2
|
Zhao W, Thomas EC, Debnath D, Scott FJ, Mentink-Vigier F, White JR, Cook RL, Wang T. Enriched Molecular-Level View of Saline Wetland Soil Carbon by Sensitivity-Enhanced Solid-State NMR. J Am Chem Soc 2025; 147:519-531. [PMID: 39700415 PMCID: PMC11726556 DOI: 10.1021/jacs.4c11830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 12/21/2024]
Abstract
Soil organic matter (SOM) plays a major role in mitigating greenhouse gas emission and regulating earth's climate, carbon cycle, and biodiversity. Wetland soils account for one-third of all SOM; however, globally, coastal wetland soils are eroding faster due to increasing sea-level rise. Our understanding of carbon sequestration dynamics in wetlands lags behind that of upland soils. Here, we employ solid-state nuclear magnetic resonance (ssNMR) to investigate the molecular-level structure of biopolymers in wetland soils spanning 11 centuries. High-resolution multidimensional spectra, enabled by dynamic nuclear polarization (DNP), demonstrate enduring preservation of molecular structures within herbaceous plant cores, notably condensing aromatic motifs and carbohydrates, even over a millennium, with the preserved cores constituting a decreasing minority among molecules from decomposition and repolymerization with depth and age. Such preserved cores occur alongside molecules from the decomposition of loosely packed parent biopolymers. These findings emphasize the relative vulnerability of coastal wetland SOM when exposed to oxygenated water due to geological and anthropogenic changes.
Collapse
Affiliation(s)
- Wancheng Zhao
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Elizabeth C. Thomas
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Debkumar Debnath
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Faith J. Scott
- National
High Magnetic Field Laboratory, Florida
State University, Tallahassee, Florida 23310, United States
| | - Frederic Mentink-Vigier
- National
High Magnetic Field Laboratory, Florida
State University, Tallahassee, Florida 23310, United States
| | - John R. White
- Department
of Oceanography & Coastal Sciences, Louisiana State University, Baton
Rouge, Louisiana 70803, United States
- Coastal
Studies Institute, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Robert L. Cook
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Tuo Wang
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
5
|
Cornish CM, Johnson OF, Bansal S, Meier JA, Harris TD, Sweetman JN. Common use herbicides increase wetland greenhouse gas emissions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:172881. [PMID: 38701922 DOI: 10.1016/j.scitotenv.2024.172881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/27/2024] [Accepted: 04/27/2024] [Indexed: 05/05/2024]
Abstract
Wetlands play a disproportionate role in the global climate as major sources and sinks of greenhouse gases. Herbicides are the most heavily used agrochemicals and are frequently detected in aquatic ecosystems, with glyphosate and 2,4-Dichlorophenoxyacetic acid (2,4-D), representing the two most commonly used worldwide. In recent years, these herbicides are being used in mixtures to combat herbicide-tolerant noxious weeds. While it is well documented that herbicide use for agriculture is expected to increase, their indirect effects on wetland greenhouse gas dynamics are virtually unknown. To fill this knowledge gap, we conducted a factorial microcosm experiment using low, medium, and high concentrations of glyphosate or 2,4-D, individually and in combination to investigate their effects on wetland methane, carbon dioxide, and nitrous oxide fluxes. We predicted that mixed herbicide treatments would have a synergistic effect on greenhouse gases compared to individual herbicides. Our results showed that carbon dioxide flux rates and cumulative emissions significantly increased from both individual and mixed herbicide treatments, whereas methane and nitrous oxide dynamics were less affected. This study suggests that extensive use of glyphosate and 2,4-D may increase carbon dioxide emissions from wetlands, which could have implications for climate change.
Collapse
Affiliation(s)
- Christine M Cornish
- Environmental and Conservation Sciences, North Dakota State University, 1340 Administration Avenue, Fargo, ND 58105, United States.
