1
|
Chen B, Gao J, Sun H, Chen Z, Qiu X. Wearable SERS devices in health management: Challenges and prospects. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 334:125957. [PMID: 40024086 DOI: 10.1016/j.saa.2025.125957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/19/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025]
Abstract
Surface-Enhanced Raman Scattering (SERS) is an advanced analytical technique renowned for its heightened sensitivity in detecting molecular vibrations. Its integration into wearable technologies facilitates the monitoring of biofluids, such as sweat and tears, enabling continuous, non-invasive, real-time analysis of human chemical and biomolecular processes. This capability underscores its significant potential for early disease detection and the advancement of personalized medicine. SERS has attracted considerable research attention in the fields of wearable flexible sensing and point-of-care testing (POCT) within medical diagnostics. Nonetheless, the integration of SERS with wearable technology presents several challenges, including device miniaturization, reliable biofluid sampling, user comfort, biocompatibility, and data interpretation. The ongoing advancements in nanotechnology and artificial intelligence are instrumental in addressing these challenges. This review provides a comprehensive analysis of design strategies for wearable SERS sensors and explores their applications within this domain. Finally, it addresses the current challenges in this area and the future prospects of combining SERS wearable sensors with other portable health monitoring systems for POCT medical diagnostics. Wearable SERS is a promising innovation in future healthcare, potentially enhancing individual health outcomes and reducing healthcare costs by fostering preventive health management approaches.
Collapse
Affiliation(s)
- Biqing Chen
- Gynaecology and Obstetrics, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Heilongjiang 150081, PR China.
| | - Jiayin Gao
- Gynaecology and Obstetrics, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Heilongjiang 150081, PR China
| | - Haizhu Sun
- Gynaecology and Obstetrics, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Heilongjiang 150081, PR China
| | - Zhi Chen
- Gynaecology and Obstetrics, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Heilongjiang 150081, PR China
| | - Xiaohong Qiu
- Gynaecology and Obstetrics, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Heilongjiang 150081, PR China.
| |
Collapse
|
2
|
Zhou H, Li D, Lv Q, Lee C. Integrative plasmonics: optical multi-effects and acousto-electric-thermal fusion for biosensing, energy conversion, and photonic circuits. Chem Soc Rev 2025. [PMID: 40354162 DOI: 10.1039/d4cs00427b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Surface plasmons, a unique optical phenomenon arising at the interface between metals and dielectrics, have garnered significant interest across fields such as biochemistry, materials science, energy, optics, and nanotechnology. Recently, plasmonics is evolving from a focus on "classical plasmonics," which emphasizes fundamental effects and applications, to "integrative plasmonics," which explores the integration of plasmonics with multidisciplinary technologies. This review explores this evolution, summarizing key developments in this technological shift and offering a timely discussion on the fusion mechanisms, strategies, and applications. First, we examine the integration mechanisms of plasmons within the realm of optics, detailing how fundamental plasmonic effects give rise to optical multi-effects, such as plasmon-phonon coupling, nonlinear optical effects, electromagnetically induced transparency, chirality, nanocavity resonance, and waveguides. Next, we highlight strategies for integrating plasmons with technologies beyond optics, analyzing the processes and benefits of combining plasmonics with acoustics, electronics, and thermonics, including comprehensive plasmonic-electric-acousto-thermal integration. We then review cutting-edge applications in biochemistry (molecular diagnostics), energy (harvesting and catalysis), and informatics (photonic integrated circuits). These applications involve surface-enhanced Raman scattering (SERS), surface-enhanced infrared absorption (SEIRA), surface-enhanced fluorescence (SEF), chirality, nanotweezers, photoacoustic imaging, perovskite solar cells, photocatalysis, photothermal therapy, and triboelectric nanogenerators (TENGs). Finally, we conclude with a forward-looking perspective on the challenges and future of integrative plasmonics, considering advances in mechanisms (quantum effects, spintronics, and topology), materials (Dirac semimetals and hydrogels), technologies (machine learning, edge computing, in-sensor computing, and neuroengineering), and emerging applications (5G, 6G, virtual reality, and point-of-care testing).
Collapse
Affiliation(s)
- Hong Zhou
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore.
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117583, Singapore
- NUS Graduate School-Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore 119077, Singapore
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Dongxiao Li
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore.
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117583, Singapore
| | - Qiaoya Lv
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore.
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117583, Singapore
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore.
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117583, Singapore
- NUS Graduate School-Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore 119077, Singapore
| |
Collapse
|
3
|
Ashok D, Singh J, Howard HR, Cottam S, Waterhouse A, Bilek MMM. Interfacial engineering for biomolecule immobilisation in microfluidic devices. Biomaterials 2025; 316:123014. [PMID: 39708778 DOI: 10.1016/j.biomaterials.2024.123014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/25/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
Microfluidic devices are used for various applications in biology and medicine. From on-chip modelling of human organs for drug screening and fast and straightforward point-of-care (POC) detection of diseases to sensitive biochemical analysis, these devices can be custom-engineered using low-cost techniques. The microchannel interface is essential for these applications, as it is the interface of immobilised biomolecules that promote cell capture, attachment and proliferation, sense analytes and metabolites or provide enzymatic reaction readouts. However, common microfluidic materials do not facilitate the stable immobilisation of biomolecules required for relevant applications, making interfacial engineering necessary to attach biomolecules to the microfluidic surfaces. Interfacial engineering is performed through various immobilisation mechanisms and surface treatment techniques, which suitably modify the surface properties like chemistry and energy to obtain robust biomolecule immobilisation and long-term storage stability suitable for the final application. In this review, we provide an overview of the status of interfacial engineering in microfluidic devices, covering applications, the role of biomolecules, their immobilisation pathways and the influence of microfluidic materials. We then propose treatment techniques to optimise performance for various biological and medical applications and highlight future areas of development.
Collapse
Affiliation(s)
- Deepu Ashok
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, NSW, 2006, Australia; School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia; Heart Research Institute, Newtown, NSW, 2042, Australia; The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia; The Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia; School of Physics, Faculty of Science, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Jasneil Singh
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia; Heart Research Institute, Newtown, NSW, 2042, Australia; The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia; The Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Henry Robert Howard
- The Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Sophie Cottam
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, NSW, 2006, Australia; School of Physics, Faculty of Science, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Anna Waterhouse
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia; The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia; The Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia.
| | - Marcela M M Bilek
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, NSW, 2006, Australia; The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia; The Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia; School of Physics, Faculty of Science, The University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
4
|
Liu Y, Wang F, Hu H, Zhang Z, Yang H, Yao X, Liu H, Zheng J. A paper-based label-free plasmonic nanosensor for portable pre-diagnosis of multiple metabolic diseases. Biosens Bioelectron 2025; 275:117231. [PMID: 39946755 DOI: 10.1016/j.bios.2025.117231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 01/30/2025] [Accepted: 02/03/2025] [Indexed: 02/23/2025]
Abstract
Early diagnosis is crucial for improving the prognosis of patients with metabolic diseases. In this study, we developed an innovative, multiplexed, and user-friendly paper-based plasmonic nanosensor by integrating previously established FeHOAuC (Fe2+-catalyzed H2O2 prevents the aggregation of AuNPs by oxidizing cysteine) label-free plasmonic nanosensor. Initially, we prepared a paper art with designated sampling and colorimetric sections by applying polydimethylsiloxane onto cellulose and nitrocellulose papers. Subsequently, we fabricated and optimized the oxidase-coupled FeHOAuC system on the paper platform. The proposed nanosensor's sensitivity, specificity, and feasibility were evaluated using a quantitative color algorithm. In this sensor, pre-loaded oxidases convert target analytes into H2O2, which subsequently induces a color change in AuNPs by oxidizing cysteine under the catalytic action of Fe2+. This paper-based sensor can quantitatively measure glucose, cholesterol, uric acid, and lactate within 40 min. The limit of detection of 5-10 μM, combined with its demonstrated specificity, makes it highly suitable for the early diagnosis of related metabolic diseases. Importantly, through a straightforward dropping procedure and a smartphone camera, the plasmonic nanosensor can distinguish disease-related small molecules in real serum samples. In conclusion, the proposed paper-based plasmonic nanosensor device exhibited favorable performance with simple operation, presenting significant potential for domiciliary early diagnosis of multiple metabolic diseases.
Collapse
Affiliation(s)
- Yawen Liu
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, 430065, PR China; Key Laboratory of Chinese Medicinal Resource and Chinese Herbal Compound of the Ministry of Education, Wuhan, 430065, PR China
| | - Fangfang Wang
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, 430065, PR China; Key Laboratory of Chinese Medicinal Resource and Chinese Herbal Compound of the Ministry of Education, Wuhan, 430065, PR China
| | - Haiming Hu
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, 430065, PR China; Key Laboratory of Chinese Medicinal Resource and Chinese Herbal Compound of the Ministry of Education, Wuhan, 430065, PR China
| | - Zhigang Zhang
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, 430065, PR China; Key Laboratory of Chinese Medicinal Resource and Chinese Herbal Compound of the Ministry of Education, Wuhan, 430065, PR China
| | - Huabing Yang
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, 430065, PR China; Key Laboratory of Chinese Medicinal Resource and Chinese Herbal Compound of the Ministry of Education, Wuhan, 430065, PR China
| | - Xiaowei Yao
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, 430065, PR China; Key Laboratory of Chinese Medicinal Resource and Chinese Herbal Compound of the Ministry of Education, Wuhan, 430065, PR China; Hubei Shizhen Laboratory, Wuhan, 430061, PR China
| | - Hongtao Liu
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, 430065, PR China; Key Laboratory of Chinese Medicinal Resource and Chinese Herbal Compound of the Ministry of Education, Wuhan, 430065, PR China; Hubei Shizhen Laboratory, Wuhan, 430061, PR China.
| | - Junping Zheng
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, 430065, PR China; Key Laboratory of Chinese Medicinal Resource and Chinese Herbal Compound of the Ministry of Education, Wuhan, 430065, PR China; Hubei Shizhen Laboratory, Wuhan, 430061, PR China.
| |
Collapse
|
5
|
Araújo
Oliveira Alves L, da Silva Felix JH, Menezes Ferreira A, Barroso dos Santos MT, Galvão da Silva C, Maria Santiago de Castro L, Sousa
dos Santos JC. Advances and Applications of Micro- and Mesofluidic Systems. ACS OMEGA 2025; 10:12817-12836. [PMID: 40224426 PMCID: PMC11983194 DOI: 10.1021/acsomega.4c10999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/26/2025] [Accepted: 03/18/2025] [Indexed: 04/15/2025]
Abstract
Microfabrication technology has advanced scientific understanding and expanded our molecular control capabilities, enabling the development of 3D models in micrometer structures. The sizes of the fluidic channels are arranged in descending order, starting with the macro-, followed by the meso-, micro-, and nanoscale. These advances bring advantages and speed up biological and chemical experimental processes. Such miniaturized systems show significant advances, particularly in meso- and microreactors, through high-throughput screening. This work proposes a bibliometric analysis of the advances and applications of the Web of Science (WoS) database, analyzing the main highlights of the publications, indicators, and impact on knowledge production. In the past 20 years, approximately 3,934 documents published and cited, mainly by major world powers on micro- and mesofluidic systems, are increasingly expanding in the academic and industrial sectors.
Collapse
Affiliation(s)
- Larissa Araújo
Oliveira Alves
- Instituto de Engenharias
e Desenvolvimento Sustentável, Universidade
da Integração Internacional da Lusofonia Afro-Brasileira, Campus Auroras, Redenção CEP 62790-970, CE, Brazil
| | - John Hebert da Silva Felix
- Instituto de Engenharias
e Desenvolvimento Sustentável, Universidade
da Integração Internacional da Lusofonia Afro-Brasileira, Campus Auroras, Redenção CEP 62790-970, CE, Brazil
| | - Antônio
Átila Menezes Ferreira
- Instituto de Engenharias
e Desenvolvimento Sustentável, Universidade
da Integração Internacional da Lusofonia Afro-Brasileira, Campus Auroras, Redenção CEP 62790-970, CE, Brazil
| | - Maria Tayane Barroso dos Santos
- Instituto de Engenharias
e Desenvolvimento Sustentável, Universidade
da Integração Internacional da Lusofonia Afro-Brasileira, Campus Auroras, Redenção CEP 62790-970, CE, Brazil
| | - Carlos Galvão da Silva
- Instituto de Engenharias
e Desenvolvimento Sustentável, Universidade
da Integração Internacional da Lusofonia Afro-Brasileira, Campus Auroras, Redenção CEP 62790-970, CE, Brazil
| | - Larysse Maria Santiago de Castro
- Instituto de Engenharias
e Desenvolvimento Sustentável, Universidade
da Integração Internacional da Lusofonia Afro-Brasileira, Campus Auroras, Redenção CEP 62790-970, CE, Brazil
| | - José Cleiton Sousa
dos Santos
- Instituto de Engenharias
e Desenvolvimento Sustentável, Universidade
da Integração Internacional da Lusofonia Afro-Brasileira, Campus Auroras, Redenção CEP 62790-970, CE, Brazil
| |
Collapse
|
6
|
Lee YS, Shin S, Kang GR, Lee S, Kim DW, Park S, Cho Y, Lim D, Jeon SH, Cho SY, Pang C. Spatiotemporal molecular tracing of ultralow-volume biofluids via a soft skin-adaptive optical monolithic patch sensor. Nat Commun 2025; 16:3272. [PMID: 40188097 PMCID: PMC11972314 DOI: 10.1038/s41467-025-58425-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 03/18/2025] [Indexed: 04/07/2025] Open
Abstract
Molecular tracing of extremely low amounts of biofluids is vital for precise diagnostic analysis. Although optical nanosensors for real-time spatiotemporal molecular tracing exist, integrating them into simple devices that capture low-volume fluids on rough, dynamic surfaces remains challenging. We present a bioinspired 3D microstructured patch monolithically integrated with optical nanosensors (3D MIN) for real-time, multivariate molecular tracing of ultralow-volume fluids. Inspired by tree frog toe pads, the 3D MIN features soft, hexagonally aligned pillars and microchannels for conformal adhesion and targeted fluid management. Embedding near-infrared fluorescent single-walled carbon nanotube nanosensors in a hydrogel enables simultaneous fluid capture and detection. Softening the elastomer microarchitecture and optimizing water management promote stable adhesion on wet biosurfaces, allowing rapid collection of ultralow-volume fluids (~0.1 µL/min·cm²). We demonstrate real-time, remote sweat analysis with ≥75 nL volumes collected in 45 s, without exercise or iontophoresis, showcasing high biocompatibility and efficient spatiotemporal molecular tracing.
Collapse
Affiliation(s)
- Yeon Soo Lee
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, Republic of Korea
| | - Seyoung Shin
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, Republic of Korea
| | - Gyun Ro Kang
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, Republic of Korea
| | - Siyeon Lee
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, Republic of Korea
| | - Da Wan Kim
- Department of Electronic Engineering, Korea National University of Transportation, Chungju-si, Chungbuk, Republic of Korea
| | - Seongcheol Park
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, Republic of Korea
| | - Youngwook Cho
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, Republic of Korea
| | - Dohyun Lim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, Republic of Korea
| | - Seung Hwan Jeon
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, Republic of Korea
- Convergence Research Center for Meta-Touch, Korea Research Institute of Standards and Science, Daejeon, Republic of Korea
| | - Soo-Yeon Cho
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, Republic of Korea.
| | - Changhyun Pang
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, Republic of Korea.
- Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Suwon, Republic of Korea.
| |
Collapse
|
7
|
Lin LL, Alvarez-Puebla R, Liz-Marzán LM, Trau M, Wang J, Fabris L, Wang X, Liu G, Xu S, Han XX, Yang L, Shen A, Yang S, Xu Y, Li C, Huang J, Liu SC, Huang JA, Srivastava I, Li M, Tian L, Nguyen LBT, Bi X, Cialla-May D, Matousek P, Stone N, Carney RP, Ji W, Song W, Chen Z, Phang IY, Henriksen-Lacey M, Chen H, Wu Z, Guo H, Ma H, Ustinov G, Luo S, Mosca S, Gardner B, Long YT, Popp J, Ren B, Nie S, Zhao B, Ling XY, Ye J. Surface-Enhanced Raman Spectroscopy for Biomedical Applications: Recent Advances and Future Challenges. ACS APPLIED MATERIALS & INTERFACES 2025; 17:16287-16379. [PMID: 39991932 DOI: 10.1021/acsami.4c17502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
The year 2024 marks the 50th anniversary of the discovery of surface-enhanced Raman spectroscopy (SERS). Over recent years, SERS has experienced rapid development and became a critical tool in biomedicine with its unparalleled sensitivity and molecular specificity. This review summarizes the advancements and challenges in SERS substrates, nanotags, instrumentation, and spectral analysis for biomedical applications. We highlight the key developments in colloidal and solid SERS substrates, with an emphasis on surface chemistry, hotspot design, and 3D hydrogel plasmonic architectures. Additionally, we introduce recent innovations in SERS nanotags, including those with interior gaps, orthogonal Raman reporters, and near-infrared-II-responsive properties, along with biomimetic coatings. Emerging technologies such as optical tweezers, plasmonic nanopores, and wearable sensors have expanded SERS capabilities for single-cell and single-molecule analysis. Advances in spectral analysis, including signal digitalization, denoising, and deep learning algorithms, have improved the quantification of complex biological data. Finally, this review discusses SERS biomedical applications in nucleic acid detection, protein characterization, metabolite analysis, single-cell monitoring, and in vivo deep Raman spectroscopy, emphasizing its potential for liquid biopsy, metabolic phenotyping, and extracellular vesicle diagnostics. The review concludes with a perspective on clinical translation of SERS, addressing commercialization potentials and the challenges in deep tissue in vivo sensing and imaging.
Collapse
Affiliation(s)
- Linley Li Lin
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Ramon Alvarez-Puebla
- Departamento de Química Física e Inorganica, Universitat Rovira i Virgili, Tarragona 43007, Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats, Barcelona 08010, Spain
| | - Luis M Liz-Marzán
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián 20014, Spain
- Ikerbasque, Basque Foundation for Science, University of Santiago de nCompostela, Bilbao 48013, Spain
- Centro de Investigación Cooperativa en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Donostia-San Sebastián 20014, Spain
- Cinbio, University of Vigo, Vigo 36310, Spain
| | - Matt Trau
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jing Wang
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou 350117, China
| | - Laura Fabris
- Department of Applied Science and Technology, Politecnico di Torino Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Xiang Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Guokun Liu
- State Key Laboratory of Marine Environmental Science, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry and Toxicology, College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Shuping Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Xiao Xia Han
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Liangbao Yang
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Department of Pharmacy, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Aiguo Shen
- School of Bioengineering and Health, Wuhan Textile University, Wuhan 430200, P. R. China
| | - Shikuan Yang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Yikai Xu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Chunchun Li
- School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Jinqing Huang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Shao-Chuang Liu
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Jian-An Huang
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Aapistie 5 A, 90220 Oulu, Finland
- Research Unit of Disease Networks, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 5 A, 90220 Oulu, Finland
- Biocenter Oulu, University of Oulu, Aapistie 5 A, 90220 Oulu, Finland
| | - Indrajit Srivastava
- Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas 79409, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, Texas 79106, United States
| | - Ming Li
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Limei Tian
- Department of Biomedical Engineering, and Center for Remote Health Technologies and Systems Texas A&M University, College Station, Texas 77843, United States
| | - Lam Bang Thanh Nguyen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Xinyuan Bi
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Dana Cialla-May
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745 Jena, Germany
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743 Jena, Germany
| | - Pavel Matousek
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, UKRI, Harwell Campus, Oxfordshire OX11 0QX, United Kingdom
- Department of Physics and Astronomy, University of Exeter, Exeter EX4 4QL, United Kingdom
| | - Nicholas Stone
- Department of Physics and Astronomy, University of Exeter, Exeter EX4 4QL, United Kingdom
| | - Randy P Carney
- Department of Biomedical Engineering, University of California, Davis, California 95616, United States
| | - Wei Ji
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 145040, China
| | - Wei Song
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Zhou Chen
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - In Yee Phang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Laboratory for Nano Energy Composites, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Malou Henriksen-Lacey
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián 20014, Spain
- Centro de Investigación Cooperativa en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Donostia-San Sebastián 20014, Spain
| | - Haoran Chen
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Zongyu Wu
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Heng Guo
- Department of Biomedical Engineering, and Center for Remote Health Technologies and Systems Texas A&M University, College Station, Texas 77843, United States
| | - Hao Ma
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Gennadii Ustinov
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745 Jena, Germany
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743 Jena, Germany
| | - Siheng Luo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Sara Mosca
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, UKRI, Harwell Campus, Oxfordshire OX11 0QX, United Kingdom
| | - Benjamin Gardner
- Department of Physics and Astronomy, University of Exeter, Exeter EX4 4QL, United Kingdom
| | - Yi-Tao Long
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Juergen Popp
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745 Jena, Germany
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743 Jena, Germany
| | - Bin Ren
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Shuming Nie
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 1406 W. Green Street, Urbana, Illinois 61801, United States
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Xing Yi Ling
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Laboratory for Nano Energy Composites, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Jian Ye
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| |
Collapse
|
8
|
Laing S, Sloan-Dennison S, Faulds K, Graham D. Surface Enhanced Raman Scattering for Biomolecular Sensing in Human Healthcare Monitoring. ACS NANO 2025; 19:8381-8400. [PMID: 40014676 PMCID: PMC11912579 DOI: 10.1021/acsnano.4c15877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 03/01/2025]
Abstract
Since the 1980s, surface enhanced Raman scattering (SERS) has been used for the rapid and sensitive detection of biomolecules. Whether a label-free or labeled assay is adopted, SERS has demonstrated low limits of detection in a variety of biological matrices. However, SERS analysis has been confined to the laboratory due to several reasons such as reproducibility and scalability, both of which have been discussed at length in the literature. Another possible issue with the lack of widespread adoption of SERS is that its application in point of use (POU) testing is only now being fully explored due to the advent of portable Raman spectrometers. Researchers are now investigating how SERS can be used as the output on several POU platforms such as lateral flow assays, wearable sensors, and in volatile organic compound (VOC) detection for human healthcare monitoring, with favorable results that rival the gold standard approaches. Another obstacle that SERS faces is the interpretation of the wealth of information obtained from the platform. To combat this, machine learning is being explored and has been shown to provide quick and accurate analysis of the generated data, leading to sensitive detection and discrimination of many clinically relevant biomolecules. This review will discuss the advancements of SERS combined with POU testing and the strength that machine learning can bring to the analysis to produce a powerful combined platform for human healthcare monitoring.
Collapse
Affiliation(s)
| | | | - Karen Faulds
- Department of Pure and Applied Chemistry,
Technology and Innovation Centre, University
of Strathclyde, 99 George Street, Glasgow G1 1RD, U.K.
| | - Duncan Graham
- Department of Pure and Applied Chemistry,
Technology and Innovation Centre, University
of Strathclyde, 99 George Street, Glasgow G1 1RD, U.K.
| |
Collapse
|
9
|
Hsu YT, Chen CH, Hsu JY, Chen HW, Liu KK. Femtosecond laser-induced Au nanostructure-decorated with plasmonic nanomaterials for sensitive SERS-based detection of fentanyl. Talanta 2025; 284:127264. [PMID: 39581107 DOI: 10.1016/j.talanta.2024.127264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/06/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
Fentanyl and its analogs have emerged as the main factor behind the ongoing opioid abuse globally in recent years. However, the existing techniques for sensitive and accurate detection of fentanyl are often complex, laborious, expensive, and restricted to central healthcare facilities. We reported herein a plasmonic biochip fabricated by the femtosecond laser-induced nanostructures and plasmonic nanomaterials for sensitive SERS-based detection of fentanyl. Yolk-shell structured plasmonic nanomaterials are employed owing to their unique optical properties. The femtosecond laser direct writing technique creates three-dimensional silicon nanostructures followed by gold deposition and the immobilization of plasmonic nanomaterials. This SERS biochip fabricated by the femtosecond laser-induced nanostructure decorated with yolk-shell structured plasmonic nanomaterials enables the rapid and sensitive detection of fentanyl with the limit of detection of 3.33 ng/mL.
Collapse
Affiliation(s)
- Yun-Tzu Hsu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Chien-Hung Chen
- International Intercollegiate Ph.D. Program, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Ju-Yin Hsu
- National Taiwan University Hospital Hsinchu Branch, Hsinchu, 300001, Taiwan
| | - Hung-Wen Chen
- International Intercollegiate Ph.D. Program, National Tsing Hua University, Hsinchu, 300044, Taiwan; Institute of Photonics Technologies, National Tsing Hua University, Hsinchu, 300044, Taiwan.
| | - Keng-Ku Liu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 300044, Taiwan.
| |
Collapse
|
10
|
Khonina SN, Kazanskiy NL. Trends and Advances in Wearable Plasmonic Sensors Utilizing Surface-Enhanced Raman Spectroscopy (SERS): A Comprehensive Review. SENSORS (BASEL, SWITZERLAND) 2025; 25:1367. [PMID: 40096150 PMCID: PMC11902420 DOI: 10.3390/s25051367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/21/2025] [Accepted: 02/22/2025] [Indexed: 03/19/2025]
Abstract
Wearable sensors have appeared as a promising solution for real-time, non-invasive monitoring in diverse fields, including healthcare, environmental sensing, and wearable electronics. Surface-enhanced Raman spectroscopy (SERS)-based sensors leverage the unique properties of SERS, such as plasmonic signal enhancement, high molecular specificity, and the potential for single-molecule detection, to detect and identify a wide range of analytes with ultra-high sensitivity and molecular selectivity. However, it is important to note that wearable sensors utilize various sensing mechanisms, and not all rely on SERS technology, as their design depends on the specific application. This comprehensive review highlights the recent trends and advancements in wearable plasmonic sensing technologies, focusing on their design, fabrication, and integration into practical wearable devices. Key innovations in material selection, such as the use of nanomaterials and flexible substrates, have significantly enhanced sensor performance and wearability. Moreover, we discuss challenges such as miniaturization, power consumption, and long-term stability, along with potential solutions to address these issues. Finally, the outlook for wearable plasmonic sensing technologies is presented, emphasizing the need for interdisciplinary research to drive the next generation of smart wearables capable of real-time health diagnostics, environmental monitoring, and beyond.
Collapse
Affiliation(s)
- Svetlana N. Khonina
- Samara National Research University, 34 Moskovskoye Shosse, Samara 443086, Russia;
- Image Processing Systems Institute, NRC “Kurchatov Institute”, 151 Molodogvardeyskaya, Samara 443001, Russia
| | - Nikolay L. Kazanskiy
- Samara National Research University, 34 Moskovskoye Shosse, Samara 443086, Russia;
- Image Processing Systems Institute, NRC “Kurchatov Institute”, 151 Molodogvardeyskaya, Samara 443001, Russia
| |
Collapse
|
11
|
Zhang Y, Yang Y, Yin Z, Huang L, Wang J. Nanozyme-based wearable biosensors for application in healthcare. iScience 2025; 28:111763. [PMID: 39906563 PMCID: PMC11791255 DOI: 10.1016/j.isci.2025.111763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025] Open
Abstract
Recent years have witnessed tremendous advances in wearable sensors, which play an essential role in personalized healthcare for their ability for real-time sensing and detection of human health information. Nanozymes, capable of mimicking the functions of natural enzymes and addressing their limitations, possess unique advantages such as structural stability, low cost, and ease of mass production, making them particularly beneficial for constructing recognition units in wearable biosensors. In this review, we aim to delineate the latest advancements in nanozymes for the development of wearable biosensors, focusing on key developments in nanozyme immobilization strategies, detection technologies, and biomedical applications. The review also highlights the current challenges and future perspectives. Ultimately, it aims to provide insights for future research endeavors in this rapidly evolving area.
Collapse
Affiliation(s)
- Yingcong Zhang
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Yiran Yang
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Zhixin Yin
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
- Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Lin Huang
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
- Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Jiayi Wang
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
- Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| |
Collapse
|
12
|
Park T, Leem JW, Kim YL, Lee CH. Photonic Nanomaterials for Wearable Health Solutions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2418705. [PMID: 39901482 DOI: 10.1002/adma.202418705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/13/2025] [Indexed: 02/05/2025]
Abstract
This review underscores the transformative potential of photonic nanomaterials in wearable health technologies, driven by increasing demands for personalized health monitoring. Their unique optical and physical properties enable rapid, precise, and sensitive real-time monitoring, outperforming conventional electrical-based sensors. Integrated into ultra-thin, flexible, and stretchable formats, these materials enhance compatibility with the human body, enabling prolonged wear, improved efficiency, and reduced power consumption. A comprehensive exploration is provided of the integration of photonic nanomaterials into wearable devices, addressing material selection, light-matter interaction principles, and device assembly strategies. The review highlights critical elements such as device form factors, sensing modalities, and power and data communication, with representative examples in skin patches and contact lenses. These devices enable precise monitoring and management of biomarkers of diseases or biological responses. Furthermore, advancements in materials and integration approaches have paved the way for continuum of care systems combining multifunctional sensors with therapeutic drug delivery mechanisms. To overcome existing barriers, this review outlines strategies of material design, device engineering, system integration, and machine learning to inspire innovation and accelerate the adoption of photonic nanomaterials for next-generation of wearable health, showcasing their versatility and transformative potential for digital health applications.
Collapse
Affiliation(s)
- Taewoong Park
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Jung Woo Leem
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Young L Kim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Cancer Research, Regenstrief Center for Healthcare Engineering, Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, IN, 47907, USA
| | - Chi Hwan Lee
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
- School of Mechanical Engineering, School of Materials Engineering, Elmore Family School of Electrical and Computer Engineering, Center for Implantable Devices, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
13
|
Wang X, Seng Kai Kho A, Liu J, Mao T, Gilchrist MD, Zhang N. Mechanistic Modelling of Coupled UV Energy Penetration and Resin Flow Dynamics in Digital Light Processing (DLP)-Based Microfluidic Chip Printing. MICROMACHINES 2025; 16:115. [PMID: 40047566 PMCID: PMC11857753 DOI: 10.3390/mi16020115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/12/2025] [Accepted: 01/14/2025] [Indexed: 03/09/2025]
Abstract
Digital light processing (DLP) technology has emerged as a promising approach for fabricating high-precision microfluidic chips due to its exceptional resolution and rapid prototyping capabilities. However, UV energy penetration and resin flow dynamics during layer-by-layer printing introduce significant challenges for microchannel printing, particularly in controlling microchannel over-curing. In this study, a novel 3D DLP over-curing interaction model (DLP-OCIM) was developed to investigate the coupled effects of UV energy penetration and directional resin flow on the over-cured structure formation of microchannels. COMSOL Multiphysics 6.1 simulations incorporating UV light propagation, photopolymerization kinetics, and resin flow dynamics revealed that microchannel over-curing is a result of both energy infiltration through previously cured layers and periodic resin flow induced by the peeling process. Experimental validation using linear and annular microfluidic chips demonstrated that increasing layer thickness induces progressive over-curing, leading to inclined cross-sectional structures. Additionally, the microchannel geometry and size significantly influence resin flow patterns, with shorter transverse microchannels producing flatter over-cured profiles compared to their longitudinal counterparts. This study provides the first comprehensive analysis of the dynamic interplay between UV energy penetration and resin flow during DLP-based microchannel fabrication, offering valuable process insights and optimization strategies for enhancing shape fidelity and printing accuracy in high-resolution microfluidic chips.
