1
|
Yao Z, Liu T, Wang J, Fu Y, Zhao J, Wang X, Li Y, Yang X, He Z. Targeted delivery systems of siRNA based on ionizable lipid nanoparticles and cationic polymer vectors. Biotechnol Adv 2025; 81:108546. [PMID: 40015385 DOI: 10.1016/j.biotechadv.2025.108546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 02/04/2025] [Accepted: 02/23/2025] [Indexed: 03/01/2025]
Abstract
As an emerging therapeutic tool, small interfering RNA (siRNA) had the capability to down-regulate nearly all human mRNAs via sequence-specific gene silencing. Numerous studies have demonstrated the substantial potential of siRNA in the treatment of broad classes of diseases. With the discovery and development of various delivery systems and chemical modifications, six siRNA-based drugs have been approved by 2024. The utilization of siRNA-based therapeutics has significantly propelled efforts to combat a wide array of previously incurable diseases and advanced at a rapid pace, particularly with the help of potent targeted delivery systems. Despite encountering several extracellular and intracellular challenges, the efficiency of siRNA delivery has been gradually enhanced. Currently, targeted strategies aimed at improving potency and reducing toxicity played a crucial role in the druggability of siRNA. This review focused on recent advancements on ionizable lipid nanoparticles (LNPs) and cationic polymer (CP) vectors applied for targeted siRNA delivery. Based on various types of targeted modifications, we primarily described delivery systems modified with receptor ligands, peptides, antibodies, aptamers and amino acids. Finally, we discussed the challenges and opportunities associated with siRNA delivery systems based on ionizable LNPs and CPs vectors.
Collapse
Affiliation(s)
- Ziying Yao
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Taiqing Liu
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jingwen Wang
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yunhai Fu
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jinhua Zhao
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaoyu Wang
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yinqi Li
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaodong Yang
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhiyao He
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
2
|
Song Y, Xu T, Li H, Liu J, Cao S, Yang Y, Li N, Lv P, Han M, Sun H, Dang G, Li J, Sun H, Xin T, Xia H, Zhang C. Delivery of Itgb1-siRNA by triptolide-modified and anti-Flt1 peptide-guided ionizable cationic LNPs for targeted therapy of corneal neovascularization. J Control Release 2025; 383:113811. [PMID: 40324532 DOI: 10.1016/j.jconrel.2025.113811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 04/10/2025] [Accepted: 04/30/2025] [Indexed: 05/07/2025]
Abstract
Corneal neovascularization (CoNV) is a leading cause of visual impairment worldwide. However, CoNV remains challenging to cure clinically because of the limitations of current drugs. New and more effective therapeutic formulations for CoNV treatment are therefore urgently needed. Antisense oligonucleotide drugs hold great promise for the treatment of neovascular diseases, and ionizable cationic lipid nanoparticles (icLNPs) have shown excellent performance for nucleic acid delivery, with high encapsulation, good cellular uptake, and effective endosomal escape. In the present study, we identified integrin β1 (Itgb1) as a key gene involved in angiogenesis and revealed the significant upregulation of Flt1 in vascular endothelial cells and pericytes in CoNV using single-cell sequencing. Itgb1 knockdown significantly inhibited the proliferation and migration of vascular endothelial cells and CoNV in mice. Based on these findings, we developed Itgb1-small interfering RNA (siRNA)-loaded icLNPs, and conjugated anti-Flt1 peptide to their surface to improve CoNV targeting. Furthermore, because lipid nanoparticles reportedly trigger immune responses by upregulating pro-inflammatory cytokine expression, which may promote neovascularization, we modified triptolide (a compound with anti-inflammatory properties) into the icLNPs. The triptolide-modified, anti-Flt1 peptide-conjugated, and Itgb1-siRNA-loaded icLNPs (Itgb1-siRNA@TPL) effectively inhibited the proliferation and migration of vascular endothelial cells in vitro and CoNV in mice after eye drop administration. These effects occurred via downregulation of the PI3K/AKT and NF-κB signaling pathways. Finally, the biosafety of Itgb1-siRNA@TPL was tested, and the results revealed that it was not toxic to the cornea or major organs and had no impact on corneal epithelial healing. In conclusion, Itgb1-siRNA@TPL represent a novel, noninvasive, and effective approach for the treatment of CoNV.
Collapse
Affiliation(s)
- Yuwen Song
- Department of Ophthalmology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, Shandong, China; Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, Shandong, China
| | - Tingting Xu
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Hao Li
- Department of Ophthalmology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, Shandong, China
| | - Jing Liu
- Department of Ophthalmology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, Shandong, China; Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, Shandong, China
| | - Shumin Cao
- Department of Ophthalmology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, Shandong, China; Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, Shandong, China
| | - Yichen Yang
- Department of Ophthalmology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, Shandong, China; Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, Shandong, China
| | - Nianlu Li
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Neurosurgery, Jinan 250014, Shandong, China
| | - Peiwen Lv
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Neurosurgery, Jinan 250014, Shandong, China
| | - Min Han
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Neurosurgery, Jinan 250014, Shandong, China
| | - Haohan Sun
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Neurosurgery, Jinan 250014, Shandong, China
| | - Guangfu Dang
- Department of Ophthalmology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, Shandong, China
| | - Jianxin Li
- Department of Ophthalmology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, Shandong, China
| | - Hao Sun
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Neurosurgery, Jinan 250014, Shandong, China
| | - Tao Xin
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Neurosurgery, Jinan 250014, Shandong, China.
| | - Huitang Xia
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Neurosurgery, Jinan 250014, Shandong, China.
| | - Canwei Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, Shandong, China; Department of Neurosurgery, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, Jiangxi, China.
| |
Collapse
|
3
|
Pan M, Cao W, Zhai J, Zheng C, Xu Y, Zhang P. mRNA-based vaccines and therapies - a revolutionary approach for conquering fast-spreading infections and other clinical applications: a review. Int J Biol Macromol 2025; 309:143134. [PMID: 40233916 DOI: 10.1016/j.ijbiomac.2025.143134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/10/2025] [Accepted: 04/11/2025] [Indexed: 04/17/2025]
Abstract
Since the beginning of the COVID-19 pandemic, the development of messenger RNA (mRNA) vaccines has made significant progress in the pharmaceutical industry. The two COVID-19 mRNA vaccines from Moderna and Pfizer/BioNTech have been approved for marketing and have made significant contributions to preventing the spread of SARS-CoV-2. In addition, mRNA therapy has brought hope to some diseases that do not have specific treatment methods or are difficult to treat, such as the Zika virus and influenza virus infections, as well as the prevention and treatment of tumors. With the rapid development of in vitro transcription (IVT) technology, delivery systems, and adjuvants, mRNA therapy has also been applied to hereditary diseases such as Fabry's disease. This article reviews the recent development of mRNA vaccines for structural modification, treatment and prevention of different diseases; delivery carriers and adjuvants; and routes of administration to promote the clinical application of mRNA therapies.
Collapse
Affiliation(s)
- Mingyue Pan
- Department of Pharmacy, The Third Affiliated Hospital (The Affiliated Luohu Hospital) of Shenzhen University, Shenzhen 518001, China
| | - Weiling Cao
- Department of Pharmacy, The Third Affiliated Hospital (The Affiliated Luohu Hospital) of Shenzhen University, Shenzhen 518001, China
| | - Jingbo Zhai
- Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Medical College, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Chunfu Zheng
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada.
| | - Yingying Xu
- Department of Pharmaceutics, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China.
| | - Peng Zhang
- Department of Pharmacy, The Third Affiliated Hospital (The Affiliated Luohu Hospital) of Shenzhen University, Shenzhen 518001, China.
| |
Collapse
|
4
|
He C, Shi C, Fang M, Chang P, Hou P, Zhang Y, Li J. Amplifying STING activation by biomimetic manganese mRNA nanovaccines for local and systemic cancer immunotherapy. J Control Release 2025; 383:113788. [PMID: 40311687 DOI: 10.1016/j.jconrel.2025.113788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 04/24/2025] [Accepted: 04/27/2025] [Indexed: 05/03/2025]
Abstract
Messenger RNA (mRNA)-based vaccines have great potential in cancer treatment. However, poor lymphatic transport, insufficient targeted delivery, intracellular degradation and insufficient immune response without adjuvants limit the application of mRNA vaccines. Herein, a novel mRNA nanovaccine (HM@Mn3O4-mRNA) was constructed by ovalbumin (OVA) mRNA-loaded Mn3O4 encapsulation with a hybrid membrane (HM) of dendritic cells (DCs) and bacterial membrane for enhancing cancer immunotherapy. In vitro results indicated that HM@Mn3O4-mRNA nanovaccine could target DC2.4 cells, achieve lysosomal escape to enhance the expression of antigen, leading to the efficient antigen presentation and the activation of DC2.4 cells. In vivo results demonstrated that HM@Mn3O4-mRNA nanovaccine could target and retain in lymph nodes (LNs), continuously stimulate antigen presentation, and thus trigger a strong T cell mediated immune response. The prepared nanovaccine could effectively prevent and control the occurrence and development of B16-OVA subcutaneous tumors. This study will provide a new mRNA cancer vaccine delivery platform for cancer immunotherapy.
Collapse
Affiliation(s)
- Chunyan He
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, China
| | - Changzhou Shi
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, China
| | - Mingxi Fang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, China
| | - Pengzhao Chang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, China
| | - Pingfu Hou
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| | - Yingying Zhang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, China.
| | - Jingjing Li
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, China.
| |
Collapse
|
5
|
Zheng L, Wang Z, Liu H, Wang N, Liu J, Ma M, Jia X, Qian M, Liu Y, Li M, Wei Z, Xiang Y. Yeast-Derived Manganese and Zinc Metal-Organic Framework Composite as a Vaccine Adjuvant for Enhanced Humoral and Cellular Immune Responses. ACS NANO 2025. [PMID: 40293251 DOI: 10.1021/acsnano.5c04365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
To control pandemics, a universal adjuvant platform that can deliver antigens and stimulate the immune system that rapidly elicits humoral and cellular immune responses is needed, especially one that can stimulate the body's immune system to produce protective immunological memory. However, the design, composition, and mechanism of adjuvants have presented considerable challenges. The types of adjuvants currently approved in clinics are rare and are far from meeting the requirements of vaccine development. In this study, we prepared a yeast-derived manganese and zinc metal-organic framework (MOF) composite particle adjuvant by self-assembling Mn-MOF-74 and ZIF-8 on the surface of yeast and named it yeast@Mn-MOF-74@ZIF-8 (yMZ). yMZ was able to promote the maturation and activation of dendritic cells (DCs), enhance the uptake and presentation of antigens by DCs, increase the production of adaptive immune cells with memory, enhance humoral and cellular immune responses, and promote the activation of the germinal center. Additionally, yMZ allowed for effective control of antigen release and exhibited good biosafety in vivo. In this study, yMZ showed good adjuvant effects on subunits and inactivated vaccines, indicating that it is a next-generation adjuvant candidate with potential application prospects.
Collapse
Affiliation(s)
- Lanlan Zheng
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- Henan Province Key Laboratory for Animal Food Pathogens Surveillance, Zhengzhou 450046, P. R. China
| | - Zi Wang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- Henan Province Key Laboratory for Animal Food Pathogens Surveillance, Zhengzhou 450046, P. R. China
| | - Hang Liu
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- Henan Province Key Laboratory for Animal Food Pathogens Surveillance, Zhengzhou 450046, P. R. China
| | - Nianxiang Wang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- Henan Province Key Laboratory for Animal Food Pathogens Surveillance, Zhengzhou 450046, P. R. China
| | - Junjun Liu
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- Henan Province Key Laboratory for Animal Food Pathogens Surveillance, Zhengzhou 450046, P. R. China
| | - Mengyao Ma
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- Henan Province Key Laboratory for Animal Food Pathogens Surveillance, Zhengzhou 450046, P. R. China
| | - Xinhao Jia
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- Henan Province Key Laboratory for Animal Food Pathogens Surveillance, Zhengzhou 450046, P. R. China
| | - Mengwei Qian
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- Henan Province Key Laboratory for Animal Food Pathogens Surveillance, Zhengzhou 450046, P. R. China
| | - Yidan Liu
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- Henan Province Key Laboratory for Animal Food Pathogens Surveillance, Zhengzhou 450046, P. R. China
| | - Muzi Li
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- Henan Province Key Laboratory for Animal Food Pathogens Surveillance, Zhengzhou 450046, P. R. China
| | - Zhanyong Wei
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- Henan Province Key Laboratory for Animal Food Pathogens Surveillance, Zhengzhou 450046, P. R. China
| | - Yuqiang Xiang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- Henan Province Key Laboratory for Animal Food Pathogens Surveillance, Zhengzhou 450046, P. R. China
| |
Collapse
|
6
|
Zhou Y, Wu Y, Sun S, Wang W, Zhou S, Liu H, Guo Y, Hong S, Ding F, Cai H. Self-Assembled Glycopeptide as a Biocompatible mRNA Vaccine Platform Elicits Robust Antitumor Immunity. ACS NANO 2025; 19:14727-14741. [PMID: 40203215 DOI: 10.1021/acsnano.4c15187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Since the emergence of the COVID-19 pandemic, mRNA vaccines have garnered significant attention. Delivery systems affect the effectiveness of mRNA vaccines, yet there remains a scarcity of vectors that can achieve safe and efficient delivery of mRNA. We took advantage of self-assembled glycopeptides (SAPs) to develop a vector named Man-MPm, which was coupled with mannose and manganese ions to achieve lymph node targeting and STING pathway activation. The Man-MPm-based mRNA vaccine exhibited high biosafety across various administration routes, eliciting robust antigen-specific immune responses within lymph nodes. Due to the elevated antitumor immunity, Man-MPm significantly suppressed tumor growth and extended the survival period of mice in melanoma prevention and treatment models as well as in a colon cancer model. Our findings show that Man-MPm addresses the challenges to safety and effectiveness associated with mRNA delivery by incorporating a lymph node-targeting ligand and a STING pathway agonist onto highly biocompatible SAP, and Man-MPm holds great potential for developing mRNA tumor vaccines.
