1
|
Zhou DY, Bao CF, Zhou G. Intraepithelial lymphocytes in human oral diseases. Front Immunol 2025; 16:1597088. [PMID: 40406112 PMCID: PMC12095017 DOI: 10.3389/fimmu.2025.1597088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Accepted: 04/14/2025] [Indexed: 05/26/2025] Open
Abstract
Objective As a distinctive subset of T cells, intraepithelial lymphocytes (IELs) are found in the epithelium of mucosal barrier and serve as the primary defenders of the intestinal mucosal immune system. IELs exhibit phenotypic and functional diversity with high expression of activated marker molecules, tissue-homing integrins, NK cell receptors, cytotoxic T cell-related molecules, and cytokines. Meanwhile, IELs demonstrate differentiation plasticity, antigen recognition diversity, self-reactivity, and rapid "memory" effect, which enable them to play a crucial role in regulating responses, maintaining mucosal barriers, promoting immune tolerance, and providing resistance to infections. In addition, IELs have been explored in autoimmune diseases, inflammatory diseases, and cancers. However, the specific involvement and underlying mechanisms of IELs in oral diseases have not been systematically discussed. Methods A systematic literature review was conducted using the PubMed/MEDLINE databases to identify and analyze relevant literatures on the roles of IELs in oral diseases. Results The literature review revealed the characteristics of IELs and emphasized the potential roles of IELs in the pathogenesis of oral lichen planus, oral cancers, periodontal diseases, graft-versus-host disease, and primary Sjogren's syndrome. Conclusion This review mainly focuses on the involvement of IELs in oral diseases, with a particular emphasis on the main functions and underlying mechanisms by which IELs influence the pathogenesis and progression of these conditions.
Collapse
Affiliation(s)
- Dong-Yang Zhou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Chao-Fan Bao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Gang Zhou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
2
|
Fangal VD, Kılıç A, Mirzakhani H, Litonjua AA, Demay MB, Levy BD, Weiss ST. Vitamin D exerts endogenous control over T H2 cell fate and immune plasticity. iScience 2025; 28:112117. [PMID: 40224021 PMCID: PMC11987635 DOI: 10.1016/j.isci.2025.112117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 12/16/2024] [Accepted: 02/07/2025] [Indexed: 04/15/2025] Open
Abstract
Circulating Vitamin D (Vit-D) has emerged as a potent immune modulator in asthma, yet its direct impact on TH2 cell regulation, the central effectors of allergic inflammation, remains unclear. Preliminary transcriptomic analysis of neonatal cord blood revealed that gestational Vit-D deficiency corresponds to elevated adaptive and innate immune responses, driven by TH2 immunity and antimicrobial responses related to asthma inflammation. To elucidate cell-specific molecular mechanisms of Vit-D, we differentiated murine TH2 cells in vitro under conditions mimicking Vit-D sufficiency and deficiency. Our findings demonstrate that Vit-D exposure promotes intracellular calcium ion homeostasis while suppressing prominent inflammatory cytokines characteristic of asthma. Conversely, Vit-D deficiency reprograms TH2 cell lineage commitment, inducing overexpression of cytolytic molecules and major histocompatibility complex (MHC) class I molecules-traits typically associated with cytotoxicity rather than the canonical helper function. Our findings underscore Vit-D's role in stabilizing TH2 cell function and fate, offering insights into asthma and autoimmune disorders.
Collapse
Affiliation(s)
- Vrushali D. Fangal
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Harvard University, Boston, MA, USA
| | - Ayşe Kılıç
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Harvard University, Boston, MA, USA
| | - Hooman Mirzakhani
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Harvard University, Boston, MA, USA
| | - Augusto A. Litonjua
- Division of Pediatric Pulmonary Medicine, Golisano Children’s Hospital at Strong, University of Rochester Medical Center, Rochester, NY, USA
| | - Marie B. Demay
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Bruce D. Levy
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Scott T. Weiss
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Harvard University, Boston, MA, USA
| |
Collapse
|
3
|
Nie J, Zhou L, Tian W, Liu X, Yang L, Yang X, Zhang Y, Wei S, Wang DW, Wei J. Deep insight into cytokine storm: from pathogenesis to treatment. Signal Transduct Target Ther 2025; 10:112. [PMID: 40234407 PMCID: PMC12000524 DOI: 10.1038/s41392-025-02178-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/22/2024] [Accepted: 02/12/2025] [Indexed: 04/17/2025] Open
Abstract
Cytokine storm (CS) is a severe systemic inflammatory syndrome characterized by the excessive activation of immune cells and a significant increase in circulating levels of cytokines. This pathological process is implicated in the development of life-threatening conditions such as fulminant myocarditis (FM), acute respiratory distress syndrome (ARDS), primary or secondary hemophagocytic lymphohistiocytosis (HLH), cytokine release syndrome (CRS) associated with chimeric antigen receptor-modified T (CAR-T) therapy, and grade III to IV acute graft-versus-host disease following allogeneic hematopoietic stem cell transplantation. The significant involvement of the JAK-STAT pathway, Toll-like receptors, neutrophil extracellular traps, NLRP3 inflammasome, and other signaling pathways has been recognized in the pathogenesis of CS. Therapies targeting these pathways have been developed or are currently being investigated. While novel drugs have demonstrated promising therapeutic efficacy in mitigating CS, the overall mortality rate of CS resulting from underlying diseases remains high. In the clinical setting, the management of CS typically necessitates a multidisciplinary team strategy encompassing the removal of abnormal inflammatory or immune system activation, the preservation of vital organ function, the treatment of the underlying disease, and the provision of life supportive therapy. This review provides a comprehensive overview of the key signaling pathways and associated cytokines implicated in CS, elucidates the impact of dysregulated immune cell activation, and delineates the resultant organ injury associated with CS. In addition, we offer insights and current literature on the management of CS in cases of FM, ARDS, systemic inflammatory response syndrome, treatment-induced CRS, HLH, and other related conditions.
Collapse
Grants
- 82070217, 81873427 National Natural Science Foundation of China (National Science Foundation of China)
- 82100401 National Natural Science Foundation of China (National Science Foundation of China)
- 81772477, 81201848, 82473220 National Natural Science Foundation of China (National Science Foundation of China)
- 82330010,81630010,81790624 National Natural Science Foundation of China (National Science Foundation of China)
- National High Technology Research and Development Program of China, Grant number: 2021YFA1101500.
