1
|
Qaqorh T, Takahashi Y, Sameshima K, Otani K, Yazawa I, Nishida Y, Tonai K, Fujihara Y, Honda M, Oki S, Ohkawa Y, Thorburn DR, Frazier AE, Takeda A, Ikeda Y, Sakaguchi H, Watanabe T, Fukushima N, Tsukamoto Y, Makita N, Yamaguchi O, Murayama K, Ohtake A, Okazaki Y, Kimura T, Kato H, Inoue H, Matsuoka K, Takashima S, Shintani Y. Atf3 controls transitioning in female mitochondrial cardiomyopathy as identified by spatial and single-cell transcriptomics. SCIENCE ADVANCES 2025; 11:eadq1575. [PMID: 40184463 PMCID: PMC11970478 DOI: 10.1126/sciadv.adq1575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 02/28/2025] [Indexed: 04/06/2025]
Abstract
Oxidative phosphorylation defects result in now intractable mitochondrial diseases (MD) with cardiac involvement markedly affecting prognosis. The mechanisms underlying the transition from compensation to dysfunction in response to metabolic deficiency remain unclear. Here, we used spatially resolved transcriptomics and single-nucleus RNA sequencing (snRNA-seq) on the heart of a patient with mitochondrial cardiomyopathy (MCM), combined with an MCM mouse model with cardiac-specific Ndufs6 knockdown (FS6KD). Cardiomyocytes demonstrated the most heterogeneous expression landscape among cell types caused by metabolic perturbation, and pseudotime trajectory analysis revealed dynamic cellular states transitioning from compensation to severe compromise. This progression coincided with the transient up-regulation of a transcription factor, ATF3. Genetic ablation of Atf3 in FS6KD corroborated its pivotal role, effectively delaying cardiomyopathy progression in a female-specific manner. Our findings highlight a fate-determining role of ATF3 in female MCM progression and that the latest transcriptomic analysis will help decipher the mechanisms underlying MD progression.
Collapse
Affiliation(s)
- Tasneem Qaqorh
- Department of Molecular Pharmacology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
- Department of Medical Biochemistry, Osaka University Graduate School of Frontier Biosciences, Suita, Osaka, Japan
| | - Yusuke Takahashi
- Department of Molecular Pharmacology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Kohei Sameshima
- Department of Molecular Pharmacology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Kentaro Otani
- Department of Molecular Pharmacology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Issei Yazawa
- Department of Molecular Pharmacology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Yuya Nishida
- Department of Molecular Pharmacology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Kohei Tonai
- Department of Molecular Pharmacology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Yoshitaka Fujihara
- Department of Advanced Medical Technologies, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Mizuki Honda
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shinya Oki
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yasuyuki Ohkawa
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - David R. Thorburn
- Murdoch Children’s Research Institute, Royal Children’s Hospital, and University of Melbourne, Department of Paediatrics, Parkville, Victoria, Australia
- Victorian Clinical Genetics Services, Royal Children’s Hospital, Parkville, Victoria, Australia
| | - Ann E. Frazier
- Murdoch Children’s Research Institute, Royal Children’s Hospital, and University of Melbourne, Department of Paediatrics, Parkville, Victoria, Australia
| | - Atsuhito Takeda
- Department of Pediatrics, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Yoshihiko Ikeda
- Department of Pathology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Heima Sakaguchi
- Department of Pediatric Cardiology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Takuya Watanabe
- Department of Transplant Medicine, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Norihide Fukushima
- Department of Transplant Medicine, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
- Senri Kinran University, Suita, Osaka, Japan
| | - Yasumasa Tsukamoto
- Department of Transplant Medicine, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Naomasa Makita
- Omics Research Center, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
- Department of Cardiology, Sapporo Teishinkai Hospital, Sapporo, Japan
| | - Osamu Yamaguchi
- Omics Research Center, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Kei Murayama
- Department of Metabolism, Chiba Children’s Hospital, Chiba, Japan
- Diagnostics and Therapeutic of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Akira Ohtake
- Department of Pediatrics and Clinical Genomics, Saitama Medical University, Moroyama, Saitama, Japan
| | - Yasushi Okazaki
- Diagnostics and Therapeutic of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Takanari Kimura
- Department of Medical Biochemistry, Osaka University Graduate School of Frontier Biosciences, Suita, Osaka, Japan
| | - Hisakazu Kato
- Department of Medical Biochemistry, Osaka University Graduate School of Frontier Biosciences, Suita, Osaka, Japan
| | - Hijiri Inoue
- Department of Medical Biochemistry, Osaka University Graduate School of Frontier Biosciences, Suita, Osaka, Japan
| | - Ken Matsuoka
- Department of Medical Biochemistry, Osaka University Graduate School of Frontier Biosciences, Suita, Osaka, Japan
| | - Seiji Takashima
- Department of Medical Biochemistry, Osaka University Graduate School of Frontier Biosciences, Suita, Osaka, Japan
| | - Yasunori Shintani
- Department of Molecular Pharmacology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| |
Collapse
|
2
|
Ubaida‐Mohien C, Moaddel R, Spendiff S, MacMillan NJ, Filion M, Morais JA, Candia J, Fitzgerald LF, Taivassalo T, Coen PM, Ferrucci L, Hepple RT. Serum Proteomic and Metabolomic Signatures of High Versus Low Physical Function in Octogenarians. Aging Cell 2025; 24:e70002. [PMID: 40059508 PMCID: PMC12073904 DOI: 10.1111/acel.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/12/2024] [Accepted: 01/10/2025] [Indexed: 05/15/2025] Open
Abstract
Physical function declines with aging, yet there is considerable heterogeneity, with some individuals declining very slowly while others experience accelerated functional decline. To gain insight into mechanisms promoting high physical function with aging, we performed proteomics, targeted metabolomics, and targeted kynurenine-focused metabolomic analyses on serum specimens from three groups of octogenarians: High-functioning master athletes (HF, n = 16), healthy normal-functioning non-athletes (NF, n = 12), and lower functioning non-athletes (LF, n = 11). Higher performance status was associated with evidence consistent with: Lower levels of circulating proinflammatory markers, as well as unperturbed tryptophan metabolism, with the normal function of the kynurenic pathway; higher circulating levels of lysophosphatidylcholines that have been previously associated with better mitochondrial oxidative capacity; lower activity of the integrated stress response; lower levels of circulating SASP protein members; and lower levels of proteins that reflect neurodegeneration/denervation. Extending the observations of previous studies focused on the biomarkers of aging that predict poor function, our findings show that many of the same biomarkers associated with poor function exhibit attenuated changes in those who maintain a high function. Because of the cross-sectional nature of this study, results should be interpreted with caution, and bidirectional causality, where physical activity behavior is both a cause and outcome of differences in the biomarker changes, remains a possible interpretation.
Collapse
Affiliation(s)
- Ceereena Ubaida‐Mohien
- Intramural Research Program, National Institute on AgingNational Institutes of HealthBaltimoreMarylandUSA
| | - Ruin Moaddel
- Intramural Research Program, National Institute on AgingNational Institutes of HealthBaltimoreMarylandUSA
| | - Sally Spendiff
- Children's Hospital of Eastern Ontario Research InstituteOttawaCanada
| | - Norah J. MacMillan
- Research Institute of the McGill University Health CentreMcGill UniversityMontrealCanada
| | - Marie‐Eve Filion
- Research Institute of the McGill University Health CentreMcGill UniversityMontrealCanada
| | - Jose A. Morais
- Research Institute of the McGill University Health CentreMcGill UniversityMontrealCanada
| | - Julián Candia
- Intramural Research Program, National Institute on AgingNational Institutes of HealthBaltimoreMarylandUSA
| | - Liam F. Fitzgerald
- Department of Physical TherapyUniversity of FloridaGainesvilleFloridaUSA
| | - Tanja Taivassalo
- Department of Physiology and AgingUniversity of FloridaGainesvilleFloridaUSA
| | - Paul M. Coen
- Translational Research InstituteAdvent HealthOrlandoFloridaUSA
| | - Luigi Ferrucci
- Intramural Research Program, National Institute on AgingNational Institutes of HealthBaltimoreMarylandUSA
| | - Russell T. Hepple
- Department of Physical TherapyUniversity of FloridaGainesvilleFloridaUSA
- Department of Physiology and AgingUniversity of FloridaGainesvilleFloridaUSA
| |
Collapse
|
3
|
Li X, Rao Z, Hu W, Lu W, Luo Y. Treating metabolic dysfunction-associated steatohepatitis: The fat-trimming FGF21 approach. Obes Rev 2025; 26:e13861. [PMID: 39546893 DOI: 10.1111/obr.13861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/10/2024] [Accepted: 10/25/2024] [Indexed: 11/17/2024]
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) is a condition characterized by hepatosteatosis, inflammation, and tissue damage, with steatosis as the initial stage, which involves chronic, excess deposition of lipids in hepatic lipid droplets. Despite the growing prevalence and serious risks it poses, including liver decompensation, the need for transplantation, and increased patient mortality, MASH currently faces no approved pharmacotherapy. Several promising treatment candidates have emerged from recent clinical trials, including analogs of FGF21 and agonists of the associated FGFR1-KLB complex. These agents were well-tolerated in trials and have demonstrated significant improvements in both histological and biochemical markers of liver fat content, inflammation, injury, and fibrosis in patients with MASH. Endocrine FGF21 plays a vital role in maintaining homeostasis of lipid, glucose, and energy metabolism. It achieves this through pathways that target lipids or lipid droplets in adipocytes and hepatocytes. Mechanistically, pharmacological FGF21 acts as a potent catabolic factor to promote lipid or lipid droplet lipolysis, fatty acid oxidation, mitochondrial catabolic flux, and heat-dissipating energy expenditure, leading to effective clearance of hepatic and systemic gluco-lipotoxicity and inflammatory stress, thereby preventing obesity, diabetes, and MASH pathologies. In this review, we aim to provide an update on the outcomes of clinical trials for several FGF21 mimetics. We compare these outcomes with preclinical studies and offer a lipid-centric perspective on the mechanisms underlying the clinical benefits of these agents for MASH.
