1
|
Cao X, Chen H, Lu Z, Zhao Y, Wei S, Liu Y, Zeng J, Zhang G, Ma Q, Zhong L, Song L, Qiu Y. Negative effects and mechanisms of phosphorus in electrolyte on the photoelectrochemical water splitting stability of BiVO 4 photoanode. J Colloid Interface Sci 2025; 690:137308. [PMID: 40107049 DOI: 10.1016/j.jcis.2025.137308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/09/2025] [Accepted: 03/11/2025] [Indexed: 03/22/2025]
Abstract
The industrial development of BiVO4 photoanode-based photoelectrochemical (PEC) water splitting is constrained by the poor stability of the BiVO4 photoanode. However, the effect of phosphorus (P) in commonly used electrolytes on BiVO4 photoanode stability and the associated mechanism are still scarce. Herein, we investigate the effects of different P-containing electrolytes on the PEC performance of BiVO4, as well as the changes in the composition, microstructure, light-absorption properties, and carrier transport and separation efficiencies of BiVO4 between before and after the reaction. Results demonstrate that at 1.23 V versus reversible hydrogen electrode (VRHE), the photocurrent decay of BiVO4 in all P-containing electrolytes after 24 h is >95 %. In acidic environments, H+ and PO43- convert BiVO4 into BiPO4, with a larger band gap, resulting in decrease in PEC activity and stability. Under alkaline conditions, P deposits as a phosphorus oxide onto the BiVO4 surface, resulting in severe carrier recombination and slower water oxidation kinetics. The 24-h photocurrent attenuation is alleviated to 33.5 % via a strategy involving low applied potential (0.8 VRHE), introduction of labile V ions (NaVO3), and deposition of a cocatalyst layer (NiOOH/FeOOH). This study emphasizes the effect of electrolyte composition on the PEC stability of BiVO4 and provides a reference for the modification of BiVO4.
Collapse
Affiliation(s)
- Xing Cao
- Shenzhen Engineering Lab of Flexible Transparent Conductive Films, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Huanhui Chen
- Shenzhen Engineering Lab of Flexible Transparent Conductive Films, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Ziqian Lu
- Shenzhen Engineering Lab of Flexible Transparent Conductive Films, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Yubin Zhao
- Shenzhen Engineering Lab of Flexible Transparent Conductive Films, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Shoujing Wei
- Shenzhen Engineering Lab of Flexible Transparent Conductive Films, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Ya Liu
- Shenzhen Engineering Lab of Flexible Transparent Conductive Films, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Junrong Zeng
- Shenzhen Engineering Lab of Flexible Transparent Conductive Films, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Gaowei Zhang
- School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang, 524048, China
| | - Qing Ma
- Education Center of Experiments and Innovations, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Liubiao Zhong
- Shenzhen Engineering Lab of Flexible Transparent Conductive Films, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China.
| | - Lijuan Song
- School of Science, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China.
| | - Yejun Qiu
- Shenzhen Engineering Lab of Flexible Transparent Conductive Films, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China.
| |
Collapse
|
2
|
Billah MM, Kawamura G. Layered double hydroxide modified bismuth vanadate as an efficient photoanode for enhancing photoelectrochemical water splitting. MATERIALS HORIZONS 2025; 12:2089-2118. [PMID: 39791383 DOI: 10.1039/d4mh01533a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Photoelectrochemical (PEC) water splitting has attracted significant interest as a promising approach for producing clean and sustainable hydrogen fuel. An efficient photoanode is critical for enhancing PEC water splitting. Bismuth vanadate (BiVO4) is a widely recognized photoanode for PEC applications due to its visible light absorption, suitable valence band position for water oxidation, and outstanding potential for modifications. Nevertheless, sluggish water oxidation rates, severe charge recombination, limited hole diffusion length, and inadequate electron transport properties restrict the PEC performance of BiVO4. To surmount these constraints, incorporating layered double hydroxides (LDHs) onto BiVO4 photoanodes has emerged as a promising approach for enhancing the performance. Herein, the latest advancements in employing LDHs to decorate BiVO4 photoanodes for enhancing PEC water splitting have been thoroughly studied and outlined. Initially, the fundamental principles of PEC water splitting and the roles of LDHs are summarized. Secondly, it covers the development of different composite structures, including BiVO4 combined with bimetallic and trimetallic LDHs, as well as other BiVO4-based composites such as BiVO4/metal oxide, metal sulfide, and various charge transport layers integrated with LDHs. Additionally, LDH composites incorporating materials like graphene, carbon dots, quantum dots, single-atom catalysts, and techniques for surface engineering and LDH exfoliation with BiVO4 are discussed. The research analyzes the design principles of these composites, with a specific focus on how LDHs enhance the performance of BiVO4 by increasing the efficiency and stability through synergistic effects. Finally, challenges and perspectives in future research toward developing efficient and stable BiVO4/LDHs photoelectrodes for PEC water splitting are described.
Collapse
Affiliation(s)
- Md Masum Billah
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, 441-8580, Aichi, Japan.
- Department of Chemistry, Comilla University, Cumilla-3506, Bangladesh
| | - Go Kawamura
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, 441-8580, Aichi, Japan.
| |
Collapse
|
3
|
Ko M, Lee M, Kim T, Jin W, Jang W, Hwang SW, Kim H, Kwak JH, Cho S, Seo K, Jang JW. Coupling furfural oxidation for bias-free hydrogen production using crystalline silicon photoelectrodes. Nat Commun 2025; 16:2701. [PMID: 40108174 PMCID: PMC11923221 DOI: 10.1038/s41467-025-58000-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 03/10/2025] [Indexed: 03/22/2025] Open
Abstract
To commercialize the technology of photoelectrochemical hydrogen production, it is essential to surpass the US. Department of Energy target of 0.36 mmol h-1 cm-2 for 1-sun hydrogen production rate. In this study, we utilize crystalline silicon, which can exhibit the highest photocurrent density (43.37 mA cm-2), as the photoelectrode material. However, achieving bias-free water splitting (>1.6 V) remains challenging due to the intrinsic low photovoltage of crystalline silicon (0.6 V). To address this limitation, we replace water oxidation with low-potential furfural oxidation, enabling not only bias-free hydrogen production but also dual hydrogen production at both the cathodic and anodic sides. This approach results in a record 1-sun hydrogen production rate of 1.40 mmol h-1 cm-2, exceeding the Department of Energy target by more than fourfold.
Collapse
Affiliation(s)
- Myohwa Ko
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Myounghyun Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Taehyeon Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Wonjoo Jin
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Wonsik Jang
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Seon Woo Hwang
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Haneul Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Ja Hun Kwak
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Seungho Cho
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea.
- Graduate School of Semiconductor Materials and Devices Engineering, Center for Future Semiconductor Technology (FUST), Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea.
| | - Kwanyong Seo
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea.
- Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea.
| | - Ji-Wook Jang
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea.
- Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea.
- Emergent Hydrogen Technology R&D Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea.
| |
Collapse
|
4
|
Zhang Y, Liu B, Xu L, Ding Z, Yang R, Wang S. Failure Mechanism Analysis and Emerging Strategies for Enhancing the Photoelectrochemical Stability of Photoanodes. CHEMSUSCHEM 2025; 18:e202401420. [PMID: 39171780 DOI: 10.1002/cssc.202401420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 08/23/2024]
Abstract
The development of efficient and stable photoanode materials is essential for driving the possible practical application of photoelectrochemical water splitting. This article begins with a basic understanding of the fundamentals of photoelectrochemical devices and photoanodes. State-of-the-art strategies for designing photoanodes with long-term stability are highlighted, including insertion of hole transport layers, construction of protective/passivation layers, loading of co-catalysts, construction of heterojunctions, and modification of the electrolyte. Based on the insights gained from these effective strategies, we present an outlook for addressing key aspects of the challenges of stabilizing photoanodes development in the future work. Widespread adoption of stability assessment criteria will facilitate reliable comparisons of results from different laboratories. In addition, deactivation of photoanode is defined as a 50 % reduction in productivity. An in-depth understanding of the deactivation mechanism is essential for the design and development of efficient and stable photoanodes. This work will provide insights into the stability assessment of photoanode and facilitate the production of practical solar fuels.
Collapse
Affiliation(s)
- Yingjuan Zhang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| | - Boyan Liu
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| | - Liangcheng Xu
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| | - Zeran Ding
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
- Queen Mary University of London Engineering School, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| | - Rui Yang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
- Queen Mary University of London Engineering School, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| | - Songcan Wang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Sanhang Science & Technology Building, Shenzhen, 518063, China
| |
Collapse
|
5
|
Tian Z, Wang M, Chen G, Chen J, Da Y, Zhang H, Jiang R, Xiao Y, Cui B, Jiang C, Ding Y, Yang J, Sun Z, Han C, Chen W. n-ZrS 3/p-ZrOS Photoanodes with NiOOH/FeOOH Oxygen Evolution Catalysts for Photoelectrochemical Water Oxidation. Angew Chem Int Ed Engl 2025; 64:e202414209. [PMID: 39384542 DOI: 10.1002/anie.202414209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/04/2024] [Accepted: 10/09/2024] [Indexed: 10/11/2024]
Abstract
Photoelectrochemical water splitting offers a promising approach for carbon neutrality, but its commercial prospects are still hampered by a lack of efficient and stable photoelectrodes with earth-abundant materials. Here, we report a strategy to construct an efficient photoanode with a coaxial nanobelt structure, comprising a buried-ZrS3/ZrOS n-p junction, for photoelectrochemical water splitting. The p-type ZrOS layer, formed on the surface of the n-type ZrS3 nanobelt through a pulsed-ozone-treatment method, acts as a hole collection layer for hole extraction and a protective layer to shield the photoanode from photocorrosion. The resulting ZrS3/ZrOS photoanode exhibits light harvesting with good photo-to-current efficiencies across the whole visible region to over 650 nm. By further employing NiOOH/FeOOH as the oxygen evolution reaction cocatalyst, the ZrS3/ZrOS/NiOOH/FeOOH photoanode yields a photocurrent density of ~9.3 mA cm-2 at 1.23 V versus the reversible hydrogen electrode with an applied bias photon-to-current efficiency of ~3.2 % under simulated sunlight irradiation in an alkaline solution (pH=13.6). The conformal ZrOS layer enables ZrS3/ZrOS/NiOOH/FeOOH photoanode operation over 1000 hours in an alkaline solution without obvious performance degradation. This study, offering a promising approach to fabricate efficient and durable photoelectrodes with earth-abundant materials, advances the frontiers of photoelectrochemical water splitting.