- The Hubei Provincial Natural Science Foundation (No.2024AFB050)
- Project of Shanxi Bethune Hospital, Grant Numbber: 2023xg02); Fundamental Research Program of Shanxi Province, Grant Numbber: 202303021211224
- The Key Scientific Research Project of COVID-19 Infection Emergency Treatment of Shanxi Bethune Hospital (2023xg01), 2023 COVID-19 Research Project of Shanxi Provincial Health Commission (No.2023XG001, No. 2023XG005), Four “Batches” Innovation Project of Invigorating Medical through Science and Technology of Shanxi Province (2023XM003), Cancer special Fund research project of Shanxi Bethune Hospital (No. 2020-ZL04), and External Expert Workshop Fund Program of Shanxi Provincial Health Commission(Proteomics Shanxi studio for Huanghe professor)
- Fundamental Research Program of Shanxi Province(No.202303021221192); 2023 COVID-19 Emergency Project of Shanxi Health Commission (Nos.2023XG001,2023XG005)
Collapse
Affiliation(s)
- Jiali Nie
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Ling Zhou
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Branch of National Clinical Research Center for Infectious Diseases, Wuhan Pulmonary Hospital (Wuhan Tuberculosis Prevention and Control Institute), Wuhan, China
| | - Weiwei Tian
- Department of Hematology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Sino-German Joint Oncological Research Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
| | - Xiansheng Liu
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Branch of National Clinical Research Center for Infectious Diseases, Wuhan Pulmonary Hospital (Wuhan Tuberculosis Prevention and Control Institute), Wuhan, China
- Department of Hematology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Sino-German Joint Oncological Research Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
| | - Liping Yang
- Department of Hematology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Sino-German Joint Oncological Research Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
| | - Xingcheng Yang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yicheng Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuang Wei
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Branch of National Clinical Research Center for Infectious Diseases, Wuhan Pulmonary Hospital (Wuhan Tuberculosis Prevention and Control Institute), Wuhan, China.
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China.
| | - Jia Wei
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
4
|
Fang Z, Wang C, Huang CL, Tan D, Peng XH, Bai JJ, Yuan ZH, Yu XY, Ren GX. Extrathymic CD8 and CD4 Double Positive T Cells Presenting Vigorous HBV-Specific Responses Accelerate HBV Clearance. J Med Virol 2025; 97:e70303. [PMID: 40130757 DOI: 10.1002/jmv.70303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 01/23/2025] [Accepted: 03/09/2025] [Indexed: 03/26/2025]
Abstract
Hepatitis B virus (HBV) infection is a worldwide health problem. Both CD4+ and CD8 + T cells play crucial roles in HBV clearance from acute patients. Nevertheless, an extrathymic CD4 and CD8 double positive T (DPT) cell subset have been reported earlier, the function of these cells in HBV infection is still poorly understood. Herein, peripheral blood mononuclear cells were collected from hepatitis B patients. HBV model mice were established via hydrodynamic injection (HDI) of pAAV-HBV1.2 plasmid. T cells subsets were analyzed with flow cytometry. We found that in acute HBV infection extrathymic DPT cells were significantly increased in acute patients and HDI-based HBV model mice. Unlike thymic DPT cells, these extrathymic DPT cells activated with a CD44 + CD62L+ central memory phenotype. Furthermore, in vitro cultured DPT cells showed the capability to rapidly proliferate and produce multi cytokines after stimulation with HBV peptides. The performance of adoptive transfer depicted that DPT cells were able to migrate into the liver. Immunohistochemistry data from liver biopsies of patients showed that DPT cells were more prone to detection in acute tissue. Purified DPT cells could efficiently kill HBV peptide-loaded hepatocytes in a cytotoxicity assay, and the frequency of DPT cells were reversely correlated with HBV clearance in model mice. Importantly, the transferred DPT cells accelerated the clearance of HBV in mice. Collectively, our study revealed that extrathymic DPT cells are an important immune subset, contributing to viral clearance during HBV infection, which may benefit cure of chronic hepatitis B.
Collapse
Affiliation(s)
- Zhong Fang
- Liver Cancer Institute of Zhongshan Hospital and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Cong Wang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Chen-Lu Huang
- Liver Cancer Institute of Zhongshan Hospital and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Dan Tan
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiu-Hua Peng
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jin-Jin Bai
- Liver Cancer Institute of Zhongshan Hospital and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Zheng-Hong Yuan
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiao-Yu Yu
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Guang-Xu Ren
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs of the Reople's Republic of China, Beijing, China
| |
Collapse
|
5
|
Wiewiórska-Krata N, Foroncewicz B, Mucha K, Zagożdżon R. Cell therapies for immune-mediated disorders. Front Med (Lausanne) 2025; 12:1550527. [PMID: 40206475 PMCID: PMC11980423 DOI: 10.3389/fmed.2025.1550527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 02/17/2025] [Indexed: 04/11/2025] Open
Abstract
Immune-mediated disorders are a broad range of diseases, arising as consequence of immune defects, exaggerated/misguided immune response or a mixture of both conditions. Their frequency is on a rise in the developed societies and they pose a significant challenge for diagnosis and treatment. Traditional pharmacological, monoclonal antibody-based or polyclonal antibody replacement-based therapies aiming at modulation of the immune responses give very often dissatisfactory results and/or are burdened with unacceptable adverse effects. In recent years, a new group of treatment modalities has emerged, utilizing cells as living drugs, especially with the use of the up-to-date genetic engineering. These modern cellular therapies are designed to offer a high potential for more targeted, safe, durable, and personalized treatment options. This work briefly reviews the latest advances in the treatment of immune-mediated disorders, mainly those related to exaggeration of the immune response, with such cellular therapies as hematopoietic stem cells (HSCs), mesenchymal stromal cells (MSCs), regulatory T cells (Tregs), chimeric antigen receptor (CAR) T cells and others. We highlight the main features of these therapies as new treatment options for taming the dysregulated immune system. Undoubtfully, in near future such therapies can provide lasting remissions in a range of immune-mediated disorders with reduced treatment burden and improved quality of life for the patients.
