1
|
Zhang E, Luo S, Xu X, Wang Q, Liu J, Gao P, Duan L. Molecular mechanistic exploration of conformational shifts induced by class IV anti-RBD antibody IY2A. Int J Biol Macromol 2025; 306:141417. [PMID: 39993688 DOI: 10.1016/j.ijbiomac.2025.141417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 02/18/2025] [Accepted: 02/21/2025] [Indexed: 02/26/2025]
Abstract
The SARS-CoV-2 virus mutates rapidly, reducing the effectiveness of antibodies. The novel Class IV antibody IY2A partially unfolds the receptor-binding domain (RBD), allowing tolerance of antigenic variations and effectively neutralizing Omicron variants. In this study, we used molecular dynamics simulations and alanine scanning combined with interaction entropy method to elucidate how IY2A maintains its binding affinity across Omicron variants. We compared IY2A with EY6A and evaluated how mutations affect IY2A inhibition. The findings revealed that the IY2A adopted a closer conformation when binding to Omicron variants than to the WT. Energy calculations indicate that van der Waals interactions primarily drive IY2A binding to the RBD. Following unfolding, IY2A interacts with the RBD via interatomic hydrogen bonds and hydrophobic contacts involving LEU368, PHE377, LYS378, and SER383. This study provides theoretical insights to guide the development of Class IV antibodies against emerging and future Omicron variants.
Collapse
Affiliation(s)
- Enhao Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Song Luo
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Xiaole Xu
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Qihang Wang
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Jinxin Liu
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Pengfei Gao
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Lili Duan
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
2
|
Kirby MB, Petersen BM, Faris JG, Kells SP, Sprenger KG, Whitehead TA. Retrospective SARS-CoV-2 human antibody development trajectories are largely sparse and permissive. Proc Natl Acad Sci U S A 2025; 122:e2412787122. [PMID: 39841142 PMCID: PMC11789010 DOI: 10.1073/pnas.2412787122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 11/27/2024] [Indexed: 01/23/2025] Open
Abstract
Immunological interventions, like vaccinations, are enabled by the predictive control of humoral responses to novel antigens. While the development trajectories for many broadly neutralizing antibodies (bnAbs) have been measured, it is less established how human subtype-specific antibodies develop from their precursors. In this work, we evaluated the retrospective development trajectories for eight anti-SARS-CoV-2 Spike human antibodies (Abs). To mimic the immunological process of BCR selection during affinity maturation in germinal centers (GCs), we performed deep mutational scanning on anti-S1 molecular Fabs using yeast display coupled to fluorescence-activated cell sorting. Focusing only on changes in affinity upon mutation, we found that human Ab development pathways have few mutations which impart changes in monovalent binding dissociation constants and that these mutations can occur in nearly any order. Maturation pathways of two bnAbs showed that while they are only slightly less permissible than subtype-specific Abs, more development steps on average are needed to reach the same level of affinity. Many of the subtype-specific Abs had inherent affinity for antigen, and these results were robust against different potential inferred precursor sequences. To evaluate the effect of differential affinity for precursors on GC outcomes, we adapted a coarse-grained affinity maturation model. This model showed that antibody precursors with minimal affinity advantages rapidly outcompete competitors to become the dominant clonotype.
Collapse
Affiliation(s)
- Monica B. Kirby
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO80305
| | - Brian M. Petersen
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO80305
| | - Jonathan G. Faris
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO80305
| | - Siobhan P. Kells
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO80305
| | - Kayla G. Sprenger
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO80305
| | - Timothy A. Whitehead
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO80305
| |
Collapse
|
3
|
Keen MM, Keith AD, Ortlund EA. Epitope mapping via in vitro deep mutational scanning methods and its applications. J Biol Chem 2025; 301:108072. [PMID: 39674321 PMCID: PMC11783119 DOI: 10.1016/j.jbc.2024.108072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 12/16/2024] Open
Abstract
Epitope mapping is a technique employed to define the region of an antigen that elicits an immune response, providing crucial insight into the structural architecture of the antigen as well as epitope-paratope interactions. With this breadth of knowledge, immunotherapies, diagnostics, and vaccines are being developed with a rational and data-supported design. Traditional epitope mapping methods are laborious, time-intensive, and often lack the ability to screen proteins in a high-throughput manner or provide high resolution. Deep mutational scanning (DMS), however, is revolutionizing the field as it can screen all possible single amino acid mutations and provide an efficient and high-throughput way to infer the structures of both linear and three-dimensional epitopes with high resolution. Currently, more than 50 publications take this approach to efficiently identify enhancing or escaping mutations, with many then employing this information to rapidly develop broadly neutralizing antibodies, T-cell immunotherapies, vaccine platforms, or diagnostics. We provide a comprehensive review of the approaches to accomplish epitope mapping while also providing a summation of the development of DMS technology and its impactful applications.
Collapse
Affiliation(s)
- Meredith M Keen
- Department of Biochemistry, Emory School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Alasdair D Keith
- Department of Biochemistry, Emory School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Eric A Ortlund
- Department of Biochemistry, Emory School of Medicine, Emory University, Atlanta, Georgia, USA.
| |
Collapse
|
4
|
Walker MR, Underwood A, Björnsson KH, Raghavan SSR, Bassi MR, Binderup A, Pham LV, Ramirez S, Pinholt M, Dagil R, Knudsen AS, Idorn M, Soegaard M, Wang K, Ward AB, Salanti A, Bukh J, Barfod L. Broadly potent spike-specific human monoclonal antibodies inhibit SARS-CoV-2 Omicron sub-lineages. Commun Biol 2024; 7:1239. [PMID: 39354108 PMCID: PMC11445456 DOI: 10.1038/s42003-024-06951-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 09/24/2024] [Indexed: 10/03/2024] Open
Abstract
The continuous emergence of SARS-CoV-2 variants of concern has rendered many therapeutic monoclonal antibodies (mAbs) ineffective. To date, there are no clinically authorized therapeutic antibodies effective against the recently circulating Omicron sub-lineages BA.2.86 and JN.1. Here, we report the isolation of broad and potent neutralizing human mAbs (HuMabs) from a healthcare worker infected with SARS-CoV-2 early in the pandemic. These include a genetically unique HuMab, named K501SP6, which can neutralize different Omicron sub-lineages, including BQ.1, XBB.1, BA.2.86 and JN.1, by targeting a highly conserved epitope on the N terminal domain, as well as an RBD-specific HuMab (K501SP3) with high potency towards earlier circulating variants that was escaped by the more recent Omicron sub-lineages through spike F486 and E484 substitutions. Characterizing SARS-CoV-2 spike-specific HuMabs, including broadly reactive non-RBD-specific HuMabs, can give insight into the immune mechanisms involved in neutralization and immune evasion, which can be a valuable addition to already existing SARS-CoV-2 therapies.
Collapse
Affiliation(s)
- Melanie R Walker
- Centre for Translational Medicine and Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Alexander Underwood
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kasper H Björnsson
- Centre for Translational Medicine and Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sai Sundar Rajan Raghavan
- Centre for Translational Medicine and Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Maria R Bassi
- Centre for Translational Medicine and Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Alekxander Binderup
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Long V Pham
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Santseharay Ramirez
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette Pinholt
- Department of Clinical Microbiology, Copenhagen University Hospital, Hvidovre, Denmark
| | - Robert Dagil
- Centre for Translational Medicine and Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne S Knudsen
- Centre for Translational Medicine and Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Manja Idorn
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Kaituo Wang
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Ali Salanti
- Centre for Translational Medicine and Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lea Barfod
- Centre for Translational Medicine and Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
5
|
Cui L, Li T, Xue W, Zhang S, Wang H, Liu H, Gu Y, Xia N, Li S. Comprehensive Overview of Broadly Neutralizing Antibodies against SARS-CoV-2 Variants. Viruses 2024; 16:900. [PMID: 38932192 PMCID: PMC11209230 DOI: 10.3390/v16060900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/09/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Currently, SARS-CoV-2 has evolved into various variants, including the numerous highly mutated Omicron sub-lineages, significantly increasing immune evasion ability. The development raises concerns about the possibly diminished effectiveness of available vaccines and antibody-based therapeutics. Here, we describe those representative categories of broadly neutralizing antibodies (bnAbs) that retain prominent effectiveness against emerging variants including Omicron sub-lineages. The molecular characteristics, epitope conservation, and resistance mechanisms of these antibodies are further detailed, aiming to offer suggestion or direction for the development of therapeutic antibodies, and facilitate the design of vaccines with broad-spectrum potential.