Collapse
Affiliation(s)
- Zhangliu Tian
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Meng Wang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
- State Key Laboratory of Radio Frequency Heterogeneous Integration, and International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Ganwen Chen
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| | - Jie Chen
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| | - Yumin Da
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Hanqian Zhang
- Department of Chemistry, Imperial College London, South Kensington Campus, London, SW7 2AZ, United Kingdom
| | - Rui Jiang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Yukun Xiao
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| | - Baihua Cui
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| | - Chonglai Jiang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| | - Yishui Ding
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| | - Jinlin Yang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Zejun Sun
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Cheng Han
- State Key Laboratory of Radio Frequency Heterogeneous Integration, and International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Wei Chen
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, 117542, Singapore
| |
Collapse
|
6
|
Ren S, Gao RT, Yu J, Yang Y, Liu X, Wu L, Wang L. Enhanced Charge-Carrier Dynamics and Efficient Photoelectrochemical Nitrate-to-Ammonia Conversion on Antimony Sulfide-Based Photocathodes. Angew Chem Int Ed Engl 2024; 63:e202409693. [PMID: 38993073 DOI: 10.1002/anie.202409693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/27/2024] [Accepted: 07/11/2024] [Indexed: 07/13/2024]
Abstract
The photoelectrochemical reduction of nitrate to ammonia (PEC NO3RR) has emerged as a promising pathway for facilitating the natural nitrogen cycle. The PEC NO3RR can lower the reduction potential needed for ammonia synthesis through photogenerated voltage, showcasing the significant potential for merging abundant solar energy with sustainable nitrogen fixation. However, it is influenced by the selective photocathodes with poor carrier kinetics, low catalytic selectivity, and ammonia yields. There are few reports on suitable photoelectrodes owning efficient charge transport on PEC NO3RR at low overpotentials. Herein, we rationally constructed the CuSn alloy co-catalysts on the antimony sulfides with a highly selective PEC ammonia and an ultra-low onset potential (0.62 VRHE). CuSn/TiO2/Sb2S3 photoelectrodes achieved an ammonia faradic efficiency of 97.82 % at a low applied potential of 0.4 VRHE, and an ammonia yield of 16.96 μmol h-1 cm-2 at 0 VRHE under one sun illumination. Dynamics experiments and theoretical calculations have demonstrated that CuSn/TiO2/Sb2S3 has an enhanced charge separation and transfer efficiency, facilitating photogenerated electrons to participate in PEC NO3RR quickly. Meanwhile, moderate NO2* adsorption on this photocathode optimizes the catalytic activity and increases the NH4 + yield. This work opens an avenue for designing sulfide-based photocathodes for the efficient route of solar-to-ammonia conversion.
Collapse
Affiliation(s)
- Shijie Ren
- College of Chemistry and Chemical Engineering, College of Energy Material and Chemistry, Inner Mongolia University, Hohhot, 010021, China
| | - Rui-Ting Gao
- College of Chemistry and Chemical Engineering, College of Energy Material and Chemistry, Inner Mongolia University, Hohhot, 010021, China
| | - Jidong Yu
- College of Chemistry and Chemical Engineering, College of Energy Material and Chemistry, Inner Mongolia University, Hohhot, 010021, China
| | - Yang Yang
- NanoScience Technology Center, Department of Materials Science and Engineering, Department of Chemistry, Renewable Energy and Chemical Transformation Cluster, The Stephen W. Hawking Center for Microgravity Research and Education, University of Central Florida, Orlando, Florida, 32826, United States
| | - Xianhu Liu
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Wenhua Road 97-1, Zhengzhou, 450002, China
| | - Limin Wu
- College of Chemistry and Chemical Engineering, College of Energy Material and Chemistry, Inner Mongolia University, Hohhot, 010021, China
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| | - Lei Wang
- College of Chemistry and Chemical Engineering, College of Energy Material and Chemistry, Inner Mongolia University, Hohhot, 010021, China
| |
Collapse
|
7
|
Cai Q, Li H, Li Z, Jie G. Study on the Electrochemiluminescence Emission Mechanism of HOF-14 and Its Multimode Sensing and Imaging Application. Anal Chem 2024; 96:16900-16909. [PMID: 39434665 DOI: 10.1021/acs.analchem.4c03783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
A novel hydrogen-bonded organic framework (HOF-14) has attracted much attention due to its excellent biocompatibility and low toxicity, but its research in the electrochemiluminescence (ECL) field has not been reported. In this work, the annihilation-type and coreactant-type ECL emission mechanisms of HOF-14 were studied systematically for the first time. It was found that the ECL quantum efficiency of HOF-14/TEA coreactant system was the highest, which was 1.82 times that of Ru(bpy)32+/TEA. Further, the ECL emission intensity of HOF-14/TEA system could achieve colorimetric (CL) imaging of mobile phone. We also discovered that HOF-14 had superior photoelectrochemical (PEC) performance. Based on the above research results, a unique HOF-14-based multimode sensing and imaging platform was constructed. The antibiotic Enrofloxacin (ENR) was selected as the detection target, and the Cu-Zn bimetallic single-atom nanozyme (Cu-Zn/SAzyme) with excellent peroxidase (POD)-like activity was used to prepare quenching probes. When the target ENR was present, Cu-Zn/SAzyme quenching probes were introduced to the surface of HOF-14 by the dual-aptamer sandwich method. Cu-Zn/SAzyme could catalyze diaminobenzidine (DAB) to produce brown precipitations to quench the ECL, PEC, and CL signals of HOF-14, realizing multimode detection of ENR. This work not only discovered excellent ECL and PEC property of new HOF-14 material but also systematically studied the ECL emission mechanism of HOF-14, and proposed a novel multimode sensing and imaging platform, which greatly improved the detection accuracy of target and showed great contributions to the field of ECL analysis.
Collapse
Affiliation(s)
- Qianqian Cai
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Hongkun Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Zhikang Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Guifen Jie
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| |
Collapse
|
8
|
Chiu YH, Chung RJ, Kongvarhodom C, Saukani M, Yougbaré S, Chen HM, Wu YF, Lin LY. Facile Combination of Bismuth Vanadate with Nickel Tellurium Oxide for Efficient Photoelectrochemical Catalysis of Water Oxidation Reactions. ACS APPLIED MATERIALS & INTERFACES 2024; 16:49249-49261. [PMID: 39235429 PMCID: PMC11420875 DOI: 10.1021/acsami.4c07117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 09/06/2024]
Abstract
Bismuth vanadate (BVO) having suitable band edges is one of the effective photocatalysts for water oxidation, which is the rate-determining step in the water splitting process. Incorporating cocatalysts can reduce activation energy, create hole sinks, and improve photocatalytic ability of BVO. In this work, the visible light active nickel tellurium oxide (NTO) is used as the cocatalyst on the BVO photoanode to improve photocatalytic properties. Different NTO amounts are deposited on the BVO to balance optical and electrical contributions. Higher visible light absorbance and effective charge cascades are developed in the NTO and BVO composite (NTO/BVO). The highest photocurrent density of 6.05 mA/cm2 at 1.23 V versus reversible hydrogen electrode (VRHE) and the largest applied bias photon-to-current efficiency (ABPE) of 2.13% are achieved for NTO/BVO, while BVO shows a photocurrent density of 4.19 mA/cm2 at 1.23 VRHE and ABPE of 1.54%. Excellent long-term stability under light illumination is obtained for NTO/BVO with photocurrent retention of 91.31% after 10,000 s. The photoelectrochemical catalytic mechanism of NTO/BVO is also proposed based on measured band structures and possible interactions between NTO and BVO. This work has depicted a novel cocatalytic BVO system with a new photocharging material and successfully achieves high photocurrent densities for catalyzing water oxidation.
