1
|
Beekly BG, Rupp A, Burgess CR, Elias CF. Fast neurotransmitter identity of MCH neurons: Do contents depend on context? Front Neuroendocrinol 2023; 70:101069. [PMID: 37149229 PMCID: PMC11190671 DOI: 10.1016/j.yfrne.2023.101069] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/07/2023] [Accepted: 04/29/2023] [Indexed: 05/08/2023]
Abstract
Hypothalamic melanin-concentrating hormone (MCH) neurons participate in many fundamental neuroendocrine processes. While some of their effects can be attributed to MCH itself, others appear to depend on co-released neurotransmitters. Historically, the subject of fast neurotransmitter co-release from MCH neurons has been contentious, with data to support MCH neurons releasing GABA, glutamate, both, and neither. Rather than assuming a position in that debate, this review considers the evidence for all sides and presents an alternative explanation: neurochemical identity, including classical neurotransmitter content, is subject to change. With an emphasis on the variability of experimental details, we posit that MCH neurons may release GABA and/or glutamate at different points according to environmental and contextual factors. Through the lens of the MCH system, we offer evidence that the field of neuroendocrinology would benefit from a more nuanced and dynamic interpretation of neurotransmitter identity.
Collapse
Affiliation(s)
- B G Beekly
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, United States; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States; Elizabeth W. Caswell Diabetes Institute, University of Michigan, Ann Arbor, MI, United States.
| | - A Rupp
- Elizabeth W. Caswell Diabetes Institute, University of Michigan, Ann Arbor, MI, United States
| | - C R Burgess
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, United States; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States; Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
| | - C F Elias
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, United States; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States; Elizabeth W. Caswell Diabetes Institute, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
2
|
Rowley PA, Ellahi A, Han K, Patel JS, Van Leuven JT, Sawyer SL. Nuku, a family of primate retrocopies derived from KU70. G3 (BETHESDA, MD.) 2021; 11:jkab163. [PMID: 34849803 PMCID: PMC8496227 DOI: 10.1093/g3journal/jkab163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 04/30/2021] [Indexed: 11/16/2022]
Abstract
The gene encoding the ubiquitous DNA repair protein, Ku70p, has undergone extensive copy number expansion during primate evolution. Gene duplications of KU70 have the hallmark of long interspersed element-1 mediated retrotransposition with evidence of target-site duplications, the poly-A tails, and the absence of introns. Evolutionary analysis of this expanded family of KU70-derived "NUKU" retrocopies reveals that these genes are both ancient and also actively being created in extant primate species. NUKU retrocopies show evidence of functional divergence away from KU70, as evinced by their altered pattern of tissue expression and possible tissue-specific translation. Molecular modeling predicted that amino acid changes in Nuku2p at the interaction interface with Ku80p would prevent the assembly of the Ku heterodimer. The lack of Nuku2p-Ku80p interaction was confirmed by yeast two-hybrid assay, which contrasts the robust interaction of Ku70p-Ku80p. While several NUKU retrocopies appear to have been degraded by mutation, NUKU2 shows evidence of positive natural selection, suggesting that this retrocopy is undergoing neofunctionalization. Although Nuku proteins do not appear to antagonize retrovirus transduction in cell culture, the observed expansion and rapid evolution of NUKUs could be being driven by alternative selective pressures related to infectious disease or an undefined role in primate physiology.