Collapse
Affiliation(s)
- Xiaokun Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, & Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), Wenzhou, Zhejiang, China
| | - Zhiheng Rao
- School of Pharmaceutical Sciences, Wenzhou Medical University, & Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), Wenzhou, Zhejiang, China
| | - Wenhao Hu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Weiqin Lu
- Division of Gastroenterology and Hepatology, Department of Medicine, Stony Brook University School of Medicine, Stony Brook, NY, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas at El Paso, El Paso, Texas, USA
| | - Yongde Luo
- School of Pharmaceutical Sciences, Wenzhou Medical University, & Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), Wenzhou, Zhejiang, China
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
4
|
Tang S, Borlak J. A comparative genomic study across 396 liver biopsies provides deep insight into FGF21 mode of action as a therapeutic agent in metabolic dysfunction-associated steatotic liver disease. Clin Transl Med 2025; 15:e70218. [PMID: 39962359 PMCID: PMC11832436 DOI: 10.1002/ctm2.70218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 01/15/2025] [Accepted: 01/24/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) is a systemic disease with insulin resistance at its core. It affects one-third of the world population. Fibroblast growth factor (FGF21)-based therapies are effective in lowering hepatic fat content and fibrosis resolution; yet, its molecular functions remain uncertain. To gain insight into FGF21 mode of action (MoA), we investigated the transcriptomes of MASLD liver biopsies in relation to FGF21 expression. METHODS We compared N = 66 healthy controls with 396 MASLD patients and considered clinical characteristics relative to NAS disease activity scores (steatosis, lobular inflammation and ballooning), fibrosis grades and sex. We performed comparative genomics to identify FGF21-responsive DEGs, utilised information from FGF21-transgenic and FGF21-knockout mice and evaluated DEGs following FGF21 treatment of MASLD animal models. Eventually, we explored 188 validated FGF21 targets, and for ≥10 patients showing the same changes, we constructed MASLD-associated networks to determine the effects of FGF21 in reverting metabolic dysfunction. RESULTS We identified patients with increased 30% (N = 117), decreased 40% (N = 159) or unchanged 30% (N = 120) FGF21 expression, and the differences are caused by changes in FGF21 transcriptional control with ATF4 functioning as a key regulator. Based on comparative genomics, we discovered molecular circuitries of FGF21 in MASLD, notably FGF21-dependent induction of autophagy and oxidative phosphorylation/mitochondrial respiration. Conversely, FGF21 repressed hepatic glycogen-storage, its glucose release and gluconeogenesis, and therefore reduced glucose flux in conditions of insulin resistance. Furthermore, FGF21 repressed lipid transporters, and acetyl-CoA carboxylase-β to attenuate hepatic lipid overload and lipogenesis. Strikingly, FGF21 dampened immune response by repressing complement factors, MARCO, CD163, MRC1/CD206, CD4, CD45 and pro-inflammatory cytokine receptors. It also reverted procoagulant imbalance in MASLD, stimulated extracellular matrix degradation, repressed TGFβ- and integrin-signalling and lessened liver sinusoidal endothelial cell defenestration in support of fibrosis resolution. CONCLUSIONS We gained deep insight into FGF21-MoA in MASLD. However, heterogeneity in FGF21 expression calls for molecular stratifications as to identify patients which likely benefit from FGF21-based therapies. KEY POINTS Performed comprehensive genomics across liver biopsies of 396 MASLD patients and identified patients with increased, decreased and unchanged FGF21 expression. Used genomic data from FGF21 transgenic, knock-out and animal MASLD models treated with synthetic FGF21 analogues to identify FGF21-mode-of-action and metabolic networks in human MASLD. Given the significant heterogeneity in FGF21 expression, not all patients will benefit from FGF21-based therapies.
Collapse
Affiliation(s)
- Shifang Tang
- Centre for Pharmacology and ToxicologyHannover Medical SchoolHannoverGermany
| | - Jürgen Borlak
- Centre for Pharmacology and ToxicologyHannover Medical SchoolHannoverGermany
| |
Collapse
|
5
|
Carloni S, Nasoni MG, Casabianca A, Orlandi C, Capobianco L, Iaconisi GN, Cerioni L, Burattini S, Benedetti S, Reiter RJ, Balduini W, Luchetti F. Melatonin Reduces Mito-Inflammation in Ischaemic Hippocampal HT22 Cells and Modulates the cGAS-STING Cytosolic DNA Sensing Pathway and FGF21 Release. J Cell Mol Med 2024; 28:e70285. [PMID: 39707673 DOI: 10.1111/jcmm.70285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/20/2024] [Accepted: 11/27/2024] [Indexed: 12/23/2024] Open
Abstract
Mitochondrial dysfunction is a key event in many pathological conditions, including neurodegenerative processes. When mitochondria are damaged, they release damage-associated molecular patterns (DAMPs) that activate mito-inflammation. The present study assessed mito-inflammation after in vitro oxygen-glucose deprivation as a representation of ischaemia, followed by reoxygenation (OGD/R) of HT22 cells and modulation of the inflammatory response by melatonin. We observed that melatonin prevented mitochondrial structural damage and dysfunction caused by OGD/R. Melatonin reduced oxidative damage and preserved the enzymatic activity for complexes I, III and IV, encoded by mitochondrial DNA, which were reduced by OGD/R. No effect was observed on complex II activity encoded by nuclear DNA. The release of mtDNA into the cytosol was also prevented with a consequent reduction of the cGAS-STING pathway and IFNβ and IL-6 production. Interestingly, melatonin also increased the early release of the fibroblast growth factor-21 (FGF-21), a mitokine secreted in response to mitochondrial stress. These data indicate that melatonin reduces mito-inflammation and modulates FGF-21 release, further highlighting the key role of this molecule in preserving mitochondrial integrity in OGD/R deprivation-type ischaemic brain injury.
Collapse
Affiliation(s)
- Silvia Carloni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Maria Gemma Nasoni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Anna Casabianca
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
- Laboratorio Covid, University of Urbino Carlo Bo, Fano, Italy
| | - Chiara Orlandi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
- Laboratorio Covid, University of Urbino Carlo Bo, Fano, Italy
| | - Loredana Capobianco
- Department of Biological Science and Technology, University of Salento, Lecce, Italy
| | | | - Liana Cerioni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Sabrina Burattini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Serena Benedetti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, Long School of Medicine, UT Health, San Antonio, Texas, USA
| | - Walter Balduini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Francesca Luchetti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| |
Collapse
|
6
|
Yang X, Chen H, Shen W, Chen Y, Lin Z, Zhuo J, Wang S, Yang M, Li H, He C, Zhang X, Hu Z, Lian Z, Yang M, Wang R, Li C, Pan B, Xu L, Chen J, Wei X, Wei Q, Xie H, Zheng S, Lu D, Xu X. FGF21 modulates immunometabolic homeostasis via the ALOX15/15-HETE axis in early liver graft injury. Nat Commun 2024; 15:8578. [PMID: 39362839 PMCID: PMC11449914 DOI: 10.1038/s41467-024-52379-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 09/02/2024] [Indexed: 10/05/2024] Open
Abstract
Fibroblast growth factor 21 (FGF21) is essential for modulating hepatic homeostasis, but the impact of FGF21 on liver graft injury remains uncertain. Here, we show that high FGF21 levels in liver graft and serum are associated with improved graft function and survival in liver transplantation (LT) recipients. FGF21 deficiency aggravates early graft injury and activates arachidonic acid metabolism and regional inflammation in male mouse models of hepatic ischemia/reperfusion (I/R) injury and orthotopic LT. Mechanistically, FGF21 deficiency results in abnormal activation of the arachidonate 15-lipoxygenase (ALOX15)/15-hydroxy eicosatetraenoic acid (15-HETE) pathway, which triggers a cascade of innate immunity-dominated pro-inflammatory responses in grafts. Notably, the modulating role of FGF21/ALOX15/15-HETE pathway is more significant in steatotic livers. In contrast, pharmacological administration of recombinant FGF21 effectively protects against hepatic I/R injury. Overall, our study reveals the regulatory mechanism of FGF21 and offers insights into its potential clinical application in early liver graft injury after LT.