Collapse
Affiliation(s)
- Natalia Wiewiórska-Krata
- Laboratory of Cellular and Genetic Therapies, Center for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
- ProMix Center (ProteogenOmix in Medicine), Department of Clinical Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Bartosz Foroncewicz
- ProMix Center (ProteogenOmix in Medicine), Department of Clinical Immunology, Medical University of Warsaw, Warsaw, Poland
- Department of Transplantology, Immunology, Nephrology and Internal Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Krzysztof Mucha
- ProMix Center (ProteogenOmix in Medicine), Department of Clinical Immunology, Medical University of Warsaw, Warsaw, Poland
- Department of Transplantology, Immunology, Nephrology and Internal Diseases, Medical University of Warsaw, Warsaw, Poland
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Radosław Zagożdżon
- Laboratory of Cellular and Genetic Therapies, Center for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
- Department of Transplantology, Immunology, Nephrology and Internal Diseases, Medical University of Warsaw, Warsaw, Poland
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
6
|
Kerbauy MN, Rocha FA, Arcuri LJ, Cunegundes PS, Kerbauy LN, Machado CM, Ribeiro AAF, Banerjee PP, Marti LC, Hamerschlak N. Immune reconstitution dynamics after unrelated allogeneic transplantation with post-transplant cyclophosphamide compared to classical immunosuppression with anti-thymocyte globulin: a prospective cohort study. Haematologica 2025; 110:640-650. [PMID: 39279428 PMCID: PMC11873711 DOI: 10.3324/haematol.2024.285921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/03/2024] [Indexed: 09/18/2024] Open
Abstract
Post-transplant cyclophosphamide (PTCy) has contributed to the success of haploidentical hematopoietic stem cell transplantation (HSCT) and is also used in transplantation from matched donors. However, limited data on the immune reconstitution after this type of immunosuppression is available. We aimed to evaluate immune reconstitution after HSCT from unrelated donors, comparing anti-thymocyte globulin (ATG) and PTCy. Consecutive patients undergoing HSCT from unrelated donors and receiving either ATG or PTCy were prospectively included. Immune reconstitution analyses were performed by flow cytometry pre-transplant and on days 30, 60, 90, and 180 post-transplant. We included 36 patients, 20 in the ATG group and 16 in the PTCy group. In the early post-transplant period (day [d]+30), the ATG group showed a higher number of total lymphocytes, T, B, and natural killer (NK) cells compared to the PTCy group. However, at d+180, the PTCy group exhibited a higher number of B cells. On d+60 and d+90, the ATG group displayed higher number of NK cells CD56dim compared to the PTCy group, while on d+180, the PTCy group showed higher number of CD56-, CD16+, and, NKG2D+ NK cells. Naive CD4+, transition CD4+, and naive CD8+ T cells on d+60 were identified as risk factors for acute graft-versus-host disease grade 2-4, and a higher count of CD4+ memory cells on d+180 was identified as a risk factor for chronic graft-versus-host disease. In the context of unrelated allogeneic transplantation, immunosuppression with PTCy was associated with later B-, T- and NK-cell reconstitution compared to ATG.
Collapse
Affiliation(s)
- Mariana Nassif Kerbauy
- Department of Hematology and Bone Marrow Transplantation, Hospital Israelita Albert Einstein, Sao Paulo.
| | - Fernanda Agostini Rocha
- Instituto Israelita de Ensino e Pesquisa (IIEP), Hospital Israelita Albert Einstein, Sao Paulo, SP
| | - Leonardo Javier Arcuri
- Department of Hematology and Bone Marrow Transplantation, Hospital Israelita Albert Einstein, Sao Paulo
| | | | - Lucila Nassif Kerbauy
- Department of Hematology and Bone Marrow Transplantation, Hospital Israelita Albert Einstein, Sao Paulo
| | - Clarisse Martins Machado
- Instituto Israelita de Ensino e Pesquisa (IIEP), Hospital Israelita Albert Einstein, Sao Paulo, SP, Brazil; Virology Laboratory, Institute of Tropical Medicine, University of Sao Paulo, Sao Paulo
| | | | | | - Luciana Cavalheiro Marti
- Instituto Israelita de Ensino e Pesquisa (IIEP), Hospital Israelita Albert Einstein, Sao Paulo, SP
| | - Nelson Hamerschlak
- Department of Hematology and Bone Marrow Transplantation, Hospital Israelita Albert Einstein, Sao Paulo
| |
Collapse
|
7
|
Alam MR, Akinyemi AO, Wang J, Howlader M, Farahani ME, Nur M, Zhang M, Gu L, Li Z. CD4 +CD8 + double-positive T cells in immune disorders and cancer: Prospects and hurdles in immunotherapy. Autoimmun Rev 2025; 24:103757. [PMID: 39855286 DOI: 10.1016/j.autrev.2025.103757] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 01/10/2025] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
CD4+ and CD8+ T cells play critical roles in both innate and adaptive immune responses, managing and modulating cellular immunity during immune diseases and cancer. Their well-established functions have led to significant clinical benefits. CD4+CD8+ double-positive (DP) T cells, a subset of the T cell population, have been identified in the blood and peripheral lymphoid tissues across various species. They have gained interest due to their involvement in immune disorders, inflammation, and cancer. Although mature DP T cells are present in healthy individuals and contribute to disease contexts, their molecular characteristics and pathophysiological roles remain debated. Notably, the number of DP T cells in the blood is higher in older adults compared to younger individuals, and these cells can stimulate inflammation and viral infections through increased secretion of interleukin (IL)-10, interferon gamma (IFN-γ), and transforming growth factor beta (TGF-β). In cancer, DP T cells have been observed to infiltrate cutaneous T cell lymphomas and are found in greater numbers in nodular lymphocyte predominant Hodgkin lymphoma, melanoma, hepatocellular carcinoma, and breast cancer. The higher prevalence of DP T cells in advanced cancers, coupled with their strong lytic activity and distinct cytokine profile, suggests that these cells may play a crucial role in modulating immune responses to cancer. This insight offers a potential new approach for enhancing the identification and selection of antigen-reactive T cells in immune-based treatments. This review provides a comprehensive overview of the origin, distribution, transcriptional regulation during developmental stages, and functions of DP T cells. A deeper understanding of the diversity and roles of DP T cells may pave the way for their development as a promising tool for immunotherapy in the management of immune disorders and metastatic cancers.
