1
|
Ishigaki H, Itoh Y. Translational research on pandemic virus infection using nonhuman primate models. Virology 2025; 606:110511. [PMID: 40139071 DOI: 10.1016/j.virol.2025.110511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 03/05/2025] [Accepted: 03/20/2025] [Indexed: 03/29/2025]
Abstract
After the COVID-19 pandemic, nonhuman primate (NHP) models, which are necessary for the rapid development of vaccines and new medical therapies, have become important in studies on infectious diseases because of their genetic, metabolic, and immunological similarities to humans. Our group has long been using NHP models in studies on infectious diseases including H1N1 influenza pandemic and COVID-19. Despite limitations such as the limited number of animals and the husbandry requirements, NHP models have contributed to the prediction of the pathogenicity of emerging viruses and the evaluation of the efficacy of vaccines and therapeutics due to the similarity of NHP models to humans before starting clinical trials to select good candidates of vaccines and drugs. In this review, the findings obtained in NHP infectious disease models of influenza and COVID-19 are summarized to clarify the benefits of NHP models for studies on infectious diseases. We believe that this review will support future research in exploring new perspectives for the development of vaccines and therapies targeting influenza, COVID-19, and infectious diseases in future pandemics.
Collapse
Affiliation(s)
- Hirohito Ishigaki
- Division of Pathogenesis and Disease Regulation, Department of Pathology, Shiga University of Medical Science, 460 Setatsukinowa, Otsu, Shiga, 520-2192, Japan
| | - Yasushi Itoh
- Division of Pathogenesis and Disease Regulation, Department of Pathology, Shiga University of Medical Science, 460 Setatsukinowa, Otsu, Shiga, 520-2192, Japan; Central Research Laboratory, Shiga University of Medical Science, 205 Setatsukinowa, Otsu, Shiga, 520-2192, Japan.
| |
Collapse
|
2
|
Bao Q, Shen Y, Zheng Z, Zheng Y, Li Y, Ren Y, Zhang N, Chen X, Ke M. Changes in the spectrum of ocular disease during the COVID-19 pandemic in late 2022 in the Hubei Province. Sci Rep 2025; 15:6297. [PMID: 39984575 PMCID: PMC11845709 DOI: 10.1038/s41598-025-89791-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 02/07/2025] [Indexed: 02/23/2025] Open
Abstract
We aimed to investigate changes in the ocular disease spectrum during the coronavirus disease-2019 (COVID-19) pandemic in late 2022 in the Hubei Province. This retrospective observational study was conducted in two parts. The first part involved collecting COVID-19-related information from residents of Hubei Province through an online questionnaire survey. The second part involved extracting electronic medical records from ophthalmology outpatient departments at two hospitals in Hubei Province during the pandemic and epidemic prevention and control periods, analyzing changes in the spectrum of ocular diseases. In the first part, 31.65% of patients with systemic symptoms of COVID-19 experienced ocular discomfort. The most common ocular symptoms were eye fatigue, ocular pain and dry eye. In the second part, 76.5% of patients who visited the ophthalmic clinic had COVID-19-related systemic symptoms during pandemic period. The proportion of patients with cornea/keratitis, glaucoma/acute angle-closure glaucoma (AACG) and vitreoretinal disease/retinal vein obstruction (RVO)/acute macular neuroretinalpathy (AMN) increased markedly during pandemic period. Additionally, the number of patients under 18 years and over 60 years decreased significantly compared to the same age groups pre- & post-pandemic. The COVID-19 pandemic has led to certain changes in the spectrum of ocular diseases, which warrants the attention of ophthalmologists.
Collapse
Affiliation(s)
- Qing Bao
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yanru Shen
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhiwei Zheng
- Department of Ophthalmology, Qichun People's Hospital, Huanggang, Hubei, China
| | - Yan Zheng
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yuting Li
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yaoyao Ren
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Nan Zhang
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiaomin Chen
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Min Ke
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
3
|
Kirk NM, Liang Y, Ly H. Pathogenesis and virulence of coronavirus disease: Comparative pathology of animal models for COVID-19. Virulence 2024; 15:2316438. [PMID: 38362881 PMCID: PMC10878030 DOI: 10.1080/21505594.2024.2316438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/04/2024] [Indexed: 02/17/2024] Open
Abstract
Animal models that can replicate clinical and pathologic features of severe human coronavirus infections have been instrumental in the development of novel vaccines and therapeutics. The goal of this review is to summarize our current understanding of the pathogenesis of coronavirus disease 2019 (COVID-19) and the pathologic features that can be observed in several currently available animal models. Knowledge gained from studying these animal models of SARS-CoV-2 infection can help inform appropriate model selection for disease modelling as well as for vaccine and therapeutic developments.
Collapse
Affiliation(s)
- Natalie M. Kirk
- Department of Veterinary & Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Twin Cities, MN, USA
| | - Yuying Liang
- Department of Veterinary & Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Twin Cities, MN, USA
| | - Hinh Ly
- Department of Veterinary & Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Twin Cities, MN, USA
| |
Collapse
|
4
|
Stepanova E, Isakova-Sivak I, Matyushenko V, Mezhenskaya D, Kudryavtsev I, Kostromitina A, Chistiakova A, Rak A, Bazhenova E, Prokopenko P, Kotomina T, Donina S, Novitskaya V, Sivak K, Karal-Ogly D, Rudenko L. Safety and Immunogenicity Study of a Bivalent Vaccine for Combined Prophylaxis of COVID-19 and Influenza in Non-Human Primates. Vaccines (Basel) 2024; 12:1099. [PMID: 39460266 PMCID: PMC11511058 DOI: 10.3390/vaccines12101099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Influenza and SARS-CoV-2 viruses are two highly variable pathogens. We have developed a candidate bivalent live vaccine based on the strain of licensed A/Leningrad/17-based cold-adapted live attenuated influenza vaccine (LAIV) of H3N2 subtype, which expressed SARS-CoV-2 immunogenic T-cell epitopes. A cassette encoding fragments of S and N proteins of SARS-CoV-2 was inserted into the influenza NA gene using the P2A autocleavage site. In this study, we present the results of preclinical evaluation of the developed bivalent vaccine in a non-human primate model. METHODS Rhesus macaques (Macaca mulatta) (n = 3 per group) were immunized intranasally with 7.5 lg EID50 of the LAIV/CoV-2 bivalent vaccine, a control non-modified H3N2 LAIV or a placebo (chorioallantoic fluid) using a sprayer device, twice, with a 28-day interval. The blood samples were collected at days 0, 3, 28 and 35 for hematological and biochemical assessment. Safety was also assessed by monitoring body weight, body temperature and clinical signs of the disease. Immune responses to influenza virus were assessed both by determining serum antibody titers in hemagglutination inhibition assay, microneutralization assay and IgG ELISA. T-cell responses were measured both to influenza and SARS-CoV-2 antigens using ELISPOT and flow cytometry. Three weeks after the second immunization, animals were challenged with 105 PFU of Delta SARS-CoV-2. The body temperature, weight and challenge virus shedding were monitored for 5 days post-challenge. In addition, virus titers in various organs and histopathology were evaluated on day 6 after SARS-CoV-2 infection. RESULTS There was no toxic effect of the immunizations on the hematological and coagulation hemostasis of animals. No difference in the dynamics of the average weight and thermometry results were found between the groups of animals. Both LAIV and LAIV/CoV-2 variants poorly replicated in the upper respiratory tract of rhesus macaques. Nevertheless, despite this low level of virus shedding, influenza-specific serum IgG responses were detected in the group of monkeys immunized with the LAIV/CoV-2 bivalent but not in the LAIV group. Furthermore, T-cell responses to both influenza and SARS-CoV-2 viruses were detected in the LAIV/CoV-2 vaccine group only. The animals were generally resistant to SARS-CoV-2 challenge, with minimal virus shedding in the placebo and LAIV groups. Histopathological changes in vaccinated animals were decreased compared to the PBS group, suggesting a protective effect of the chimeric vaccine candidate. CONCLUSIONS The candidate bivalent vaccine was safe and immunogenic for non-human primates and warrants its further evaluation in clinical trials.
Collapse
Affiliation(s)
- Ekaterina Stepanova
- Institute of Experimental Medicine, Saint-Petersburg 197022, Russia; (I.I.-S.); (V.M.); (D.M.); (I.K.); (A.K.); (A.C.); (A.R.); (P.P.); (T.K.); (V.N.); (L.R.)
| | - Irina Isakova-Sivak
- Institute of Experimental Medicine, Saint-Petersburg 197022, Russia; (I.I.-S.); (V.M.); (D.M.); (I.K.); (A.K.); (A.C.); (A.R.); (P.P.); (T.K.); (V.N.); (L.R.)
| | - Victoria Matyushenko
- Institute of Experimental Medicine, Saint-Petersburg 197022, Russia; (I.I.-S.); (V.M.); (D.M.); (I.K.); (A.K.); (A.C.); (A.R.); (P.P.); (T.K.); (V.N.); (L.R.)
| | - Daria Mezhenskaya
- Institute of Experimental Medicine, Saint-Petersburg 197022, Russia; (I.I.-S.); (V.M.); (D.M.); (I.K.); (A.K.); (A.C.); (A.R.); (P.P.); (T.K.); (V.N.); (L.R.)
| | - Igor Kudryavtsev
- Institute of Experimental Medicine, Saint-Petersburg 197022, Russia; (I.I.-S.); (V.M.); (D.M.); (I.K.); (A.K.); (A.C.); (A.R.); (P.P.); (T.K.); (V.N.); (L.R.)
| | - Arina Kostromitina
- Institute of Experimental Medicine, Saint-Petersburg 197022, Russia; (I.I.-S.); (V.M.); (D.M.); (I.K.); (A.K.); (A.C.); (A.R.); (P.P.); (T.K.); (V.N.); (L.R.)
| | - Anna Chistiakova
- Institute of Experimental Medicine, Saint-Petersburg 197022, Russia; (I.I.-S.); (V.M.); (D.M.); (I.K.); (A.K.); (A.C.); (A.R.); (P.P.); (T.K.); (V.N.); (L.R.)
| | - Alexandra Rak
- Institute of Experimental Medicine, Saint-Petersburg 197022, Russia; (I.I.-S.); (V.M.); (D.M.); (I.K.); (A.K.); (A.C.); (A.R.); (P.P.); (T.K.); (V.N.); (L.R.)