Collapse
Affiliation(s)
- Lingyan Cui
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China (N.X.)
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| | - Tingting Li
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China (N.X.)
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| | - Wenhui Xue
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China (N.X.)
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| | - Sibo Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China (N.X.)
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| | - Hong Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China (N.X.)
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| | - Hongjing Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China (N.X.)
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| | - Ying Gu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China (N.X.)
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| | - Ningshao Xia
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China (N.X.)
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| | - Shaowei Li
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China (N.X.)
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| |
Collapse
|
6
|
Luo S, Xiong D, Tang B, Liu B, Zhao X, Duan L. Evaluating mAbs binding abilities to Omicron subvariant RBDs: implications for selecting effective mAb therapies. Phys Chem Chem Phys 2024; 26:11414-11428. [PMID: 38591159 DOI: 10.1039/d3cp05893j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
The ongoing evolution of the Omicron lineage of SARS-CoV-2 has led to the emergence of subvariants that pose challenges to antibody neutralization. Understanding the binding dynamics between the receptor-binding domains (RBD) of these subvariants spike and monoclonal antibodies (mAbs) is pivotal for elucidating the mechanisms of immune escape and for advancing the development of therapeutic antibodies. This study focused on the RBD regions of Omicron subvariants BA.2, BA.5, BF.7, and XBB.1.5, employing molecular dynamics simulations to unravel their binding mechanisms with a panel of six mAbs, and subsequently analyzing the origins of immune escape from energetic and structural perspectives. Our results indicated that the antibody LY-COV1404 maintained binding affinities across all studied systems, suggesting the resilience of certain antibodies against variant-induced immune escape, as seen with the mAb 1D1-Fab. The newly identified mAb 002-S21F2 showed a similar efficacy profile to LY-COV1404, though with a slightly reduced binding to BF.7. In parallel, mAb REGN-10933 emerged as a potential therapeutic candidate against BF.7 and XBB.1.5, reflecting the importance of identifying variant-specific antibody interactions, akin to the binding optimization observed in BA.4/5 and XBB.1.5. And key residues that facilitate RBD-mAb binding were identified (T345, L441, K444, V445, and T500), alongside residues that hinder protein-protein interactions (D420, L455, K440, and S446). Particularly noteworthy was the inhibited binding of V445 and R509 with mAbs in the presence of mAb 002-S21F2, suggesting a mechanism for immune escape, especially through the reduction of V445 hydrophobicity. These findings enhance our comprehension of the binding interactions between mAbs and RBDs, contributing to the understanding of immune escape mechanisms. They also lay the groundwork for the design and optimization of antiviral drugs and have significant implications for the development of treatments against current and future coronaviruses.
Collapse
Affiliation(s)
- Song Luo
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China.
| | - Danyang Xiong
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China.
| | - Bolin Tang
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China.
| | - Bangyu Liu
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China.
| | - Xiaoyu Zhao
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China.
| | - Lili Duan
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China.
| |
Collapse
|
7
|
Li X, Zeng F, Yue R, Ma D, Meng Z, Li Q, Zhang Z, Zhang H, Liao Y, Liao Y, Jiang G, Zhao H, Yu L, Li D, Zhang Y, Liu L, Li Q. Heterologous Booster Immunization Based on Inactivated SARS-CoV-2 Vaccine Enhances Humoral Immunity and Promotes BCR Repertoire Development. Vaccines (Basel) 2024; 12:120. [PMID: 38400104 PMCID: PMC10891849 DOI: 10.3390/vaccines12020120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/13/2024] [Accepted: 01/17/2024] [Indexed: 02/25/2024] Open
Abstract
Recent studies have indicated that sequentially administering SARS-CoV-2 vaccines can result in increased antibody and cellular immune responses. In this study, we compared homologous and heterologous immunization strategies following two doses of inactivated vaccines in a mouse model. Our research demonstrates that heterologous sequential immunization resulted in more immune responses displayed in the lymph node germinal center, which induced a greater number of antibody-secreting cells (ASCs), resulting in enhanced humoral and cellular immune responses and increased cross-protection against five variant strains. In further single B-cell analysis, the above findings were supported by the presence of unique B-cell receptor (BCR) repertoires and diversity in CDR3 sequence profiles elicited by a heterologous booster immunization strategy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Longding Liu
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China (Y.Z.)
| | - Qihan Li
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China (Y.Z.)
| |
Collapse
|
8
|
de Souza AS, de Souza RF, Guzzo CR. Cooperative and structural relationships of the trimeric Spike with infectivity and antibody escape of the strains Delta (B.1.617.2) and Omicron (BA.2, BA.5, and BQ.1). J Comput Aided Mol Des 2023; 37:585-606. [PMID: 37792106 DOI: 10.1007/s10822-023-00534-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 09/11/2023] [Indexed: 10/05/2023]
Abstract
Herein, we conducted simulations of trimeric Spike from several SARS-CoV-2 variants of concern (Delta and Omicron sub-variants BA.2, BA.5, and BQ.1) and investigated the mechanisms by which specific mutations confer resistance to neutralizing antibodies. We observed that the mutations primarily affect the cooperation between protein domains within and between protomers. The substitutions K417N and L452R expand hydrogen bonding interactions, reducing their interaction with neutralizing antibodies. By interacting with nearby residues, the K444T and N460K mutations in the SpikeBQ.1 variant potentially reduces solvent exposure, thereby promoting resistance to antibodies. We also examined the impact of D614G, P681R, and P681H substitutions on Spike protein structure that may be related to infectivity. The D614G substitution influences communication between a glycine residue and neighboring domains, affecting the transition between up- and -down RBD states. The P681R mutation, found in the Delta variant, enhances correlations between protein subunits, while the P681H mutation in Omicron sub-variants weakens long-range interactions that may be associated with reduced fusogenicity. Using a multiple linear regression model, we established a connection between inter-protomer communication and loss of sensitivity to neutralizing antibodies. Our findings underscore the importance of structural communication between protein domains and provide insights into potential mechanisms of immune evasion by SARS-CoV-2. Overall, this study deepens our understanding of how specific mutations impact SARS-CoV-2 infectivity and shed light on how the virus evades the immune system.
Collapse
Affiliation(s)
- Anacleto Silva de Souza
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1374, Cidade Universitária, Sao Paulo, SP, 5508-900, Brazil.
| | - Robson Francisco de Souza
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1374, Cidade Universitária, Sao Paulo, SP, 5508-900, Brazil
| | - Cristiane Rodrigues Guzzo
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1374, Cidade Universitária, Sao Paulo, SP, 5508-900, Brazil.