Collapse
Affiliation(s)
- Md Rakibul Alam
- Department of Toxicology and Cancer Biology, Collage of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Amos Olalekan Akinyemi
- Department of Toxicology and Cancer Biology, Collage of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Jianlin Wang
- Department of Toxicology and Cancer Biology, Collage of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Mithu Howlader
- Department of Toxicology and Cancer Biology, Collage of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Mohammad Esfini Farahani
- Department of Toxicology and Cancer Biology, Collage of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Maria Nur
- Department of Toxicology and Cancer Biology, Collage of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Min Zhang
- Department of Toxicology and Cancer Biology, Collage of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Lixiang Gu
- Department of Toxicology and Cancer Biology, Collage of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Zhiguo Li
- Department of Toxicology and Cancer Biology, Collage of Medicine, University of Kentucky, Lexington, KY 40536, USA; Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA.
| |
Collapse
|
8
|
Li Z, Yang Y, Peng H, Li F. Hematopoietic stem cell microtransplantation: current situation and challenges. Ther Adv Hematol 2025; 16:20406207241310332. [PMID: 39758947 PMCID: PMC11694307 DOI: 10.1177/20406207241310332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 12/06/2024] [Indexed: 01/07/2025] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) stands as a cornerstone in the treatment of hematological malignancies, recognized for its remarkable efficacy. However, the persistent challenge of graft-versus-host disease (GVHD) continues to represent a significant barrier, often being the leading cause of nonrelapse mortality after allo-HSCT. To address this limitation, hematopoietic stem cell microtransplantation (MST) has emerged as a novel therapeutic strategy that synergistically combines chemotherapy, allo-HSCT, and cellular immunotherapy. This innovative approach is designed to retain the patient's immune function, promote the establishment of microchimerism, and achieve a potent graft-versus-tumor (GVT) response, all while significantly minimizing the risk of GVHD. MST has primarily been applied in the treatment of hematological malignancies, where it has demonstrated promising outcomes, including marked improvements in complete remission rates, overall survival rates, and progression-free survival rates. Moreover, MST facilitates hematopoietic recovery, decreases the likelihood of infections, and reduces the incidence of GVHD, thus contributing to an improved quality of life for patients. A deeper and more comprehensive understanding of MST's mechanisms could enhance its clinical utility and integration into standard treatment protocols. This review aims to explore the underlying mechanisms, current clinical applications, and challenges of MST, shedding light on its potential role in advancing the management of hematological malignancies.
Collapse
Affiliation(s)
- Zhengyang Li
- Center of Hematology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yuanyuan Yang
- Center of Hematology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Hongwei Peng
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China*These authors contributed equally
| | - Fei Li
- Center of Hematology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Hematologic Disease, Nanchang, Jiangxi, China
- Institute of Lymphoma and Myeloma, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Hematological Diseases, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- The First Affiliated Hospital of Nanchang University, 17 Yongwai Zheng street, Nanchang 330006, P.R. China
| |
Collapse
|
9
|
Ehx G, Ritacco C, Baron F. Pathophysiology and preclinical relevance of experimental graft-versus-host disease in humanized mice. Biomark Res 2024; 12:139. [PMID: 39543777 PMCID: PMC11566168 DOI: 10.1186/s40364-024-00684-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024] Open
Abstract
Graft-versus-host disease (GVHD) is a life-threatening complication of allogeneic hematopoietic cell transplantations (allo-HCT) used for the treatment of hematological malignancies and other blood-related disorders. Until recently, the discovery of actionable molecular targets to treat GVHD and their preclinical testing was almost exclusively based on modeling allo-HCT in mice by transplanting bone marrow and splenocytes from donor mice into MHC-mismatched recipient animals. However, due to fundamental differences between human and mouse immunology, the translation of these molecular targets into the clinic can be limited. Therefore, humanized mouse models of GVHD were developed to circumvent this limitation. In these models, following the transplantation of human peripheral blood mononuclear cells (PBMCs) into immunodeficient mice, T cells recognize and attack mouse organs, inducing GVHD. Thereby, humanized mice provide a platform for the evaluation of the effects of candidate therapies on GVHD mediated by human immune cells in vivo. Understanding the pathophysiology of this xenogeneic GVHD is therefore crucial for the design and interpretation of experiments performed with this model. In this article, we comprehensively review the cellular and molecular mechanisms governing GVHD in the most commonly used model of xenogeneic GVHD: PBMC-engrafted NOD/LtSz-PrkdcscidIL2rγtm1Wjl (NSG) mice. By re-analyzing public sequencing data, we also show that the clonal expansion and the transcriptional program of T cells in humanized mice closely reflect those in humans. Finally, we highlight the strengths and limitations of this model, as well as arguments in favor of its biological relevance for studying T-cell reactions against healthy tissues or cancer cells.
Collapse
Affiliation(s)
- Grégory Ehx
- Laboratory of Hematology, GIGA Institute, University of Liege, Liege, Belgium.
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO) Department, WEL Research Institute, Wavre, Belgium.
| | - Caroline Ritacco
- Laboratory of Hematology, GIGA Institute, University of Liege, Liege, Belgium
| | - Frédéric Baron
- Laboratory of Hematology, GIGA Institute, University of Liege, Liege, Belgium
- Department of Medicine, Division of Hematology, CHU of Liege, University of Liege, Liege, Belgium
| |
Collapse
|
10
|
Li J, Yao Y, Zhou J, Yang Z, Qiu C, Lu Y, Xie J, Liu J, Jiang T, Kou Y, Ge Z, Liang P, Qiu C, Shen L, Zhu Y, Gao C, Yu L. Epicardial transplantation of antioxidant polyurethane scaffold based human amniotic epithelial stem cell patch for myocardial infarction treatment. Nat Commun 2024; 15:9105. [PMID: 39438477 PMCID: PMC11496666 DOI: 10.1038/s41467-024-53531-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/14/2024] [Indexed: 10/25/2024] Open
Abstract
Myocardial infarction (MI) is a leading cause of death globally. Stem cell therapy is considered a potential strategy for MI treatment. Transplantation of classic stem cells including embryonic, induced pluripotent and cardiac stem cells exhibited certain repairing effect on MI via supplementing cardiomyocytes, however, their clinical applications were blocked by problems of cell survival, differentiation, functional activity and also biosafety and ethical concerns. Here, we introduced human amniotic epithelial stem cells (hAESCs) featured with immunomodulatory activities, immune-privilege and biosafety, for constructing a stem cell cardiac patch based on porous antioxidant polyurethane (PUR), which demonstrated decent hAESCs compatibility. In rats, the administration of PUR-hAESC patch significantly reduced fibrosis and facilitated vascularization in myocardium after MI and consequently improved cardiac remodeling and function. Mechanistically, the patch provides a beneficial microenvironment for cardiac repair by facilitating a desirable immune response, paracrine modulation and limited oxidative milieu. Our findings may provide a potential therapeutic strategy for MI.