| | - Olivia F Johnson
- U.S. Geological Survey, Northern Prairie Wildlife Research Center, Jamestown, ND, United States; Department of Biological Sciences, Kent State University, Kent, OH, United States
| | - Sheel Bansal
- U.S. Geological Survey, Northern Prairie Wildlife Research Center, Jamestown, ND, United States
| | - Jacob A Meier
- U.S. Geological Survey, Northern Prairie Wildlife Research Center, Jamestown, ND, United States
| | - Ted D Harris
- Kansas Biological Survey and Center for Ecological Research, Lawrence, KS, United States
| | - Jon N Sweetman
- Department of Ecosystem Science and Management, The Pennsylvania State University, 457 ASI Building, University Park, PA 16802, United States
| |
Collapse
|
6
|
Feron S, Malhotra A, Bansal S, Fluet-Chouinard E, McNicol G, Knox SH, Delwiche KB, Cordero RR, Ouyang Z, Zhang Z, Poulter B, Jackson RB. Recent increases in annual, seasonal, and extreme methane fluxes driven by changes in climate and vegetation in boreal and temperate wetland ecosystems. GLOBAL CHANGE BIOLOGY 2024; 30:e17131. [PMID: 38273508 DOI: 10.1111/gcb.17131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/15/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024]
Abstract
Climate warming is expected to increase global methane (CH4 ) emissions from wetland ecosystems. Although in situ eddy covariance (EC) measurements at ecosystem scales can potentially detect CH4 flux changes, most EC systems have only a few years of data collected, so temporal trends in CH4 remain uncertain. Here, we use established drivers to hindcast changes in CH4 fluxes (FCH4 ) since the early 1980s. We trained a machine learning (ML) model on CH4 flux measurements from 22 [methane-producing sites] in wetland, upland, and lake sites of the FLUXNET-CH4 database with at least two full years of measurements across temperate and boreal biomes. The gradient boosting decision tree ML model then hindcasted daily FCH4 over 1981-2018 using meteorological reanalysis data. We found that, mainly driven by rising temperature, half of the sites (n = 11) showed significant increases in annual, seasonal, and extreme FCH4 , with increases in FCH4 of ca. 10% or higher found in the fall from 1981-1989 to 2010-2018. The annual trends were driven by increases during summer and fall, particularly at high-CH4 -emitting fen sites dominated by aerenchymatous plants. We also found that the distribution of days of extremely high FCH4 (defined according to the 95th percentile of the daily FCH4 values over a reference period) have become more frequent during the last four decades and currently account for 10-40% of the total seasonal fluxes. The share of extreme FCH4 days in the total seasonal fluxes was greatest in winter for boreal/taiga sites and in spring for temperate sites, which highlights the increasing importance of the non-growing seasons in annual budgets. Our results shed light on the effects of climate warming on wetlands, which appears to be extending the CH4 emission seasons and boosting extreme emissions.
Collapse
Affiliation(s)
- Sarah Feron
- Knowledge Infrastructures, Campus Fryslân, University of Groningen, Groningen, The Netherlands
- Department of Earth System Science, Stanford University, Stanford, California, USA
- Department of Physics, Universidad de Santiago, Santiago, Chile
| | - Avni Malhotra
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Sheel Bansal
- U.S. Geological Survey, Northern Prairie Wildlife Research Center, Jamestown, North Dakota, USA
| | - Etienne Fluet-Chouinard
- Earth Systems Science Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Gavin McNicol
- Department of Earth System Science, Stanford University, Stanford, California, USA
- Department of Earth and Environmental Sciences, University of Illinois Chicago, Chicago, Illinois, USA
| | - Sara H Knox
- Department of Geography, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Geography, McGill University, Montreal, Quebec, Canada
| | - Kyle B Delwiche
- Department of Earth System Science, Stanford University, Stanford, California, USA
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, California, USA
| | - Raul R Cordero
- Department of Physics, Universidad de Santiago, Santiago, Chile
| | - Zutao Ouyang
- Department of Earth System Science, Stanford University, Stanford, California, USA
| | - Zhen Zhang
- Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Benjamin Poulter
- Biospheric Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | - Robert B Jackson
- Department of Earth System Science, Stanford University, Stanford, California, USA
- Woods Institute for the Environment, Stanford University, Stanford, California, USA
- Precourt Institute for Energy, Stanford, California, USA
| |
Collapse
|
7
|