Collapse
Affiliation(s)
- Yang Zhou
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, Guangming 518107, China
| | - Ye Wu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, Guangming 518107, China
| | - Shengjie Sun
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, Guangming 518107, China
| | - Wei Wang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, Guangming 518107, China
| | - Siai Zhou
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, Guangming 518107, China
| | - Hua Liu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, Guangming 518107, China
| | - Yajing Guo
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, Guangming 518107, China
| | - Sheng Hong
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, Guangming 518107, China
| | - Feiqing Ding
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, Guangming 518107, China
| | - Hui Cai
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, Guangming 518107, China
| |
Collapse
|
7
|
Zhang M, Wang Y, Li B, Yang B, Zhao M, Li B, Liu J, Hu Y, Wu Z, Ong Y, Han X, Ding L, Zhu K, Li J, Luo M, Chen S, Peng L, Zhang L, Chen X, Ni Q. STING-Activating Polymers Boost Lymphatic Delivery of mRNA Vaccine to Potentiate Cancer Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2412654. [PMID: 39713955 DOI: 10.1002/adma.202412654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 12/02/2024] [Indexed: 12/24/2024]
Abstract
The unprecedented success of mRNA vaccines against COVID-19 has inspired scientists to develop mRNA vaccines for cancer immunotherapy. However, using nucleoside modified mRNA as vaccine, though evading innate immune toxicity, diminishes its therapeutic efficacy for cancers. Here, we report a polyvalent stimulator of interferon genes (STING) activating polymer (termed as PD) to bolster the immunogenicity of mRNA vaccine. PD is made of tertiary amine units and conjugated with a biodegradable alkyl chain. Co-formulation of PDs bearing different number of tertiary amines with lipid materials and mRNA resulted in the lipid-like nanoparticles (PD LNPs) which effectively promoted lymphatic delivery and elicited robust immune activation via the STING signaling pathway. Notably, PD with eighteen tertiary amines (PD18) is predominant in balancing immune activity and tolerability. Subcutaneous administration of PD18 LNPs containing ovalbumin (OVA) mRNA enhanced the frequency of antigen specific CD8+ T cell with immune memory, leading to potent anticancer efficacy that surpassed 2'3'-cGAMP in both prophylactic and therapeutic cancer models. Additionally, PD18 LNP-based mRNA vaccine showed conferred resistance to cancer challenge for up to 60 days. Overall, this study offers a new perspective of using STING- activating polymer for imparting synergistic activity in mRNA vaccine-based cancer immunotherapy.
Collapse
Affiliation(s)
- Miao Zhang
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Yongling Wang
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Department of Pharmacy, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, P. R. China
| | - Benhao Li
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Bowei Yang
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Mengyao Zhao
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Bingyu Li
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Jianping Liu
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Yaxin Hu
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Zhaoming Wu
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Yenhui Ong
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Xiaolin Han
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Lingwen Ding
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Kongfu Zhu
- Department of Biological Science, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117558, Singapore
| | - Jianwei Li
- Department of Biological Science, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117558, Singapore
| | - Min Luo
- Department of Biological Science, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117558, Singapore
| | - Shengqi Chen
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Ling Peng
- Centre Interdisciplinaire de Nanoscience de Marseille, Aix-Marseille Universite, CNRS, UMR 7325, ́ "Equipe Labellisee Ligue ́Contre le Cancer", Marseille, 13288, France
| | - Longjiang Zhang
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210002, China
| | - Xiaoyuan Chen
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Department of Chemical and Biomolecular Engineering, and Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, Singapore, 117544, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Theranostics Center of Excellence (TCE), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 138667, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
| | - Qianqian Ni
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| |
Collapse
|
8
|
Li C, Zhou M, Li Y, Jia H, Huang L. Engineered IL-21-Expressing Nanovesicles for Co-Delivery of GOX and Ferrocene to Induce Synergistic Anti-Tumor Effects. Adv Healthc Mater 2025; 14:e2403477. [PMID: 39763117 DOI: 10.1002/adhm.202403477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/20/2024] [Indexed: 03/04/2025]
Abstract
Glucose oxidase (GOX)-induced starvation is a safe treatment for tumor. However, the non-specific targeting of GOX and the plasticity of tumor metabolism lead to toxic side effects and low tumor mortality. Thus, it is necessary to develop a synergistic strategy with high tumor targeting specificity to enhance the mortality of GOX. In this study, a genetically engineered CD44 targeting peptide (CP) and IL-21 fusion protein-displaying nanovesicles platform (mCP@IL21-Fc-GOX) are designed to efficiently encapsulate GOX and ferrocene (Fc). After reaching the tumor site, IL-21 can be precisely released and targeted to NK cells through the cleavage of MMP-2, thus achieving precise anti-tumor immunotherapy of IL-21. Second, the exposed CP enable mCP-Fc-GOX to be further targeted to tumor cells, completing the synergistic anti-cancer effects of starvation and chemodynamic therapy (CDT) triggered by GOX and Fc. In situ breast cancer models, the results show that mCP@IL21-Fc-GOX not only enhances NK and T cells aggregation in tumor tissue but also achieves precise nutrition deprivation and abundant reactive oxygen species production, thus significantly inhibits tumor growth based on the synergistic function of the immunotherapy, starvation and CDT. Therefore, this work provides a smart nanovesicle platform for achieving precise and safe synergistic anti-tumor therapy.
Collapse
Affiliation(s)
- Chao Li
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Mengyang Zhou
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Yang Li
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Haojie Jia
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Lin Huang
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, 230032, China
| |
Collapse
|
9
|
Zhang M, Wang C, Pan J, Cui H, Zhao X. Advancing novel veterinary vaccines: From comprehensive antigen and adjuvant design to preparation process optimization. Int Immunopharmacol 2025; 145:113784. [PMID: 39672026 DOI: 10.1016/j.intimp.2024.113784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 12/15/2024]
Abstract
Vaccination stands as the paramount and cost-effective strategy for the prevention and management of animal infectious diseases. With the advances in biological technology, materials science and industrial optimization, substantial progress has been made in the development of innovative veterinary vaccines. A majority of the novel vaccines under current investigation tend to stimulate multiple immune pathways and to achieve long-term resistance against infectious diseases, yet it remains imperative to concentrate research efforts on the efficient utilization of vaccines, mitigating toxic side effects, and ensuring safe production processes. This article presents an overview of research progress in veterinary vaccines, encompassing comprehensive antigen design, adjuvant formulation advancements, preparation process optimization, and rigorous immune efficacy evaluation. It summarizes cutting-edge vaccines derived from in vitro synthesis and in vivo application, emphasizing immunogenic components and immune response mechanisms. It also highlights novel biological adjuvants that enhance immune efficacy, diversify raw materials, and possess targeted functions, while comprehensively exploring advancements in production methodologies and compatible vaccine products. By establishing a foundation for the integrated use of these innovative veterinary vaccines, this work facilitates future interdisciplinary cooperation in their advancement, aiming to accelerate the achievement of herd immunity through concerted efforts.
Collapse
Affiliation(s)
- Meng Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chunxin Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Junqian Pan
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haixin Cui
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiang Zhao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
10
|
Zhang Y, Zhai S, Qin S, Chen Y, Chen K, Huang Z, Lan X, Luo Y, Li G, Li H, He X, Chen M, Zhang Z, Peng X, Jiang X, Huang H, Song X. MHCI trafficking signal-based mRNA vaccines strengthening immune protection against RNA viruses. Bioeng Transl Med 2025; 10:e10709. [PMID: 39801759 PMCID: PMC11711215 DOI: 10.1002/btm2.10709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 07/12/2024] [Accepted: 07/23/2024] [Indexed: 01/16/2025] Open
Abstract
The major histocompatibility complex class I (MHCI) trafficking signal (MITD) plays a pivotal role in enhancing the efficacy of mRNA vaccines. However, there was a lack of research investigating its efficacy in enhancing immune responses to RNA virus infections. Here, we have developed an innovative strategy for the formulation of mRNA vaccines. This approach involved the integration of MITD into the mRNA sequence encoding the virus antigen. Mechanistically, MITD-based mRNA vaccines can strengthen immune protection by mimicking the dynamic trafficking properties of MHCI molecule and thus expand the memory specific B and T cells. The model MITD-based mRNA vaccines encoding binding receptor-binding domain (RBD) of SARS-CoV-2 were indeed found to achieve protective duration, optimal storage stability, broad efficacy, and high safety.
Collapse
Affiliation(s)
- Yupei Zhang
- Department of Critical Care MedicineFrontiers Science Center for Disease‐related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan UniversityChengduSichuanChina
| | - Songhui Zhai
- Department of Critical Care MedicineFrontiers Science Center for Disease‐related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan UniversityChengduSichuanChina
- Department of PediatricsWest China Second University Hospital, Sichuan UniversityChengduSichuanChina
| | - Shugang Qin
- Department of Critical Care MedicineFrontiers Science Center for Disease‐related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan UniversityChengduSichuanChina
| | - Yuting Chen
- Department of Critical Care MedicineFrontiers Science Center for Disease‐related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan UniversityChengduSichuanChina
| | - Kepan Chen
- Department of Critical Care MedicineFrontiers Science Center for Disease‐related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan UniversityChengduSichuanChina
| | - Zhiying Huang
- Department of Critical Care MedicineFrontiers Science Center for Disease‐related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan UniversityChengduSichuanChina
| | - Xing Lan
- Department of Critical Care MedicineFrontiers Science Center for Disease‐related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan UniversityChengduSichuanChina
| | - Yaoyao Luo
- Department of Critical Care MedicineFrontiers Science Center for Disease‐related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan UniversityChengduSichuanChina
| | - Guohong Li
- Department of Critical Care MedicineFrontiers Science Center for Disease‐related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan UniversityChengduSichuanChina
| | - Hao Li
- Department of Critical Care MedicineFrontiers Science Center for Disease‐related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan UniversityChengduSichuanChina
| | - Xi He
- Department of Critical Care MedicineFrontiers Science Center for Disease‐related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan UniversityChengduSichuanChina
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of MacauMacauChina
| | - Zhongwei Zhang
- Department of Critical Care MedicineFrontiers Science Center for Disease‐related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan UniversityChengduSichuanChina
| | - Xingchen Peng
- Department of Critical Care MedicineFrontiers Science Center for Disease‐related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan UniversityChengduSichuanChina
| | - Xin Jiang
- Department of Critical Care MedicineFrontiers Science Center for Disease‐related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan UniversityChengduSichuanChina
| | - Hai Huang
- Department of Critical Care MedicineFrontiers Science Center for Disease‐related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan UniversityChengduSichuanChina
| | - Xiangrong Song
- Department of Critical Care MedicineFrontiers Science Center for Disease‐related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan UniversityChengduSichuanChina
| |
Collapse
|
11
|
Oluwole SA, Weldu WD, Jayaraman K, Barnard KA, Agatemor C. Design Principles for Immunomodulatory Biomaterials. ACS APPLIED BIO MATERIALS 2024; 7:8059-8075. [PMID: 38922334 DOI: 10.1021/acsabm.4c00537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
The immune system is imperative to the survival of all biological organisms. A functional immune system protects the organism by detecting and eliminating foreign and host aberrant molecules. Conversely, a dysfunctional immune system characterized by an overactive or weakened immune system causes life-threatening autoimmune or immunodeficiency diseases. Therefore, a critical need exists to develop technologies that regulate the immune system to ensure homeostasis or treat several diseases. Accumulating evidence shows that biomaterials─artificial materials (polymers, metals, ceramics, or engineered cells and tissues) that interact with biological systems─can trigger immune responses, offering a materials science-based strategy to modulate the immune system. This Review discusses the expanding frontiers of biomaterial-based immunomodulation, focusing on principles for designing these materials. This Review also presents examples of immunomodulatory biomaterials, which include polymers and metal- and carbon-based nanomaterials, capable of regulating the innate and adaptive immune systems.
Collapse
Affiliation(s)
- Samuel Abidemi Oluwole
- Department of Chemistry, University of Miami, Coral Gables, Florida 33124, United States
| | - Welday Desta Weldu
- Department of Chemistry, University of Miami, Coral Gables, Florida 33124, United States
| | - Keerthana Jayaraman
- Department of Chemistry, University of Miami, Coral Gables, Florida 33124, United States
| | - Kelsie Amanda Barnard
- Department of Chemistry, University of Miami, Coral Gables, Florida 33124, United States
| | - Christian Agatemor
- Department of Chemistry, University of Miami, Coral Gables, Florida 33124, United States
- Department of Biology, University of Miami, Coral Gables, Florida 33124, United States
- Sylvester Comprehensive Cancer Center, University of Miami Health System, Miami, Florida 33136, United States
| |
Collapse
|
12
|
Wang L, Wan J, He W, Wang Z, Wu Q, Zhou M, Fu ZF, Zhao L. IL-7 promotes mRNA vaccine-induced long-term immunity. J Nanobiotechnology 2024; 22:716. [PMID: 39550592 PMCID: PMC11568559 DOI: 10.1186/s12951-024-02993-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 11/05/2024] [Indexed: 11/18/2024] Open
Abstract
Messenger RNA (mRNA) vaccines are a key technology in combating existing and emerging infectious diseases. However, improving the immunogenicity and durability of mRNA vaccines remains a challenge. To elicit optimal immune responses, integrating antigen-encoded mRNA and immunostimulatory adjuvants into a single formulation is a promising approach to enhancing the efficacy of mRNA vaccines. Here, we report an adjuvant strategy to enhance the efficacy of mRNA vaccines by co-loading mRNA encoding the antigen (rabies virus glycoprotein, RABV-G) and mRNA encoding IL-7 into lipid nanoparticles, achieving co-delivery to the same antigen-presenting cells. A single immunization with G&IL-7 mRNA vaccine elicited robust humoral immune responses in mice and conferred complete protection against RABV challenge. Notably, the high levels of neutralizing antibody induced by the G&IL-7 mRNA vaccine were maintained for at least 6 months, providing mice with long-term significant and complete protection against RABV. Additionally, IL-7 also enhanced antibody responses against the SARS-CoV-2. These data demonstrate that IL-7 is a potent mRNA vaccine adjuvant that can provide the required immune stimulation in various mRNA vaccine formulations.