| |
Collapse
|
9
|
Sun H, Wang Y, Chen X, Jiang Y, Wang S, Huang Y, Liu L, Li Y, Lan M, Guo H, Yuan Q, Zhang Y, Li T, Yu H, Gu Y, Zhang J, Li S, Zheng Z, Zheng Q, Xia N. Structural basis for broad neutralization of human antibody against Omicron sublineages and evasion by XBB variant. J Virol 2023; 97:e0113723. [PMID: 37855619 PMCID: PMC10688377 DOI: 10.1128/jvi.01137-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/18/2023] [Indexed: 10/20/2023] Open
Abstract
IMPORTANCE The ongoing COVID-19 pandemic has been characterized by the emergence of new SARS-CoV-2 variants including the highly transmissible Omicron XBB sublineages, which have shown significant resistance to neutralizing antibodies (nAbs). This resistance has led to decreased vaccine effectiveness and therefore result in breakthrough infections and reinfections, which continuously threaten public health. To date, almost all available therapeutic nAbs, including those authorized under Emergency Use Authorization nAbs that were previously clinically useful against early strains, have recently been found to be ineffective against newly emerging variants. In this study, we provide a comprehensive structural basis about how the Class 3 nAbs, including 1G11 in this study and noted LY-CoV1404, are evaded by the newly emerged SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Hui Sun
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yizhen Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, China
| | - Xiuting Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yanan Jiang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, China
| | - Siling Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yang Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, China
| | - Liqin Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yu Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, China
| | - Miaolin Lan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, China
| | - Huilin Guo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, China
| | - Quan Yuan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, China
- Xiang An Biomedicine Laboratory, Xiamen, China
| | - Yali Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, China
- Xiang An Biomedicine Laboratory, Xiamen, China
| | - Tingting Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, China
- Xiang An Biomedicine Laboratory, Xiamen, China
| | - Hai Yu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, China
- Xiang An Biomedicine Laboratory, Xiamen, China
| | - Ying Gu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, China
- Xiang An Biomedicine Laboratory, Xiamen, China
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, China
- Xiang An Biomedicine Laboratory, Xiamen, China
| | - Shaowei Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, China
- Xiang An Biomedicine Laboratory, Xiamen, China
| | - Zizheng Zheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, China
- Xiang An Biomedicine Laboratory, Xiamen, China
| | - Qingbing Zheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, China
- Xiang An Biomedicine Laboratory, Xiamen, China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, China
- Xiang An Biomedicine Laboratory, Xiamen, China
- Research Unit of Frontier Technology of Structural Vaccinology, Chinese Academy of Medical Sciences, Xiamen, China
| |
Collapse
|
10
|
Joshi D, Nyhoff LE, Zarnitsyna VI, Moreno A, Manning K, Linderman S, Burrell AR, Stephens K, Norwood C, Mantus G, Ahmed R, Anderson EJ, Staat MA, Suthar MS, Wrammert J. Infants and young children generate more durable antibody responses to SARS-CoV-2 infection than adults. iScience 2023; 26:107967. [PMID: 37822504 PMCID: PMC10562792 DOI: 10.1016/j.isci.2023.107967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/25/2023] [Accepted: 09/15/2023] [Indexed: 10/13/2023] Open
Abstract
As SARS-CoV-2 becomes endemic, it is critical to understand immunity following early-life infection. We evaluated humoral responses to SARS-CoV-2 in 23 infants/young children. Antibody responses to SARS-CoV-2 spike antigens peaked approximately 30 days after infection and were maintained up to 500 days with little apparent decay. While the magnitude of humoral responses was similar to an adult cohort recovered from mild/moderate COVID-19, both binding and neutralization titers to WT SARS-CoV-2 were more durable in infants/young children, with spike and RBD IgG antibody half-life nearly 4X as long as in adults. IgG subtype analysis revealed that while IgG1 formed the majority of the response in both groups, IgG3 was more common in adults and IgG2 in infants/young children. These findings raise important questions regarding differential regulation of humoral immunity in infants/young children and adults and could have broad implications for the timing of vaccination and booster strategies in this age group.
Collapse
Affiliation(s)
- Devyani Joshi
- Division of Infectious Diseases, Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, USA
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
- Centers for Childhood Infections and Vaccines, Children’s Healthcare of Atlanta, Emory University Department of Pediatrics Department of Medicine, Atlanta, GA, USA
| | - Lindsay E. Nyhoff
- Division of Infectious Diseases, Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, USA
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
- Centers for Childhood Infections and Vaccines, Children’s Healthcare of Atlanta, Emory University Department of Pediatrics Department of Medicine, Atlanta, GA, USA
| | | | - Alberto Moreno
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
- Emory National Primate Research Center, Atlanta, GA, USA
- Department of Medicine, Emory University, School of Medicine, Atlanta, GA, USA
| | - Kelly Manning
- Division of Infectious Diseases, Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, USA
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
- Emory National Primate Research Center, Atlanta, GA, USA
| | - Susanne Linderman
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA
| | - Allison R. Burrell
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Environmental and Public Health Sciences, Division of Epidemiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Kathy Stephens
- Centers for Childhood Infections and Vaccines, Children’s Healthcare of Atlanta, Emory University Department of Pediatrics Department of Medicine, Atlanta, GA, USA
| | - Carson Norwood
- Division of Infectious Diseases, Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, USA
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
- Centers for Childhood Infections and Vaccines, Children’s Healthcare of Atlanta, Emory University Department of Pediatrics Department of Medicine, Atlanta, GA, USA
| | - Grace Mantus
- Division of Infectious Diseases, Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, USA
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
- Centers for Childhood Infections and Vaccines, Children’s Healthcare of Atlanta, Emory University Department of Pediatrics Department of Medicine, Atlanta, GA, USA
| | - Rafi Ahmed
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA
| | - Evan J. Anderson
- Division of Infectious Diseases, Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, USA
- Centers for Childhood Infections and Vaccines, Children’s Healthcare of Atlanta, Emory University Department of Pediatrics Department of Medicine, Atlanta, GA, USA
- Department of Medicine, Emory University, School of Medicine, Atlanta, GA, USA
| | - Mary A. Staat
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Mehul S. Suthar
- Division of Infectious Diseases, Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, USA
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
- Centers for Childhood Infections and Vaccines, Children’s Healthcare of Atlanta, Emory University Department of Pediatrics Department of Medicine, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA
- Emory National Primate Research Center, Atlanta, GA, USA
| | - Jens Wrammert
- Division of Infectious Diseases, Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, USA
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
- Centers for Childhood Infections and Vaccines, Children’s Healthcare of Atlanta, Emory University Department of Pediatrics Department of Medicine, Atlanta, GA, USA
| |
Collapse
|
11
|
Wang L, Wang Y, Zhou H. Potent antibodies against immune invasive SARS-CoV-2 Omicron subvariants. Int J Biol Macromol 2023; 249:125997. [PMID: 37499711 DOI: 10.1016/j.ijbiomac.2023.125997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
The development of neutralizing antibodies (nAbs) is an important strategy to tackle the Omicron variant. Omicron N-terminal domain (NTD) mutations including A67V, G142D, and N212I alter the antigenic structure, and mutations in the spike (S) receptor binding domain (RBD), such as N501Y, R346K, and T478K enhance affinity between the RBD and angiotensin-converting enzyme 2 (ACE2), thus conferring Omicron powerful immune evasion. Most nAbs (COV2-2130, ZCB11, REGN10933) and combinations of nAbs (COV2-2196 + COV2-2130, REGN10933 + REGN10987, Brii-196 + Brii-198) have either greatly reduced or lost their neutralizing ability against Omicron, but several nAbs such as SA55, SA58, S309, LY-CoV1404 are still effective in neutralizing most Omicron subvariants. This paper focuses on Omicron subvariants mutations and mechanisms of current therapeutic antibodies that remain efficacious against Omicron subvariants, which will guide us in exploring a new generation of broad nAbs as key therapeutics to tackle SARS-CoV-2 and accelerate the exploration of novel clinical antiviral reagents.
Collapse
Affiliation(s)
- Lidong Wang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yang Wang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Hao Zhou
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400016, China.
| |
Collapse
|
12
|
Patel A, Kumar S, Lai L, Keen M, Valanparambil R, Chakravarthy C, Laughlin Z, Frank F, Cheedarla N, Verkerke HP, Neish AS, Roback JD, Davis CW, Wrammert J, Sharma A, Ahmed R, Suthar MS, Murali-Krishna K, Chandele A, Ortlund E. Light chain of a public SARS-CoV-2 class-3 antibody modulates neutralization against Omicron. Cell Rep 2023; 42:113150. [PMID: 37708028 PMCID: PMC10862350 DOI: 10.1016/j.celrep.2023.113150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/14/2023] [Accepted: 09/01/2023] [Indexed: 09/16/2023] Open
Abstract
The pairing of antibody genes IGHV2-5/IGLV2-14 is established as a public immune response that potently cross-neutralizes SARS-CoV-2 variants, including Omicron, by targeting class-3/RBD-5 epitopes in the receptor binding domain (RBD). LY-CoV1404 (bebtelovimab) exemplifies this, displaying exceptional potency against Omicron sub-variants up to BA.5. Here, we report a human antibody, 002-S21B10, encoded by the public clonotype IGHV2-5/IGLV2-14. While 002-S21B10 neutralized key SARS-CoV-2 variants, it did not neutralize Omicron, despite sharing >92% sequence similarity with LY-CoV1404. The structure of 002-S21B10 in complex with spike trimer plus structural and sequence comparisons with LY-CoV1404 and other IGHV2-5/IGLV2-14 antibodies revealed significant variations in light-chain orientation, paratope residues, and epitope-paratope interactions that enable some antibodies to neutralize Omicron but not others. Confirming this, replacing the light chain of 002-S21B10 with the light chain of LY-CoV1404 restored 002-S21B10's binding to Omicron. Understanding such Omicron evasion from public response is vital for guiding therapeutics and vaccine design.