Bansal S, Creed IF, Tangen BA, Bridgham SD, Desai AR, Krauss KW, Neubauer SC, Noe GB, Rosenberry DO, Trettin C, Wickland KP, Allen ST, Arias-Ortiz A, Armitage AR, Baldocchi D, Banerjee K, Bastviken D, Berg P, Bogard MJ, Chow AT, Conner WH, Craft C, Creamer C, DelSontro T, Duberstein JA, Eagle M, Fennessy MS, Finkelstein SA, Göckede M, Grunwald S, Halabisky M, Herbert E, Jahangir MMR, Johnson OF, Jones MC, Kelleway JJ, Knox S, Kroeger KD, Kuehn KA, Lobb D, Loder AL, Ma S, Maher DT, McNicol G, Meier J, Middleton BA, Mills C, Mistry P, Mitra A, Mobilian C, Nahlik AM, Newman S, O’Connell JL, Oikawa P, van der Burg MP, Schutte CA, Song C, Stagg CL, Turner J, Vargas R, Waldrop MP, Wallin MB, Wang ZA, Ward EJ, Willard DA, Yarwood S, Zhu X. Practical Guide to Measuring Wetland Carbon Pools and Fluxes. WETLANDS (WILMINGTON, N.C.) 2023; 43:105. [PMID: 38037553 PMCID: PMC10684704 DOI: 10.1007/s13157-023-01722-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/24/2023] [Indexed: 12/02/2023]
Abstract
Wetlands cover a small portion of the world, but have disproportionate influence on global carbon (C) sequestration, carbon dioxide and methane emissions, and aquatic C fluxes. However, the underlying biogeochemical processes that affect wetland C pools and fluxes are complex and dynamic, making measurements of wetland C challenging. Over decades of research, many observational, experimental, and analytical approaches have been developed to understand and quantify pools and fluxes of wetland C. Sampling approaches range in their representation of wetland C from short to long timeframes and local to landscape spatial scales. This review summarizes common and cutting-edge methodological approaches for quantifying wetland C pools and fluxes. We first define each of the major C pools and fluxes and provide rationale for their importance to wetland C dynamics. For each approach, we clarify what component of wetland C is measured and its spatial and temporal representativeness and constraints. We describe practical considerations for each approach, such as where and when an approach is typically used, who can conduct the measurements (expertise, training requirements), and how approaches are conducted, including considerations on equipment complexity and costs. Finally, we review key covariates and ancillary measurements that enhance the interpretation of findings and facilitate model development. The protocols that we describe to measure soil, water, vegetation, and gases are also relevant for related disciplines such as ecology. Improved quality and consistency of data collection and reporting across studies will help reduce global uncertainties and develop management strategies to use wetlands as nature-based climate solutions. Supplementary Information The online version contains supplementary material available at 10.1007/s13157-023-01722-2.
Collapse
Affiliation(s)
- Sheel Bansal
- U.S. Geological Survey, Northern Prairie Wildlife Research Center, Jamestown, ND USA
| | - Irena F. Creed
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON Canada
| | - Brian A. Tangen
- U.S. Geological Survey, Northern Prairie Wildlife Research Center, Jamestown, ND USA
| | - Scott D. Bridgham
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR USA
| | - Ankur R. Desai
- Department of Atmospheric and Oceanic Sciences, University of Wisconsin-Madison, Madison, WI USA
| | - Ken W. Krauss
- U.S. Geological Survey, Wetland and Aquatic Research Center, Lafayette, LA USA
| | - Scott C. Neubauer
- Department of Biology, Virginia Commonwealth University, Richmond, VA USA
| | - Gregory B. Noe
- U.S. Geological Survey, Florence Bascom Geoscience Center, Reston, VA USA
| | | | - Carl Trettin
- U.S. Forest Service, Pacific Southwest Research Station, Davis, CA USA
| | - Kimberly P. Wickland
- U.S. Geological Survey, Geosciences and Environmental Change Science Center, Denver, CO USA
| | - Scott T. Allen
- Department of Natural Resources and Environmental Science, University of Nevada, Reno, Reno, NV USA
| | - Ariane Arias-Ortiz
- Ecosystem Science Division, Department of Environmental Science, Policy and Management, University of California, Berkeley, CA USA
| | - Anna R. Armitage
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX USA
| | - Dennis Baldocchi
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA USA
| | - Kakoli Banerjee
- Department of Biodiversity and Conservation of Natural Resources, Central University of Odisha, Koraput, Odisha India
| | - David Bastviken
- Department of Thematic Studies – Environmental Change, Linköping University, Linköping, Sweden
| | - Peter Berg
- Department of Environmental Sciences, University of Virginia, Charlottesville, VA USA
| | - Matthew J. Bogard
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB Canada
| | - Alex T. Chow