| | - Ekaterina Bazhenova
- Institute of Experimental Medicine, Saint-Petersburg 197022, Russia; (I.I.-S.); (V.M.); (D.M.); (I.K.); (A.K.); (A.C.); (A.R.); (P.P.); (T.K.); (V.N.); (L.R.)
| | - Polina Prokopenko
- Institute of Experimental Medicine, Saint-Petersburg 197022, Russia; (I.I.-S.); (V.M.); (D.M.); (I.K.); (A.K.); (A.C.); (A.R.); (P.P.); (T.K.); (V.N.); (L.R.)
| | - Tatiana Kotomina
- Institute of Experimental Medicine, Saint-Petersburg 197022, Russia; (I.I.-S.); (V.M.); (D.M.); (I.K.); (A.K.); (A.C.); (A.R.); (P.P.); (T.K.); (V.N.); (L.R.)
| | - Svetlana Donina
- Institute of Experimental Medicine, Saint-Petersburg 197022, Russia; (I.I.-S.); (V.M.); (D.M.); (I.K.); (A.K.); (A.C.); (A.R.); (P.P.); (T.K.); (V.N.); (L.R.)
| | - Vlada Novitskaya
- Institute of Experimental Medicine, Saint-Petersburg 197022, Russia; (I.I.-S.); (V.M.); (D.M.); (I.K.); (A.K.); (A.C.); (A.R.); (P.P.); (T.K.); (V.N.); (L.R.)
| | - Konstantin Sivak
- Smorodintsev Research Institute of Influenza, Saint-Petersburg 197376, Russia;
| | - Dzhina Karal-Ogly
- Center of Preclinical Research, Research Institute of Medical Primatology, Sochi 354376, Russia;
| | - Larisa Rudenko
- Institute of Experimental Medicine, Saint-Petersburg 197022, Russia; (I.I.-S.); (V.M.); (D.M.); (I.K.); (A.K.); (A.C.); (A.R.); (P.P.); (T.K.); (V.N.); (L.R.)
| |
Collapse
|
5
|
Zheng HY, Song TZ, Zheng YT. Immunobiology of COVID-19: Mechanistic and therapeutic insights from animal models. Zool Res 2024; 45:747-766. [PMID: 38894519 PMCID: PMC11298684 DOI: 10.24272/j.issn.2095-8137.2024.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/22/2024] [Indexed: 06/21/2024] Open
Abstract
The distribution of the immune system throughout the body complicates in vitro assessments of coronavirus disease 2019 (COVID-19) immunobiology, often resulting in a lack of reproducibility when extrapolated to the whole organism. Consequently, developing animal models is imperative for a comprehensive understanding of the pathology and immunology of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. This review summarizes current progress related to COVID-19 animal models, including non-human primates (NHPs), mice, and hamsters, with a focus on their roles in exploring the mechanisms of immunopathology, immune protection, and long-term effects of SARS-CoV-2 infection, as well as their application in immunoprevention and immunotherapy of SARS-CoV-2 infection. Differences among these animal models and their specific applications are also highlighted, as no single model can fully encapsulate all aspects of COVID-19. To effectively address the challenges posed by COVID-19, it is essential to select appropriate animal models that can accurately replicate both fatal and non-fatal infections with varying courses and severities. Optimizing animal model libraries and associated research tools is key to resolving the global COVID-19 pandemic, serving as a robust resource for future emerging infectious diseases.
Collapse
Affiliation(s)
- Hong-Yi Zheng
- State Key Laboratory of Genetic Evolution & Animal Models, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Tian-Zhang Song
- State Key Laboratory of Genetic Evolution & Animal Models, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yong-Tang Zheng
- State Key Laboratory of Genetic Evolution & Animal Models, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China. E-mail:
| |
Collapse
|
6
|
Jearanaiwitayakul T, Sunintaboon P, Kittiayuwat A, Limthongkul J, Wathanaphol J, Janhirun Y, Lerdsamran H, Wiriyarat W, Ubol S. Intranasal immunization with the bivalent SARS-CoV-2 vaccine effectively protects mice from nasal infection and completely inhibits disease development. Vaccine 2024; 42:3664-3673. [PMID: 38714446 DOI: 10.1016/j.vaccine.2024.04.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/14/2024] [Accepted: 04/25/2024] [Indexed: 05/09/2024]
Abstract
With the continuous emergence of coronavirus disease 2019 (COVID-19) waves, the scientific community has developed a vaccine that offers broad-spectrum protection at virus-targeted organs for inhibiting the transmission and protection of disease development. In the present study, a bivalent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine containing receptor-binding domain (RBD) protein of spike from Wuhan-1 and omicron BA.1 loaded in nanoparticles, bivalent RBD NPs, was developed. The immunogenicity and protective efficacy of this vaccine candidate were evaluated using an in vivo model. Results showed that mice that received intranasal cGAMP-adjuvanted bivalent RBD-NPs vaccine elicited robust and durable antibody responses. The stimulated antibody broadly neutralized the ancestral strain and variants of concerns (delta and omicron BA.1) in the upper and lower respiratory tracts. Furthermore, the immunized mice developed T-cell response in their lung tissue. Importantly, intranasal immunization with this vaccine candidate efficiently protected mice from nasal infection caused by both Wuhan-1 and BA.1 viruses. Immunized mice that remained susceptible to nasal infection did not develop any symptoms. This is because activated responses in the nasal cavity significantly suppressed virus production. Another word is this nasal vaccine completely protected the mice from disease development and mortality. Therefore, the bivalent RBD vaccine platform has potential to be developed into an anti-SARS-CoV-2 universal vaccine.
Collapse
Affiliation(s)
- Tuksin Jearanaiwitayakul
- Department of Clinical Pathology, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Bangkok 10300, Thailand
| | - Panya Sunintaboon
- Department of Chemistry, Faculty of Science, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand
| | - Anuwat Kittiayuwat
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Jitra Limthongkul
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Jidapar Wathanaphol
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Yada Janhirun
- Department of Clinical Science and Public Health, Faculty of Veterinary Science, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand
| | - Hatairat Lerdsamran
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand
| | - Witthawat Wiriyarat
- Department of Pre-clinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand
| | - Sukathida Ubol
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| |
Collapse
|
7
|
Chen W, Jiang X, Liang W, Bai H, Xu M, Liu Z, Yi L, Liu Y, Huang Y, Zhang Y, Xu L, Xie B, Zhang N, Yu J, Lu J, Xiao H, Li X. SARS-CoV-2 Omicron Variants Show Attenuated Neurovirulence Compared with the Wild-Type Strain in Elderly Human Brain Spheroids. RESEARCH (WASHINGTON, D.C.) 2024; 7:0376. [PMID: 38741604 PMCID: PMC11089278 DOI: 10.34133/research.0376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 04/13/2024] [Indexed: 05/16/2024]
Abstract
Infection with severe acute respiratory syndrome coronavirus 2 Omicron variants still causes neurological complications in elderly individuals. However, whether and how aging brains are affected by Omicron variants in terms of neuroinvasiveness and neurovirulence are unknown. Here, we utilize resected paracarcinoma brain tissue from elderly individuals to generate primary brain spheroids (BSs) for investigating the replication capability of live wild-type (WT) strain and Omicron (BA.1/BA.2), as well as the mechanisms underlying their neurobiological effects. We find that both WT and Omicron BA.1/BA.2 are able to enter BSs but weakly replicate. There is no difference between Omicron BA.1/BA.2 and WT strains in neurotropism in aging BSs. However, Omicron BA.1/BA.2 exhibits ameliorating neurological damage. Transcriptional profiling indicates that Omicron BA.1/BA.2 induces a lower neuroinflammatory response than WT strain in elderly BSs, suggesting a mechanistic explanation for their attenuated neuropathogenicity. Moreover, we find that both Omicron BA.1/BA.2 and WT strain infections disrupt neural network activity associated with neurodegenerative disorders by causing neuron degeneration and amyloid-β deposition in elderly BSs. These results uncover Omicron-specific mechanisms and cellular immune responses associated with severe acute respiratory syndrome coronavirus 2-induced neurological complications.
Collapse
Affiliation(s)
- Weikang Chen
- Department of Neurosurgery,
The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, China
| | - Xiaobing Jiang
- Department of Neurosurgery/Neuro-Oncology, State Key Laboratory of Oncology in South China,
Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center (SYSUCC), Guangzhou 510000, China
| | - Wei Liang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, China
| | - Haojie Bai
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, China
| | - Mingze Xu
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, China
| | - Zhe Liu
- Guangdong Provincial Institution of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 510000, China
| | - Lina Yi
- Guangdong Provincial Institution of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 510000, China
| | - Yanming Liu
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, China
| | - Yanxia Huang
- Department of Neurosurgery,
The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, China
| | - Yongxin Zhang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, China
| | - Lixia Xu
- Department of Oncology,
The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, China
| | - Baoshu Xie
- Department of Neurosurgery,
The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, China
| | - Nu Zhang
- Department of Neurosurgery,
The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, China
| | - Jun Yu
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, China
- Department of Medicine and Therapeutics and Institute of Digestive Disease, State Key Laboratory of Digestive Disease,
The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Jing Lu
- Guangdong Provincial Institution of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 510000, China
| | - Haipeng Xiao
- Department of Endocrinology,
The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, China
| | - Xiaoxing Li
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, China
| |
Collapse
|
8
|
Masui A, Hashimoto R, Matsumura Y, Yamamoto T, Nagao M, Noda T, Takayama K, Gotoh S. Micro-patterned culture of iPSC-derived alveolar and airway cells distinguishes SARS-CoV-2 variants. Stem Cell Reports 2024; 19:545-561. [PMID: 38552631 PMCID: PMC11096626 DOI: 10.1016/j.stemcr.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 04/12/2024] Open
Abstract
The emergence of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) variants necessitated a rapid evaluation system for their pathogenesis. Lung epithelial cells are their entry points; however, in addition to their limited source, the culture of human alveolar epithelial cells is especially complicated. Induced pluripotent stem cells (iPSCs) are an alternative source of human primary stem cells. Here, we report a model for distinguishing SARS-CoV-2 variants at high resolution, using separately induced iPSC-derived alveolar and airway cells in micro-patterned culture plates. The position-specific signals induced the apical-out alveolar type 2 and multiciliated airway cells at the periphery and center of the colonies, respectively. The infection studies in each lineage enabled profiling of the pathogenesis of SARS-CoV-2 variants: infection efficiency, tropism to alveolar and airway lineages, and their responses. These results indicate that this culture system is suitable for predicting the pathogenesis of emergent SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Atsushi Masui
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan; Department of Drug Discovery for Lung Diseases, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Rina Hashimoto
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Yasufumi Matsumura
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Takuya Yamamoto
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan; Medical-risk Avoidance Based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto 606-8507, Japan; Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto 606-8501, Japan
| | - Miki Nagao
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Takeshi Noda
- Laboratory of Ultrastructural Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan; Laboratory of Ultrastructural Virology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8507, Japan
| | - Kazuo Takayama
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan.