Collapse
Affiliation(s)
- Anamika Patel
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Sanjeev Kumar
- ICGEB-Emory Vaccine Center, International Center for Genetic Engineering and Biotechnology, New Delhi 110067, India; Department of Pediatrics, Division of Infectious Diseases, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA; Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| | - Lilin Lai
- Department of Pediatrics, Division of Infectious Diseases, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA; Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| | - Meredith Keen
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Rajesh Valanparambil
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA; Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| | - Chennareddy Chakravarthy
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA; Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| | - Zane Laughlin
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Filipp Frank
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Narayanaiah Cheedarla
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Hans P Verkerke
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Andrew S Neish
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - John D Roback
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Carl W Davis
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA; Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| | - Jens Wrammert
- Department of Pediatrics, Division of Infectious Diseases, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA; Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| | - Amit Sharma
- Structural Parasitology Group, International Center for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Rafi Ahmed
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA; Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| | - Mehul S Suthar
- Department of Pediatrics, Division of Infectious Diseases, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA; Department of Microbiology and Immunology, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA; Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| | - Kaja Murali-Krishna
- ICGEB-Emory Vaccine Center, International Center for Genetic Engineering and Biotechnology, New Delhi 110067, India; Department of Pediatrics, Division of Infectious Diseases, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA; Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA.
| | - Anmol Chandele
- ICGEB-Emory Vaccine Center, International Center for Genetic Engineering and Biotechnology, New Delhi 110067, India.
| | - Eric Ortlund
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
13
|
Kumar S, Singh S, Chatterjee A, Bajpai P, Sharma S, Katpara S, Lodha R, Dutta S, Luthra K. Recognition determinants of improved HIV-1 neutralization by a heavy chain matured pediatric antibody. iScience 2023; 26:107579. [PMID: 37649696 PMCID: PMC10462834 DOI: 10.1016/j.isci.2023.107579] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/13/2023] [Accepted: 08/04/2023] [Indexed: 09/01/2023] Open
Abstract
The structural and characteristic features of HIV-1 broadly neutralizing antibodies (bnAbs) from chronically infected pediatric donors are currently unknown. Herein, we characterized a heavy chain matured HIV-1 bnAb 44m, identified from a pediatric elite-neutralizer. Interestingly, in comparison to its wild-type AIIMS-P01 bnAb, 44m exhibited moderately higher level of somatic hypermutations of 15.2%. The 44m neutralized 79% of HIV-1 heterologous viruses (n = 58) tested, with a geometric mean IC50 titer of 0.36 μg/mL. The cryo-EM structure of 44m Fab in complex with fully cleaved glycosylated native-like BG505.SOSIP.664.T332N gp140 envelope trimer at 4.4 Å resolution revealed that 44m targets the V3-glycan N332-supersite and GDIR motif to neutralize HIV-1 with improved potency and breadth, plausibly attributed by a matured heavy chain as compared to that of wild-type AIIMS-P01. This study further improves our understanding on pediatric HIV-1 bnAbs and structural basis of broad HIV-1 neutralization by 44m may be useful blueprint for vaccine design in future.
Collapse
Affiliation(s)
- Sanjeev Kumar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi 110029, India
- ICGEB-Emory Vaccine Center, International Center for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Swarandeep Singh
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Arnab Chatterjee
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - Prashant Bajpai
- ICGEB-Emory Vaccine Center, International Center for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Shaifali Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Sanket Katpara
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Rakesh Lodha
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Somnath Dutta
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - Kalpana Luthra
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi 110029, India
| |
Collapse
|
14
|
Zhou D, Ren J, Fry EE, Stuart DI. Broadly neutralizing antibodies against COVID-19. Curr Opin Virol 2023; 61:101332. [PMID: 37285620 PMCID: PMC10301462 DOI: 10.1016/j.coviro.2023.101332] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/26/2023] [Accepted: 05/02/2023] [Indexed: 06/09/2023]
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 has led to hundreds of millions of infections and millions of deaths, however, human monoclonal antibodies (mAbs) can be an effective treatment. Since SARS-CoV-2 emerged, a variety of strains have acquired increasing numbers of mutations to gain increased transmissibility and escape from the immune response. Most reported neutralizing human mAbs, including all approved therapeutic ones, have been knocked down or out by these mutations. Broadly neutralizing mAbs are therefore of great value, to treat current and possible future variants. Here, we review four types of neutralizing mAbs against the spike protein with broad potency against previously and currently circulating variants. These mAbs target the receptor-binding domain, the subdomain 1, the stem helix, or the fusion peptide. Understanding how these mAbs retain potency in the face of mutational change could guide future development of therapeutic antibodies and vaccines.
Collapse
Affiliation(s)
- Daming Zhou
- Division of Structural Biology, University of Oxford, The Wellcome Centre for Human Genetics, Headington, Oxford OX3 7BN, UK; Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford OX3 7FZ, UK.
| | - Jingshan Ren
- Division of Structural Biology, University of Oxford, The Wellcome Centre for Human Genetics, Headington, Oxford OX3 7BN, UK
| | - Elizabeth E Fry
- Division of Structural Biology, University of Oxford, The Wellcome Centre for Human Genetics, Headington, Oxford OX3 7BN, UK
| | - David I Stuart
- Division of Structural Biology, University of Oxford, The Wellcome Centre for Human Genetics, Headington, Oxford OX3 7BN, UK; Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford OX3 7FZ, UK; Diamond Light Source Ltd, Harwell Science & Innovation Campus, Didcot OX11 0DE, UK; Nuffield Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK.
| |
Collapse
|
15
|
Yuan M, Wilson IA. Major classes of neutralizing antibodies evaded by the SARS-CoV-2 Omicron variant. Structure 2023; 31:755-757. [PMID: 37419097 DOI: 10.1016/j.str.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/02/2023] [Accepted: 06/08/2023] [Indexed: 07/09/2023]
Abstract
Understanding how SARS-CoV-2 evades neutralizing antibodies is crucial for the development of therapeutic antibodies and universal vaccines. In this issue of Structure, Patel et al. elucidate mechanisms of SARS-CoV-2 escape from two major antibody classes. Cryoelectron microscopy (cryo-EM) structures of these antibodies with the SARS-CoV-2 spike formed the basis of their findings.
Collapse
Affiliation(s)
- Meng Yuan
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA 92037, USA; Skaggs Institute for Chemical Biology, Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
16
|
Patel A, Kumar S, Lai L, Chakravarthy C, Valanparambil R, Reddy ES, Gottimukkala K, Bajpai P, Raju DR, Edara VV, Davis-Gardner ME, Linderman S, Dixit K, Sharma P, Mantus G, Cheedarla N, Verkerke HP, Frank F, Neish AS, Roback JD, Davis CW, Wrammert J, Ahmed R, Suthar MS, Sharma A, Murali-Krishna K, Chandele A, Ortlund EA. Molecular basis of SARS-CoV-2 Omicron variant evasion from shared neutralizing antibody response. Structure 2023; 31:801-811.e5. [PMID: 37167972 PMCID: PMC10171968 DOI: 10.1016/j.str.2023.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/09/2023] [Accepted: 04/21/2023] [Indexed: 05/13/2023]
Abstract
Understanding the molecular features of neutralizing epitopes is important for developing vaccines/therapeutics against emerging SARS-CoV-2 variants. We describe three monoclonal antibodies (mAbs) generated from COVID-19 recovered individuals during the first wave of the pandemic in India. These mAbs had publicly shared near germline gene usage and potently neutralized Alpha and Delta, poorly neutralized Beta, and failed to neutralize Omicron BA.1 SARS-CoV-2 variants. Structural analysis of these mAbs in complex with trimeric spike protein showed that all three mAbs bivalently bind spike with two mAbs targeting class 1 and one targeting a class 4 receptor binding domain epitope. The immunogenetic makeup, structure, and function of these mAbs revealed specific molecular interactions associated with the potent multi-variant binding/neutralization efficacy. This knowledge shows how mutational combinations can affect the binding or neutralization of an antibody, which in turn relates to the efficacy of immune responses to emerging SARS-CoV-2 escape variants.