Collapse
Affiliation(s)
- Lingli Wang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jiawu Wan
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenna He
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zongmei Wang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiong Wu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ming Zhou
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhen F Fu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ling Zhao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China.
- Hubei Hongshan Laboratory, Wuhan, 430070, China.
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China.
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
13
|
Luo Z, Lin Y, Meng Y, Li M, Ren H, Shi H, Cheng Q, Wei T. Spleen-Targeted mRNA Vaccine Doped with Manganese Adjuvant for Robust Anticancer Immunity In Vivo. ACS NANO 2024; 18:30701-30715. [PMID: 39463304 DOI: 10.1021/acsnano.4c09902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
The successful application of mRNA vaccines in preventing and treating infectious diseases highlights their potential as therapeutic vaccines for cancer treatment. However, unlike infectious diseases, effective antitumor therapy, particularly for solid tumors, necessitates the activation of more powerful cellular and humoral immunity to achieve clinical efficacy. Here, we report a spleen-targeted mRNA vaccine (Mn@mRNA-LNP) designed to deliver tumor antigen-encoding mRNA and manganese adjuvant (Mn2+) simultaneously to dendritic cells (DCs) in the spleen. This delivery system promotes DC maturation and surface antigen presentation and stimulates the production of cytotoxic T cells. Additionally, Mn2+ codelivered in the system serves as a safe and effective immune adjuvant, activating the stimulator of interferon genes (STING) signaling pathway and promoting the secretion of type I interferon, further enhancing the antigen-specific T cell responses. Mn@mRNA-LNP effectively inhibits tumor progression in established melanoma and colon tumor models as well as in a model of tumor recurrence after resection. Notably, the combination of Mn@mRNA-LNP with immune checkpoint inhibitors further enhances complete tumor suppression and prolonged the overall survival in mice. Overall, this "All-in-One" mRNA vaccine significantly boosts antitumor immunity responses by improving spleen targeting and immune activation, providing an attractive strategy for the future clinical translation of therapeutic mRNA vaccines.
Collapse
Affiliation(s)
- Zijin Luo
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Lin
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
| | - Yanan Meng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengyao Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongyu Ren
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haoping Shi
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Cheng
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
- Beijing Advanced Center of RNA Biology, Peking University, Beijing 100871, China
| | - Tuo Wei
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
14
|
He X, Wang P, Qing L, Song X. Pioneering integration of combinatorial chemistry and machine learning to accelerate the development of tailored LNPs for mRNA delivery. Acta Pharm Sin B 2024; 14:5079-5081. [PMID: 39664425 PMCID: PMC11628822 DOI: 10.1016/j.apsb.2024.08.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/24/2024] [Accepted: 08/08/2024] [Indexed: 12/13/2024] Open
Affiliation(s)
- Xi He
- Department of Critical Care Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041 China
| | - Pingyu Wang
- College of Electronics and Information Engineering, Sichuan University, Chengdu 610065, China
| | - Linbo Qing
- College of Electronics and Information Engineering, Sichuan University, Chengdu 610065, China
| | - Xiangrong Song
- Department of Critical Care Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041 China
| |
Collapse
|
15
|
Yu J, Li X, Li J, Sun N, Cheng P, Huang J, Li S, Kuai R. Single-Dose Physically Cross-Linked Hyaluronic Acid and Lipid Hybrid Nanoparticles Containing Cyclic Guanosine Monophosphate-Adenosine Monophosphate Eliminate Established Tumors. ACS NANO 2024; 18:29942-29955. [PMID: 39418110 DOI: 10.1021/acsnano.4c10673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Activating the STING pathway in the cytosol of tumor-infiltrating antigen-presenting cells (APCs) represents a promising strategy to elicit potent antitumor immune responses for cancer therapy. However, STING agonists are mostly small hydrophilic molecules that suffer from rapid clearance and poor cytosolic delivery following systemic administration. While various nanoparticles have been developed to promote cytosolic delivery, they often exhibit premature drug release during circulation. Alternatively, stable nanoparticles with sustained release during circulation have poor cytosolic delivery. In this study, we have developed physically cross-linked hyaluronic acid (HA) and lipid hybrid nanoparticles containing cyclic guanosine monophosphate-adenosine monophosphate (cGAMP), denoted as HLHC, to address these challenges. The HLH delivery system has sustained drug release due to multiple lipid layers physically cross-linked by HA. HLHC efficiently delivers cGAMP to the cytosol of APCs, inducing more IFNβ than cGAMP and liposomal cGAMP. HLH also improves the drug circulation time and biodistribution to the tumor compared with the liposomal formulation and free drug. Strikingly, a single dose of HLHC, but not liposomal cGAMP or free cGAMP, elicits potent antitumor immunity and regresses established MC38 tumors. A single dose of HLHC even regresses established B16F10 tumors upon combination with αPD-L1. Moreover, cured animals were protected from rechallenge with the same tumor cells. HLHC represents an efficient strategy to address delivery challenges associated with STING agonists and may have broad applications for the delivery of drugs acting in the cytosol.
Collapse
Affiliation(s)
- Jinchao Yu
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Xinyan Li
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Junyao Li
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Nan Sun
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Peng Cheng
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
- School of Life Sciences, Tsinghua University, Beijing 100084, China
- Frontier Research Center for Biological Structure & State Key Laboratory of Membrane Biology, Beijing 100084, China
| | - Jiayi Huang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Sai Li
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
- School of Life Sciences, Tsinghua University, Beijing 100084, China
- Frontier Research Center for Biological Structure & State Key Laboratory of Membrane Biology, Beijing 100084, China
| | - Rui Kuai
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| |
Collapse
|
16
|
Lv M, Liu B, Duan Y, Lin J, Dai L, Li Y, Yu J, Liao J, Zhang J, Duan Y. Engineered Biomimetic Nanovesicles Synergistically Remodel Folate-Nucleotide and γ-Aminobutyric Acid Metabolism to Overcome Sunitinib-Resistant Renal Cell Carcinoma. ACS NANO 2024; 18:27487-27502. [PMID: 39329191 DOI: 10.1021/acsnano.4c08055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Reprogramming of cellular metabolism in tumors promoted the epithelial-mesenchymal transition (EMT) process and established immune-suppressive tumor microenvironments (iTME), leading to drug resistance and tumor progression. Therefore, remodeling the cellular metabolism of tumor cells was a promising strategy to overcome drug-resistant tumors. Herein, CD276 and MTHFD2 were identified as a specific marker and a therapeutic target, respectively, for targeting sunitinib-resistant clear cell renal cell carcinoma (ccRCC) and its cancer stem cell (CSC) population. The blockade of MTHFD2 was confirmed to overcome drug resistance via remodeling of folate-nucleotide metabolism. Moreover, the manganese dioxide nanoparticle was proven here by a high-throughput metabolome to be capable of remodeling γ-aminobutyric acid (GABA) metabolism in tumor cells to reconstruct the iTME. Based on these findings, engineered CD276-CD133 dual-targeting biomimetic nanovesicle EMφ-siMTHFD2-MnO2@Suni was designed to overcome drug resistance and terminate tumor progression of ccRCC. Using ccRCC-bearing immune-humanized NPG model mice, EMφ-siMTHFD2-MnO2@Suni was observed to remodel folate-nucleotide and GABA metabolism to deactivate the EMT process and reconstruct the iTME thereby overcoming the drug resistance. In the incomplete-tumor-resection recurrence model and metastasis model, EMφ-siMTHFD2-MnO2@Suni reduced recurrence and metastasis in vivo. This work thus provided an innovative approach that held great potential in the treatment of drug-resistant ccRCC by remodeling cellular metabolism.
Collapse
Affiliation(s)
- Minchao Lv
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 2200/25 Xietu Rd, Shanghai 200032, China
| | - Bin Liu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 2200/25 Xietu Rd, Shanghai 200032, China
| | - Yi Duan
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 2200/25 Xietu Rd, Shanghai 200032, China
| | - Jiangtao Lin
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 2200/25 Xietu Rd, Shanghai 200032, China
| | - Li Dai
- Department of Otolaryngology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1678 Dongfang Rd, Shanghai 200127, China
| | - Yuanyuan Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 2200/25 Xietu Rd, Shanghai 200032, China
| | - Jian Yu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 2200/25 Xietu Rd, Shanghai 200032, China
| | - Jinghan Liao
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 2200/25 Xietu Rd, Shanghai 200032, China
| | - Jiali Zhang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 2200/25 Xietu Rd, Shanghai 200032, China
| | - Yourong Duan
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 2200/25 Xietu Rd, Shanghai 200032, China
| |
Collapse
|
17
|
Cao Q, Fang H, Tian H. mRNA vaccines contribute to innate and adaptive immunity to enhance immune response in vivo. Biomaterials 2024; 310:122628. [PMID: 38820767 DOI: 10.1016/j.biomaterials.2024.122628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 05/02/2024] [Accepted: 05/19/2024] [Indexed: 06/02/2024]
Abstract
Messenger RNA (mRNA) therapeutics have been widely employed as strategies for the treatment and prevention of diseases. Amid the global outbreak of COVID-19, mRNA vaccines have witnessed rapid development. Generally, in the case of mRNA vaccines, the initiation of the innate immune system serves as a prerequisite for triggering subsequent adaptive immune responses. Critical cells, cytokines, and chemokines within the innate immune system play crucial and beneficial roles in coordinating tailored immune reactions towards mRNA vaccines. Furthermore, immunostimulators and delivery systems play a significant role in augmenting the immune potency of mRNA vaccines. In this comprehensive review, we systematically delineate the latest advancements in mRNA vaccine research, present an in-depth exploration of strategies aimed at amplifying the immune effectiveness of mRNA vaccines, and offer some perspectives and recommendations regarding the future advancements in mRNA vaccine development.
Collapse
Affiliation(s)
- Qiannan Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Huapan Fang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China; Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China; Institute of Functional Nano and Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China.
| | - Huayu Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China; Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China.
| |
Collapse
|
18
|
Ren H, Zhu A, Yang W, Jia Y, Cheng H, Wu Y, Tang Z, Ye W, Sun M, Xie Y, Yu M, Chen Y. 2D Differential Metallic Immunopotentiators Drive High Diversity and Capability of Antigen-specific Immunity Against Tumor. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405729. [PMID: 39225346 PMCID: PMC11516112 DOI: 10.1002/advs.202405729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/27/2024] [Indexed: 09/04/2024]
Abstract
The therapeutic efficacy of vaccines for treating cancers in clinics remains limited. Here, a rationally designed cancer vaccine by placing immunogenically differential and clinically approved aluminum (Al) or manganese (Mn) in a 2D nanosheet (NS) architecture together with antigens is reported. Structurally optimal NS with a high molar ratio of Mn to Al (MANS-H) features distinctive immune modulation, markedly promoting the influx of heterogeneous innate immune cells at the injection site. Stimulation of multiple subsets of dendritic cells (DCs) significantly increases the levels, subtypes, and functionalities of antigen-specific T cells. MANS-H demonstrates even greater effectiveness in the production of antigen-specific antibodies than the commercial adjuvant (Alhydrogel) by priming T helper (Th)2 cells rather than T follicular helper (Tfh) cells. Beyond humoral immunity, MANS-H evokes high frequencies of antigen-specific Th1 and CD8+ cell immunity, which are comparable with Quil-A that is widely used in veterinary vaccines. Immunized mice with MANS-H adjuvanted vaccines exert strong potency in tumor regression by promoting effector T cells infiltrating at tumor and overcoming tumor resistance in multiple highly aggressive tumor models. The engineered immunogen with an intriguing NS architecture and safe immunopotentiators offers the next clinical advance in cancer immunotherapy.
