1
|
Cui H, Li J. Hydrogel adhesives for tissue recovery. Adv Colloid Interface Sci 2025; 341:103496. [PMID: 40168713 DOI: 10.1016/j.cis.2025.103496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 02/11/2025] [Accepted: 03/24/2025] [Indexed: 04/03/2025]
Abstract
Hydrogel adhesives (HAs) are promising and rewarding tools for improving tissue therapy management. Such HAs had excellent properties and potential applications in biological tissues, such as suture replacement, long-term administration, and hemostatic sealing. In this review, the common designs and the latest progress of HAs based on various methodologies are systematically concluded. Thereafter, how to deal with interfacial water to form a robust wet adhesion and how to balance the adhesion and non-adhesion are underlined. This review also provides a brief description of gelation strategies and raw materials. Finally, the potentials of wound healing, hemostatic sealing, controlled drug delivery, and the current applications in dermal, dental, ocular, cardiac, stomach, and bone tissues are discussed. The comprehensive insight in this review will inspire more novel and practical HAs in the future.
Collapse
Affiliation(s)
- Haohao Cui
- Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China; School of Material Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Jingguo Li
- Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China; School of Material Science and Engineering, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
2
|
Jiang H, Lu X, Bu T, Yang X, Li X, Ren X, Xu X, Fan C, He J, Zhang X, Song W, Tian W, Xu B. Mechanics Mediated Semi-Convertible Hydrogel Enabled Sustained Drug Release. Adv Healthc Mater 2025:e2500845. [PMID: 40400499 DOI: 10.1002/adhm.202500845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 05/09/2025] [Indexed: 05/23/2025]
Abstract
The dynamic mechanic environment surrounding the wound may retard wound healing, and even lead to an exacerbation of inflammation and scar. How to actively promote wound healing under a dynamic mechanical environment during human motion is still a long-standing challenge. Therefore, a mechanics mediated semi-convertible hydrogel (MechSCH) loaded with drug is proposed in this study employing the synergistic interaction between mechanics mediated supramolecular non-covalent networks and polyvinyl alcohol/Gelatin polymer networks for enhancing dynamic wound healing. The formed MechSCH exhibits a partial gel-sol transition even under a shear stress of ≈9.04 Pa that is satisfied with most tissues or organs' stress. The sustained release of encapsulated drugs would be efficiently compared with the mechanics of non-sensitive polyvinyl alcohol/Gelatin hydrogel. The loaded platelet-derived growth factor (PDGF) of the MechSCH exhibited a rapid onset of therapeutic effect in a mice dorsal full-thickness dermal wound model, which demonstrated sustaining drug release through mechanics of skin tension at the wound site, along with alleviating the inflammation and promoting rapid vascular regeneration. This mechanics mediated semi-convertible hydrogel presents potential clinical applications for the dynamic management of chronic wounds.
Collapse
Affiliation(s)
- Hongyue Jiang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Xing Lu
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, P. R. China
- Nanhu Laboratory, Jiaxing, 314051, P. R. China
| | - Tianshi Bu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Xuhao Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Xiang Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Xue Ren
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Xinyi Xu
- Nanhu Laboratory, Jiaxing, 314051, P. R. China
| | | | - Jingxuan He
- Nanhu Laboratory, Jiaxing, 314051, P. R. China
| | - Xiaopeng Zhang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, P. R. China
- Nanhu Laboratory, Jiaxing, 314051, P. R. China
| | - Wenlong Song
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Wenjing Tian
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Bin Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
3
|
Xu S, Yang R, Yang Y, Zhang Y. Shape-morphing bioelectronic devices. MATERIALS HORIZONS 2025. [PMID: 40391509 DOI: 10.1039/d5mh00453e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2025]
Abstract
Shape-morphing bioelectronic devices, which can actively transform their geometric configurations in response to external stimuli (e.g., light, heat, electricity, and magnetic fields), have enabled many unique applications in different areas, ranging from human-machine interfaces to biomedical applications. These devices can not only realize in vivo deformations to execute specific tasks, form conformal contacts with target organs for real-time monitoring, and dynamically reshape their structures to adjust functional properties, but also assist users in daily activities through physical interactions. In this review, we provide a comprehensive overview of recent advances in shape-morphing bioelectronic devices, covering their fundamental working principles, representative deformation modes, and advanced manufacturing methodologies. Then, a broad range of practical applications of shape-morphing bioelectronics are summarized, including electromagnetic devices, optoelectronic devices, biological devices, biomedical devices, and haptic interfaces. Finally, we discuss key challenges and emerging opportunities in this rapidly evolving field, providing insights into future research directions and potential breakthroughs.
Collapse
Affiliation(s)
- Shiwei Xu
- Mechano-X Institute, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P. R. China.
- State Key Laboratory of Flexible Electronics Technology, Tsinghua University, 100084 Beijing, P. R. China
| | - Ruoxi Yang
- Mechano-X Institute, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P. R. China.
- State Key Laboratory of Flexible Electronics Technology, Tsinghua University, 100084 Beijing, P. R. China
| | - Youzhou Yang
- Mechano-X Institute, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P. R. China.
- State Key Laboratory of Flexible Electronics Technology, Tsinghua University, 100084 Beijing, P. R. China
| | - Yihui Zhang
- Mechano-X Institute, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P. R. China.
- State Key Laboratory of Flexible Electronics Technology, Tsinghua University, 100084 Beijing, P. R. China
| |
Collapse
|
4
|
Zhang T, Meng Z, Yu H, Ding P, Kai T. An Intelligent and Conductive Hydrogel with Multiresponsive and ROS Scavenging Properties for Infection Prevention and Anti-Inflammatory Treatment Assisted by Electrical Stimulation for Diabetic Wound. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2500696. [PMID: 40344517 DOI: 10.1002/advs.202500696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 03/11/2025] [Indexed: 05/11/2025]
Abstract
Diabetic wounds experience a hyperglycemic, hypoxic environment, combined with ongoing oxidative stress and inflammatory imbalances, significantly disrupts normal healing process. Advanced hydrogels have been considered one of the most exciting medical biomaterials for the potential in wounds healing. Herein, a novel conductive hydrogel (HEPP), designed to release nanozyme (PTPPG) in response to its microenvironment, was created to facilitate glucose (Glu) catabolism. Furthermore, the HEPP integrates photodynamic therapy (PDT), photothermal therapy (PTT), and self-cascading reactive oxygen species (ROS) to prevent bacterial infections while ensuring a continuous supply of oxygen (O2) to the wound. The HEPP not only adeptly controls high ROS levels, but also enhances the regulation of inflammation in the wound area via electrical stimulation (ES), thereby promoting healing that is supported by the immune response. Studies conducted in vitro, along with transcriptomic analyses, indicate that ES primarily mitigates inflammation by regulating Interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). The effects of HEPP combined with ES are primarily connected to their impact on TNF signaling pathways. By reducing the formation of ROS and employing ES to effectively lessen inflammation, this approach offers an innovative method to manage complicated diabetic wounds, ulcers, and a range of inflammatory conditions linked to infections.
Collapse
Affiliation(s)
- Tao Zhang
- Xiangya School of Public Health, Central South University, Changsha, Hunan, 410013, China
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Central South University, Changsha, Hunan, 410078, China
| | - Zongwu Meng
- Xiangya School of Public Health, Central South University, Changsha, Hunan, 410013, China
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Central South University, Changsha, Hunan, 410078, China
| | - Haoyu Yu
- Xiangya School of Public Health, Central South University, Changsha, Hunan, 410013, China
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Central South University, Changsha, Hunan, 410078, China
| | - Ping Ding
- Xiangya School of Public Health, Central South University, Changsha, Hunan, 410013, China
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Central South University, Changsha, Hunan, 410078, China
| | - Tianhan Kai
- Xiangya School of Public Health, Central South University, Changsha, Hunan, 410013, China
- Furong Laboratory, Central South University, Changsha, Hunan, 410008, China
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Central South University, Changsha, Hunan, 410078, China
| |
Collapse
|
5
|
Huang Y, Deng Y, Yi P, Peng L. Highly Fatigue-Resistant Stretchable Electrodes Based on Regular Stripe-Shaped Platinum Nanofilm. ACS APPLIED MATERIALS & INTERFACES 2025; 17:25839-25848. [PMID: 40252024 DOI: 10.1021/acsami.5c04159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/21/2025]
Abstract
Stretchable electronics face the challenge of long-term stable operation, and one of the difficulties is that the core component electrodes maintain a high conductivity under multiple stretchable deformations. To address this issue, we propose a highly fatigue-resistant stretchable metal film electrode, which consists of a platinum nanofilm prebent into regular microconvex stripes on the surface of an elastomeric material. The electrical conductivity of the stretchable electrode is 4.1 × 105 S/m and maintains stability after 10,000 stretch-release cycles at 40% strain. Compared with the conventional metal film electrode with a randomly wavy shape, the microconvex stripe-shaped platinum nanofilm significantly suppresses the strain concentration and the crack propagation of the nanofilm during the stretch-release cycles, resulting in the resistance after 1000 cycles being half that of conventional electrodes. The pressure sensor, based on the proposed electrode, has been shown to possess excellent fatigue resistance with only a 4% change in sensitivity after fatigue. The stretchable electrode based on a microconvex stripe-shaped platinum nanofilm on the elastomer provides an innovative solution for the long-term stable operation of stretchable electronics.
Collapse
Affiliation(s)
- Yifei Huang
- Shanghai Key Laboratory of Digital Manufacture for Thin-Walled Structures, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yujun Deng
- Shanghai Key Laboratory of Digital Manufacture for Thin-Walled Structures, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Peiyun Yi
- Shanghai Key Laboratory of Digital Manufacture for Thin-Walled Structures, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Linfa Peng
- Shanghai Key Laboratory of Digital Manufacture for Thin-Walled Structures, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
6
|
Wu Z, Lu D, Sun S, Cai M, Lin L, Zhu M. Material Design, Fabrication Strategies, and the Development of Multifunctional Hydrogel Composites Dressings for Skin Wound Management. Biomacromolecules 2025; 26:1419-1460. [PMID: 39960380 DOI: 10.1021/acs.biomac.4c01715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2025]
Abstract
The skin is fragile, making it very vulnerable to damage and injury. Untreated skin wounds can pose a serious threat to human health. Three-dimensional polymer network hydrogels have broad application prospects in skin wound dressings due to their unique properties and structure. The therapeutic effect of traditional hydrogels is limited, while multifunctional composite hydrogels show greater potential. Multifunctional hydrogels can regulate wound moisture through formula adjustment. Moreover, hydrogels can be combined with bioactive ingredients to improve their performance in wound healing applications. Stimulus-responsive hydrogels can respond specifically to the wound environment and meet the needs of different wound healing stages. This review summarizes the material types, structure, properties, design considerations, and formulation strategies for multifunctional hydrogel composite dressings used in wound healing. We discuss various types of recently developed hydrogel dressings, highlights the importance of tailoring their physicochemical properties, and addresses potential challenges in preparing multifunctional hydrogel wound dressings.
Collapse
Affiliation(s)
- Ziteng Wu
- School of Biomedical Engineering, Guangdong Medical University, Dongguan 523808, PR China
| | - Dongdong Lu
- Dongguan Key Laboratory of Interdisciplinary Science for Advanced Materials and Large-Scale Scientific Facilities, School of Physical Sciences, Great Bay University, Dongguan, Guangdong 523000, PR China
| | - Shuo Sun
- School of Biomedical Engineering, Guangdong Medical University, Dongguan 523808, PR China
| | - Manqi Cai
- School of Biomedical Engineering, Guangdong Medical University, Dongguan 523808, PR China
| | - Lin Lin
- School of Biomedical Engineering, Guangdong Medical University, Dongguan 523808, PR China
- Key Laboratory of Medical Electronics and Medical Imaging Equipment, Dongguan 523808, PR China
- Songshan Lake Innovation Center of Medicine & Engineering, Guangdong Medical University, Dongguan 523808, PR China
| | - Mingning Zhu
- School of Biomedical Engineering, Guangdong Medical University, Dongguan 523808, PR China
- Key Laboratory of Medical Electronics and Medical Imaging Equipment, Dongguan 523808, PR China
- Songshan Lake Innovation Center of Medicine & Engineering, Guangdong Medical University, Dongguan 523808, PR China
| |
Collapse
|
7
|
Wang Y, Feng Y, Tu H, Zheng H, Xiang Y, Zhang T, Huang X, Lu F, Yu K, Hu E, Lan G, Ning LJ, Xie R. Photothermal-manipulatable shape memory polyacrylamide/gelatin Janus hydrogel with drug carrier array for invasive wound closure and responsive drug release. Int J Biol Macromol 2025; 293:139255. [PMID: 39732225 DOI: 10.1016/j.ijbiomac.2024.139255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/23/2024] [Accepted: 12/25/2024] [Indexed: 12/30/2024]
Abstract
Traditional wound closure methods often present several issues, including additional puncture wounds, adverse effects from anesthesia, and noticeable scarring. Inspired by embryonic wound healing, a Janus hydrogel (PG/Au-Asp@PCM) is designed to manipulate non-invasive wound closure by photothermal-responsive self-contraction of PG/Au-Asp@PCM, which is attributed to the shape memory behavior of PG/Au-Asp@PCM under near-infrared (NIR). Wherein, gelatin acts as a thermally reversible "switch" and polyacrylamide creates stable and cross-linked "net-points". The elongated PG/Au-Asp@PCM can be temporarily fixed at 4 °C, and subsequently self-contracts upon NIR irradiation, generating a recovery force of 10 kPa, adequate for the closure of wound spontaneously. The Janus hydrogel also incorporates a drug carrier loaded with phase change material (PCM) and aspirin. The PCM absorbs heat during its phase transition above 42 °C, offering the photothermal-responsive release of aspirin on-demand; additionally, it also reduces the risk of skin burn during NIR exposure. Animal studies confirm the effectiveness of PG/Au-Asp@PCM in wound closure. Moreover, wounds treated with PG/Au-Asp@PCM exhibit reduced inflammation, increased thickness of epidermal and dermal layers, and a smoother appearance without scarring. These findings reinforce the feasibility of the photothermal strategy utilizing PG/Au-Asp@PCM for non-invasive wound closure, resulting in enhanced cosmetic appearance and improved wound healing outcomes.