Collapse
Affiliation(s)
- Anamika Patel
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Sanjeev Kumar
- ICGEB-Emory Vaccine Center, International Center for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Lilin Lai
- Department of Pediatrics, Division of Infectious Diseases, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA; Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| | - Chennareddy Chakravarthy
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA; Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| | - Rajesh Valanparambil
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA; Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| | - Elluri Seetharami Reddy
- ICGEB-Emory Vaccine Center, International Center for Genetic Engineering and Biotechnology, New Delhi 110067, India; Kusuma School of Biological Sciences, Indian Institute of Technology, New Delhi 110016, India
| | - Kamalvishnu Gottimukkala
- ICGEB-Emory Vaccine Center, International Center for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Prashant Bajpai
- ICGEB-Emory Vaccine Center, International Center for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Dinesh Ravindra Raju
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA; Georgia Tech, Atlanta, GA 30332, USA
| | - Venkata Viswanadh Edara
- Department of Pediatrics, Division of Infectious Diseases, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Meredith E Davis-Gardner
- Department of Pediatrics, Division of Infectious Diseases, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Susanne Linderman
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA; Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| | - Kritika Dixit
- ICGEB-Emory Vaccine Center, International Center for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Pragati Sharma
- ICGEB-Emory Vaccine Center, International Center for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Grace Mantus
- Department of Pediatrics, Division of Infectious Diseases, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA; Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| | - Narayanaiah Cheedarla
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Hans P Verkerke
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA 02215, USA
| | - Filipp Frank
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Andrew S Neish
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - John D Roback
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Carl W Davis
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA; Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| | - Jens Wrammert
- Department of Pediatrics, Division of Infectious Diseases, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA; Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| | - Rafi Ahmed
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA; Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| | - Mehul S Suthar
- Department of Pediatrics, Division of Infectious Diseases, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA; Department of Microbiology and Immunology, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA; Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| | - Amit Sharma
- Structural Parasitology Group, International Center for Genetic Engineering and Biotechnology, New Delhi 110067, India.
| | - Kaja Murali-Krishna
- ICGEB-Emory Vaccine Center, International Center for Genetic Engineering and Biotechnology, New Delhi 110067, India; Department of Pediatrics, Division of Infectious Diseases, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA; Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA.
| | - Anmol Chandele
- ICGEB-Emory Vaccine Center, International Center for Genetic Engineering and Biotechnology, New Delhi 110067, India.
| | - Eric A Ortlund
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
17
|
Govindaraj S, Cheedarla N, Cheedarla S, Irby LS, Neish AS, Roback JD, Smith AK, Velu V. COVID-19 vaccine induced poor neutralization titers for SARS-CoV-2 omicron variants in maternal and cord blood. Front Immunol 2023; 14:1211558. [PMID: 37465682 PMCID: PMC10350671 DOI: 10.3389/fimmu.2023.1211558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/12/2023] [Indexed: 07/20/2023] Open
Abstract
Introduction Maternally derived antibodies are crucial for neonatal immunity. Understanding the binding and cross-neutralization capacity of maternal and cord antibody responses to SARS-CoV-2 variants following COVID-19 vaccination in pregnancy can inform neonatal immunity. Methods Here we characterized the binding and neutralizing antibody profile at delivery in 24 pregnant individuals following two doses of Moderna mRNA-1273 or Pfizer BNT162b2 vaccination. We analyzed for SARS-CoV-2 multivariant cross-neutralizing antibody levels for wildtype Wuhan, Delta, Omicron BA1, BA2, and BA4/BA5 variants. In addition, we evaluated the transplacental antibody transfer by profiling maternal and umbilical cord blood. Results Our results reveal that the current COVID-19 vaccination induced significantly higher RBD-specific binding IgG titers in cord blood compared to maternal blood for both the Wuhan and Omicron BA1 strain. Interestingly, the binding IgG antibody levels for the Omicron BA1 strain were significantly lower when compared to the Wuhan strain in both maternal and cord blood. In contrast to the binding, the Omicron BA1, BA2, and BA4/5 specific neutralizing antibody levels were significantly lower compared to the Wuhan and Delta variants. It is interesting to note that the BA4/5 neutralizing capacity was not detected in either maternal or cord blood. Discussion Our data suggest that the initial series of COVID-19 mRNA vaccines were immunogenic in pregnant women, and vaccine-elicited binding antibodies were detectable in cord blood at significantly higher levels for the Wuhan and Delta variants but not for the Omicron variants. Interestingly, the vaccination did not induce neutralizing antibodies for Omicron variants. These results provide novel insight into the impact of vaccination on maternal humoral immune response and transplacental antibody transfer for SARS-CoV-2 variants and support the need for bivalent boosters as new variants emerge.
Collapse
Affiliation(s)
- Sakthivel Govindaraj
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, United States
- Division of Microbiology and Immunology, Emory Vaccine Center, Emory University, Atlanta, GA, United States
| | - Narayanaiah Cheedarla
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Suneethamma Cheedarla
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - LesShon S. Irby
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Andrew S. Neish
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - John D. Roback
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Alicia K. Smith
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Vijayakumar Velu
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, United States
- Division of Microbiology and Immunology, Emory Vaccine Center, Emory University, Atlanta, GA, United States
| |
Collapse
|
18
|
Ishimaru H, Nishimura M, Tjan LH, Sutandhio S, Marini MI, Effendi GB, Shigematsu H, Kato K, Hasegawa N, Aoki K, Kurahashi Y, Furukawa K, Shinohara M, Nakamura T, Arii J, Nagano T, Nakamura S, Sano S, Iwata S, Okamura S, Mori Y. Identification and Analysis of Monoclonal Antibodies with Neutralizing Activity against Diverse SARS-CoV-2 Variants. J Virol 2023; 97:e0028623. [PMID: 37191569 PMCID: PMC10308935 DOI: 10.1128/jvi.00286-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
We identified neutralizing monoclonal antibodies against severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) variants (including Omicron variants BA.5 and BA.2.75) from individuals who received two doses of mRNA vaccination after they had been infected with the D614G virus. We named them MO1, MO2, and MO3. Among them, MO1 showed particularly high neutralizing activity against authentic variants: D614G, Delta, BA.1, BA.1.1, BA.2, BA.2.75, and BA.5. Furthermore, MO1 suppressed BA.5 infection in hamsters. A structural analysis revealed that MO1 binds to the conserved epitope of seven variants, including Omicron variants BA.5 and BA.2.75, in the receptor-binding domain of the spike protein. MO1 targets an epitope conserved among Omicron variants BA.1, BA.2, and BA.5 in a unique binding mode. Our findings confirm that D614G-derived vaccination can induce neutralizing antibodies that recognize the epitopes conserved among the SARS-CoV-2 variants. IMPORTANCE Omicron variants of SARS-CoV-2 acquired escape ability from host immunity and authorized antibody therapeutics and thereby have been spreading worldwide. We reported that patients infected with an early SARS-CoV-2 variant, D614G, and who received subsequent two-dose mRNA vaccination have high neutralizing antibody titer against Omicron lineages. It was speculated that the patients have neutralizing antibodies broadly effective against SARS-CoV-2 variants by targeting common epitopes. Here, we explored human monoclonal antibodies from B cells of the patients. One of the monoclonal antibodies, named MO1, showed high potency against broad SARS-CoV-2 variants including BA.2.75 and BA.5 variants. The results prove that monoclonal antibodies that have common neutralizing epitopes among several Omicrons were produced in patients infected with D614G and who received mRNA vaccination.
