapse
Affiliation(s)
- Peipei Yang
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold (Ministry of Education), Zhengzhou University, Zhengzhou 450002, China; Henan Tuoren Medical Device Co., Ltd., Weiyuan Industrial Park, Changyuan 453400, China
| | - Yucheng Song
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold (Ministry of Education), Zhengzhou University, Zhengzhou 450002, China
| | - Jian Sun
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold (Ministry of Education), Zhengzhou University, Zhengzhou 450002, China
| | - Jia Wei
- Yunnan Tobacco Quality Inspection & Supervision Station, Kunming 650106, China
| | - Songwei Li
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold (Ministry of Education), Zhengzhou University, Zhengzhou 450002, China.
| | - Xuejie Guo
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Chuntai Liu
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold (Ministry of Education), Zhengzhou University, Zhengzhou 450002, China
| | - Changyu Shen
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold (Ministry of Education), Zhengzhou University, Zhengzhou 450002, China
| |
Collapse
|
50
|
Yin Y, Xie R, Sun Z, Jiang T, Zhou B, Yu Y, Ding H, Gai S, Yang P. Anti-Freezing and Ultrasensitive Zwitterionic Betaine Hydrogel-Based Strain Sensor for Motion Monitoring and Human-Machine Interaction. NANO LETTERS 2024; 24:5351-5360. [PMID: 38634773 DOI: 10.1021/acs.nanolett.4c01252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Ultrasensitive and reliable conductive hydrogels are significant in the construction of human-machine twinning systems. However, in extremely cold environments, freezing severely limits the application of hydrogel-based sensors. Herein, building on biomimetics, a zwitterionic hydrogel was elaborated for human-machine interaction employing multichemical bonding synergies and experimental signal analyses. The covalent bonds, hydrogen bonds, and electrostatic interactions construct a dense double network structure favorable for stress dispersion and hydrogen bond regeneration. In particular, zwitterions and ionic conductors maintained excellent strain response (99 ms) and electrical sensitivity (gauge factor = 14.52) in the dense hydrogel structure while immobilizing water molecules to enhance the weather resistance (-68 °C). Inspired by the high sensitivity, zwitterionic hydrogel-based strain sensors and remote-control gloves were designed by analyzing the experimental signals, demonstrating promising potential applications within specialized flexible materials and human-machine symbiotic systems.
Collapse
Affiliation(s)
- Yanqi Yin
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Rui Xie
- Department of Digestive Internal Medicine, Harbin Medical University Cancer Hospital, Harbin 150001, P. R. China
| | - Zewei Sun
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Tianzong Jiang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Bingchen Zhou
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Yan Yu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - He Ding
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Shili Gai
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| |
Collapse
|