Collapse
Affiliation(s)
- Yu-Hsuan Chiu
- Department
of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Ren-Jei Chung
- Department
of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Chutima Kongvarhodom
- Department
of Chemical Engineering, King Mongkut’s
University of Technology Thonburi, 126 Pracha-u-thit, Toong-kru, Bangkok 10140, Thailand
- Department
of Chemical Engineering, University of New
Brunswick, Fredericton, New Brunswick E3B5A3, Canada
| | - Muhammad Saukani
- Department
of Mechanical Engineering, Faculty of Engineering, Universitas Islam Kalimantan MAB, Jl. Adhyaksa No. 2, Banjarmasin 70124, Indonesia
| | - Sibidou Yougbaré
- Institut
de Recherche en Sciences de la Santé (IRSS-DRCO)/Nanoro, Ouagadougou 03 7192-03, Burkina Faso
| | - Hung-Ming Chen
- Gingen Technology
Co., LTD., Rm. 7, 10F.,
No. 189, Sec. 2, Keelung Road, Xinyi District, Taipei 11054, Taiwan
| | - Yung-Fu Wu
- Department
of Chemical Engineering, Ming Chi University
of Technology, New Taipei
City 24301, Taiwan
| | - Lu-Yin Lin
- Department
of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan
| |
Collapse
|
9
|
Xiang F, Li N, Burguete-Lopez A, He Z, Elizarov M, Fratalocchi A. Light-Induced Quantum Reconfiguration of Oxyhydroxides for Photoanodes with 4.24% Efficiency and Stability Beyond 250 Hours. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405478. [PMID: 39097948 DOI: 10.1002/adma.202405478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/24/2024] [Indexed: 08/06/2024]
Abstract
Photoelectrochemical (PEC) water splitting is attracting significant research interest in addressing sustainable development goals in renewable energy. Current state-of-the-art, however, cannot provide photoanodes with simultaneously high efficiency and long-lasting lifetime. Here, large-scale NiFe oxyhydroxides-alloy hybridized co-catalyst layer that exhibits an applied bias photon-to-current efficiency (ABPE) of 4.24% in buried homojunction-free photoanodes and stability over 250 h is reported. These performances represent an increase over the present highest-performing technology by 408% in stability and the most stable competitor by over 330% in efficiency. These results originate from a previously unexplored mechanism of light-induced atomic reconfiguration, which rapidly self-generates a catalytic-protective amorphous/crystalline heterostructure at low biases. This mechanism provides active sites for reaction and insulates the photoanode from performance degradation. Photon-generated NiFe oxyhydroxides are more than 200% higher than the quantity that pure electrocatalysis would otherwise induce, overcoming the threshold for an efficient water oxidation reaction in the device. While of immediate interest in the industry of water splitting, the light-induced NiFe oxyhydroxides-alloy co-catalyst developed in this work provides a general strategy to enhance further the performances and stability of PEC devices for a vast panorama of chemical reactions, ranging from biomass valorization to organic waste degradation, and CO2-to-fuel conversion.
Collapse
Affiliation(s)
- Fei Xiang
- PRIMALIGHT, Faculty of Electrical and Computer Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Ning Li
- PRIMALIGHT, Faculty of Electrical and Computer Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Arturo Burguete-Lopez
- PRIMALIGHT, Faculty of Electrical and Computer Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Zhao He
- PRIMALIGHT, Faculty of Electrical and Computer Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Maxim Elizarov
- PRIMALIGHT, Faculty of Electrical and Computer Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Andrea Fratalocchi
- PRIMALIGHT, Faculty of Electrical and Computer Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
10
|
Wang G, Tang T, Ye KH, Ding X, Chen J, Zou W, Xiao Y, Li J, Zhao L, Chen C, Ge S, Li L, Wei X, Chen C, Cao Y, Lin Z, Zhang S. Dual Hole Transport Layers Heterojunction and Band Alignment Engineered Mo:BiVO 4 Photoanodes for Efficient Water Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403600. [PMID: 38949410 DOI: 10.1002/smll.202403600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/19/2024] [Indexed: 07/02/2024]
Abstract
BiVO4-based photoanode is one of the most promising photoanodes for photoelectrocatalytic water splitting. However, the serious problem of interface charge recombination limits its further development. Here, a Mo:BiVO4/NiOx/CPF-TCzB/NiCoBi photoanode is constructed with double hole transport layer and an energy level gradient to achieve an effective photo-generated holes extraction and accumulation at the surface electrocatalyst. The conjugated polycarbazole framework CPF-TCzB is used as hole transport layer to eliminate the charge recombination center between Mo:BiVO4 and NiCoBi electrocatalyst and realize the extraction and storage of photo-generated hole; NiOx nanoparticles are further inserted between Mo:BiVO4 and CPF-TCzB to form a gradient energy level, eliminating the energy level barrier and optimizing band alignment. As a result, Mo:BiVO4/NiOx/CPF-TCzB/NiCoBi achieves a much higher photocurrent densities of 3.14 mA cm-2 than that of Mo:BiVO4 (0.42 mA cm-2) at 0.6 V versus RHE. This work provides an specific way to adjust the band structure of BiVO4-based photoanodes and realize efficient hole extraction and storage for PEC water splitting.
Collapse
Affiliation(s)
- Guilin Wang
- Institute for Sustainable Transformation, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Tongxin Tang
- Institute for Sustainable Transformation, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Kai-Hang Ye
- Institute for Sustainable Transformation, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
- Chemical Engineering Guangdong Laboratory, Jieyang Branch of Chemistry, Jieyang, 515200, China
| | - Xin Ding
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Junwei Chen
- Institute for Sustainable Transformation, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - WenHao Zou
- Institute for Sustainable Transformation, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yushen Xiao
- Institute for Sustainable Transformation, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - JieYu Li
- Institute for Sustainable Transformation, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Long Zhao
- Institute for Sustainable Transformation, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Chaojie Chen
- Institute for Sustainable Transformation, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Sitong Ge
- Institute for Sustainable Transformation, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Lei Li
- Institute for Sustainable Transformation, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xiujuan Wei
- Institute for Sustainable Transformation, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Chao Chen
- Institute for Sustainable Transformation, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yang Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Zhan Lin
- Institute for Sustainable Transformation, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
- Chemical Engineering Guangdong Laboratory, Jieyang Branch of Chemistry, Jieyang, 515200, China
| | - Shanqing Zhang
- Institute for Sustainable Transformation, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
- Chemical Engineering Guangdong Laboratory, Jieyang Branch of Chemistry, Jieyang, 515200, China
| |
Collapse
|
11
|
Wu J, Du X, Li M, Chen H, Hu B, Ding H, Wang N, Jin L, Liu W. Enhanced photoelectrochemical water splitting performance of α-Fe 2O 3 photoanodes through Co-modification with Co single atoms and g-C 3N 4. Chem Sci 2024; 15:12973-12982. [PMID: 39148777 PMCID: PMC11323335 DOI: 10.1039/d4sc03442b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 07/01/2024] [Indexed: 08/17/2024] Open
Abstract
The practical application of α-Fe2O3 in water splitting is hindered by significant charge recombination and slow water oxidation. To address this issue, a CoSAs-g-C3N4/Fe2O3 (CoSAs: cobalt single atoms) photoanode was fabricated in this study through the co-modification of CoSAs and g-C3N4 to enhance photoelectrochemical (PEC) water splitting. The coupling between g-C3N4 and α-Fe2O3 resulted in the formation of a heterojunction, which provided a strong built-in electric field and an additional driving force to mitigate charge recombination. Moreover, g-C3N4 served as a suitable carrier for single atoms, which effectively anchored CoSAs through N/C coordination. The highly dispersed CoSAs provided abundant active sites, which further promoted surface holes extraction and oxidation kinetics, resulting in higher PEC performance and photostability. This study indicates the benefits of these collaborative strategies and provides more efficient designs for solar energy conversion in PEC systems.
Collapse
Affiliation(s)
- Juan Wu
- Henan Key Laboratory of Rare Earth Functional Materials, International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University Zhoukou 466001 P. R. China
| | - Xiaodi Du
- College of Chemistry and Chemical Engineering, Zhoukou Normal University Zhoukou 466001 P. R. China
| | - Mingjie Li
- Library, Zhoukou Normal University Zhoukou 466001 P. R. China
| | - Hongyu Chen
- Henan Key Laboratory of Rare Earth Functional Materials, International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University Zhoukou 466001 P. R. China
| | - Bin Hu
- Henan Key Laboratory of Rare Earth Functional Materials, International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University Zhoukou 466001 P. R. China
| | - Hongwei Ding
- Henan Key Laboratory of Rare Earth Functional Materials, International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University Zhoukou 466001 P. R. China
| | - Nannan Wang
- Henan Key Laboratory of Rare Earth Functional Materials, International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University Zhoukou 466001 P. R. China
| | - Lin Jin
- Henan Key Laboratory of Rare Earth Functional Materials, International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University Zhoukou 466001 P. R. China
| | - Weisheng Liu
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 P. R. China
| |
Collapse
|
12
|
Sun P, Gracia-Espino E, Tan F, Zhang H, Kong Q, Hu G, Wågberg T. Treasure-bowl style bifunctional site in cerium-tungsten hetero-clusters for superior solar-driven hydrogen production. MATERIALS HORIZONS 2024; 11:3892-3902. [PMID: 38807553 DOI: 10.1039/d4mh00111g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Electrochemical water splitting powered by renewable energy sources hold potential for clean hydrogen production. However, there is still persistent challenges such as low solar-to-hydrogen conversion efficiency and sluggish oxygen evolution reactions. Here, we address the poor kinetics by studying and strengthening the coupling between Ce and W, and concurrently establishing Ce-W bi-atomic clusters on P,N-doped carbon (WN/WC-CeO2-x@PNC) with a "treasure-bowl" style. The bifunctional active sites are established using a novel and effective self-sacrificial strategy involving in situ induced defect formation. In addition, by altering the coupling of the W(d)-N(p) and W(d)-Ce(f) orbitals in the WN/WC-CeO2-x supramolecular clusters, we are able to disrupt the linear relationship between the binding energies of reaction intermediates, a key to obtain high catalytic performance for transition metals. Through the confinement of the WN/WC-CeO2-x composite hetero-clusters within the sub-nanometre spaces of hollow nano-bowl-shaped carbon reactors, a stable and efficient hydrogen production via water electrolysis could be achieved. When assembled together with a solar GaAs triple junction solar cell, a solar-to-hydrogen conversion efficiency of 18.92% in alkaline media could be realized. We show that the key to establish noble metal free catalysts with high efficiency lies in the fine-tuning of the metal-metal interface, forming regions with near optimal adsorption energies for the reaction intermediates participating in water electrolysis.
Collapse
Affiliation(s)
- Pengliang Sun
- Donghai Laboratory, Zhoushan 316021, China.
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | | | - Fang Tan
- Donghai Laboratory, Zhoushan 316021, China.