Collapse
Affiliation(s)
- Hongze Ren
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444China
- School of medicineShanghai UniversityShanghai200444China
| | - Anqi Zhu
- Department of Medical UltrasoundShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200070China
| | - Wei Yang
- Department of UrologyXinhua HospitalSchool of MedicineShanghai Jiaotong UniversityShanghai200092China
| | - Yiwen Jia
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444China
| | - Hui Cheng
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444China
| | - Ye Wu
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444China
- School of medicineShanghai UniversityShanghai200444China
| | - Zhengqi Tang
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444China
| | - Weifan Ye
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444China
| | - Mayu Sun
- Laboratory CenterShanghai Municipal Hospital of Traditional Chinese MedicineShanghai University of Traditional Chinese MedicineShanghai201203China
| | - Yujie Xie
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444China
- School of medicineShanghai UniversityShanghai200444China
| | - Meihua Yu
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444China
| | - Yu Chen
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444China
- School of medicineShanghai UniversityShanghai200444China
| |
Collapse
|
19
|
Chen S, Deng Z, Ji D. Advances in the development of lipid nanoparticles for ophthalmic therapeutics. Biomed Pharmacother 2024; 178:117108. [PMID: 39067162 DOI: 10.1016/j.biopha.2024.117108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/28/2024] [Accepted: 07/07/2024] [Indexed: 07/30/2024] Open
Abstract
Previously, researchers have employed Lipid nanoparticles (LNPs) to directly encapsulate medicines. In the realm of gene therapy, researchers have begun to employ lipid nanoparticles to encapsulate nucleic acids such as messenger RNA, small interfering RNA, and plasmid DNA, which are known as nucleic acid lipid nanoparticles. Recent breakthroughs in LNP-based medicine have provided significant prospects for the treatment of ocular disorders, such as corneal, choroidal, and retinal diseases. The use of LNP as a delivery mechanism for medicines and therapeutic genes can increase their effectiveness while avoiding undesired immune reactions. However, LNP-based medicines may pose ocular concerns. In this review, we discuss the general framework of LNP. Additionally, we review adjustable approaches and evaluate their possible risks. In addition, we examine newly described ocular illnesses in which LNP was utilized as a delivery mechanism. Finally, we provide perspectives for solving these potential issues.
Collapse
Affiliation(s)
- Shen Chen
- The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhihong Deng
- Department of Ophthalmology, the Third Xiangya Hospital, Central South University, Changsha, China.
| | - Dan Ji
- Department of Ophthalmology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China; Department of Ophthalmology, Xiangya Hospital, Central South University, Hunan Key Laboratory of Ophthalmology, Changsha, China.
| |
Collapse
|
20
|
Jiao X, He X, Qin S, Yin X, Song T, Duan X, Shi H, Jiang S, Zhang Y, Song X. Insights into the formulation of lipid nanoparticles for the optimization of mRNA therapeutics. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1992. [PMID: 39358893 DOI: 10.1002/wnan.1992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/01/2024] [Accepted: 08/12/2024] [Indexed: 10/04/2024]
Abstract
mRNA-based therapeutics increasingly demonstrate significant potential in treating various diseases, including infectious diseases, cancers, and genetic disorders. Effective delivery systems are crucial for advancing mRNA therapeutics. Lipid nanoparticles (LNPs) serve as an excellent carrier, widely validated for their safety and tolerability in commercially available mRNA vaccines. Standard LNPs typically consist of four components: ionizable lipids (ILs), helper lipids, cholesterol, and polyethylene glycol-lipids (PEG-lipids), with the structural design of ILs gradually becoming a focal point of research interest. The chemical structures and formulations of the other components also significantly affect the delivery efficiency, targeting specificity, and stability of LNPs. The complex formulations of LNPs may hinder the clinical transformation of mRNA therapeutics and have raised widespread concerns about their safety. This review aims to summarize the progress of LNPs-based mRNA therapeutics in clinical trials, focusing on adverse effects that occurred during these trials. It also discusses representative innovations in LNP components, highlighting challenges and potential ways in this research field. We firmly believe this review will promote further improvements and designs of LNP compositions to optimize mRNA therapeutics. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Biology-Inspired Nanomaterials > Lipid-Based Structures.
Collapse
Affiliation(s)
- Xiangyu Jiao
- Department of Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xi He
- Department of Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Shugang Qin
- Department of Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoling Yin
- Department of Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Tingting Song
- Department of Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xing Duan
- Department of Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Haixing Shi
- Department of Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Shanhui Jiang
- Department of Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yupei Zhang
- Department of Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiangrong Song
- Department of Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
21
|
Wu Z, Sun W, Qi H. Recent Advancements in mRNA Vaccines: From Target Selection to Delivery Systems. Vaccines (Basel) 2024; 12:873. [PMID: 39203999 PMCID: PMC11359327 DOI: 10.3390/vaccines12080873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 09/03/2024] Open
Abstract
mRNA vaccines are leading a medical revolution. mRNA technologies utilize the host's own cells as bio-factories to produce proteins that serve as antigens. This revolutionary approach circumvents the complicated processes involved in traditional vaccine production and empowers vaccines with the ability to respond to emerging or mutated infectious diseases rapidly. Additionally, the robust cellular immune response elicited by mRNA vaccines has shown significant promise in cancer treatment. However, the inherent instability of mRNA and the complexity of tumor immunity have limited its broader application. Although the emergence of pseudouridine and ionizable cationic lipid nanoparticles (LNPs) made the clinical application of mRNA possible, there remains substantial potential for further improvement of the immunogenicity of delivered antigens and preventive or therapeutic effects of mRNA technology. Here, we review the latest advancements in mRNA vaccines, including but not limited to target selection and delivery systems. This review offers a multifaceted perspective on this rapidly evolving field.
Collapse
Affiliation(s)
- Zhongyan Wu
- Newish Biological R&D Center, Beijing 100101, China;
| | - Weilu Sun
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK;
| | - Hailong Qi
- Newish Biological R&D Center, Beijing 100101, China;
| |
Collapse
|
22
|
Wang J, Fang Y, Luo Z, Wang J, Zhao Y. Emerging mRNA Technology for Liver Disease Therapy. ACS NANO 2024; 18:17378-17406. [PMID: 38916747 DOI: 10.1021/acsnano.4c02987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Liver diseases have consistently posed substantial challenges to global health. It is crucial to find innovative methods to effectively prevent and treat these diseases. In recent times, there has been an increasing interest in the use of mRNA formulations that accumulate in liver tissue for the treatment of hepatic diseases. In this review, we start by providing a detailed introduction to the mRNA technology. Afterward, we highlight types of liver diseases, discussing their causes, risks, and common therapeutic strategies. Additionally, we summarize the latest advancements in mRNA technology for the treatment of liver diseases. This includes systems based on hepatocyte growth factor, hepatitis B virus antibody, left-right determination factor 1, human hepatocyte nuclear factor α, interleukin-12, methylmalonyl-coenzyme A mutase, etc. Lastly, we provide an outlook on the potential of mRNA technology for the treatment of liver diseases, while also highlighting the various technical challenges that need to be addressed. Despite these difficulties, mRNA-based therapeutic strategies may change traditional treatment methods, bringing hope to patients with liver diseases.
Collapse
Affiliation(s)
- Ji Wang
- Department of Rheumatology and Immunology, Institute of Translational Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Yile Fang
- Department of Rheumatology and Immunology, Institute of Translational Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Zhiqiang Luo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Jinglin Wang
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Institute of Translational Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
23
|
El-Zahaby SA, Kaur L, Sharma A, Prasad AG, Wani AK, Singh R, Zakaria MY. Lipoplexes' Structure, Preparation, and Role in Managing Different Diseases. AAPS PharmSciTech 2024; 25:131. [PMID: 38849687 DOI: 10.1208/s12249-024-02850-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/23/2024] [Indexed: 06/09/2024] Open
Abstract
Lipid-based vectors are becoming promising alternatives to traditional therapies over the last 2 decades specially for managing life-threatening diseases like cancer. Cationic lipids are the most prevalent non-viral vectors utilized in gene delivery. The increasing number of clinical trials about lipoplex-based gene therapy demonstrates their potential as well-established technology that can provide robust gene transfection. In this regard, this review will summarize this important point. These vectors however have a modest transfection efficiency. This limitation can be partly addressed by using functional lipids that provide a plethora of options for investigating nucleic acid-lipid interactions as well as in vitro and in vivo nucleic acid delivery for biomedical applications. Despite their lower gene transfer efficiency, lipid-based vectors such as lipoplexes have several advantages over viral ones: they are less toxic and immunogenic, can be targeted, and are simple to produce on a large scale. Researchers are actively investigating the parameters that are essential for an effective lipoplex delivery method. These include factors that influence the structure, stability, internalization, and transfection of the lipoplex. Thorough understanding of the design principles will enable synthesis of customized lipoplex formulations for life-saving therapy.
Collapse
Affiliation(s)
- Sally A El-Zahaby
- Department of Pharmaceutics and Industrial Pharmacy, PharmD Program, Egypt-Japan University of Science and Technology (E-JUST), Alexandria, Egypt.
| | - Lovepreet Kaur
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, 144411, Punjab, India
| | - Ankur Sharma
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, UK
| | - Aprameya Ganesh Prasad
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Atif Khurshid Wani
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, 144411, Punjab, India
| | - Rattandeep Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, 144411, Punjab, India
| | - Mohamed Y Zakaria
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Port Said University, Port Said, 42526, Egypt
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, King Salman International University, Ras Sudr, 46612, South Sinai, Egypt
| |
Collapse
|
24
|
Karan S, Durán-Meza AL, Chapman A, Tanimoto C, Chan SK, Knobler CM, Gelbart WM, Steinmetz NF. In Vivo Delivery of Spherical and Cylindrical In Vitro Reconstituted Virus-like Particles Containing the Same Self-Amplifying mRNA. Mol Pharm 2024; 21:2727-2739. [PMID: 38709860 PMCID: PMC11250921 DOI: 10.1021/acs.molpharmaceut.3c01105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
The dramatic effectiveness of recent mRNA (mRNA)-based COVID vaccines delivered in lipid nanoparticles has highlighted the promise of mRNA therapeutics in general. In this report, we extend our earlier work on self-amplifying mRNAs delivered in spherical in vitro reconstituted virus-like particles (VLPs), and on drug delivery using cylindrical virus particles. In particular, we carry out separate in vitro assemblies of a self-amplifying mRNA gene in two different virus-like particles: one spherical, formed with the capsid protein of cowpea chlorotic mottle virus (CCMV), and the other cylindrical, formed from the capsid protein of tobacco mosaic virus (TMV). The mRNA gene is rendered self-amplifying by genetically fusing it to the RNA-dependent RNA polymerase (RdRp) of Nodamura virus, and the relative efficacies of cell uptake and downstream protein expression resulting from their CCMV- and TMV-packaged forms are compared directly. This comparison is carried out by their transfections into cells in culture: expressions of two self-amplifying genes, enhanced yellow fluorescent protein (EYFP) and Renilla luciferase (Luc), packaged alternately in CCMV and TMV VLPs, are quantified by fluorescence and chemiluminescence levels, respectively, and relative numbers of the delivered mRNAs are measured by quantitative real-time PCR. The cellular uptake of both forms of these VLPs is further confirmed by confocal microscopy of transfected cells. Finally, VLP-mediated delivery of the self-amplifying-mRNA in mice following footpad injection is shown by in vivo fluorescence imaging to result in robust expression of EYFP in the draining lymph nodes, suggesting the potential of these plant virus-like particles as a promising mRNA gene and vaccine delivery modality. These results establish that both CCMV and TMV VLPs can deliver their in vitro packaged mRNA genes to immune cells and that their self-amplifying forms significantly enhance in situ expression. Choice of one VLP (CCMV or TMV) over the other will depend on which geometry of nucleocapsid is self-assembled more efficiently for a given length and sequence of RNA, and suggests that these plant VLP gene delivery systems will prove useful in a wide variety of medical applications, both preventive and therapeutic.
Collapse
Affiliation(s)
- Sweta Karan
- Department of NanoEngineering, University of California San Diego, La Jolla, California 92093, United States
- Center for Nano-ImmunoEngineering, University of California San Diego, La Jolla, California 92093, United States
- Shu and K. C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, California 92093, United States
| | - Ana Luisa Durán-Meza
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Abigail Chapman
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Cheylene Tanimoto
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Soo Khim Chan
- Department of NanoEngineering, University of California San Diego, La Jolla, California 92093, United States
- Center for Nano-ImmunoEngineering, University of California San Diego, La Jolla, California 92093, United States
| | - Charles M Knobler
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - William M Gelbart
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
- UCLA Molecular Biology Institute, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Nicole F Steinmetz
- Department of NanoEngineering, University of California San Diego, La Jolla, California 92093, United States
- Center for Nano-ImmunoEngineering, University of California San Diego, La Jolla, California 92093, United States
- Institute for Materials Discovery and Design, University of California San Diego, La Jolla, California 92093, United States
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States
- Department of Radiology, University of California San Diego, La Jolla, California 92093, United States
- Moores Cancer Center, University of California San Diego, La Jolla, California 92093, United States
- Center for Engineering in Cancer, Institute for Engineering in Medicine, University of California, San Diego, La Jolla, California 92093, United States
- Shu and K. C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
25
|
Zhang Y, Zhai S, Huang H, Qin S, Sun M, Chen Y, Lan X, Li G, Huang Z, Wang D, Luo Y, Xiao W, Li H, He X, Chen M, Peng X, Song X. Efficient signal sequence of mRNA vaccines enhances the antigen expression to expand the immune protection against viral infection. J Nanobiotechnology 2024; 22:295. [PMID: 38807131 PMCID: PMC11134928 DOI: 10.1186/s12951-024-02488-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/17/2024] [Indexed: 05/30/2024] Open
Abstract
The signal sequence played a crucial role in the efficacy of mRNA vaccines against virus pandemic by influencing antigen translation. However, limited research had been conducted to compare and analyze the specific mechanisms involved. In this study, a novel approach was introduced by substituting the signal sequence of the mRNA antigen to enhance its immune response. Computational simulations demonstrated that various signal peptides differed in their binding capacities with the signal recognition particle (SRP) 54 M subunit, which positively correlated with antigen translation efficiency. Our data revealed that the signal sequences of tPA and IL-6-modified receptor binding domain (RBD) mRNA vaccines sequentially led to higher antigen expression and elicited more robust humoral and cellular immune protection against the SARS-CoV-2 compared to the original signal sequence. By highlighting the importance of the signal sequence, this research provided a foundational and safe approach for ongoing modifications in signal sequence-antigen design, aiming to optimize the efficacy of mRNA vaccines.