Collapse
Affiliation(s)
- Paul A Rowley
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Aisha Ellahi
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78751, USA
| | - Kyudong Han
- Department of Microbiology, College of Science & Technology, Dankook University, Cheonan 31116, Republic of Korea
- Center for Bio- Medical Engineering Core Facility, Dankook University, Cheonan 31116, Republic of Korea
| | - Jagdish Suresh Patel
- Center for Modeling Complex Interactions, University of Idaho, Moscow, ID 83844, USA and
| | - James T Van Leuven
- Center for Modeling Complex Interactions, University of Idaho, Moscow, ID 83844, USA and
| | - Sara L Sawyer
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80302, USA
| |
Collapse
|
3
|
Correa M, Lerat E, Birmelé E, Samson F, Bouillon B, Normand K, Rizzon C. The Transposable Element Environment of Human Genes Differs According to Their Duplication Status and Essentiality. Genome Biol Evol 2021; 13:6273345. [PMID: 33973013 PMCID: PMC8155550 DOI: 10.1093/gbe/evab062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2021] [Indexed: 12/13/2022] Open
Abstract
Transposable elements (TEs) are major components of eukaryotic genomes and represent approximately 45% of the human genome. TEs can be important sources of novelty in genomes and there is increasing evidence that TEs contribute to the evolution of gene regulation in mammals. Gene duplication is an evolutionary mechanism that also provides new genetic material and opportunities to acquire new functions. To investigate how duplicated genes are maintained in genomes, here, we explored the TE environment of duplicated and singleton genes. We found that singleton genes have more short-interspersed nuclear elements and DNA transposons in their vicinity than duplicated genes, whereas long-interspersed nuclear elements and long-terminal repeat retrotransposons have accumulated more near duplicated genes. We also discovered that this result is highly associated with the degree of essentiality of the genes with an unexpected accumulation of short-interspersed nuclear elements and DNA transposons around the more-essential genes. Our results underline the importance of taking into account the TE environment of genes to better understand how duplicated genes are maintained in genomes.
Collapse
Affiliation(s)
- Margot Correa
- Laboratoire de Mathématiques et Modélisation d'Evry (LaMME), UMR CNRS 8071, ENSIIE, USC INRA, Université d'Evry Val d'Essonne, Evry, France
| | - Emmanuelle Lerat
- Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, Université de Lyon, Université Lyon 1, CNRS, Villeurbanne, France
| | - Etienne Birmelé
- Laboratoire MAP5 UMR 8145, Université de Paris, Paris, France
| | - Franck Samson
- Laboratoire de Mathématiques et Modélisation d'Evry (LaMME), UMR CNRS 8071, ENSIIE, USC INRA, Université d'Evry Val d'Essonne, Evry, France
| | - Bérengère Bouillon
- Laboratoire de Mathématiques et Modélisation d'Evry (LaMME), UMR CNRS 8071, ENSIIE, USC INRA, Université d'Evry Val d'Essonne, Evry, France
| | - Kévin Normand
- Laboratoire de Mathématiques et Modélisation d'Evry (LaMME), UMR CNRS 8071, ENSIIE, USC INRA, Université d'Evry Val d'Essonne, Evry, France
| | - Carène Rizzon
- Laboratoire de Mathématiques et Modélisation d'Evry (LaMME), UMR CNRS 8071, ENSIIE, USC INRA, Université d'Evry Val d'Essonne, Evry, France
| |
Collapse
|
4
|
Diniz GB, Bittencourt JC. The Melanin-Concentrating Hormone (MCH) System: A Tale of Two Peptides. Front Neurosci 2019; 13:1280. [PMID: 31849590 PMCID: PMC6901935 DOI: 10.3389/fnins.2019.01280] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 11/11/2019] [Indexed: 12/19/2022] Open
Abstract
The melanin-concentrating hormone (MCH) system is a robust integrator of exogenous and endogenous information, modulating arousal and energy balance in mammals. Its predominant function in teleosts, however, is to concentrate melanin in the scales, contributing to the adaptive color change observed in several teleost species. These contrasting functions resulted from a gene duplication that occurred after the teleost divergence, which resulted in the generation of two MCH-coding genes in this clade, which acquired distinctive sequences, distribution, and functions, examined in detail here. We also describe the distribution of MCH immunoreactivity and gene expression in a large number of species, in an attempt to identify its core elements. While initially originated as a periventricular peptide, with an intimate relationship with the third ventricle, multiple events of lateral migration occurred during evolution, making the ventrolateral and dorsolateral hypothalamus the predominant sites of MCH in teleosts and mammals, respectively. Substantial differences between species can be identified, likely reflecting differences in habitat and behavior. This observation aligns well with the idea that MCH is a major integrator of internal and external information, ensuring an appropriate response to ensure the organism’s homeostasis. New studies on the MCH system in species that have not yet been investigated will help us understand more precisely how these habitat changes are connected to the hypothalamic neurochemical circuits, paving the way to new intervention strategies that may be used with pharmacological purposes.