Collapse
Affiliation(s)
- Xinhui Wang
- Centre of Micro/Nano Manufacturing Technology (MNMT-Dublin), School of Mechanical & Materials Engineering, University College Dublin, 4 Dublin, Ireland; (X.W.); (T.M.); (M.D.G.)
| | - Antony Seng Kai Kho
- School of Mechanical and Manufacturing Engineering, Dublin City University, 9 Dublin, Ireland;
- DCU Life Sciences Institute, Dublin City University, 9 Dublin, Ireland
| | - Jinghang Liu
- School of Mechanical Engineering, Technological University Dublin, Bolton Street, 1 Dublin, Ireland;
| | - Tianyu Mao
- Centre of Micro/Nano Manufacturing Technology (MNMT-Dublin), School of Mechanical & Materials Engineering, University College Dublin, 4 Dublin, Ireland; (X.W.); (T.M.); (M.D.G.)
| | - Michael D. Gilchrist
- Centre of Micro/Nano Manufacturing Technology (MNMT-Dublin), School of Mechanical & Materials Engineering, University College Dublin, 4 Dublin, Ireland; (X.W.); (T.M.); (M.D.G.)
| | - Nan Zhang
- Centre of Micro/Nano Manufacturing Technology (MNMT-Dublin), School of Mechanical & Materials Engineering, University College Dublin, 4 Dublin, Ireland; (X.W.); (T.M.); (M.D.G.)
| |
Collapse
|
14
|
Liu S, Zhao J, Wu J, Wang L, Yao C, Hu J, Zhang H. A microfluidic paper-based fluorescent sensor integrated with a smartphone platform for rapid on-site detection of omethoate pesticide. Food Chem 2025; 463:141205. [PMID: 39293375 DOI: 10.1016/j.foodchem.2024.141205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/20/2024]
Abstract
A novel approach combing a fluorescent microfluidic paper strip with a portable smartphone-based sensing platform is developed for rapid and sensitive detection of omethoate pesticide. The detection mechanism of the microfluidic paper strip is based on the fluorescence quenching of graphene oxide (GO) toward the cyanine 3 (Cy3)-labeled aptamer (Cy3-APT). Upon exposure to omethoate, the Cy3-APT detaches from the surface of GO, resulting in considerable fluorescence recovery, which can be visualized through the smartphone-based sensing platform. The images are analyzed through a self-developed app embedded with a pretrained convolutional neural network model, achieving a high regression coefficient of 0.9964 at an omethoate concentration range of 0-750 nM. The smartphone-based platform enables rapid on-site detection of omethoate pesticide in real samples within 10 min, with results comparable to those obtained using standard methods. In short, the proposed microfluidic paper-based fluorescent sensor combined with the smartphone-based sensing platform enhances the detection performance toward organophosphorus pesticides.
Collapse
Affiliation(s)
- Shuai Liu
- College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, School of Intelligent Manufacturing, Jiangnan University, Wuxi 214122, China
| | - Jingkai Zhao
- College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China
| | - Junfeng Wu
- College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Laser Technology in Agriculture Sciences, Zhengzhou 450002, China
| | - Ling Wang
- College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Laser Technology in Agriculture Sciences, Zhengzhou 450002, China
| | - Chuanan Yao
- College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Laser Technology in Agriculture Sciences, Zhengzhou 450002, China
| | - Jiandong Hu
- College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Laser Technology in Agriculture Sciences, Zhengzhou 450002, China; State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450002, China
| | - Hao Zhang
- College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Laser Technology in Agriculture Sciences, Zhengzhou 450002, China.
| |
Collapse
|
15
|
Duan H, Peng S, He S, Tang S, Goda K, Wang CH, Li M. Wearable Electrochemical Biosensors for Advanced Healthcare Monitoring. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411433. [PMID: 39588557 PMCID: PMC11727287 DOI: 10.1002/advs.202411433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/13/2024] [Indexed: 11/27/2024]
Abstract
Recent advancements in wearable electrochemical biosensors have opened new avenues for on-body and continuous detection of biomarkers, enabling personalized, real-time, and preventive healthcare. While glucose monitoring has set a precedent for wearable biosensors, the field is rapidly expanding to include a wider range of analytes crucial for disease diagnosis, treatment, and management. In this review, recent key innovations are examined in the design and manufacturing underpinning these biosensing platforms including biorecognition elements, signal transduction methods, electrode and substrate materials, and fabrication techniques. The applications of these biosensors are then highlighted in detecting a variety of biochemical markers, such as small molecules, hormones, drugs, and macromolecules, in biofluids including interstitial fluid, sweat, wound exudate, saliva, and tears. Additionally, the review also covers recent advances in wearable electrochemical biosensing platforms, such as multi-sensory integration, closed-loop control, and power supply. Furthermore, the challenges associated with critical issues are discussed, such as biocompatibility, biofouling, and sensor degradation, and the opportunities in materials science, nanotechnology, and artificial intelligence to overcome these limitations.
Collapse
Affiliation(s)
- Haowei Duan
- School of Mechanical and Manufacturing EngineeringThe University of New South WalesSydneyNSW2052Australia
| | - Shuhua Peng
- School of Mechanical and Manufacturing EngineeringThe University of New South WalesSydneyNSW2052Australia
| | - Shuai He
- School of Mechanical and Manufacturing EngineeringThe University of New South WalesSydneyNSW2052Australia
| | - Shi‐Yang Tang
- School of Mechanical and Manufacturing EngineeringThe University of New South WalesSydneyNSW2052Australia
| | - Keisuke Goda
- Department of ChemistryThe University of TokyoTokyo113‐0033Japan
- Department of BioengineeringUniversity of CaliforniaLos AngelesCalifornia90095USA
- Institute of Technological SciencesWuhan UniversityHubei430072China
| | - Chun H. Wang
- School of Mechanical and Manufacturing EngineeringThe University of New South WalesSydneyNSW2052Australia
| | - Ming Li
- School of Mechanical and Manufacturing EngineeringThe University of New South WalesSydneyNSW2052Australia
| |
Collapse
|
16
|
Yuan Q, Fang H, Wu X, Wu J, Luo X, Peng R, Xu S, Yan S. Self-Adhesive, Biocompatible, Wearable Microfluidics with Erasable Liquid Metal Plasmonic Hotspots for Glucose Detection in Sweat. ACS APPLIED MATERIALS & INTERFACES 2024; 16:66810-66818. [PMID: 37903285 DOI: 10.1021/acsami.3c11746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Sweat is a noninvasive metabolite that can provide clinically meaningful information about physical conditions without harming the body. Glucose, a vital component in sweat, is closely related to blood glucose levels, and changes in its concentration can reflect the health status of diabetics. We introduce a self-adhesive, wearable microfluidic chip with erasable liquid metal plasmonic hotspots for the precise detection of glucose concentration in sweat. The self-adhesive, wearable microfluidic chip is made from modified polydimethylsiloxane (PDMS) with enhanced stickiness, enabling conformal contact with the skin, and can collect, deliver, and store sweat. The plasmonic hotspots are located inside the microfluidic channel, are generated by synthesizing silver nanostructures on liquid metal, and can be removed in the alkaline solution. It indicates the erasable and reproducible nature of the plasmonic hotspots. The detection method is based on surface-enhanced Raman spectroscopy (SERS), which allows for accurate detection of the glucose concentration. To enhance the sensitive detection of glucose, the SERS substrate is modified by 4-mercaptophenylboronic acid to achieve the limit of detection of 1 ng/L glucose, which is much lower than the physiological conditions (7.2-25.2 μg/L). The developed microfluidic chip is soft, stretchable, and nontoxic, bringing new possibilities to wearable sweat-sensing devices.
Collapse
Affiliation(s)
- Qingwei Yuan
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Nanophotonics Research Center, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Hui Fang
- Nanophotonics Research Center, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Xiuru Wu
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Nanophotonics Research Center, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Jialin Wu
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Nanophotonics Research Center, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Xie Luo
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Ran Peng
- College of Marine Engineering, Dalian Maritime University, Dalian 116026, China
| | - Shanshan Xu
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Sheng Yan
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
17
|
Takaloo S, Xu AH, Zaidan L, Irannejad M, Yavuz M. Towards Point-of-Care Single Biomolecule Detection Using Next Generation Portable Nanoplasmonic Biosensors: A Review. BIOSENSORS 2024; 14:593. [PMID: 39727858 DOI: 10.3390/bios14120593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024]
Abstract
Over the past few years, nanoplasmonic biosensors have gained widespread interest for early diagnosis of diseases thanks to their simple design, low detection limit down to the biomolecule level, high sensitivity to even small molecules, cost-effectiveness, and potential for miniaturization, to name but a few benefits. These intrinsic natures of the technology make it the perfect solution for compact and portable designs that combine sampling, analysis, and measurement into a miniaturized chip. This review summarizes applications, theoretical modeling, and research on portable nanoplasmonic biosensor designs. In order to develop portable designs, three basic components have been miniaturized: light sources, plasmonic chips, and photodetectors. There are five types of portable designs: portable SPR, miniaturized components, flexible, wearable SERS-based, and microfluidic. The latter design also reduces diffusion times and allows small amounts of samples to be delivered near plasmonic chips. The properties of nanomaterials and nanostructures are also discussed, which have improved biosensor performance metrics. Researchers have also made progress in improving the reproducibility of these biosensors, which is a major obstacle to their commercialization. Furthermore, future trends will focus on enhancing performance metrics, optimizing biorecognition, addressing practical constraints, considering surface chemistry, and employing emerging technologies. In the foreseeable future, these trends will be merged to result in portable nanoplasmonic biosensors offering detection of even a single biomolecule.
Collapse
Affiliation(s)
- Saeed Takaloo
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Ave. West, Waterloo, ON N2L 3G1, Canada
- Waterloo Institute for Nanotechnology (WIN), University of Waterloo, 200 University Ave. West, Waterloo, ON N2L 3G1, Canada
| | - Alexander H Xu
- Waterloo Institute for Nanotechnology (WIN), University of Waterloo, 200 University Ave. West, Waterloo, ON N2L 3G1, Canada
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Liena Zaidan
- Waterloo Institute for Nanotechnology (WIN), University of Waterloo, 200 University Ave. West, Waterloo, ON N2L 3G1, Canada
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | | | - Mustafa Yavuz
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Ave. West, Waterloo, ON N2L 3G1, Canada
- Waterloo Institute for Nanotechnology (WIN), University of Waterloo, 200 University Ave. West, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
18
|
Li X, Chen T, Zheng Z, Gao J, Wu Y, Wu X, Jiang T, Zhu Z, Xu RX. Magnetic Liquid Gating Valve Terminal for Patterned Droplet Generation and Transportation of Highly Viscous Bioactive Fluids. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404952. [PMID: 39380418 DOI: 10.1002/smll.202404952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/10/2024] [Indexed: 10/10/2024]
Abstract
As an open microfluidic technology with excellent anti-fouling and energy-saving properties, liquid gating technology can selectively separate or transfer multiphase fluids, which has shown great application value in the field of biomedical engineering. However, no study has demonstrated that liquid gating technology has the ability to transfer high-viscosity fluids and biologically active substances, and current liquid gating valves are unable to realize smart-responsive pulsed-patterned transfer, which severely limits their application scope. In this paper, liquid gating technology is combined with magnetically responsive materials to prepare a liquid-based magnetic porous membrane (LMPM) with excellent magnetostatic deformation capability and antifouling properties. On this basis, a magnetic liquid gating valve terminal (MLGVT) with patterning transfer capability is developed, and the feasibility of liquid gating technology for transferring high-viscosity fluids and hydrogel bioinks is explored. Meanwhile, a flexible MLGVT is prepared and realized for targeted drug delivery. This study expands the potential of liquid gating technology for drug delivery, cellular transport and smart patches.
Collapse
Affiliation(s)
- Xin Li
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215000, China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123, China
| | - Tianao Chen
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215000, China
- School of Biomedical Engineering, Division of Life Sciences and Medicine, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, China
| | - Zhiyuan Zheng
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jie Gao
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215000, China
- School of Biomedical Engineering, Division of Life Sciences and Medicine, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, China
| | - Yongqi Wu
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215000, China
- School of Biomedical Engineering, Division of Life Sciences and Medicine, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, China
| | - Xizhi Wu
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215000, China
- School of Biomedical Engineering, Division of Life Sciences and Medicine, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, China
| | - Tao Jiang
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215000, China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123, China
| | - Zhiqiang Zhu
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Ronald X Xu
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215000, China
- School of Biomedical Engineering, Division of Life Sciences and Medicine, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, China
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
19
|
Hu M, Zhu K, Wei J, Yang K, Wu L, Zong S, Wang Z. Silk fibroin-based wearable SERS biosensor for simultaneous sweat monitoring of creatinine and uric acid. Biosens Bioelectron 2024; 265:116662. [PMID: 39180829 DOI: 10.1016/j.bios.2024.116662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 07/13/2024] [Accepted: 08/10/2024] [Indexed: 08/27/2024]
Abstract
Sweat biomarkers have the potential to offer valuable clinical insights into an individual's health and disease condition. Current sensors predominantly utilize enzymes and antibodies as biometric components to measure biomarkers present in sweat quantitatively. However, enzymes and antibodies are susceptible to interference by environmental factors, which may affect the performance of the sensor. Herein, we present a wearable microfluidic surface-enhanced Raman scattering (SERS) biosensor that enables the non-invasive and label-free detection of biomarkers in sweat. Concretely, we developed a bimetallic self-assembled anti-opal array structure with uniform hot spots, enhanced the Raman scattering effect, and integrated it into a silk fibroin-based sensing patch. Utilizing a silk fibroin substrate in the wearable SERS sensor imparts desirable properties such as softness, breathability, and biocompatibility, which enables the sensor to establish close contact with the skin without causing chemical or physical irritation. In addition, introducing microfluidic channels enables the controlled and high temporal resolution management of sweat, facilitating more efficient sweat collection. The proposed label-free SERS sensor can offer chemical 'fingerprint' information, enabling the identification of sweat analytes. As an illustration of the feasibility, we have effectively monitored the creatinine and uric acid levels in sweat. This study presents a versatile and highly sensitive approach for the simultaneous detection of biomarkers in human sweat, showcasing significant potential for application in point-of-care monitoring.