| | - Shimpei Gotoh
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan; Department of Drug Discovery for Lung Diseases, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan.
| |
Collapse
|
9
|
Majumdar R, Taye B, Bjornberg C, Giljork M, Lynch D, Farah F, Abdullah I, Osiecki K, Yousaf I, Luckstein A, Turri W, Sampathkumar P, Moyer AM, Kipp BR, Cattaneo R, Sussman CR, Navaratnarajah CK. From pandemic to endemic: Divergence of COVID-19 positive-tests and hospitalization numbers from SARS-CoV-2 RNA levels in wastewater of Rochester, Minnesota. Heliyon 2024; 10:e27974. [PMID: 38515669 PMCID: PMC10955309 DOI: 10.1016/j.heliyon.2024.e27974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/23/2024] Open
Abstract
Traditionally, public health surveillance relied on individual-level data but recently wastewater-based epidemiology (WBE) for the detection of infectious diseases including COVID-19 became a valuable tool in the public health arsenal. Here, we use WBE to follow the course of the COVID-19 pandemic in Rochester, Minnesota (population 121,395 at the 2020 census), from February 2021 to December 2022. We monitored the impact of SARS-CoV-2 infections on public health by comparing three sets of data: quantitative measurements of viral RNA in wastewater as an unbiased reporter of virus level in the community, positive results of viral RNA or antigen tests from nasal swabs reflecting community reporting, and hospitalization data. From February 2021 to August 2022 viral RNA levels in wastewater were closely correlated with the oscillating course of COVID-19 case and hospitalization numbers. However, from September 2022 cases remained low and hospitalization numbers dropped, whereas viral RNA levels in wastewater continued to oscillate. The low reported cases may reflect virulence reduction combined with abated inclination to report, and the divergence of virus levels in wastewater from reported cases may reflect COVID-19 shifting from pandemic to endemic. WBE, which also detects asymptomatic infections, can provide an early warning of impending cases, and offers crucial insights during pandemic waves and in the transition to the endemic phase.
Collapse
Affiliation(s)
| | - Biruhalem Taye
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | | | | | | - Iris Yousaf
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | | | | | - Priya Sampathkumar
- Division of Infectious Diseases, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Ann M. Moyer
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Benjamin R. Kipp
- Advanced Diagnostics Laboratory, Mayo Clinic, Rochester, MN, USA
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Roberto Cattaneo
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Caroline R. Sussman
- Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
10
|
Halfmann PJ, Iwatsuki-Horimoto K, Kuroda M, Hirata Y, Yamayoshi S, Iida S, Uraki R, Ito M, Ueki H, Furusawa Y, Sakai-Tagawa Y, Kiso M, Armbrust T, Spyra S, Maeda K, Wang Z, Imai M, Suzuki T, Kawaoka Y. Characterization of Omicron BA.4.6, XBB, and BQ.1.1 subvariants in hamsters. Commun Biol 2024; 7:331. [PMID: 38491227 PMCID: PMC10943235 DOI: 10.1038/s42003-024-06015-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 03/06/2024] [Indexed: 03/18/2024] Open
Abstract
During the Omicron wave, previous variants such as BA.2, BA.4, and BA.5 were replaced by newer variants with additional mutations in the spike protein. These variants, BA.4.6, BQ.1.1, and XBB, have spread in different countries with different degrees of success. Here, we evaluated the replicative ability and pathogenicity of BA.4.6, BQ1.1, and XBB clinical isolates in male Syrian hamsters. Although we found no substantial differences in weight change among hamsters infected with these Omicron subvariants, the replicative ability of BQ.1.1 and XBB in lung tissue was higher than that of BA.4.6 and BA.5. Of note, BQ.1.1 was lethal in both male and female transgenic human ACE2 hamsters. In competition assays, XBB replicated better than BQ.1.1 in the nasal turbinate tissues of female hamsters previously infected with Omicron BA.2. These results suggest that newer Omicron subvariants in the XBB family are still evolving and should be closely monitored.
Collapse
Affiliation(s)
- Peter J Halfmann
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, 53711, USA
| | | | - Makoto Kuroda
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, 53711, USA
| | - Yuichiro Hirata
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Seiya Yamayoshi
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, 108-8639, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, 162-8655, Japan
| | - Shun Iida
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Ryuta Uraki
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, 108-8639, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, 162-8655, Japan
| | - Mutsumi Ito
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, 108-8639, Japan
| | - Hiroshi Ueki
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, 108-8639, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, 162-8655, Japan
| | - Yuri Furusawa
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, 108-8639, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, 162-8655, Japan
| | - Yuko Sakai-Tagawa
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, 108-8639, Japan
| | - Maki Kiso
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, 108-8639, Japan
| | - Tammy Armbrust
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, 53711, USA
| | - Sam Spyra
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, 53711, USA
| | - Ken Maeda
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Zhongde Wang
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT, 84322, USA
| | - Masaki Imai
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, 108-8639, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, 162-8655, Japan
| | - Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan.
| | - Yoshihiro Kawaoka
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, 53711, USA.
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, 108-8639, Japan.
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, 162-8655, Japan.
- The University of Tokyo, Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA), Tokyo, 162-8655, Japan.
| |
Collapse
|
11
|
Kaiser FK, Hernandez MG, Krüger N, Englund E, Du W, Mykytyn AZ, Raadsen MP, Lamers MM, Rodrigues Ianiski F, Shamorkina TM, Snijder J, Armando F, Beythien G, Ciurkiewicz M, Schreiner T, Gruber-Dujardin E, Bleyer M, Batura O, Erffmeier L, Hinkel R, Rocha C, Mirolo M, Drabek D, Bosch BJ, Emalfarb M, Valbuena N, Tchelet R, Baumgärtner W, Saloheimo M, Pöhlmann S, Grosveld F, Haagmans BL, Osterhaus ADME. Filamentous fungus-produced human monoclonal antibody provides protection against SARS-CoV-2 in hamster and non-human primate models. Nat Commun 2024; 15:2319. [PMID: 38485931 PMCID: PMC10940701 DOI: 10.1038/s41467-024-46443-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 02/28/2024] [Indexed: 03/18/2024] Open
Abstract
Monoclonal antibodies are an increasingly important tool for prophylaxis and treatment of acute virus infections like SARS-CoV-2 infection. However, their use is often restricted due to the time required for development, variable yields and high production costs, as well as the need for adaptation to newly emerging virus variants. Here we use the genetically modified filamentous fungus expression system Thermothelomyces heterothallica (C1), which has a naturally high biosynthesis capacity for secretory enzymes and other proteins, to produce a human monoclonal IgG1 antibody (HuMab 87G7) that neutralises the SARS-CoV-2 variants of concern (VOCs) Alpha, Beta, Gamma, Delta, and Omicron. Both the mammalian cell and C1 produced HuMab 87G7 broadly neutralise SARS-CoV-2 VOCs in vitro and also provide protection against VOC Omicron in hamsters. The C1 produced HuMab 87G7 is also able to protect against the Delta VOC in non-human primates. In summary, these findings show that the C1 expression system is a promising technology platform for the development of HuMabs in preventive and therapeutic medicine.
Collapse
Affiliation(s)
- Franziska K Kaiser
- Research Center for Emerging Infections and Zoonosis, University of Veterinary Medicine, Foundation, Hannover, Germany
| | - Mariana Gonzalez Hernandez
- Research Center for Emerging Infections and Zoonosis, University of Veterinary Medicine, Foundation, Hannover, Germany
| | - Nadine Krüger
- German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany
| | - Ellinor Englund
- VTT Technical Research Centre of Finland Ltd, 02150, Espoo, Finland
| | - Wenjuan Du
- Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Anna Z Mykytyn
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Mathijs P Raadsen
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Mart M Lamers
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Francine Rodrigues Ianiski
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584, CH, Utrecht, The Netherlands
| | - Tatiana M Shamorkina
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584, CH, Utrecht, The Netherlands
| | - Joost Snijder
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584, CH, Utrecht, The Netherlands
| | - Federico Armando
- Department of Pathology, University of Veterinary Medicine, Foundation, Hannover, Germany
| | - Georg Beythien
- Department of Pathology, University of Veterinary Medicine, Foundation, Hannover, Germany
| | - Malgorzata Ciurkiewicz
- Department of Pathology, University of Veterinary Medicine, Foundation, Hannover, Germany
| | - Tom Schreiner
- Department of Pathology, University of Veterinary Medicine, Foundation, Hannover, Germany
| | - Eva Gruber-Dujardin
- German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany
| | - Martina Bleyer
- German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany
| | - Olga Batura
- German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany
| | - Lena Erffmeier
- German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany
| | - Rabea Hinkel
- German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany
| | - Cheila Rocha
- German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany
| | - Monica Mirolo
- Research Center for Emerging Infections and Zoonosis, University of Veterinary Medicine, Foundation, Hannover, Germany
| | - Dubravka Drabek
- Department of Cell Biology, Erasmus Medical Center, Rotterdam, the Netherlands and Harbour BioMed, Rotterdam, the Netherlands
| | - Berend-Jan Bosch
- Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | | | | | | | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine, Foundation, Hannover, Germany
| | - Markku Saloheimo
- VTT Technical Research Centre of Finland Ltd, 02150, Espoo, Finland
| | - Stefan Pöhlmann
- German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany
| | - Frank Grosveld
- Department of Cell Biology, Erasmus Medical Center, Rotterdam, the Netherlands and Harbour BioMed, Rotterdam, the Netherlands
| | - Bart L Haagmans
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands.
| | - Albert D M E Osterhaus
- Research Center for Emerging Infections and Zoonosis, University of Veterinary Medicine, Foundation, Hannover, Germany.