Collapse
Affiliation(s)
- Yujie Wang
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Yuxue Feng
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; Faculty of Innovation and Design, City University of Macau, Macau 999078, China
| | - Hongyu Tu
- Chongqing Customs Technology Center, Chongqing 400044, China
| | - Huifang Zheng
- Department of Ophthalmology, The First People's Hospital of Longwan District, Wenzhou 325011, China
| | - Yunyun Xiang
- Department of Chinese Medicine (Gynecology), The First People's Hospital of Longwan District, Wenzhou 325011, China
| | - Tongyao Zhang
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Xinxin Huang
- Guangdong Modern Apparel Technology & Engineering Center, Guangdong University of Technology, Guangzhou 510075, Guangdong, China
| | - Fei Lu
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Kun Yu
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Enling Hu
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China.
| | - Guangqian Lan
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China.
| | - Liang-Ju Ning
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610065, China.
| | - Ruiqi Xie
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
8
|
Yan R, Zhang X, Wang H, Wang T, Ren G, Sun Q, Liang F, Zhu Y, Huang W, Yu HD. Autonomous, Moisture-Driven Flexible Electrogenerative Dressing for Enhanced Wound Healing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2418074. [PMID: 39962841 DOI: 10.1002/adma.202418074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/19/2025] [Indexed: 03/27/2025]
Abstract
Electrotherapy has shown considerable potential in treating chronic wounds, but conventional approaches relying on bulky external power supplies and mechanical force are limited in their clinical utility. This study introduces an autonomous, moisture-driven flexible electrogenerative dressing (AMFED) that overcomes these limitations. The AMFED integrates a moist-electric generator (MEG), an antibacterial hydrogel dressing, and concentric molybdenum (Mo) electrodes to provide a self-sustaining electrical supply and potent antibacterial activity against Staphylococcus aureus and Escherichia coli. The MEG harnesses chemical energy from moisture to produce a stable direct current of 0.61 V without external input, delivering this therapeutic electrical stimulation to the wound site through the Mo electrodes. The AMFED facilitates macrophage polarization toward reparative M2 phenotype and regulates inflammatory cytokines. Moreover, in vivo studies suggest that the AMFED group significantly enhances chronic wound healing, with an approximate 41% acceleration compared to the control group. Using a diabetic mouse wound model, the AMFED demonstrates its effectiveness in promoting nerve regulation, epithelial migration, and vasculogenesis. These findings present a novel and efficient platform for accelerating chronic wound healing.
Collapse
Affiliation(s)
- Ren Yan
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Xueliang Zhang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Hai Wang
- Department of Vascular Surgery, Renji Hospital, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Tikang Wang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Guozhang Ren
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Qizeng Sun
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Fei Liang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Hai-Dong Yu
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| |
Collapse
|
9
|
Jiang J, Tian Y, Wu X, Zeng M, Wu C, Wei D, Luo H, Sun J, Ding J, Fan H. Temperature and light dual-responsive hydrogels for anti-inflammation and wound repair monitoring. J Mater Chem B 2025; 13:2855-2870. [PMID: 39882768 DOI: 10.1039/d4tb02555e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Wound healing is a complex and dynamic biological process that requires meticulous management to ensure optimal outcomes. Traditional wound dressings, such as gauze and bandages, although commonly used, often fall short in their frequent need for replacement, lack of real-time monitoring and absence of anti-inflammatory and antibacterial properties, which can lead to increased risk of infection and delayed healing. Here, we address these limitations by introducing an innovative hydrogel dressing, named PHDNN6, to combine wireless Bluetooth temperature monitoring and light-triggered nitric oxide (NO) release to enhance wound healing and management. The PHDNN6 hydrogel is based on a poly(N-isopropylacrylamide) (PNIPAM) matrix, integrated with methacrylated and dopamine-grafted hyaluronic acid (HA-MA-DA), which allows the dressing to be highly responsive to changes in wound temperature, enabling continuous and real-time monitoring of the wound microenvironment wirelessly. Besides, PHDNN6 is embedded with photothermal polydopamine nanoparticles (PDA NPs) that are loaded with a NO donor, N,N'-di-sec-butyl-N,N'-dinitroso-1,4-phenylenediamine (BNN6). When exposed to near-infrared (NIR) laser irradiation, these PDA@BNN6 nanoparticles release NO to provide potent antibacterial and anti-inflammatory effects. The integration of continuous wireless temperature monitoring with NO release within a single hydrogel dressing represents a significant advancement in clinical wound care. This dual-functional platform not only provides real-time diagnostic capabilities but also offers therapeutic interventions to manage wound infections and promote tissue regeneration. Our research highlights the potential of PHDNN6 to revolutionize wound management by offering a comprehensive solution that addresses both the diagnostic and therapeutic needs in wound healing.
Collapse
Affiliation(s)
- Ji Jiang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610065, P. R. China.
| | - Yuan Tian
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610065, P. R. China.
| | - Xiaoyang Wu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610065, P. R. China.
| | - Mingze Zeng
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610065, P. R. China.
| | - Chengheng Wu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610065, P. R. China.
- Institute of Regulatory Science for Medical Devices, Sichuan University, Chengdu 610065, P. R. China
| | - Dan Wei
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610065, P. R. China.
| | - Hongrong Luo
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610065, P. R. China.
| | - Jing Sun
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610065, P. R. China.
| | - Jie Ding
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610065, P. R. China.
| | - Hongsong Fan
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610065, P. R. China.
| |
Collapse
|
10
|
Yu M, Yang H, Ye H, Lin S, Lu Y, Deng H, Xu L, Guo Y, Ho JS, Ye TT. Smartphone administered pulsed radio frequency energy therapy for expedited cutaneous wound healing. NPJ Digit Med 2025; 8:103. [PMID: 39955463 PMCID: PMC11830092 DOI: 10.1038/s41746-025-01462-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 01/15/2025] [Indexed: 02/17/2025] Open
Abstract
Pulsed radio frequency energy (PRFE) therapy is a non-invasive, electromagnetic field-based treatment modality successfully used in clinical applications. However, conventional PRFE devices are often bulky, expensive, and require extended treatment durations, limiting patient adherence and efficacy. Here, we present a lightweight, cost-effective wearable PRFE system consisting of a flexible electronic bandage and a smartphone. The bandage, mainly composed of an NFC Frequency Doubler (NFD) and a Radiofrequency Energy Radiator (RER), is powered and administered by the smartphone to generate 27.12 MHz radio wave pulses, for simplified, smartphone-enabled PRFE therapy. Its ultra-flexible, battery-free design supports personalized wound care at a low-cost (
Collapse
Affiliation(s)
- Mengxia Yu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Hongjia Yang
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, China
- School of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Haoteng Ye
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Shuhuang Lin
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Yujie Lu
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Haoqiang Deng
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Lulu Xu
- The Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, UK
| | - Yongxin Guo
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong, China.
| | - John S Ho
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore.
- The N.1 Institute for Health, National University of Singapore, Singapore, Singapore.
- Institute for Health Innovation and Technology, National University of Singapore, Singapore, Singapore.
| | - Terry Tao Ye
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, China.
- Institute of Nanoscience and Applications, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
11
|
Wang Z, Hu Q, Yao S, Wang S, Liu X, Zhang C, Wang ZL, Li L. Flexible Triboelectric Nanogenerator Patch for Accelerated Wound Healing Through the Synergy of Electrostimulation and Photothermal Effect. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409756. [PMID: 39791305 DOI: 10.1002/smll.202409756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/02/2024] [Indexed: 01/12/2025]
Abstract
Physiological wound healing process can restore the functional and structural integrity of skin, but is often delayed due to external disturbance. The development of methods for promoting the repair process of skin wounds represents a highly desired and challenging goal. Here, a flexible, self-powered, and multifunctional triboelectric nanogenerator (TENG) wound patch (e-patch) is presented for accelerating wound healing through the synergy of electrostimulation and photothermal effect. To fabricate the triboelectric e-patch, a flexible and conductive hydrogel with a dual network of polyacrylamide (PAM) and polydopamine (PDA) is synthesized and doped with multi-walled carbon nanotubes (MCNTs). The hydrogel exhibits high conductivity, good stretchability, and high biocompatibility. The triboelectric e-patch assembled from the hydrogel can detect mechanical and electrical signals of human motions in a real-time manner. In a rodent model of full-thickness dorsal skin wound, the e-patch integrating self-driven electrostimulation and photothermal effect under the near-infrared light irradiation efficiently promotes wound repair and hair follicle regeneration through relieving inflammation, fastening collagen deposition, vascular regeneration, and epithelialization. It offers a promising way to accelerate wound healing.
Collapse
Affiliation(s)
- Zhuo Wang
- Guangzhou Institute of Blue Energy, Knowledge City, Huangpu District, Guangzhou, 510555, P. R. China
- Beijing Key Laboratory of Micro-Nano Energy and Sensor, Center for High-Entropy Energy and Systems, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
| | - Quanhong Hu
- Beijing Key Laboratory of Micro-Nano Energy and Sensor, Center for High-Entropy Energy and Systems, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- Center on Nanoenergy Research, Guangxi Colleges and Universities Key Laboratory of Blue Energy and Systems Integration, School of Physical Science & Technology, Guangxi University, Nanning, 530004, P. R. China
| | - Shuncheng Yao
- Beijing Key Laboratory of Micro-Nano Energy and Sensor, Center for High-Entropy Energy and Systems, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
| | - Shaobo Wang
- Beijing Key Laboratory of Micro-Nano Energy and Sensor, Center for High-Entropy Energy and Systems, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- Center on Nanoenergy Research, Guangxi Colleges and Universities Key Laboratory of Blue Energy and Systems Integration, School of Physical Science & Technology, Guangxi University, Nanning, 530004, P. R. China
| | - Xi Liu
- Beijing Key Laboratory of Micro-Nano Energy and Sensor, Center for High-Entropy Energy and Systems, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, 100048, P. R. China
| | - Cuiping Zhang
- Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, 100048, P. R. China
| | - Zhong Lin Wang
- Guangzhou Institute of Blue Energy, Knowledge City, Huangpu District, Guangzhou, 510555, P. R. China
- Beijing Key Laboratory of Micro-Nano Energy and Sensor, Center for High-Entropy Energy and Systems, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
| | - Linlin Li
- Guangzhou Institute of Blue Energy, Knowledge City, Huangpu District, Guangzhou, 510555, P. R. China
- Beijing Key Laboratory of Micro-Nano Energy and Sensor, Center for High-Entropy Energy and Systems, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- Center on Nanoenergy Research, Guangxi Colleges and Universities Key Laboratory of Blue Energy and Systems Integration, School of Physical Science & Technology, Guangxi University, Nanning, 530004, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
12
|
Chen H, Zhang R, Zhang G, Liang X, Xu C, Li Y, Xu FJ. Naturally Inspired Tree-Ring Structured Dressing Provides Sustained Wound Tightening and Accelerates Closure. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2410845. [PMID: 39533478 DOI: 10.1002/adma.202410845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/18/2024] [Indexed: 11/16/2024]
Abstract
Mechanically regulated wound dressings require a rational combination of contraction and adhesion functions as well as balancing exudate-induced swelling issues. However, many of the reported dressings face the dilemma of impaired function and impeded wound self-contraction due to fluid-absorbing swelling. In this study, inspired by the tree ring, a core-ring structured hydrogel dressing capable of mechanical modulation is designed, and prepare it using a simple two-step photopolymerization process. The core covers the center of the wound, contracts spontaneously at body temperature to generate a contractile force of 3.4 kPa, and resists swelling. Meanwhile, the ring adheres to the normal epidermis around the wound and transfers the contraction stress to the wound edge. The integration of a functionally independent core and ring ultimately achieves effective wound traction and avoids dressing swelling. In murine and porcine skin wound-healing models, this hydrogel with a closely connected core and ring promotes healing by accelerating epidermal closure (50% closure in mouse skin on day 2, 85% closure in pig skin on day 8), collagen deposition, vascular maturation, and extracellular matrix remodeling. These results can guide further research on mechanical force modulation in wound healing, with the potential for clinical translation.
Collapse
Affiliation(s)
- Honggui Chen
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Rui Zhang
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Guo Zhang
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaoyang Liang
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Chen Xu
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yang Li
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
13
|
Wang X, Cheng J, Wang H. Chronic wound management: a liquid diode-based smart bandage with ultrasensitive pH sensing ability. MICROSYSTEMS & NANOENGINEERING 2024; 10:193. [PMID: 39676100 DOI: 10.1038/s41378-024-00801-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/12/2024] [Accepted: 08/24/2024] [Indexed: 12/17/2024]
Abstract
Chronic wounds, which require prolonged healing periods, pose significant impacts on individuals with diabetes, vascular diseases, and high blood pressure. Simultaneous drainage and monitoring of wound exudate are vital for advanced wound management. However, recently reported smart dressings either lack integration of wound cleaning and monitoring functions or fail to achieve dynamic in situ monitoring of wound status, which hinders their ability to meet the demands of wound care. In this study, a smart bandage is introduced, which integrates a biocompatible liquid diode membrane with an ultrasensitive 3D polyaniline mesh (M-PANI)-based pH biosensor. The smart bandage allows for unidirectional drainage of wound exudate while dynamically sensing the wound pH environment. Specifically, the proposed smart bandage effectively cleans excessive wound exudate while providing real-time information on the wound status during the drainage process. The M-PANI-based pH biosensor demonstrates a high sensitivity of 61.5 mV/pH and a wide pH detection range from 4.0 to 10.0, encompassing the pH range of normal and infected wounds. Moreover, the sensing module exhibits excellent stability after 48 hours of dynamic testing and 28 days of storage, with only a 4.8% decline in the detected signal, and high repeatability with a device-to-device relative standard deviation (RSD) of 3.1%. To evaluate the practicality of this smart bandage, simulated skin and rats have been employed, and the results indicate the immense potential of this smart bandage for clinical applications. In conclusion, the present smart bandage demonstrates considerable promise for wound exudate cleaning and monitoring in advanced wound care and offers a promising method for home-based wound management.