Collapse
Affiliation(s)
- Xinyu Yang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou First People's Hospital, Hangzhou, China
- Zhejiang University School of Medicine, Hangzhou, China
| | - Hao Chen
- Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Shen
- Zhejiang University School of Medicine, Hangzhou, China
| | - Yuanming Chen
- Zhejiang University School of Medicine, Hangzhou, China
| | - Zuyuan Lin
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou First People's Hospital, Hangzhou, China
- Zhejiang University School of Medicine, Hangzhou, China
| | - Jianyong Zhuo
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou First People's Hospital, Hangzhou, China
| | - Shuai Wang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou First People's Hospital, Hangzhou, China
| | - Modan Yang
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huigang Li
- Zhejiang University School of Medicine, Hangzhou, China
| | - Chiyu He
- Zhejiang University School of Medicine, Hangzhou, China
| | - Xuanyu Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhihang Hu
- Zhejiang University School of Medicine, Hangzhou, China
| | - Zhengxing Lian
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou First People's Hospital, Hangzhou, China
| | - Mengfan Yang
- Department of Organ Transplantation, Qilu Hospital of Shandong University, Jinan, China
| | - Rui Wang
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Changbiao Li
- Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| | - Binhua Pan
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou First People's Hospital, Hangzhou, China
| | - Li Xu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Chen
- Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| | - Xuyong Wei
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou First People's Hospital, Hangzhou, China
| | - Qiang Wei
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou, China
| | - Haiyang Xie
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
| | - Shusen Zheng
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital, Hangzhou, China
| | - Di Lu
- Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China.
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.
| | - Xiao Xu
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou, China.
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
7
|
Vela-Sebastián A, Bayona-Bafaluy P, Pacheu-Grau D. ISR pathway contribution to tissue specificity of mitochondrial diseases. Trends Endocrinol Metab 2024; 35:851-853. [PMID: 38806299 DOI: 10.1016/j.tem.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/30/2024]
Abstract
Mitochondrial genetic defects caused by whole-body mutations typically affect different tissues in different ways. Elucidating the molecular determinants that cause certain cell types to be primarily affected has become a critical research target within the field. We propose a differential activation of the integrated stress response as a potential contributor to this tissue specificity.
Collapse
Affiliation(s)
- Ana Vela-Sebastián
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza 50009 and 50013, Spain; Instituto de Investigación Sanitaria (IIS) de Aragón, Zaragoza 50009, Spain
| | - Pilar Bayona-Bafaluy
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza 50009 and 50013, Spain; Instituto de Investigación Sanitaria (IIS) de Aragón, Zaragoza 50009, Spain; Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid 28029, Spain; Institute for Biocomputation and Physics of Complex Systems (BIFI), Universidad de Zaragoza, Zaragoza 50018, Spain
| | - David Pacheu-Grau
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza 50009 and 50013, Spain; Instituto de Investigación Sanitaria (IIS) de Aragón, Zaragoza 50009, Spain; Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid 28029, Spain.
| |
Collapse
|
8
|
Varghese A, Gusarov I, Gamallo-Lana B, Dolgonos D, Mankan Y, Shamovsky I, Phan M, Jones R, Gomez-Jenkins M, White E, Wang R, Jones D, Papagiannakopoulos T, Pacold ME, Mar AC, Littman DR, Nudler E. Unraveling cysteine deficiency-associated rapid weight loss. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.30.605703. [PMID: 39131293 PMCID: PMC11312522 DOI: 10.1101/2024.07.30.605703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Forty percent of the US population and 1 in 6 individuals worldwide are obese, and the incidence of this disease is surging globally1,2. Various dietary interventions, including carbohydrate and fat restriction, and more recently amino acid restriction, have been explored to combat this epidemic3-6. We sought to investigate the impact of removing individual amino acids on the weight profiles of mice. Compared to essential amino acid restriction, induction of conditional cysteine restriction resulted in the most dramatic weight loss, amounting to 20% within 3 days and 30% within one week, which was readily reversed. This weight loss occurred despite the presence of substantial cysteine reserves stored in glutathione (GSH) across various tissues7. Further analysis demonstrated that the weight reduction primarily stemmed from an increase in the utilization of fat mass, while locomotion, circadian rhythm and histological appearance of multiple other tissues remained largely unaffected. Cysteine deficiency activated the integrated stress response (ISR) and NRF2-mediated oxidative stress response (OSR), which amplify each other, leading to the induction of GDF15 and FGF21, hormones associated with increased lipolysis, energy homeostasis and food aversion8-10. We additionally observed rapid tissue coenzyme A (CoA) depletion, resulting in energetically inefficient anaerobic glycolysis and TCA cycle, with sustained urinary excretion of pyruvate, orotate, citrate, α-ketoglutarate, nitrogen rich compounds and amino acids. In summary, our investigation highlights that cysteine restriction, by depleting GSH and CoA, exerts a maximal impact on weight loss, metabolism, and stress signaling compared to other amino acid restrictions. These findings may pave the way for innovative strategies for addressing a range of metabolic diseases and the growing obesity crisis.
Collapse
Affiliation(s)
- Alan Varghese
- Department of Cell Biology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Ivan Gusarov
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Begoña Gamallo-Lana
- Department of Neuroscience and Physiology, Neuroscience Institute, NYU School of Medicine, New York, NY 10016, USA
| | - Daria Dolgonos
- Department of Cell Biology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Yatin Mankan
- Department of Cell Biology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Ilya Shamovsky
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Mydia Phan
- Department of Cell Biology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Rebecca Jones
- Division of Advanced Research Technologies, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Maria Gomez-Jenkins
- Rutgers Cancer Institute, Rutgers University, New Brunswick, NJ 08901, USA and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Eileen White
- Rutgers Cancer Institute, Rutgers University, New Brunswick, NJ 08901, USA and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA
- Ludwig Princeton Branch, Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ 08544, USA
| | - Rui Wang
- Department of Biology, York University, Toronto, Ontario, M3J 1P3, Canada
| | - Drew Jones
- Division of Advanced Research Technologies, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Thales Papagiannakopoulos
- Department of Pathology, Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016, USA
| | - Michael E Pacold
- Department of Radiation Oncology and Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York, NY 10016, USA
| | - Adam C Mar
- Department of Neuroscience and Physiology, Neuroscience Institute, NYU School of Medicine, New York, NY 10016, USA
| | - Dan R Littman
- Department of Cell Biology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Howard Hughes Medical Institute, New York, NY 10016, USA
| | - Evgeny Nudler
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Howard Hughes Medical Institute, New York, NY 10016, USA
| |
Collapse
|
9
|
Minami S, Sakai S, Yamamoto T, Takabatake Y, Namba-Hamano T, Takahashi A, Matsuda J, Yonishi H, Nakamura J, Maeda S, Matsui S, Matsui I, Isaka Y. FGF21 and autophagy coordinately counteract kidney disease progression during aging and obesity. Autophagy 2024; 20:489-504. [PMID: 37722816 PMCID: PMC10936614 DOI: 10.1080/15548627.2023.2259282] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/20/2023] Open
Abstract
Chronic kidney disease (CKD) has reached epidemic proportions worldwide, partly due to the increasing population of elderly and obesity. Macroautophagy/autophagy counteracts CKD progression, whereas autophagy is stagnated owing to lysosomal overburden during aging and obesity, which promotes CKD progression. Therefore, for preventing CKD progression during aging and obesity, it is important to elucidate the compensation mechanisms of autophagy stagnation. We recently showed that FGF21 (fibroblast growth factor 21), which is a prolongevity and metabolic hormone, is induced by autophagy deficiency in kidney proximal tubular epithelial cells (PTECs); however, its pathophysiological role remains uncertain. Here, we investigated the interplay between FGF21 and autophagy and the direct contribution of endogenous FGF21 in the kidney during aging and obesity using PTEC-specific fgf21- and/or atg5-deficient mice at 24 months (aged) or under high-fat diet (obese) conditions. PTEC-specific FGF21 deficiency in young mice increased autophagic flux due to increased demand of autophagy, whereas fgf21-deficient aged or obese mice exacerbated autophagy stagnation due to severer lysosomal overburden caused by aberrant autophagy. FGF21 was robustly induced by autophagy deficiency, and aged or obese PTEC-specific fgf21- and atg5-double deficient mice deteriorated renal histology compared with atg5-deficient mice. Mitochondrial function was severely disturbed concomitant with exacerbated oxidative stress and downregulated TFAM (transcription factor A, mitochondrial) in double-deficient mice. These results indicate that FGF21 is robustly induced by autophagy disturbance and protects against CKD progression during aging and obesity by alleviating autophagy stagnation and maintaining mitochondrial homeostasis, which will pave the way to a novel treatment for CKD.