Collapse
Affiliation(s)
- Yupei Zhang
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Songhui Zhai
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Hai Huang
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Shugang Qin
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Min Sun
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuting Chen
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xing Lan
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Guohong Li
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhiying Huang
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Denggang Wang
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yaoyao Luo
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wen Xiao
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hao Li
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xi He
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| | - Xingchen Peng
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Xiangrong Song
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
26
|
Guo Z, Ye J, Cheng X, Wang T, Zhang Y, Yang K, Du S, Li P. Nanodrug Delivery Systems in Antitumor Immunotherapy. Biomater Res 2024; 28:0015. [PMID: 38840653 PMCID: PMC11045275 DOI: 10.34133/bmr.0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/26/2024] [Indexed: 06/07/2024] Open
Abstract
Cancer has become one of the most important factors threatening human health, and the global cancer burden has been increasing rapidly. Immunotherapy has become another clinical research hotspot after surgery, chemotherapy, and radiotherapy because of its high efficiency and tumor metastasis prevention. However, problems such as lower immune response rate and immune-related adverse reaction in the clinical application of immunotherapy need to be urgently solved. With the development of nanodrug delivery systems, various nanocarrier materials have been used in the research of antitumor immunotherapy with encouraging therapeutic results. In this review, we mainly summarized the combination of nanodrug delivery systems and immunotherapy from the following 4 aspects: (a) nanodrug delivery systems combined with cytokine therapy to improve cytokines delivery in vivo; (b) nanodrug delivery systems provided a suitable platform for the combination of immune checkpoint blockade therapy with other tumor treatments; (c) nanodrug delivery systems helped deliver antigens and adjuvants for tumor vaccines to enhance immune effects; and (d) nanodrug delivery systems improved tumor treatment efficiency and reduced toxicity for adoptive cell therapy. Nanomaterials chosen by researchers to construct nanodrug delivery systems and their function were also introduced in detail. Finally, we discussed the current challenges and future prospects in combining nanodrug delivery systems with immunotherapy.
Collapse
Affiliation(s)
- Zishuo Guo
- Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jinhong Ye
- Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xuehao Cheng
- Beijing University of Chinese Medicine, Beijing 102488, China
| | - Tieshan Wang
- Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yi Zhang
- YiDu Central Hospital of Weifang, Weifang, Shandong 262500, China
| | - Kaili Yang
- Beijing University of Chinese Medicine, Beijing 102488, China
| | | | - Pengyue Li
- Address correspondence to: (P.L.); (S.D.)
| |
Collapse
|
27
|
Tang X, Huo M, Chen Y, Huang H, Qin S, Luo J, Qin Z, Jiang X, Liu Y, Duan X, Wang R, Chen L, Li H, Fan N, He Z, He X, Shen B, Li SC, Song X. A novel deep generative model for mRNA vaccine development: Designing 5' UTRs with N1-methyl-pseudouridine modification. Acta Pharm Sin B 2024; 14:1814-1826. [PMID: 38572113 PMCID: PMC10985129 DOI: 10.1016/j.apsb.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/26/2023] [Accepted: 11/01/2023] [Indexed: 04/05/2024] Open
Abstract
Efficient translation mediated by the 5' untranslated region (5' UTR) is essential for the robust efficacy of mRNA vaccines. However, the N1-methyl-pseudouridine (m1Ψ) modification of mRNA can impact the translation efficiency of the 5' UTR. We discovered that the optimal 5' UTR for m1Ψ-modified mRNA (m1Ψ-5' UTR) differs significantly from its unmodified counterpart, highlighting the need for a specialized tool for designing m1Ψ-5' UTRs rather than directly utilizing high-expression endogenous gene 5' UTRs. In response, we developed a novel machine learning-based tool, Smart5UTR, which employs a deep generative model to identify superior m1Ψ-5' UTRs in silico. The tailored loss function and network architecture enable Smart5UTR to overcome limitations inherent in existing models. As a result, Smart5UTR can successfully design superior 5' UTRs, greatly benefiting mRNA vaccine development. Notably, Smart5UTR-designed superior 5' UTRs significantly enhanced antibody titers induced by COVID-19 mRNA vaccines against the Delta and Omicron variants of SARS-CoV-2, surpassing the performance of vaccines using high-expression endogenous gene 5' UTRs.
Collapse
Affiliation(s)
- Xiaoshan Tang
- Institute of Systems Genetics, Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Miaozhe Huo
- Department of Computer Science, City University of Hong Kong, Hong Kong 99907, China
| | - Yuting Chen
- Institute of Systems Genetics, Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Hai Huang
- Institute of Systems Genetics, Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Shugang Qin
- Institute of Systems Genetics, Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Jiaqi Luo
- Department of Computer Science, City University of Hong Kong, Hong Kong 99907, China
| | - Zeyi Qin
- Department of Biology, Brandeis University, Boston, MA 02453, USA
| | - Xin Jiang
- Institute of Systems Genetics, Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Yongmei Liu
- Institute of Systems Genetics, Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Xing Duan
- Institute of Systems Genetics, Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Ruohan Wang
- Department of Computer Science, City University of Hong Kong, Hong Kong 99907, China
| | - Lingxi Chen
- Department of Computer Science, City University of Hong Kong, Hong Kong 99907, China
| | - Hao Li
- Institute of Systems Genetics, Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Na Fan
- Institute of Systems Genetics, Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Zhongshan He
- Institute of Systems Genetics, Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Xi He
- Institute of Systems Genetics, Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Bairong Shen
- Institute of Systems Genetics, Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Shuai Cheng Li
- Department of Computer Science, City University of Hong Kong, Hong Kong 99907, China
| | - Xiangrong Song
- Institute of Systems Genetics, Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610000, China
| |
Collapse
|
28
|
Sheng Y, Li Z, Lin X, Wang L, Zhu H, Su Z, Zhang S. In situ bio-mineralized Mn nanoadjuvant enhances anti-influenza immunity of recombinant virus-like particle vaccines. J Control Release 2024; 368:275-289. [PMID: 38382812 DOI: 10.1016/j.jconrel.2024.02.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/14/2024] [Accepted: 02/18/2024] [Indexed: 02/23/2024]
Abstract
Virus like particles (VLPs) have been well recognized as one of the most important vaccine platforms due to their structural similarity to natural viruses to induce effective humoral and cellular immune responses. Nevertheless, lack of viral nucleic acids in VLPs usually leads the vaccine candidates less efficient in provoking innate immune against viral infection. Here, we constructed a biomimetic dual antigen hybrid influenza nanovaccines THM-HA@Mn with robust immunogenicity via in situ synthesizing a stimulator of interferon genes (STING) agonist Mn3O4 inside the cavity of a recombinant Hepatitis B core antigen VLP (HBc VLP) having fused SpyTag and influenza M2e antigen peptides (Tag-HBc-M2e, THM for short), followed by conjugating a recombinant hemagglutinin (rHA) antigen on the surface of the nanoparticles through SpyTag/SpyCatcher ligating. Such inside Mn3O4 immunostimulator-outside rHA antigen design, together with the chimeric M2e antigen on the HBc skeleton, enabled the synthesized hybrid nanovaccines THM-HA@Mn to well imitate the spatial distribution of M2e/HA antigens and immunostimulant in natural influenza virus. In vitro cellular experiments indicated that compared with the THM-HA antigen without Mn3O4 and a mixture vaccine consisting of THM-HA + MnOx, the THM-HA@Mn hybrid nanovaccines showed the highest efficacies in dendritic cells uptake and in promoting BMDC maturation, as well as inducing expression of TNF-α and type I interferon IFN-β. The THM-HA@Mn also displayed the most sustained antigen release at the injection site, the highest efficacies in promoting the DC maturation in lymph nodes and germinal center B cells activation in the spleen of the immunized mice. The co-delivery of immunostimulant and antigens enabled the THM-HA@Mn nanovaccines to induce the highest systemic antigen-specific antibody responses and cellular immunogenicity in mice. Together with the excellent colloid dispersion stability, low cytotoxicity, as well as good biosafety, the synthetic hybrid nanovaccines presented in this study offers a promising strategy to design VLP-based vaccine with robust natural and adaptive immunogenicity against emerging viral pathogens.
Collapse
Affiliation(s)
- Yanan Sheng
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhengjun Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, China
| | - Xuan Lin
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, China
| | - Liuyang Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongyu Zhu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu 376-8515, Japan
| | - Zhiguo Su
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, China
| | - Songping Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
29
|
Wang J, Zhu H, Gan J, Liang G, Li L, Zhao Y. Engineered mRNA Delivery Systems for Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308029. [PMID: 37805865 DOI: 10.1002/adma.202308029] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/05/2023] [Indexed: 10/09/2023]
Abstract
Messenger RNA (mRNA)-based therapeutic strategies have shown remarkable promise in preventing and treating a staggering range of diseases. Optimizing the structure and delivery system of engineered mRNA has greatly improved its stability, immunogenicity, and protein expression levels, which has led to a wider range of uses for mRNA therapeutics. Herein, a thorough analysis of the optimization strategies used in the structure of mRNA is first provided and delivery systems are described in great detail. Furthermore, the latest advancements in biomedical engineering for mRNA technology, including its applications in combatting infectious diseases, treating cancer, providing protein replacement therapy, conducting gene editing, and more, are summarized. Lastly, a perspective on forthcoming challenges and prospects concerning the advancement of mRNA therapeutics is offered. Despite these challenges, mRNA-based therapeutics remain promising, with the potential to revolutionize disease treatment and contribute to significant advancements in the biomedical field.
Collapse
Affiliation(s)
- Ji Wang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Haofang Zhu
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Jingjing Gan
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Gaofeng Liang
- Institute of Organoids on Chips Translational Research, Henan Academy of Sciences, Zhengzhou, 450009, China
| | - Ling Li
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Institute of Organoids on Chips Translational Research, Henan Academy of Sciences, Zhengzhou, 450009, China
| |
Collapse
|
30
|
Lan X, Qin S, Liu H, Guo M, Zhang Y, Jin X, Duan X, Sun M, Liu Z, Wang W, Zheng Q, Liao X, Chen J, Kang Y, Xie Y, Song X. Dual-targeting tigecycline nanoparticles for treating intracranial infections caused by multidrug-resistant Acinetobacter baumannii. J Nanobiotechnology 2024; 22:138. [PMID: 38555444 PMCID: PMC10981309 DOI: 10.1186/s12951-024-02373-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 02/26/2024] [Indexed: 04/02/2024] Open
Abstract
Multidrug-resistant (MDR) Acinetobacter baumannii (A. baumannii) is a formidable pathogen responsible for severe intracranial infections post-craniotomy, exhibiting a mortality rate as high as 71%. Tigecycline (TGC), a broad-spectrum antibiotic, emerged as a potential therapeutic agent for MDR A. baumannii infections. Nonetheless, its clinical application was hindered by a short in vivo half-life and limited permeability through the blood-brain barrier (BBB). In this study, we prepared a novel core-shell nanoparticle encapsulating water-soluble tigecycline using a blend of mPEG-PLGA and PLGA materials. This nanoparticle, modified with a dual-targeting peptide Aβ11 and Tween 80 (Aβ11/T80@CSs), was specifically designed to enhance the delivery of tigecycline to the brain for treating A. baumannii-induced intracranial infections. Our findings demonstrated that Aβ11/T80@CSs nanocarriers successfully traversed the BBB and effectively delivered TGC into the cerebrospinal fluid (CSF), leading to a significant therapeutic response in a model of MDR A. baumannii intracranial infection. This study offers initial evidence and a platform for the application of brain-targeted nanocarrier delivery systems, showcasing their potential in administering water-soluble anti-infection drugs for intracranial infection treatments, and suggesting promising avenues for clinical translation.