Collapse
Affiliation(s)
- Hanako Ishimaru
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Mitsuhiro Nishimura
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Lidya Handayani Tjan
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Silvia Sutandhio
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Maria Istiqomah Marini
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Gema Barlian Effendi
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Hideki Shigematsu
- Structural Biology Division, Japan Synchrotron Radiation Research Institute SPring-8, Hyogo, Japan
| | - Koji Kato
- Structural Biology Division, Japan Synchrotron Radiation Research Institute SPring-8, Hyogo, Japan
| | - Natsumi Hasegawa
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Kaito Aoki
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Yukiya Kurahashi
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Koichi Furukawa
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Mai Shinohara
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Tomoka Nakamura
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Jun Arii
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Tatsuya Nagano
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Sachiko Nakamura
- Division of General Internal Medicine, Hyogo Prefectural Kakogawa Medical Center, Kakogawa, Hyogo, Japan
| | - Shigeru Sano
- Acute Care Medical Center, Hyogo Prefectural Kakogawa Medical Center, Kakogawa, Hyogo, Japan
| | - Sachiyo Iwata
- Division of Cardiovascular Medicine, Hyogo Prefectural Kakogawa Medical Center, Kakogawa, Hyogo, Japan
| | - Shinya Okamura
- The Research Foundation for Microbial Diseases of Osaka University, Suita, Osaka, Japan
| | - Yasuko Mori
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| |
Collapse
|
19
|
Takeshita M, Fukuyama H, Kamada K, Matsumoto T, Makino-Okamura C, Lin Q, Sakuma M, Kawahara E, Yamazaki I, Uchikubo-Kamo T, Tomabechi Y, Hanada K, Hisano T, Moriyama S, Takahashi Y, Ito M, Imai M, Maemura T, Furusawa Y, Yamayoshi S, Kawaoka Y, Shirouzu M, Ishii M, Saya H, Kondo Y, Kaneko Y, Suzuki K, Fukunaga K, Takeuchi T. Potent neutralizing broad-spectrum antibody against SARS-CoV-2 generated from dual-antigen-specific B cells from convalescents. iScience 2023; 26:106955. [PMID: 37288342 PMCID: PMC10208659 DOI: 10.1016/j.isci.2023.106955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/10/2022] [Accepted: 05/22/2023] [Indexed: 06/09/2023] Open
Abstract
Several antibody therapeutics have been developed against SARS-CoV-2; however, they have attenuated neutralizing ability against variants. In this study, we generated multiple broadly neutralizing antibodies from B cells of convalescents, by using two types of receptor-binding domains, Wuhan strain and the Gamma variant as bait. From 172 antibodies generated, six antibodies neutralized all strains prior to the Omicron variant, and the five antibodies were able to neutralize some of the Omicron sub-strains. Structural analysis showed that these antibodies have a variety of characteristic binding modes, such as ACE2 mimicry. We subjected a representative antibody to the hamster infection model after introduction of the N297A modification, and observed a dose-dependent reduction of the lung viral titer, even at a dose of 2 mg/kg. These results demonstrated that our antibodies have certain antiviral activity as therapeutics, and highlighted the importance of initial cell-screening strategy for the efficient development of therapeutic antibodies.
Collapse
Affiliation(s)
- Masaru Takeshita
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Hidehiro Fukuyama
- Near-InfraRed Photo-Immunotherapy Research Institute, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
- RIKEN Center for Integrative Medical Sciences, Infectious Diseases Research Unit, Kanagawa 230-0045, Japan
- Cell Integrative Science Laboratory, Graduate School of Medical Life Science, Yokohama City University, Kanagawa 230-0045, Japan
- INSERM EST, Strasbourg Cedex 2, 67037, France
| | - Katsuhiko Kamada
- RIKEN Center for Biosystems Dynamics Research, Kanagawa 230-0045, Japan
| | | | - Chieko Makino-Okamura
- Near-InfraRed Photo-Immunotherapy Research Institute, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
- RIKEN Center for Integrative Medical Sciences, Infectious Diseases Research Unit, Kanagawa 230-0045, Japan
| | - Qingshun Lin
- RIKEN Center for Integrative Medical Sciences, Infectious Diseases Research Unit, Kanagawa 230-0045, Japan
| | - Machie Sakuma
- RIKEN Center for Integrative Medical Sciences, Infectious Diseases Research Unit, Kanagawa 230-0045, Japan
| | - Eiki Kawahara
- Near-InfraRed Photo-Immunotherapy Research Institute, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
- RIKEN Center for Integrative Medical Sciences, Infectious Diseases Research Unit, Kanagawa 230-0045, Japan
- Cell Integrative Science Laboratory, Graduate School of Medical Life Science, Yokohama City University, Kanagawa 230-0045, Japan
| | - Isato Yamazaki
- Near-InfraRed Photo-Immunotherapy Research Institute, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
- RIKEN Center for Integrative Medical Sciences, Infectious Diseases Research Unit, Kanagawa 230-0045, Japan
- Cell Integrative Science Laboratory, Graduate School of Medical Life Science, Yokohama City University, Kanagawa 230-0045, Japan
| | | | - Yuri Tomabechi
- RIKEN Center for Biosystems Dynamics Research, Kanagawa 230-0045, Japan
| | - Kazuharu Hanada
- RIKEN Center for Biosystems Dynamics Research, Kanagawa 230-0045, Japan
| | - Tamao Hisano
- RIKEN Center for Biosystems Dynamics Research, Kanagawa 230-0045, Japan
| | - Saya Moriyama
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Yoshimasa Takahashi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Mutsumi Ito
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Masaki Imai
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
- Center for Global Viral Diseases, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Tadashi Maemura
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Yuri Furusawa
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
- Center for Global Viral Diseases, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Seiya Yamayoshi
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
- Center for Global Viral Diseases, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Yoshihiro Kawaoka
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
- Center for Global Viral Diseases, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Mikako Shirouzu
- RIKEN Center for Biosystems Dynamics Research, Kanagawa 230-0045, Japan
| | - Makoto Ishii
- Division of Pulmonary Medicine, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Hideyuki Saya
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine; Tokyo 162-8640, Japan
| | - Yasushi Kondo
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Yuko Kaneko
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Katsuya Suzuki
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Koichi Fukunaga
- Division of Pulmonary Medicine, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Tsutomu Takeuchi
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
- Saitama Medical University, Saitama 350-0495, Japan
| |
Collapse
|
20
|
Joshi D, Nyhoff LE, Zarnitsyna VI, Moreno A, Manning K, Linderman S, Burrell AR, Stephens K, Norwood C, Mantus G, Ahmed R, Anderson EJ, Staat MA, Suthar MS, Wrammert J. Infants and young children generate more durable antibody responses to SARS-CoV-2 infection than adults. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.04.10.23288360. [PMID: 37090559 PMCID: PMC10120804 DOI: 10.1101/2023.04.10.23288360] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Since the emergence of SARS-CoV-2, research has shown that adult patients mount broad and durable immune responses to infection. However, response to infection remains poorly studied in infants/young children. In this study, we evaluated humoral responses to SARS-CoV-2 in 23 infants/young children before and after infection. We found that antibody responses to SARS-CoV-2 spike antigens peaked approximately 30 days after infection and were maintained up to 500 days with little apparent decay. While the magnitude of humoral responses was similar to an adult cohort recovered from mild/moderate COVID-19, both binding and neutralization titers to WT SARS-CoV-2 were more durable in infants/young children, with Spike and RBD IgG antibody half-life nearly 4X as long as in adults. The functional breadth of adult and infant/young children SARS-CoV-2 responses were comparable, with similar reactivity against panel of recent and previously circulating viral variants. Notably, IgG subtype analysis revealed that while IgG1 formed the majority of both adults' and infants/young children's response, IgG3 was more common in adults and IgG2 in infants/young children. These findings raise important questions regarding differential regulation of humoral immunity in infants/young children and adults and could have broad implications for the timing of vaccination and booster strategies in this age group.
Collapse
|
21
|
Lewnard JA, Hong V, Kim JS, Shaw SF, Lewin B, Takhar H, Tartof SY. Association of SARS-CoV-2 BA.4/BA.5 Omicron lineages with immune escape and clinical outcome. Nat Commun 2023; 14:1407. [PMID: 36918548 PMCID: PMC10012300 DOI: 10.1038/s41467-023-37051-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/28/2023] [Indexed: 03/16/2023] Open
Abstract
Expansion of the SARS-CoV-2 BA.4 and BA.5 Omicron subvariants in populations with prevalent immunity from prior infection and vaccination, and associated burden of severe COVID-19, has raised concerns about epidemiologic characteristics of these lineages including their association with immune escape or severe clinical outcomes. Here we show that BA.4/BA.5 cases in a large US healthcare system had at least 55% (95% confidence interval: 43-69%) higher adjusted odds of prior documented infection than time-matched BA.2 cases, as well as 15% (9-21%) and 38% (27-49%) higher adjusted odds of having received 3 and ≥4 COVID-19 vaccine doses, respectively. However, after adjusting for differences in epidemiologic characteristics among cases with each lineage, BA.4/BA.5 infection was not associated with differential risk of emergency department presentation, hospital admission, or intensive care unit admission following an initial outpatient diagnosis. This finding held in sensitivity analyses correcting for potential exposure misclassification resulting from unascertained prior infections. Our results demonstrate that the reduced severity associated with prior (BA.1 and BA.2) Omicron lineages, relative to the Delta variant, has persisted with BA.4/BA.5, despite the association of BA.4/BA.5 with increased risk of breakthrough infection among previously vaccinated or infected individuals.