Collapse
Affiliation(s)
- Satoshi Minami
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Shinsuke Sakai
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Takeshi Yamamoto
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yoshitsugu Takabatake
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Tomoko Namba-Hamano
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Atsushi Takahashi
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Jun Matsuda
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Hiroaki Yonishi
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Jun Nakamura
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Shihomi Maeda
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Sho Matsui
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Isao Matsui
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yoshitaka Isaka
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| |
Collapse
|
10
|
Zhang Y, Tian XL, Li JQ, Wu DS, Li Q, Chen B. Mitochondrial dysfunction affects hepatic immune and metabolic remodeling in patients with hepatitis B virus-related acute-on-chronic liver failure. World J Gastroenterol 2024; 30:881-900. [PMID: 38516248 PMCID: PMC10950637 DOI: 10.3748/wjg.v30.i8.881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/15/2023] [Accepted: 01/23/2024] [Indexed: 02/26/2024] Open
Abstract
BACKGROUND Immune dysregulation and metabolic derangement have been recognized as key factors that contribute to the progression of hepatitis B virus (HBV)-related acute-on-chronic liver failure (ACLF). However, the mechanisms underlying immune and metabolic derangement in patients with advanced HBV-ACLF are unclear. AIM To identify the bioenergetic alterations in the liver of patients with HBV-ACLF causing hepatic immune dysregulation and metabolic disorders. METHODS Liver samples were collected from 16 healthy donors (HDs) and 17 advanced HBV-ACLF patients who were eligible for liver transplantation. The mitochondrial ultrastructure, metabolic characteristics, and immune microenvironment of the liver were assessed. More focus was given to organic acid metabolism as well as the function and subpopulations of macrophages in patients with HBV-ACLF. RESULTS Compared with HDs, there was extensive hepatocyte necrosis, immune cell infiltration, and ductular reaction in patients with ACLF. In patients, the liver suffered severe hypoxia, as evidenced by increased expression of hypoxia-inducible factor-1α. Swollen mitochondria and cristae were observed in the liver of patients. The number, length, width, and area of mitochondria were adaptively increased in hepatocytes. Targeted metabolomics analysis revealed that mitochondrial oxidative phosphorylation decreased, while anaerobic glycolysis was enhanced in patients with HBV-ACLF. These findings suggested that, to a greater extent, hepa-tocytes used the extra-mitochondrial glycolytic pathway as an energy source. Patients with HBV-ACLF had elevated levels of chemokine C-C motif ligand 2 in the liver homogenate, which stimulates peripheral monocyte infiltration into the liver. Characterization and functional analysis of macrophage subsets revealed that patients with ACLF had a high abundance of CD68+ HLA-DR+ macrophages and elevated levels of both interleukin-1β and transforming growth factor-β1 in their livers. The abundance of CD206+ CD163+ macrophages and expression of interleukin-10 decreased. The correlation analysis revealed that hepatic organic acid metabolites were closely associated with macrophage-derived cytokines/chemokines. CONCLUSION The results indicated that bioenergetic alteration driven by hypoxia and mitochondrial dysfunction affects hepatic immune and metabolic remodeling, leading to advanced HBV-ACLF. These findings highlight a new therapeutic target for improving the treatment of HBV-ACLF.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Hepatology, Institute of Hepatology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410021, Hunan Province, China
| | - Xiao-Ling Tian
- Department of Hepatology, Institute of Hepatology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410021, Hunan Province, China
| | - Jie-Qun Li
- Department of Liver Transplant, Transplant Medical Research Center, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, China
| | - Dong-Sheng Wu
- Department of Surgery, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410021, Hunan Province, China
| | - Qiang Li
- Department of Liver Transplant, Transplant Medical Research Center, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, China
| | - Bin Chen
- Department of Hepatology, Institute of Hepatology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410021, Hunan Province, China
| |
Collapse
|
11
|
Murphy MP, O'Neill LAJ. A break in mitochondrial endosymbiosis as a basis for inflammatory diseases. Nature 2024; 626:271-279. [PMID: 38326590 DOI: 10.1038/s41586-023-06866-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 11/14/2023] [Indexed: 02/09/2024]
Abstract
Mitochondria retain bacterial traits due to their endosymbiotic origin, but host cells do not recognize them as foreign because the organelles are sequestered. However, the regulated release of mitochondrial factors into the cytosol can trigger cell death, innate immunity and inflammation. This selective breakdown in the 2-billion-year-old endosymbiotic relationship enables mitochondria to act as intracellular signalling hubs. Mitochondrial signals include proteins, nucleic acids, phospholipids, metabolites and reactive oxygen species, which have many modes of release from mitochondria, and of decoding in the cytosol and nucleus. Because these mitochondrial signals probably contribute to the homeostatic role of inflammation, dysregulation of these processes may lead to autoimmune and inflammatory diseases. A potential reason for the increased incidence of these diseases may be changes in mitochondrial function and signalling in response to such recent phenomena as obesity, dietary changes and other environmental factors. Focusing on the mixed heritage of mitochondria therefore leads to predictions for future insights, research paths and therapeutic opportunities. Thus, whereas mitochondria can be considered 'the enemy within' the cell, evolution has used this strained relationship in intriguing ways, with increasing evidence pointing to the recent failure of endosymbiosis being critical for the pathogenesis of inflammatory diseases.
Collapse
Affiliation(s)
- Michael P Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK.
- Department of Medicine, University of Cambridge, Cambridge, UK.
| | - Luke A J O'Neill
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
12
|
Li S, Chen J, Wei P, Zou T, You J. Fibroblast Growth Factor 21: A Fascinating Perspective on the Regulation of Muscle Metabolism. Int J Mol Sci 2023; 24:16951. [PMID: 38069273 PMCID: PMC10707024 DOI: 10.3390/ijms242316951] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Fibroblast growth factor 21 (FGF21) plays a vital role in normal eukaryotic organism development and homeostatic metabolism under the influence of internal and external factors such as endogenous hormone changes and exogenous stimuli. Over the last few decades, comprehensive studies have revealed the key role of FGF21 in regulating many fundamental metabolic pathways, including the muscle stress response, insulin signaling transmission, and muscle development. By coordinating these metabolic pathways, FGF21 is thought to contribute to acclimating to a stressful environment and the subsequent recovery of cell and tissue homeostasis. With the emphasis on FGF21, we extensively reviewed the research findings on the production and regulation of FGF21 and its role in muscle metabolism. We also emphasize how the FGF21 metabolic networks mediate mitochondrial dysfunction, glycogen consumption, and myogenic development and investigate prospective directions for the functional exploitation of FGF21 and its downstream effectors, such as the mammalian target of rapamycin (mTOR).
Collapse
Affiliation(s)
| | | | | | - Tiande Zou
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang 330045, China; (S.L.); (J.C.); (P.W.)
| | - Jinming You
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang 330045, China; (S.L.); (J.C.); (P.W.)
| |
Collapse
|
13
|
Abstract
Advancing age is the most important risk factor for the development of and mortality from acute and chronic lung diseases, including pneumonia, chronic obstructive pulmonary disease, and pulmonary fibrosis. This risk was manifest during the COVID-19 pandemic, when elderly people were disproportionately affected and died from SARS-CoV-2 pneumonia. However, the recent pandemic also provided lessons on lung resilience. An overwhelming majority of patients with SARS-CoV-2 pneumonia, even those with severe disease, recovered with near-complete restoration of lung architecture and function. These observations are inconsistent with historic views of the lung as a terminally differentiated organ incapable of regeneration. Here, we review emerging hypotheses that explain how the lung repairs itself after injury and why these mechanisms of lung repair fail in some individuals, particularly the elderly.