Collapse
Affiliation(s)
- Giovanne B Diniz
- Departamento de Anatomia, Instituto de Ciências Biomedicas, Universidade de São Paulo, São Paulo, Brazil.,Department of Neurosurgery, Yale School of Medicine, New Haven, CT, United States
| | - Jackson C Bittencourt
- Departamento de Anatomia, Instituto de Ciências Biomedicas, Universidade de São Paulo, São Paulo, Brazil.,Nucleo de Neurociencias e Comportamento, Instituto de Psicologia, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
5
|
Bertolesi GE, Zhang JZ, McFarlane S. Plasticity for colour adaptation in vertebrates explained by the evolution of the genes pomc, pmch and pmchl. Pigment Cell Melanoma Res 2019; 32:510-527. [PMID: 30791235 PMCID: PMC7167667 DOI: 10.1111/pcmr.12776] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 01/27/2019] [Accepted: 02/16/2019] [Indexed: 02/06/2023]
Abstract
Different camouflages work best with some background matching colour. Our understanding of the evolution of skin colour is based mainly on the genetics of pigmentation ("background matching"), with little known about the evolution of the neuroendocrine systems that facilitate "background adaptation" through colour phenotypic plasticity. To address the latter, we studied the evolution in vertebrates of three genes, pomc, pmch and pmchl, that code for α-MSH and two melanin-concentrating hormones (MCH and MCHL). These hormones induce either dispersion/aggregation or the synthesis of pigments. We find that α-MSH is highly conserved during evolution, as is its role in dispersing/synthesizing pigments. Also conserved is the three-exon pmch gene that encodes MCH, which participates in feeding behaviours. In contrast, pmchl (known previously as pmch), is a teleost-specific intron-less gene. Our data indicate that in zebrafish, pmchl-expressing neurons extend axons to the pituitary, supportive of an MCHL hormonal role, whereas zebrafish and Xenopus pmch+ neurons send axons dorsally in the brain. The evolution of these genes and acquisition of hormonal status for MCHL explain different mechanisms used by vertebrates to background-adapt.
Collapse
Affiliation(s)
- Gabriel E Bertolesi
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - John Zhijia Zhang
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Sarah McFarlane
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
6
|
Bu L, Katju V. Early evolutionary history and genomic features of gene duplicates in the human genome. BMC Genomics 2015; 16:621. [PMID: 26290067 PMCID: PMC4546093 DOI: 10.1186/s12864-015-1827-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 08/07/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Human gene duplicates have been the focus of intense research since the development of array-based and targeted next-generation sequencing approaches in the last decade. These studies have primarily concentrated on determining the extant copy-number variation from a population-genomic perspective but lack a robust evolutionary framework to elucidate the early structural and genomic characteristics of gene duplicates at emergence and their subsequent evolution with increasing age. RESULTS We analyzed 184 gene duplicate pairs comprising small gene families in the draft human genome with 10% or less synonymous sequence divergence. Human gene duplicates primarily originate from DNA-mediated events, taking up genomic residence as intrachromosomal copies in direct or inverse orientation. The distribution of paralogs on autosomes follows random expectations in contrast to their significant enrichment on the sex chromosomes. Furthermore, human gene duplicates exhibit a skewed gradient of distribution along the chromosomal length with significant clustering in pericentromeric regions. Surprisingly, despite the large average length of human genes, the majority of extant duplicates (83%) are complete duplicates, wherein the entire ORF of the ancestral copy was duplicated. The preponderance of complete duplicates is in accord with an extremely large median duplication span of 36 kb, which enhances the probability of capturing ancestral ORFs in their entirety. With increasing evolutionary age, human paralogs exhibit declines in (i) the frequency of intrachromosomal paralogs, and (ii) the proportion of complete duplicates. These changes may reflect lower survival rates of certain classes of duplicates and/or the role of purifying selection. Duplications arising from RNA-mediated events comprise a small fraction (11.4%) of all human paralogs and are more numerous in older evolutionary cohorts of duplicates. CONCLUSIONS The degree of structural resemblance, genomic location and duplication span appear to influence the long-term maintenance of paralogs in the human genome. The median duplication span in the human genome far exceeds that in C. elegans and yeast and likely contributes to the high prevalence of complete duplicates relative to structurally heterogeneous duplicates (partial and chimeric). The relative roles of regulatory sequence versus exon-intron structure changes in the acquisition of novel function by human paralogs remains to be determined.