- Global Virus Network, Baltimore, MD, 21201, USA.
| |
Collapse
|
12
|
Wellford SA, Moseman EA. Olfactory immune response to SARS-CoV-2. Cell Mol Immunol 2024; 21:134-143. [PMID: 38143247 PMCID: PMC10806031 DOI: 10.1038/s41423-023-01119-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/04/2023] [Indexed: 12/26/2023] Open
Abstract
Numerous pathogens can infect the olfactory tract, yet the pandemic caused by SARS-CoV-2 has strongly emphasized the importance of the olfactory mucosa as an immune barrier. Situated in the nasal passages, the olfactory mucosa is directly exposed to the environment to sense airborne odorants; however, this also means it can serve as a direct route of entry from the outside world into the brain. As a result, olfactotropic infections can have serious consequences, including dysfunction of the olfactory system, CNS invasion, dissemination to the lower respiratory tract, and transmission between individuals. Recent research has shown that a distinctive immune response is needed to protect this neuronal and mucosal tissue. A better understanding of innate, adaptive, and structural immune barriers in the olfactory mucosa is needed to develop effective therapeutics and vaccines against olfactotropic microbes such as SARS-CoV-2. Here, we summarize the ramifications of SARS-CoV-2 infection of the olfactory mucosa, review the subsequent immune response, and discuss important areas of future research for olfactory immunity to infectious disease.
Collapse
Affiliation(s)
- Sebastian A Wellford
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA
| | - E Ashley Moseman
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
13
|
Zech F, Jung C, Jacob T, Kirchhoff F. Causes and Consequences of Coronavirus Spike Protein Variability. Viruses 2024; 16:177. [PMID: 38399953 PMCID: PMC10892391 DOI: 10.3390/v16020177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/20/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
Coronaviruses are a large family of enveloped RNA viruses found in numerous animal species. They are well known for their ability to cross species barriers and have been transmitted from bats or intermediate hosts to humans on several occasions. Four of the seven human coronaviruses (hCoVs) are responsible for approximately 20% of common colds (hCoV-229E, -NL63, -OC43, -HKU1). Two others (SARS-CoV-1 and MERS-CoV) cause severe and frequently lethal respiratory syndromes but have only spread to very limited extents in the human population. In contrast the most recent human hCoV, SARS-CoV-2, while exhibiting intermediate pathogenicity, has a profound impact on public health due to its enormous spread. In this review, we discuss which initial features of the SARS-CoV-2 Spike protein and subsequent adaptations to the new human host may have helped this pathogen to cause the COVID-19 pandemic. Our focus is on host forces driving changes in the Spike protein and their consequences for virus infectivity, pathogenicity, immune evasion and resistance to preventive or therapeutic agents. In addition, we briefly address the significance and perspectives of broad-spectrum therapeutics and vaccines.
Collapse
Affiliation(s)
- Fabian Zech
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Christoph Jung
- Institute of Electrochemistry, Ulm University, 89081 Ulm, Germany; (C.J.); (T.J.)
- Helmholtz-Institute Ulm (HIU) Electrochemical Energy Storage, 89081 Ulm, Germany
- Karlsruhe Institute of Technology (KIT), 76021 Karlsruhe, Germany
| | - Timo Jacob
- Institute of Electrochemistry, Ulm University, 89081 Ulm, Germany; (C.J.); (T.J.)
- Helmholtz-Institute Ulm (HIU) Electrochemical Energy Storage, 89081 Ulm, Germany
- Karlsruhe Institute of Technology (KIT), 76021 Karlsruhe, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| |
Collapse
|
14
|
Port JR, Yinda CK, Ruckel C, Schulz JE, Smith BJ, Shaia CI, Munster VJ. Augmentation of Omicron BA.1 pathogenicity in hamsters using intratracheal inoculation. NPJ VIRUSES 2024; 2:3. [PMID: 40295685 PMCID: PMC11702663 DOI: 10.1038/s44298-023-00012-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/07/2023] [Indexed: 04/30/2025]
Abstract
The Omicron BA.1 variant of SARS-CoV-2 displays an attenuated phenotype in the Syrian hamster after intranasal inoculation. This is characterized by reduced viral replication and lung pathology in the lower respiratory tract. Here, we report that intratracheal inoculation with Omicron BA.1 recovers the lower respiratory tract replication and pathogenicity as observed with other lineages.
Collapse
Affiliation(s)
- Julia R Port
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA.
| | - Claude Kwe Yinda
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Claire Ruckel
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Jonathan E Schulz
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Brian J Smith
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Carl I Shaia
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Vincent J Munster
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| |
Collapse
|
15
|
Hu B, Chan JFW, Liu Y, Liu H, Chen YX, Shuai H, Hu YF, Hartnoll M, Chen L, Xia Y, Hu JC, Yuen TTT, Yoon C, Hou Y, Huang X, Chai Y, Zhu T, Shi J, Wang Y, He Y, Cai JP, Zhou J, Yuan S, Zhang J, Huang JD, Yuen KY, To KKW, Zhang BZ, Chu H. Divergent trajectory of replication and intrinsic pathogenicity of SARS-CoV-2 Omicron post-BA.2/5 subvariants in the upper and lower respiratory tract. EBioMedicine 2024; 99:104916. [PMID: 38101297 PMCID: PMC10733096 DOI: 10.1016/j.ebiom.2023.104916] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/23/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Earlier Omicron subvariants including BA.1, BA.2, and BA.5 emerged in waves, with a subvariant replacing the previous one every few months. More recently, the post-BA.2/5 subvariants have acquired convergent substitutions in spike that facilitated their escape from humoral immunity and gained ACE2 binding capacity. However, the intrinsic pathogenicity and replication fitness of the evaluated post-BA.2/5 subvariants are not fully understood. METHODS We systemically investigated the replication fitness and intrinsic pathogenicity of representative post-BA.2/5 subvariants (BL.1, BQ.1, BQ.1.1, XBB.1, CH.1.1, and XBB.1.5) in weanling (3-4 weeks), adult (8-10 weeks), and aged (10-12 months) mice. In addition, to better model Omicron replication in the human nasal epithelium, we further investigated the replication capacity of the post-BA.2/5 subvariants in human primary nasal epithelial cells. FINDINGS We found that the evaluated post-BA.2/5 subvariants are consistently attenuated in mouse lungs but not in nasal turbinates when compared with their ancestral subvariants BA.2/5. Further investigations in primary human nasal epithelial cells revealed a gained replication fitness of XBB.1 and XBB.1.5 when compared to BA.2 and BA.5.2. INTERPRETATION Our study revealed that the post-BA.2/5 subvariants are attenuated in lungs while increased in replication fitness in the nasal epithelium, indicating rapid adaptation of the circulating Omicron subvariants in the human populations. FUNDING The full list of funding can be found at the Acknowledgements section.
Collapse
Affiliation(s)
- Bingjie Hu
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Jasper Fuk-Woo Chan
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; Department of Infectious Disease and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, China; Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China; Academician Workstation of Hainan Province, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, Hainan, China; and The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, China; Guangzhou Laboratory, Guangdong Province, China
| | - Yuanchen Liu
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Huan Liu
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Yan-Xia Chen
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Huiping Shuai
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Ye-Fan Hu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Madeline Hartnoll
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Li Chen
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Yao Xia
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Jing-Chu Hu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Terrence Tsz-Tai Yuen
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China
| | - Chaemin Yoon
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Yuxin Hou
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China
| | - Xiner Huang
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Yue Chai
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Tianrenzheng Zhu
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Jialu Shi
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Yang Wang
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Yixin He
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Jian-Piao Cai
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Jie Zhou
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Shuofeng Yuan
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; Department of Infectious Disease and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, China; Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China
| | - Jinxia Zhang
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China
| | - Jian-Dong Huang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; Department of Infectious Disease and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, China; Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China; Academician Workstation of Hainan Province, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, Hainan, China; and The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, China; Guangzhou Laboratory, Guangdong Province, China
| | - Kelvin Kai-Wang To
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; Department of Infectious Disease and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, China; Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China; Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, China; Guangzhou Laboratory, Guangdong Province, China
| | - Bao-Zhong Zhang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
| | - Hin Chu
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; Department of Infectious Disease and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, China; Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China.
| |
Collapse
|
16
|
Zhao J, Kang M, Wu H, Sun B, Baele G, He WT, Lu M, Suchard MA, Ji X, He N, Su S, Veit M. Risk assessment of SARS-CoV-2 replicating and evolving in animals. Trends Microbiol 2024; 32:79-92. [PMID: 37541811 DOI: 10.1016/j.tim.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 08/06/2023]
Abstract
The retransmissions of SARS-CoV-2 from several mammals - primarily mink and white-tailed deer - to humans have raised concerns for the emergence of a new animal-derived SARS-CoV-2 variant to worsen the pandemic. Here, we discuss animal species that are susceptible to natural or experimental infection with SARS-CoV-2 and can transmit the virus to mates or humans. We describe cutting-edge techniques to assess the impact of a mutation in the viral spike (S) protein on its receptor and on antibody binding. Our review of spike sequences of animal-derived viruses identified nine unique amino acid exchanges in the receptor-binding domain (RBD) that are not present in any variant of concern (VOC). These mutations are present in SARS-CoV-2 found in companion animals such as dogs and cats, and they exhibit a higher frequency in SARS-CoV-2 found in mink and white-tailed deer, suggesting that sustained transmissions may contribute to maintaining novel mutations. Four of these exchanges, such as Leu452Met, could undermine acquired immune protection in humans while maintaining high affinity for the human angiotensin-converting enzyme 2 (ACE2) receptor. Finally, we discuss important avenues of future research into animal-derived viruses with public health risks.