Collapse
Affiliation(s)
- SeungHye Han
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - G.R. Scott Budinger
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
- Cell and Developmental Biology, Northwestern University, Chicago, Illinois, USA
| | - Cara J. Gottardi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
- Cell and Developmental Biology, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
14
|
Purhonen J, Klefström J, Kallijärvi J. MYC-an emerging player in mitochondrial diseases. Front Cell Dev Biol 2023; 11:1257651. [PMID: 37731815 PMCID: PMC10507175 DOI: 10.3389/fcell.2023.1257651] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/21/2023] [Indexed: 09/22/2023] Open
Abstract
The mitochondrion is a major hub of cellular metabolism and involved directly or indirectly in almost all biological processes of the cell. In mitochondrial diseases, compromised respiratory electron transfer and oxidative phosphorylation (OXPHOS) lead to compensatory rewiring of metabolism with resemblance to the Warburg-like metabolic state of cancer cells. The transcription factor MYC (or c-MYC) is a major regulator of metabolic rewiring in cancer, stimulating glycolysis, nucleotide biosynthesis, and glutamine utilization, which are known or predicted to be affected also in mitochondrial diseases. Albeit not widely acknowledged thus far, several cell and mouse models of mitochondrial disease show upregulation of MYC and/or its typical transcriptional signatures. Moreover, gene expression and metabolite-level changes associated with mitochondrial integrated stress response (mt-ISR) show remarkable overlap with those of MYC overexpression. In addition to being a metabolic regulator, MYC promotes cellular proliferation and modifies the cell cycle kinetics and, especially at high expression levels, promotes replication stress and genomic instability, and sensitizes cells to apoptosis. Because cell proliferation requires energy and doubling of the cellular biomass, replicating cells should be particularly sensitive to defective OXPHOS. On the other hand, OXPHOS-defective replicating cells are predicted to be especially vulnerable to high levels of MYC as it facilitates evasion of metabolic checkpoints and accelerates cell cycle progression. Indeed, a few recent studies demonstrate cell cycle defects and nuclear DNA damage in OXPHOS deficiency. Here, we give an overview of key mitochondria-dependent metabolic pathways known to be regulated by MYC, review the current literature on MYC expression in mitochondrial diseases, and speculate how its upregulation may be triggered by OXPHOS deficiency and what implications this has for the pathogenesis of these diseases.
Collapse
Affiliation(s)
- Janne Purhonen
- Folkhälsan Research Center, Helsinki, Finland
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Juha Klefström
- Finnish Cancer Institute, FICAN South Helsinki University Hospital, Helsinki, Finland
- Translational Cancer Medicine, Medical Faculty, University of Helsinki, Helsinki, Finland
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, United States
| | - Jukka Kallijärvi
- Folkhälsan Research Center, Helsinki, Finland
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
15
|
Han S, Lee M, Shin Y, Giovanni R, Chakrabarty RP, Herrerias MM, Dada LA, Flozak AS, Reyfman PA, Khuder B, Reczek CR, Gao L, Lopéz-Barneo J, Gottardi CJ, Budinger GRS, Chandel NS. Mitochondrial integrated stress response controls lung epithelial cell fate. Nature 2023; 620:890-897. [PMID: 37558881 PMCID: PMC10447247 DOI: 10.1038/s41586-023-06423-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/11/2023] [Indexed: 08/11/2023]
Abstract
Alveolar epithelial type 1 (AT1) cells are necessary to transfer oxygen and carbon dioxide between the blood and air. Alveolar epithelial type 2 (AT2) cells serve as a partially committed stem cell population, producing AT1 cells during postnatal alveolar development and repair after influenza A and SARS-CoV-2 pneumonia1-6. Little is known about the metabolic regulation of the fate of lung epithelial cells. Here we report that deleting the mitochondrial electron transport chain complex I subunit Ndufs2 in lung epithelial cells during mouse gestation led to death during postnatal alveolar development. Affected mice displayed hypertrophic cells with AT2 and AT1 cell features, known as transitional cells. Mammalian mitochondrial complex I, comprising 45 subunits, regenerates NAD+ and pumps protons. Conditional expression of yeast NADH dehydrogenase (NDI1) protein that regenerates NAD+ without proton pumping7,8 was sufficient to correct abnormal alveolar development and avert lethality. Single-cell RNA sequencing revealed enrichment of integrated stress response (ISR) genes in transitional cells. Administering an ISR inhibitor9,10 or NAD+ precursor reduced ISR gene signatures in epithelial cells and partially rescued lethality in the absence of mitochondrial complex I function. Notably, lung epithelial-specific loss of mitochondrial electron transport chain complex II subunit Sdhd, which maintains NAD+ regeneration, did not trigger high ISR activation or lethality. These findings highlight an unanticipated requirement for mitochondrial complex I-dependent NAD+ regeneration in directing cell fate during postnatal alveolar development by preventing pathological ISR induction.
Collapse
Affiliation(s)
- SeungHye Han
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University, Chicago, IL, USA.
| | - Minho Lee
- Department of Life Science, Dongguk University-Seoul, Goyang-si, Republic of Korea
| | - Youngjin Shin
- Department of Life Science, Dongguk University-Seoul, Goyang-si, Republic of Korea
| | - Regina Giovanni
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University, Chicago, IL, USA
| | - Ram P Chakrabarty
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University, Chicago, IL, USA
| | - Mariana M Herrerias
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University, Chicago, IL, USA
| | - Laura A Dada
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University, Chicago, IL, USA
| | - Annette S Flozak
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University, Chicago, IL, USA
| | - Paul A Reyfman
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University, Chicago, IL, USA
| | - Basil Khuder
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University, Chicago, IL, USA
| | - Colleen R Reczek
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University, Chicago, IL, USA
| | - Lin Gao
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, Seville, Spain
| | - José Lopéz-Barneo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, Seville, Spain
| | - Cara J Gottardi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University, Chicago, IL, USA
| | - G R Scott Budinger
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University, Chicago, IL, USA
| | - Navdeep S Chandel
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University, Chicago, IL, USA.
- Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
16
|
Nguyen TT, Wei S, Nguyen TH, Jo Y, Zhang Y, Park W, Gariani K, Oh CM, Kim HH, Ha KT, Park KS, Park R, Lee IK, Shong M, Houtkooper RH, Ryu D. Mitochondria-associated programmed cell death as a therapeutic target for age-related disease. Exp Mol Med 2023; 55:1595-1619. [PMID: 37612409 PMCID: PMC10474116 DOI: 10.1038/s12276-023-01046-5] [Citation(s) in RCA: 104] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 08/25/2023] Open
Abstract
Mitochondria, ubiquitous double-membrane-bound organelles, regulate energy production, support cellular activities, harbor metabolic pathways, and, paradoxically, mediate cell fate. Evidence has shown mitochondria as points of convergence for diverse cell death-inducing pathways that trigger the various mechanisms underlying apoptotic and nonapoptotic programmed cell death. Thus, dysfunctional cellular pathways eventually lead or contribute to various age-related diseases, such as neurodegenerative, cardiovascular and metabolic diseases. Thus, mitochondrion-associated programmed cell death-based treatments show great therapeutic potential, providing novel insights in clinical trials. This review discusses mitochondrial quality control networks with activity triggered by stimuli and that maintain cellular homeostasis via mitohormesis, the mitochondrial unfolded protein response, and mitophagy. The review also presents details on various forms of mitochondria-associated programmed cell death, including apoptosis, necroptosis, ferroptosis, pyroptosis, parthanatos, and paraptosis, and highlights their involvement in age-related disease pathogenesis, collectively suggesting therapeutic directions for further research.
Collapse
Affiliation(s)
- Thanh T Nguyen
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Shibo Wei
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Thu Ha Nguyen
- Department of Physiology, Yonsei University Wonju College of Medicine, Wonju, 26426, Republic of Korea
| | - Yunju Jo
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Yan Zhang
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Wonyoung Park
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, 50612, Republic of Korea
| | - Karim Gariani
- Service of Endocrinology, Diabetes, Nutrition and Patient Therapeutic Education, Geneva University Hospitals, Geneva, 1205, Switzerland
| | - Chang-Myung Oh
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Hyeon Ho Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, 06351, Republic of Korea
| | - Ki-Tae Ha
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, 50612, Republic of Korea
| | - Kyu Sang Park
- Department of Physiology, Yonsei University Wonju College of Medicine, Wonju, 26426, Republic of Korea
| | - Raekil Park
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - In-Kyu Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, 41944, Republic of Korea
| | - Minho Shong
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
- Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
- Amsterdam Cardiovascular Sciences, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - Dongryeol Ryu
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea.
| |
Collapse
|
17
|
Southwell N, Primiano G, Nadkarni V, Attarwala N, Beattie E, Miller D, Alam S, Liparulo I, Shurubor YI, Valentino ML, Carelli V, Servidei S, Gross SS, Manfredi G, Chen Q, D'Aurelio M. A coordinated multiorgan metabolic response contributes to human mitochondrial myopathy. EMBO Mol Med 2023; 15:e16951. [PMID: 37222423 PMCID: PMC10331581 DOI: 10.15252/emmm.202216951] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/25/2023] Open
Abstract
Mitochondrial diseases are a heterogeneous group of monogenic disorders that result from impaired oxidative phosphorylation (OXPHOS). As neuromuscular tissues are highly energy-dependent, mitochondrial diseases often affect skeletal muscle. Although genetic and bioenergetic causes of OXPHOS impairment in human mitochondrial myopathies are well established, there is a limited understanding of metabolic drivers of muscle degeneration. This knowledge gap contributes to the lack of effective treatments for these disorders. Here, we discovered fundamental muscle metabolic remodeling mechanisms shared by mitochondrial disease patients and a mouse model of mitochondrial myopathy. This metabolic remodeling is triggered by a starvation-like response that evokes accelerated oxidation of amino acids through a truncated Krebs cycle. While initially adaptive, this response evolves in an integrated multiorgan catabolic signaling, lipid store mobilization, and intramuscular lipid accumulation. We show that this multiorgan feed-forward metabolic response involves leptin and glucocorticoid signaling. This study elucidates systemic metabolic dyshomeostasis mechanisms that underlie human mitochondrial myopathies and identifies potential new targets for metabolic intervention.