Collapse
Affiliation(s)
- Xueqi Wang
- School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China
| | - Jing Cheng
- School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China
- National Engineering Research Center for Beijing Biochip Technology, Beijing, 102206, China
| | - Han Wang
- School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
14
|
Deng K, Luo R, Chen Y, Liu X, Xi Y, Usman M, Jiang X, Li Z, Zhang J. Electrical Stimulation Therapy - Dedicated to the Perfect Plastic Repair. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2409884. [PMID: 39680745 DOI: 10.1002/advs.202409884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/19/2024] [Indexed: 12/18/2024]
Abstract
Tissue repair and reconstruction are a clinical difficulty. Bioelectricity has been identified as a critical factor in supporting tissue and cell viability during the repair process, presenting substantial potential for clinical application. This review delves into various sources of electrical stimulation and identifies appropriate electrode materials for clinical use. It also highlights the biological mechanisms of electrical stimulation at both the subcellular and cellular levels, elucidating how these interactions facilitate the repair and regeneration processes across different organs. Moreover, specific electrode materials and stimulation sources are outlined, detailing their impact on cellular activity. The future development trends are projected from two perspectives: the optimization of equipment performance and the fulfillment of clinical demands, focusing on the feasibility, safety, and cost-effectiveness of technologies.
Collapse
Affiliation(s)
- Kexin Deng
- Department of Plastic Surgery, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Ruizeng Luo
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Chen
- Department of Plastic Surgery, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Xiaoqiang Liu
- Department of Plastic Surgery, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yuanyin Xi
- A Breast Disease Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Muhammad Usman
- Department of Plastic Surgery and Burn, Central Hospital Affiliated with Chongqing University of Technology, Chongqing, 400054, P.R. China
| | - Xupin Jiang
- Department of Plastic Surgery, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Zhou Li
- Department of Plastic Surgery, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiaping Zhang
- Department of Plastic Surgery, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| |
Collapse
|
15
|
Li S, Ren X, Liu Y, Wang L, Zhou Y, Zhang Y, Yan Z, Lan X, Guo L. Multifunctional carboxymethyl chitosan/oxidized carboxymethyl cellulose hydrogel loaded with ginsenoside Rg1 and polydopamine nanoparticles for infected diabetic wound healing. Int J Biol Macromol 2024; 282:136686. [PMID: 39427794 DOI: 10.1016/j.ijbiomac.2024.136686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 10/07/2024] [Accepted: 10/16/2024] [Indexed: 10/22/2024]
Abstract
Besides bacterial infection, diabetic wounds are often accompanied by local inflammatory response, oxidative stress imbalances, and vascular formation disorders, which are the main reasons for long-term non-healing of diabetic wounds. In order to solve this problem, Ch-OCMC-PDA NPs-Rg1 self-healing hydrogel was constructed by Schiff base reaction. With the addition of PDA NPs and Rg1, Ch-OCMC-PDA NPs-Rg1 hydrogel showed excellent physical properties, like compressive strength of 142 kPa, swelling ratio of 148.91 %, and Rg1 carried in the hydrogel could achieve a slow release of 90.59 % within 48 h. What's more, PDA NPs endowed it with highly efficient photothermal antibacterial properties. In addition to excellent biocompatibility, Ch-OCMC-PDA NPs-Rg1 hydrogel could effectively clear intracellular reactive oxygen species, promote macrophages M2 transformation, and facilitate human umbilical vein endothelial cells migration and tube formation. In vivo experiments exhibited that Ch-OCMC-PDA NPs-Rg1 hydrogel could reduce wound inflammation, stimulate early angiogenesis, promote collagen deposition, and shorten the healing process of diabetic infected wounds, and the wound healing rate was significantly increased compared with other groups, reaching 98.41 ± 0.31 %. In summary, the multi-functional dynamic Ch-OCMC-PDA NPs-Rg1 hydrogel provides a new possibility for the treatment of diabetic infection wounds.
Collapse
Affiliation(s)
- Sihui Li
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, China; Institute of Stomatology, Southwest Medical University, Luzhou, China; Ziyang Central Hospital, China
| | - Xiaofeng Ren
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, China; Institute of Stomatology, Southwest Medical University, Luzhou, China
| | - Youbo Liu
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, China; Institute of Stomatology, Southwest Medical University, Luzhou, China
| | - Li Wang
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, China; Institute of Stomatology, Southwest Medical University, Luzhou, China
| | - Yang Zhou
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, China; Institute of Stomatology, Southwest Medical University, Luzhou, China
| | - Yunan Zhang
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, China; Institute of Stomatology, Southwest Medical University, Luzhou, China
| | - Zhongyi Yan
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, China; Institute of Stomatology, Southwest Medical University, Luzhou, China
| | - Xiaorong Lan
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, China; Institute of Stomatology, Southwest Medical University, Luzhou, China
| | - Ling Guo
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, China; Institute of Stomatology, Southwest Medical University, Luzhou, China.
| |
Collapse
|
16
|
Wu J, He W, Xu R, Li Y, Wu D, Yang Z, Li Y. Asymmetric porous hydrogel encapsulating vulcanized molecular brushes with anti-bacterial adhesion, anti-infection, and pro-healing properties towards infected wound treatment. NANOSCALE 2024; 16:20489-20495. [PMID: 39420797 DOI: 10.1039/d4nr02343a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Inspired by the hierarchical structure of the skin, asymmetric porous hydrogel encapsulating vulcanized molecular brushes (VMB@APH) as multifunctional wound dressing has been integrally constructed. The as-obtained VMB@APH effectively combines the anti-bacterial adhesion, anti-infection, and pro-healing properties, which is of great significance for accelerating the recovery of infected wounds.
Collapse
Affiliation(s)
- Jinlun Wu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.
| | - Wenyi He
- PCFM Lab, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China.
| | - Ruijun Xu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou 510080, China.
| | - Yang Li
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou 510080, China.
| | - Dingcai Wu
- PCFM Lab, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China.
| | - Zifeng Yang
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou 510080, China.
| | - Yong Li
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou 510080, China.
| |
Collapse
|
17
|
Ma X, Zhou Y, Xin M, Yuan H, Chao D, Liu F, Jia X, Sun P, Wang C, Lu G, Wallace G. A Mg Battery-Integrated Bioelectronic Patch Provides Efficient Electrochemical Stimulations for Wound Healing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2410205. [PMID: 39361260 DOI: 10.1002/adma.202410205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/04/2024] [Indexed: 11/29/2024]
Abstract
Bioelectronic patches hold promise for patient-comfort wound healing providing simplified clinical operation. Currently, they face paramount challenges in establishing long-term effective electronic interfaces with targeted cells and tissues due to the inconsistent energy output and high bio interface impedance. Here a new electrochemical stimulation technology is reported, using a simple wound patch, which integrates the efficient generation and delivery of stimulation. This is realized by employing a hydrogel bioelectronic interface as an active component in an integrated power source (i.e., Mg battery). The Mg battery enhances fibroblast functions (proliferation, migration, and growth factor secretion) and regulates macrophage phenotype (promoting regenerative polarization and down-regulating pro-inflammatory cytokines), by providing an electric field and the ability to control the cellular microenvironment through chemical release. This bioelectronic patch shows an effective and accelerated wound closure by guiding epithelial migration, mediating immune response, and promoting vasculogenesis. This new electrochemical-mediated therapy may provide a new avenue for user-friendly wound management as well as a platform for fundamental insights into cell stimulation.
Collapse
Affiliation(s)
- Xuenan Ma
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Yan Zhou
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Meiying Xin
- Jilin Provincial Key Laboratory of Pediatric Neurology, Department of Pediatric Neurology, The First Hospital of Jilin University, Changchun, 130021, China
| | - Hongming Yuan
- College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Danming Chao
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Fangmeng Liu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
- International Center of Future Science, Jilin University, Changchun, 130012, China
| | - Xiaoteng Jia
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Peng Sun
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
- International Center of Future Science, Jilin University, Changchun, 130012, China
| | - Caiyun Wang
- Intelligent Polymer Research Institute, Faculty of Engineering and Information Sciences, University of Wollongong, North Wollongong, NSW, 2500, Australia
| | - Geyu Lu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
- International Center of Future Science, Jilin University, Changchun, 130012, China
| | - Gordon Wallace
- Intelligent Polymer Research Institute, Faculty of Engineering and Information Sciences, University of Wollongong, North Wollongong, NSW, 2500, Australia
| |
Collapse
|
18
|
Liu S, Manshaii F, Chen J, Wang X, Wang S, Yin J, Yang M, Chen X, Yin X, Zhou Y. Unleashing the Potential of Electroactive Hybrid Biomaterials and Self-Powered Systems for Bone Therapeutics. NANO-MICRO LETTERS 2024; 17:44. [PMID: 39417933 PMCID: PMC11486894 DOI: 10.1007/s40820-024-01536-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 09/08/2024] [Indexed: 10/19/2024]
Abstract
The incidence of large bone defects caused by traumatic injury is increasing worldwide, and the tissue regeneration process requires a long recovery time due to limited self-healing capability. Endogenous bioelectrical phenomena have been well recognized as critical biophysical factors in bone remodeling and regeneration. Inspired by bioelectricity, electrical stimulation has been widely considered an external intervention to induce the osteogenic lineage of cells and enhance the synthesis of the extracellular matrix, thereby accelerating bone regeneration. With ongoing advances in biomaterials and energy-harvesting techniques, electroactive biomaterials and self-powered systems have been considered biomimetic approaches to ensure functional recovery by recapitulating the natural electrophysiological microenvironment of healthy bone tissue. In this review, we first introduce the role of bioelectricity and the endogenous electric field in bone tissue and summarize different techniques to electrically stimulate cells and tissue. Next, we highlight the latest progress in exploring electroactive hybrid biomaterials as well as self-powered systems such as triboelectric and piezoelectric-based nanogenerators and photovoltaic cell-based devices and their implementation in bone tissue engineering. Finally, we emphasize the significance of simulating the target tissue's electrophysiological microenvironment and propose the opportunities and challenges faced by electroactive hybrid biomaterials and self-powered bioelectronics for bone repair strategies.
Collapse
Affiliation(s)
- Shichang Liu
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710018, People's Republic of China
| | - Farid Manshaii
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California Los Angeles, Los Angeles, 90095, USA
| | - Jinmiao Chen
- Hangzhou Institute of Technology, Xidian University, Hangzhou, 311231, People's Republic of China
| | - Xinfei Wang
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California Los Angeles, Los Angeles, 90095, USA
| | - Shaolei Wang
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California Los Angeles, Los Angeles, 90095, USA
| | - Junyi Yin
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California Los Angeles, Los Angeles, 90095, USA
| | - Ming Yang
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710018, People's Republic of China.
| | - Xuxu Chen
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710018, People's Republic of China.
| | - Xinhua Yin
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710018, People's Republic of China.
| | - Yunlei Zhou
- Hangzhou Institute of Technology, Xidian University, Hangzhou, 311231, People's Republic of China
| |
Collapse
|
19
|
Kim JU, Ko J, Kim YS, Jung M, Jang MH, An YH, Hwang NS. Electrical Stimulating Redox Membrane Incorporated with PVA/Gelatin Nanofiber for Diabetic Wound Healing. Adv Healthc Mater 2024; 13:e2400170. [PMID: 38989721 DOI: 10.1002/adhm.202400170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/18/2024] [Indexed: 07/12/2024]
Abstract
Chronic wounds adversely affect the quality of life. Although electrical stimulation has been utilized to treat chronic wounds, there are still limitations to practicing it due to the complicated power system. Herein, an electrostimulating membrane incorporated with electrospun nanofiber (M-sheet) to treat diabetic wounds is developed. Through the screen printing method, the various alternate patterns of both Zn and AgCl on a polyurethane substrate, generating redox-mediated electrical fields are introduced. The antibacterial ability of the patterned membrane against both E. coli and S. aureus is confirmed. Furthermore, the poly(vinyl alcohol) (PVA)/gelatin electrospun fiber is incorporated into the patterned membrane to enhance biocompatibility and maintain the wet condition in the wound environment. The M-sheet can improve cell proliferation and migration in vitro and has an immune regulatory effect by inducing the polarization of macrophage to the M2 phenotype. Finally, when applied to a diabetic skin wound model, the M-sheet displays an accelerated wound healing rate and enhances re-epithelialization, collagen synthesis, and angiogenesis. It suggests that the M-sheet is a simple and portable system for the spontaneous generation of electrical stimulation and has great potential to be used in the practical wound and other tissue engineering applications.