Collapse
Affiliation(s)
- Jinying Li
- Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine of Sir Run Run Shaw Hospital, Zhejiang University-Lishui Joint Innovation Center for Life and Health, Zhejiang University, Hangzhou, 310058, China
- College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuejun Yao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Jiayi Zhou
- Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine of Sir Run Run Shaw Hospital, Zhejiang University-Lishui Joint Innovation Center for Life and Health, Zhejiang University, Hangzhou, 310058, China
- College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhuoheng Yang
- Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine of Sir Run Run Shaw Hospital, Zhejiang University-Lishui Joint Innovation Center for Life and Health, Zhejiang University, Hangzhou, 310058, China
- College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chen Qiu
- Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine of Sir Run Run Shaw Hospital, Zhejiang University-Lishui Joint Innovation Center for Life and Health, Zhejiang University, Hangzhou, 310058, China
- College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuwen Lu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Jieqi Xie
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Jia Liu
- Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine of Sir Run Run Shaw Hospital, Zhejiang University-Lishui Joint Innovation Center for Life and Health, Zhejiang University, Hangzhou, 310058, China
- College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Tuoying Jiang
- Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine of Sir Run Run Shaw Hospital, Zhejiang University-Lishui Joint Innovation Center for Life and Health, Zhejiang University, Hangzhou, 310058, China
- College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yaohui Kou
- Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine of Sir Run Run Shaw Hospital, Zhejiang University-Lishui Joint Innovation Center for Life and Health, Zhejiang University, Hangzhou, 310058, China
- College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhen Ge
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 310013, China
| | - Ping Liang
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, China
| | - Cong Qiu
- Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine of Sir Run Run Shaw Hospital, Zhejiang University-Lishui Joint Innovation Center for Life and Health, Zhejiang University, Hangzhou, 310058, China
- College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Liyin Shen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Yang Zhu
- Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine of Sir Run Run Shaw Hospital, Zhejiang University-Lishui Joint Innovation Center for Life and Health, Zhejiang University, Hangzhou, 310058, China.
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China.
- State Key Laboratory of Transvascular Implantation Devices, Binjiang Institute of Zhejiang University, Hangzhou, 310053, China.
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China.
- Center for Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing, 312099, China.
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, 310058, China.
| | - Luyang Yu
- Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine of Sir Run Run Shaw Hospital, Zhejiang University-Lishui Joint Innovation Center for Life and Health, Zhejiang University, Hangzhou, 310058, China.
- College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
- Cancer Center, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
11
|
Lang HP, Osum KC, Friedenberg SG. A review of CD4 + T cell differentiation and diversity in dogs. Vet Immunol Immunopathol 2024; 275:110816. [PMID: 39173398 PMCID: PMC11421293 DOI: 10.1016/j.vetimm.2024.110816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024]
Abstract
CD4+ T cells are an integral component of the adaptive immune response, carrying out many functions to combat a diverse range of pathogenic challenges. These cells exhibit remarkable plasticity, differentiating into specialized subsets such as T helper type 1 (TH1), TH2, TH9, TH17, TH22, regulatory T cells (Tregs), and follicular T helper (TFH) cells. Each subset is capable of addressing a distinct immunological need ranging from pathogen eradication to regulation of immune homeostasis. As the immune response subsides, CD4+ T cells rest down into long-lived memory phenotypes-including central memory (TCM), effector memory (TEM), resident memory (TRM), and terminally differentiated effector memory cells (TEMRA) that are localized to facilitate a swift and potent response upon antigen re-encounter. This capacity for long-term immunological memory and rapid reactivation upon secondary exposure highlights the role CD4+ T cells play in sustaining both adaptive defense mechanisms and maintenance. Decades of mouse, human, and to a lesser extent, pig T cell research has provided the framework for understanding the role of CD4+ T cells in immune responses, but these model systems do not always mimic each other. Although our understanding of pig immunology is not as extensive as mouse or human research, we have gained valuable insight by studying this model. More akin to pigs, our understanding of CD4+ T cells in dogs is much less complete. This disparity exists in part because canine immunologists depend on paradigms from mouse and human studies to characterize CD4+ T cells in dogs, with a fraction of available lineage-defining antibody markers. Despite this, every major CD4+ T cell subset has been described to some extent in dogs. These subsets have been studied in various contexts, including in vitro stimulation, homeostatic conditions, and across a range of disease states. Canine CD4+ T cells have been categorized according to lineage-defining characteristics, trafficking patterns, and what cytokines they produce upon stimulation. This review addresses our current understanding of canine CD4+ T cells from a comparative perspective by highlighting both the similarities and differences from mouse, human, and pig CD4+ T cell biology. We also discuss knowledge gaps in our current understanding of CD4+ T cells in dogs that could provide direction for future studies in the field.
Collapse
Affiliation(s)
- Haeree P Lang
- Center for Immunology, University of Minnesota, Minneapolis, MN 55414, USA; Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA.
| | - Kevin C Osum
- Center for Immunology, University of Minnesota, Minneapolis, MN 55414, USA.
| | - Steven G Friedenberg
- Center for Immunology, University of Minnesota, Minneapolis, MN 55414, USA; Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA.
| |
Collapse
|
12
|
Han L, Sun X, Kong J, Li J, Feng K, Bai Y, Wang X, Zhu Z, Yang F, Chen Q, Zhang M, Yue B, Wang X, Fu L, Chen Y, Yang Q, Wang S, Xin Q, Sun N, Zhang D, Zhou Y, Gao Y, Zhao J, Jiang Y, Guo R. Multi-omics analysis reveals a feedback loop amplifying immune responses in acute graft-versus-host disease due to imbalanced gut microbiota and bile acid metabolism. J Transl Med 2024; 22:746. [PMID: 39113144 PMCID: PMC11308528 DOI: 10.1186/s12967-024-05577-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024] Open
Abstract
Acute graft-versus-host disease (aGVHD) is primarily driven by allogeneic donor T cells associated with an altered composition of the host gut microbiome and its metabolites. The severity of aGVHD after allogeneic hematopoietic stem cell transplantation (allo-HSCT) is not solely determined by the host and donor characteristics; however, the underlying mechanisms remain unclear. Using single-cell RNA sequencing, we decoded the immune cell atlas of 12 patients who underwent allo-HSCT: six with aGVHD and six with non-aGVHD. We performed a fecal microbiota (16SrRNA sequencing) analysis to investigate the fecal bacterial composition of 82 patients: 30 with aGVHD and 52 with non-aGVHD. Fecal samples from these patients were analyzed for bile acid metabolism. Through multi-omic analysis, we identified a feedback loop involving "immune cell-gut microbes-bile acid metabolites" contributing to heightened immune responses in patients with aGVHD. The dysbiosis of the gut microbiota and disruption of bile acid metabolism contributed to an exaggerated interleukin-1 mediated immune response. Our findings suggest that resistin and defensins are crucial in mitigating against aGVHD. Therefore, a comprehensive multi-omic atlas incorporating immune cells, gut microbes, and bile acid metabolites was developed in this study and used to propose novel, non-immunosuppressive approaches to prevent aGVHD.