Collapse
Affiliation(s)
- Nneka Southwell
- Brain and Mind Research InstituteWeill Cornell MedicineNew YorkNYUSA
| | - Guido Primiano
- Fondazione Policlinico Universitario Agostino Gemelli IRCCSRomeItaly
- Dipartimento di NeuroscienzeUniversità Cattolica del Sacro CuoreRomeItaly
| | - Viraj Nadkarni
- Brain and Mind Research InstituteWeill Cornell MedicineNew YorkNYUSA
| | | | - Emelie Beattie
- Brain and Mind Research InstituteWeill Cornell MedicineNew YorkNYUSA
| | - Dawson Miller
- Department of PharmacologyWeill Cornell MedicineNew YorkNYUSA
| | - Sumaitaah Alam
- Department of PharmacologyWeill Cornell MedicineNew YorkNYUSA
| | - Irene Liparulo
- Brain and Mind Research InstituteWeill Cornell MedicineNew YorkNYUSA
| | | | - Maria Lucia Valentino
- IRCCS, Institute of Neurological Sciences of Bologna, Bellaria HospitalBolognaItaly
- Department of Biomedical and NeuroMotor Sciences (DIBINEM)University of BolognaBolognaItaly
| | - Valerio Carelli
- IRCCS, Institute of Neurological Sciences of Bologna, Bellaria HospitalBolognaItaly
- Department of Biomedical and NeuroMotor Sciences (DIBINEM)University of BolognaBolognaItaly
| | - Serenella Servidei
- Fondazione Policlinico Universitario Agostino Gemelli IRCCSRomeItaly
- Dipartimento di NeuroscienzeUniversità Cattolica del Sacro CuoreRomeItaly
| | - Steven S Gross
- Department of PharmacologyWeill Cornell MedicineNew YorkNYUSA
| | - Giovanni Manfredi
- Brain and Mind Research InstituteWeill Cornell MedicineNew YorkNYUSA
| | - Qiuying Chen
- Department of PharmacologyWeill Cornell MedicineNew YorkNYUSA
| | | |
Collapse
|
18
|
Maragkakis M, Malla S, Hatzoglou M, Trifunovic A, Glick AB, Finkel T, Longo VD, Kaushik S, Muñoz-Cánoves P, Lithgow GJ, Naidoo N, Booth LN, Payea MJ, Herman AB, de Cabo R, Wilson DM, Ferrucci L, Gorospe M. Biology of Stress Responses in Aging. AGING BIOLOGY 2023; 1:20230002. [PMID: 38500537 PMCID: PMC10947073 DOI: 10.59368/agingbio.20230001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
On April 28th, 2022, a group of scientific leaders gathered virtually to discuss molecular and cellular mechanisms of responses to stress. Conditions of acute, high-intensity stress are well documented to induce a series of adaptive responses that aim to promote survival until the stress has dissipated and then guide recovery. However, high-intensity or persistent stress that goes beyond the cell's compensatory capacity are countered with resilience strategies that are not completely understood. These adaptative strategies, which are an essential component of the study of aging biology, were the theme of the meeting. Specific topics discussed included mechanisms of proteostasis, such as the unfolded protein response (UPR) and the integrated stress response (ISR), as well as mitochondrial stress and lysosomal stress responses. Attention was also given to regulatory mechanisms and associated biological processes linked to age-related conditions, such as muscle loss and regeneration, cancer, senescence, sleep quality, and degenerative disease, with a general focus on the relevance of stress responses to frailty. We summarize the concepts and potential future directions that emerged from the discussion and highlight their relevance to the study of aging and age-related chronic diseases.
Collapse
Affiliation(s)
- Manolis Maragkakis
- National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
- Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - Sulochan Malla
- National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
- Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - Maria Hatzoglou
- National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
- Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - Aleksandra Trifunovic
- National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
- Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - Adam B Glick
- National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
- Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - Toren Finkel
- National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
- Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - Valter D Longo
- National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
- Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - Susmita Kaushik
- National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
- Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - Pura Muñoz-Cánoves
- National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
- Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - Gordon J Lithgow
- National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
- Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - Nirinjini Naidoo
- National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
- Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - Lauren N Booth
- National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
- Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - Matthew J Payea
- National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
- Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - Allison B Herman
- National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
- Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - Rafael de Cabo
- National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
- Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - David M Wilson
- National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
- Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - Luigi Ferrucci
- National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
- Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - Myriam Gorospe
- National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
- Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
19
|
Purhonen J, Banerjee R, Wanne V, Sipari N, Mörgelin M, Fellman V, Kallijärvi J. Mitochondrial complex III deficiency drives c-MYC overexpression and illicit cell cycle entry leading to senescence and segmental progeria. Nat Commun 2023; 14:2356. [PMID: 37095097 PMCID: PMC10126100 DOI: 10.1038/s41467-023-38027-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 04/12/2023] [Indexed: 04/26/2023] Open
Abstract
Accumulating evidence suggests mitochondria as key modulators of normal and premature aging, yet whether primary oxidative phosphorylation (OXPHOS) deficiency can cause progeroid disease remains unclear. Here, we show that mice with severe isolated respiratory complex III (CIII) deficiency display nuclear DNA damage, cell cycle arrest, aberrant mitoses, and cellular senescence in the affected organs such as liver and kidney, and a systemic phenotype resembling juvenile-onset progeroid syndromes. Mechanistically, CIII deficiency triggers presymptomatic cancer-like c-MYC upregulation followed by excessive anabolic metabolism and illicit cell proliferation against lack of energy and biosynthetic precursors. Transgenic alternative oxidase dampens mitochondrial integrated stress response and the c-MYC induction, suppresses the illicit proliferation, and prevents juvenile lethality despite that canonical OXPHOS-linked functions remain uncorrected. Inhibition of c-MYC with the dominant-negative Omomyc protein relieves the DNA damage in CIII-deficient hepatocytes in vivo. Our results connect primary OXPHOS deficiency to genomic instability and progeroid pathogenesis and suggest that targeting c-MYC and aberrant cell proliferation may be therapeutic in mitochondrial diseases.
Collapse
Affiliation(s)
- Janne Purhonen
- Folkhälsan Research Center, Haartmaninkatu 8, 00290, Helsinki, Finland
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, P.O.Box 63, 00014, Helsinki, Finland
| | - Rishi Banerjee
- Folkhälsan Research Center, Haartmaninkatu 8, 00290, Helsinki, Finland
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, P.O.Box 63, 00014, Helsinki, Finland
| | - Vilma Wanne
- Folkhälsan Research Center, Haartmaninkatu 8, 00290, Helsinki, Finland
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, P.O.Box 63, 00014, Helsinki, Finland
| | - Nina Sipari
- Viikki Metabolomics Unit, University of Helsinki, P.O.Box 65, Helsinki, Finland
| | - Matthias Mörgelin
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, P.O.Box 117, 221 00, Lund, Sweden
- Colzyx AB, Scheelevägen 2, 22381, Lund, Sweden
| | - Vineta Fellman
- Folkhälsan Research Center, Haartmaninkatu 8, 00290, Helsinki, Finland
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, P.O.Box 63, 00014, Helsinki, Finland
- Department of Clinical Sciences, Lund, Pediatrics, Lund University, P.O.Box 117, 221 00, Lund, Sweden
- Children's Hospital, Clinicum, University of Helsinki, P.O. Box 22, 00014, Helsinki, Finland
| | - Jukka Kallijärvi
- Folkhälsan Research Center, Haartmaninkatu 8, 00290, Helsinki, Finland.