- Earth and Environmental Sciences Programme, The Chinese University of Hong Kong, Shatin, Hong Kong SAR China
| | - William H. Conner
- Baruch Institute of Coastal Ecology and Forest Science, Clemson University, Georgetown, SC USA
| | - Christopher Craft
- O’Neill School of Public and Environmental Affairs, Indiana University, Bloomington, IN USA
| | - Courtney Creamer
- U.S. Geological Survey, Geology, Minerals, Energy and Geophysics Science Center, Menlo Park, CA USA
| | - Tonya DelSontro
- Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, ON Canada
| | - Jamie A. Duberstein
- Baruch Institute of Coastal Ecology and Forest Science, Clemson University, Georgetown, SC USA
| | - Meagan Eagle
- U.S. Geological Survey, Woods Hole Coastal & Marine Science Center, Woods Hole, MA USA
| | | | | | - Mathias Göckede
- Department for Biogeochemical Signals, Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Sabine Grunwald
- Soil, Water and Ecosystem Sciences Department, University of Florida, Gainesville, FL USA
| | - Meghan Halabisky
- School of Environmental and Forest Sciences, University of Washington, Seattle, WA USA
| | | | | | - Olivia F. Johnson
- U.S. Geological Survey, Northern Prairie Wildlife Research Center, Jamestown, ND USA
- Departments of Biology and Environmental Studies, Kent State University, Kent, OH USA
| | - Miriam C. Jones
- U.S. Geological Survey, Florence Bascom Geoscience Center, Reston, VA USA
| | - Jeffrey J. Kelleway
- School of Earth, Atmospheric and Life Sciences and Environmental Futures Research Centre, University of Wollongong, Wollongong, NSW Australia
| | - Sara Knox
- Department of Geography, McGill University, Montreal, Canada
| | - Kevin D. Kroeger
- U.S. Geological Survey, Woods Hole Coastal & Marine Science Center, Woods Hole, MA USA
| | - Kevin A. Kuehn
- School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS USA
| | - David Lobb
- Department of Soil Science, University of Manitoba, Winnipeg, MB Canada
| | - Amanda L. Loder
- Department of Geography, University of Toronto, Toronto, ON Canada
| | - Shizhou Ma
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK Canada
| | - Damien T. Maher
- Faculty of Science and Engineering, Southern Cross University, Lismore, NSW Australia
| | - Gavin McNicol
- Department of Earth and Environmental Sciences, University of Illinois Chicago, Chicago, IL USA
| | - Jacob Meier
- U.S. Geological Survey, Northern Prairie Wildlife Research Center, Jamestown, ND USA
| | - Beth A. Middleton
- U.S. Geological Survey, Wetland and Aquatic Research Center, Lafayette, LA USA
| | - Christopher Mills
- U.S. Geological Survey, Geology, Geophysics, and Geochemistry Science Center, Denver, CO USA
| | - Purbasha Mistry
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK Canada
| | - Abhijit Mitra
- Department of Marine Science, University of Calcutta, Kolkata, West Bengal India
| | - Courtney Mobilian
- O’Neill School of Public and Environmental Affairs, Indiana University, Bloomington, IN USA
| | - Amanda M. Nahlik
- Office of Research and Development, Center for Public Health and Environmental Assessments, Pacific Ecological Systems Division, U.S. Environmental Protection Agency, Corvallis, OR USA
| | - Sue Newman
- South Florida Water Management District, Everglades Systems Assessment Section, West Palm Beach, FL USA
| | - Jessica L. O’Connell
- Department of Ecosystem Science and Sustainability, Colorado State University, Fort Collins, CO USA
| | - Patty Oikawa
- Department of Earth and Environmental Sciences, California State University, East Bay, Hayward, CA USA
| | - Max Post van der Burg
- U.S. Geological Survey, Northern Prairie Wildlife Research Center, Jamestown, ND USA
| | - Charles A. Schutte
- Department of Environmental Science, Rowan University, Glassboro, NJ USA
| | - Changchun Song
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Camille L. Stagg
- U.S. Geological Survey, Wetland and Aquatic Research Center, Lafayette, LA USA
| | - Jessica Turner
- Freshwater and Marine Science, University of Wisconsin-Madison, Madison, WI USA
| | - Rodrigo Vargas
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE USA
| | - Mark P. Waldrop
- U.S. Geological Survey, Geology, Minerals, Energy and Geophysics Science Center, Menlo Park, CA USA
| | - Marcus B. Wallin
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Zhaohui Aleck Wang
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA USA
| | - Eric J. Ward
- U.S. Geological Survey, Wetland and Aquatic Research Center, Lafayette, LA USA
| | - Debra A. Willard
- U.S. Geological Survey, Florence Bascom Geoscience Center, Reston, VA USA
| | - Stephanie Yarwood
- Environmental Science and Technology, University of Maryland, College Park, MD USA
| | - Xiaoyan Zhu
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, China
| |
Collapse
|