Collapse
Affiliation(s)
- Lijie Han
- Translational Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xianlei Sun
- Basic Medical Research Center, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Jingjing Kong
- Translational Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jin Li
- Translational Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Kai Feng
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yanliang Bai
- Department of Hematology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan, China
| | - Xianjing Wang
- Department of Hematology, The Third People's Hospital of Zhengzhou, Zhengzhou, 450000, Henan, China
| | - Zhenhua Zhu
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Fengyuan Yang
- Basic Medical Research Center, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Qingzhou Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Mengmeng Zhang
- Translational Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Baohong Yue
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaoqian Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Liyan Fu
- Department of Laboratory Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Yaoyao Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qiankun Yang
- Department of Blood Transfusion, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shuya Wang
- Department of Blood Transfusion, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qingxuan Xin
- Department of Laboratory Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Nannan Sun
- Translational Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Danfeng Zhang
- Translational Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yiwei Zhou
- Translational Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yanxia Gao
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Junwei Zhao
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Yong Jiang
- Henan Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine and Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Rongqun Guo
- Translational Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
13
|
Falcon DM, Byrne KA, Sales MA, Erf GF. Spontaneous immunological activities in the target tissue of vitiligo-prone Smyth and vitiligo-susceptible Brown lines of chicken. Front Immunol 2024; 15:1386727. [PMID: 38720888 PMCID: PMC11076693 DOI: 10.3389/fimmu.2024.1386727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/11/2024] [Indexed: 05/12/2024] Open
Abstract
Introduction Vitiligo is an acquired de-pigmentation disorder characterized by the post-natal loss of epidermal melanocytes (pigment-producing cells) resulting in the appearance of white patches in the skin. The Smyth chicken is the only model for vitiligo that shares all the characteristics of the human condition including: spontaneous post-natal loss of epidermal melanocytes, interactions between genetic, environmental and immunological factors, and associations with other autoimmune diseases. In addition, an avian model for vitiligo has the added benefit of an easily accessible target tissue (a growing feather) that allows for the repeated sampling of an individual and thus the continuous monitoring of local immune responses over time. Methods Using a combination of flow cytometry and gene expression analyses, we sought to gain a comprehensive understanding of the initiating events leading to expression of vitiligo in growing feathers by monitoring the infiltration of leukocytes and concurrent immunological activities in the target tissue beginning prior to visual onset and continuing throughout disease development. Results Here, we document a sequence of immunologically significant events, including characteristic rises in infiltrating B and αβ T cells as well as evidence of active leukocyte recruitment and cell-mediated immune activities (CCL19, IFNG, GZMA) leading up to visual vitiligo onset. Examination of growing feathers from vitiligo-susceptible Brown line chickens revealed anti-inflammatory immune activities which may be responsible for preventing vitiligo (IL10, CTLA4, FOXP3). Furthermore, we detected positive correlations between infiltrating T cells and changes in their T cell receptor diversity supporting a T cell-specific immune response. Conclusion Collectively, these results further support the notion of cell-mediated immune destruction of epidermal melanocytes in the pulp of growing feathers and open new avenues of study in the vitiligo-prone Smyth and vitiligo-susceptible Brown line chickens.
Collapse
Affiliation(s)
| | | | | | - Gisela F. Erf
- Division of Agriculture, Department of Poultry Science, University of Arkansas System, Fayetteville, AR, United States
| |
Collapse
|
14
|
Khajavi L, Nguyen XH, Queriault C, Chabod M, Barateau L, Dauvilliers Y, Zytnicki M, Liblau R. The transcriptomics profiling of blood CD4 and CD8 T-cells in narcolepsy type I. Front Immunol 2023; 14:1249405. [PMID: 38077397 PMCID: PMC10702585 DOI: 10.3389/fimmu.2023.1249405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/24/2023] [Indexed: 12/18/2023] Open
Abstract
Background Narcolepsy Type I (NT1) is a rare, life-long sleep disorder arising as a consequence of the extensive destruction of orexin-producing hypothalamic neurons. The mechanisms involved in the destruction of orexin neurons are not yet elucidated but the association of narcolepsy with environmental triggers and genetic susceptibility (strong association with the HLA, TCRs and other immunologically-relevant loci) implicates an immuno-pathological process. Several studies in animal models and on human samples have suggested that T-cells are the main pathogenic culprits. Methods RNA sequencing was performed on four CD4 and CD8 T-cell subsets (naive, effector, effector memory and central memory) sorted by flow cytometry from peripheral blood mononuclear cells (PBMCs) of NT1 patients and HLA-matched healthy donors as well as (age- and sex-) matched individuals suffering from other sleep disorders (OSD). The RNAseq analysis was conducted by comparing the transcriptome of NT1 patients to that of healthy donors and other sleep disorder patients (collectively referred to as the non-narcolepsy controls) in order to identify NT1-specific genes and pathways. Results We determined NT1-specific differentially expressed genes, several of which are involved in tubulin arrangement found in CD4 (TBCB, CCT5, EML4, TPGS1, TPGS2) and CD8 (TTLL7) T cell subsets, which play a role in the immune synapse formation and TCR signaling. Furthermore, we identified genes (GZMB, LTB in CD4 T-cells and NLRP3, TRADD, IL6, CXCR1, FOXO3, FOXP3 in CD8 T-cells) and pathways involved in various aspects of inflammation and inflammatory response. More specifically, the inflammatory profile was identified in the "naive" subset of CD4 and CD8 T-cell. Conclusion We identified NT1-specific differentially expressed genes, providing a cell-type and subset specific catalog describing their functions in T-cells as well as their potential involvement in NT1. Several genes and pathways identified are involved in the formation of the immune synapse and TCR activation as well as inflammation and the inflammatory response. An inflammatory transcriptomic profile was detected in both "naive" CD4 and CD8 T-cell subsets suggesting their possible involvement in the development or progression of the narcoleptic process.