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Hua Zhang
- Donghai Laboratory, Zhoushan 316021, China.
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Qingquan Kong
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
| | - Guangzhi Hu
- Donghai Laboratory, Zhoushan 316021, China.
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Thomas Wågberg
- Department of Physics, Umeå University, Umeå S-90187, Sweden.
- Wallenberg Initiative Material Science for Sustainability, Department of Physics, Umeå University, Umeå S-901 87, Sweden
| |
Collapse
|
13
|
Yu J, Li J, Gao RT, Yang Y, Wang L. Improving NiFe Electrocatalysts through Fluorination-Driven Rearrangements for Neutral Water Electrolysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310642. [PMID: 38708896 DOI: 10.1002/smll.202310642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/05/2024] [Indexed: 05/07/2024]
Abstract
Neutral electrolysis to produce hydrogen is prime challenging owing to the sluggish kinetics of water dissociation for the electrochemical reduction of water to molecular hydrogen. An ion-enriched electrode/electrolyte interface for electrocatalytic reactions can efficiently obtain a stable electrolysis system. Herein, we found that interfacial accumulated fluoride ions and the anchored Pt single atoms/nanoparticles in catalysts can improve hydrogen evolution reaction (HER) activity of NiFe-based hydroxide catalysts, prolonging the operating stability at high current density in neutral conditions. NiFe hydroxide electrode obtains an outstanding performance of 1000 mA cm-2 at low overpotential of 218 mV with 1000 h operation at 100 mA cm-2. Electrochemical experiments and theoretical calculations have demonstrated that the interfacial fluoride contributes to promote the adsorption of Pt to proton for sustaining a large current density at low potential, while the Pt single atoms/nanoparticles provide H adsorption sites. The synergy effect of F and Pt species promotes the formation of Pt─H and F─H bonds, which accelerate the adsorption and dissociation process of H2O and promote the HER reaction with a long-term durability in neutral conditions.
Collapse
Affiliation(s)
- Jidong Yu
- College of Chemistry and Chemical Engineering, College of Energy Material and Chemistry, Inner Mongolia University, Hohhot, 010021, China
| | - Jiamin Li
- College of Chemistry and Chemical Engineering, College of Energy Material and Chemistry, Inner Mongolia University, Hohhot, 010021, China
| | - Rui-Ting Gao
- College of Chemistry and Chemical Engineering, College of Energy Material and Chemistry, Inner Mongolia University, Hohhot, 010021, China
| | - Yang Yang
- NanoScience Technology Center, Department of Materials Science and Engineering, Department of Chemistry, Renewable Energy and Chemical Transformation Cluster, The Stephen W. Hawking Center for Microgravity Research and Education, University of Central Florida, Orlando, FL, 32826, USA
| | - Lei Wang
- College of Chemistry and Chemical Engineering, College of Energy Material and Chemistry, Inner Mongolia University, Hohhot, 010021, China
| |
Collapse
|
14
|
Wang H, Li Z, Hong S, Yang C, Liang J, Dong K, Zhang H, Wang X, Zhang M, Sun S, Yao Y, Luo Y, Liu Q, Li L, Chu W, Du M, Gong F, Sun X, Tang B. Tungstate Intercalated NiFe Layered Double Hydroxide Enables Long-Term Alkaline Seawater Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311431. [PMID: 38366284 DOI: 10.1002/smll.202311431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/15/2024] [Indexed: 02/18/2024]
Abstract
Renewable electricity-driven seawater splitting presents a green, effective, and promising strategy for building hydrogen (H2)-based energy systems (e.g., storing wind power as H2), especially in many coastal cities. The abundance of Cl- in seawater, however, will cause severe corrosion of anode catalyst during the seawater electrolysis, and thus affect the long-term stability of the catalyst. Herein, seawater oxidation performances of NiFe layered double hydroxides (LDH), a classic oxygen (O2) evolution material, can be boosted by employing tungstate (WO4 2-) as the intercalated guest. Notably, insertion of WO4 2- to LDH layers upgrades the reaction kinetics and selectivity, attaining higher current densities with ≈100% O2 generation efficiency in alkaline seawater. Moreover, after a 350 h test at 1000 mA cm-2, only trace active chlorine can be detected in the electrolyte. Additionally, O2 evolution follows lattice oxygen mechanism on NiFe LDH with intercalated WO4 2-.
Collapse
Affiliation(s)
- Hefeng Wang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Zixiao Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Shaohuan Hong
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, Jiangsu, 211189, China
| | - Chaoxin Yang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Jie Liang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Kai Dong
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Hui Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Xiaoyan Wang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Min Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Shengjun Sun
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Yongchao Yao
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yongsong Luo
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Qian Liu
- Institute for Advanced Study, Chengdu University, Chengdu, Sichuan, 610106, China
| | - Luming Li
- Institute for Advanced Study, Chengdu University, Chengdu, Sichuan, 610106, China
| | - Wei Chu
- Institute for Advanced Study, Chengdu University, Chengdu, Sichuan, 610106, China
| | - Miao Du
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Feng Gong
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, Jiangsu, 211189, China
| | - Xuping Sun
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China
- Laoshan Laboratory, Qingdao, Shandong, 266237, China
| |
Collapse
|
15
|
Lu Y, Lee BG, Lin C, Liu TK, Wang Z, Miao J, Oh SH, Kim KC, Zhang K, Park JH. Solar-driven highly selective conversion of glycerol to dihydroxyacetone using surface atom engineered BiVO 4 photoanodes. Nat Commun 2024; 15:5475. [PMID: 38942757 PMCID: PMC11213950 DOI: 10.1038/s41467-024-49662-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 06/14/2024] [Indexed: 06/30/2024] Open
Abstract
Dihydroxyacetone is the most desired product in glycerol oxidation reaction because of its highest added value and large market demand among all possible oxidation products. However, selectively oxidative secondary hydroxyl groups of glycerol for highly efficient dihydroxyacetone production still poses a challenge. In this study, we engineer the surface of BiVO4 by introducing bismuth-rich domains and oxygen vacancies (Bi-rich BiVO4-x) to systematically modulate the surface adsorption of secondary hydroxyl groups and enhance photo-induced charge separation for photoelectrochemical glycerol oxidation into dihydroxyacetone conversion. As a result, the Bi-rich BiVO4-x increases the glycerol oxidation photocurrent density of BiVO4 from 1.42 to 4.26 mA cm-2 at 1.23 V vs. reversible hydrogen electrode under AM 1.5 G illumination, as well as the dihydroxyacetone selectivity from 54.0% to 80.3%, finally achieving a dihydroxyacetone production rate of 361.9 mmol m-2 h-1 that outperforms all reported values. The surface atom customization opens a way to regulate the solar-driven organic transformation pathway toward a carbon chain-balanced product.
Collapse
Affiliation(s)
- Yuan Lu
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, China
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea
| | - Byoung Guan Lee
- Computational Materials Design Laboratory, Department of Chemical Engineering, Konkuk University, Seoul, the Republic of Korea
| | - Cheng Lin
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Tae-Kyung Liu
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea
| | - Zhipeng Wang
- Department of Energy Science, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jiaming Miao
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Sang Ho Oh
- Department of Energy Engineering, Institute for Energy Materials and Devices, Korea Institute of Energy Technology (KENTECH), Naju, Republic of Korea
| | - Ki Chul Kim
- Computational Materials Design Laboratory, Department of Chemical Engineering, Konkuk University, Seoul, the Republic of Korea.
| | - Kan Zhang
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, China.
| | - Jong Hyeok Park
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea.
| |
Collapse
|
16
|
Lu Y, Liu TK, Lin C, Kim KH, Kim E, Yang Y, Fan X, Zhang K, Park JH. Nanoconfinement Enables Photoelectrochemical Selective Oxidation of Glycerol via the Microscale Fluid Effect. NANO LETTERS 2024; 24:4633-4640. [PMID: 38568864 DOI: 10.1021/acs.nanolett.4c00791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
The glycerol oxidation reaction (GOR) run with photoelectrochemical cells (PECs) is one of the most promising ways to upgrade biomass because it is thermodynamically favorable, while irreversible overoxidation leads to unsatisfactory product selectivities. Herein, a tunable one-dimensional nanoconfined environment was introduced into the GOR process, which accelerated mass transfer of glycerol via the microscale fluid effect and changed the main oxidation product from formic acid (FA) to glyceraldehyde (GLD), which led to retention of the heavier multicarbon products. The rate of glycerol diffusion in the nanochannels increased by a factor of 4.92 with decreasing inner diameters. The main product from the PEC-selective oxidation of glycerol changed from the C1 product FA to the C3 product GLD with a great selectivity of 60.7%. This work provides a favorable approach for inhibiting further oxidation of multicarbon products and illustrates the importance of microenvironmental regulation in biomass oxidation.