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, P.O.Box 63, 00014, Helsinki, Finland.
| |
Collapse
|
20
|
Huang S, Wu K, Li B, Liu Y. lncRNA UCA1 inhibits mitochondrial dysfunction of skeletal muscle in type 2 diabetes mellitus by sequestering miR-143-3p to release FGF21. Cell Tissue Res 2023; 391:561-575. [PMID: 36602629 DOI: 10.1007/s00441-022-03733-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 12/19/2022] [Indexed: 01/06/2023]
Abstract
Increasing evidence suggests that insulin resistance in type 2 diabetes mellitus (T2DM) is associated with mitochondrial dysfunction in skeletal muscle, while the underlying molecular mechanisms remain elusive. This study aims to construct a ceRNA regulatory network that is involved in mitochondrial dysfunction of skeletal muscle in T2DM. Based on GEO database analysis, differentially expressed lncRNA and mRNA profiles were identified in skeletal muscle tissues of T2DM. Next, LASSO regression analysis was conducted to predict the key lncRNAs related to T2DM, which was validated by receiver operating characteristic (ROC) analysis. Moreover, the miRNAs related to skeletal muscle in T2DM were identified by WGCNA, followed by construction of gene-gene interaction network and GO and KEGG enrichment analyses. It was found that 12 lncRNAs and 6 miRNAs were related to skeletal muscle in T2DM. Moreover, the lncRNA-miRNA-mRNA ceRNA network involving UCA1, miR-143-3p, and FGF21 was constructed. UCA1, and FGF21 were downregulated, while miR-143-3p was upregulated in skeletal muscle cells (SkMCs) exposed to palmitic acid. Additionally, ectopic expression experiments were performed in SkMCs to confirm the effects of UCA1/miR-143-3p/FGF21 on mitochondrial dysfunction by determining mitochondrial ROS, oxygen consumption rate (OCR), membrane potential, and ATP level. Overexpression of miR-143-3p increased ROS accumulation and reduced the OCR, fluorescence ratio of JC-1, and ATP level, which were reversed by upregulation of UCA1 or FGF21. Collectively, lncRNA UCA1 inhibited mitochondrial dysfunction of skeletal muscle in T2DM by sequestering miR-143-3p away from FGF21, therefore providing a potential therapeutic target for alleviating mitochondrial dysfunction of skeletal muscle in T2DM.
Collapse
Affiliation(s)
- Sha Huang
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, 410008, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, 410008, People's Republic of China
| | - Kai Wu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, 410008, People's Republic of China.,Department of Physical Medicine & Rehabilitation, Xiangya Hospital of Central South University, No. 87, Xiangya Road, Kaifu District, Changsha, Hunan Province, 410008, People's Republic of China
| | - Bingfa Li
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, 410008, People's Republic of China.,Department of Physical Medicine & Rehabilitation, Xiangya Hospital of Central South University, No. 87, Xiangya Road, Kaifu District, Changsha, Hunan Province, 410008, People's Republic of China
| | - Yuan Liu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, 410008, People's Republic of China. .,Department of Physical Medicine & Rehabilitation, Xiangya Hospital of Central South University, No. 87, Xiangya Road, Kaifu District, Changsha, Hunan Province, 410008, People's Republic of China.
| |
Collapse
|
21
|
Baghdadi M, Nespital T, Mesaros A, Buschbaum S, Withers DJ, Grönke S, Partridge L. Reduced insulin signaling in neurons induces sex-specific health benefits. SCIENCE ADVANCES 2023; 9:eade8137. [PMID: 36812323 PMCID: PMC9946356 DOI: 10.1126/sciadv.ade8137] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Reduced activity of insulin/insulin-like growth factor signaling (IIS) extends health and life span in mammals. Loss of the insulin receptor substrate 1 (Irs1) gene increases survival in mice and causes tissue-specific changes in gene expression. However, the tissues underlying IIS-mediated longevity are currently unknown. Here, we measured survival and health span in mice lacking IRS1 specifically in liver, muscle, fat, and brain. Tissue-specific loss of IRS1 did not increase survival, suggesting that lack of IRS1 in more than one tissue is required for life-span extension. Loss of IRS1 in liver, muscle, and fat did not improve health. In contrast, loss of neuronal IRS1 increased energy expenditure, locomotion, and insulin sensitivity, specifically in old males. Neuronal loss of IRS1 also caused male-specific mitochondrial dysfunction, activation of Atf4, and metabolic adaptations consistent with an activated integrated stress response at old age. Thus, we identified a male-specific brain signature of aging in response to reduced IIS associated with improved health at old age.
Collapse
Affiliation(s)
| | - Tobias Nespital
- Max-Planck Institute for Biology of Ageing, Cologne, Germany
| | - Andrea Mesaros
- Max-Planck Institute for Biology of Ageing, Cologne, Germany
| | | | - Dominic J. Withers
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- Medical Research Council London Institute of Medical Sciences, London, UK
| | | | - Linda Partridge
- Max-Planck Institute for Biology of Ageing, Cologne, Germany
- Institute of Healthy Ageing and Genetics, Evolution and Environment, University College London, London, UK
| |
Collapse
|
22
|
Huynh H, Zhu S, Lee S, Bao Y, Pang J, Nguyen A, Gu Y, Chen C, Ouyang K, Evans SM, Fang X. DELE1 is protective for mitochondrial cardiomyopathy. J Mol Cell Cardiol 2023; 175:44-48. [PMID: 36539111 PMCID: PMC10387237 DOI: 10.1016/j.yjmcc.2022.12.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/11/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Mitochondrial dysfunction in heart triggers an integrated stress response (ISR) through phosphorylation of eIF2α and subsequent ATF4 activation. DAP3 Binding Cell Death Enhancer 1 (DELE1) is a mitochondrial protein recently found to be critical for mediating mitochondrial stress-triggered ISR (MSR)-induced eIF2α-ATF4 pathway activation. However, the specific role of DELE1 in heart at baseline or in response to mitochondrial stress remains largely unknown. In this study, we report that DELE1 is dispensable for cardiac development and function under baseline conditions. Conversely, DELE1 is essential for mediating an adaptive response to mitochondrial dysfunction-triggered stress in the heart, playing a protective role in mitochondrial cardiomyopathy.
Collapse
Affiliation(s)
- Helen Huynh
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Siting Zhu
- Department of Medicine, University of California San Diego, La Jolla, CA, USA; Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Sharon Lee
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Yutong Bao
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jing Pang
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Anh Nguyen
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Yusu Gu
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Chao Chen
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Kunfu Ouyang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Sylvia M Evans
- Department of Medicine, University of California San Diego, La Jolla, CA, USA; Department of Pharmacology, University of California San Diego, La Jolla, CA, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Xi Fang
- Department of Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
23
|
Burtscher J, Soltany A, Visavadiya NP, Burtscher M, Millet GP, Khoramipour K, Khamoui AV. Mitochondrial stress and mitokines in aging. Aging Cell 2023; 22:e13770. [PMID: 36642986 PMCID: PMC9924952 DOI: 10.1111/acel.13770] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/08/2022] [Accepted: 12/20/2022] [Indexed: 01/17/2023] Open
Abstract
Mitokines are signaling molecules that enable communication of local mitochondrial stress to other mitochondria in distant cells and tissues. Among those molecules are FGF21, GDF15 (both expressed in the nucleus) and several mitochondrial-derived peptides, including humanin. Their responsiveness to mitochondrial stress induces mitokine-signaling in response for example to exercise, following mitochondrial challenges in skeletal muscle. Such signaling is emerging as an important mediator of exercise-derived and dietary strategy-related molecular and systemic health benefits, including healthy aging. A compensatory increase in mitokine synthesis and secretion could preserve mitochondrial function and overall cellular vitality. Conversely, resistance against mitokine actions may also develop. Alterations of mitokine-levels, and therefore of mitokine-related inter-tissue cross talk, are associated with general aging processes and could influence the development of age-related chronic metabolic, cardiovascular and neurological diseases; whether these changes contribute to aging or represent "rescue factors" remains to be conclusively shown. The aim of the present review is to summarize the expanding knowledge on mitokines, the potential to modulate them by lifestyle and their involvement in aging and age-related diseases. We highlight the importance of well-balanced mitokine-levels, the preventive and therapeutic properties of maintaining mitokine homeostasis and sensitivity of mitokine signaling but also the risks arising from the dysregulation of mitokines. While reduced mitokine levels may impair inter-organ crosstalk, also excessive mitokine concentrations can have deleterious consequences and are associated with conditions such as cancer and heart failure. Preservation of healthy mitokine signaling levels can be achieved by regular exercise and is associated with an increased lifespan.