Collapse
Affiliation(s)
- Xing Lan
- Department of Critical Care Medicine, Department of Clinical Pharmacy, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China School of Nursing, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Drug Delivery and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, 300301, People's Republic of China
| | - Shugang Qin
- Department of Critical Care Medicine, Department of Clinical Pharmacy, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China School of Nursing, West China Hospital, Sichuan University, Chengdu, China
| | - Huan Liu
- Department of Critical Care Medicine, Department of Clinical Pharmacy, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China School of Nursing, West China Hospital, Sichuan University, Chengdu, China
| | - Mengran Guo
- Department of Critical Care Medicine, Department of Clinical Pharmacy, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China School of Nursing, West China Hospital, Sichuan University, Chengdu, China
| | - Yupei Zhang
- Department of Critical Care Medicine, Department of Clinical Pharmacy, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China School of Nursing, West China Hospital, Sichuan University, Chengdu, China
| | - Xinyang Jin
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau, China
- Shihezi University, Xinjiang, China
| | - Xing Duan
- Department of Critical Care Medicine, Department of Clinical Pharmacy, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China School of Nursing, West China Hospital, Sichuan University, Chengdu, China
| | - Min Sun
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau, China
- Shihezi University, Xinjiang, China
| | - Zhenjun Liu
- Department of Critical Care Medicine, Department of Clinical Pharmacy, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China School of Nursing, West China Hospital, Sichuan University, Chengdu, China
| | - Wenyan Wang
- Department of Critical Care Medicine, Department of Clinical Pharmacy, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China School of Nursing, West China Hospital, Sichuan University, Chengdu, China
| | - Qian Zheng
- Department of Critical Care Medicine, Department of Clinical Pharmacy, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China School of Nursing, West China Hospital, Sichuan University, Chengdu, China
| | - Xuelian Liao
- Department of Critical Care Medicine, Department of Clinical Pharmacy, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China School of Nursing, West China Hospital, Sichuan University, Chengdu, China
| | - Jinpeng Chen
- State Key Laboratory of Drug Delivery and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, 300301, People's Republic of China
| | - Yan Kang
- Department of Critical Care Medicine, Department of Clinical Pharmacy, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China School of Nursing, West China Hospital, Sichuan University, Chengdu, China.
| | - Yongmei Xie
- Department of Critical Care Medicine, Department of Clinical Pharmacy, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China School of Nursing, West China Hospital, Sichuan University, Chengdu, China.
| | - Xiangrong Song
- Department of Critical Care Medicine, Department of Clinical Pharmacy, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China School of Nursing, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
31
|
Zhang H, Gao X, Sun Q, Dong X, Zhu Z, Yang C. Incorporation of poly(γ-glutamic acid) in lipid nanoparticles for enhanced mRNA delivery efficiency in vitro and in vivo. Acta Biomater 2024; 177:361-376. [PMID: 38342193 DOI: 10.1016/j.actbio.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 01/26/2024] [Accepted: 02/04/2024] [Indexed: 02/13/2024]
Abstract
Messenger RNA (mRNA)-based therapy shows immense potential for broad biomedical applications. However, the development of safe and efficacious mRNA delivery vectors remains challenging due to delivery barriers and inefficient intracellular payload release. Herein, we presented a simple strategy to boost the mRNA intracellular release by incorporation of anionic poly(γ-glutamic acid) (PGA) into an ionizable lipid-based LNP/mRNA. We systematically investigated the impact of PGA incorporation on mRNA transfection both in vitro and in vivo. The molecular weights and formulation ratios of PGA greatly affected the transfection efficacy of LNP/mRNA. From in vitro study, the optimized LNP/mRNA/PGA was formulated by incorporation of PGA with the molecular weight of 80 kDa or 200 kDa and the charge ratio (N/P/C) of 25/1/1. The optimized formulation achieved around 3-fold mRNA expression in HeLa cells compared to the bare LNP/mRNA. The intracellular releasing study using specific DNA probe revealed that this enhancement of transfection efficacy was attributed to the elevated mRNA release into cytoplasm. Moreover, the optimized LNP/mRNA/PGA achieved up to 5-fold or 3-fold increase of luciferase mRNA expression in vivo after being injected into mice systematically or intramuscularly, respectively. In addition, the incorporation of PGA did not significantly alter the biodistribution profile of the complexes on both organ and cellular levels. Therefore, our work provides a simple strategy to boost mRNA delivery, which holds great promise to improve the efficacy of mRNA therapeutics for various biomedical applications. STATEMENT OF SIGNIFICANCE: The process of designing and screening potent mRNA carriers is complicated and time-consuming, while the efficacy is not always satisfying due to the delivery barriers and inefficient mRNA release. This work presented an alternative strategy to boost the mRNA delivery efficacy by incorporating an anionic natural polymer poly(γ-glutamic acid) (PGA) into LNP/mRNA complexes. The optimized LNP/mRNA/PGA achieved up to 3-fold and 5-fold increase in transfection efficacy in vitro and in vivo, respectively. Intracellular releasing analysis revealed that the enhancement of transfection efficacy was mainly attributed to the elevated intracellular release of mRNA. In addition, the incorporation of PGA did not alter the biodistribution or the biosafety profile of the complexes. These findings indicate that PGA incorporation is a promising strategy to improve the efficacy of mRNA therapeutics.
Collapse
Affiliation(s)
- Hongqian Zhang
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, and School of Chemistry and Chemical Engineering, Shandong University, Jinan 25010, China
| | - Xue Gao
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, and School of Chemistry and Chemical Engineering, Shandong University, Jinan 25010, China
| | - Qian Sun
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, and School of Chemistry and Chemical Engineering, Shandong University, Jinan 25010, China
| | - Xiaoxue Dong
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, and School of Chemistry and Chemical Engineering, Shandong University, Jinan 25010, China
| | - Zongwei Zhu
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, and School of Chemistry and Chemical Engineering, Shandong University, Jinan 25010, China
| | - Chuanxu Yang
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, and School of Chemistry and Chemical Engineering, Shandong University, Jinan 25010, China.
| |
Collapse
|
32
|
Witten J, Hu Y, Langer R, Anderson DG. Recent advances in nanoparticulate RNA delivery systems. Proc Natl Acad Sci U S A 2024; 121:e2307798120. [PMID: 38437569 PMCID: PMC10945842 DOI: 10.1073/pnas.2307798120] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024] Open
Abstract
Nanoparticle-based RNA delivery has shown great progress in recent years with the approval of two mRNA vaccines for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and a liver-targeted siRNA therapy. Here, we discuss the preclinical and clinical advancement of new generations of RNA delivery therapies along multiple axes. Improvements in cargo design such as RNA circularization and data-driven untranslated region optimization can drive better mRNA expression. New materials discovery research has driven improved delivery to extrahepatic targets such as the lung and splenic immune cells, which could lead to pulmonary gene therapy and better cancer vaccines, respectively. Other organs and even specific cell types can be targeted for delivery via conjugation of small molecule ligands, antibodies, or peptides to RNA delivery nanoparticles. Moreover, the immune response to any RNA delivery nanoparticle plays a crucial role in determining efficacy. Targeting increased immunogenicity without induction of reactogenic side effects is crucial for vaccines, while minimization of immune response is important for gene therapies. New developments have addressed each of these priorities. Last, we discuss the range of RNA delivery clinical trials targeting diverse organs, cell types, and diseases and suggest some key advances that may play a role in the next wave of therapies.
Collapse
Affiliation(s)
- Jacob Witten
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Yizong Hu
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Robert Langer
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
- Harvard and Massachusetts Institute of Technology Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Anesthesiology, Boston Children’s Hospital, Boston, MA02115
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Daniel G. Anderson
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
- Harvard and Massachusetts Institute of Technology Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Anesthesiology, Boston Children’s Hospital, Boston, MA02115
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA02139
| |
Collapse
|
33
|
Liu J, Zhang Y, Yang B, Jia Y, Liu RT, Ding L, Shen Z, Chen X. Synergistic Glutathione Depletion and STING Activation to Potentiate Dendritic Cell Maturation and Cancer Vaccine Efficacy. Angew Chem Int Ed Engl 2024; 63:e202318530. [PMID: 38196070 DOI: 10.1002/anie.202318530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/29/2023] [Accepted: 01/09/2024] [Indexed: 01/11/2024]
Abstract
Dendritic cell (DC) maturation and antigen presentation are key factors for successful vaccine-based cancer immunotherapy. This study developed manganese-based layered double hydroxide (Mn-LDH) nanoparticles as a self-adjuvanted vaccine carrier that not only promoted DC maturation through synergistically depleting endogenous glutathione (GSH) and activating STING signaling pathway, but also facilitated the delivery of model antigen ovalbumin (OVA) into lymph nodes and subsequent antigen presentation in DCs. Significant therapeutic-prophylactic efficacy of the OVA-loaded Mn-LDH (OVA/Mn-LDH) nanovaccine was determined by the tumor growth inhibition in the mice bearing B16-OVA tumor. Our results showed that the OVA/Mn-LDH nanoparticles could be a potent delivery system for cancer vaccine development without the need of adjuvant. Therefore, the combination of GSH exhaustion and STING pathway activation might be an advisable approach for promoting DC maturation and antigen presentation, finally improving cancer vaccine efficacy.
Collapse
Affiliation(s)
- Jianping Liu
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- School of Biomedical Engineering, Southern Medical of University, Guangzhou, Guangdong, 510515, P. R. China
| | - Ye Zhang
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu, 215123, P. R. China
| | - Bowei Yang
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Yingbo Jia
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Rui-Tian Liu
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Lingwen Ding
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Singapore
| | - Zheyu Shen
- School of Biomedical Engineering, Southern Medical of University, Guangzhou, Guangdong, 510515, P. R. China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Center, Center for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| |
Collapse
|
34
|
Wu L, Li X, Qian X, Wang S, Liu J, Yan J. Lipid Nanoparticle (LNP) Delivery Carrier-Assisted Targeted Controlled Release mRNA Vaccines in Tumor Immunity. Vaccines (Basel) 2024; 12:186. [PMID: 38400169 PMCID: PMC10891594 DOI: 10.3390/vaccines12020186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
In recent years, lipid nanoparticles (LNPs) have attracted extensive attention in tumor immunotherapy. Targeting immune cells in cancer therapy has become a strategy of great research interest. mRNA vaccines are a potential choice for tumor immunotherapy, due to their ability to directly encode antigen proteins and stimulate a strong immune response. However, the mode of delivery and lack of stability of mRNA are key issues limiting its application. LNPs are an excellent mRNA delivery carrier, and their structural stability and biocompatibility make them an effective means for delivering mRNA to specific targets. This study summarizes the research progress in LNP delivery carrier-assisted targeted controlled release mRNA vaccines in tumor immunity. The role of LNPs in improving mRNA stability, immunogenicity, and targeting is discussed. This review aims to systematically summarize the latest research progress in LNP delivery carrier-assisted targeted controlled release mRNA vaccines in tumor immunity to provide new ideas and strategies for tumor immunotherapy, as well as to provide more effective treatment plans for patients.
Collapse
Affiliation(s)
- Liusheng Wu
- Center of Hepatobiliary Pancreatic Disease, Beijing Tsinghua Changgung Hospital, School of Medicine, Tsinghua University, Beijing 100084, China; (L.W.); (X.Q.); (S.W.)
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | - Xiaoqiang Li
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China;
| | - Xinye Qian
- Center of Hepatobiliary Pancreatic Disease, Beijing Tsinghua Changgung Hospital, School of Medicine, Tsinghua University, Beijing 100084, China; (L.W.); (X.Q.); (S.W.)
| | - Shuang Wang
- Center of Hepatobiliary Pancreatic Disease, Beijing Tsinghua Changgung Hospital, School of Medicine, Tsinghua University, Beijing 100084, China; (L.W.); (X.Q.); (S.W.)
| | - Jixian Liu
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China;
| | - Jun Yan
- Center of Hepatobiliary Pancreatic Disease, Beijing Tsinghua Changgung Hospital, School of Medicine, Tsinghua University, Beijing 100084, China; (L.W.); (X.Q.); (S.W.)
| |
Collapse
|
35
|
Liu D, Liang S, Ma K, Meng QF, Li X, Wei J, Zhou M, Yun K, Pan Y, Rao L, Chen X, Wang Z. Tumor Microenvironment-Responsive Nanoparticles Amplifying STING Signaling Pathway for Cancer Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304845. [PMID: 37723642 DOI: 10.1002/adma.202304845] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/14/2023] [Indexed: 09/20/2023]
Abstract
Insufficient activation of the stimulator of interferon genes (STING) signaling pathway and profoundly immunosuppressive microenvironment largely limits the effect of cancer immunotherapy. Herein, tumor microenvironment (TME)-responsive nanoparticles (PMM NPs) are exploited that simultaneously harness STING and Toll-like receptor 4 (TLR4) to augment STING activation via TLR4-mediated nuclear factor-kappa B signaling pathway stimulation, leading to the increased secretion of type I interferons (i.e., 4.0-fold enhancement of IFN-β) and pro-inflammatory cytokines to promote a specific T cell immune response. Moreover, PMM NPs relieve the immunosuppression of the TME by decreasing the percentage of regulatory T cells, and polarizing M2 macrophages to the M1 type, thus creating an immune-supportive TME to unleash a cascade adaptive immune response. Combined with an anti-PD-1 antibody, synergistic efficacy is achieved in both inflamed colorectal cancer and noninflamed metastatic breast tumor models. Moreover, rechallenging tumor-free animals with homotypic cells induced complete tumor rejection, indicating the generation of systemic antitumor memory. These TME-responsive nanoparticles may open a new avenue to achieve the spatiotemporal orchestration of STING activation, providing a promising clinical candidate for next-generation cancer immunotherapy.
Collapse
Affiliation(s)
- Dan Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Shuang Liang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Kongshuo Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Qian-Fang Meng
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Xingang Li
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Jian Wei
- Department of Interventional Radiography, Beijing Friendship Hospital, Capital Medical University, Beijing, 10050, China
| | - Mengli Zhou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Kaiqing Yun
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yuanwei Pan
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China
- Department of Diagnostic Radiology, Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Singapore
| | - Lang Rao
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Xiaoyuan Chen
- Department of Diagnostic Radiology, Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Singapore
- Department of Chemical and Biomolecular Engineering and Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Institute of Molecular and Cell Biology, Agency for Science Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Zhaohui Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| |
Collapse
|
36
|
Wan J, Wang Z, Wang L, Wu L, Zhang C, Zhou M, Fu ZF, Zhao L. Circular RNA vaccines with long-term lymph node-targeting delivery stability after lyophilization induce potent and persistent immune responses. mBio 2024; 15:e0177523. [PMID: 38078742 PMCID: PMC10790773 DOI: 10.1128/mbio.01775-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 10/26/2023] [Indexed: 01/17/2024] Open
Abstract
IMPORTANCE messenger RNA (mRNA) vaccines are a key technology in combating existing and emerging infectious diseases. However, the inherent instability of mRNA and the nonspecificity of lipid nanoparticle-encapsulated (LNP) delivery systems result in the need for cold storage and a relatively short-duration immune response to mRNA vaccines. Herein, we develop a novel vaccine in the form of circRNAs encapsulated in LNPs, and the circular structure of the circRNAs enhances their stability. Lyophilization is considered the most effective method for the long-term preservation of RNA vaccines. However, this process may result in irreversible damage to the nanoparticles, particularly the potential disruption of targeting modifications on LNPs. During the selection of lymph node-targeting ligands, we found that LNPs modified with mannose maintained their physical properties almost unchanged after lyophilization. Additionally, the targeting specificity and immunogenicity remained unaffected. In contrast, even with the addition of cryoprotectants such as sucrose, the physical properties of LNPs were impaired, leading to an obvious decrease in immunogenicity. This may be attributed to the protective role of mannose on the surface of LNPs during lyophilization. Freshly prepared and lyophilized mLNP-circRNA vaccines elicited comparable immune responses in both the rabies virus model and the SARS-CoV-2 model. Our data demonstrated that mLNP-circRNA vaccines elicit robust immune responses while improving stability after lyophilization, with no compromise in tissue targeting specificity. Therefore, mannose-modified LNP-circRNA vaccines represent a promising vaccine design strategy.