Collapse
Affiliation(s)
- Mengsu Hu
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing, 210096, China
| | - Kai Zhu
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing, 210096, China
| | - Jinxiu Wei
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing, 210096, China
| | - Kuo Yang
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing, 210096, China
| | - Lei Wu
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing, 210096, China
| | - Shenfei Zong
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing, 210096, China
| | - Zhuyuan Wang
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing, 210096, China.
| |
Collapse
|
20
|
Hsu YT, Lin SH, Liu KK. A flexible plasmonic substrate for sensitive surface-enhanced Raman scattering-based detection of fentanyl. Chem Commun (Camb) 2024; 60:13903-13906. [PMID: 39501939 DOI: 10.1039/d4cc04988h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
In this work, we demonstrate a straightforward and versatile approach for fabricating flexible SERS substrates for highly sensitive fentanyl detection. Our design strategy integrates the synthesis of a yolk-shell structured plasmonic nanomaterial with a flexible cellulose substrate. The resulting SERS platform demonstrates excellent sensing capabilities, achieving a fentanyl detection limit as low as 4.89 ng mL-1.
Collapse
Affiliation(s)
- Yun-Tzu Hsu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300044, Taiwan.
| | - Shih-Han Lin
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300044, Taiwan.
| | - Keng-Ku Liu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300044, Taiwan.
| |
Collapse
|
21
|
Kant K, Beeram R, Cao Y, Dos Santos PSS, González-Cabaleiro L, García-Lojo D, Guo H, Joung Y, Kothadiya S, Lafuente M, Leong YX, Liu Y, Liu Y, Moram SSB, Mahasivam S, Maniappan S, Quesada-González D, Raj D, Weerathunge P, Xia X, Yu Q, Abalde-Cela S, Alvarez-Puebla RA, Bardhan R, Bansal V, Choo J, Coelho LCC, de Almeida JMMM, Gómez-Graña S, Grzelczak M, Herves P, Kumar J, Lohmueller T, Merkoçi A, Montaño-Priede JL, Ling XY, Mallada R, Pérez-Juste J, Pina MP, Singamaneni S, Soma VR, Sun M, Tian L, Wang J, Polavarapu L, Santos IP. Plasmonic nanoparticle sensors: current progress, challenges, and future prospects. NANOSCALE HORIZONS 2024; 9:2085-2166. [PMID: 39240539 PMCID: PMC11378978 DOI: 10.1039/d4nh00226a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/19/2024] [Indexed: 09/07/2024]
Abstract
Plasmonic nanoparticles (NPs) have played a significant role in the evolution of modern nanoscience and nanotechnology in terms of colloidal synthesis, general understanding of nanocrystal growth mechanisms, and their impact in a wide range of applications. They exhibit strong visible colors due to localized surface plasmon resonance (LSPR) that depends on their size, shape, composition, and the surrounding dielectric environment. Under resonant excitation, the LSPR of plasmonic NPs leads to a strong field enhancement near their surfaces and thus enhances various light-matter interactions. These unique optical properties of plasmonic NPs have been used to design chemical and biological sensors. Over the last few decades, colloidal plasmonic NPs have been greatly exploited in sensing applications through LSPR shifts (colorimetry), surface-enhanced Raman scattering, surface-enhanced fluorescence, and chiroptical activity. Although colloidal plasmonic NPs have emerged at the forefront of nanobiosensors, there are still several important challenges to be addressed for the realization of plasmonic NP-based sensor kits for routine use in daily life. In this comprehensive review, researchers of different disciplines (colloidal and analytical chemistry, biology, physics, and medicine) have joined together to summarize the past, present, and future of plasmonic NP-based sensors in terms of different sensing platforms, understanding of the sensing mechanisms, different chemical and biological analytes, and the expected future technologies. This review is expected to guide the researchers currently working in this field and inspire future generations of scientists to join this compelling research field and its branches.
Collapse
Affiliation(s)
- Krishna Kant
- CINBIO, Department of Physical Chemistry, Universidade de Vigo, 36310 Vigo, Spain.
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Greater Noida, UP, India
| | - Reshma Beeram
- Advanced Centre of Research in High Energy Materials (ACRHEM), DRDO Industry Academia - Centre of Excellence (DIA-COE), University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Yi Cao
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Paulo S S Dos Santos
- INESC TEC-Institute for Systems and Computer Engineering, Technology and Science, Rua Dr Alberto Frias, 4200-465 Porto, Portugal
| | | | - Daniel García-Lojo
- CINBIO, Department of Physical Chemistry, Universidade de Vigo, 36310 Vigo, Spain.
| | - Heng Guo
- Department of Biomedical Engineering, and Center for Remote Health Technologies and Systems, Texas A&M University, College Station, TX 77843, USA
| | - Younju Joung
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Siddhant Kothadiya
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
- Nanovaccine Institute, Iowa State University, Ames, IA 50012, USA
| | - Marta Lafuente
- Department of Chemical & Environmental Engineering, Campus Rio Ebro, C/Maria de Luna s/n, 50018 Zaragoza, Spain
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Yong Xiang Leong
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Yiyi Liu
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Yuxiong Liu
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Sree Satya Bharati Moram
- Advanced Centre of Research in High Energy Materials (ACRHEM), DRDO Industry Academia - Centre of Excellence (DIA-COE), University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Sanje Mahasivam
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Sonia Maniappan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517 507, India
| | - Daniel Quesada-González
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - Divakar Raj
- Department of Allied Sciences, School of Health Sciences and Technology, UPES, Dehradun, 248007, India
| | - Pabudi Weerathunge
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Xinyue Xia
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Qian Yu
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Sara Abalde-Cela
- International Iberian Nanotechnology Laboratory (INL), 4715-330 Braga, Portugal
| | - Ramon A Alvarez-Puebla
- Department of Physical and Inorganic Chemistry, Universitat Rovira i Virgili, Tarragona, Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats, 08010, Barcelona, Spain
| | - Rizia Bardhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
- Nanovaccine Institute, Iowa State University, Ames, IA 50012, USA
| | - Vipul Bansal
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Jaebum Choo
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Luis C C Coelho
- INESC TEC-Institute for Systems and Computer Engineering, Technology and Science, Rua Dr Alberto Frias, 4200-465 Porto, Portugal
- FCUP, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - José M M M de Almeida
- INESC TEC-Institute for Systems and Computer Engineering, Technology and Science, Rua Dr Alberto Frias, 4200-465 Porto, Portugal
- Department of Physics, University of Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal
| | - Sergio Gómez-Graña
- CINBIO, Department of Physical Chemistry, Universidade de Vigo, 36310 Vigo, Spain.
| | - Marek Grzelczak
- Centro de Física de Materiales (CSIC-UPV/EHU) and Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 5, 20018 Donostia San-Sebastián, Spain
| | - Pablo Herves
- CINBIO, Department of Physical Chemistry, Universidade de Vigo, 36310 Vigo, Spain.
| | - Jatish Kumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517 507, India
| | - Theobald Lohmueller
- Chair for Photonics and Optoelectronics, Nano-Institute Munich, Department of Physics, Ludwig-Maximilians-Universität (LMU), Königinstraße 10, 80539 Munich, Germany
| | - Arben Merkoçi
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Passeig de Lluís Companys, 23, Barcelona, 08010, Spain
| | - José Luis Montaño-Priede
- Centro de Física de Materiales (CSIC-UPV/EHU) and Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 5, 20018 Donostia San-Sebastián, Spain
| | - Xing Yi Ling
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Reyes Mallada
- Department of Chemical & Environmental Engineering, Campus Rio Ebro, C/Maria de Luna s/n, 50018 Zaragoza, Spain
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain
| | - Jorge Pérez-Juste
- CINBIO, Department of Physical Chemistry, Universidade de Vigo, 36310 Vigo, Spain.
| | - María P Pina
- Department of Chemical & Environmental Engineering, Campus Rio Ebro, C/Maria de Luna s/n, 50018 Zaragoza, Spain
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain
| | - Srikanth Singamaneni
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Venugopal Rao Soma
- Advanced Centre of Research in High Energy Materials (ACRHEM), DRDO Industry Academia - Centre of Excellence (DIA-COE), University of Hyderabad, Hyderabad 500046, Telangana, India
- School of Physics, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Mengtao Sun
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Limei Tian
- Department of Biomedical Engineering, and Center for Remote Health Technologies and Systems, Texas A&M University, College Station, TX 77843, USA
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | | | | |
Collapse
|
22
|
Rojas Martínez V, Lee E, Oh JW. Exploring Plasmonic Standalone Surface-Enhanced Raman Scattering Nanoprobes for Multifaceted Applications in Biomedical, Food, and Environmental Fields. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1839. [PMID: 39591079 PMCID: PMC11597564 DOI: 10.3390/nano14221839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/10/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024]
Abstract
Surface-enhanced Raman scattering (SERS) is an innovative spectroscopic technique that amplifies the Raman signals of molecules adsorbed on rough metal surfaces, making it pivotal for single-molecule detection in complex biological and environmental matrices. This review aims to elucidate the design strategies and recent advancements in the application of standalone SERS nanoprobes, with a special focus on quantifiable SERS tags. We conducted a comprehensive analysis of the recent literature, focusing on the development of SERS nanoprobes that employ novel nanostructuring techniques to enhance signal reliability and quantification. Standalone SERS nanoprobes exhibit significant enhancements in sensitivity and specificity due to optimized hot spot generation and improved reporter molecule interactions. Recent innovations include the development of nanogap and core-satellite structures that enhance electromagnetic fields, which are crucial for SERS applications. Standalone SERS nanoprobes, particularly those utilizing indirect detection mechanisms, represent a significant advancement in the field. They hold potential for wide-ranging applications, from disease diagnostics to environmental monitoring, owing to their enhanced sensitivity and ability to operate under complex sample conditions.
Collapse
Affiliation(s)
| | | | - Jeong-Wook Oh
- Department of Chemistry, Hankuk University of Foreign Studies (HUFS), Yongin 17035, Republic of Korea; (V.R.M.); (E.L.)
| |
Collapse
|
23
|
Yi L, Zhang J, Wu J, Zhuang Y, Song Q, Zhao L, Liang M, Li G, Hu B, Yin P, Castel H, Maciuk A, Figadere B. Micro-macro SERS strategy for highly sensitive paper cartridge with trace-level molecular detection. Biosens Bioelectron 2024; 264:116665. [PMID: 39173336 DOI: 10.1016/j.bios.2024.116665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/18/2024] [Accepted: 08/10/2024] [Indexed: 08/24/2024]
Abstract
Surface-enhanced Raman Scattering (SERS) has become a powerful spectroscopic technology for highly sensitive detection. However, SERS is still limited in the lab because it either requires complicated preparation or is limited to specific compounds, causing poor applicability for practical applications. Herein, a micro-macro SERS strategy, synergizing polymer-assisted printed process with paper-tip enrichment process, is proposed to fabricate highly sensitive paper cartridges for sensitive practical applications. The polymer-assisted printed process finely aggregates nanoparticles with a discrete degree of 1.77, and SERS results are matched with theoretical enhancement, indicating small cluster-dominated hotspots at the micro-scale and thus 41-fold SERS increase compared to other aggregation methods. The paper-tip enrichment process moves molecules in a fluid into small tips filled with plasmonic clusters, and molecular localization at hotspots is achieved by the simulation and optimization of fluidic velocity at the macro-scale, generating a 39.5-fold SERS sensibility increase in comparison with other flow methods. A highly sensitive paper cartridge contains a paper-tip and a 3D-printed cartridge, which is simple, easy-to-operate, and costs around 2 US dollars. With a detection limit of 10 -12 M for probe molecules, the application of real samples and multiple analytes achieves single-molecule level sensitivity and reliable repeatability with a 30-min standardized procedure. The micro-macro SERS strategy demonstrates its potential in practical applications that require point-of-care detection.
Collapse
Affiliation(s)
- LangLang Yi
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Jie Zhang
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Jianduo Wu
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Yuan Zhuang
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Qin Song
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Lei Zhao
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Minghui Liang
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Guoqian Li
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Bo Hu
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China; School of Mathematics and Physics, Hebei University of Engineering, Handan, Hebei, 056038, China; Xi'an Intelligent Precision Diagnosis and Treatment International Science and Technology Cooperation Base, Xidian University, Xi'an, Shaanxi, 710126, China.
| | - Pengju Yin
- School of Mathematics and Physics, Hebei University of Engineering, Handan, Hebei, 056038, China.
| | - Helene Castel
- Institute of Research and Biomedical Innovation, University of Rouen Normandy, Mont-Saint-Aignan, 76821, France
| | | | - Bruno Figadere
- BioCIS, CNRS, Université Paris-Saclay, Orsay, 91400, France.
| |
Collapse
|
24
|
Wang Y, Gao X, Wu J, Jiang M, Zhang H, Yan C. Antifreezing/Antiswelling Hydrogels: Synthesis Strategies and Applications as Flexible Motion Sensors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:58100-58120. [PMID: 39422229 DOI: 10.1021/acsami.4c13621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Hydrogels are excellent materials for fabricating flexible electronic devices, such as flexible sensors. However, obtaining hydrogels with superior swelling capacity and good hydrophilicity suitable for use under extreme environments, such as cold and underwater conditions, is still challenging due to the occurrence of freezing and excessive swelling. Alternatively, hydrogels with antifreezing and antiswelling capacities exhibit minimal changes in their physical and chemical properties under extreme conditions with retained original performance, such as mechanical properties, conductivity, and adhesiveness, making them suitable for various applications. Accordingly, various multifunctional antifreezing/antiswelling hydrogels meeting practical application requirements have been developed thanks to the advancement of hydrogel technology. Examples include flexible sensors for monitoring various motion signals, such as changes during sports events. However, comprehensive reviews describing these hydrogels in terms of synthesis and application in sensors are still lacking. Herein, the design and synthetic strategies of antifreezing/antiswelling hydrogels reported in recent years are comprehensively analyzed along with their mechanisms and applications in flexible motion sensors. This review aims to provide a comprehensive understanding of the research of antifreezing/antiswelling hydrogels and offer valuable insights for researchers engaged in the development of advanced materials suitable for practical applications.
Collapse
Affiliation(s)
- Yutong Wang
- College of Sports and Human Sciences, Graduate School, Harbin Sport University, Harbin 150008, P.R. China
| | - Xing Gao
- College of Sports and Human Sciences, Graduate School, Harbin Sport University, Harbin 150008, P.R. China
| | - Jie Wu
- College of Sports and Human Sciences, Graduate School, Harbin Sport University, Harbin 150008, P.R. China
| | - Minghao Jiang
- School of Water Conservancy and Civil Engineering, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, P.R. China
| | - Hongchao Zhang
- College of Sports and Human Sciences, Graduate School, Harbin Sport University, Harbin 150008, P.R. China
| | - Chufan Yan
- College of Sports and Human Sciences, Graduate School, Harbin Sport University, Harbin 150008, P.R. China
| |
Collapse
|
25
|
Liu W, Chung K, Yu S, Lee LP. Nanoplasmonic biosensors for environmental sustainability and human health. Chem Soc Rev 2024; 53:10491-10522. [PMID: 39192761 DOI: 10.1039/d3cs00941f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Monitoring the health conditions of the environment and humans is essential for ensuring human well-being, promoting global health, and achieving sustainability. Innovative biosensors are crucial in accurately monitoring health conditions, uncovering the hidden connections between the environment and human well-being, and understanding how environmental factors trigger autoimmune diseases, neurodegenerative diseases, and infectious diseases. This review evaluates the use of nanoplasmonic biosensors that can monitor environmental health and human diseases according to target analytes of different sizes and scales, providing valuable insights for preventive medicine. We begin by explaining the fundamental principles and mechanisms of nanoplasmonic biosensors. We investigate the potential of nanoplasmonic techniques for detecting various biological molecules, extracellular vesicles (EVs), pathogens, and cells. We also explore the possibility of wearable nanoplasmonic biosensors to monitor the physiological network and healthy connectivity of humans, animals, plants, and organisms. This review will guide the design of next-generation nanoplasmonic biosensors to advance sustainable global healthcare for humans, the environment, and the planet.