Collapse
Affiliation(s)
- Lijing Bu
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA.
| | - Vaishali Katju
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA. .,Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, TX, 77843-4458, USA.
| |
Collapse
|
7
|
The melanin-concentrating hormone receptors: neuronal and non-neuronal functions. INTERNATIONAL JOURNAL OF OBESITY SUPPLEMENTS 2014; 4:S31-6. [PMID: 27152164 DOI: 10.1038/ijosup.2014.9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Melanin-concentrating hormone (MCH) is a cyclic peptide highly conserved in vertebrates and was originally identified as a skin-paling factor in Teleosts. In fishes, MCH also participates in the regulation of the stress-response and feeding behaviour. Mammalian MCH is a hypothalamic neuropeptide that displays multiple functions, mostly controlling feeding behaviour and energy homeostasis. Transgenic mouse models and pharmacological studies have shown the importance of the MCH system as a potential target in the treatment of appetite disorders and obesity as well as anxiety and psychiatric diseases. Two G-protein-coupled receptors (GPCRs) binding MCH have been characterized so far. The first, named MCH-R1 and also called SLC1, was identified through reverse pharmacology strategies by several groups as a cognate receptor of MCH. This receptor is expressed at high levels in many brain areas of rodents and primates and is also expressed in peripheral organs, albeit at a lower rate. A second receptor, designated MCH-R2, exhibited 38% identity to MCH-R1 and was identified by sequence analysis of the human genome. Interestingly, although MCH-R2 orthologues were also found in fishes, dogs, ferrets and non-human primates, this MCH receptor gene appeared either lacking or non-functional in rodents and lagomorphs. Both receptors are class I GPCRs, whose main roles are to mediate the actions of peptides and neurotransmitters in the central nervous system. However, examples of action of MCH on neuronal and non-neuronal cells are emerging that illustrate novel MCH functions. In particular, the functionality of endogenously expressed MCH-R1 has been explored in human neuroblastoma cells, SK-N-SH and SH-SY5Y cells, and in non-neuronal cell types such as the ependymocytes. Indeed, we have identified mitogen-activated protein kinase (MAPK)-dependent or calcium-dependent signalling cascades that ultimately contributed to neurite outgrowth in neuroblastoma cells or to modulation of ciliary beating in ependymal cells. The putative role of MCH on cellular shaping and plasticity on one side and volume transmission on the other must be now considered.