Collapse
Affiliation(s)
- Jeong-Uk Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Junghyeon Ko
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ye-Sol Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Minwoong Jung
- Biosensor Laboratories Inc, Seoul National University, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Myoung-Hoon Jang
- Biosensor Laboratories Inc, Seoul National University, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Young-Hyeon An
- BioMax/N-Bio Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Nathaniel S Hwang
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
- BioMax/N-Bio Institute, Seoul National University, Seoul, 08826, Republic of Korea
- Institute of Engineering Research, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
20
|
Xu Z, Chen Z, Wang W, Meng X, Wang X, Xia Y, Meng Q, Li Y, Song R, Chen G. Cuttlefish ink-derived melanin nanoparticle-embedded tremella fuciformis polysaccharide hydrogels for the treatment of MRSA-infected diabetic wounds. Int J Biol Macromol 2024; 277:134342. [PMID: 39111486 DOI: 10.1016/j.ijbiomac.2024.134342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 05/04/2024] [Accepted: 07/29/2024] [Indexed: 08/13/2024]
Abstract
Diabetic wounds arise great attention as they are difficult to heal and easily suffer from serious bacterial infection. However, the overuse of antibiotics increases the resistance of bacteria and makes common drugs ineffective. Here, we developed a photothermal hydrogel (TFP/NP) composed of tremella fuciformis polysaccharides (TFPs) and cuttlefish ink-derived melanin nanoparticles (NPs). The NPs can produce reliable photothermal effects under near-infrared laser (NIR) irradiation and help to remove the bacteria in the wounds, while TFPs were able to form hydrogel frameworks which possessed anti-inflammatory effects and could be applied to promote wound healing. The TFP/NP hydrogels produced stable thermal effects under NIR irradiation and could continuously kill bacteria. The experiment on a full-layer skin wound sMRSA activity and could improve the healing efficiency. The wounds of the mice could be repaired within 14 days after reasonable treatment. In addition, the hydrogels play significant roles in promoting collagen deposition, anti-inflammation, angiogenesis, and cell proliferation during the therapeutic process. This research provides a simple and effective method for the therapy of bacterial infection wounds through the synergistic effect of TFPs and NPs.
Collapse
Affiliation(s)
- Zhou Xu
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China; Qingdao Key Laboratory of Materials for Tissue Repair and Rehabilitation, School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266024, PR China; Qingdao Central Hospital, University of Health and Rehabilitation Sciences (QingdaoCentral Medical Group), Qingdao 266024, PR China
| | - Zhiling Chen
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China; Qingdao Key Laboratory of Materials for Tissue Repair and Rehabilitation, School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266024, PR China; Qingdao Central Hospital, University of Health and Rehabilitation Sciences (QingdaoCentral Medical Group), Qingdao 266024, PR China
| | - Weijie Wang
- Qingdao Key Laboratory of Materials for Tissue Repair and Rehabilitation, School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266024, PR China; Qingdao Central Hospital, University of Health and Rehabilitation Sciences (QingdaoCentral Medical Group), Qingdao 266024, PR China.
| | - Xiangjun Meng
- Qingdao Key Laboratory of Materials for Tissue Repair and Rehabilitation, School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266024, PR China; Qingdao Central Hospital, University of Health and Rehabilitation Sciences (QingdaoCentral Medical Group), Qingdao 266024, PR China
| | - Xuewen Wang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China; Qingdao Key Laboratory of Materials for Tissue Repair and Rehabilitation, School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266024, PR China; Qingdao Central Hospital, University of Health and Rehabilitation Sciences (QingdaoCentral Medical Group), Qingdao 266024, PR China
| | - Yinhe Xia
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China; Qingdao Key Laboratory of Materials for Tissue Repair and Rehabilitation, School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266024, PR China; Qingdao Central Hospital, University of Health and Rehabilitation Sciences (QingdaoCentral Medical Group), Qingdao 266024, PR China
| | - Qingye Meng
- Qingdao Key Laboratory of Materials for Tissue Repair and Rehabilitation, School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266024, PR China; Qingdao Central Hospital, University of Health and Rehabilitation Sciences (QingdaoCentral Medical Group), Qingdao 266024, PR China
| | - Yuli Li
- Qingdao Key Laboratory of Materials for Tissue Repair and Rehabilitation, School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266024, PR China; Qingdao Central Hospital, University of Health and Rehabilitation Sciences (QingdaoCentral Medical Group), Qingdao 266024, PR China
| | - Ruilong Song
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China.
| | - Gang Chen
- Qingdao Key Laboratory of Materials for Tissue Repair and Rehabilitation, School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266024, PR China; Qingdao Central Hospital, University of Health and Rehabilitation Sciences (QingdaoCentral Medical Group), Qingdao 266024, PR China.
| |
Collapse
|
21
|
Dong Y, Ding Z, Bai Y, Lu L, Dong T, Li Q, Liu J, Chen S. Core-Shell Gel Nanofiber Scaffolds Constructed by Microfluidic Spinning toward Wound Repair and Tissue Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404433. [PMID: 39005186 PMCID: PMC11497022 DOI: 10.1002/advs.202404433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/19/2024] [Indexed: 07/16/2024]
Abstract
Growing demand for wound care resulting from the increasing chronic diseases and trauma brings intense pressure to global medical health service system. Artificial skin provides mechanical and microenvironmental support for wound, which is crucial in wound healing and tissue regeneration. However, challenges still remain in the clinical application of artificial skin since the lack of the synergy effect of necessary performance. In this study, a multi-functional artificial skin is fabricated through microfluidic spinning technology by using core-shell gel nanofiber scaffolds (NFSs). This strategy can precisely manipulate the microstructure of artificial skin under microscale. The as-prepared artificial skin demonstrates superior characteristics including surface wettability, breathability, high mechanical strength, strain sensitivity, biocompatibility and biodegradability. Notably, this artificial skin has the capability to deliver medications in a controlled and sustained manner, thereby accelerating the wound healing process. This innovative approach paves the way for the development of a new generation of artificial skin and introduces a novel concept for the structural design of the unique core-shell gel NFSs.
Collapse
Affiliation(s)
- Yue Dong
- State Key Laboratory of Materials‐Oriented Chemical EngineeringCollege of Chemical EngineeringJiangsu Key Laboratory of Fine Chemicals and Functional Polymer MaterialsNanjing Tech UniversityNanjing210009P. R. China
| | - Zongkun Ding
- State Key Laboratory of Materials‐Oriented Chemical EngineeringCollege of Chemical EngineeringJiangsu Key Laboratory of Fine Chemicals and Functional Polymer MaterialsNanjing Tech UniversityNanjing210009P. R. China
| | - Yuting Bai
- State Key Laboratory of Materials‐Oriented Chemical EngineeringCollege of Chemical EngineeringJiangsu Key Laboratory of Fine Chemicals and Functional Polymer MaterialsNanjing Tech UniversityNanjing210009P. R. China
| | - Ling‐Yu Lu
- State Key Laboratory of Materials‐Oriented Chemical EngineeringCollege of Chemical EngineeringJiangsu Key Laboratory of Fine Chemicals and Functional Polymer MaterialsNanjing Tech UniversityNanjing210009P. R. China
| | - Ting Dong
- State Key Laboratory of Materials‐Oriented Chemical EngineeringCollege of Chemical EngineeringJiangsu Key Laboratory of Fine Chemicals and Functional Polymer MaterialsNanjing Tech UniversityNanjing210009P. R. China
| | - Qing Li
- State Key Laboratory of Materials‐Oriented Chemical EngineeringCollege of Chemical EngineeringJiangsu Key Laboratory of Fine Chemicals and Functional Polymer MaterialsNanjing Tech UniversityNanjing210009P. R. China
| | - Ji‐Dong Liu
- School of Chemical and Environmental EngineeringAnhui Polytechnic UniversityWuhu241000P. R. China
| | - Su Chen
- State Key Laboratory of Materials‐Oriented Chemical EngineeringCollege of Chemical EngineeringJiangsu Key Laboratory of Fine Chemicals and Functional Polymer MaterialsNanjing Tech UniversityNanjing210009P. R. China
| |
Collapse
|
22
|
Zheng Z, Chen X, Wang Y, Wen P, Duan Q, Zhang P, Shan L, Ni Z, Feng Y, Xue Y, Li X, Zhang L, Liu J. Self-Growing Hydrogel Bioadhesives for Chronic Wound Management. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408538. [PMID: 39149779 DOI: 10.1002/adma.202408538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/21/2024] [Indexed: 08/17/2024]
Abstract
Hydrogel bioadhesives have emerged as a promising alternative to wound dressings for chronic wound management. However, many existing bioadhesives do not meet the functional requirements for efficient wound management through dynamically mechanical modulation, due to the reduced wound contractibility, frequent wound recurrence, incapability to actively adapt to external microenvironment variation, especially for those gradually-expanded chronic wounds. Here, a self-growing hydrogel bioadhesive (sGHB) patch that exhibits instant adhesion to biological tissues but also a gradual increase in mechanical strength and interfacial adhesive strength within a 120-h application is presented. The gradually increased mechanics of the sGHB patch could effectively mitigate the stress concentration at the wound edge, and also resist the wound expansion at various stages, thus mechanically contracting the chronic wounds in a programmable manner. The self-growing hydrogel patch demonstrated enhanced wound healing efficacy in a mouse diabetic wound model, by regulating the inflammatory response, promoting the faster re-epithelialization and angiogenesis through mechanical modulation. Such kind of self-growing hydrogel bioadhesives have potential clinical utility for a variety of wound management where dynamic mechanical modulation is indispensable.
Collapse
Affiliation(s)
- Ziman Zheng
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng, 475004, China
| | - Xingmei Chen
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yafei Wang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Ping Wen
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Qingfang Duan
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Pei Zhang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Liangjie Shan
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhipeng Ni
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yinghui Feng
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yu Xue
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xing Li
- Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Lin Zhang
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng, 475004, China
| | - Ji Liu
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Shenzhen Key Laboratory of Intelligent Robotics and Flexible Manufacturing Systems, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
23
|
Firoozbahr M, Palombo EA, Kingshott P, Zaferanloo B. Antibacterial and Antibiofilm Properties of Native Australian Plant Endophytes against Wound-Infecting Bacteria. Microorganisms 2024; 12:1710. [PMID: 39203552 PMCID: PMC11357646 DOI: 10.3390/microorganisms12081710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
The wound management field faces significant challenges due to antimicrobial resistance (AMR) and the complexity of chronic wound care. Effective wound treatment requires antimicrobial dressings to prevent bacterial infections. However, the rise of AMR necessitates new antimicrobial agents for wound dressings, particularly for addressing bacterial pathogens like methicillin-resistant Staphylococcus aureus (MRSA). Endophytic fungi, known for producing diverse bioactive compounds, represent a promising source of such new agents. This study tested thirty-two endophytic fungi from thirteen distinct Australian native plants for their antibacterial activity against S. aureus. Ethyl acetate (EtOAc) extracts from fungal culture filtrates exhibited inhibitory effects against both methicillin-sensitive S. aureus ATCC 25923 (MIC = 78.1 µg/mL) and MRSA M180920 (MIC = 78.1 µg/mL). DNA sequence analysis was employed for fungal identification. The most active sample, EL 19 (Chaetomium globosum), was selected for further analysis, revealing that its EtOAc extracts reduced S. aureus ATCC 25923 biofilm formation by 55% and cell viability by 57% to 68% at 12 × MIC. Furthermore, cytotoxicity studies using the brine shrimp lethality test demonstrated low cytotoxicity up to 6 × MIC (25% mortality rate) with an LC50 value of 639.1 µg/mL. Finally, the most active sample was incorporated into polycaprolactone (PCL) fiber mats via electrospinning, with resultant inhibition of S. aureus species. This research underscores the potential of endophytic fungi from Australian plants as sources of substances effective against common wound pathogens. Further exploration of the responsible compounds and their mechanisms could facilitate the development of wound dressings effective against MRSA and innovative biofilm-resistant electrospun fibers, contributing to the global efforts to combat AMR.
Collapse
Affiliation(s)
- Meysam Firoozbahr
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia; (M.F.); (P.K.)
| | - Enzo A. Palombo
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia; (M.F.); (P.K.)
- ARC Training Center for Biofilm Research and Innovation, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Peter Kingshott
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia; (M.F.); (P.K.)
- ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), School of Engineering, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Bita Zaferanloo
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia; (M.F.); (P.K.)
| |
Collapse
|
24
|
Xue R, He L, Wu J, Kong X, Wang Q, Chi Y, Liu J, Wang Z, Zeng K, Chen W, Ren H, Han B. Multifunctional sprayable carboxymethyl chitosan/polyphenol hydrogel for wound healing. Int J Biol Macromol 2024; 275:133303. [PMID: 38917923 DOI: 10.1016/j.ijbiomac.2024.133303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/27/2024]
Abstract
The use of facile methods to synthesize environmentally friendly and multifunctional hydrogel dressings is still a major challenge in development. Herein, Turkish gall extract (TGE) and carboxymethyl chitosan (CMCS) were combined and sprayed using a dual syringe to form a multifunctional TGE-CMCS hydrogel (TC gel) in one step through abundant hydrogen bonding between functional groups as a green approach. TC gel showed rapid gelation at 19.0 ± 2.9 s. Apart from the advantage of being able to adapt to different wound shapes, TC gel retained the antioxidant, antibacterial, hemostatic and anti-inflammatory properties of TGE. In vitro antibacterial experiments showed that TC-gel eliminated 98.27 ± 0.79 % of Staphylococcus aureus and 98.87 ± 1.08 % of Escherichia coli. Compared with TGE or CMCS alone, TC gel accelerates skin wound healing due to its three-dimensional network structure and continuous release of active components at the wound site, enhancing re-epithelialization, improving collagen deposition, and increasing angiogenesis. The wound healing rate of full-thickness skin defect rats treated with TC gel was 93.98 ± 0.63 % on the 10th day. These results suggest that TC gel combined with a facile and scalable manufacturing method is a promising multifunctional wound dressing for clinical wound management.