Collapse
Affiliation(s)
- Joseph A Lewnard
- Division of Epidemiology, School of Public Health, University of California, Berkeley, Berkeley, CA, 94720, USA.
- Division of Infectious Diseases & Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, 94720, USA.
- Center for Computational Biology, College of Engineering, University of California, Berkeley, Berkeley, CA, 94720, USA.
| | - Vennis Hong
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, 91101, USA
| | - Jeniffer S Kim
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, 91101, USA
| | - Sally F Shaw
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, 91101, USA
| | - Bruno Lewin
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, 91101, USA
| | - Harpreet Takhar
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, 91101, USA
| | - Sara Y Tartof
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, 91101, USA.
- Department of Health Systems Science, Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, CA, 91101, USA.
| |
Collapse
|
22
|
Kumar S, Singh S, Luthra K. An Overview of Human Anti-HIV-1 Neutralizing Antibodies against Diverse Epitopes of HIV-1. ACS OMEGA 2023; 8:7252-7261. [PMID: 36873012 PMCID: PMC9979333 DOI: 10.1021/acsomega.2c07933] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/06/2023] [Indexed: 06/01/2023]
Abstract
In this Review, we have addressed some recent developments in the discovery and applications of anti-human immunodeficiency virus type- 1 (HIV-1) broadly neutralizing antibodies (bnAbs) isolated from infected adults and children. The recent developments in human antibody isolation technologies have led to the discovery of several highly potent anti-HIV-1 bnAbs. Herein, we have discussed the characteristics of recently identified bnAbs directed at distinct epitopes of HIV-1, in addition to the existing antibodies, from adults and children and have shed light on the benefits of multispecific HIV-1 bnAbs and their role in the design of polyvalent vaccines.
Collapse
|
23
|
Lee M, Major M, Hong H. Distinct Conformations of SARS-CoV-2 Omicron Spike Protein and Its Interaction with ACE2 and Antibody. Int J Mol Sci 2023; 24:3774. [PMID: 36835186 PMCID: PMC9967551 DOI: 10.3390/ijms24043774] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Since November 2021, Omicron has been the dominant severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant that causes the coronavirus disease 2019 (COVID-19) and has continuously impacted human health. Omicron sublineages are still increasing and cause increased transmission and infection rates. The additional 15 mutations on the receptor binding domain (RBD) of Omicron spike proteins change the protein conformation, enabling the Omicron variant to evade neutralizing antibodies. For this reason, many efforts have been made to design new antigenic variants to induce effective antibodies in SARS-CoV-2 vaccine development. However, understanding the different states of Omicron spike proteins with and without external molecules has not yet been addressed. In this review, we analyze the structures of the spike protein in the presence and absence of angiotensin-converting enzyme 2 (ACE2) and antibodies. Compared to previously determined structures for the wildtype spike protein and other variants such as alpha, beta, delta, and gamma, the Omicron spike protein adopts a partially open form. The open-form spike protein with one RBD up is dominant, followed by the open-form spike protein with two RBD up, and the closed-form spike protein with the RBD down. It is suggested that the competition between antibodies and ACE2 induces interactions between adjacent RBDs of the spike protein, which lead to a partially open form of the Omicron spike protein. The comprehensive structural information of Omicron spike proteins could be helpful for the efficient design of vaccines against the Omicron variant.
Collapse
Affiliation(s)
- Myeongsang Lee
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Marian Major
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Huixiao Hong
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| |
Collapse
|
24
|
Tamiya E, Osaki S, Tsuchihashi T, Ushijima H, Tsukinoki K. Point-of-Care Diagnostic Biosensors to Monitor Anti-SARS-CoV-2 Neutralizing IgG/sIgA Antibodies and Antioxidant Activity in Saliva. BIOSENSORS 2023; 13:167. [PMID: 36831933 PMCID: PMC9953869 DOI: 10.3390/bios13020167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Monitoring biomarkers is a great way to assess daily physical condition, and using saliva instead of blood samples is more advantageous as the process is simple and allows individuals to test themselves. In the present study, we analyzed the titers of neutralizing antibodies, IgG and secretory IgA (sIgA), in response to the SARS-CoV-2 vaccine, in saliva. A total of 19 saliva and serum samples were collected over a 10-month period 3 weeks after the first vaccine, 8 months after the second vaccine, and 1 month after the third vaccine. The ranges of antibody concentrations post-vaccination were: serum IgG: 81-15,000 U/mL, salivary IgG: 3.4-330 U/mL, and salivary IgA: 58-870 ng/mL. A sharp increase in salivary IgG levels was observed after the second vaccination. sIgA levels also showed an increasing trend. A correlation with trends in serum IgG levels was observed, indicating the possibility of using saliva to routinely assess vaccine efficacy. The electrochemical immunosensor assay developed in this study based on the gold-linked electrochemical immunoassay, and the antioxidant activity measurement based on luminol electrochemiluminescence (ECL), can be performed using portable devices, which would prove useful for individual-based diagnosis using saliva samples.
Collapse
Affiliation(s)
- Eiichi Tamiya
- Advanced Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, Photonics Center, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Osaka, Japan
- SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki 567-0047, Osaka, Japan
| | - Shuto Osaki
- Advanced Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, Photonics Center, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Osaka, Japan
| | | | - Hiromi Ushijima
- BioDevice Technology Ltd., 2-3 Asahidai, Nomi 923-1211, Ishikawa, Japan
| | - Keiichi Tsukinoki
- Department of Environmental Pathology, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka 238-0003, Kanagawa, Japan
| |
Collapse
|
25
|
Yang C, Zhao H, Shannon CP, Tebbutt SJ. Omicron variants of SARS-CoV-2 and long COVID. Front Immunol 2022; 13:1061686. [PMID: 36569883 PMCID: PMC9780375 DOI: 10.3389/fimmu.2022.1061686] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022] Open
Abstract
Understanding the epidemiology of long COVID and emerging variants has significant public-health implications as physical interventions and restrictions that help limit viral spread are eased globally. Here, we provide rationales for the necessity of updating current vaccines to improve protection against omicron and emerging variants, as well as more research into understanding the epidemiology and mechanisms of long COVID.
Collapse
Affiliation(s)
- Chengliang Yang
- Prevention of Organ Failure (PROOF) Centre of Excellence, St. Paul’s Hospital, University of British Columbia, Vancouver, BC, Canada,Centre for Heart Lung Innovation, Providence Research, St. Paul’s Hospital, Vancouver, BC, Canada,Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Hedi Zhao
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Casey P. Shannon
- Prevention of Organ Failure (PROOF) Centre of Excellence, St. Paul’s Hospital, University of British Columbia, Vancouver, BC, Canada,Centre for Heart Lung Innovation, Providence Research, St. Paul’s Hospital, Vancouver, BC, Canada
| | - Scott J. Tebbutt
- Prevention of Organ Failure (PROOF) Centre of Excellence, St. Paul’s Hospital, University of British Columbia, Vancouver, BC, Canada,Centre for Heart Lung Innovation, Providence Research, St. Paul’s Hospital, Vancouver, BC, Canada,Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, Canada,*Correspondence: Scott J. Tebbutt,
| |
Collapse
|
26
|
Patel A, Kumar S, Lai L, Chakravarthy C, Valanparambil R, Reddy ES, Gottimukkala K, Bajpai P, Raju DR, Edara VV, Davis-Gardner ME, Linderman S, Dixit K, Sharma P, Mantus G, Cheedarla N, Verkerke HP, Frank F, Neish AS, Roback JD, Davis CW, Wrammert J, Ahmed R, Suthar MS, Sharma A, Murali-Krishna K, Chandele A, Ortlund EA. Molecular basis of SARS-CoV-2 Omicron variant evasion from shared neutralizing antibody response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.10.24.513517. [PMID: 36324804 DOI: 10.1101/2022.10.13.512091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A detailed understanding of the molecular features of the neutralizing epitopes developed by viral escape mutants is important for predicting and developing vaccines or therapeutic antibodies against continuously emerging SARS-CoV-2 variants. Here, we report three human monoclonal antibodies (mAbs) generated from COVID-19 recovered individuals during first wave of pandemic in India. These mAbs had publicly shared near germline gene usage and potently neutralized Alpha and Delta, but poorly neutralized Beta and completely failed to neutralize Omicron BA.1 SARS-CoV-2 variants. Structural analysis of these three mAbs in complex with trimeric spike protein showed that all three mAbs are involved in bivalent spike binding with two mAbs targeting class-1 and one targeting class-4 Receptor Binding Domain (RBD) epitope. Comparison of immunogenetic makeup, structure, and function of these three mAbs with our recently reported class-3 RBD binding mAb that potently neutralized all SARS-CoV-2 variants revealed precise antibody footprint, specific molecular interactions associated with the most potent multi-variant binding / neutralization efficacy. This knowledge has timely significance for understanding how a combination of certain mutations affect the binding or neutralization of an antibody and thus have implications for predicting structural features of emerging SARS-CoV-2 escape variants and to develop vaccines or therapeutic antibodies against these.