Collapse
Affiliation(s)
- Leila Khajavi
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, Centre National de la Recherche Scientifique (CNRS), L'Institut National de la Sante et de la Recherche Medicale (INSERM), Universite Paul-Sabatier de Toulouse (UPS), Toulouse, France
- Applied Mathematics and Informatics Unit of Toulouse (MIAT), Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Toulouse, France
| | - Xuan-Hung Nguyen
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, Centre National de la Recherche Scientifique (CNRS), L'Institut National de la Sante et de la Recherche Medicale (INSERM), Universite Paul-Sabatier de Toulouse (UPS), Toulouse, France
- Vinmec Institute of Applied Science and Regenerative Medicine, Vinmec Healthcare System and College of Health Sciences, VinUniveristy, Hanoi, Vietnam
| | - Clémence Queriault
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, Centre National de la Recherche Scientifique (CNRS), L'Institut National de la Sante et de la Recherche Medicale (INSERM), Universite Paul-Sabatier de Toulouse (UPS), Toulouse, France
| | - Marianne Chabod
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, Centre National de la Recherche Scientifique (CNRS), L'Institut National de la Sante et de la Recherche Medicale (INSERM), Universite Paul-Sabatier de Toulouse (UPS), Toulouse, France
| | - Lucie Barateau
- National Reference Center for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia and Kleine-Levin Syndrome, Department of Neurology, Gui-de-Chauliac Hospital, Centre Hospitalier Universitaire (CHU) de Montpellier, Montpellier, France
- Institute for Neurosciences of Montpellier (INM), University Montpellier, Montpellier, France
| | - Yves Dauvilliers
- National Reference Center for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia and Kleine-Levin Syndrome, Department of Neurology, Gui-de-Chauliac Hospital, Centre Hospitalier Universitaire (CHU) de Montpellier, Montpellier, France
- Institute for Neurosciences of Montpellier (INM), University Montpellier, Montpellier, France
| | - Matthias Zytnicki
- Applied Mathematics and Informatics Unit of Toulouse (MIAT), Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Toulouse, France
| | - Roland Liblau
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, Centre National de la Recherche Scientifique (CNRS), L'Institut National de la Sante et de la Recherche Medicale (INSERM), Universite Paul-Sabatier de Toulouse (UPS), Toulouse, France
- Department of Immunology, Toulouse University Hospital, Toulouse, France
| |
Collapse
|
15
|
Hagen M, Pangrazzi L, Rocamora-Reverte L, Weinberger B. Legend or Truth: Mature CD4 +CD8 + Double-Positive T Cells in the Periphery in Health and Disease. Biomedicines 2023; 11:2702. [PMID: 37893076 PMCID: PMC10603952 DOI: 10.3390/biomedicines11102702] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
The expression of CD4 and CD8 co-receptors defines two distinct T cell populations with specialized functions. While CD4+ T cells support and modulate immune responses through different T-helper (Th) and regulatory subtypes, CD8+ T cells eliminate cells that might threaten the organism, for example, virus-infected or tumor cells. However, a paradoxical population of CD4+CD8+ double-positive (DP) T cells challenging this paradigm has been found in the peripheral blood. This subset has been observed in healthy as well as pathological conditions, suggesting unique and well-defined functions. Furthermore, DP T cells express activation markers and exhibit memory-like features, displaying an effector memory (EM) and central memory (CM) phenotype. A subset expressing high CD4 (CD4bright+) and intermediate CD8 (CD8dim+) levels and a population of CD8bright+CD4dim+ T cells have been identified within DP T cells, suggesting that this small subpopulation may be heterogeneous. This review summarizes the current literature on DP T cells in humans in health and diseases. In addition, we point out that strategies to better characterize this minor T cell subset's role in regulating immune responses are necessary.
Collapse
Affiliation(s)
- Magdalena Hagen
- Institute for Biomedical Aging Research, University of Innsbruck, 6020 Innsbruck, Austria
| | | | | | | |
Collapse
|
16
|
Gao J, Lin D, Hou C, Shen Y, Li Y, Wu D, Xu Y. The clinical value of anal swabs for microbial detection in allogeneic haematopoietic stem cell transplantation. Transplant Cell Ther 2023; 29:619.e1-619.e9. [PMID: 37499872 DOI: 10.1016/j.jtct.2023.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023]
Abstract
The intestinal microbiota plays critical roles in allogeneic hematopoietic stem cell transplantation (allo-HSCT). Rapid and effective microbial detection methods have important guiding value for the selection of intervention strategies for allo-HSCT recipients. We evaluated the application of the anal swab test before transplantation in allo-HSCT recipients. A total of 120 patients who underwent anal swab testing before allo-HSCT were retrospectively analyzed and divided into 3 groups: sterile (aseptic growth-negative), G+ (gram-positive bacterial colonization), and G- (gram-negative bacterial colonization). On 16S rRNA sequencing, gram-negative bacteria predominated in the G- group before and after transplantation. Compared with the sterile group, the percentage of natural killer cells was higher and the percentage of T cells was lower after transplantation in the G- group at 1 month after transplantation. The percentage of CD4+ and CD4+CD8+ T cells was lower and the percentage of regulatory T cells was higher in the G- group. The plasma levels of proinflammatory cytokines (TNF-α, IFN-γ, IL-6, and IL-17A) at 2 weeks post-transplantation were lower in the G- group than in the sterile group, as was the cumulative incidence of grade III-IV acute graft-versus-host disease (GVHD). Gram-negative bacterial colonization before allo-HSCT was associated with low rates of bloodstream infections within 100 days post-transplantation and cytomegalovirus reactivation at 100 days to 2 years post-transplantation. Moreover, patients in the G- group had a higher rate of 2-year GVHD-free, relapse-free survival compared with patients in the sterile group. The detection results using anal swabs were consistent with the gram-negative or gram-positive bacteria abundance of 16S rRNA sequencing results and associated with immune homeostasis and clinical outcomes after allo-HSCT. Anal swab testing may have potential advantages as a simple and effective method for microbial detection in allo-HSCT.