Collapse
Affiliation(s)
- Rui Xue
- School of Pharmacy/Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi University, Shihezi 832003, PR China
| | - Linyun He
- School of Pharmacy/Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi University, Shihezi 832003, PR China
| | - Jie Wu
- School of Pharmacy/Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi University, Shihezi 832003, PR China
| | - Xiangze Kong
- School of Pharmacy/Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi University, Shihezi 832003, PR China
| | - Qiuting Wang
- School of Pharmacy/Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi University, Shihezi 832003, PR China
| | - Yaping Chi
- School of Pharmacy/Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi University, Shihezi 832003, PR China
| | - Ji Liu
- School of Pharmacy/Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi University, Shihezi 832003, PR China
| | - Zhe Wang
- School of Pharmacy/Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi University, Shihezi 832003, PR China
| | - Kewu Zeng
- School of Pharmacy/Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi University, Shihezi 832003, PR China; State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Wen Chen
- School of Pharmacy/Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi University, Shihezi 832003, PR China
| | - Huanhuan Ren
- School of Pharmacy/Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi University, Shihezi 832003, PR China.
| | - Bo Han
- School of Pharmacy/Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi University, Shihezi 832003, PR China.
| |
Collapse
|
25
|
Li J, Xie Y, Liu G, Bahatibieke A, Zhao J, Kang J, Sha J, Zhao F, Zheng Y. Bioelectret Materials and Their Bioelectric Effects for Tissue Repair: A Review. ACS APPLIED MATERIALS & INTERFACES 2024; 16:38852-38879. [PMID: 39041365 DOI: 10.1021/acsami.4c07808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Biophysical and clinical medical studies have confirmed that biological tissue lesions and trauma are related to the damage of an intrinsic electret (i.e., endogenous electric field), such as wound healing, embryonic development, the occurrence of various diseases, immune regulation, tissue regeneration, and cancer metastasis. As exogenous electrical signals, such as conductivity, piezoelectricity, ferroelectricity, and pyroelectricity, bioelectroactives can regulate the endogenous electric field, thus controlling the function of cells and promoting the repair and regeneration of tissues. Materials, once polarized, can harness their inherent polarized static electric fields to generate an electric field through direct stimulation or indirect interactions facilitated by physical signals, such as friction, ultrasound, or mechanical stimulation. The interaction with the biological microenvironment allows for the regulation and compensation of polarized electric signals in damaged tissue microenvironments, leading to tissue regeneration and repair. The technique shows great promise for applications in the field of tissue regeneration. In this paper, the generation and change of the endogenous electric field and the regulation of exogenous electroactive substances are expounded, and the latest research progress of the electret and its biological effects in the field of tissue repair include bone repair, nerve repair, drug penetration promotion, wound healing, etc. Finally, the opportunities and challenges of electret materials in tissue repair were summarized. Exploring the research and development of new polarized materials and the mechanism of regulating endogenous electric field changes may provide new insights and innovative methods for tissue repair and disease treatment in biological applications.
Collapse
Affiliation(s)
- Junfei Li
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yajie Xie
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Guodong Liu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Abudureheman Bahatibieke
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jianming Zhao
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jia Kang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jian Sha
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Feilong Zhao
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yudong Zheng
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
26
|
Yao G, Gan X, Lin Y. Flexible self-powered bioelectronics enables personalized health management from diagnosis to therapy. Sci Bull (Beijing) 2024; 69:2289-2306. [PMID: 38821746 DOI: 10.1016/j.scib.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/20/2024] [Accepted: 05/13/2024] [Indexed: 06/02/2024]
Abstract
Flexible self-powered bioelectronics (FSPBs), incorporating flexible electronic features in biomedical applications, have revolutionized the human-machine interface since they hold the potential to offer natural and seamless human interactions while overcoming the limitations of battery-dependent power sources. Furthermore, as biosensors or actuators, FSPBs can dynamically monitor physiological signals to reveal real-time health abnormalities and provide timely and precise treatments. Therefore, FSPBs are increasingly shaping the landscape of health monitoring and disease treatment, weaving a sophisticated and personalized bond between humans and health management. Here, we examine the recent advanced progress of FSPBs in developing working mechanisms, design strategies, and structural configurations toward personalized health management, emphasizing its role in clinical medical scenarios from biophysical/biochemical sensors for sensing diagnosis to robust/biodegradable actuators for intervention therapy. Future perspectives on the challenges and opportunities in emerging multifunctional FSPBs for the next-generation health management systems are also forecasted.
Collapse
Affiliation(s)
- Guang Yao
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China; State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China; Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen 518110, China.
| | - Xingyi Gan
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yuan Lin
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China; State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China; Medico-Engineering Cooperation on Applied Medicine Research Center, University of Electronic Science and Technology of China, Chengdu 610054, China.
| |
Collapse
|
27
|
Dong W, Yang H, Liu M, Mei L, Han J. Wound microenvironment-responsive peptide hydrogel with multifunctionalities for accelerating wound healing. J Pept Sci 2024; 30:e3595. [PMID: 38494339 DOI: 10.1002/psc.3595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/11/2024] [Accepted: 02/28/2024] [Indexed: 03/19/2024]
Abstract
The fabrication of wound microenvironment-responsive peptide hydrogels with hemostatic ability, antibacterial activity, and wound healing potential remains a challenge. Herein, we constructed a multifunctional dressing by inducing the self-assembly of a peptide (Pep-1) and water-soluble new methylene blue (NMB) through electrostatic interaction. The self-assembly mechanism was demonstrated using a combination of transmission electron microscopy, circular dichroism spectrum, fluorescence spectrum, Zeta potential, and rheological analysis. The Pep-1/NMB hydrogel also exhibited a faster drug release rate in wound acidic environment. Furthermore, when Pep-1/NMB was exposed to a 635 nm laser, its antibacterial ratios increased sharply to 95.3%, indicating remarkably improved antibacterial effects. The findings from the blood coagulation and hemostasis assay indicated that Pep-1/NMB effectively enhanced the speed of blood clotting in vitro and efficiently controlled hemorrhage in a mouse liver hemorrhage model. Meanwhile, hemolytic and cytotoxicity evaluation revealed that the hydrogel had excellent hemocompatibility and cytocompatibility. Finally, the findings from the wound healing studies and H&E staining indicated that the Pep-1/NMB hydrogel had a significant impact on cell migration and wound repair. The results indicated that wound microenvironment-responsive Pep-1/NMB hydrogel had significant potential as a highly effective wound dressing platform, offering rapid hemostasis, antibacterial, and wound healing acceleration properties.
Collapse
Affiliation(s)
- Weimiao Dong
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, China
| | - Haihong Yang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, China
| | - Min Liu
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, China
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, China
| | - Leixia Mei
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, China
| | - Jun Han
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, China
| |
Collapse
|
28
|
Yang J, Wang Z, Liang X, Wang W, Wang S. Multifunctional polypeptide-based hydrogel bio-adhesives with pro-healing activities and their working principles. Adv Colloid Interface Sci 2024; 327:103155. [PMID: 38631096 DOI: 10.1016/j.cis.2024.103155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/08/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024]
Abstract
Wound healing is a complex physiological process involving hemostasis, inflammation, proliferation, and tissue remodeling. Therefore, there is an urgent need for suitable wound dressings for effective and systematical wound management. Polypeptide-based hydrogel bio-adhesives offer unique advantages and are ideal candidates. However, comprehensive reviews on polypeptide-based hydrogel bio-adhesives for wound healing are still lacking. In this review, the physiological mechanisms and evaluation parameters of wound healing were first described in detail. Then, the working principles of hydrogel bio-adhesives were summarized. Recent advances made in multifunctional polypeptide-based hydrogel bio-adhesives involving gelatin, silk fibroin, fibrin, keratin, poly-γ-glutamic acid, ɛ-poly-lysine, serum albumin, and elastin with pro-healing activities in wound healing and tissue repair were reviewed. Finally, the current status, challenges, developments, and future trends of polypeptide-based hydrogel bio-adhesives were discussed, hoping that further developments would be stimulated to meet the growing needs of their clinical applications.
Collapse
Affiliation(s)
- Jiahao Yang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, P. R. China
| | - Zhengyue Wang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, SAR 999077, P. R. China
| | - Xiaoben Liang
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200062, P. R. China
| | - Wenyi Wang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, SAR 999077, P. R. China.
| | - Shige Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, P. R. China.
| |
Collapse
|
29
|
Chang L, Du H, Xu F, Xu C, Liu H. Hydrogel-enabled mechanically active wound dressings. Trends Biotechnol 2024; 42:31-42. [PMID: 37453911 DOI: 10.1016/j.tibtech.2023.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/04/2023] [Accepted: 06/14/2023] [Indexed: 07/18/2023]
Abstract
Wound care is a major clinical and social concern. However, effective wound repair remains challenging where conventional dressings yield detrimental healing outcomes. An emerging technique, named mechanically active dressing (MAD), uses self-contractile hydrogels to mechanically contract the wound bed. MAD has shown improved healing rates with limited side effects. These promising developments in wound care call for a timely review on the development of such technology. Herein, we shed light on the mechanism underlying mechanically modulated wound healing, carry out a systematic discussion on the status quo of designing hydrogels for MAD fabrication, and conclude with perspectives on design, use and clinical translation for realizing the future goal of personalized wound care.
Collapse
Affiliation(s)
- Le Chang
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, Xi'an 710068, China; Shaanxi Engineering Research Center of Cell Immunology, Shaanxi Provincial People's Hospital, Xi'an 710068, China
| | - Huicong Du
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, China; Department of Aesthetic, Plastic and Maxillofacial Surgery, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710049, China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, China
| | - Cuixiang Xu
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, Xi'an 710068, China; Shaanxi Engineering Research Center of Cell Immunology, Shaanxi Provincial People's Hospital, Xi'an 710068, China.
| | - Hao Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
30
|
Vélez González JJ, Berger M, Schiele S, Rubeck A, Müller G, Welzel J, Schuh S. Dynamic optical coherence tomography of chronic venous ulcers. J Eur Acad Dermatol Venereol 2024; 38:223-231. [PMID: 37669869 DOI: 10.1111/jdv.19496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 08/11/2023] [Indexed: 09/07/2023]
Abstract
BACKGROUND Chronic ulcers, especially venous leg ulcers, are a major burden on the healthcare system. To date there are only few non-invasive established procedures for evaluation of blood perfusion in wounds. Dynamic optical coherence tomography (D-OCT) provides images of the skin's superficial vascularisation. OBJECTIVES This study aims to investigate if and how the D-OCT measurement of chronic wounds can provide new information about the vascularisation during the healing process. METHODS We examined 16 venous ulcers over 16 weeks and evaluated the vessel morphology and density using D-OCT at the wound bed, borders, two centimetres adjacent to the wound und at non-ulcerated skin on the contralateral leg. RESULTS In D-OCT scans clumps were unique and the most common vessel type in the wound area of venous ulcers, whereas lines and serpiginous vessels were the most common in non-ulcerated skin. At the wound border mottle and cluster patterns occurred more frequently. Healthy skin showed a significant increase of mesh pattern. Vessel density significantly increased at the wound area compared to non-ulcerated skin. During the healing process the wound border showed the most vascular changes while only an increase in curves was observed in the wound centre. Non-healing wounds had fewer dots and blobs at the borders, fewer dots, coils, clumps, lines and serpiginous vessels at the centre and fewer dots in adjacent skin. Temperature analysis showed higher temperatures in non-ulcerated skin, followed by the wound margin and centre. Non-healing wounds showed the lowest temperatures in the wound centre. CONCLUSIONS These results highlight the non-invasive use of D-OCT for the examination and monitoring of wound healing in chronic venous ulcers. D-OCT imaging of blood vessels may offer the potential to detect disorders of wound healing at an early stage, differentiate ulcers of different genesis and to tailor more individualized, patient-oriented therapy.
Collapse
Affiliation(s)
| | - Maximilian Berger
- Department of Dermatology and Allergology, University Hospital Augsburg, Augsburg, Germany
| | - Stefan Schiele
- Institute of Mathematics, University of Augsburg, Augsburg, Germany
| | - Anna Rubeck
- Institute of Mathematics, University of Augsburg, Augsburg, Germany
| | - Gernot Müller
- Institute of Mathematics, University of Augsburg, Augsburg, Germany
| | - Julia Welzel
- Department of Dermatology and Allergology, University Hospital Augsburg, Augsburg, Germany
| | - Sandra Schuh
- Department of Dermatology and Allergology, University Hospital Augsburg, Augsburg, Germany
| |
Collapse
|
31
|
Chen Z, Hu T, Wang R, Huang B, Tu L, Wang G, Li C, Dong B, Wang Z, Hu W. Local Delivery of Glabridin by Biomolecular Microneedle to Accelerate Infected Wound Healing. Adv Healthc Mater 2024; 13:e2302470. [PMID: 37820716 DOI: 10.1002/adhm.202302470] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/10/2023] [Indexed: 10/13/2023]
Abstract
Applying antibacterial polymers and pro-regenerative small molecules are two individual strategies for accelerating wound healing. However, integrating those two unique approaches into one therapeutic platform that meets clinical requirements is still a challenge. Herein, a series of antibacterial gelatin methacrylate (GelMA)/ε-polylysine (ε-PL) composite hydrogels (termed as GP-n HGs, n = 0, 10, 20, and 30, respectively) are innovatively fabricated by ultraviolet light (UV) crosslinking. The GP-n HGs are proved to be broad-spectrum antibacterial and biocompatible. Among those GP-n HGs, the GP-20 HG is selectively processed into microneedle following a mold-casting method. Then, the glabridin is loaded into those needles to produce composite microneedle termed GP-20@Gla MN. An S. aureus-infected full-thickness defect model in rats is created to evaluate the wound-healing effect of GP-20@Gla MN. Furthermore, an RNA sequencing assay is performed to explore the possible molecular mechanisms of glabridin in promoting tissue regeneration, and many positive routes are summarized. This work is of significant novelty in fulfilling complex clinical needs by simultaneously optimizing the advanced microneedles' chemical compositions and physical structures. This work will provide a promising therapeutic platform for treating infected and chronic wounds.