Collapse
Affiliation(s)
- Yuan Lu
- Department of Chemical and Biomolecular Engineering, Yonsei-KIST Convergence Research Institute, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Republic of Korea
| | - Tae-Kyung Liu
- Department of Chemical and Biomolecular Engineering, Yonsei-KIST Convergence Research Institute, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Republic of Korea
| | - Cheng Lin
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Kwang Hee Kim
- Department of Chemical and Biomolecular Engineering, Yonsei-KIST Convergence Research Institute, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Republic of Korea
| | - Eugene Kim
- Department of Chemical and Biomolecular Engineering, Yonsei-KIST Convergence Research Institute, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Republic of Korea
| | - Yan Yang
- School of Chemistry and Chemical Engineering and School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xinyi Fan
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Kan Zhang
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jong Hyeok Park
- Department of Chemical and Biomolecular Engineering, Yonsei-KIST Convergence Research Institute, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Republic of Korea
| |
Collapse
|
17
|
Wu J, Meng M, Du XD, Li M, Jin L, Liu W. Enhancing Iron(III) Oxide Photoelectrochemical Water Splitting Performance Using Defect Engineering and Heterostructure Construction. Inorg Chem 2024; 63:6192-6201. [PMID: 38518256 DOI: 10.1021/acs.inorgchem.3c04310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
Fe2O3 is a promising semiconductor for photoelectrochemical (PEC) water decomposition. However, severe charge recombination problems limit its applications. In this study, a F-Fe2O3-x/MoS2 nanorod array photoanode was designed and prepared to facilitate charge separation. Detailed characterization and experimental results showed that F doping in Fe2O3 regulated the electronic structure to improve the conductivity of Fe2O3 and induced abundant oxygen vacancies to increase the carrier concentration and promote charge separation in bulk. In addition, the internal electric field between F-Fe2O3-x and MoS2 facilitated the qualitative transfer of the photogenerated charge, thus inhibiting their recombination. The synergistic effect between the oxygen vacancy and F-Fe2O3-x/MoS2 heterojunction significantly enhanced the PEC performance of Fe2O3. This study provides a universal strategy for designing other photoanode materials with high-efficiency charge separation.
Collapse
Affiliation(s)
- Juan Wu
- Henan Key Laboratory of Rare Earth Functional Materials, International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, Zhoukou 466001, P. R. China
| | - Ming Meng
- College of Physics and Telecommunication Engineering, Zhoukou Normal University, Zhoukou 466001, P. R. China
| | - Xiao-Di Du
- College of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou 466001, P. R. China
| | - Mingjie Li
- Library, Zhoukou Normal University, Zhoukou 466001, P. R. China
| | - Lin Jin
- Henan Key Laboratory of Rare Earth Functional Materials, International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, Zhoukou 466001, P. R. China
| | - Weisheng Liu
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
18
|
Pan Y, Dong Z, Qin D, Liu B, Cui L, Han S, Lin H. Constructing Sequential Type II Heterojunction CQDs/Bi 2S 3/TiNbO Photoanode with Superior Charge Transfer Capability Toward Stable Photoelectrochemical Water Splitting. ACS APPLIED MATERIALS & INTERFACES 2024; 16:16062-16074. [PMID: 38526168 DOI: 10.1021/acsami.3c17726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Efficient charge transfer and light-trapping units are pivotal prerequisites in the realm of Ti-based photoanode photoelectrochemical (PEC) water splitting. In this work, we successfully synthesized a ternary carbon quantum dots/Bi2S3 quantum dots/Nb-doped TiO2 nanotube arrays (CQDs/Bi2S3/TiNbO) composite photoanode for PEC water splitting. CQDs/Bi2S3/TiNbO composite photoanode exhibited a considerably elevated photocurrent density of 8.80 mA cm-2 at 1.23 V vs the reversible hydrogen electrode, which was 20.00 times better than that of TiO2 (0.44 mA cm-2). Furthermore, the CQDs/Bi2S3/TiNbO composite photoanode attested to exceptional stability, maintaining 92.54% of its initial current after 5 h of stability measurement. Nb-doping boosted the electrical conductivity, facilitating charge transfer at the solid-liquid interface. Moderate amounts of Bi2S3 quantum dots (QDs) and CQDs deposited on TiNbO provided abundant active sites for the electrolyte-photoanode interaction. Simultaneously, Bi2S3 QDs and CQDs synergistically functioned as light-trapping units to broaden the light absorption range from 396 to 530 nm, stimulating increased carrier generation within the composite photoanode. In comparison with pristine TiO, CQDs/Bi2S3/TiNbO photoanodes possessed a superior ability to promote interfacial reactions. This study may provide a strategy for developing high-performance Ti-based photoanodes with efficient charge transfer and light trapping units for highly driving solar-to-hydrogen conversion.
Collapse
Affiliation(s)
- Yanjie Pan
- Shanghai Institute of Technology, Shanghai 201418, China
| | - Zhenbiao Dong
- Shanghai Institute of Technology, Shanghai 201418, China
| | - Dongmei Qin
- Shanghai Institute of Technology, Shanghai 201418, China
| | - Baopeng Liu
- Shanghai Institute of Technology, Shanghai 201418, China
| | - Lulu Cui
- Shanghai Institute of Technology, Shanghai 201418, China
| | - Sheng Han
- Shanghai Institute of Technology, Shanghai 201418, China
- Shihezi University, Xinjiang 832003, China
| | - Hualin Lin
- Shanghai Institute of Technology, Shanghai 201418, China
| |
Collapse
|
19
|
Ren S, Gao RT, Nguyen NT, Wang L. Enhanced Charge Carrier Dynamics on Sb 2 Se 3 Photocathodes for Efficient Photoelectrochemical Nitrate Reduction to Ammonia. Angew Chem Int Ed Engl 2024; 63:e202317414. [PMID: 38225198 DOI: 10.1002/anie.202317414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/28/2023] [Accepted: 01/15/2024] [Indexed: 01/17/2024]
Abstract
Ammonia (NH3 ) is recognized as a transportable carrier for renewable energy fuels. Photoelectrochemical nitrate reduction reaction (PEC NO3 RR) offers a sustainable solution for nitrate-rich wastewater treatment by directly converting solar energy to ammonia. In this study, we demonstrate the highly selective PEC ammonia production from NO3 RR by constructing a CoCu/TiO2 /Sb2 Se3 photocathode. The constructed CoCu/TiO2 /Sb2 Se3 photocathode achieves an ammonia Faraday efficiency (FE) of 88.01 % at -0.2 VRHE and an ammonia yield as high as 15.91 μmol h-1 cm-2 at -0.3 VRHE with an excellent onset potential of 0.43 VRHE . Dynamics experiments and theoretical calculations have demonstrated that the CoCu/TiO2 /Sb2 Se3 photocathode possesses high light absorption capacity, excellent carrier transfer capability, and high charge separation and transfer efficiencies. The photocathode can effectively adsorb the reactant NO3 - and intermediate, and the CoCu co-catalyst increases the maximum Gibbs free energy difference between NO3 RR and HER. Meanwhile, the Co species enhances the spin density of Cu, and increases the density of states near the Fermi level in pdos, which results in a high PEC NO3 RR activity on CoCu/TiO2 /Sb2 Se3 . This work provides a new avenue for the feasibility of efficient PEC ammonia synthesis from nitrate-rich wastewater.
Collapse
Affiliation(s)
- Shijie Ren
- College of Chemistry and Chemical Engineering, College of Energy Material and Chemistry, Inner Mongolia University, Hohhot, 010021, China
| | - Rui-Ting Gao
- College of Chemistry and Chemical Engineering, College of Energy Material and Chemistry, Inner Mongolia University, Hohhot, 010021, China
| | - Nhat Truong Nguyen
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering and Computer Science, Concordia University, Montreal, QC H3G 2W1, Canada
| | - Lei Wang
- College of Chemistry and Chemical Engineering, College of Energy Material and Chemistry, Inner Mongolia University, Hohhot, 010021, China
| |
Collapse
|
20
|
Ren K, Zhou J, Wu Z, Sun Q, Qi L. Dual Heterojunctions and Nanobowl Morphology Engineered BiVO 4 Photoanodes for Enhanced Solar Water Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304835. [PMID: 37653619 DOI: 10.1002/smll.202304835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/31/2023] [Indexed: 09/02/2023]
Abstract
Photoelectrochemical (PEC) water splitting represents an attractive strategy to realize the conversion from solar energy to hydrogen energy, but severe charge recombination in photoanodes significantly limits the conversion efficiency. Herein, a unique BiVO4 (BVO) nanobowl (NB) heterojunction photoanode, which consists of [001]-oriented BiOCl underlayer and BVO nanobowls containing embedded BiOCl nanocrystals, is fabricated by nanosphere lithography followed by in situ transformation. Experimental characterizations and theoretical simulation prove that nanobowl morphology can effectively enhance light absorption while reducing carrier diffusion path. Density functional theory (DFT) calculations show the tendency of electron transfer from BVO to BiOCl. The [001]-oriented BiOCl underlayer forms a compact type II heterojunction with the BVO, favoring electron transfer from BVO through BiOCl to the substrate. Furthermore, the embedded BiOCl nanoparticles form a bulk heterojunction to facilitate bulk electron transfer. Consequently, the dual heterojunctions engineered BVO/BiOCl NB photoanode exhibits attractive PEC performance toward water oxidation with an excellent bulk charge separation efficiency of 95.5%, and a remarkable photocurrent density of 3.38 mA cm-2 at 1.23 V versus reversible hydrogen electrode, a fourfold enhancement compared to the flat BVO counterpart. This work highlights the great potential of integrating dual heterojunctions engineering and morphology engineering in fabricating high-performance photoelectrodes toward efficient solar conversion.
Collapse
Affiliation(s)
- Kexin Ren
- Beijing National Laboratory for Molecular Science (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jiayi Zhou
- Beijing National Laboratory for Molecular Science (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Zihao Wu
- Beijing National Laboratory for Molecular Science (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Qi Sun
- Beijing National Laboratory for Molecular Science (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Limin Qi
- Beijing National Laboratory for Molecular Science (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
21
|
Chen R, Meng L, Xu W, Li L. Cocatalysts-Photoanode Interface in Photoelectrochemical Water Splitting: Understanding and Insights. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304807. [PMID: 37653598 DOI: 10.1002/smll.202304807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/31/2023] [Indexed: 09/02/2023]
Abstract
Sluggish oxygen evolution reactions on photoanode surfaces severely limit the application of photoelectrochemical (PEC) water splitting. The loading of cocatalysts on photoanodes has been recognized as the simplest and most efficient optimization scheme, which can reduce the surface barrier, provide more active sites, and accelerate the surface catalytic reaction kinetics. Nevertheless, the introduction of cocatalysts inevitably generates interfaces between photoanodes and oxygen evolution cocatalysts (Ph/OEC), which causes severe interfacial recombination and hinders the carrier transfer. Recently, many researchers have focused on cocatalyst engineering, while few have investigated the effect of the Ph/OEC interface. Hence, to maximize the advantages of cocatalysts, interfacial problems for designing efficient cocatalysts are systematically introduced. In this review, the interrelationship between the Ph/OEC and PEC performance is classified and some methods for characterizing Ph/OEC interfaces are investigated. Additionally, common interfacial optimization strategies are summarized. This review details cocatalyst-design-based interfacial problems, provides ideas for designing efficient cocatalysts, and offers references for solving interfacial problems.