Collapse
Affiliation(s)
- Wenpeng Liu
- Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Harvard University, Boston, MA 02115, USA.
| | - Kyungwha Chung
- Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Harvard University, Boston, MA 02115, USA.
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Subin Yu
- Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Harvard University, Boston, MA 02115, USA.
| | - Luke P Lee
- Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Harvard University, Boston, MA 02115, USA.
- Department of Bioengineering, Department of Electrical Engineering and Computer Science, University of California at Berkeley, Berkeley, CA 94720, USA
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Korea
| |
Collapse
|
26
|
Zhou J, Li H, Li X, Liang X, Feng Z, He Q, Zhang M, Chen X, Chen H, Zhang H, Guo W. Automatic characterization of capillary flow profile of liquid samples on μTADs based on capacitance measurement. J Chromatogr A 2024; 1735:465328. [PMID: 39232420 DOI: 10.1016/j.chroma.2024.465328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/24/2024] [Accepted: 08/29/2024] [Indexed: 09/06/2024]
Abstract
Capillary flow profile of liquid samples in porous media is closely related to the important properties of liquid samples, including the viscosity and the surface energy. Therefore, capillary flow profile can be used as an index to differentiate liquid samples with different properties. Fast and automatic characterization of capillary flow profile of liquid samples is necessary. In this work, we develop a portable and economical capacitance acquisition system (CASY) to easily obtain the capillary flow profile of liquid samples on microfluidic thread-based analytical devices (μTADs) by measuring the capacitance during the capillary flow. At first, we validate the accuracy of this method by comparing with the traditional method by video analysis in obtaining the capillary flow profiles in μTADs of cotton threads or glass fiber threads. Then we use it to differentiate liquid samples with different viscosity (mixture of water and glycerol). In addition, capillary flow profile on μTADs with chemical valves (chitosan or sucrose) can also be obtained on this device. Lastly, we show the potential of this device in measurement of hematocrit (HCT) of whole blood samples. This device can be used to catalog liquid biological samples with different properties in point-of-care diagnostics in the near future.
Collapse
Affiliation(s)
- Jie Zhou
- Department of Electrical Engineering, Shantou University, 243 Daxue Road, Shantou, 515063, Guangdong, China
| | - Haonan Li
- Department of Electrical Engineering, Shantou University, 243 Daxue Road, Shantou, 515063, Guangdong, China
| | - Xionghui Li
- Department of Biomedical Engineering, Shantou University, 243 Daxue Road, Shantou, 515063, Guangdong, China
| | - Xuanying Liang
- Department of Biomedical Engineering, Shantou University, 243 Daxue Road, Shantou, 515063, Guangdong, China
| | - Zitao Feng
- Department of Biomedical Engineering, Shantou University, 243 Daxue Road, Shantou, 515063, Guangdong, China
| | - Qinghao He
- Department of Electrical Engineering, Shantou University, 243 Daxue Road, Shantou, 515063, Guangdong, China
| | - Muyang Zhang
- Department of Electrical Engineering, Shantou University, 243 Daxue Road, Shantou, 515063, Guangdong, China
| | - Xinyi Chen
- Department of Biomedical Engineering, Shantou University, 243 Daxue Road, Shantou, 515063, Guangdong, China
| | - Huilin Chen
- Department of Biomedical Engineering, Shantou University, 243 Daxue Road, Shantou, 515063, Guangdong, China
| | - Huiru Zhang
- Guangdong University Research Findings Commercialization Center, Foshan, 528253, Guangdong, China
| | - Weijin Guo
- Department of Biomedical Engineering, Shantou University, 243 Daxue Road, Shantou, 515063, Guangdong, China.
| |
Collapse
|
27
|
Li G, Zhao X, Tang X, Yao L, Li W, Wang J, Liu X, Han B, Fan X, Qiu T, Hao Q. Wearable Hydrogel SERS Chip Utilizing Plasmonic Trimers for Uric Acid Analysis in Sweat. NANO LETTERS 2024; 24:13447-13454. [PMID: 39392787 DOI: 10.1021/acs.nanolett.4c04267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Uric acid is typically measured through blood tests, which can be inconvenient and uncomfortable for patients. Herein, we propose a wearable surface-enhanced Raman scattering (SERS) chip, incorporating a hydrogel membrane with integrated plasmonic trimers, for noninvasive monitoring of uric acid in sweat. The plasmonic trimers feature sub 5 nm nanogaps, generating strong electromagnetic fields to boost the Raman signal of surrounding molecules. Simultaneously, the hydrogel membrane pumps sweat through these gaps, efficiently capturing sweat biomarkers for SERS detection. The chip can achieve saturation adsorption of sweat within 5 min, eliminating variations in individual sweat production rates. Dynamic SERS tracking of uric acid and lactic acid levels during anaerobic exercise reveals a temporary suppression of uric acid metabolism, likely due to metabolic competition with lactic acid. Furthermore, long-term monitoring correlates well with blood test results, confirming that regular exercise helps reduce serum uric acid levels and supporting its potential in managing hyperuricemia.
Collapse
Affiliation(s)
- Guoqun Li
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189 China
| | - Xing Zhao
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189 China
| | - Xiao Tang
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189 China
| | - Lei Yao
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189 China
| | - Weiyi Li
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189 China
| | - Jiawei Wang
- State Key Laboratory on Tunable Laser Technology, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055 China
| | - Xiaojing Liu
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266003 China
| | - Bing Han
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, 210009 China
| | - Xingce Fan
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189 China
| | - Teng Qiu
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189 China
| | - Qi Hao
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189 China
| |
Collapse
|
28
|
Pham AT, Bui HN, Thanh NT, Bach TN, Mai QD, Le AT. Flexible SERS chips for rapid on-site detection of tricyclazole pesticide in agricultural products. Mikrochim Acta 2024; 191:652. [PMID: 39373744 DOI: 10.1007/s00604-024-06682-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/03/2024] [Indexed: 10/08/2024]
Abstract
A flexible, ultrasensitive, and practical SERS chip is presented based on a paper/f-TiO2/Ag structure. The chip enhances the self-assembly of Ag nanoparticles on a cellulose fiber matrix, facilitated by smart functionalized TiO2 nanomaterials (f-TiO2). This design enables superior detection of the hazardous pesticide tricyclazole (TCZ) on crops using an advanced, simple, and efficient analytical method. Despite its straightforward fabrication process via a solvent immersion method, the intrinsic smart surface properties of the TiO2 bridging material - both hydrophilic and hydrophobic - enable the uniform and dense self-assembly of hydrophilic Ag nanoparticles (NPs) on the cellulose fiber paper substrate. This innovative design provides superior sensing efficiency for TCZ molecules with a detection limit reaching 2.1 × 10-9 M, a remarkable improvement compared to Paper/Ag substrates lacking f-TiO2 nanomaterials, which register at 10-5 M. This flexible SERS substrate also exhibits very high reliability as indicated by its excellent reproducibility and repeatability with relative standard deviations (RSD) of only 5.93% and 4.73%, respectively. Characterized by flexibility and a water-attractive yet non-soluble surface, the flexible Paper/f-TiO2/Ag chips offer the convenience of direct immersion into the analytical sample, facilitating seamless target molecule collection while circumventing interference signals. Termed the "dip and dry" technique, its advantages in field analysis are indisputable, boasting in situ deployment, simplicity, and high efficiency, while minimizing interference signals to negligible levels. Through the application of this advanced technique, we have successfully detected TCZ in two high-value crops, ST25 rice and dragon fruit, achieving excellent recovery values ranging from 90 to 128%. This underscores its immense potential in ensuring food quality and safety. As a proof of concept, flexible Paper/f-TiO2/Ag SERS chips, with a simple fabrication process, advanced analytical technique, and superior sensing efficiency, bring SERS one step closer to field applications beyond the laboratory.
Collapse
Affiliation(s)
- Anh-Tuan Pham
- Faculty of Materials Science and Engineering, Phenikaa University, Hanoi, 12116, Vietnam
- Faculty of Biotechnology, Chemistry and Environmental Engineering, Phenikaa University, Hanoi, 12116, Vietnam
| | - Hanh Nhung Bui
- Faculty of Materials Science and Engineering, Phenikaa University, Hanoi, 12116, Vietnam
| | - Nguyen Trung Thanh
- Faculty of Materials Science and Engineering, Phenikaa University, Hanoi, 12116, Vietnam
| | - Ta Ngoc Bach
- Institute of Materials Science (IMS), Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, 10000, Vietnam
| | - Quan-Doan Mai
- Phenikaa University Nano Institute (PHENA), Phenikaa University, Hanoi, 12116, Vietnam.
| | - Anh-Tuan Le
- Phenikaa University Nano Institute (PHENA), Phenikaa University, Hanoi, 12116, Vietnam.
- Faculty of Materials Science and Engineering, Phenikaa University, Hanoi, 12116, Vietnam.
| |
Collapse
|
29
|
Zhang H, Zhang H, Sikdar D, Liu X, Yang Z, Cheng W, Chen Y. Jellyfish-like Gold Nanowires as FlexoSERS Sensors for Sweat Analysis. NANO LETTERS 2024; 24:11269-11278. [PMID: 39208279 DOI: 10.1021/acs.nanolett.4c02907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
We introduce the FlexoSERS sensor, which is notable for its high stretchability, sensitivity, and patternability. Featuring a hierarchically oriented jellyfish-like architecture constructed from stretchable gold nanowires, this sensor provides an ultrasensitive SERS signal even under 50% strain, with an enhancement factor (EF) of 3.3 × 1010. Impressively, this heightened performance remains consistently robust across 2,500 stretch-release cycles. The integration of nanowires with 3D-printed hydrogel enables a customizable FlexoSERS sensor, facilitating localized sweat collection and detection. The FlexoSERS sensor successfully detects and quantifies uric acid (UA) in both artificial and human sweat and functions as a pH sensor with repeatability and sensitivity across a pH range of 4.2-7.8, enabling real-time sweat monitoring during exercise. In summary, the rational architectural design, scalable fabrication process, and hydrogel integration collectively position this nanowire-based FlexoSERS sensor as a highly promising platform for customizable wearable sweat diagnostics.
Collapse
Affiliation(s)
- Heng Zhang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Southeast University-Monash University Joint Graduate School, Suzhou 215123, China
| | - Hanqiang Zhang
- Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 210096, China
| | - Debabrata Sikdar
- Department of Electronics and Electrical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam India, 781039
| | - Xuanchi Liu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Zongru Yang
- Joint International Research Laboratory of Information Display and Visualization, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China
| | - Wenlong Cheng
- Faculty of Engineering, The University of Sydney, Darlington, NSW 2008, Australia
| | - Yi Chen
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Southeast University-Monash University Joint Graduate School, Suzhou 215123, China
| |
Collapse
|
30
|
Ye H, Chen X, Huang X, Li C, Yin X, Zhao W, Wang T. Patterned Gold Nanoparticle Superlattice Film for Wearable Sweat Sensors. NANO LETTERS 2024; 24:11082-11089. [PMID: 39171663 DOI: 10.1021/acs.nanolett.4c03254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Nanoparticle superlattices are beneficial in terms of providing strong and uniform signals in analysis owing to their closely packed uniform structures. However, nanoparticle superlattices are prone to cracking during physical activities because of stress concentrations, which hinders their detection performance and limits their analytical applications. In this work, template printing methods were used in this study to prepare a patterned gold nanoparticle (AuNP) superlattice film. By adjustment of the size of the AuNP superlattice domain below the critical size of fracture, the mechanical stability of the AuNP superlattice domain is improved. Thus, long-term sustainable high-performance signal output is achieved. The patterned AuNP superlattice film was used to construct a wearable sweat sensor based on surface-enhanced Raman scattering (SERS). The designed sensor showed promise for long-term reliable use in actual scenarios in terms of recommending water replenishment, monitoring hydration states, and tracking the intensity of activity.
Collapse
Affiliation(s)
- Haochen Ye
- Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100049, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiangyu Chen
- Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100049, P. R. China
| | - Xiaobin Huang
- Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100049, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Cancan Li
- Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100049, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiaomeng Yin
- Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100049, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Weidong Zhao
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Tie Wang
- Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100049, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin 300384, P. R. China
| |
Collapse
|
31
|
Garg M, Guo H, Maclam E, Zhanov E, Samudrala S, Pavlov A, Rahman MS, Namkoong M, Moreno JP, Tian L. Molecularly Imprinted Wearable Sensor with Paper Microfluidics for Real-Time Sweat Biomarker Analysis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:46113-46122. [PMID: 39178237 PMCID: PMC11378148 DOI: 10.1021/acsami.4c10033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
Abstract
The urgent need for real-time and noninvasive monitoring of health-associated biochemical parameters has motivated the development of wearable sweat sensors. Existing electrochemical sensors show promise in real-time analysis of various chemical biomarkers. These sensors often rely on labels and redox probes to generate and amplify the signals for the detection and quantification of analytes with limited sensitivity. In this study, we introduce a molecularly imprinted polymer (MIP)-based biochemical sensor to quantify a molecular biomarker in sweat using electrochemical impedance spectroscopy, which eliminates the need for labels or redox probes. The molecularly imprinted biosensor can achieve sensitive and specific detection of cortisol at concentrations as low as 1 pM, 1000-fold lower than previously reported MIP cortisol sensors. We integrated multimodal electrochemical sensors with an iontophoresis sweat extraction module and paper microfluidics for real-time sweat analysis. Several parameters can be simultaneously quantified, including sweat volume, secretion rate, sodium ion, and cortisol concentration. Paper microfluidic modules not only quantify sweat volume and secretion rate but also facilitate continuous sweat analysis without user intervention. While we focus on cortisol sensing as a proof-of-concept, the molecularly imprinted wearable sensors can be extended to real-time detection of other biochemicals, such as protein biomarkers and therapeutic drugs.