Collapse
Affiliation(s)
- Jin Zhao
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| | - Mei Kang
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China; Clinical Research Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongyan Wu
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| | - Bowen Sun
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| | - Guy Baele
- Department of Microbiology, Immunology, and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Wan-Ting He
- School of Pharmacy, China Pharmaceutical University, Nanjing, China.
| | - Meng Lu
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| | - Marc A Suchard
- Department of Biostatistics, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA, USA; Department of Biomathematics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Xiang Ji
- Department of Mathematics, School of Science and Engineering, Tulane University, New Orleans, LA, USA
| | - Na He
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| | - Shuo Su
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China.
| | - Michael Veit
- Institute for Virology, Center for Infection Medicine, Veterinary Faculty, Free University Berlin, Berlin, Germany.
| |
Collapse
|
17
|
Huot N, Planchais C, Rosenbaum P, Contreras V, Jacquelin B, Petitdemange C, Lazzerini M, Beaumont E, Orta-Resendiz A, Rey FA, Reeves RK, Le Grand R, Mouquet H, Müller-Trutwin M. SARS-CoV-2 viral persistence in lung alveolar macrophages is controlled by IFN-γ and NK cells. Nat Immunol 2023; 24:2068-2079. [PMID: 37919524 PMCID: PMC10681903 DOI: 10.1038/s41590-023-01661-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 09/26/2023] [Indexed: 11/04/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA generally becomes undetectable in upper airways after a few days or weeks postinfection. Here we used a model of viral infection in macaques to address whether SARS-CoV-2 persists in the body and which mechanisms regulate its persistence. Replication-competent virus was detected in bronchioalveolar lavage (BAL) macrophages beyond 6 months postinfection. Viral propagation in BAL macrophages occurred from cell to cell and was inhibited by interferon-γ (IFN-γ). IFN-γ production was strongest in BAL NKG2r+CD8+ T cells and NKG2Alo natural killer (NK) cells and was further increased in NKG2Alo NK cells after spike protein stimulation. However, IFN-γ production was impaired in NK cells from macaques with persisting virus. Moreover, IFN-γ also enhanced the expression of major histocompatibility complex (MHC)-E on BAL macrophages, possibly inhibiting NK cell-mediated killing. Macaques with less persisting virus mounted adaptive NK cells that escaped the MHC-E-dependent inhibition. Our findings reveal an interplay between NK cells and macrophages that regulated SARS-CoV-2 persistence in macrophages and was mediated by IFN-γ.
Collapse
Affiliation(s)
- Nicolas Huot
- Institut Pasteur, Université Paris-Cité, HIV, Inflammation and Persistence Unit, Paris, France.
| | - Cyril Planchais
- Institut Pasteur, Université Paris Cité, INSERM U1222, Humoral Immunology Unit, Paris, France
| | - Pierre Rosenbaum
- Institut Pasteur, Université Paris Cité, INSERM U1222, Humoral Immunology Unit, Paris, France
| | - Vanessa Contreras
- Université Paris-Saclay, INSERM, CEA, Immunologie des Maladies Virales, Auto-Immunes, Hématologiques et Bactériennes (IMVA-HB/IDMIT/UMR1184), Fontenay-aux-Roses & Kremlin Bicêtre, France
| | - Beatrice Jacquelin
- Institut Pasteur, Université Paris-Cité, HIV, Inflammation and Persistence Unit, Paris, France
| | - Caroline Petitdemange
- Institut Pasteur, Université Paris-Cité, HIV, Inflammation and Persistence Unit, Paris, France
| | - Marie Lazzerini
- Institut Pasteur, Université Paris-Cité, HIV, Inflammation and Persistence Unit, Paris, France
| | - Emma Beaumont
- Institut Pasteur, Université Paris-Cité, HIV, Inflammation and Persistence Unit, Paris, France
| | - Aurelio Orta-Resendiz
- Institut Pasteur, Université Paris-Cité, HIV, Inflammation and Persistence Unit, Paris, France
| | - Félix A Rey
- Institut Pasteur, Université Paris-Cité, Structural Virology Unit, CNRS UMR3569, Paris, France
| | - R Keith Reeves
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Department of Surgery, Duke University School of Medicine, Durham, NC, USA
- Ragon Institute of Massachusetts General Hospital, MIT, Cambridge, MA, USA
- Duke Research and Discovery at RTP, Duke University Health System, Durham, NC, USA
| | - Roger Le Grand
- Université Paris-Saclay, INSERM, CEA, Immunologie des Maladies Virales, Auto-Immunes, Hématologiques et Bactériennes (IMVA-HB/IDMIT/UMR1184), Fontenay-aux-Roses & Kremlin Bicêtre, France
| | - Hugo Mouquet
- Institut Pasteur, Université Paris Cité, INSERM U1222, Humoral Immunology Unit, Paris, France
| | - Michaela Müller-Trutwin
- Institut Pasteur, Université Paris-Cité, HIV, Inflammation and Persistence Unit, Paris, France
| |
Collapse
|
18
|
Flagg M, Goldin K, Pérez-Pérez L, Singh M, Williamson BN, Pruett N, Hoang CD, de Wit E. Low level of tonic interferon signalling is associated with enhanced susceptibility to SARS-CoV-2 variants of concern in human lung organoids. Emerg Microbes Infect 2023; 12:2276338. [PMID: 37883246 PMCID: PMC10732190 DOI: 10.1080/22221751.2023.2276338] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
There is tremendous heterogeneity in the severity of COVID-19 disease in the human population, and the mechanisms governing the development of severe disease remain incompletely understood. The emergence of SARS-CoV-2 variants of concern (VOC) Delta (B.1.617.2) and Omicron (B.1.1.529) further compounded this heterogeneity. Virus replication and host cell damage in the distal lung is often associated with severe clinical disease, making this an important site to consider when evaluating pathogenicity of SARS-CoV-2 VOCs. Using distal human lung organoids (hLOs) derived from multiple human donors, we compared the fitness and pathogenicity of SARS-CoV-2 VOC Delta and Omicron, along with an ancestral clade B variant D614G, and evaluated donor-dependent differences in susceptibility to infection. We observed substantial attenuation of Omicron in hLOs and demonstrated enhanced susceptibility to Omicron and D614G replication in hLOs from one donor. Transcriptomic analysis revealed that increased susceptibility to SARS-CoV-2 infection in these hLOs was associated with reduced tonic interferon signaling activity at baseline. We show that hLOs can be used to model heterogeneity of SARS-CoV-2 pathogenesis in humans, and propose that variability in tonic interferon signaling set point may impact susceptibility to SARS-CoV-2 VOCs and subsequent COVID-19 disease progression.
Collapse
Affiliation(s)
- Meaghan Flagg
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Kerry Goldin
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Lizzette Pérez-Pérez
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Manmeet Singh
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Brandi N. Williamson
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Nathanael Pruett
- Thoracic Surgery Branch, Division of Intramural Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Chuong D. Hoang
- Thoracic Surgery Branch, Division of Intramural Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Emmie de Wit
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| |
Collapse
|
19
|
Wu Y, Shi J, He X, Lu J, Gao X, Zhu X, Chen X, Zhang M, Fang L, Zhang J, Yuan Z, Xiao G, Zhou P, Pan X. Protection of the receptor binding domain (RBD) dimer against SARS-CoV-2 and its variants. J Virol 2023; 97:e0127923. [PMID: 37843372 PMCID: PMC10688353 DOI: 10.1128/jvi.01279-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 09/16/2023] [Indexed: 10/17/2023] Open
Abstract
IMPORTANCE Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants achieved immune escape and became less virulent and easily transmissible through rapid mutation in the spike protein, thus the efficacy of vaccines on the market or in development continues to be challenged. Updating the vaccine, exploring compromise vaccination strategies, and evaluating the efficacy of candidate vaccines for the emerging variants in a timely manner are important to combat complex and volatile SARS-CoV-2. This study reports that vaccines prepared from the dimeric receptor-binding domain (RBD) recombinant protein, which can be quickly produced using a mature and stable process platform, had both good immunogenicity and protection in vivo and could completely protect rodents from lethal challenge by SARS-CoV-2 and its variants, including the emerging Omicron XBB.1.16, highlighting the value of dimeric recombinant vaccines in the post-COVID-19 era.
Collapse
Affiliation(s)
- Yan Wu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Jian Shi
- Wuhan YZY Biopharma Co., Ltd., Wuhan, China
| | - Xiaoxue He
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Jia Lu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Xiao Gao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Xuerui Zhu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Xinlan Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Man Zhang
- Wuhan YZY Biopharma Co., Ltd., Wuhan, China
| | | | - Jing Zhang
- Wuhan YZY Biopharma Co., Ltd., Wuhan, China
| | - Zhiming Yuan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of the Chinese Academy of Sciences, Beijing, China
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Gengfu Xiao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of the Chinese Academy of Sciences, Beijing, China
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | | | - Xiaoyan Pan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of the Chinese Academy of Sciences, Beijing, China
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
20
|
Streblow DN, Hirsch AJ, Stanton JJ, Lewis AD, Colgin L, Hessell AJ, Kreklywich CN, Smith JL, Sutton WF, Chauvin D, Woo J, Bimber BN, LeBlanc CN, Acharya SN, O'Roak BJ, Sardar H, Sajadi MM, Tehrani ZR, Walter MR, Martinez-Sobrido L, Kobie JJ, Reader RJ, Olstad KJ, Hobbs TR, Saphire EO, Schendel SL, Carnahan RH, Knoch J, Branco LM, Crowe JE, Van Rompay KKA, Lovalenti P, Vu Truong, Forthal DN, Haigwood NL. Aerosol delivery of SARS-CoV-2 human monoclonal antibodies in macaques limits viral replication and lung pathology. Nat Commun 2023; 14:7062. [PMID: 37923717 PMCID: PMC10624670 DOI: 10.1038/s41467-023-42440-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 10/11/2023] [Indexed: 11/06/2023] Open
Abstract
Passively administered monoclonal antibodies (mAbs) given before or after viral infection can prevent or blunt disease. Here, we examine the efficacy of aerosol mAb delivery to prevent infection and disease in rhesus macaques inoculated with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Delta variant via intranasal and intratracheal routes. SARS-CoV-2 human mAbs or a human mAb directed to respiratory syncytial virus (RSV) are nebulized and delivered using positive airflow via facemask to sedated macaques pre- and post-infection. Nebulized human mAbs are detectable in nasal, oropharyngeal, and bronchoalveolar lavage (BAL) samples. SARS-CoV-2 mAb treatment significantly reduces levels of SARS-CoV-2 viral RNA and infectious virus in the upper and lower respiratory tracts relative to controls. Reductions in lung and BAL virus levels correspond to reduced BAL inflammatory cytokines and lung pathology. Aerosolized antibody therapy for SARS-CoV-2 could be effective for reducing viral burden and limiting disease severity.