Collapse
|
8
|
Rippey C, Walsh T, Gulsuner S, Brodsky M, Nord AS, Gasperini M, Pierce S, Spurrell C, Coe BP, Krumm N, Lee MK, Sebat J, McClellan JM, King MC. Formation of chimeric genes by copy-number variation as a mutational mechanism in schizophrenia. Am J Hum Genet 2013; 93:697-710. [PMID: 24094746 PMCID: PMC3791253 DOI: 10.1016/j.ajhg.2013.09.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Revised: 08/15/2013] [Accepted: 09/10/2013] [Indexed: 12/28/2022] Open
Abstract
Chimeric genes can be caused by structural genomic rearrangements that fuse together portions of two different genes to create a novel gene. We hypothesize that brain-expressed chimeras may contribute to schizophrenia. Individuals with schizophrenia and control individuals were screened genome wide for copy-number variants (CNVs) that disrupted two genes on the same DNA strand. Candidate events were filtered for predicted brain expression and for frequency < 0.001 in an independent series of 20,000 controls. Four of 124 affected individuals and zero of 290 control individuals harbored such events (p = 0.002); a 47 kb duplication disrupted MATK and ZFR2, a 58 kb duplication disrupted PLEKHD1 and SLC39A9, a 121 kb duplication disrupted DNAJA2 and NETO2, and a 150 kb deletion disrupted MAP3K3 and DDX42. Each fusion produced a stable protein when exogenously expressed in cultured cells. We examined whether these chimeras differed from their parent genes in localization, regulation, or function. Subcellular localizations of DNAJA2-NETO2 and MAP3K3-DDX42 differed from their parent genes. On the basis of the expression profile of the MATK promoter, MATK-ZFR2 is likely to be far more highly expressed in the brain during development than the ZFR2 parent gene. MATK-ZFR2 includes a ZFR2-derived isoform that we demonstrate localizes preferentially to neuronal dendritic branch sites. These results suggest that the formation of chimeric genes is a mechanism by which CNVs contribute to schizophrenia and that, by interfering with parent gene function, chimeras may disrupt critical brain processes, including neurogenesis, neuronal differentiation, and dendritic arborization.
Collapse
Affiliation(s)
- Caitlin Rippey
- Departments of Medicine and of Genome Sciences, University of Washington, Seattle, WA 98195, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Michel D. Life is a self-organizing machine driven by the informational cycle of Brillouin. ORIGINS LIFE EVOL B 2013; 43:137-50. [PMID: 23625038 DOI: 10.1007/s11084-013-9329-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 01/04/2013] [Indexed: 01/04/2023]
Abstract
Acquiring information is indisputably energy-consuming and conversely, the availability of information permits greater efficiency. Strangely, the scientific community long remained reluctant to establish a physical equivalence between the abstract notion of information and sensible thermodynamics. However, certain physicists such as Szilard and Brillouin proposed: (i) to give to information the status of a genuine thermodynamic entity (k B T ln2 joules/bit) and (ii) to link the capacity of storing information inferred from correlated systems, to that of indefinitely increasing organization. This positive feedback coupled to the self-templating molecular potential could provide a universal basis for the spontaneous rise of highly organized structures, typified by the emergence of life from a prebiotic chemical soup. Once established, this mechanism ensures the longevity and robustness of life envisioned as a general system, by allowing it to accumulate and optimize microstate-reducing recipes, thereby giving rise to strong nonlinearity, decisional capacity and multistability. Mechanisms possibly involved in priming this cycle are proposed.
Collapse
Affiliation(s)
- Denis Michel
- Université de Rennes 1 IRSET U1085 Transcription, Environment and Cancer, Campus de Beaulieu, Bat 13, 35042 Rennes Cedex, France.