Collapse
Affiliation(s)
- Mayank Garg
- Department of Biomedical Engineering, Texas A&M University, College Station 77843, Texas, United States
| | - Heng Guo
- Department of Biomedical Engineering, Texas A&M University, College Station 77843, Texas, United States
| | - Ethan Maclam
- Department of Biomedical Engineering, Texas A&M University, College Station 77843, Texas, United States
| | - Elizabeth Zhanov
- Department of Biomedical Engineering, Texas A&M University, College Station 77843, Texas, United States
| | - Sathwika Samudrala
- Department of Biomedical Engineering, Texas A&M University, College Station 77843, Texas, United States
| | - Anton Pavlov
- Department of Biomedical Engineering, Texas A&M University, College Station 77843, Texas, United States
| | - Md Saifur Rahman
- Department of Biomedical Engineering, Texas A&M University, College Station 77843, Texas, United States
| | - Myeong Namkoong
- Department of Biomedical Engineering, Texas A&M University, College Station 77843, Texas, United States
| | - Jennette P Moreno
- Department of Pediatrics-Nutrition, Baylor College of Medicine, Houston 77030, Texas, United States
| | - Limei Tian
- Department of Biomedical Engineering, Texas A&M University, College Station 77843, Texas, United States
- Center for Remote Health Technologies and Systems, Texas A&M University, College Station 77843, Texas, United States
| |
Collapse
|
32
|
Jin M, Su P, Huang X, Zhang R, Xu H, Wang Z, Su C, Katona JM, Ye Y. Micropatterned Polymer Nanoarrays with Distinct Superwettability for a Highly Efficient Sweat Collection and Sensing Patch. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311380. [PMID: 38721961 DOI: 10.1002/smll.202311380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/03/2024] [Indexed: 10/01/2024]
Abstract
Wearable sweat sensor offers a promising means for noninvasive real-time health monitoring, but the efficient collection and accurate analysis of sweat remains challenging. One of the obstacles is to precisely modulate the surface wettability of the microfluidics to achieve efficient sweat collection. Here a facile initiated chemical vapor deposition (iCVD) method is presented to grow and pattern polymer nanocone arrays with distinct superwettability on polydimethylsiloxane microfluidics, which facilitate highly efficient sweat transportation and collection. The nanoarray is synthesized by manipulating monomer supersaturation during iCVD to induce controlled nucleation and preferential vertical growth of fluorinated polymer. Subsequent selective vapor deposition of a conformal hydrogel nanolayer results in superhydrophilic nanoarray floor and walls within the microchannel that provide a large capillary force and a superhydrophobic ceiling that drastically reduces flow friction, enabling rapid sweat transport along varied flow directions. A carbon/hydrogel/enzyme nanocomposite electrode is then fabricated by sequential deposition of highly porous carbon nanoparticles and hydrogel nanocoating to achieve sensitive and stable sweat detection. Further encapsulation of the assembled sweatsensing patch with superhydrophobic nanoarray imparts self-cleaning and water-proof capability. Finally, the sweat sensing patch demonstrates selective and sensitive glucose and lactate detection during the on-body test.
Collapse
Affiliation(s)
- Minghui Jin
- Department of Materials Science and Engineering, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Peipei Su
- Department of Materials Science and Engineering, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Xiaocheng Huang
- Department of Materials Science and Engineering, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Ruhao Zhang
- Department of Materials Science and Engineering, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - He Xu
- Department of Materials Science and Engineering, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Zhenbo Wang
- Department of Materials Science and Engineering, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Cuicui Su
- Department of Materials Science and Engineering, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Jaroslav M Katona
- Faculty of Technology, University of Novi Sad, Novi Sad, Bul. Cara Lazara 1, Novi Sad, 21000, Serbia
| | - Yumin Ye
- Department of Materials Science and Engineering, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| |
Collapse
|
33
|
Tran DT, Yadav AS, Nguyen NK, Singha P, Ooi CH, Nguyen NT. Biodegradable Polymers for Micro Elastofluidics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2303435. [PMID: 37292037 DOI: 10.1002/smll.202303435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Indexed: 06/10/2023]
Abstract
Micro elastofluidics is an emerging research field that encompasses characteristics of conventional microfluidics and fluid-structure interactions. Micro elastofluidics is expected to enable practical applications, for instance, where direct contact between biological samples and fluid handling systems is required. Besides design optimization, choosing a proper material is critical to the practical use of micro elastofluidics upon interaction with biological interface and after its functional lifetime. Biodegradable polymers are one of the most studied materials for this purpose. Micro elastofluidic devices made of biodegradable polymers possess exceptional mechanical elasticity, excellent bio compatibility, and structural degradability into non-toxic products. This article provides an insightful and systematic review of the utilization of biodegradable polymers in digital and continuous-flow micro elastofluidics.
Collapse
Affiliation(s)
- Du Tuan Tran
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD, 4111, Australia
| | - Ajeet Singh Yadav
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD, 4111, Australia
| | - Nhat-Khuong Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD, 4111, Australia
| | - Pradip Singha
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD, 4111, Australia
| | - Chin Hong Ooi
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD, 4111, Australia
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD, 4111, Australia
| |
Collapse
|
34
|
Haghayegh F, Norouziazad A, Haghani E, Feygin AA, Rahimi RH, Ghavamabadi HA, Sadighbayan D, Madhoun F, Papagelis M, Felfeli T, Salahandish R. Revolutionary Point-of-Care Wearable Diagnostics for Early Disease Detection and Biomarker Discovery through Intelligent Technologies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400595. [PMID: 38958517 PMCID: PMC11423253 DOI: 10.1002/advs.202400595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/19/2024] [Indexed: 07/04/2024]
Abstract
Early-stage disease detection, particularly in Point-Of-Care (POC) wearable formats, assumes pivotal role in advancing healthcare services and precision-medicine. Public benefits of early detection extend beyond cost-effectively promoting healthcare outcomes, to also include reducing the risk of comorbid diseases. Technological advancements enabling POC biomarker recognition empower discovery of new markers for various health conditions. Integration of POC wearables for biomarker detection with intelligent frameworks represents ground-breaking innovations enabling automation of operations, conducting advanced large-scale data analysis, generating predictive models, and facilitating remote and guided clinical decision-making. These advancements substantially alleviate socioeconomic burdens, creating a paradigm shift in diagnostics, and revolutionizing medical assessments and technology development. This review explores critical topics and recent progress in development of 1) POC systems and wearable solutions for early disease detection and physiological monitoring, as well as 2) discussing current trends in adoption of smart technologies within clinical settings and in developing biological assays, and ultimately 3) exploring utilities of POC systems and smart platforms for biomarker discovery. Additionally, the review explores technology translation from research labs to broader applications. It also addresses associated risks, biases, and challenges of widespread Artificial Intelligence (AI) integration in diagnostics systems, while systematically outlining potential prospects, current challenges, and opportunities.
Collapse
Affiliation(s)
- Fatemeh Haghayegh
- Laboratory of Advanced Biotechnologies for Health Assessments (Lab‐HA)Biomedical Engineering ProgramLassonde School of EngineeringYork UniversityTorontoM3J 1P3Canada
- Department of Electrical Engineering and Computer Science (EECS)Lassonde School of EngineeringYork UniversityTorontoONM3J 1P3Canada
| | - Alireza Norouziazad
- Laboratory of Advanced Biotechnologies for Health Assessments (Lab‐HA)Biomedical Engineering ProgramLassonde School of EngineeringYork UniversityTorontoM3J 1P3Canada
- Department of Electrical Engineering and Computer Science (EECS)Lassonde School of EngineeringYork UniversityTorontoONM3J 1P3Canada
| | - Elnaz Haghani
- Laboratory of Advanced Biotechnologies for Health Assessments (Lab‐HA)Biomedical Engineering ProgramLassonde School of EngineeringYork UniversityTorontoM3J 1P3Canada
- Department of Electrical Engineering and Computer Science (EECS)Lassonde School of EngineeringYork UniversityTorontoONM3J 1P3Canada
| | - Ariel Avraham Feygin
- Laboratory of Advanced Biotechnologies for Health Assessments (Lab‐HA)Biomedical Engineering ProgramLassonde School of EngineeringYork UniversityTorontoM3J 1P3Canada
- Department of Electrical Engineering and Computer Science (EECS)Lassonde School of EngineeringYork UniversityTorontoONM3J 1P3Canada
| | - Reza Hamed Rahimi
- Laboratory of Advanced Biotechnologies for Health Assessments (Lab‐HA)Biomedical Engineering ProgramLassonde School of EngineeringYork UniversityTorontoM3J 1P3Canada
- Department of Electrical Engineering and Computer Science (EECS)Lassonde School of EngineeringYork UniversityTorontoONM3J 1P3Canada
| | - Hamidreza Akbari Ghavamabadi
- Laboratory of Advanced Biotechnologies for Health Assessments (Lab‐HA)Biomedical Engineering ProgramLassonde School of EngineeringYork UniversityTorontoM3J 1P3Canada
- Department of Electrical Engineering and Computer Science (EECS)Lassonde School of EngineeringYork UniversityTorontoONM3J 1P3Canada
| | - Deniz Sadighbayan
- Department of BiologyFaculty of ScienceYork UniversityTorontoONM3J 1P3Canada
| | - Faress Madhoun
- Laboratory of Advanced Biotechnologies for Health Assessments (Lab‐HA)Biomedical Engineering ProgramLassonde School of EngineeringYork UniversityTorontoM3J 1P3Canada
- Department of Electrical Engineering and Computer Science (EECS)Lassonde School of EngineeringYork UniversityTorontoONM3J 1P3Canada
| | - Manos Papagelis
- Department of Electrical Engineering and Computer Science (EECS)Lassonde School of EngineeringYork UniversityTorontoONM3J 1P3Canada
| | - Tina Felfeli
- Department of Ophthalmology and Vision SciencesUniversity of TorontoOntarioM5T 3A9Canada
- Institute of Health PolicyManagement and EvaluationUniversity of TorontoOntarioM5T 3M6Canada
| | - Razieh Salahandish
- Laboratory of Advanced Biotechnologies for Health Assessments (Lab‐HA)Biomedical Engineering ProgramLassonde School of EngineeringYork UniversityTorontoM3J 1P3Canada
- Department of Electrical Engineering and Computer Science (EECS)Lassonde School of EngineeringYork UniversityTorontoONM3J 1P3Canada
| |
Collapse
|
35
|
Huang C, Yang W, Wang H, Huang S, Gao S, Li D, Liu J, Hou S, Feng W, Wang Z, Li F, Hao Z, Zhao X, Hu P, Pan Y. Flexible/Regenerative Nanosensor with Automatic Sweat Collection for Cytokine Storm Biomarker Detection. ACS NANO 2024; 18:21198-21210. [PMID: 39099110 DOI: 10.1021/acsnano.4c04456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
The real-time monitoring of low-concentration cytokines such as TNF-α in sweat can aid clinical physicians in assessing the severity of inflammation. The challenges associated with the collection and the presence of impurities can significantly impede the detection of proteins in sweat. This issue is addressed by incorporating a nanosphere array designed for automatic sweat transportation, coupled with a reusable sensor that employs a Nafion/aptamer-modified MoS2 field-effect transistor. The nanosphere array with stepwise wettability enables automatic collection of sweat and blocks impurities from contaminating the detection zone. This device enables direct detection of TNF-α proteins in undiluted sweat, within a detection range of 10 fM to 1 nM. The use of an ultrathin, ultraflexible substrate ensures stable electrical performance, even after up to 30 extreme deformations. The findings indicate that in clinical scenarios, this device could potentially provide real-time evaluation and management of patients' immune status via sweat testing.
Collapse
Affiliation(s)
- Cong Huang
- State Key Laboratory of Robotics and Systems, School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
- Key Laboratory of Micro-systems and Micro-structures Manufacturing, Ministry of Education, Harbin Institute of Technology, Harbin 150001, China
| | - Weisong Yang
- State Key Laboratory of Robotics and Systems, School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Hao Wang
- State Key Laboratory of Robotics and Systems, School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
- Key Laboratory of Micro-systems and Micro-structures Manufacturing, Ministry of Education, Harbin Institute of Technology, Harbin 150001, China
| | - Suichu Huang
- State Key Laboratory of Robotics and Systems, School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Shanshan Gao
- School of Electrical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Dongliang Li
- State Key Laboratory of Robotics and Systems, School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Jialin Liu
- State Key Laboratory of Robotics and Systems, School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Siyu Hou
- State Key Laboratory of Robotics and Systems, School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Weihao Feng
- State Key Laboratory of Robotics and Systems, School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Ziran Wang
- State Key Laboratory of Robotics and Systems, School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
- Key Laboratory of High-effciency and Clean Mechanical Manufacture of MOE, School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Feiran Li
- State Key Laboratory of Robotics and Systems, School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
- Key Laboratory of Micro-systems and Micro-structures Manufacturing, Ministry of Education, Harbin Institute of Technology, Harbin 150001, China
| | - Zhuang Hao
- School of Mechanical Engineering & Automation, Beihang University, Beijing 100191, China
| | - Xuezeng Zhao
- State Key Laboratory of Robotics and Systems, School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
- Key Laboratory of Micro-systems and Micro-structures Manufacturing, Ministry of Education, Harbin Institute of Technology, Harbin 150001, China
| | - PingAn Hu
- State Key Laboratory of Robotics and Systems, School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
- Key Laboratory of Micro-systems and Micro-structures Manufacturing, Ministry of Education, Harbin Institute of Technology, Harbin 150001, China
| | - Yunlu Pan
- State Key Laboratory of Robotics and Systems, School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
- Key Laboratory of Micro-systems and Micro-structures Manufacturing, Ministry of Education, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
36
|
Kumar S, Kaushal JB, Lee HP. Sustainable Sensing with Paper Microfluidics: Applications in Health, Environment, and Food Safety. BIOSENSORS 2024; 14:300. [PMID: 38920604 PMCID: PMC11202065 DOI: 10.3390/bios14060300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024]
Abstract
This manuscript offers a concise overview of paper microfluidics, emphasizing its sustainable sensing applications in healthcare, environmental monitoring, and food safety. Researchers have developed innovative sensing platforms for detecting pathogens, pollutants, and contaminants by leveraging the paper's unique properties, such as biodegradability and affordability. These portable, low-cost sensors facilitate rapid diagnostics and on-site analysis, making them invaluable tools for resource-limited settings. This review discusses the fabrication techniques, principles, and applications of paper microfluidics, showcasing its potential to address pressing challenges and enhance human health and environmental sustainability.
Collapse
Affiliation(s)
- Sanjay Kumar
- Durham School of Architectural Engineering and Construction, University of Nebraska-Lincoln, Scott Campus, Omaha, NE 68182-0816, USA
| | - Jyoti Bala Kaushal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Heow Pueh Lee
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore;
| |
Collapse
|
37
|
Rodríguez‐Sevilla E, Álvarez‐Martínez JU, Castro‐Beltrán R, Morales‐Narváez E. Flexible 3D Plasmonic Web Enables Remote Surface Enhanced Raman Spectroscopy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402192. [PMID: 38582528 PMCID: PMC11187956 DOI: 10.1002/advs.202402192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/19/2024] [Indexed: 04/08/2024]
Abstract
Nanoplasmonic materials concentrate light in specific regions of dramatic electromagnetic enhancement: hot spots. Such regions can be employed to perform single molecule detection via surface-enhanced Raman spectroscopy. However, this phenomenon is challenging since hot spots are expected to be highly intense/abundant and positioning of molecules within such hot spots is crucial to manage with ultrasensitive SERS. Herein, it is discovered that a 3D plasmonic web embedded within a biohybrid (3D-POWER) exhibits plasmonic transmission, spontaneously absorbs the analyte, and meets these so much needed criteria in ultrasensitive SERS. 3D-POWER is built with nanopaper and self-assembled layers of graphene oxide and gold nanorods. According to in silico experiments, 3D-POWER captures light in a small region and performs plasmonic field transmission in a surrounding volume, thereby activating a plasmonic web throughout the simulated volume. The study also provides experimental evidence supporting the plasmonic field transport ability of 3D power, which operates as a SERS signal carrier (even beyond the apparatus field of view), and the ultrasensitive behavior of this ecofriendly and flexible material facilitating yoctomolar limit of detection. Besides, 3D-POWER is proven useful in food and biofluids analysis. It is foreseen that 3D-POWER can be employed as a valuable platform in (bio)analytical applications.