Collapse
Affiliation(s)
- Daniel N Streblow
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, USA
| | - Alec J Hirsch
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, USA
| | - Jeffrey J Stanton
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Anne D Lewis
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Lois Colgin
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Ann J Hessell
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Craig N Kreklywich
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, USA
| | - Jessica L Smith
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, USA
| | - William F Sutton
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | | | | | - Benjamin N Bimber
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Cierra N LeBlanc
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - Sonia N Acharya
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - Brian J O'Roak
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - Harjinder Sardar
- Environmental Health & Safety, Oregon Health & Science University, Portland, OR, USA
| | - Mohammad M Sajadi
- Baltimore VA Medical Center, VA Maryland Health Care System, Baltimore, MD, USA
| | - Zahra R Tehrani
- Division of Clinical Care and Research, Institute of Human Virology, University of Maryland, Baltimore, MD, USA
| | - Mark R Walter
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - James J Kobie
- Department of Medicine, Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rachel J Reader
- California National Primate Research Center, University of California, Davis, CA, USA
| | - Katherine J Olstad
- California National Primate Research Center, University of California, Davis, CA, USA
| | - Theodore R Hobbs
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Erica Ollmann Saphire
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Sharon L Schendel
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | | | | | | | - James E Crowe
- Vanderbilt University Medical Center, Nashville, TN, USA
| | - Koen K A Van Rompay
- California National Primate Research Center, University of California, Davis, CA, USA
| | | | - Vu Truong
- Aridis Pharmaceuticals, Los Gatos, CA, USA.
| | - Donald N Forthal
- University of California, Irvine, School of Medicine, Irvine, CA, USA.
| | - Nancy L Haigwood
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA.
| |
Collapse
|
21
|
Zaderer V, Abd El Halim H, Wyremblewsky AL, Lupoli G, Dächert C, Muenchhoff M, Graf A, Blum H, Lass-Flörl C, Keppler OT, Huber LA, Posch W, Wilflingseder D. Omicron subvariants illustrate reduced respiratory tissue penetration, cell damage and inflammatory responses in human airway epithelia. Front Immunol 2023; 14:1258268. [PMID: 37915577 PMCID: PMC10616953 DOI: 10.3389/fimmu.2023.1258268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/02/2023] [Indexed: 11/03/2023] Open
Abstract
Introduction To explore whether the reported lower pathogenicity in infected individuals of variant of concern (VoC) Omicron and its current subvariants compared to VoC Delta may be related to fundamental differences in the initial virus-tissue interaction, we assessed their ability to penetrate, replicate and cause damage in a human 3D respiratory model. Methods For this, we used TEER measurements, real-time PCR, LDH, cytokine and complex confocal imaging analyses. Results and discussion We observed that Delta readily penetrated deep into the respiratory epithelium and this was associated with major tissue destruction, high LDH activity, high viral loads and pronounced innate immune activation as observed by intrinsic C3 activation and IL-6 release at infection sites. In contrast, Omicron subvariants BA.5, BQ.1.1 and BF7 remained superficially in the mucosal layer resulting merely in outward-directed destruction of cells, maintenance of epithelial integrity, minimal LDH activity and low basolateral release of virus at infection sites, as well as significantly smaller areas of complement activation and lower IL-6 secretion. Interestingly, also within Omicron subvariants differences were observed with newer Omicron subvariants BQ.1.1 and BF.7 illustrating significantly reduced viral loads, IL-6 release and LDH activity compared to BA.5. Our data indicate that earliest interaction events after SARS-CoV-2 transmission may have a role in shaping disease severity.
Collapse
Affiliation(s)
- Viktoria Zaderer
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Hussam Abd El Halim
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Anna-Lena Wyremblewsky
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Gaia Lupoli
- Virology, Max von Pettenkofer Institute and Gene Center, Ludwig-Maximilians-Universität (LMU), Munich, Germany
| | - Christopher Dächert
- Virology, Max von Pettenkofer Institute and Gene Center, Ludwig-Maximilians-Universität (LMU), Munich, Germany
| | - Maximilian Muenchhoff
- Virology, Max von Pettenkofer Institute and Gene Center, Ludwig-Maximilians-Universität (LMU), Munich, Germany
| | - Alexander Graf
- Laboratory for Functional Genome Analysis, Gene Center, Ludwig-Maximilians-Universität (LMU), Munich, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis, Gene Center, Ludwig-Maximilians-Universität (LMU), Munich, Germany
| | - Cornelia Lass-Flörl
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Oliver T. Keppler
- Virology, Max von Pettenkofer Institute and Gene Center, Ludwig-Maximilians-Universität (LMU), Munich, Germany
| | - Lukas A. Huber
- Institute of Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
- ADSI - Austrian Drug Screening Institute GmbH, Innsbruck, Austria
| | - Wilfried Posch
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Doris Wilflingseder
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
22
|
Hou M, Shi J, Gong Z, Wen H, Lan Y, Deng X, Fan Q, Li J, Jiang M, Tang X, Wu CI, Li F, Ruan Y. Intra- vs. Interhost Evolution of SARS-CoV-2 Driven by Uncorrelated Selection-The Evolution Thwarted. Mol Biol Evol 2023; 40:msad204. [PMID: 37707487 PMCID: PMC10521905 DOI: 10.1093/molbev/msad204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/15/2023] Open
Abstract
In viral evolution, a new mutation has to proliferate within the host (Stage I) in order to be transmitted and then compete in the host population (Stage II). We now analyze the intrahost single nucleotide variants (iSNVs) in a set of 79 SARS-CoV-2 infected patients with most transmissions tracked. Here, every mutation has two measures: 1) iSNV frequency within each individual host in Stage I; 2) occurrence among individuals ranging from 1 (private), 2-78 (public), to 79 (global) occurrences in Stage II. In Stage I, a small fraction of nonsynonymous iSNVs are sufficiently advantageous to rise to a high frequency, often 100%. However, such iSNVs usually fail to become public mutations. Thus, the selective forces in the two stages of evolution are uncorrelated and, possibly, antagonistic. For that reason, successful mutants, including many variants of concern, have to avoid being eliminated in Stage I when they first emerge. As a result, they may not have the transmission advantage to outcompete the dominant strains and, hence, are rare in the host population. Few of them could manage to slowly accumulate advantageous mutations to compete in Stage II. When they do, they would appear suddenly as in each of the six successive waves of SARS-CoV-2 strains. In conclusion, Stage I evolution, the gate-keeper, may contravene the long-term viral evolution and should be heeded in viral studies.
Collapse
Affiliation(s)
- Mei Hou
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jingrong Shi
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Zanke Gong
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Haijun Wen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yun Lan
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xizi Deng
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Qinghong Fan
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jiaojiao Li
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Mengling Jiang
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiaoping Tang
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Chung-I Wu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Feng Li
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yongsen Ruan
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
23
|
Feng S, O'Brien A, Chen DY, Saeed M, Baker SC. SARS-CoV-2 nonstructural protein 6 from Alpha to Omicron: evolution of a transmembrane protein. mBio 2023; 14:e0068823. [PMID: 37477426 PMCID: PMC10470488 DOI: 10.1128/mbio.00688-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/10/2023] [Indexed: 07/22/2023] Open
Abstract
We recently reported that mutations in both the spike glycoprotein and nonstructural protein 6 (nsp6) were associated with attenuation of the SARS-CoV-2 Omicron BA.1 variant. While mutations in spike allow evasion of neutralizing antibodies and promote specific modes of viral entry, the role of nsp6 mutations in pathogenesis is less clear. Nsp6 is essential for modifying the endoplasmic reticulum and generating double-membrane vesicles, the site of viral RNA replication. To investigate the evolution of nsp6, we evaluated 91,596 high-confidence human SARS-CoV-2 whole-genome sequences across 19 variants and lineages. While nsp6 of early variants of concern, such as Alpha, Beta, and Gamma, carried a triple amino acid deletion (106-108, termed ΔSGF), the Delta, Epsilon, and Mu lineages retained the ancestral nsp6 sequence. For nsp6 in the emerging Omicron variants, we report a transition from an amino acid 105-107 ΔLSG deletion in BA.1 to increased dominance of the ΔSGF in BA.2 and subsequent lineages. Our findings indicate that deletion within nsp6 was independently selected in multiple lineages of SARS-CoV-2, both early and late in the pandemic. Analysis of SARS-CoV-2-related coronaviruses in bats and pangolins revealed nsp6 sequences similar to the ancestral SARS-CoV-2 virus, indicating that the deletion in nsp6 may be an adaptation to replication in humans. Analysis of nsp6 sequences from multiple coronaviruses predicts a multipass transmembrane protein with a conserved C-terminal domain. Monitoring and evaluating changes in nsp6 and other nonstructural proteins will contribute to our understanding of factors associated with the attenuation of pandemic coronaviruses. IMPORTANCE There is an ongoing need to evaluate genetic changes in SARS-CoV-2 for effects on transmission and pathogenesis. We recently reported an unexpected role for replicase component nsp6, in addition to changes in spike, in the attenuation of Omicron BA.1. In this commentary, we document a triple-amino-acid deletion in a predicted lumenal domain of nsp6 that was found in multiple, independent variants of SARS-CoV-2, including all recent Omicron lineages. Furthermore, we modeled the predicted structure of nsp6, implicating a multipass transmembrane architecture as conserved in members of the Coronaviridae family. This information can guide future studies investigating the role of nsp6 in the pathogenesis of existing and emerging coronaviruses.