| |
Collapse
|
10
|
Schrider DR, Navarro FCP, Galante PAF, Parmigiani RB, Camargo AA, Hahn MW, de Souza SJ. Gene copy-number polymorphism caused by retrotransposition in humans. PLoS Genet 2013; 9:e1003242. [PMID: 23359205 PMCID: PMC3554589 DOI: 10.1371/journal.pgen.1003242] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 11/28/2012] [Indexed: 01/05/2023] Open
Abstract
The era of whole-genome sequencing has revealed that gene copy-number changes caused by duplication and deletion events have important evolutionary, functional, and phenotypic consequences. Recent studies have therefore focused on revealing the extent of variation in copy-number within natural populations of humans and other species. These studies have found a large number of copy-number variants (CNVs) in humans, many of which have been shown to have clinical or evolutionary importance. For the most part, these studies have failed to detect an important class of gene copy-number polymorphism: gene duplications caused by retrotransposition, which result in a new intron-less copy of the parental gene being inserted into a random location in the genome. Here we describe a computational approach leveraging next-generation sequence data to detect gene copy-number variants caused by retrotransposition (retroCNVs), and we report the first genome-wide analysis of these variants in humans. We find that retroCNVs account for a substantial fraction of gene copy-number differences between any two individuals. Moreover, we show that these variants may often result in expressed chimeric transcripts, underscoring their potential for the evolution of novel gene functions. By locating the insertion sites of these duplicates, we are able to show that retroCNVs have had an important role in recent human adaptation, and we also uncover evidence that positive selection may currently be driving multiple retroCNVs toward fixation. Together these findings imply that retroCNVs are an especially important class of polymorphism, and that future studies of copy-number variation should search for these variants in order to illuminate their potential evolutionary and functional relevance. Recent studies of human genetic variation have revealed that, in addition to differing at single nucleotide polymorphisms, individuals differ in copy-number at many regions of the genome. These copy-number variants (CNVs) are caused by duplication or deletion events and often affect functional sequences such as genes. Efforts to reveal the functional impact of CNVs have identified many variants increasing the risk of various disorders, and some that are adaptive. However, these studies mostly fail to detect gene duplications caused by retrotransposition, in which an mRNA transcript is reverse-transcribed and reinserted into the genome, yielding a new intron-less gene copy. Here we describe a method leveraging next-generation sequence data to accurately detect gene copy-number variants caused by retrotransposition, or retroCNVs, and apply this method to hundreds of whole-genome sequences from three different human subpopulations. We find that these variants account for a substantial number of gene copy-number differences between individuals, and that gene retrotransposition may often result in both deleterious and beneficial mutations. Indeed, we present evidence that two of these new gene duplications may be adaptive. These results imply that retroCNVs are an especially important class of CNV and should be included in future studies of human copy-number variation.
Collapse
Affiliation(s)
- Daniel R. Schrider
- Department of Biology and School of Informatics and Computing, Indiana University, Bloomington, Indiana, United States of America
- * E-mail: (DRS); (FCPN)
| | - Fabio C. P. Navarro
- São Paulo Branch, Ludwig Institute for Cancer Research, São Paulo, Brazil
- Departamento de Bioquímica, Universidade de São Paulo, São Paulo, Brazil
- Centro de Oncologia Molecular–Hospital Sírio-Libanês, São Paulo, Brazil
- * E-mail: (DRS); (FCPN)
| | - Pedro A. F. Galante
- São Paulo Branch, Ludwig Institute for Cancer Research, São Paulo, Brazil
- Centro de Oncologia Molecular–Hospital Sírio-Libanês, São Paulo, Brazil
| | - Raphael B. Parmigiani
- São Paulo Branch, Ludwig Institute for Cancer Research, São Paulo, Brazil
- Centro de Oncologia Molecular–Hospital Sírio-Libanês, São Paulo, Brazil
| | - Anamaria A. Camargo
- São Paulo Branch, Ludwig Institute for Cancer Research, São Paulo, Brazil
- Centro de Oncologia Molecular–Hospital Sírio-Libanês, São Paulo, Brazil
| | - Matthew W. Hahn
- Department of Biology and School of Informatics and Computing, Indiana University, Bloomington, Indiana, United States of America
| | - Sandro J. de Souza
- São Paulo Branch, Ludwig Institute for Cancer Research, São Paulo, Brazil
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
11
|
Mbanefo EC, Chuanxin Y, Kikuchi M, Shuaibu MN, Boamah D, Kirinoki M, Hayashi N, Chigusa Y, Osada Y, Hamano S, Hirayama K. Origin of a novel protein-coding gene family with similar signal sequence in Schistosoma japonicum. BMC Genomics 2012; 13:260. [PMID: 22716200 PMCID: PMC3434034 DOI: 10.1186/1471-2164-13-260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 06/11/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Evolution of novel protein-coding genes is the bedrock of adaptive evolution. Recently, we identified six protein-coding genes with similar signal sequence from Schistosoma japonicum egg stage mRNA using signal sequence trap (SST). To find the mechanism underlying the origination of these genes with similar core promoter regions and signal sequence, we adopted an integrated approach utilizing whole genome, transcriptome and proteome database BLAST queries, other bioinformatics tools, and molecular analyses. RESULTS Our data, in combination with database analyses showed evidences of expression of these genes both at the mRNA and protein levels exclusively in all developmental stages of S. japonicum. The signal sequence motif was identified in 27 distinct S. japonicum UniGene entries with multiple mRNA transcripts, and in 34 genome contigs distributed within 18 scaffolds with evidence of genome-wide dispersion. No homolog of these genes or similar domain was found in deposited data from any other organism. We observed preponderance of flanking repetitive elements (REs), albeit partial copies, especially of the RTE-like and Perere class at either side of the duplication source locus. The role of REs as major mediators of DNA-level recombination leading to dispersive duplication is discussed with evidence from our analyses. We also identified a stepwise pathway towards functional selection in evolving genes by alternative splicing. Equally, the possible transcription models of some protein-coding representatives of the duplicons are presented with evidence of expression in vitro. CONCLUSION Our findings contribute to the accumulating evidence of the role of REs in the generation of evolutionary novelties in organisms' genomes.