Collapse
Affiliation(s)
- Erika Rodríguez‐Sevilla
- Centro de Investigaciones en Óptica A. C.Loma del Bosque 115, Lomas del CampestreLeónGuanajuato37150México
| | - Jonathan Ulises Álvarez‐Martínez
- Departamento de Ingeniería FísicaDivisión de Ciencias e IngenieríasUniversidad de GuanajuatoLoma del Bosque 103, Lomas del CampestreLeónGuanajuato37150México
| | - Rigoberto Castro‐Beltrán
- Departamento de Ingeniería FísicaDivisión de Ciencias e IngenieríasUniversidad de GuanajuatoLoma del Bosque 103, Lomas del CampestreLeónGuanajuato37150México
| | - Eden Morales‐Narváez
- Biophotonic Nanosensors LaboratoryCentro de Física Aplicada y Tecnología Avanzada (CFATA)Universidad Nacional Autónoma de México (UNAM)Boulevard Juriquilla 3001Querétaro76230México
| |
Collapse
|
38
|
Luo Y, Zhai B, Li M, Zhou W, Yang J, Shu Y, Fang Y. Self-adhesive, surface adaptive, regenerable SERS substrates for in-situ detection of urea on bio-surfaces. J Colloid Interface Sci 2024; 660:513-521. [PMID: 38262178 DOI: 10.1016/j.jcis.2024.01.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/18/2023] [Accepted: 01/10/2024] [Indexed: 01/25/2024]
Abstract
Wearable SERS substrates have gained substantial attention for health monitoring and other applications. Current designs often rely on conventional polymer substrates, leading to discomfort and complexity due to the need of additional adhesive layers. To address the issues, we fabricate a flexible, uniform, ultrathin, transparent and porous SERS substrate via depositing Ag nanoparticles (AgNPs) onto the CdS nanowires (CdSNWs) grown on the surface of a prepared nanofilm (AgNPs-CdSNWs/nanofilm). Unlike the wearable SERS substrates reported in literature, the one presented in this work is self-adhesive to a variety of surfaces, which simplifies structure, enhances comfort and improves performance. Importantly, the new SERS substrate as developed is highly stable and reusable. Artificial sample tests revealed that the substrate showed a great enhancement factor (EF) of 4.2 × 107 and achieved a remarkable detection limit (DL) of 1.0 × 10-14 M for rhodamine 6G (R6G), which are among the highest records observed in wearable SERS substrates reported in literature. Moreover, the substrate enables at real-time and in-situ reliable monitoring of urea dynamics in human sweat and plant leaves, indicating its applicability for health analysis and in precision agriculture.
Collapse
Affiliation(s)
- Yan Luo
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Binbin Zhai
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Min Li
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Wenjingli Zhou
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Jinglun Yang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Yuanhong Shu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
39
|
Lien MC, Yeh IH, Tadepalli S, Liu KK. ZnO Nanocages Decorated with Au@AgAu Yolk-Shell Nanomaterials for SERS-Based Detection of Hyperuricemia. ACS OMEGA 2024; 9:16160-16167. [PMID: 38617613 PMCID: PMC11007725 DOI: 10.1021/acsomega.3c10057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/07/2024] [Accepted: 03/12/2024] [Indexed: 04/16/2024]
Abstract
Surface-enhanced Raman scattering (SERS) is widely recognized as a highly sensitive technology for chemical detection and biological sensing. In SERS-based biomedical applications, developing highly efficient sensing platforms based on SERS plays a pivotal role in monitoring disease biomarker levels and facilitating the early detection of cancer biomarkers. Hyperuricemia, characterized by abnormally high concentrations of uric acid (UA) in the blood, was associated with a range of diseases, such as gouty arthritis, heart disease, and acute kidney injury. Recent reports have demonstrated the correlation between UA concentrations in blood and tears. In this work, we report the fabrication of SERS substrates utilizing ZnO nanocages and yolk-shell-structured plasmonic nanomaterials for the noninvasive detection of UA in tears. This innovative SERS substrate enables noninvasive and sensitive detection of UA to prevent hyperuricemia-related diseases.
Collapse
Affiliation(s)
- Mei-Chin Lien
- Department
of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - I-Hsiu Yeh
- Department
of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Sirimuvva Tadepalli
- Department
of Microbiology and Immunology, Stanford
University School of Medicine, Stanford, California 94305, United States
| | - Keng-Ku Liu
- Department
of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300044, Taiwan
| |
Collapse
|
40
|
Li H, Tan P, Rao Y, Bhattacharya S, Wang Z, Kim S, Gangopadhyay S, Shi H, Jankovic M, Huh H, Li Z, Maharjan P, Wells J, Jeong H, Jia Y, Lu N. E-Tattoos: Toward Functional but Imperceptible Interfacing with Human Skin. Chem Rev 2024; 124:3220-3283. [PMID: 38465831 DOI: 10.1021/acs.chemrev.3c00626] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The human body continuously emits physiological and psychological information from head to toe. Wearable electronics capable of noninvasively and accurately digitizing this information without compromising user comfort or mobility have the potential to revolutionize telemedicine, mobile health, and both human-machine or human-metaverse interactions. However, state-of-the-art wearable electronics face limitations regarding wearability and functionality due to the mechanical incompatibility between conventional rigid, planar electronics and soft, curvy human skin surfaces. E-Tattoos, a unique type of wearable electronics, are defined by their ultrathin and skin-soft characteristics, which enable noninvasive and comfortable lamination on human skin surfaces without causing obstruction or even mechanical perception. This review article offers an exhaustive exploration of e-tattoos, accounting for their materials, structures, manufacturing processes, properties, functionalities, applications, and remaining challenges. We begin by summarizing the properties of human skin and their effects on signal transmission across the e-tattoo-skin interface. Following this is a discussion of the materials, structural designs, manufacturing, and skin attachment processes of e-tattoos. We classify e-tattoo functionalities into electrical, mechanical, optical, thermal, and chemical sensing, as well as wound healing and other treatments. After discussing energy harvesting and storage capabilities, we outline strategies for the system integration of wireless e-tattoos. In the end, we offer personal perspectives on the remaining challenges and future opportunities in the field.
Collapse
Affiliation(s)
- Hongbian Li
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Philip Tan
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yifan Rao
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Sarnab Bhattacharya
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Zheliang Wang
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Sangjun Kim
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Susmita Gangopadhyay
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Hongyang Shi
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Matija Jankovic
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Heeyong Huh
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Zhengjie Li
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Pukar Maharjan
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jonathan Wells
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Hyoyoung Jeong
- Department of Electrical and Computer Engineering, University of California Davis, Davis, California 95616, United States
| | - Yaoyao Jia
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Nanshu Lu
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
41
|
Apoorva S, Nguyen NT, Sreejith KR. Recent developments and future perspectives of microfluidics and smart technologies in wearable devices. LAB ON A CHIP 2024; 24:1833-1866. [PMID: 38476112 DOI: 10.1039/d4lc00089g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Wearable devices are gaining popularity in the fields of health monitoring, diagnosis, and drug delivery. Recent advances in wearable technology have enabled real-time analysis of biofluids such as sweat, interstitial fluid, tears, saliva, wound fluid, and urine. The integration of microfluidics and emerging smart technologies, such as artificial intelligence (AI), machine learning (ML), and Internet of Things (IoT), into wearable devices offers great potential for accurate and non-invasive monitoring and diagnosis. This paper provides an overview of current trends and developments in microfluidics and smart technologies in wearable devices for analyzing body fluids. The paper discusses common microfluidic technologies in wearable devices and the challenges associated with analyzing each type of biofluid. The paper emphasizes the importance of combining smart technologies with microfluidics in wearable devices, and how they can aid diagnosis and therapy. Finally, the paper covers recent applications, trends, and future developments in the context of intelligent microfluidic wearable devices.
Collapse
Affiliation(s)
- Sasikala Apoorva
- UKF Centre for Advanced Research and Skill Development(UCARS), UKF College of Engineering and Technology, Kollam, Kerala, India, 691 302
| | - Nam-Trung Nguyen
- Queensland Micro and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, 4111, Queensland, Australia.
| | - Kamalalayam Rajan Sreejith
- Queensland Micro and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, 4111, Queensland, Australia.
| |
Collapse
|
42
|
Chen Z, Wang W, Tian H, Yu W, Niu Y, Zheng X, Liu S, Wang L, Huang Y. Wearable intelligent sweat platform for SERS-AI diagnosis of gout. LAB ON A CHIP 2024; 24:1996-2004. [PMID: 38373026 DOI: 10.1039/d3lc01094e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
For the past few years, sweat analysis for health monitoring has attracted increasing attention benefiting from wearable technology. In related research, the sensitive detection of uric acid (UA) in sweat with complex composition based on surface-enhanced Raman spectroscopy (SERS) for the diagnosis of gout is still a significant challenge. Herein, we report a visualized and intelligent wearable sweat platform for SERS detection of UA in sweat. In this wearable platform, the spiral channel consisted of colorimetric paper with Ag nanowires (AgNWs) that could capture sweat for SERS measurement. With the help of photos from a smartphone, the pH value and volume of sweat could be quantified intelligently based on the image recognition technique. To diagnose gout, SERS spectra of human sweat with UA are collected in this wearable intelligent platform and analyzed by artificial intelligence (AI) algorithms. The results indicate that the artificial neural network (ANN) algorithm exhibits good identification of gout with high accuracy at 97%. Our work demonstrates that SERS-AI in a wearable intelligent sweat platform could be a feasible strategy for diagnosis of gout, which expands research on sweat analysis for comfortable and noninvasive health monitoring.
Collapse
Affiliation(s)
- Zhaoxian Chen
- Chongqing Key Laboratory of Chongqing Key Laboratory of Interface Physics in Energy Conversion, College of Physics, Chongqing University, Chongqing, 400044, China.
| | - Wei Wang
- Chongqing Key Laboratory of Chongqing Key Laboratory of Interface Physics in Energy Conversion, College of Physics, Chongqing University, Chongqing, 400044, China.
| | - Hao Tian
- Chongqing Key Laboratory of Chongqing Key Laboratory of Interface Physics in Energy Conversion, College of Physics, Chongqing University, Chongqing, 400044, China.
| | - Wenrou Yu
- Chongqing Key Laboratory of Chongqing Key Laboratory of Interface Physics in Energy Conversion, College of Physics, Chongqing University, Chongqing, 400044, China.
| | - Yu Niu
- Chongqing Key Laboratory of Chongqing Key Laboratory of Interface Physics in Energy Conversion, College of Physics, Chongqing University, Chongqing, 400044, China.
| | - Xueli Zheng
- Chongqing Key Laboratory of Chongqing Key Laboratory of Interface Physics in Energy Conversion, College of Physics, Chongqing University, Chongqing, 400044, China.
| | - Shihong Liu
- Chongqing University Cancer Hospital, Department of Palliative care, Department of Geriatric Oncology, Chongqing, China
| | - Li Wang
- Key Laboratory of Optoelectronic Technology and Systems (Ministry of Education), College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| | - Yingzhou Huang
- Chongqing Key Laboratory of Chongqing Key Laboratory of Interface Physics in Energy Conversion, College of Physics, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
43
|
Chen F, Wang J, Chen L, Lin H, Han D, Bao Y, Wang W, Niu L. A Wearable Electrochemical Biosensor Utilizing Functionalized Ti 3C 2T x MXene for the Real-Time Monitoring of Uric Acid Metabolite. Anal Chem 2024; 96:3914-3924. [PMID: 38387027 DOI: 10.1021/acs.analchem.3c05672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Wearable, noninvasive sensors enable the continuous monitoring of metabolites in sweat and provide clinical information related to an individual's health and disease states. Uric acid (UA) is a key indicator highly associated with gout, hyperuricaemia, hypertension, kidney disease, and Lesch-Nyhan syndrome. However, the detection of UA levels typically relies on invasive blood tests. Therefore, developing a wearable device for noninvasive monitoring of UA concentrations in sweat could facilitate real-time personalized disease prevention. Here, we introduce 1,3,6,8-pyrene tetrasulfonic acid sodium salt (PyTS) as a bifunctional molecule functionalized with Ti3C2Tx via π-π conjugation to design nonenzymatic wearable sensors for sensitive and selective detection of UA concentration in human sweat. PyTS@Ti3C2Tx provides many oxidation-reduction active groups to enhance the electrocatalytic ability of the UA oxidation reaction. The PyTS@Ti3C2Tx-based electrochemical sensor demonstrates highly sensitive detection of UA in the concentration range of 5 μM-100 μM, exhibiting a lower detection limit of 0.48 μM compared to the uricase-based sensor (0.84 μM). In volunteers, the PyTS@Ti3C2Tx-based wearable sensor is integrated with flexible microfluidic sweat sampling and wireless electronics to enable real-time monitoring of UA levels during aerobic exercise. Simultaneously, it allows for comparison of blood UA levels via a commercial UA analyzer. Herein, this study provides a promising electrocatalyst strategy for nonenzymatic electrochemical UA sensor, enabling noninvasive real-time monitoring of UA levels in human sweat and personalized disease prevention.
Collapse
Affiliation(s)
- Fan Chen
- Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials & Devices, Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, School of Civil Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Jinhao Wang
- Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials & Devices, Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, School of Civil Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Lijuan Chen
- Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials & Devices, Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, School of Civil Engineering, Guangzhou University, Guangzhou 510006, P. R. China
- School of Chemistry and Chemical Engineering, Anshun University, Anshun 561000, China
| | - Haoliang Lin
- Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials & Devices, Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, School of Civil Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Dongxue Han
- Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials & Devices, Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, School of Civil Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Yu Bao
- Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials & Devices, Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, School of Civil Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Wei Wang
- Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials & Devices, Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, School of Civil Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Li Niu
- Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials & Devices, Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, School of Civil Engineering, Guangzhou University, Guangzhou 510006, P. R. China
- School of Chemistry and Chemical Engineering, Anshun University, Anshun 561000, China
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| |
Collapse
|
44
|
Deng M, Li X, Song K, Yang H, Wei W, Duan X, Ouyang X, Cheng H, Wang X. Skin-Interfaced Bifluidic Paper-Based Device for Quantitative Sweat Analysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306023. [PMID: 38133495 PMCID: PMC10933605 DOI: 10.1002/advs.202306023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/24/2023] [Indexed: 12/23/2023]
Abstract
The erratic, intermittent, and unpredictable nature of sweat production, resulting from physiological or psychological fluctuations, poses intricacies to consistently and accurately sample and evaluate sweat biomarkers. Skin-interfaced microfluidic devices that rely on colorimetric mechanisms for semi-quantitative detection are particularly susceptible to these inaccuracies due to variations in sweat secretion rate or instantaneous volume. This work introduces a skin-interfaced colorimetric bifluidic sweat device with two synchronous channels to quantify sweat rate and biomarkers in real-time, even during uncertain sweat activities. In the proposed bifluidic-distance metric approach, with one channel to measure sweat rate and quantify collected sweat volume, the other channel can provide an accurate analysis of the biomarkers based on the collected sweat volume. The closed channel design also reduces evaporation and resists contamination from the external environment. The feasibility of the device is highlighted in a proof-of-the-concept demonstration to analyze sweat chloride for evaluating hydration status and sweat glucose for assessing glucose levels. The low-cost yet highly accurate device provides opportunities for clinical sweat analysis and disease screening in remote and low-resource settings. The developed device platform can be facilely adapted for the other biomarkers when corresponding colorimetric reagents are exploited.