Collapse
Affiliation(s)
- Zesheng Chen
- Ministry of Education Key Laboratory of the Green Preparation and Application for Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
- Department of Urology, Hubei Province Key Laboratory of Urinary System Diseases, Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Tao Hu
- Ministry of Education Key Laboratory of the Green Preparation and Application for Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
- Department of Urology, Hubei Province Key Laboratory of Urinary System Diseases, Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Rui Wang
- School of Art, Hubei University, Wuhan, 430062, China
| | - Bohan Huang
- Ministry of Education Key Laboratory of the Green Preparation and Application for Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Lingfeng Tu
- Department of Biomedical Engineering, Hubei Province Key Laboratory of Allergy and Immune Related Disease, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, China
| | - Guanyi Wang
- Department of Urology, Hubei Province Key Laboratory of Urinary System Diseases, Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Cao Li
- College of Health Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Binghai Dong
- Ministry of Education Key Laboratory of the Green Preparation and Application for Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Zijian Wang
- Department of Urology, Hubei Province Key Laboratory of Urinary System Diseases, Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Department of Biomedical Engineering, Hubei Province Key Laboratory of Allergy and Immune Related Disease, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, China
| | - Weikang Hu
- Ministry of Education Key Laboratory of the Green Preparation and Application for Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| |
Collapse
|
32
|
Yang X, Li W, Liu Y, Cao N, He Y, Sun Q, Zhou S. Charged Fibrous Dressing to Promote Diabetic Chronic Wound Healing. Adv Healthc Mater 2024; 13:e2302183. [PMID: 37830231 DOI: 10.1002/adhm.202302183] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/08/2023] [Indexed: 10/14/2023]
Abstract
Diabetic chronic wounds cause a significant amount of pain to patients because of their low cure rates and high recurrence rates. Traditional approaches to treating diabetic chronic wounds often involve the delivery of drugs or cytokines that regulate the microenvironment and eliminate bacterial infection in the wound area, but they are passive in controlling cell behaviors and may lead to drug resistance. Emerging drug-free wound treatments are important for convenient, effective, and safe treatment strategies. However, the current approaches cannot fully promote tissue regeneration or prevent bacterial infections. Here, the efficacy of a negatively charged fiber dressing in promoting diabetic chronic wound healing is investigated. The negatively charged fiber dressing can generate reactive oxygen species to inhibit bacterial reproduction with the assistance of ultrasound during the inflammatory phase. Furthermore, the dressing provides an electrostatic field that regulates cellular behavior during the inflammatory and proliferative phases. In particular, the dressing can promote fibroblast migration and induce macrophage polarization and neovascularization without any additional drugs. It is demonstrated that this strategy enables the healing of diabetic chronic wounds in a mouse model, achieving effective wound closure over a 12-day treatment cycle and providing a drug-free therapeutic strategy for diabetic chronic wound care.
Collapse
Affiliation(s)
- Xiaomeng Yang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Wei Li
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Youmei Liu
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Ni Cao
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Yang He
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Qiangqiang Sun
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Shaobing Zhou
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| |
Collapse
|
33
|
Li W, Wang Y, Chen T, Zhang XS. Algorithmic encoding of adaptive responses in temperature-sensing multimaterial architectures. SCIENCE ADVANCES 2023; 9:eadk0620. [PMID: 37992164 PMCID: PMC10664980 DOI: 10.1126/sciadv.adk0620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/23/2023] [Indexed: 11/24/2023]
Abstract
We envision programmable matters that can alter their physical properties in desirable manners based on user input or autonomous sensing. This vision motivates the pursuit of mechanical metamaterials that interact with the environment in a programmable fashion. However, this has not been systematically achieved for soft metamaterials because of the highly nonlinear deformation and underdevelopment of rational design strategies. Here, we use computational morphogenesis and multimaterial polymer 3D printing to systematically create soft metamaterials with arbitrarily programmable temperature-switchable nonlinear mechanical responses under large deformations. This is made possible by harnessing the distinct glass transition temperatures of different polymers, which, when optimally synthesized, produce local and giant stiffness changes in a controllable manner. Featuring complex geometries, the generated structures and metamaterials exhibit fundamentally different yet programmable nonlinear force-displacement relations and deformation patterns as temperature varies. The rational design and fabrication establish an objective-oriented synthesis of metamaterials with freely tunable thermally adaptive behaviors. This imbues structures and materials with environment-aware intelligence.
Collapse
Affiliation(s)
- Weichen Li
- Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Yue Wang
- Department of Mechanical Engineering, University of Houston, Houston, TX 77204, USA
| | - Tian Chen
- Department of Mechanical Engineering, University of Houston, Houston, TX 77204, USA
| | - Xiaojia Shelly Zhang
- Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- National Center for Supercomputing Applications, Urbana, IL 61801, USA
| |
Collapse
|
34
|
Ge Z, Guo W, Tao Y, Sun H, Meng X, Cao L, Zhang S, Liu W, Akhtar ML, Li Y, Ren Y. Wireless and Closed-Loop Smart Dressing for Exudate Management and On-Demand Treatment of Chronic Wounds. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304005. [PMID: 37547949 DOI: 10.1002/adma.202304005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/09/2023] [Indexed: 08/08/2023]
Abstract
Chronic wounds have become a significant threat to people's physical and mental health and have increased the burden of social medical care. Intelligent wound dressing (IWD) with wound condition monitoring and closed-loop on-demand drug therapy can shorten the healing process and alleviate patient suffering. However, single-function wound dressings cannot meet the current needs of chronic wound treatment. Here, a wearable IWD consisting of wound exudate management, sensor monitoring, closed-loop therapy, and flexible circuit modules is reported, which can achieve effective synergy between wound exudate management and on-demand wound therapy. The dressing is attached to the wound site, and the wound exudate is spontaneously pumped into the microfluidic channel for storage. Meanwhile, the IWD can detect the state of the wound through the temperature and humidity sensor, and use this as feedback to control the liquid metal (LM) heater through a smartphone, thereby realizing the on-demand drug release from the hydrogel. In a mouse model of infected wounds, IWD accelerates wound healing by reducing inflammatory responses, promoting angiogenesis and collagen deposition.
Collapse
Affiliation(s)
- Zhenyou Ge
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, 150001, P. R. China
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Wenshang Guo
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, 150001, P. R. China
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Ye Tao
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Haoxiu Sun
- School of Life Sciences, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Xiangyu Meng
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, 150001, P. R. China
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Liangyu Cao
- School of Life Sciences, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Shanguo Zhang
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Weiyu Liu
- School of Electronics and Control Engineering, Chang'an University, Xi'an, 710064, P. R. China
| | | | - Yu Li
- School of Life Sciences, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Yukun Ren
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, 150001, P. R. China
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| |
Collapse
|
35
|
Li Y, Chen K, Pang Y, Zhang J, Wu M, Xu Y, Cao S, Zhang X, Wang S, Sun Y, Ning X, Wang X, Kong D. Multifunctional Microneedle Patches via Direct Ink Drawing of Nanocomposite Inks for Personalized Transdermal Drug Delivery. ACS NANO 2023; 17:19925-19937. [PMID: 37805947 DOI: 10.1021/acsnano.3c04758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Additive manufacturing, commonly known as 3D printing, allows decentralized drug fabrication of orally administered tablets. Microneedles are comparatively favorable for self-administered transdermal drug delivery with improved absorption and bioavailability. Due to the cross-scale geometric characteristics, 3D-printed microneedles face a significant trade-off between the feature resolution and production speed in conventional layer-wise deposition sequences. In this study, we introduce an economical and scalable direct ink drawing strategy to create drug-loaded microneedles. A freestanding microneedle is efficiently generated upon each pneumatic extrusion and controlled drawing process. Sharp tips of ∼5 μm are formed with submillimeter nozzles, representing 2 orders of magnitude improved resolution. As the key enabler of this fabrication strategy, the yield-stress fluid inks are formulated by simply filling silica nanoparticles into regular polymer solutions. The approach is compatible with various microneedles based on dissolvable, biodegradable, and nondegradable polymers. Various matrices are readily adopted to adjust the release behaviors of the drug-loaded microneedles. Successful fabrication of multifunctional patches with heterogeneously integrated microneedles allows the treatment of melanoma via synergistic photothermal therapy and combination chemotherapy. The personalized patches are designed for cancer severity to achieve high therapeutic efficacy with minimal side effects. The direct ink drawing reported here provides a facile and low-cost fabrication strategy for multifunctional microneedle patches for self-administering transdermal drug delivery.
Collapse
Affiliation(s)
- Yanyan Li
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210046, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210046, China
| | - Kerong Chen
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210046, China
- National Laboratory of Solid State Microstructure, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210046, China
| | - Yushuang Pang
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210046, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210046, China
| | - Jiaxue Zhang
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210046, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210046, China
| | - Ming Wu
- Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210046, China
| | - Yurui Xu
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210046, China
- National Laboratory of Solid State Microstructure, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210046, China
| | - Shitai Cao
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210046, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210046, China
| | - Xinxin Zhang
- College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Shaolei Wang
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210046, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210046, China
| | - Yuping Sun
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210046, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210046, China
| | - Xinghai Ning
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210046, China
- National Laboratory of Solid State Microstructure, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210046, China
| | - Xiaoliang Wang
- Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210046, China
| | - Desheng Kong
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210046, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210046, China
- National Laboratory of Solid State Microstructure, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|
36
|
Zhang Z, Zhu Z, Zhou P, Zou Y, Yang J, Haick H, Wang Y. Soft Bioelectronics for Therapeutics. ACS NANO 2023; 17:17634-17667. [PMID: 37677154 DOI: 10.1021/acsnano.3c02513] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Soft bioelectronics play an increasingly crucial role in high-precision therapeutics due to their softness, biocompatibility, clinical accuracy, long-term stability, and patient-friendliness. In this review, we provide a comprehensive overview of the latest representative therapeutic applications of advanced soft bioelectronics, ranging from wearable therapeutics for skin wounds, diabetes, ophthalmic diseases, muscle disorders, and other diseases to implantable therapeutics against complex diseases, such as cardiac arrhythmias, cancer, neurological diseases, and others. We also highlight key challenges and opportunities for future clinical translation and commercialization of soft therapeutic bioelectronics toward personalized medicine.
Collapse
Affiliation(s)
- Zongman Zhang
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
- The Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Zhongtai Zhu
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
| | - Pengcheng Zhou
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
- The Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Yunfan Zou
- Department of Biotechnology and Food Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Jiawei Yang
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
- The Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Hossam Haick
- The Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Yan Wang
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
- The Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
- Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
| |
Collapse
|
37
|
Fu X, Ni Y, Wang G, Nie R, Wang Y, Yao R, Yan D, Guo M, Li N. Synergistic and Long-Lasting Wound Dressings Promote Multidrug-Resistant Staphylococcus Aureus-Infected Wound Healing. Int J Nanomedicine 2023; 18:4663-4679. [PMID: 37605733 PMCID: PMC10440117 DOI: 10.2147/ijn.s418671] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/09/2023] [Indexed: 08/23/2023] Open
Abstract
Background Multidrug-resistant staphylococcus aureus infected wounds can lead to nonhealing, systemic infections, and even death. Although advanced dressings are effective in protecting, disinfecting, and maintaining moist microenvironments, they often have limitations such as single functionality, inadequate drug release, poor biosafety, or high rates of drug resistance. Methods Here, a novel wound dressing comprising glycyrrhizic acid (GA) and tryptophan-sorbitol carbon quantum dots (WS-CQDs) was developed, which exhibit synergistic and long-lasting antibacterial and anti-inflammatory effects. We investigated the characterization, mechanical properties, synergistic antibacterial effects, sustained-release properties, and cytotoxicity of GA/WS-CQDs hydrogels in vitro. Additionally, we performed transcriptome sequence analysis to elucidate the antibacterial mechanism. Furthermore, we evaluated the biosafety, anti-inflammatory effects, and wound healing ability of GA/WS-CQDs dressings using an in vivo mouse model of methicillin-resistant staphylococcus aureus (MRSA)-infected wounds. Results The prepared GA/WS-CQDs hydrogels demonstrated superior anti-MRSA effects compared to common antibiotics in vitro. Furthermore, the sustained release of WS-CQDs from GA/WS-CQDs hydrogels lasted for up to 60 h, with a cumulative release of exceeding 90%. The sustained-released WS-CQDs exhibited excellent anti-MRSA effects, with low drug resistance attributed to DNA damage and inhibition of bacterial biofilm formation. Notably, in vivo experiments showed that GA/WS-CQDs dressings reduced the expression of inflammatory factors (TNF-α, IL-1β, and IL-6) and significantly promoted the healing of MRSA-infected wounds with almost no systemic toxicity. Importantly, the dressings did not require replacement during the treatment process. Conclusion These findings emphasize the high suitability of GA/WS-CQDs dressings for MRSA-infected wound healing and their potential for clinical translation.