Collapse
Affiliation(s)
- Shuchen Feng
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Chicago, Illinois, USA
| | - Amornrat O'Brien
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Chicago, Illinois, USA
| | - Da-Yuan Chen
- Department of Biochemistry and Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, USA
- National Emerging Infectious Diseases Laboratories (NEIDL), Boston, Massachusetts, USA
| | - Mohsan Saeed
- Department of Biochemistry and Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, USA
- National Emerging Infectious Diseases Laboratories (NEIDL), Boston, Massachusetts, USA
| | - Susan C. Baker
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Chicago, Illinois, USA
| |
Collapse
|
24
|
Urano E, Itoh Y, Suzuki T, Sasaki T, Kishikawa JI, Akamatsu K, Higuchi Y, Sakai Y, Okamura T, Mitoma S, Sugihara F, Takada A, Kimura M, Nakao S, Hirose M, Sasaki T, Koketsu R, Tsuji S, Yanagida S, Shioda T, Hara E, Matoba S, Matsuura Y, Kanda Y, Arase H, Okada M, Takagi J, Kato T, Hoshino A, Yasutomi Y, Saito A, Okamoto T. An inhaled ACE2 decoy confers protection against SARS-CoV-2 infection in preclinical models. Sci Transl Med 2023; 15:eadi2623. [PMID: 37647387 DOI: 10.1126/scitranslmed.adi2623] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 07/27/2023] [Indexed: 09/01/2023]
Abstract
The Omicron variant continuously evolves under the humoral immune pressure exerted by vaccination and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, and the resulting Omicron subvariants display further immune evasion and antibody escape. An engineered angiotensin-converting enzyme 2 (ACE2) decoy composed of high-affinity ACE2 and an IgG1 Fc domain could offer an alternative modality to neutralize SARS-CoV-2. We previously reported its broad spectrum and therapeutic potential in rodent models. Here, we demonstrate that the engineered ACE2 decoy retains neutralization activity against Omicron subvariants, including the currently emerging XBB and BQ.1 strains, which completely evade antibodies currently in clinical use. SARS-CoV-2, under the suboptimal concentration of neutralizing drugs, generated SARS-CoV-2 mutants escaping wild-type ACE2 decoy and monoclonal antibodies, whereas no escape mutant emerged against the engineered ACE2 decoy. Furthermore, inhalation of aerosolized decoys improved the outcomes of rodents infected with SARS-CoV-2 at a 20-fold lower dose than that of intravenous administration. Last, the engineered ACE2 decoy exhibited therapeutic efficacy for cynomolgus macaques infected with SARS-CoV-2. These results indicate that this engineered ACE2 decoy represents a promising therapeutic strategy to overcome immune-evading SARS-CoV-2 variants and that liquid aerosol inhalation could be considered as a noninvasive approach to enhance the efficacy of COVID-19 treatments.
Collapse
Affiliation(s)
- Emiko Urano
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Tsukuba, 305-0843, Japan
| | - Yumi Itoh
- Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan
- Department of Microbiology, Juntendo University School of Medicine, Tokyo, 113-8421, Japan
| | - Tatsuya Suzuki
- Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan
- Department of Microbiology, Juntendo University School of Medicine, Tokyo, 113-8421, Japan
| | - Takanori Sasaki
- Collaborative Research Center for Okayama Medical Innovation Center, Dentistry, and Pharmaceutical Sciences, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, 700-0082, Japan
| | - Jun-Ichi Kishikawa
- Laboratory of CryoEM Structural Biology, Institute for Protein Research, Osaka University, Osaka, 565-0871, Japan
| | - Kanako Akamatsu
- Department of Oncogene, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan
| | - Yusuke Higuchi
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Yusuke Sakai
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, 208-0011, Japan
| | - Tomotaka Okamura
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Tsukuba, 305-0843, Japan
| | - Shuya Mitoma
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki, 889-2155, Japan
| | - Fuminori Sugihara
- Central Instrumentation Laboratory, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan
| | - Akira Takada
- Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan
| | - Mari Kimura
- Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan
| | - Shuto Nakao
- Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan
| | - Mika Hirose
- Laboratory of CryoEM Structural Biology, Institute for Protein Research, Osaka University, Osaka, 565-0871, Japan
| | - Tadahiro Sasaki
- Department of Viral Infection, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan
| | - Ritsuko Koketsu
- Department of Viral Infection, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan
| | - Shunya Tsuji
- Department of Molecular Microbiology, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan
| | - Shota Yanagida
- Division of Pharmacology, National Institute of Health Sciences, Kanagawa, 565-0871, Japan
| | - Tatsuo Shioda
- Department of Viral Infection, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka, 565-0871, Japan
| | - Eiji Hara
- Department of Molecular Microbiology, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka, 565-0871, Japan
| | - Satoaki Matoba
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Yoshiharu Matsuura
- Center for Infectious Disease Education and Research, Osaka University, Osaka, 565-0871, Japan
| | - Yasunari Kanda
- Division of Pharmacology, National Institute of Health Sciences, Kanagawa, 565-0871, Japan
| | - Hisashi Arase
- Center for Infectious Disease Education and Research, Osaka University, Osaka, 565-0871, Japan
- Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan
- Center for Advanced Modalities and Drug Delivery System, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Masato Okada
- Department of Oncogene, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka, 565-0871, Japan
- Center for Advanced Modalities and Drug Delivery System, Osaka University, Suita, Osaka, 565-0871, Japan
- Laboratory of Oncogene Research, World Premier International Immunology Frontier Research Centre, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Junichi Takagi
- Center for Infectious Disease Education and Research, Osaka University, Osaka, 565-0871, Japan
- Laboratory of Protein Synthesis and Expression, Institute for Protein Research, Osaka University, Osaka, 565-0871, Japan
| | - Takayuki Kato
- Laboratory of CryoEM Structural Biology, Institute for Protein Research, Osaka University, Osaka, 565-0871, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka, 565-0871, Japan
- Center for Advanced Modalities and Drug Delivery System, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Atsushi Hoshino
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Yasuhiro Yasutomi
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Tsukuba, 305-0843, Japan
- Department of Molecular and Experimental Medicine, Mie University Graduate School of Medicine, Mie, 514-8507, Japan
| | - Akatsuki Saito
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki, 889-2155, Japan
- Center for Animal Disease Control, University of Miyazaki, Miyazaki, 889-2155, Japan
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki, 889-2155, Japan
| | - Toru Okamoto
- Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan
- Department of Microbiology, Juntendo University School of Medicine, Tokyo, 113-8421, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka, 565-0871, Japan
| |
Collapse
|
25
|
Merling MR, Williams A, Mahfooz NS, Ruane-Foster M, Smith J, Jahnes J, Ayers LW, Bazan JA, Norris A, Norris Turner A, Oglesbee M, Faith SA, Quam MB, Robinson RT. The emergence of SARS-CoV-2 lineages and associated saliva antibody responses among asymptomatic individuals in a large university community. PLoS Pathog 2023; 19:e1011596. [PMID: 37603565 PMCID: PMC10470930 DOI: 10.1371/journal.ppat.1011596] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 08/31/2023] [Accepted: 08/02/2023] [Indexed: 08/23/2023] Open
Abstract
SARS-CoV-2 (CoV2) infected, asymptomatic individuals are an important contributor to COVID transmission. CoV2-specific immunoglobulin (Ig)-as generated by the immune system following infection or vaccination-has helped limit CoV2 transmission from asymptomatic individuals to susceptible populations (e.g. elderly). Here, we describe the relationships between COVID incidence and CoV2 lineage, viral load, saliva Ig levels (CoV2-specific IgM, IgA and IgG), and ACE2 binding inhibition capacity in asymptomatic individuals between January 2021 and May 2022. These data were generated as part of a large university COVID monitoring program in Ohio, United States of America, and demonstrate that COVID incidence among asymptomatic individuals occurred in waves which mirrored those in surrounding regions, with saliva CoV2 viral loads becoming progressively higher in our community until vaccine mandates were established. Among the unvaccinated, infection with each CoV2 lineage (pre-Omicron) resulted in saliva Spike-specific IgM, IgA, and IgG responses, the latter increasing significantly post-infection and being more pronounced than N-specific IgG responses. Vaccination resulted in significantly higher Spike-specific IgG levels compared to unvaccinated infected individuals, and uninfected vaccinees' saliva was more capable of inhibiting Spike function. Vaccinees with breakthrough Delta infections had Spike-specific IgG levels comparable to those of uninfected vaccinees; however, their ability to inhibit Spike binding was diminished. These data are consistent with COVID vaccines having achieved hoped-for effects in our community, including the generation of mucosal antibodies that inhibit Spike and lower community viral loads, and suggest breakthrough Delta infections were not due to an absence of vaccine-elicited Ig, but instead limited Spike binding activity in the face of high community viral loads.
Collapse
Affiliation(s)
- Marlena R. Merling
- Department of Microbial Infection & Immunity, The Ohio State University, Columbus, Ohio, United States of America
| | - Amanda Williams
- Department of Microbial Infection & Immunity, The Ohio State University, Columbus, Ohio, United States of America
- Infectious Disease Institute, The Ohio State University, Columbus, Ohio, United States of America
| | - Najmus S. Mahfooz
- Department of Microbial Infection & Immunity, The Ohio State University, Columbus, Ohio, United States of America
| | - Marisa Ruane-Foster
- Department of Microbial Infection & Immunity, The Ohio State University, Columbus, Ohio, United States of America
| | - Jacob Smith
- Infectious Disease Institute, The Ohio State University, Columbus, Ohio, United States of America
| | - Jeff Jahnes
- Infectious Disease Institute, The Ohio State University, Columbus, Ohio, United States of America
| | - Leona W. Ayers
- Department of Pathology, The Ohio State University, Columbus, Ohio, United States of America
| | - Jose A. Bazan
- Division of Infectious Disease, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Alison Norris
- Division of Infectious Disease, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States of America
- Department of Epidemiology, The Ohio State University, Columbus, Ohio, United States of America
| | - Abigail Norris Turner
- Division of Infectious Disease, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Michael Oglesbee
- Infectious Disease Institute, The Ohio State University, Columbus, Ohio, United States of America
| | - Seth A. Faith
- Infectious Disease Institute, The Ohio State University, Columbus, Ohio, United States of America
| | - Mikkel B. Quam
- Department of Epidemiology, The Ohio State University, Columbus, Ohio, United States of America
| | - Richard T. Robinson
- Department of Microbial Infection & Immunity, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
26
|
Tang Z, Yu P, Guo Q, Chen M, Lei Y, Zhou L, Mai W, Chen L, Deng M, Kong W, Niu C, Xiong X, Li W, Chen C, Lai C, Wang Q, Li B, Ji T. Clinical characteristics and host immunity responses of SARS-CoV-2 Omicron variant BA.2 with deletion of ORF7a, ORF7b and ORF8. Virol J 2023; 20:106. [PMID: 37248496 DOI: 10.1186/s12985-023-02066-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 05/08/2023] [Indexed: 05/31/2023] Open
Abstract
BACKGROUND The pathogenicity and virulence of the Omicron strain have weakened significantly pathogenesis of Omicron variants. Accumulating data indicated accessory proteins play crucial roles in host immune evasion and virus pathogenesis of SARS-CoV-2. Therefore, the impact of simultaneous deletion of accessory protein ORF7a, ORF7b and ORF8 on the clinical characteristics and specific immunity in Omicron breakthrough infected patients (BIPs) need to be verified. METHODS Herein, plasma cytokines were identified using a commercial Multi-cytokine detection kit. Enzyme-linked immunosorbent assay and pseudovirus neutralization assays were utilized to determine the titers of SARS-CoV-2 specific binding antibodies and neutralizing antibodies, respectively. In addition, an enzyme-linked immunospot assay was used to quantify SARS-CoV-2 specific T cells and memory B cells. RESULTS A local COVID-19 outbreak was caused by the Omicron BA.2 variant, which featured a deletion of 871 base pairs (∆871 BA.2), resulting in the removal of ORF7a, ORF7b, and ORF8. We found that hospitalized patients with ∆871 BA.2 had significantly shorter hospital stays than those with wild-type (WT) BA.2. Plasma cytokine levels in both ∆871 BA.2 and WT BA.2 patients were within the normal range of reference, and there was no notable difference in the titers of SARS-CoV-2 ancestor or Omicron-specific binding IgG antibodies, neutralizing antibody titers, effector T cells, and memory B cells frequencies between ∆871 BA.2 and WT BA.2 infected adult patients. However, antibody titers in ∆871 BA.2 infected adolescents were higher than in adults. CONCLUSIONS The simultaneous deletion of ORF7a, ORF7b, and ORF8 facilitates the rapid clearance of the BA.2 variant, without impacting cytokine levels or affecting SARS-CoV-2 specific humoral and cellular immunity in Omicron-infected individuals.