Collapse
Affiliation(s)
- Muhan Deng
- School of Materials Science and EngineeringXiangtan UniversityXiangtanHunan411105China
| | - Xiaofeng Li
- School of Materials Science and EngineeringXiangtan UniversityXiangtanHunan411105China
| | - Kui Song
- Department of Engineering Science and MechanicsXiangtan UniversityXiangtanHunan411105China
| | - Hanlin Yang
- School of Materials Science and EngineeringXiangtan UniversityXiangtanHunan411105China
| | - Wenkui Wei
- School of Materials Science and EngineeringXiangtan UniversityXiangtanHunan411105China
| | - Xiaojun Duan
- Hunan Provincial Children's HospitalChangshaHunan410000China
| | - Xiaoping Ouyang
- School of Materials Science and EngineeringXiangtan UniversityXiangtanHunan411105China
| | - Huanyu Cheng
- Department of Engineering Science and MechanicsThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Xiufeng Wang
- School of Materials Science and EngineeringXiangtan UniversityXiangtanHunan411105China
| |
Collapse
|
45
|
Saha T, Mukherjee S, Dickey MD, Velev OD. Harvesting and manipulating sweat and interstitial fluid in microfluidic devices. LAB ON A CHIP 2024; 24:1244-1265. [PMID: 38197332 DOI: 10.1039/d3lc00874f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Microfluidic devices began to be used to facilitate sweat and interstitial fluid (ISF) sensing in the mid-2010s. Since then, numerous prototypes involving microfluidics have been developed in different form factors for sensing biomarkers found in these fluids under in vitro, ex vivo, and in vivo (on-body) settings. These devices transport and manipulate biofluids using microfluidic channels composed of silicone, polymer, paper, or fiber. Fluid flow transport and sample management can be achieved by controlling the flow rate, surface morphology of the channel, and rate of fluid evaporation. Although many devices have been developed for estimating sweat rate, electrolyte, and metabolite levels, only a handful have been able to proceed beyond laboratory testing and reach the stage of clinical trials and commercialization. To further this technology, this review reports on the utilization of microfluidics towards sweat and ISF management and transport. The review is distinguished from other recent reviews by focusing on microfluidic principles of sweat and ISF generation, transport, extraction, and management. Challenges and prospects are highlighted, with a discussion on how to transition such prototypes towards personalized healthcare monitoring systems.
Collapse
Affiliation(s)
- Tamoghna Saha
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| | - Sneha Mukherjee
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| | - Michael D Dickey
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| | - Orlin D Velev
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
46
|
Jiang L, Wang X, Zhou J, Fu Q, Lv B, Sun Y, Song L, Huang Y. Plasmonic Multi-Layered Built-in Hotspots Nanogaps for Effectively Activating Analytes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306125. [PMID: 38044318 PMCID: PMC10870027 DOI: 10.1002/advs.202306125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/20/2023] [Indexed: 12/05/2023]
Abstract
Multi-layered plasmonic nanostructures are able to highly promote the near-field confinement and effectively activate analytes, which are of predominate significance but are extremely challenging. Herein, the semi-open Au core@carved AuAg multi-shell superstructure nanoparticles (multi-Au@Ag-Au NPs, multi = mono, bi, tri, tetra, and penta) are reported with a high designability on electromagnetic field and capability of effectively capturing analytes. By controlling synthetic parameters such as the number of galvanic exchange and Ag growth, multi-Au@Ag-Au NPs are successfully obtained, with tunable layer numbers and asymmetric nanoholes. Due to collective plasmon oscillations of multi-layered built-in nanogaps, the electromagnetic field strength of a single penta-Au@Ag-Au entity reach 48841. More importantly, the penta-Au@Ag-Au NPs show a remarkable light-harvesting capability, which is adaptive to different Raman lasers, supporting high-diversity detection. Additionally, the structural specificity allows analytes to be sufficiently captured into interior hotspots, and further achieve highly sensitive detection with limit of detection down to 3.22 × 10-12 M. This study not only provides an effective pathway for integrating abundant hotspots and activating target molecules in single plasmonic superstructure, but stimulates advancements in SERS substrates for various applications.
Collapse
Affiliation(s)
- Lei Jiang
- College of MaterialChemistry and Chemical EngineeringKey Laboratory of Organosilicon Chemistry and Material TechnologyMinistry of EducationHangzhou Normal UniversityHangzhouZhejiang311121China
| | - Xiaoyuan Wang
- College of MaterialChemistry and Chemical EngineeringKey Laboratory of Organosilicon Chemistry and Material TechnologyMinistry of EducationHangzhou Normal UniversityHangzhouZhejiang311121China
| | - Jingyi Zhou
- College of MaterialChemistry and Chemical EngineeringKey Laboratory of Organosilicon Chemistry and Material TechnologyMinistry of EducationHangzhou Normal UniversityHangzhouZhejiang311121China
| | - Qianqian Fu
- College of MaterialChemistry and Chemical EngineeringKey Laboratory of Organosilicon Chemistry and Material TechnologyMinistry of EducationHangzhou Normal UniversityHangzhouZhejiang311121China
| | - Bihu Lv
- Department of Scientific Facilities Development and ManagementZhejiang LaboratoryHangzhou311100China
| | - Yixuan Sun
- Department of Scientific Facilities Development and ManagementZhejiang LaboratoryHangzhou311100China
| | - Liping Song
- College of MaterialChemistry and Chemical EngineeringKey Laboratory of Organosilicon Chemistry and Material TechnologyMinistry of EducationHangzhou Normal UniversityHangzhouZhejiang311121China
| | - Youju Huang
- College of MaterialChemistry and Chemical EngineeringKey Laboratory of Organosilicon Chemistry and Material TechnologyMinistry of EducationHangzhou Normal UniversityHangzhouZhejiang311121China
- Laboratory for Functional Molecules MaterialsWestlake UniversityHangzhouZhejiang310030China
| |
Collapse
|
47
|
Sun Y, Wang J, Lu Q, Fang T, Wang S, Yang C, Lin Y, Wang Q, Lu YQ, Kong D. Stretchable and Smart Wettable Sensing Patch with Guided Liquid Flow for Multiplexed in Situ Perspiration Analysis. ACS NANO 2024; 18:2335-2345. [PMID: 38189251 DOI: 10.1021/acsnano.3c10324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Stretchable sweat sensors have become a personalized wearable platform for continuous, noninvasive health monitoring through conformal integration with the human body. Typically, these devices are coupled with soft microfluidic systems to control sweat flow during advanced analysis processes. However, the implementation of these soft microfluidic devices is limited by their high fabrication costs and the need for skin adhesives to block natural perspiration. To overcome these limitations, a stretchable and smart wettable patch has been proposed for multiplexed in situ perspiration analysis. The patch includes a porous membrane in the form of a patterned microfoam and a nanofiber layer laminate, which extracts sweat selectively from the skin and directs its continuous flow across the device. The integrated electrochemical sensor array measures multiple biomarkers simultaneously such as pH, K+, and Na+. The soft sensing patch comprises compliant materials and structures that allow deformability of up to 50% strain, which enables a stable and seamless interface with the curvilinear human body. During continuous physical exercise, the device has demonstrated a special operating mode by actively accumulating sweat from the skin for multiplex electrochemical analysis of biomarker profiles. The smart wettable membrane provides an affordable solution to address the sampling challenges of in situ perspiration analysis.
Collapse
Affiliation(s)
- Yuping Sun
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Jianhui Wang
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Qianying Lu
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Ting Fang
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Shaolei Wang
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Cheng Yang
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Yong Lin
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Qian Wang
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Yan-Qing Lu
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- Key Laboratory of Intelligent Optical Sensing and Manipulation, Nanjing University, Nanjing 210093, China
| | - Desheng Kong
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| |
Collapse
|
48
|
Zhao X, Ding Z, Chen H, Xiao Y, Hou J, Huang L, Wu J, Hao N. Acoustofluidics-Assisted Multifunctional Paper-Based Analytical Devices. Anal Chem 2024; 96:496-504. [PMID: 38153375 DOI: 10.1021/acs.analchem.3c04603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Microfluidic paper-based analytical devices (μPADs) feature an economic and sensitive nature, while acoustofluidics displays contactless and versatile virtue, and both of them gained tremendous interest in the past decades. Integrating μPADs with acoustofluidic techniques provides great potential to overcome the inherent shortcomings and make appealing achievements. Here, we present acoustofluidics-assisted multifunctional paper-based analytical devices that leverage bulk acoustic waves to realize multiple applications on paper substrates, including uniform colorimetric detection, microparticle/cell enrichment, fluorescence amplification, homogeneous mixing, and nanomaterial synthesis. The glucose detection in the range of 5-15 mM was conducted to perform uniform colorimetric detection. Various types (brass powder, copper powder, diamond powder, and yeast cells) and sizes (5-200 μm) of solid particles and biological cells can be enriched on paper in a few seconds or minutes; thus, fluorescence amplification by 3 times was realized with the enrichment. The high-throughput and homogeneous mixing of two fluids can be achieved, and based on the mixing, nanomaterials (ZnO nanosheets) were synthesized on paper. We analyzed the underlying mechanisms of these applications in the devices, which are attributed to Faraday waves and Chladni patterns. With their simple fabrication and prominent effectiveness, the devices open up new possibilities for paper-based microfluidic devices.
Collapse
Affiliation(s)
- Xiong Zhao
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, Shaanxi 710049, P.R. China
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai 200050, P.R. China
| | - Zihan Ding
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, Shaanxi 710049, P.R. China
| | - Hongqiang Chen
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, Shaanxi 710049, P.R. China
| | - Yaxuan Xiao
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, Shaanxi 710049, P.R. China
- Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, Shaanxi 710049, P.R. China
| | - Junsheng Hou
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, Shaanxi 710049, P.R. China
| | - Lei Huang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, Shaanxi 710049, P.R. China
| | - Junjie Wu
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, Shaanxi 710049, P.R. China
| | - Nanjing Hao
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, Shaanxi 710049, P.R. China
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai 200050, P.R. China
| |
Collapse
|
49
|
Pour SRS, Calabria D, Emamiamin A, Lazzarini E, Pace A, Guardigli M, Zangheri M, Mirasoli M. Microfluidic-Based Non-Invasive Wearable Biosensors for Real-Time Monitoring of Sweat Biomarkers. BIOSENSORS 2024; 14:29. [PMID: 38248406 PMCID: PMC10813635 DOI: 10.3390/bios14010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/19/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024]
Abstract
Wearable biosensors are attracting great interest thanks to their high potential for providing clinical-diagnostic information in real time, exploiting non-invasive sampling of biofluids. In this context, sweat has been demonstrated to contain physiologically relevant biomarkers, even if it has not been exhaustively exploited till now. This biofluid has started to gain attention thanks to the applications offered by wearable biosensors, as it is easily collectable and can be used for continuous monitoring of some parameters. Several studies have reported electrochemical and optical biosensing strategies integrated with flexible, biocompatible, and innovative materials as platforms for biospecific recognition reactions. Furthermore, sampling systems as well as the transport of fluids by microfluidics have been implemented into portable and compact biosensors to improve the wearability of the overall analytical device. In this review, we report and discuss recent pioneering works about the development of sweat sensing technologies, focusing on opportunities and open issues that can be decisive for their applications in routine-personalized healthcare practices.
Collapse
Affiliation(s)
- Seyedeh Rojin Shariati Pour
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum, University of Bologna, Tecnopolo di Rimini, Via Dario Campana 71, I-47922 Rimini, Italy; (S.R.S.P.); (A.E.)
| | - Donato Calabria
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum, University of Bologna, Via Francesco Selmi 2, I-40126 Bologna, Italy; (D.C.); (E.L.); (A.P.); (M.G.)
- Interdepartmental Centre for Industrial Aerospace Research (CIRI AEROSPACE), Alma Mater Studiorum, University of Bologna, Via Baldassarre Canaccini 12, I-47121 Forlì, Italy
| | - Afsaneh Emamiamin
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum, University of Bologna, Tecnopolo di Rimini, Via Dario Campana 71, I-47922 Rimini, Italy; (S.R.S.P.); (A.E.)
| | - Elisa Lazzarini
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum, University of Bologna, Via Francesco Selmi 2, I-40126 Bologna, Italy; (D.C.); (E.L.); (A.P.); (M.G.)
| | - Andrea Pace
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum, University of Bologna, Via Francesco Selmi 2, I-40126 Bologna, Italy; (D.C.); (E.L.); (A.P.); (M.G.)
| | - Massimo Guardigli
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum, University of Bologna, Via Francesco Selmi 2, I-40126 Bologna, Italy; (D.C.); (E.L.); (A.P.); (M.G.)
- Interdepartmental Centre for Industrial Aerospace Research (CIRI AEROSPACE), Alma Mater Studiorum, University of Bologna, Via Baldassarre Canaccini 12, I-47121 Forlì, Italy
- Interdepartmental Centre for Industrial Research in Renewable Resources, Environment, Sea, and Energy (CIRI FRAME), Alma Mater Studiorum, University of Bologna, Via Sant’Alberto 163, I-48123 Ravenna, Italy
| | - Martina Zangheri
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum, University of Bologna, Tecnopolo di Rimini, Via Dario Campana 71, I-47922 Rimini, Italy; (S.R.S.P.); (A.E.)
- Interdepartmental Centre for Industrial Agrofood Research (CIRI AGRO), Alma Mater Studiorum—University of Bologna, Via Quinto Bucci 336, I-47521 Cesena, Italy
- Interdepartmental Centre for Industrial Research in Advanced Mechanical Engineering Applications and Materials Technology (CIRI MAM), Alma Mater Studiorum, University of Bologna, Viale Risorgimento 2, I-40136 Bologna, Italy
| | - Mara Mirasoli
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum, University of Bologna, Tecnopolo di Rimini, Via Dario Campana 71, I-47922 Rimini, Italy; (S.R.S.P.); (A.E.)
- Interdepartmental Centre for Industrial Aerospace Research (CIRI AEROSPACE), Alma Mater Studiorum, University of Bologna, Via Baldassarre Canaccini 12, I-47121 Forlì, Italy
- Interdepartmental Centre for Industrial Research in Renewable Resources, Environment, Sea, and Energy (CIRI FRAME), Alma Mater Studiorum, University of Bologna, Via Sant’Alberto 163, I-48123 Ravenna, Italy
| |
Collapse
|
50
|
Xiao J, Chen Y, Xu T, Zhang X. Hand-held Raman spectrometer-based flexible plasmonic biosensor for label-free multiplex urinalysis. Talanta 2024; 266:124966. [PMID: 37499361 DOI: 10.1016/j.talanta.2023.124966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/04/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023]
Abstract
Urinalysis is an effective strategy to non-invasively evaluate human health, and surface-enhanced Raman scattering (SERS) may be a powerful technique for use in detecting analytes in urine. Herein, we report a wearable diaper sensor based on a handheld Raman spectrometer for use in the simple, label-free identification of biomolecules (urea, creatinine, and bilirubin) in urine. The raspberry-shaped Au substrate formed on the surface of an Si wafer provides plasmonic enhancement of the SERS signals, with an excellent uniformity and stability. The SERS sensor combines the advantages of flexibility, portability, and multifunctional detection and may be used in identifying multiple analytes in urine. The sensor exhibits high sensitivities in detecting urea, creatinine, and bilirubin, with respective detection limits of 4.17 × 10-3 M, 5.90 × 10-6 M, and 1.38 × 10-7 M (signal-to-noise ratio = 3). Furthermore, we used the wearable diaper sensor to monitor biomolecules at the diagnostic threshold, facilitating non-invasive diagnosis and medical monitoring of disease-related biomarkers.
Collapse
Affiliation(s)
- Jingyu Xiao
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Yanxia Chen
- Beijing Key Laboratory for Sensor, Beijing Information Science and Technology University, Beijing, 100101, China
| | - Tailin Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China.
| | - Xueji Zhang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|