Collapse
Affiliation(s)
- Xiangjie Fu
- Department of Blood Transfusion, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
| | - Yaqiong Ni
- Hunan Provincial Key Laboratory of Micro&Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People’s Republic of China
| | - Guanchen Wang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, People’s Republic of China
| | - Runda Nie
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, People’s Republic of China
| | - Yang Wang
- Institute of Integrative Medicine, Key Laboratory of Hunan Province for Liver Manifestation of Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
| | - Run Yao
- Department of Blood Transfusion, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
| | - Danyang Yan
- Department of Blood Transfusion, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
| | - Mingming Guo
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, People’s Republic of China
| | - Ning Li
- Department of Blood Transfusion, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
| |
Collapse
|
38
|
Yao G, Mo X, Liu S, Wang Q, Xie M, Lou W, Chen S, Pan T, Chen K, Yao D, Lin Y. Snowflake-inspired and blink-driven flexible piezoelectric contact lenses for effective corneal injury repair. Nat Commun 2023; 14:3604. [PMID: 37330515 PMCID: PMC10276863 DOI: 10.1038/s41467-023-39315-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 06/06/2023] [Indexed: 06/19/2023] Open
Abstract
The cornea is a tissue susceptible to various injuries and traumas with a complicated cascade repair process, in which conserving its integrity and clarity is critical to restoring visual function. Enhancing the endogenous electric field is recognized as an effective method of accelerating corneal injury repair. However, current equipment limitations and implementation complexities hinder its widespread adoption. Here, we propose a snowflake-inspired, blink-driven flexible piezoelectric contact lens that can convert mechanical blink motions into a unidirectional pulsed electric field for direct application to moderate corneal injury repair. The device is validated on mouse and rabbit models with different relative corneal alkali burn ratios to modulate the microenvironment, alleviate stromal fibrosis, promote orderly epithelial arrangement and differentiation, and restore corneal clarity. Within an 8-day intervention, the corneal clarity of mice and rabbits improves by more than 50%, and the repair rate of mouse and rabbit corneas increases by over 52%. Mechanistically, the device intervention is advantageous in blocking growth factors' signaling pathways specifically involved in stromal fibrosis whilst preserving and harnessing the signaling pathways required for indispensable epithelial metabolism. This work put forward an efficient and orderly corneal therapeutic technology utilizing artificial endogenous-strengthened signals generated by spontaneous body activities.
Collapse
Affiliation(s)
- Guang Yao
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China.
- State Key Laboratory of Electronic Thin films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China.
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen, 518110, China.
| | - Xiaoyi Mo
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China
| | - Shanshan Liu
- MOE Key Laboratory for Neuroinformation, The Clinical Hospital of Chengdu Brain Sciences Institute, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China
| | - Qian Wang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China
| | - Maowen Xie
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China
| | - Wenhao Lou
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China
| | - Shiyan Chen
- Department of Ophthalmology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Medical School, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China
| | - Taisong Pan
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China
| | - Ke Chen
- MOE Key Laboratory for Neuroinformation, The Clinical Hospital of Chengdu Brain Sciences Institute, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China.
- Department of Ophthalmology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Medical School, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China.
| | - Dezhong Yao
- MOE Key Laboratory for Neuroinformation, The Clinical Hospital of Chengdu Brain Sciences Institute, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China
| | - Yuan Lin
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China.
- State Key Laboratory of Electronic Thin films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China.
- Medico-Engineering Cooperation on Applied Medicine Research Center, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China.
| |
Collapse
|
39
|
Wang M, Feng S, Bai C, Ji K, Zhang J, Wang S, Lu Y, Kong D. Ultrastretchable MXene Microsupercapacitors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300386. [PMID: 36823446 DOI: 10.1002/smll.202300386] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Indexed: 05/25/2023]
Abstract
Stretchable microsupercapacitors represent emerging miniaturized energy-storage devices for next-generation deformable electronics. Two-dimensional (2D) transition metal carbides (MXenes) are considered attractive electrode materials due to their metallic conductivity, hydrophilic surfaces, and excellent processability. Here, an ultrastretchable microsupercapacitor of interdigitated MXene microelectrodes with crumpled surface textures is created. The microsupercapacitor shows a series of attractive properties including a high specific capacitance of ≈185 mF cm-2 , ultrahigh stretchability up to 800% area strain, and ≈89.7% retention of the initial capacitance after 1000 stretch-relaxation cycles. In addition to static strains, the microsupercapacitor demonstrates robust mechanical properties to retain stable charging-discharging capability under dynamic stretching at different strain rates. A self-powering circuit system utilizes four microsupercapacitor packs to power a light-emitting diode (LED) array, which exhibits stable operations under large tensile strain and skin-attached wearable settings. The developments offer a generic design strategy to enhance the deformability of microsupercapacitors based on 2D nanomaterials.
Collapse
Affiliation(s)
- Menglu Wang
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Shuxuan Feng
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Chong Bai
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Kang Ji
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Jiaxue Zhang
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Shaolei Wang
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Yanqing Lu
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
- Key Laboratory of Intelligent Optical Sensing and Manipulation, Nanjing University, Nanjing, 210093, P. R. China
| | - Desheng Kong
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
- State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210046, P. R. China
| |
Collapse
|
40
|
Luo B, Zhou Q, Chen W, Sun L, Yang L, Guo Y, Liu H, Wu Z, Neisiany RE, Qin X, Pan J, You Z. Nonadjacent Wireless Electrotherapy for Tissue Repair by a 3D-Printed Bioresorbable Fully Soft Triboelectric Nanogenerator. NANO LETTERS 2023; 23:2927-2937. [PMID: 36926930 DOI: 10.1021/acs.nanolett.3c00300] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Electrotherapy is a promising tissue repair technique. However, electrotherapy devices are frequently complex and must be placed adjacent to injured tissue, thereby limiting their clinical application. Here, we propose a general strategy to facilitate tissue repair by modulating endogenous electric fields with nonadjacent (approximately 44 mm) wireless electrotherapy through a 3D-printed entirely soft and bioresorbable triboelectric nanogenerator based stimulator, without any electrical accessories, which has biomimetic mechanical properties similar to those of soft tissue. In addition, the feasibility of using the stimulator to construct an electrical double layer with tissue for nonadjacent wireless electrotherapy was demonstrated by skin and muscle injury models. The treated groups showed significantly improved tissue repair compared with the control group. In conclusion, we developed a promising electrotherapy strategy and may inspire next-generation electrotherapy for tissue repair.
Collapse
Affiliation(s)
- Bin Luo
- College of Textiles, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, People's Republic of China
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, People's Republic of China
| | - Qiangqiang Zhou
- Department of Endodontics, Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai 200001, People's Republic of China
| | - Wenyi Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, People's Republic of China
| | - Lijie Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, People's Republic of China
| | - Lei Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, People's Republic of China
| | - Yifan Guo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, People's Republic of China
| | - Huijie Liu
- College of Textiles, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, People's Republic of China
| | - Zekai Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, People's Republic of China
| | - Rasoul Esmaeely Neisiany
- Department of Materials and Polymer Engineering, Faculty of Engineering, Hakim Sabzevari University, Sabzevar 9617976487, Iran
| | - Xiaohong Qin
- College of Textiles, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, People's Republic of China
| | - Jie Pan
- Department of Orthodontics, Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai 200001, People's Republic of China
| | - Zhengwei You
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, People's Republic of China
| |
Collapse
|
41
|
Ma X, Wu X, Cao S, Zhao Y, Lin Y, Xu Y, Ning X, Kong D. Stretchable and Skin-Attachable Electronic Device for Remotely Controlled Wearable Cancer Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205343. [PMID: 36727804 PMCID: PMC10074095 DOI: 10.1002/advs.202205343] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Surgery represents a primary clinical treatment of solid tumors. The high risk of local relapse typically requires frequent hospital visits for postoperative adjuvant therapy. Here, device designs and system integration of a stretchable electronic device for wearable cancer treatment are presented. The soft electronic patch harnesses compliant materials to achieve conformal and stable attachment to the surgical wound. A composite nanotextile dressing is laminated to the electronic patch to allow the on-demand release of anticancer drugs under electro-thermal actuation. An additional flexible circuit and a compact battery complete an untethered wearable system to execute remote therapeutic commands from a smartphone. The successful implementation of combined chemothermotherapy to inhibit tumor recurrence demonstrates the promising potential of stretchable electronics for advanced wearable therapies without interfering with daily activities.
Collapse
Affiliation(s)
- Xiaohui Ma
- College of Engineering and Applied SciencesJiangsu Key Laboratory of Artificial Functional MaterialsNanjing UniversityNanjing210046China
- State Key Laboratory of Analytical Chemistry for Life ScienceNanjing UniversityNanjing210046China
| | - Xiaotong Wu
- College of Engineering and Applied SciencesJiangsu Key Laboratory of Artificial Functional MaterialsNanjing UniversityNanjing210046China
- National Laboratory of Solid State MicrostructureCollaborative Innovation Center of Advanced MicrostructuresChemistry and Biomedicine Innovation CenterNanjing UniversityNanjing210093China
| | - Shitai Cao
- College of Engineering and Applied SciencesJiangsu Key Laboratory of Artificial Functional MaterialsNanjing UniversityNanjing210046China
- State Key Laboratory of Analytical Chemistry for Life ScienceNanjing UniversityNanjing210046China
| | - Yinfeng Zhao
- College of Engineering and Applied SciencesJiangsu Key Laboratory of Artificial Functional MaterialsNanjing UniversityNanjing210046China
- National Laboratory of Solid State MicrostructureCollaborative Innovation Center of Advanced MicrostructuresChemistry and Biomedicine Innovation CenterNanjing UniversityNanjing210093China
| | - Yong Lin
- College of Engineering and Applied SciencesJiangsu Key Laboratory of Artificial Functional MaterialsNanjing UniversityNanjing210046China
- State Key Laboratory of Analytical Chemistry for Life ScienceNanjing UniversityNanjing210046China
| | - Yurui Xu
- College of Engineering and Applied SciencesJiangsu Key Laboratory of Artificial Functional MaterialsNanjing UniversityNanjing210046China
- National Laboratory of Solid State MicrostructureCollaborative Innovation Center of Advanced MicrostructuresChemistry and Biomedicine Innovation CenterNanjing UniversityNanjing210093China
| | - Xinghai Ning
- College of Engineering and Applied SciencesJiangsu Key Laboratory of Artificial Functional MaterialsNanjing UniversityNanjing210046China
- National Laboratory of Solid State MicrostructureCollaborative Innovation Center of Advanced MicrostructuresChemistry and Biomedicine Innovation CenterNanjing UniversityNanjing210093China
| | - Desheng Kong
- College of Engineering and Applied SciencesJiangsu Key Laboratory of Artificial Functional MaterialsNanjing UniversityNanjing210046China
- State Key Laboratory of Analytical Chemistry for Life ScienceNanjing UniversityNanjing210046China
| |
Collapse
|
42
|
Tang Y, Gong G, He X, Dai M, Chen M, Wang B, Wang Y, Wang X, Guo J. Multifunctional Dual Cross-Linked Bioadhesive Patch with Low Immunogenic Response and Wet Tissues Adhesion. Adv Healthc Mater 2023; 12:e2201578. [PMID: 36353840 DOI: 10.1002/adhm.202201578] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/28/2022] [Indexed: 11/11/2022]
Abstract
The development of bioadhesives is an important, yet challenging task as seemingly mutually exclusive properties need to be combined in one material, that is, strong adhesion, water resistance, and high biocompatibility. Here, a biocompatible and biodegradable protein-based bioadhesive patch (PBP) with high adhesion strength and low immunogenic response is reported. PBP exists as a strong adhesion for biological surfaces, which is higher than some conventional bioadhesives (i.e., polyethylene glycol and fibrin). Robust adhesion and strength are realized through the removal of interfacial water and fast formation of multiple supramolecular interactions induced by metal ions. The PBP's high biocompatibility is evaluated and immunogenic response in vitro and in vivo is neglected. The strong adhesion on soft biological tissues qualifies the PBP as biomedical glue outperforming some commercial products for applications in hemostasis performance, accelerated wound healing, and sealing of defected organs, anticipating to be useful as a tissue adhesive and sealant.
Collapse
Affiliation(s)
- Yang Tang
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Guidong Gong
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China.,National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Xianglian He
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Mengyuan Dai
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Mei Chen
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Bo Wang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Yajie Wang
- School of Engineering, Westlake University, Hangzhou, Zhejiang, 310024, China
| | - Xiaoling Wang
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China.,National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Junling Guo
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China.,National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, Sichuan, 610065, China.,Bioproducts Institute, Departments of Chemical and Biological Engineering, The University of British Columbia, Vancouver, British Columbia, V6T1Z4, Canada.,State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| |
Collapse
|
43
|
Zhang Z, Xie J, Xing J, Li C, Wong TM, Yu H, Li Y, Yang F, Tian Y, Zhang H, Li W, Ning C, Wang X, Yu P. Light-Programmable Nanocomposite Hydrogel for State-Switchable Wound Healing Promotion and Bacterial Infection Elimination. Adv Healthc Mater 2023; 12:e2201565. [PMID: 36208068 DOI: 10.1002/adhm.202201565] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/11/2022] [Indexed: 01/18/2023]
Abstract
Developing an ideal wound dressing that not only accelerates wound healing but also eliminates potential bacterial infections remains a difficult balancing act. This work reports the design of a light-programmable sodium alginate nanocomposite hydrogel loaded with BiOCl/polypyrrole (BOC/PPy) nanosheets for state-switchable wound healing promotion and bacterial infection elimination remotely. The nanocomposite hydrogel possesses programmable photoelectric or photothermal conversion due to the expanded light absorption range, optimized electron transmission interface, promoted photo-generated charge separation, and transfer of the BOC/PPy nanosheets. Under white light irradiation state, the nanocomposite hydrogel induces human umbilical vein endothelial cells migration and angiogenesis, and accelerates the healing efficiency of mouse skin in vivo. Under near-infrared light irradiation state, the nanocomposite hydrogel presents superior antibacterial capability in vitro, and reaches an antibacterial rate of 99.1% for Staphylococcus aureus infected skin wound in vivo. This light-programmable nanocomposite hydrogel provides an on-demand resolution of biological state-switching to balance wound healing and elimination of bacterial infection.