Collapse
Affiliation(s)
- Zhizhong Tang
- Urology Surgery Department, Maoming People's Hospital, Maoming, 525000, People's Republic of China
| | - Pei Yu
- Clinical Laboratory Medicine Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Qianfang Guo
- Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Institute of Microbiology, Guangdong Provincial Center for Disease Control and Prevention, Guangdong, 511430, People's Republic of China
| | - Mingxiao Chen
- Clinical Laboratory Medicine Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Yu Lei
- Clinical Laboratory Medicine Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Lei Zhou
- Department Of Pathology Laboratory, Maoming People's Hospital, Maoming, 525000, People's Republic of China
| | - Weikang Mai
- Clinical Laboratory Medicine Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Lu Chen
- Clinical Laboratory Medicine Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Min Deng
- Clinical Laboratory Medicine Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Weiya Kong
- Clinical Laboratory Medicine Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Chuanying Niu
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510535, People's Republic of China
| | - Xiaoli Xiong
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510535, People's Republic of China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health-Guangdong Laboratory), Guangzhou, 510005, People's Republic of China
| | - Wenrui Li
- Clinical Laboratory Medicine Department, Dongguan Ninth People's Hospital, Dongguan, 523016, People's Republic of China
| | - Chunbo Chen
- Intensive Care Unit Department, Maoming People's Hospital, Maoming, 525000, People's Republic of China
| | - Changchun Lai
- Clinical Laboratory Medicine Department, Maoming People's Hospital, Maoming, 525000, People's Republic of China.
| | - Qian Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, People's Republic of China.
| | - Baisheng Li
- Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Institute of Microbiology, Guangdong Provincial Center for Disease Control and Prevention, Guangdong, 511430, People's Republic of China.
| | - Tianxing Ji
- Clinical Laboratory Medicine Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, People's Republic of China.
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, 511495, People's Republic of China.
| |
Collapse
|
27
|
Case JB, Scheaffer SM, Darling TL, Bricker TL, Adams LJ, Harastani H, Trende R, Sanapala S, Fremont DH, Boon ACM, Diamond MS. Characterization of the SARS-CoV-2 BA.5.5 and BQ.1.1 Omicron Variants in Mice and Hamsters. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.28.538747. [PMID: 37205409 PMCID: PMC10187162 DOI: 10.1101/2023.04.28.538747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The continued evolution and emergence of novel SARS-CoV-2 variants has resulted in challenges to vaccine and antibody efficacy. The emergence of each new variant necessitates the need to re-evaluate and refine animal models used for countermeasure testing. Here, we tested a currently circulating SARS-CoV-2 Omicron lineage variant, BQ.1.1, in multiple rodent models including K18-hACE2 transgenic, C57BL/6J, and 129S2 mice, and Syrian golden hamsters. In contrast to a previously dominant BA.5.5 Omicron variant, inoculation of K18-hACE2 mice with BQ.1.1 resulted in a substantial weight loss, a characteristic seen in pre-Omicron variants. BQ.1.1 also replicated to higher levels in the lungs of K18-hACE2 mice and caused greater lung pathology than the BA.5.5 variant. However, C57BL/6J mice, 129S2 mice, and Syrian hamsters inoculated with BQ.1.1 showed no differences in respiratory tract infection or disease compared to animals administered BA.5.5. Airborne or direct contact transmission in hamsters was observed more frequently after BQ.1.1 than BA.5.5 infection. Together, these data suggest that the BQ.1.1 Omicron variant has increased virulence in some rodent species, possibly due to the acquisition of unique spike mutations relative to other Omicron variants. IMPORTANCE As SARS-CoV-2 continues to evolve, there is a need to rapidly assess the efficacy of vaccines and antiviral therapeutics against newly emergent variants. To do so, the commonly used animal models must also be reevaluated. Here, we determined the pathogenicity of the circulating BQ.1.1 SARS-CoV-2 variant in multiple SARS-CoV-2 animal models including transgenic mice expressing human ACE2, two strains of conventional laboratory mice, and Syrian hamsters. While BQ.1.1 infection resulted in similar levels of viral burden and clinical disease in the conventional laboratory mice tested, increases in lung infection were detected in human ACE2-expressing transgenic mice, which corresponded with greater levels of pro-inflammatory cytokines and lung pathology. Moreover, we observed a trend towards greater animal-to-animal transmission of BQ.1.1 than BA.5.5 in Syrian hamsters. Together, our data highlight important differences in two closely related Omicron SARS-CoV-2 variant strains and provide a foundation for evaluating countermeasures.
Collapse
|
28
|
Metzler M, Tharyan RG, Klann K, Grikscheit K, Bojkova D, Cinatl J, Tascher G, Ciesek S, Münch C. SARS-CoV-2 variants show different host cell proteome profiles with delayed immune response activation in Omicron-infected cells. Mol Cell Proteomics 2023; 22:100537. [PMID: 37001587 PMCID: PMC10060015 DOI: 10.1016/j.mcpro.2023.100537] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 02/21/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023] Open
Abstract
The ancestral SARS-CoV-2 strain that initiated the Covid-19 pandemic at the end of 2019 has rapidly mutated into multiple variants of concern with variable pathogenicity and increasing immune escape strategies. However, differences in host cellular antiviral responses upon infection with SARS-CoV-2 variants remains elusive. Leveraging whole cell proteomics, we determined host signalling pathways that are differentially modulated upon infection with the clinical isolates of the ancestral SARS-CoV-2 B.1 and the variants of concern Delta and Omicron BA.1. Our findings illustrate alterations in the global host proteome landscape upon infection with SARS-CoV-2 variants and the resulting host immune responses. Additionally, viral proteome kinetics reveal declining levels of viral protein expression during Omicron BA.1 infection when compared to ancestral B.1 and Delta variants, consistent with its reduced replication rates. Moreover, molecular assays reveal deferral activation of specific host antiviral signalling upon Omicron BA.1 and BA.2 infections. Our study provides an overview of host proteome profile of multiple SARS-CoV-2 variants and brings forth a better understanding of the instigation of key immune signalling pathways causative for the differential pathogenicity of SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Melinda Metzler
- Institute of Medical Virology, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Rebecca George Tharyan
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt, Germany
| | - Kevin Klann
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt, Germany
| | - Katharina Grikscheit
- Institute of Medical Virology, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Denisa Bojkova
- Institute of Medical Virology, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Jindrich Cinatl
- Institute of Medical Virology, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Georg Tascher
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt, Germany
| | - Sandra Ciesek
- Institute of Medical Virology, University Hospital Frankfurt, Goethe University, Frankfurt, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt, Germany; German Center for Infection Research, DZIF, External Partner Site, Frankfurt, Germany
| | - Christian Münch
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt, Germany; Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany; Cardio-Pulmonary Institute, Goethe University, Frankfurt, Germany.
| |
Collapse
|
29
|
Rosenke K, Lewis MC, Feldmann F, Bohrnsen E, Schwarz B, Okumura A, Bohler WF, Callison J, Shaia C, Bosio CM, Lovaglio J, Saturday G, Jarvis MA, Feldmann H. Combined molnupiravir-nirmatrelvir treatment improves the inhibitory effect on SARS-CoV-2 in macaques. JCI Insight 2023; 8:166485. [PMID: 36574296 PMCID: PMC9977490 DOI: 10.1172/jci.insight.166485] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
The periodic emergence of SARS-CoV-2 variants of concern (VOCs) with unpredictable clinical severity and ability to escape preexisting immunity emphasizes the continued need for antiviral interventions. Two small molecule inhibitors, molnupiravir (MK-4482), a nucleoside analog, and nirmatrelvir (PF-07321332), a 3C-like protease inhibitor, have recently been approved as monotherapy for use in high-risk patients with COVID-19. As preclinical data are only available for rodent and ferret models, here we assessed the efficacy of MK-4482 and PF-07321332 alone and in combination against infection with the SARS-CoV-2 Delta VOC in the rhesus macaque COVID-19 model. Macaques were infected with the SARS-CoV-2 Delta variant and treated with vehicle, MK-4482, PF-07321332, or a combination of MK-4482 and PF-07321332. Clinical exams were performed at 1, 2, and 4 days postinfection to assess disease and virological parameters. Notably, use of MK-4482 and PF-07321332 in combination improved the individual inhibitory effect of both drugs, resulting in milder disease progression, stronger reduction of virus shedding from mucosal tissues of the upper respiratory tract, stronger reduction of viral replication in the lower respiratory tract, and reduced lung pathology. Our data strongly indicate superiority of combined MK-4482 and PF-07321332 treatment of SARS-CoV-2 infections as demonstrated in the closest COVID-19 surrogate model of human infection.
Collapse
Affiliation(s)
| | | | | | - Eric Bohrnsen
- Laboratory of Bacteriology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, Montana, USA
| | - Benjamin Schwarz
- Laboratory of Bacteriology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, Montana, USA
| | | | | | | | | | - Catharine M Bosio
- Laboratory of Bacteriology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, Montana, USA
| | | | | | - Michael A Jarvis
- Laboratory of Virology.,University of Plymouth, Plymouth, Devon, United Kingdom.,The Vaccine Group Ltd, Plymouth, Devon, United Kingdom
| | | |
Collapse
|