Collapse
Affiliation(s)
- Johannes Burtscher
- Institute of Sport SciencesUniversity of LausanneLausanneSwitzerland
- Department of Biomedical SciencesUniversity of LausanneLausanneSwitzerland
| | - Afsaneh Soltany
- Department of Biology, Faculty of ScienceUniversity of ShirazShirazIran
| | - Nishant P. Visavadiya
- Department of Exercise Science and Health PromotionFlorida Atlantic UniversityBoca RatonFloridaUSA
| | - Martin Burtscher
- Department of Sport ScienceUniversity of InnsbruckInnsbruckAustria
| | - Grégoire P. Millet
- Institute of Sport SciencesUniversity of LausanneLausanneSwitzerland
- Department of Biomedical SciencesUniversity of LausanneLausanneSwitzerland
| | - Kayvan Khoramipour
- Department of Physiology and Pharmacology, Neuroscience Research Center, Institute of Neuropharmacology, and Afzalipour School of MedicineKerman University of Medical SciencesKermanIran
| | - Andy V. Khamoui
- Department of Exercise Science and Health PromotionFlorida Atlantic UniversityBoca RatonFloridaUSA
| |
Collapse
|
24
|
Johns A, Higuchi-Sanabria R, Thorwald MA, Vilchez D. A tale of two pathways: Regulation of proteostasis by UPR mt and MDPs. Curr Opin Neurobiol 2023; 78:102673. [PMID: 36621224 PMCID: PMC9845188 DOI: 10.1016/j.conb.2022.102673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/28/2022] [Accepted: 12/08/2022] [Indexed: 01/07/2023]
Abstract
Mitochondrial fitness is critical to organismal health and its impairment is associated with aging and age-related diseases. As such, numerous quality control mechanisms exist to preserve mitochondrial stability, including the unfolded protein response of the mitochondria (UPRmt). The UPRmt is a conserved mechanism that drives the transcriptional activation of mitochondrial chaperones, proteases, autophagy (mitophagy), and metabolism to promote restoration of mitochondrial function under stress conditions. UPRmt has direct ramifications in aging, and its activation is often ascribed to improve health whereas its dysfunction tends to correlate with disease. This review pairs a description of the most recent findings within the field of UPRmt with a more poorly understood field: mitochondria-derived peptides (MDPs). Similar to UPRmt, MDPs are microproteins derived from the mitochondria that can impact organismal health and longevity. We then highlight a tantalizing interconnection between UPRmt and MDPs wherein both mechanisms may be efficiently coordinated to maintain organismal health.
Collapse
Affiliation(s)
- Angela Johns
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany. https://twitter.com/AngyJohns
| | - Ryo Higuchi-Sanabria
- Leonard Davis School of Gerontology, University of Southern California. 3715 McClintock Ave, University Park Campus, Los Angeles, CA 90089, USA.
| | - Max A Thorwald
- Leonard Davis School of Gerontology, University of Southern California. 3715 McClintock Ave, University Park Campus, Los Angeles, CA 90089, USA.
| | - David Vilchez
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Institute for Genetics, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; Faculty of Medicine, University Hospital Cologne, Cologne, Germany.
| |
Collapse
|
25
|
Zhu MX, Ma XF, Niu X, Fan GB, Li Y. Mitochondrial unfolded protein response in ischemia-reperfusion injury. Brain Res 2022; 1797:148116. [PMID: 36209898 DOI: 10.1016/j.brainres.2022.148116] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/27/2022] [Accepted: 10/02/2022] [Indexed: 11/21/2022]
Abstract
Mitochondrial unfolded protein response (UPRmt) is a mitochondrial stress response that activates the transcriptional program of mitochondrial chaperone proteins and proteases to keep protein homeostasis in mitochondria. Ischemia-reperfusion injury results in multiple severe clinical issues linked to high morbidity and mortality in various disorders. The pathophysiology and pathogenesis of ischemia-reperfusion injury are complex and multifactorial. Emerging evidence showed the roles of UPRmt signaling in ischemia-reperfusion injury. Herein, we discuss the regulatory mechanisms underlying UPRmt signaling in C. elegans and mammals. Furthermore, we review the recent studies into the roles and mechanisms of UPRmt signaling in ischemia-reperfusion injury of the heart, brain, kidney, and liver. Further research of UPRmt signaling will potentially develop novel therapeutic strategies against ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Ming-Xi Zhu
- Department of Anatomy, School of Basic Medicine and Life Science, Hainan Medical University, Hainan, China
| | - Xiao-Fei Ma
- Department of ICU, The 4th Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xing Niu
- Department of Second Clinical College, Shengjing Hospital of China Medical University, Shenyang, China
| | - Gui-Bo Fan
- Department of Anesthesiology, The 4th Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Yan Li
- Department of Anesthesiology, The 4th Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
26
|
Igual Gil C, Coull BM, Jonas W, Lippert RN, Klaus S, Ost M. Mitochondrial stress-induced GFRAL signaling controls diurnal food intake and anxiety-like behavior. Life Sci Alliance 2022; 5:5/11/e202201495. [PMID: 36271504 PMCID: PMC9449705 DOI: 10.26508/lsa.202201495] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/23/2022] [Accepted: 08/23/2022] [Indexed: 11/24/2022] Open
Abstract
Growth differentiation factor 15 (GDF15) is a mitochondrial stress-induced cytokine that modulates energy balance in an endocrine manner. However, the importance of its brainstem-restricted receptor GDNF family receptor alpha-like (GFRAL) to mediate endocrine GDF15 signaling to the brain upon mitochondrial dysfunction is still unknown. Using a mouse model with muscle-specific mitochondrial dysfunction, we here show that GFRAL is required for activation of systemic energy metabolism via daytime-restricted anorexia but not responsible for muscle wasting. We further find that muscle mitochondrial stress response involves a GFRAL-dependent induction of hypothalamic corticotropin-releasing hormone, without elevated corticosterone levels. Finally, we identify that GFRAL signaling governs an anxiety-like behavior in male mice with muscle mitochondrial dysfunction, with females showing a less robust GFRAL-dependent anxiety-like phenotype. Together, we here provide novel evidence of a mitochondrial stress-induced muscle–brain crosstalk via the GDF15-GFRAL axis to modulate food intake and anxiogenic behavior.
Collapse
Affiliation(s)
- Carla Igual Gil
- Department of Physiology of Energy Metabolism, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
| | - Bethany M Coull
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition, Nuthetal, Germany
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Berlin, Germany
| | - Wenke Jonas
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Rachel N Lippert
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition, Nuthetal, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Berlin, Germany
| | - Susanne Klaus
- Department of Physiology of Energy Metabolism, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
| | - Mario Ost
- Department of Physiology of Energy Metabolism, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
- Department of Molecular Nutritional Physiology, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
27
|
Abstract
The analogy of mitochondria as powerhouses has expired. Mitochondria are living, dynamic, maternally inherited, energy-transforming, biosynthetic, and signaling organelles that actively transduce biological information. We argue that mitochondria are the processor of the cell, and together with the nucleus and other organelles they constitute the mitochondrial information processing system (MIPS). In a three-step process, mitochondria (1) sense and respond to both endogenous and environmental inputs through morphological and functional remodeling; (2) integrate information through dynamic, network-based physical interactions and diffusion mechanisms; and (3) produce output signals that tune the functions of other organelles and systemically regulate physiology. This input-to-output transformation allows mitochondria to transduce metabolic, biochemical, neuroendocrine, and other local or systemic signals that enhance organismal adaptation. An explicit focus on mitochondrial signal transduction emphasizes the role of communication in mitochondrial biology. This framework also opens new avenues to understand how mitochondria mediate inter-organ processes underlying human health.
Collapse
Affiliation(s)
- Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Irving Medical Center, New York, NY 10032, USA; New York State Psychiatric Institute, New York, NY 10032, USA.
| | - Orian S Shirihai
- Department of Medicine, Endocrinology, and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
28
|
Zhou Z, Fan Y, Zong R, Tan K. The mitochondrial unfolded protein response: A multitasking giant in the fight against human diseases. Ageing Res Rev 2022; 81:101702. [PMID: 35908669 DOI: 10.1016/j.arr.2022.101702] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/15/2022] [Accepted: 07/26/2022] [Indexed: 02/06/2023]
Abstract
Mitochondria, which serve as the energy factories of cells, are involved in cell differentiation, calcium homeostasis, amino acid and fatty acid metabolism and apoptosis. In response to environmental stresses, mitochondrial homeostasis is regulated at both the organelle and molecular levels to effectively maintain the number and function of mitochondria. The mitochondrial unfolded protein response (UPRmt) is an adaptive intracellular stress mechanism that responds to stress signals by promoting the transcription of genes encoding mitochondrial chaperones and proteases. The mechanism of the UPRmt in Caenorhabditis elegans (C. elegans) has been clarified over time, and the main regulatory factors include ATFS-1, UBL-5 and DVE-1. In mammals, the activation of the UPRmt involves eIF2α phosphorylation and the uORF-regulated expression of CHOP, ATF4 and ATF5. Several additional factors, such as SIRT3 and HSF1, are also involved in regulating the UPRmt. A deep and comprehensive exploration of the UPRmt can provide new directions and strategies for the treatment of human diseases, including aging, neurodegenerative diseases, cardiovascular diseases and diabetes. In this review, we mainly discuss the function of UPRmt, describe the regulatory mechanisms of UPRmt in C. elegans and mammals, and summarize the relationship between UPRmt and various human diseases.
Collapse
Affiliation(s)
- Zixin Zhou
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Province Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, University of Chinese Academy of Sciences, Beijing, China
| | - Yumei Fan
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Province Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Ruikai Zong
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Province Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Ke Tan
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Province Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China.
| |
Collapse
|