Collapse
Affiliation(s)
- Jun Gao
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China; Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Dandan Lin
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China; Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Chang Hou
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China; Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Ying Shen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China; Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Yangzi Li
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China; Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Depei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China; Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Yang Xu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China; Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.
| |
Collapse
|
17
|
Maurer K, Soiffer RJ. The delicate balance of graft versus leukemia and graft versus host disease after allogeneic hematopoietic stem cell transplantation. Expert Rev Hematol 2023; 16:943-962. [PMID: 37906445 PMCID: PMC11195539 DOI: 10.1080/17474086.2023.2273847] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/18/2023] [Indexed: 11/02/2023]
Abstract
INTRODUCTION The curative basis of allogeneic hematopoietic stem cell transplantation (HSCT) relies in part upon the graft versus leukemia (GvL) effect, whereby donor immune cells recognize and eliminate recipient malignant cells. However, alloreactivity of donor cells against recipient tissues may also be deleterious. Chronic graft versus host disease (cGvHD) is an immunologic phenomenon wherein alloreactive donor T cells aberrantly react against host tissues, leading to damaging inflammatory symptoms. AREAS COVERED Here, we discuss biological insights into GvL and cGvHD and strategies to balance the prevention of GvHD with maintenance of GvL in modern HSCT. EXPERT OPINION/COMMENTARY Relapse remains the leading cause of mortality after HSCT with rates as high as 40% for some diseases. GvHD is a major cause of morbidity after HSCT, occurring in up to half of patients and responsible for 15-20% of deaths after HSCT. Intriguingly, the development of chronic GvHD may be linked to lower relapse rates after HSCT, suggesting that GvL and GvHD may be complementary sides of the immunologic foundation of HSCT. The ability to fine tune the balance of GvL and GvHD will lead to improvements in survival, relapse rates, and quality of life for patients undergoing HSCT.
Collapse
Affiliation(s)
- Katie Maurer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Robert J Soiffer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
18
|
Zhao Y, Zhang Y, Liu J. Regulatory effect of Pseudomonas aeruginosa mannose-sensitive hemagglutinin on inflammation and immune function in percutaneous nephrolithotomy patients with upper urinary tract calculi complicated with infection. Front Immunol 2023; 14:1181688. [PMID: 37377966 PMCID: PMC10291127 DOI: 10.3389/fimmu.2023.1181688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/20/2023] [Indexed: 06/29/2023] Open
Abstract
Objective To study the effect of an injection of Pseudomonas aeruginosa mannose-sensitive hemagglutinin (PA-MSHA) on inflammation and immune function in patients with upper urinary tract calculi complicated by infection who have undergone percutaneous nephrolithotomy. Methods We retrospectively recorded the clinical data of patients with upper urinary tract calculi complicated by infection who have undergone Percutaneous nephrolithotomy(PCNL) in the Department of Urology, 2nd Affiliation Hospital of Kunming Medical University, from March to December 2021. Clinical data include general condition, laboratory index, CT, postoperative body temperature, heart rate, respiration, SIRS, sepsis, etc. Patients were divided into treated and control groups according to whether they had received a preoperative PA-MSHA injection. The two groups were compared for indices of inflammation and complications of infection after PCNL. Pre- and post-operative lymphocyte subsets and immunoglobulin changes were compared. Results 115 patients were included in the study, including 43 in the treatment group and 72 in the control group. After Propensity Score Matching, 90 patients were divided into treatment (n=35) and control (n=55) groups. The postoperative inflammation index was higher in the treatment group than in the control group (P<0.05). The incidence of postoperative SIRS was higher in the treatment group than control (P<0.05). There were no cases of sepsis in either group. The double-positive T cells lymphocyte subsets were higher in the treatment group than in the control group ((P<0.05). Pre- and post-operative changes in immune function: total T lymphocyte count reduced, NK and NKT cell count increased in the control group, double-positive T cell count increased in the treatment group, IgG, IgA, IgM, complement C3 and C4 count reduced in both groups post-operatively. Conclusion This study found that patients with upper urinary tract calculi and infection treated with antibiotic-based PA-MSHA before percutaneous nephrolithotomy had an increased inflammatory response after surgery, which may play a role in the prevention and treatment of sepsis. The percentage of double-positive T cells in the peripheral blood was increased after PA-MSHA treatment, which may have an immunomodulatory and protective effect in PCNL patients with stones complicated by infection.
Collapse
Affiliation(s)
- Yuan Zhao
- The Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yafei Zhang
- The Department of Urology, Kunming First People’s Hospital: Affiliated Calmette Hospital of Kunming Medical University, Kunming, China
| | - Jianhe Liu
- The Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
19
|
Hess NJ, Kink JA, Hematti P. Exosomes, MDSCs and Tregs: A new frontier for GVHD prevention and treatment. Front Immunol 2023; 14:1143381. [PMID: 37063900 PMCID: PMC10090348 DOI: 10.3389/fimmu.2023.1143381] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
The development of graft versus host disease (GVHD) represents a long-standing complication of allogeneic hematopoietic cell transplantation (allo-HCT). Different approaches have been used to control the development of GVHD with most relying on variations of chemotherapy drugs to eliminate allo-reactive T cells. While these approaches have proven effective, it is generally accepted that safer, and less toxic GVHD prophylaxis drugs are required to reduce the health burden placed on allo-HCT recipients. In this review, we will summarize the emerging concepts revolving around three biologic-based therapies for GVHD using T regulatory cells (Tregs), myeloid-derived-suppressor-cells (MDSCs) and mesenchymal stromal cell (MSC) exosomes. This review will highlight how each specific modality is unique in its mechanism of action, but also share a common theme in their ability to preferentially activate and expand Treg populations in vivo. As these three GVHD prevention/treatment modalities continue their path toward clinical application, it is imperative the field understand both the biological advantages and disadvantages of each approach.
Collapse
Affiliation(s)
- Nicholas J. Hess
- Division of Hematology, Oncology and Palliative Care, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- University of Wisconsin Carbone Cancer Center, Madison, WI, United States
| | - John A. Kink
- Division of Hematology, Oncology and Palliative Care, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- University of Wisconsin Carbone Cancer Center, Madison, WI, United States
| | - Peiman Hematti
- Division of Hematology, Oncology and Palliative Care, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- University of Wisconsin Carbone Cancer Center, Madison, WI, United States
| |
Collapse
|