Collapse
Affiliation(s)
- Jiawu Wan
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zongmei Wang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Lingli Wang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Liqin Wu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Chengguang Zhang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ming Zhou
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhen F. Fu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ling Zhao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
37
|
Meulewaeter S, Zhang Y, Wadhwa A, Fox K, Lentacker I, Harder KW, Cullis PR, De Smedt SC, Cheng MHY, Verbeke R. Considerations on the Design of Lipid-based mRNA Vaccines Against Cancer. J Mol Biol 2024; 436:168385. [PMID: 38065276 DOI: 10.1016/j.jmb.2023.168385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/29/2023] [Accepted: 12/02/2023] [Indexed: 12/26/2023]
Abstract
Throughout the last decades, mRNA vaccines have been developed as a cancer immunotherapeutic and the technology recently gained momentum during the COVID-19 pandemic. Recent promising results obtained from clinical trials investigating lipid-based mRNA vaccines in cancer therapy further highlighted the potential of this therapy. Interestingly, while the technologies being used in authorized mRNA vaccines for the prevention of COVID-19 are relatively similar, mRNA vaccines in clinical development for cancer vaccination show marked differences in mRNA modification, lipid carrier, and administration route. In this review, we describe findings on how these factors can impact the potency of mRNA vaccines in cancer therapy and provide insights into the complex interplay between them. We discuss how lipid carrier composition can affect passive targeting to immune cells to improve the efficacy and safety of mRNA vaccines. Finally, we summarize strategies that are established or still being explored to improve the efficacy of mRNA cancer vaccines and include next-generation vaccines that are on the horizon in clinical development.
Collapse
Affiliation(s)
- Sofie Meulewaeter
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent 9000, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University Hospital, Ghent University, Ghent 9000, Belgium
| | - Yao Zhang
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Abishek Wadhwa
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Kevin Fox
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Ine Lentacker
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent 9000, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University Hospital, Ghent University, Ghent 9000, Belgium
| | - Kenneth W Harder
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Pieter R Cullis
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Stefaan C De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent 9000, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University Hospital, Ghent University, Ghent 9000, Belgium
| | - Miffy H Y Cheng
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada.
| | - Rein Verbeke
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent 9000, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University Hospital, Ghent University, Ghent 9000, Belgium.
| |
Collapse
|
38
|
Mochida Y, Uchida S. mRNA vaccine designs for optimal adjuvanticity and delivery. RNA Biol 2024; 21:1-27. [PMID: 38528828 PMCID: PMC10968337 DOI: 10.1080/15476286.2024.2333123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/26/2024] [Accepted: 03/15/2024] [Indexed: 03/27/2024] Open
Abstract
Adjuvanticity and delivery are crucial facets of mRNA vaccine design. In modern mRNA vaccines, adjuvant functions are integrated into mRNA vaccine nanoparticles, allowing the co-delivery of antigen mRNA and adjuvants in a unified, all-in-one formulation. In this formulation, many mRNA vaccines utilize the immunostimulating properties of mRNA and vaccine carrier components, including lipids and polymers, as adjuvants. However, careful design is necessary, as excessive adjuvanticity and activation of improper innate immune signalling can conversely hinder vaccination efficacy and trigger adverse effects. mRNA vaccines also require delivery systems to achieve antigen expression in antigen-presenting cells (APCs) within lymphoid organs. Some vaccines directly target APCs in the lymphoid organs, while others rely on APCs migration to the draining lymph nodes after taking up mRNA vaccines. This review explores the current mechanistic understanding of these processes and the ongoing efforts to improve vaccine safety and efficacy based on this understanding.
Collapse
Affiliation(s)
- Yuki Mochida
- Department of Advanced Nanomedical Engineering, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- Innovation Center of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion, Kawasaki, Japan
| | - Satoshi Uchida
- Department of Advanced Nanomedical Engineering, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- Innovation Center of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion, Kawasaki, Japan
| |
Collapse
|
39
|
Zhang H, Liu Y, Liu Z. Nanomedicine approaches against SARS-CoV-2 and variants. J Control Release 2024; 365:101-111. [PMID: 37951476 DOI: 10.1016/j.jconrel.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/27/2023] [Accepted: 11/03/2023] [Indexed: 11/14/2023]
Abstract
The world is grappling with the ongoing crisis of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), a global pandemic that continues to have a detrimental impact on public health and economies worldwide. The virus's relentless mutation has led to more transmissible, immune-evasive strains, thereby escalating the incidence of reinfection. This underscores the urgent need for highly effective and safe countermeasures against SARS-CoV-2 and its evolving variants. In the current context, nanomedicine presents an innovative and promising alternative to mitigate the impacts of this pandemic wave. It does so by harnessing the structural and functional properties at a nanoscale in a straightforward and adaptable manner. This review emphasizes the most recent progress in the development of nanovaccines, nanodecoys, and nanodisinfectants to tackle SARS-CoV-2 and its variants. Notably, the insights gained and strategies implemented in managing the ongoing pandemic may also offer invaluable guidance for the development of potent nanomedicines to combat future pandemics.
Collapse
Affiliation(s)
- Han Zhang
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China.
| | - Yanbin Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China.
| |
Collapse
|
40
|
Tang X, Zhang J, Sui D, Yang Q, Wang T, Xu Z, Li X, Gao X, Yan X, Liu X, Song Y, Deng Y. Simultaneous dendritic cells targeting and effective endosomal escape enhance sialic acid-modified mRNA vaccine efficacy and reduce side effects. J Control Release 2023; 364:529-545. [PMID: 37949317 DOI: 10.1016/j.jconrel.2023.11.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/20/2023] [Accepted: 11/04/2023] [Indexed: 11/12/2023]
Abstract
mRNA vaccines are attractive prospects for the development of DC-targeted vaccines; however, no clinical success has been realized because, currently, it is difficult to simultaneously achieve DC targeting and efficient endosomal/lysosomal escape. Herein, we developed a sialic acid (SA)-modified mRNA vaccine that simultaneously achieved both. The SA modification promoted DCs uptake of lipid nanoparticles (LNPs) by 2 times, >90% of SA-modified LNPs rapidly escaped from early endosomes (EEs), avoided entering lysosomes, achieved mRNA simultaneously translated in ribosomes distributed in the cytoplasm and endoplasmic reticulum (ER), significantly improved the transfection efficiency of mRNA LNPs in DCs. Additionally, we applied cleavable PEG-lipids in mRNA vaccines for the first time and found this conducive to cellular uptake and DC targeting. In summary, SA-modified mRNA vaccines targeted DCs efficiently, and showed significantly higher EEs/lysosomal escape efficiency (90% vs 50%), superior tumor treatment effect, and lower side effects than commercially formulated mRNA vaccines.
Collapse
Affiliation(s)
- Xueying Tang
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Jiashuo Zhang
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Dezhi Sui
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Qiongfen Yang
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Tianyu Wang
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Zihan Xu
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Xiaoya Li
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Xin Gao
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Xinyang Yan
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Xinrong Liu
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Yanzhi Song
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.
| | - Yihui Deng
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.
| |
Collapse
|
41
|
Zong Y, Lin Y, Wei T, Cheng Q. Lipid Nanoparticle (LNP) Enables mRNA Delivery for Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303261. [PMID: 37196221 DOI: 10.1002/adma.202303261] [Citation(s) in RCA: 143] [Impact Index Per Article: 71.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/13/2023] [Indexed: 05/19/2023]
Abstract
Messenger RNA (mRNA) has received great attention in the prevention and treatment of various diseases due to the success of coronavirus disease 2019 (COVID-19) mRNA vaccines (Comirnaty and Spikevax). To meet the therapeutic purpose, it is required that mRNA must enter the target cells and express sufficient proteins. Therefore, the development of effective delivery systems is necessary and crucial. Lipid nanoparticle (LNP) represents a remarkable vehicle that has indeed accelerated mRNA applications in humans, as several mRNA-based therapies have already been approved or are in clinical trials. In this review, the focus is on mRNA-LNP-mediated anticancer therapy. It summarizes the main development strategies of mRNA-LNP formulations, discusses representative therapeutic approaches in cancer, and points out current challenges and possible future directions of this research field. It is hoped that these delivered messages can help further improve the application of mRNA-LNP technology in cancer therapy.
Collapse
Affiliation(s)
- Yan Zong
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China
| | - Yi Lin
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China
| | - Tuo Wei
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiang Cheng
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China
| |
Collapse
|
42
|
Huang P, Deng H, Wang C, Zhou Y, Chen X. Cellular Trafficking of Nanotechnology-Mediated mRNA Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2307822. [PMID: 37929780 DOI: 10.1002/adma.202307822] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/30/2023] [Indexed: 11/07/2023]
Abstract
Messenger RNA (mRNA)-based therapy has emerged as a powerful, safe, and rapidly scalable therapeutic approach that involves technologies for both mRNA itself and the delivery vehicle. Although there are some unique challenges for different applications of mRNA therapy, a common challenge for all mRNA therapeutics is the transport of mRNA into the target cell cytoplasm for sufficient protein expression. This review is focused on the behaviors at the cellular level of nanotechnology-mediated mRNA delivery systems, which have not been comprehensively reviewed yet. First, the four main therapeutic applications of mRNA are introduced, including immunotherapy, protein replacement therapy, genome editing, and cellular reprogramming. Second, common types of mRNA cargos and mRNA delivery systems are summarized. Third, strategies to enhance mRNA delivery efficiency during the cellular trafficking process are highlighted, including accumulation to the cell, internalization into the cell, endosomal escape, release of mRNA from the nanocarrier, and translation of mRNA into protein. Finally, the challenges and opportunities for the development of nanotechnology-mediated mRNA delivery systems are presented. This review can provide new insights into the future fabrication of mRNA nanocarriers with desirable cellular trafficking performance.
Collapse
Affiliation(s)
- Pei Huang
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hongzhang Deng
- School of Life Science and Technology and Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Changrong Wang
- School of Life Science and Technology and Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Yongfeng Zhou
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive Proteos, Singapore, 138673, Singapore
| |
Collapse
|
43
|
Perenkov AD, Sergeeva AD, Vedunova MV, Krysko DV. In Vitro Transcribed RNA-Based Platform Vaccines: Past, Present, and Future. Vaccines (Basel) 2023; 11:1600. [PMID: 37897003 PMCID: PMC10610676 DOI: 10.3390/vaccines11101600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
mRNA was discovered in 1961, but it was not used as a vaccine until after three decades. Recently, the development of mRNA vaccine technology gained great impetus from the pursuit of vaccines against COVID-19. To improve the properties of RNA vaccines, and primarily their circulation time, self-amplifying mRNA and trans-amplifying mRNA were developed. A separate branch of mRNA technology is circular RNA vaccines, which were developed with the discovery of the possibility of translation on their protein matrix. Circular RNA has several advantages over mRNA vaccines and is considered a fairly promising platform, as is trans-amplifying mRNA. This review presents an overview of the mRNA platform and a critical discussion of the more modern self-amplifying mRNA, trans-amplifying mRNA, and circular RNA platforms created on its basis. Finally, the main features, advantages, and disadvantages of each of the presented mRNA platforms are discussed. This discussion will facilitate the decision-making process in selecting the most appropriate platform for creating RNA vaccines against cancer or viral diseases.
Collapse
Affiliation(s)
- Alexey D. Perenkov
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, 603022 Nizhny Novgorod, Russia
| | - Alena D. Sergeeva
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, 603022 Nizhny Novgorod, Russia
| | - Maria V. Vedunova
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, 603022 Nizhny Novgorod, Russia
| | - Dmitri V. Krysko
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, 603022 Nizhny Novgorod, Russia
- Cell Death Investigation and Therapy (CDIT) Laboratory, Anatomy and Embryology Unit, Department of Human Structure and Repair, Faculty of Medicine and Health Science, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent, 9000 Ghent, Belgium
| |
Collapse
|
44
|
Niu D, Wu Y, Lian J. Circular RNA vaccine in disease prevention and treatment. Signal Transduct Target Ther 2023; 8:341. [PMID: 37691066 PMCID: PMC10493228 DOI: 10.1038/s41392-023-01561-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 06/02/2023] [Accepted: 07/09/2023] [Indexed: 09/12/2023] Open
Abstract
CircRNAs are a class of single-stranded RNAs with covalently linked head-to-tail topology. In the decades since its initial discovery, their biogenesis, regulation, and function have rapidly disclosed, permitting a better understanding and adoption of them as new tools for medical applications. With the development of biotechnology and molecular medicine, artificial circRNAs have been engineered as a novel class of vaccines for disease treatment and prevention. Unlike the linear mRNA vaccine which applications were limited by its instability, inefficiency, and innate immunogenicity, circRNA vaccine which incorporate internal ribosome entry sites (IRESs) and open reading frame (ORF) provides an improved approach to RNA-based vaccination with safety, stability, simplicity of manufacture, and scalability. However, circRNA vaccines are at an early stage, and their optimization, delivery and applications require further development and evaluation. In this review, we comprehensively describe circRNA vaccine, including their history and superiority. We also summarize and discuss the current methodological research for circRNA vaccine preparation, including their design, synthesis, and purification. Finally, we highlight the delivery options of circRNA vaccine and its potential applications in diseases treatment and prevention. Considering their unique high stability, low immunogenicity, protein/peptide-coding capacity and special closed-loop construction, circRNA vaccine, and circRNA-based therapeutic platforms may have superior application prospects in a broad range of diseases.