Collapse
Affiliation(s)
- Anamika Patel
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Sanjeev Kumar
- ICGEB-Emory Vaccine Center, International Center for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Lilin Lai
- Department of Pediatrics, Emory National Primate Center, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
- Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| | - Chennareddy Chakravarthy
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
- Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| | - Rajesh Valanparambil
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
- Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| | - Elluri Seetharami Reddy
- ICGEB-Emory Vaccine Center, International Center for Genetic Engineering and Biotechnology, New Delhi, 110067, India
- Kusuma School of Biological Sciences, Indian Institute of Technology, New Delhi, 110016, India
| | - Kamalvishnu Gottimukkala
- ICGEB-Emory Vaccine Center, International Center for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Prashant Bajpai
- ICGEB-Emory Vaccine Center, International Center for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Dinesh Ravindra Raju
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
- Georgia Tech, Atlanta, GA 30332, USA
| | - Venkata Viswanadh Edara
- Department of Pediatrics, Emory National Primate Center, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Meredith E Davis-Gardner
- Department of Pediatrics, Emory National Primate Center, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Susanne Linderman
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
- Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| | - Kritika Dixit
- ICGEB-Emory Vaccine Center, International Center for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Pragati Sharma
- ICGEB-Emory Vaccine Center, International Center for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Grace Mantus
- Department of Pediatrics, Emory National Primate Center, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
- Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| | - Narayanaiah Cheedarla
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Hans P Verkerke
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02215, USA
| | - Filipp Frank
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Andrew S Neish
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - John D Roback
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Carl W Davis
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
- Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| | - Jens Wrammert
- Department of Pediatrics, Emory National Primate Center, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
- Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| | - Rafi Ahmed
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
- Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| | - Mehul S Suthar
- Department of Pediatrics, Emory National Primate Center, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
- Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| | - Amit Sharma
- Structural Parasitology Group, International Center for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Kaja Murali-Krishna
- ICGEB-Emory Vaccine Center, International Center for Genetic Engineering and Biotechnology, New Delhi, 110067, India
- Department of Pediatrics, Emory National Primate Center, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
- Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| | - Anmol Chandele
- ICGEB-Emory Vaccine Center, International Center for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Eric A Ortlund
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
27
|
Patel A, Kumar S, Lai L, Chakravarthy C, Valanparambil R, Reddy ES, Gottimukkala K, Bajpai P, Raju DR, Edara VV, Davis-Gardner ME, Linderman S, Dixit K, Sharma P, Mantus G, Cheedarla N, Verkerke HP, Frank F, Neish AS, Roback JD, Davis CW, Wrammert J, Ahmed R, Suthar MS, Sharma A, Murali-Krishna K, Chandele A, Ortlund EA. Molecular basis of SARS-CoV-2 Omicron variant evasion from shared neutralizing antibody response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.10.24.513517. [PMID: 36324804 PMCID: PMC9628201 DOI: 10.1101/2022.10.24.513517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A detailed understanding of the molecular features of the neutralizing epitopes developed by viral escape mutants is important for predicting and developing vaccines or therapeutic antibodies against continuously emerging SARS-CoV-2 variants. Here, we report three human monoclonal antibodies (mAbs) generated from COVID-19 recovered individuals during first wave of pandemic in India. These mAbs had publicly shared near germline gene usage and potently neutralized Alpha and Delta, but poorly neutralized Beta and completely failed to neutralize Omicron BA.1 SARS-CoV-2 variants. Structural analysis of these three mAbs in complex with trimeric spike protein showed that all three mAbs are involved in bivalent spike binding with two mAbs targeting class-1 and one targeting class-4 Receptor Binding Domain (RBD) epitope. Comparison of immunogenetic makeup, structure, and function of these three mAbs with our recently reported class-3 RBD binding mAb that potently neutralized all SARS-CoV-2 variants revealed precise antibody footprint, specific molecular interactions associated with the most potent multi-variant binding / neutralization efficacy. This knowledge has timely significance for understanding how a combination of certain mutations affect the binding or neutralization of an antibody and thus have implications for predicting structural features of emerging SARS-CoV-2 escape variants and to develop vaccines or therapeutic antibodies against these.
Collapse
Affiliation(s)
- Anamika Patel
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Sanjeev Kumar
- ICGEB-Emory Vaccine Center, International Center for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Lilin Lai
- Department of Pediatrics, Emory National Primate Center, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA,Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| | - Chennareddy Chakravarthy
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA,Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| | - Rajesh Valanparambil
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA,Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| | - Elluri Seetharami Reddy
- ICGEB-Emory Vaccine Center, International Center for Genetic Engineering and Biotechnology, New Delhi, 110067, India,Kusuma School of Biological Sciences, Indian Institute of Technology, New Delhi, 110016, India
| | - Kamalvishnu Gottimukkala
- ICGEB-Emory Vaccine Center, International Center for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Prashant Bajpai
- ICGEB-Emory Vaccine Center, International Center for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Dinesh Ravindra Raju
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA.,Georgia Tech, Atlanta, GA 30332, USA
| | - Venkata Viswanadh Edara
- Department of Pediatrics, Emory National Primate Center, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Meredith E. Davis-Gardner
- Department of Pediatrics, Emory National Primate Center, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Susanne Linderman
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA,Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| | - Kritika Dixit
- ICGEB-Emory Vaccine Center, International Center for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Pragati Sharma
- ICGEB-Emory Vaccine Center, International Center for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Grace Mantus
- Department of Pediatrics, Emory National Primate Center, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA,Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| | - Narayanaiah Cheedarla
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Hans P. Verkerke
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA,Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02215, USA
| | - Filipp Frank
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Andrew S. Neish
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - John D. Roback
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Carl W. Davis
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA,Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| | - Jens Wrammert
- Department of Pediatrics, Emory National Primate Center, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA,Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| | - Rafi Ahmed
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA,Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| | - Mehul S. Suthar
- Department of Pediatrics, Emory National Primate Center, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA,Department of Microbiology and Immunology, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA,Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| | - Amit Sharma
- Structural Parasitology Group, International Center for Genetic Engineering and Biotechnology, New Delhi, 110067, India,Correspondence: (E.A.O.), (A.C.), (K.M.K.), (A.S.)
| | - Kaja Murali-Krishna
- ICGEB-Emory Vaccine Center, International Center for Genetic Engineering and Biotechnology, New Delhi, 110067, India,Department of Pediatrics, Emory National Primate Center, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA,Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA,Correspondence: (E.A.O.), (A.C.), (K.M.K.), (A.S.)
| | - Anmol Chandele
- ICGEB-Emory Vaccine Center, International Center for Genetic Engineering and Biotechnology, New Delhi, 110067, India,Correspondence: (E.A.O.), (A.C.), (K.M.K.), (A.S.)
| | - Eric A. Ortlund
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA.,Correspondence: (E.A.O.), (A.C.), (K.M.K.), (A.S.)
| |
Collapse
|