Collapse
Affiliation(s)
- Runyu Chen
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Center for Energy Conversion Materials & Physics (CECMP), Soochow University, Suzhou, 215006, P. R. China
| | - Linxing Meng
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Center for Energy Conversion Materials & Physics (CECMP), Soochow University, Suzhou, 215006, P. R. China
| | - Weiwei Xu
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Center for Energy Conversion Materials & Physics (CECMP), Soochow University, Suzhou, 215006, P. R. China
| | - Liang Li
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Center for Energy Conversion Materials & Physics (CECMP), Soochow University, Suzhou, 215006, P. R. China
| |
Collapse
|
22
|
Lei R, Tang Y, Qiu W, Yan S, Tian X, Wang Q, Chen Q, Wang Z, Qian W, Xu Q, Yang S, Wang X. Prompt Hole Extraction Suppresses V 5+ Dissolution and Sustains Large-Area BiVO 4 Photoanodes for Over 2100 h Water Oxidation. NANO LETTERS 2023; 23:11785-11792. [PMID: 38078823 DOI: 10.1021/acs.nanolett.3c03743] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Nanostructured bismuth vanadate (BiVO4) is at the forefront of emerging photoanodes in photoelectrochemical tandem devices for solar water splitting owing to the suitable band edge position and efficient charge separation capability. However, the (photo)chemical corrosion involving V5+ dissolution limits the long-term stability of BiVO4. Herein, guided by DFT calculations, we introduce an ALD-derived NiOx catalyst layer on BiVO4 to stabilize the surface Bi-O bonds, facilitate hole extraction, and thus suppress the V5+ dissolution. At the same time, the ALD NiOx catalyst layer could efficiently suppress the surface recombination and accelerate the surface OER kinetics, boosting the half-cell applied bias photon-to-current efficiency of BiVO4 to 2.05%, as well as a fill factor of 47.1%. By adding trace NaVO3 to the electrolyte, the NiOx/BiVO4 photoanode with an illumination area of 10.5 cm2 shows a record operational stability of more than 2100 h.
Collapse
Affiliation(s)
- Renbo Lei
- School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen 518055, People's Republic of China
| | - Yupu Tang
- School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen 518055, People's Republic of China
| | - Weitao Qiu
- School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen 518055, People's Republic of China
| | - Shihan Yan
- School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen 518055, People's Republic of China
| | - Xu Tian
- School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen 518055, People's Republic of China
| | - Qian Wang
- School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen 518055, People's Republic of China
| | - Qindong Chen
- School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen 518055, People's Republic of China
| | - Zhenhui Wang
- School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen 518055, People's Republic of China
| | - Wei Qian
- School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen 518055, People's Republic of China
| | - Qiyong Xu
- School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen 518055, People's Republic of China
| | - Shihe Yang
- School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen 518055, People's Republic of China
| | - Xinwei Wang
- School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen 518055, People's Republic of China
| |
Collapse
|
23
|
Wang H, Gao RT, Nguyen NT, Bai J, Ren S, Liu X, Zhang X, Wang L. Superhydrophilic CoFe Dispersion of Hydrogel Electrocatalysts for Quasi-Solid-State Photoelectrochemical Water Splitting. ACS NANO 2023; 17:22071-22081. [PMID: 37901939 DOI: 10.1021/acsnano.3c08861] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Photoelectrochemical (PEC) water splitting is an attractive strategy to convert solar energy to hydrogen. However, the lifetime of PEC devices is restricted by the photocorrosion of semiconductors and the instability of co-catalysts. Herein, we report a feasible in situ inherent cross-linking method for stabilizing semiconductors that uses a CoFe-dispersed polyacrylamide (PAM) hydrogel as a transparent protector. The CoFe-PAM hydrogel protected BiVO4 (BVO) photoanode reached a photocurrent density of 5.7 mA cm-2 at 1.23 VRHE under AM 1.5G illumination with good stability. The PAM hydrogel network improved the loading of Fe sites while enabling the retention of more CoFe co-catalysts and increasing the electron density of the reaction active sites, further improving the PEC performance and stability. More importantly, by tuning the polymerization network, we pioneer the use of quasi-solid-state electrolytes in photoelectrochemistry, where the high concentration of ionic solvent in the PAM hydrogel ensures effective charge transport and good water storage owing to the hydrophilic and porous structure of the hydrogel. This work expands the scope of PEC research by providing a class of three-dimensional hydrogel electrocatalysts and quasi-solid-state electrolytes with huge extension potential, and the versatility of these quasi-solid-state electrolytes can be employed for other semiconductors.
Collapse
Affiliation(s)
- Hao Wang
- College of Chemistry and Chemical Engineering, College of Energy Material and Chemistry, Inner Mongolia University, Hohhot 010021, China
| | - Rui-Ting Gao
- College of Chemistry and Chemical Engineering, College of Energy Material and Chemistry, Inner Mongolia University, Hohhot 010021, China
| | - Nhat Truong Nguyen
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering and Computer Science, Concordia University, Montreal, QC H3G 2W1, Canada
| | - Jinwei Bai
- College of Chemistry and Chemical Engineering, College of Energy Material and Chemistry, Inner Mongolia University, Hohhot 010021, China
| | - Shijie Ren
- College of Chemistry and Chemical Engineering, College of Energy Material and Chemistry, Inner Mongolia University, Hohhot 010021, China
| | - Xianhu Liu
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Wenhua Road 97-1, Zhengzhou 450002, China
| | - Xueyuan Zhang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Lei Wang
- College of Chemistry and Chemical Engineering, College of Energy Material and Chemistry, Inner Mongolia University, Hohhot 010021, China
| |
Collapse
|
24
|
Pei L, Wang X, Zhu H, Yu H, Bandaru S, Yan S, Zou Z. Photothermal Effect- and Interfacial Chemical Bond-Modulated NiO x/Ta 3N 5 Heterojunction for Efficient CO 2 Photoreduction. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37903001 DOI: 10.1021/acsami.3c13538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Photothermal catalysis, which combines light promotion and thermal activation, is a promising approach for converting CO2 into fuels. However, the development of photothermal catalysts with effective light-to-heat conversion, strong charge transfer ability, and suitable active sites remains a challenge. Herein, the photothermal effect- and interfacial N-Ni/Ta-O bond-modulated heterostructure composed of oxygen vacancy-rich NiOx and Ta3N5 was rationally fabricated for efficient photothermal catalytic CO2 reduction. Beyond the charge separation capability conferred by the NiOx/Ta3N5 heterojunction, we observed that the N-Ni and Ta-O bonds linking NiOx and Ta3N5 form a spatial charge transfer channel, which enhances the interfacial electron transfer. Additionally, the presence of surface oxygen vacancies in NiOx induced nonradiative relaxation, resulting in a pronounced photothermal effect that locally heated the catalyst and accelerated the reaction kinetically. Leveraging these favorable factors, the NiOx/Ta3N5 hybrids exhibit remarkably elevated activity (≈32.3 μmol·g-1·h-1) in the conversion of CO2 to CH4 with near-unity selectivity, surpassing the performance of bare Ta3N5 by over 14 times. This study unveils the synergistic effect of photothermal and interfacial chemical bonds in the photothermal-photocatalytic heterojunction system, offering a novel approach to enhance the reaction kinetics of various catalysts.
Collapse
Affiliation(s)
- Lang Pei
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, P. R. China
| | - Xusheng Wang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Heng Zhu
- School of Physical and Mathematical Sciences, Nanjing Tech University, No. 30, Puzhu Nanlu Road, Pukou District, Nanjing 211800, Jiangsu, P. R. China
| | - He Yu
- School of Physical and Mathematical Sciences, Nanjing Tech University, No. 30, Puzhu Nanlu Road, Pukou District, Nanjing 211800, Jiangsu, P. R. China
| | - Sateesh Bandaru
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, P. R. China
| | - Shicheng Yan
- Eco-materials and Renewable Energy Research Center (ERERC), Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, P. R. China
| | - Zhigang Zou
- Eco-materials and Renewable Energy Research Center (ERERC), Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, P. R. China
| |
Collapse
|
25
|
Xi Z, Zhou C, Kisslinger K, Nanayakkara T, Lu F, Tong X, Liu M. Cobalt Oxide-Coated Single Crystalline Bismuth Vanadate Photoanodes for Efficient Photoelectrochemical Chlorine Generation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:49281-49288. [PMID: 37792952 DOI: 10.1021/acsami.3c11592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Bismuth vanadate (BiVO4) is an outstanding photoanode material for photoelectrochemical water splitting. In this work, a series of single crystalline BiVO4 photoanodes are synthesized by pulsed laser deposition (PLD). Once coated with a thin layer of cobalt oxide (CoOx) cocatalyst, also by PLD, the photoanodes support efficient photoelectrochemical generation of chlorine (Cl2) from brine under simulated solar light. The activity of the chlorine generation reaction (ClER) is optimized when the thickness of CoOx is about 3 nm, with the faradic efficiency of ClER exceeding 60%. Detailed studies show that the CoOx cocatalyst layer is amorphous, uniform in thickness, and chemically robust. As such, the cocatalyst also effectively protects the underlying BiVO4 photoanodes against chlorine corrosion. This work provides insights into using artificial photosynthesis for byproducts that carry significant economic value while avoiding the energetically expensive oxygen evolution reactions.