Collapse
Affiliation(s)
- Zhekun Zhang
- School of Material Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Metallic Materials Surface Functionalization Engineering Research Center of Guangdong Province, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Juning Xie
- School of Medicine, South China University of Technology, Guangzhou, 510640, P. R. China.,Medical Research Center, Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, P. R. China
| | - Jun Xing
- School of Material Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Metallic Materials Surface Functionalization Engineering Research Center of Guangdong Province, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Changhao Li
- School of Material Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Metallic Materials Surface Functionalization Engineering Research Center of Guangdong Province, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Tak Man Wong
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, 999077, China
| | - Hui Yu
- Medical Research Center, Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, P. R. China
| | - Yuanxing Li
- School of Material Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Metallic Materials Surface Functionalization Engineering Research Center of Guangdong Province, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Fabang Yang
- School of Material Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Metallic Materials Surface Functionalization Engineering Research Center of Guangdong Province, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Yu Tian
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Huan Zhang
- School of Material Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Metallic Materials Surface Functionalization Engineering Research Center of Guangdong Province, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Wei Li
- School of Material Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Metallic Materials Surface Functionalization Engineering Research Center of Guangdong Province, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Chengyun Ning
- School of Material Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Metallic Materials Surface Functionalization Engineering Research Center of Guangdong Province, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Xiaolan Wang
- Medical Research Center, Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, P. R. China
| | - Peng Yu
- School of Material Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Metallic Materials Surface Functionalization Engineering Research Center of Guangdong Province, South China University of Technology, Guangzhou, 510640, P. R. China
| |
Collapse
|
44
|
Zhu J, Zhou H, Gerhard EM, Zhang S, Parra Rodríguez FI, Pan T, Yang H, Lin Y, Yang J, Cheng H. Smart bioadhesives for wound healing and closure. Bioact Mater 2023; 19:360-375. [PMID: 35574051 PMCID: PMC9062426 DOI: 10.1016/j.bioactmat.2022.04.020] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/05/2022] [Accepted: 04/18/2022] [Indexed: 12/12/2022] Open
Abstract
The high demand for rapid wound healing has spurred the development of multifunctional and smart bioadhesives with strong bioadhesion, antibacterial effect, real-time sensing, wireless communication, and on-demand treatment capabilities. Bioadhesives with bio-inspired structures and chemicals have shown unprecedented adhesion strengths, as well as tunable optical, electrical, and bio-dissolvable properties. Accelerated wound healing has been achieved via directly released antibacterial and growth factors, material or drug-induced host immune responses, and delivery of curative cells. Most recently, the integration of biosensing and treatment modules with wireless units in a closed-loop system yielded smart bioadhesives, allowing real-time sensing of the physiological conditions (e.g., pH, temperature, uric acid, glucose, and cytokine) with iterative feedback for drastically enhanced, stage-specific wound healing by triggering drug delivery and treatment to avoid infection or prolonged inflammation. Despite rapid advances in the burgeoning field, challenges still exist in the design and fabrication of integrated systems, particularly for chronic wounds, presenting significant opportunities for the future development of next-generation smart materials and systems.
Collapse
Affiliation(s)
- Jia Zhu
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Honglei Zhou
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
- Institute of Flexible Electronics Technology of THU, Zhejiang, Jiaxing, 314000, China
| | - Ethan Michael Gerhard
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Senhao Zhang
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou, 215011, PR China
| | - Flor Itzel Parra Rodríguez
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Taisong Pan
- School of Materials and Energy, State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
| | - Hongbo Yang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou, 215011, PR China
| | - Yuan Lin
- School of Materials and Energy, State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
| | - Jian Yang
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
- Materials Research Institute, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Huanyu Cheng
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
- Materials Research Institute, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
45
|
Huang Z, Lin Y. Transfer printing technologies for soft electronics. NANOSCALE 2022; 14:16749-16760. [PMID: 36353821 DOI: 10.1039/d2nr04283e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Soft electronics have received increasing attention in recent years, owing to their wide range of applications in dynamic nonplanar surface integration electronics that include skin electronics, implantable devices, and soft robotics. Transfer printing is a widely used assembly technology for micro- and nano-fabrication, which enables the integration of functional devices with flexible or elastomeric substrates for the manufacturing of soft electronics. Through advanced materials and process design, numerous impressive studies related to transfer printing strategies and applications have been proposed. Herein, a discussion of transfer printing technologies toward soft electronics in terms of mechanisms and example demonstrations is provided. Moreover, the perspectives on the potential challenges and future directions of this field are briefly discussed.
Collapse
Affiliation(s)
- Zhenlong Huang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China.
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen 518110, Guangdong, China
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
- Research Centre for Information Technology, Shenzhen Institute of Information Technology, Shenzhen 518172, Guangdong, China
| | - Yuan Lin
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China.
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen 518110, Guangdong, China
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| |
Collapse
|
46
|
Wu Q, Yang C, Chen W, Chen K, Chen H, Liu F, Liu D, Lin H, Xie X, Chen W. Wireless-Powered Electrical Bandage Contact Lens for Facilitating Corneal Wound Healing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202506. [PMID: 36073832 PMCID: PMC9631068 DOI: 10.1002/advs.202202506] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/20/2022] [Indexed: 05/09/2023]
Abstract
Corneal injury can lead to severe vision impairment or even blindness. Although numerous methods are developed to accelerate corneal wound healing, most of them are passive treatments that rarely participate in controlling endogenous cell behaviors or are incompatible with nontransparent bandage. In this work, a wireless-powered electrical bandage contact lens (EBCL) is developed to generate a localized external electric field to accelerate corneal wound healing and vision recovery. The wireless electrical stimulation circuit employed a flower-shaped layout design that can be compactly integrated on bandage contact lens without blocking the vision. The role of the external electric field in promoting corneal wound healing is examined in vitro, where the responses of directional migration and corneal cells alignment to the electric field are observed. The RNA sequencing (RNA-seq) analysis indicates that the electrical stimulation can participate in controlling cell division, proliferation, and migration. Furthermore, the wireless EBCL is demonstrated to accelerate the completed recovery of corneal wounds on rabbits' eyes by electrical stimulation, while the control group exhibits delayed recovery and obvious corneal defects. As a new generation of intelligent device, the wireless and patient-friendly EBCL can provide a promising therapeutic strategy for ocular diseases.
Collapse
Affiliation(s)
- Qianni Wu
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhou510060China
| | - Cheng Yang
- State Key Laboratory of Optoelectronic Materials and TechnologiesSchool of Electronics and Information TechnologyThe First Affiliated Hospital of Sun Yat‐sen UniversitySun Yat‐sen UniversityGuangzhou510006China
| | - Wan Chen
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhou510060China
| | - Kexin Chen
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhou510060China
| | - Hui‐jiuan Chen
- State Key Laboratory of Optoelectronic Materials and TechnologiesSchool of Electronics and Information TechnologyThe First Affiliated Hospital of Sun Yat‐sen UniversitySun Yat‐sen UniversityGuangzhou510006China
| | - Fanmao Liu
- State Key Laboratory of Optoelectronic Materials and TechnologiesSchool of Electronics and Information TechnologyThe First Affiliated Hospital of Sun Yat‐sen UniversitySun Yat‐sen UniversityGuangzhou510006China
| | - Dong Liu
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhou510060China
| | - Haotian Lin
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhou510060China
| | - Xi Xie
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhou510060China
- State Key Laboratory of Optoelectronic Materials and TechnologiesSchool of Electronics and Information TechnologyThe First Affiliated Hospital of Sun Yat‐sen UniversitySun Yat‐sen UniversityGuangzhou510006China
| | - Weirong Chen
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhou510060China
| |
Collapse
|
47
|
Long L, Liu W, Hu C, Yang L, Wang Y. Construction of multifunctional wound dressings with their application in chronic wound treatment. Biomater Sci 2022; 10:4058-4076. [PMID: 35758152 DOI: 10.1039/d2bm00620k] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
As the prevalence of diabetes increases year by year and the aging population continues to intensify in the world, chronic wounds such as diabetic foot ulcers and pressure ulcers have become serious problems that threaten people's health, and have brought an enormous burden to the world healthcare system. Conventional clinical treatment of chronic wounds relies on non-specific topical care (including debridement, infection/inflammation control, and frequent wound dressing changes), which can alleviate disease progression and reduce patient suffering to a certain extent, but the overall cure rate is less than 50% and the recurrence rate is high. Traditional wound dressings such as gauze, hydrocolloids, films and foams are single-function, acting as a physical barrier or absorbing exudates, and cannot meet all the needs of the entire chronic wound healing process. Recently, a large number of novel functional dressings have been reported for chronic wound repair. Based on the progress on wound dressings in recent years and the relevant research experience of our group, the review summarizes and discusses the progress on multifunctional wound dressings (such as microneedles, sponges and hydrogels) with anti-inflammatory, antioxidant, antibacterial, pro-angiogenic and tissue adhesive functions in detail. At the same time, the various responsive mechanisms (in vivo microenvironment or in vitro stimulation) of the smart multifunctional wound dressing are also analyzed in detail. It is expected that the review could provide some inspiration and suggestions for research on dressings for chronic wound treatment.
Collapse
Affiliation(s)
- Linyu Long
- National Engineering Research Center for Biomaterials, Chuanda-Jinbo Joint Research Center, Sichuan University, Chengdu, 610064, China.
| | - Wenqi Liu
- National Engineering Research Center for Biomaterials, Chuanda-Jinbo Joint Research Center, Sichuan University, Chengdu, 610064, China.
| | - Cheng Hu
- National Engineering Research Center for Biomaterials, Chuanda-Jinbo Joint Research Center, Sichuan University, Chengdu, 610064, China.
| | - Li Yang
- National Engineering Research Center for Biomaterials, Chuanda-Jinbo Joint Research Center, Sichuan University, Chengdu, 610064, China.
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Chuanda-Jinbo Joint Research Center, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
48
|
Dong H, Wang L, Du L, Wang X, Li Q, Wang X, Zhang J, Nie J, Ma G. Smart Polycationic Hydrogel Dressing for Dynamic Wound Healing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201620. [PMID: 35599229 DOI: 10.1002/smll.202201620] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/21/2022] [Indexed: 06/15/2023]
Abstract
It is challenging for traditional wound dressings to adapt to the complex and changeable environment, due to the lack of stable, efficient, and continuous bactericidal activity. They also cannot be satisfied in a multifunctional sensing platform to reconstruct skin sensory functions for human health monitoring. A multifunctional hydrogel dressing is developed here for the treatment of infected wounds and human health monitoring, which is based on alginate and polycation. The in situ polymerization and solvent displacement method are used to functionalize the hydrogel for the improvement of antifreezing, water retention, and environmental adaptability, as well as the adhesion and photothermal property. As a wound dressing, the as-prepared hydrogel exhibits an excellent antibacterial property against both Escherichia coli and Staphylococcus aureus. In a rat model of full-thickness wound infection, it significantly accelerates the healing of infected wounds with a high healing rate of 96.49%. In the further multifunctional sensory tests, the hydrogel shows multiple response modes of strain, pressure and temperature, and sensing stability. An idea is provided here to develop a smart hydrogel dressing that can accelerate wound healing and achieve human health monitoring.
Collapse
Affiliation(s)
- Huifeng Dong
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Liangyu Wang
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Lin Du
- Department of Gastroenterology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Xing Wang
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Qin Li
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xiaoyue Wang
- Department of Gastroenterology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Jie Zhang
- Department of Gastroenterology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Jun Nie
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Guiping Ma
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
49
|
Bull AL, Campanello L, Hourwitz MJ, Yang Q, Zhao M, Fourkas JT, Losert W. Actin Dynamics as a Multiscale Integrator of Cellular Guidance Cues. Front Cell Dev Biol 2022; 10:873567. [PMID: 35573675 PMCID: PMC9092214 DOI: 10.3389/fcell.2022.873567] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/28/2022] [Indexed: 01/22/2023] Open
Abstract
Migrating cells must integrate multiple, competing external guidance cues. However, it is not well understood how cells prioritize among these cues. We investigate external cue integration by monitoring the response of wave-like, actin-polymerization dynamics, the driver of cell motility, to combinations of nanotopographies and electric fields in neutrophil-like cells. The electric fields provide a global guidance cue, and approximate conditions at wound sites in vivo. The nanotopographies have dimensions similar to those of collagen fibers, and act as a local esotactic guidance cue. We find that cells prioritize guidance cues, with electric fields dominating long-term motility by introducing a unidirectional bias in the locations at which actin waves nucleate. That bias competes successfully with the wave guidance provided by the bidirectional nanotopographies.
Collapse
Affiliation(s)
- Abby L. Bull
- Institute for Physical Science and Technology, University of Maryland, College Park, MD, United States
- Department of Physics, University of Maryland, College Park, MD, United States
| | - Leonard Campanello
- Institute for Physical Science and Technology, University of Maryland, College Park, MD, United States
- Department of Physics, University of Maryland, College Park, MD, United States
| | - Matt J. Hourwitz
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, United States
| | - Qixin Yang
- Institute for Physical Science and Technology, University of Maryland, College Park, MD, United States
- Department of Physics, University of Maryland, College Park, MD, United States
| | - Min Zhao
- Institute for Regenerative Cures, Department of Ophthalmology and Vision Science, Department of Dermatology, School of Medicine, University of California, Davis, Davis, CA, United States
| | - John T. Fourkas
- Institute for Physical Science and Technology, University of Maryland, College Park, MD, United States
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, United States
| | - Wolfgang Losert
- Institute for Physical Science and Technology, University of Maryland, College Park, MD, United States
- Department of Physics, University of Maryland, College Park, MD, United States
- *Correspondence: Wolfgang Losert,
| |
Collapse
|