Collapse
Affiliation(s)
- Dun Niu
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), 400038, Chongqing, China
- Department of Clinical Biochemistry, Army Medical University (Third Military Medical University), 400038, Chongqing, China
| | - Yaran Wu
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), 400038, Chongqing, China
- Department of Clinical Biochemistry, Army Medical University (Third Military Medical University), 400038, Chongqing, China
| | - Jiqin Lian
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), 400038, Chongqing, China.
- Department of Clinical Biochemistry, Army Medical University (Third Military Medical University), 400038, Chongqing, China.
| |
Collapse
|
45
|
Yu MZ, Wang NN, Zhu JQ, Lin YX. The clinical progress and challenges of mRNA vaccines. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1894. [PMID: 37096256 DOI: 10.1002/wnan.1894] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/14/2023] [Accepted: 03/20/2023] [Indexed: 04/26/2023]
Abstract
Owing to the breakthroughs in the prevention and control of the COVID-19 pandemic, messenger RNA (mRNA)-based vaccines have emerged as promising alternatives to conventional vaccine approaches for infectious disease prevention and anticancer treatments. Advantages of mRNA vaccines include flexibility in designing and manipulating antigens of interest, scalability in rapid response to new variants, ability to induce both humoral and cell-mediated immune responses, and ease of industrialization. This review article presents the latest advances and innovations in mRNA-based vaccines and their clinical translations in the prevention and treatment of infectious diseases or cancers. We also highlight various nanoparticle delivery platforms that contribute to their success in clinical translation. Current challenges related to mRNA immunogenicity, stability, and in vivo delivery and the strategies for addressing them are also discussed. Finally, we provide our perspectives on future considerations and opportunities for applying mRNA vaccines to fight against major infectious diseases and cancers. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Biology-Inspired Nanomaterials > Lipid-Based Structures.
Collapse
Affiliation(s)
- Meng-Zhen Yu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, People's Republic of China
- University of Chinese Academy of Sciences (UCAS), Beijing, People's Republic of China
| | - Nan-Nan Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, People's Republic of China
- University of Chinese Academy of Sciences (UCAS), Beijing, People's Republic of China
| | - Jia-Qing Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, People's Republic of China
| | - Yao-Xin Lin
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, People's Republic of China
- University of Chinese Academy of Sciences (UCAS), Beijing, People's Republic of China
| |
Collapse
|
46
|
Lv Z, Huang M, Yang J, Li P, Chang L, Tang Q, Chen X, Wang S, Yao C, Liu P, Yang D. A Smart DNA-Based Nanosystem Containing Ribosome-Regulating siRNA for Enhanced mRNA Transfection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300823. [PMID: 37461803 DOI: 10.1002/adma.202300823] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 07/05/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023]
Abstract
Messenger RNA (mRNA) transfection is the prerequisite for the application of mRNA-based therapeutics. In hard-to-transfect cells, such as macrophages, the effective transfection of mRNA remains a long-standing challenge. Herein, a smart DNA-based nanosystem is reported containing ribosome biogenesis-promoting siRNA, realizing efficient mRNA transfection in macrophages. Four monomers are copolymerized to form a nanoframework (NF), including N-isopropylacrylamide (NIPAM) as the skeleton and acrydite-DNA as the initiator to trigger the cascade assembly of DNA hairpins (H1-polyT and H2-siRNA). By virtue of the phase transition characteristic of polymeric NIPAM, below the lower critical solution temperature (LCST, ≈34 °C), the NF swells to expose polyT sequences to hybridize with the polyA tail of mRNA. Above the LCST, the NF deswells to encapsulate mRNA. The disulfide bond in the NF responds to glutathione, triggering the disassembly of the nanosystem; the siRNA and mRNA are released in response to triphosadenine and RNase H. The siRNA down-regulates the expression of heat shock protein 27, which up-regulates the expression of phosphorylated ribosomal protein S6. The nanosystem shows satisfactory mRNA transfection and translation efficiency in a mouse model. It is envisioned that the DNA-based nanosystem will provide a promising carrier to deliver mRNA in hard-to-transfect cells and promote the development of mRNA-based therapeutics.
Collapse
Affiliation(s)
- Zhaoyue Lv
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Institute of Biomolecular and Biomedical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
| | - Mengxue Huang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Institute of Biomolecular and Biomedical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
| | - Jing Yang
- Beijing Institute of Microbiology and Epidemiology, Beijing, 100850, P. R. China
| | - Peiran Li
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Institute of Biomolecular and Biomedical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
| | - Lele Chang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Institute of Biomolecular and Biomedical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
| | - Qianyun Tang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, P. R. China
| | - Xiaojing Chen
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, P. R. China
| | - Shengqi Wang
- Beijing Institute of Microbiology and Epidemiology, Beijing, 100850, P. R. China
| | - Chi Yao
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Institute of Biomolecular and Biomedical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
| | - Peifeng Liu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, P. R. China
| | - Dayong Yang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Institute of Biomolecular and Biomedical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
| |
Collapse
|
47
|
Wang C, Pan C, Yong H, Wang F, Bo T, Zhao Y, Ma B, He W, Li M. Emerging non-viral vectors for gene delivery. J Nanobiotechnology 2023; 21:272. [PMID: 37592351 PMCID: PMC10433663 DOI: 10.1186/s12951-023-02044-5] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 08/01/2023] [Indexed: 08/19/2023] Open
Abstract
Gene therapy holds great promise for treating a multitude of inherited and acquired diseases by delivering functional genes, comprising DNA or RNA, into targeted cells or tissues to elicit manipulation of gene expression. However, the clinical implementation of gene therapy remains substantially impeded by the lack of safe and efficient gene delivery vehicles. This review comprehensively outlines the novel fastest-growing and efficient non-viral gene delivery vectors, which include liposomes and lipid nanoparticles (LNPs), highly branched poly(β-amino ester) (HPAE), single-chain cyclic polymer (SCKP), poly(amidoamine) (PAMAM) dendrimers, and polyethyleneimine (PEI). Particularly, we discuss the research progress, potential development directions, and remaining challenges. Additionally, we provide a comprehensive overview of the currently approved non-viral gene therapeutics, as well as ongoing clinical trials. With advances in biomedicine, molecular biology, materials science, non-viral gene vectors play an ever-expanding and noteworthy role in clinical gene therapy.
Collapse
Affiliation(s)
- Chenfei Wang
- Department of Dermatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Chaolan Pan
- Department of Dermatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Haiyang Yong
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Feifei Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, Shaanxi, 710032, China
| | - Tao Bo
- School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Yitong Zhao
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, 232000, China
| | - Bin Ma
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Wei He
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, 232000, China
| | - Ming Li
- Department of Dermatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China.
| |
Collapse
|
48
|
Liu X, Zhang X, Li J, Meng H. Enrichment of nano delivery platforms for mRNA-based nanotherapeutics. MEDICAL REVIEW (2021) 2023; 3:356-361. [PMID: 38235403 PMCID: PMC10790206 DOI: 10.1515/mr-2023-0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/24/2023] [Indexed: 01/19/2024]
Abstract
Lipid-based nanoparticles (LNP) have shown significant progress in delivering mRNA for therapeutics, particularly with the success of coronavirus disease 2019 (COVID-19) vaccines. However, there are still challenges, such as organ-specific targeting, sustained protein expression, immunogenicity, and storage that need to be addressed. Therefore, there is interest in developing additional nano drug delivery systems (DDS) to complement LNP technology. Some of these include polymer, lipid-polymer hybrid, organic/inorganic hybrid nanostructure, and inorganic nanoparticle. In our opinion, LNP technology may not be suitable for every disease scenario in categories such as infection disease, cancer, pulmonary disease, autoimmune disorders and genetic rare disease (among others). This is because different diseases may require distinct administration routes, doses, and treatment durations, as well as considerations for biological barriers that may lower the efficacy and/or exert safety concern. In this perspective, we will highlight the need and potential for enhancing the diversity of nano delivery platforms for mRNA-based nanotherapeutics.
Collapse
Affiliation(s)
- Xiao Liu
- Department of Gastroenterology, Beijing Hospital, National Center of Gerontology, Institute of Geriatrics Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Xu Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiulong Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Huan Meng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
49
|
Hao Y, Ji Z, Zhou H, Wu D, Gu Z, Wang D, ten Dijke P. Lipid-based nanoparticles as drug delivery systems for cancer immunotherapy. MedComm (Beijing) 2023; 4:e339. [PMID: 37560754 PMCID: PMC10407046 DOI: 10.1002/mco2.339] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 06/26/2023] [Accepted: 07/04/2023] [Indexed: 08/11/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) have shown remarkable success in cancer treatment. However, in cancer patients without sufficient antitumor immunity, numerous data indicate that blocking the negative signals elicited by immune checkpoints is ineffective. Drugs that stimulate immune activation-related pathways are emerging as another route for improving immunotherapy. In addition, the development of nanotechnology presents a promising platform for tissue and cell type-specific delivery and improved uptake of immunomodulatory agents, ultimately leading to enhanced cancer immunotherapy and reduced side effects. In this review, we summarize and discuss the latest developments in nanoparticles (NPs) for cancer immuno-oncology therapy with a focus on lipid-based NPs (lipid-NPs), including the characteristics and advantages of various types. Using the agonists targeting stimulation of the interferon genes (STING) transmembrane protein as an exemplar, we review the potential of various lipid-NPs to augment STING agonist therapy. Furthermore, we present recent findings and underlying mechanisms on how STING pathway activation fosters antitumor immunity and regulates the tumor microenvironment and provide a summary of the distinct STING agonists in preclinical studies and clinical trials. Ultimately, we conduct a critical assessment of the obstacles and future directions in the utilization of lipid-NPs to enhance cancer immunotherapy.
Collapse
Affiliation(s)
- Yang Hao
- Department of Laboratory AnimalsCollege of Animal SciencesJilin UniversityChangchunChina
- Department of Basic MedicineChangzhi Medical CollegeChangzhiChina
- Department of Cell and Chemical Biology and Oncode InstituteLeiden University Medical CenterLeidenThe Netherlands
| | - Zhonghao Ji
- Department of Laboratory AnimalsCollege of Animal SciencesJilin UniversityChangchunChina
- Department of Basic MedicineChangzhi Medical CollegeChangzhiChina
| | - Hengzong Zhou
- Department of Laboratory AnimalsCollege of Animal SciencesJilin UniversityChangchunChina
| | - Dongrun Wu
- Departure of Philosophy, Faculty of HumanitiesLeiden UniversityLeidenThe Netherlands
| | - Zili Gu
- Department of RadiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Dongxu Wang
- Department of Laboratory AnimalsCollege of Animal SciencesJilin UniversityChangchunChina
| | - Peter ten Dijke
- Department of Cell and Chemical Biology and Oncode InstituteLeiden University Medical CenterLeidenThe Netherlands
| |
Collapse
|
50
|
Lee B, Nanishi E, Levy O, Dowling DJ. Precision Vaccinology Approaches for the Development of Adjuvanted Vaccines Targeted to Distinct Vulnerable Populations. Pharmaceutics 2023; 15:1766. [PMID: 37376214 PMCID: PMC10305121 DOI: 10.3390/pharmaceutics15061766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/11/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Infection persists as one of the leading global causes of morbidity and mortality, with particular burden at the extremes of age and in populations who are immunocompromised or suffer chronic co-morbid diseases. By focusing discovery and innovation efforts to better understand the phenotypic and mechanistic differences in the immune systems of diverse vulnerable populations, emerging research in precision vaccine discovery and development has explored how to optimize immunizations across the lifespan. Here, we focus on two key elements of precision vaccinology, as applied to epidemic/pandemic response and preparedness, including (a) selecting robust combinations of adjuvants and antigens, and (b) coupling these platforms with appropriate formulation systems. In this context, several considerations exist, including the intended goals of immunization (e.g., achieving immunogenicity versus lessening transmission), reducing the likelihood of adverse reactogenicity, and optimizing the route of administration. Each of these considerations is accompanied by several key challenges. On-going innovation in precision vaccinology will expand and target the arsenal of vaccine components for protection of vulnerable populations.
Collapse
Affiliation(s)
- Branden Lee
- Precision Vaccines Program, Boston Children’s Hospital, Boston, MA 02115, USA; (B.L.); (E.N.); (O.L.)
| | - Etsuro Nanishi
- Precision Vaccines Program, Boston Children’s Hospital, Boston, MA 02115, USA; (B.L.); (E.N.); (O.L.)
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Ofer Levy
- Precision Vaccines Program, Boston Children’s Hospital, Boston, MA 02115, USA; (B.L.); (E.N.); (O.L.)
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - David J. Dowling
- Precision Vaccines Program, Boston Children’s Hospital, Boston, MA 02115, USA; (B.L.); (E.N.); (O.L.)
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|