Collapse
Affiliation(s)
- Zhaoyi Xi
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Chenyu Zhou
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Kim Kisslinger
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Tharanga Nanayakkara
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Fang Lu
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Xiao Tong
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Mingzhao Liu
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| |
Collapse
|
26
|
Ni H, Fang Y, Hu Y, Xiao G, Wu X, Jiang F. Investigation of the Solar Hydrogen Sensitivity of GeSe Thin Film Photoelectrode with Photoelectrochemical Environment. ACS APPLIED MATERIALS & INTERFACES 2023; 15:46861-46871. [PMID: 37769166 DOI: 10.1021/acsami.3c09146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
GeSe photovoltaic thin films are very promising for photoelectrochemical (PEC) hydrogen evolution. The GeSe-based PEC water splitting device is a system containing a photoelectrode, electrolyte, and other packages, and the performance of the GeSe photoelectrode inside the system is very sensitive to the PEC system environment, such as the electrolyte temperature, pH, and concentration. Here, we reveal how the electrolyte environment at the electrolyte/photoelectrode interface influences the optoelectronic/PEC properties of GeSe photoelectrodes. It was found that the photocurrent density of the GeSe photoelectrode increased with temperature between 10 and 50 °C but decreased when the temperature was over 50 °C. In addition, the pH values of the electrolyte were inversely proportional to the photocurrent density of the GeSe photoelectrode. Moreover, the PEC performance improved as the sodium ion concentration of the electrolyte increased. The results in this work should provide a new direction for further optimizing the performance of photoelectrodes.
Collapse
Affiliation(s)
- Huanyang Ni
- Institute of Hydrogen Energy for Carbon Peaking and Carbon Neutralization, School of Semiconductor Science and Technology, South China Normal University, Foshan 528225, China
| | - Yusu Fang
- Institute of Hydrogen Energy for Carbon Peaking and Carbon Neutralization, School of Semiconductor Science and Technology, South China Normal University, Foshan 528225, China
| | - Yucheng Hu
- Institute of Hydrogen Energy for Carbon Peaking and Carbon Neutralization, School of Semiconductor Science and Technology, South China Normal University, Foshan 528225, China
| | - Guohong Xiao
- Institute of Hydrogen Energy for Carbon Peaking and Carbon Neutralization, School of Semiconductor Science and Technology, South China Normal University, Foshan 528225, China
| | - Xiaomin Wu
- Institute of Hydrogen Energy for Carbon Peaking and Carbon Neutralization, School of Semiconductor Science and Technology, South China Normal University, Foshan 528225, China
| | - Feng Jiang
- Institute of Hydrogen Energy for Carbon Peaking and Carbon Neutralization, School of Semiconductor Science and Technology, South China Normal University, Foshan 528225, China
- Institute of Semiconductor Science and Technology, South China Normal University, 55 Zhongshan Avenue West, Tianhe District, Guangzhou 510631, China
- Chengfeng Light Energy Science and Technology (Guangzhou) Limited Company, Huangpu District, Guangzhou 510700, China
| |
Collapse
|
27
|
Goddati M, Nguyen HQ, Kang S, Gicha BB, Tufa LT, Nwaji N, Nguyen MCT, Gwak J, Lee J. Rugged Forest Morphology of Magnetoplasmonic Nanorods that Collect Maximum Light for Photoelectrochemical Water Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302980. [PMID: 37376838 DOI: 10.1002/smll.202302980] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/22/2023] [Indexed: 06/29/2023]
Abstract
A feasible nanoscale framework of heterogeneous plasmonic materials and proper surface engineering can enhance photoelectrochemical (PEC) water-splitting performance owing to increased light absorbance, efficient bulk carrier transport, and interfacial charge transfer. This article introduces a new magnetoplasmonic (MagPlas) Ni-doped Au@Fex Oy nanorods (NRs) based material as a novel photoanode for PEC water-splitting. A two stage procedure produces core-shell Ni/Au@Fex Oy MagPlas NRs. The first-step is a one-pot solvothermal synthesis of Au@Fex Oy . The hollow Fex Oy nanotubes (NTs) are a hybrid of Fe2 O3 and Fe3 O4 , and the second-step is a sequential hydrothermal treatment for Ni doping. Then, a transverse magnetic field-induced assembly is adopted to decorate Ni/Au@Fex Oy on FTO glass to be an artificially roughened morphologic surface called a rugged forest, allowing more light absorption and active electrochemical sites. Then, to characterize its optical and surface properties, COMSOL Multiphysics simulations are carried out. The core-shell Ni/Au@Fex Oy MagPlas NRs increase photoanode interface charge transfer to 2.73 mAcm-2 at 1.23 V RHE. This improvement is made possible by the rugged morphology of the NRs, which provide more active sites and oxygen vacancies as the hole transfer medium. The recent finding may provide light on plasmonic photocatalytic hybrids and surface morphology for effective PEC photoanodes.
Collapse
Affiliation(s)
- Mahendra Goddati
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Huu-Quang Nguyen
- Department of Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Sohyun Kang
- Department of Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Birhanu Bayissa Gicha
- Department of Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
- Environmental Science Program, Haramaya University, Dire Dawa, P.O. Box 138, Ethiopia
| | - Lemma Teshome Tufa
- Department of Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
- Institute of Materials Chemistry, Chungnam National University, Daejeon, 34134, South Korea
- Department of Chemistry, Adama Science and Technology University, P.O. Box 1888, Adama, Ethiopia
| | - Njemuwa Nwaji
- Institute of Materials Chemistry, Chungnam National University, Daejeon, 34134, South Korea
| | - My-Chi Thi Nguyen
- Department of Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Juyong Gwak
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jaebeom Lee
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
- Department of Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| |
Collapse
|
28
|
Li J, Gao RT, Liu X, Zhang X, Wu L, Wang L. Single-Atom Pt Embedded in Defective Layered Double Hydroxide for Efficient and Durable Hydrogen Evolution. ACS APPLIED MATERIALS & INTERFACES 2023; 15:42501-42510. [PMID: 37641500 DOI: 10.1021/acsami.3c07000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Electrocatalysis in neutral conditions is appealing for hydrogen production by utilizing abundant wastewater or seawater resources. Single-atom catalysts (SACs) immobilized on supports are considered one of the most promising strategies for electrocatalysis research. While they have principally exhibited breakthrough activity and selectivity for the hydrogen evolution reaction (HER) electrocatalysis in alkaline or acidic conditions, few SACs were reported for HER in neutral media. Herein, we report a facile strategy to tailor the water dissociation active sites on the NiFe LDH by inducing Mo species and an ultralow single atomic Pt loading. The defected NiFeMo LDH (V-NiFeMo LDH) shows HER activity with an overpotential of 89 mV at 10 mA cm-2 in 1 M phosphate buffer solutions. The induced Mo species and the transformed NiO/Ni phases after etching significantly increase the electron conductivity and the catalytic active sites. A further enhancement can be achieved by modulating the ultralow single atom Pt anchored on the V-NiFeMo LDH by potentiostatic polarization. A potential as low as 37 mV is obtained at 10 mA cm-2 with a pronounced long-term durability over 110 h, surpassing its crystalline LDH materials and most of the HER catalysts in neutral medium. Experimental and density functional theory calculation results have demonstrated that the synergistic effects of Mo/SAs Pt and phase transformation into NiFe LDH reduce the kinetic energy barrier of the water dissociation process and promote the H* conversion for accelerating the neutral HER.
Collapse
Affiliation(s)
- Jiamin Li
- College of Chemistry and Chemical Engineering, College of Energy Material and Chemistry, Inner Mongolia University, Hohhot 010021, China
| | - Rui-Ting Gao
- College of Chemistry and Chemical Engineering, College of Energy Material and Chemistry, Inner Mongolia University, Hohhot 010021, China
| | - Xianhu Liu
- Key Laboratory of Materials Processing and Mold, Ministry of Education, Zhengzhou University, Zhengzhou 450002, China
| | - Xueyuan Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Chin
| | - Limin Wu
- College of Chemistry and Chemical Engineering, College of Energy Material and Chemistry, Inner Mongolia University, Hohhot 010021, China
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Lei Wang
- College of Chemistry and Chemical Engineering, College of Energy Material and Chemistry, Inner Mongolia University, Hohhot 010021, China
| |
Collapse
|
29
|
Kim YM, Hong Y, Hur K, Kim MS, Sung YM. Surface Rh-Boosted Photoelectrochemical Water Oxidation of α-Fe 2O 3 by Reduced Overpotential in the Rate-Determining Step. ACS APPLIED MATERIALS & INTERFACES 2023; 15:37290-37299. [PMID: 37489940 DOI: 10.1021/acsami.3c04458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
The photoelectrochemical behavior of Rh cluster-deposited hematite (α-Fe2O3) photoanodes (α-Fe2O3@Rh) was investigated. The interactions between Rh clusters and α-Fe2O3 nanorods were elucidated both experimentally and computationally. A facile UV-assisted solution casting deposition method allowed the deposition of 2 nm Rh clusters on α-Fe2O3. The deposited Rh clusters effectively enhanced the photoelectrochemical performance of the α-Fe2O3 photoanode, and electrochemical impedance spectroscopy (EIS) and Mott-Schottky analysis were applied to understand the working mechanism for the α-Fe2O3@Rh photoanodes. The results revealed a distinctive carrier transport mechanism for α-Fe2O3@Rh and increased carrier density, while the absorbance spectra remained unchanged. Furthermore, density functional theory (DFT) calculations of the oxygen evolution reaction (OER) mechanism corresponded well with the experimental results, indicating a reduced overpotential of the rate-determining step. In addition, DFT calculation models based on the X-ray diffraction (XRD) measurements and X-ray photoelectron spectroscopy (XPS) results provided precise water-splitting mechanisms for the fabricated α-Fe2O3 and α-Fe2O3@Rh nanorods. Owing to enhanced carrier generation and hole transfer, the optimum α-Fe2O3@Rh3 sample showed 78% increased photocurrent density, reaching 1.12 mA/cm-2 at 1.23 VRHE compared to that of the pristine α-Fe2O3 nanorods electrode.
Collapse
Affiliation(s)
- Young-Min Kim
- Department of Materials Science & Engineering, Korea University, Anam-ro 145, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Yerin Hong
- Extreme Materials Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Kahyun Hur
- Extreme Materials Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Min-Seok Kim
- Extreme Materials Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Yun-Mo Sung
- Department of Materials Science & Engineering, Korea University, Anam-ro 145, Seongbuk-gu, Seoul 02841, Republic of Korea
| |
Collapse
|
30
|
Ouyang J, Lu QC, Shen S, Yin SF. Surface Oxygen Species in Metal Oxide Photoanodes for Solar Energy Conversion. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1919. [PMID: 37446435 DOI: 10.3390/nano13131919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/18/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023]
Abstract
Converting and storing solar energy directly as chemical energy through photoelectrochemical devices are promising strategies to replace fossil fuels. Metal oxides are commonly used as photoanode materials, but they still encounter challenges such as limited light absorption, inefficient charge separation, sluggish surface reactions, and insufficient stability. The regulation of surface oxygen species on metal oxide photoanodes has emerged as a critical strategy to modulate molecular and charge dynamics at the reaction interface. However, the precise role of surface oxygen species in metal oxide photoanodes remains ambiguous. The review focuses on elucidating the formation and regulation mechanisms of various surface oxygen species in metal oxides, their advantages and disadvantages in photoelectrochemical reactions, and the characterization methods employed to investigate them. Additionally, the article discusses emerging opportunities and potential hurdles in the regulation of surface oxygen species. By shedding light on the significance of surface oxygen species, this review aims to advance our understanding of their impact on metal oxide photoanodes, paving the way for the design of more efficient and stable photoelectrochemical devices.
Collapse
Affiliation(s)
- Jie Ouyang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Qi-Chao Lu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Sheng Shen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Shuang-Feng Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
31
|
Li Z, Xie Z, Li W, Aziz HS, Abbas M, Zheng Z, Su Z, Fan P, Chen S, Liang G. Charge Transport Enhancement in BiVO 4 Photoanode for Efficient Solar Water Oxidation. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16093414. [PMID: 37176295 PMCID: PMC10180425 DOI: 10.3390/ma16093414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023]
Abstract
Photoelectrochemical (PEC) water splitting in a pH-neutral electrolyte has attracted more and more attention in the field of sustainable energy. Bismuth vanadate (BiVO4) is a highly promising photoanode material for PEC water splitting. Additionally, cobaltous phosphate (CoPi) is a material that can be synthesized from Earth's rich materials and operates stably in pH-neutral conditions. Herein, we propose a strategy to enhance the charge transport ability and improve PEC performance by electrodepositing the in situ synthesis of a CoPi layer on the BiVO4. With the CoPi co-catalyst, the water oxidation reaction can be accelerated and charge recombination centers are effectively passivated on BiVO4. The BiVO4/CoPi photoanode shows a significantly enhanced photocurrent density (Jph) and applied bias photon-to-current efficiency (ABPE), which are 1.8 and 3.2 times higher than those of a single BiVO4 layer, respectively. Finally, the FTO/BiVO4/CoPi photoanode displays a photocurrent density of 1.39 mA cm-2 at 1.23 VRHE, an onset potential (Von) of 0.30 VRHE, and an ABPE of 0.45%, paving a potential path for future hydrogen evolution by solar-driven water splitting.
Collapse
Affiliation(s)
- Zhidong Li
- Shenzhen Key Laboratory of Advanced Thin Films and Applications, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Zhibin Xie
- Shenzhen Key Laboratory of Advanced Thin Films and Applications, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Weibang Li
- Shenzhen Key Laboratory of Advanced Thin Films and Applications, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Hafiz Sartaj Aziz
- Shenzhen Key Laboratory of Advanced Thin Films and Applications, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Muhammad Abbas
- Shenzhen Key Laboratory of Advanced Thin Films and Applications, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Zhuanghao Zheng
- Shenzhen Key Laboratory of Advanced Thin Films and Applications, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Zhenghua Su
- Shenzhen Key Laboratory of Advanced Thin Films and Applications, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ping Fan
- Shenzhen Key Laboratory of Advanced Thin Films and Applications, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Shuo Chen
- Shenzhen Key Laboratory of Advanced Thin Films and Applications, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Guangxing Liang
- Shenzhen Key Laboratory of Advanced Thin Films and Applications, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
32
|
Jian JX, Xie LH, Mumtaz A, Baines T, Major JD, Tong QX, Sun J. Interface-Engineered Ni-Coated CdTe Heterojunction Photocathode for Enhanced Photoelectrochemical Hydrogen Evolution. ACS APPLIED MATERIALS & INTERFACES 2023; 15:21057-21065. [PMID: 37079896 PMCID: PMC10165602 DOI: 10.1021/acsami.3c01476] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Photoelectrochemical (PEC) water splitting for hydrogen production using the CdTe photocathode has attracted much interest due to its excellent sunlight absorption property and energy band structure. This work presents a study of engineered interfacial energetics of CdTe photocathodes by deposition of CdS, TiO2, and Ni layers. A heterostructure CdTe/CdS/TiO2/Ni photocathode was fabricated by depositing a 100-nm n-type CdS layer on a p-type CdTe surface, with 50 nm TiO2 as a protective layer and a 10 nm Ni layer as a co-catalyst. The CdTe/CdS/TiO2/Ni photocathode exhibits a high photocurrent density (Jph) of 8.16 mA/cm2 at 0 V versus reversible hydrogen electrode (VRHE) and a positive-shifted onset potential (Eonset) of 0.70 VRHE for PEC hydrogen evolution under 100 mW/cm2 AM1.5G illumination. We further demonstrate that the CdTe/CdS p-n junction promotes the separation of photogenerated carriers, the TiO2 layer protects the electrode from corrosion, and the Ni catalyst improves the charge transfer across the electrode/electrolyte interface. This work provides new insights for designing noble metal-free photocathodes toward solar hydrogen development.
Collapse
Affiliation(s)
- Jing-Xin Jian
- Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-58183 Linköping, Sweden
- College of Chemistry and Chemical Engineering, Key Laboratory for Preparation and Application of Ordered Structural Material of Guangdong Province, and Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, P. R. China
| | - Luo-Han Xie
- College of Chemistry and Chemical Engineering, Key Laboratory for Preparation and Application of Ordered Structural Material of Guangdong Province, and Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, P. R. China
| | - Asim Mumtaz
- School of Physics, Electronics & Technology, University of York, Heslington, York YO10 5DD, U.K
| | - Tom Baines
- Department of Physics, Stephenson Institute for Renewable Energy, University of Liverpool, Liverpool L69 7ZF, U.K
| | - Jonathan D Major
- Department of Physics, Stephenson Institute for Renewable Energy, University of Liverpool, Liverpool L69 7ZF, U.K
| | - Qing-Xiao Tong
- College of Chemistry and Chemical Engineering, Key Laboratory for Preparation and Application of Ordered Structural Material of Guangdong Province, and Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, P. R. China
| | - Jianwu Sun
- Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-58183 Linköping, Sweden
| |
Collapse
|
33
|
Lam NH, Truong NTN, Le N, Ahn KS, Jo Y, Kim CD, Jung JH. Improving the photoelectrochemical water splitting performance of CuO photocathodes using a protective CuBi 2O 4 layer. Sci Rep 2023; 13:5776. [PMID: 37031237 PMCID: PMC10082760 DOI: 10.1038/s41598-023-32804-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/03/2023] [Indexed: 04/10/2023] Open
Abstract
A heterojunction photocathode of CuO and CuBi2O4 grown on an FTO substrate (FTO/CuO/CuBi2O4) was synthesized using hydrothermal method followed by spin coating and annealing to overcome the bottlenecks encountered by CuO in photoelectrochemical (PEC) water splitting application. The synthesis methods, morphological, structural properties, and composition of each sample under each synthesis condition are discussed in detail. The photocathode with 15 coating layers annealed at 450 °C exhibited the best PEC performance. Moreover, its current density reached 1.23 mA/cm2 under an applied voltage of - 0.6 V versus Ag/AgCl in a neutral electrolyte. Additionally, it exhibited higher stability than the bare CuO thin film. The bonding of CuBi2O4 on CuO resulted in close contact between the two semiconductors, helping the semiconductors support each other to increase the PEC efficiency of the photocathode. CuO acted as the electron-generating layer, and the CuBi2O4 layer helped minimize photocorrosion as well as transport the carriers to the electrode/electrolyte interface to accomplish the hydrogen evolution reaction.
Collapse
Affiliation(s)
- Nguyen Hoang Lam
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan, 38541, Republic of Korea
| | - Nguyen Tam Nguyen Truong
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan, 38541, Republic of Korea.
| | - Nam Le
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan, 38541, Republic of Korea
| | - Kwang-Soon Ahn
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan, 38541, Republic of Korea
| | - Younjung Jo
- Department of Physics, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Chang-Duk Kim
- Department of Physics, Kyungpook National University, Daegu, 41566, Republic of Korea.
| | - Jae Hak Jung
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan, 38541, Republic of Korea.
| |
Collapse
|