Collapse
Affiliation(s)
- Evaristus Chibunna Mbanefo
- Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), and Global COE Program, Nagasaki University, 1-12-4 Sakamoto, 852-8523, Nagasaki, Japan
- Department of Parasitology and Entomology, Faculty of Bioscience, Nnamdi Azikiwe University, P.M.B. 5025, Awka, Nigeria
| | - Yu Chuanxin
- Laboratory on Technology for Parasitic Disease Prevention and Control, Jiangsu Institute of Parasitic Diseases, 117 Yangxiang, Meiyuan, Wuxi, 214064, People's Republic of China
| | - Mihoko Kikuchi
- Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), and Global COE Program, Nagasaki University, 1-12-4 Sakamoto, 852-8523, Nagasaki, Japan
| | - Mohammed Nasir Shuaibu
- Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), and Global COE Program, Nagasaki University, 1-12-4 Sakamoto, 852-8523, Nagasaki, Japan
| | - Daniel Boamah
- Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), and Global COE Program, Nagasaki University, 1-12-4 Sakamoto, 852-8523, Nagasaki, Japan
| | - Masashi Kirinoki
- Laboratory of Tropical Medicine and Parasitology, Dokkyo Medical University, Tochigi, Japan
| | - Naoko Hayashi
- Laboratory of Tropical Medicine and Parasitology, Dokkyo Medical University, Tochigi, Japan
| | - Yuichi Chigusa
- Laboratory of Tropical Medicine and Parasitology, Dokkyo Medical University, Tochigi, Japan
| | - Yoshio Osada
- Department of Immunology and Parasitology, The University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Shinjiro Hamano
- Department of Parasitology, Institute of Tropical Medicine (NEKKEN), and Global COE Program, Nagasaki University, 1-12-4 Sakamoto, 852-8523, Nagasaki, Japan
| | - Kenji Hirayama
- Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), and Global COE Program, Nagasaki University, 1-12-4 Sakamoto, 852-8523, Nagasaki, Japan
| |
Collapse
|
12
|
Ranz JM, Parsch J. Newly evolved genes: moving from comparative genomics to functional studies in model systems. How important is genetic novelty for species adaptation and diversification? Bioessays 2012; 34:477-83. [PMID: 22461005 DOI: 10.1002/bies.201100177] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Genes are gained and lost over the course of evolution. A recent study found that over 1,800 new genes have appeared during primate evolution and that an unexpectedly high proportion of these genes are expressed in the human brain. But what are the molecular functions of newly evolved genes and what is their impact on an organism's fitness? The acquisition of new genes may provide a rich source of genetic diversity that fuels evolutionary innovation. Although gene manipulation experiments are not feasible in humans, studies in model organisms, such as Drosophila melanogaster, have shown that new genes can quickly become integrated into genetic networks and become essential for survival or fertility. Future studies of new genes, especially chimeric genes, and their functions will help determine the role of genetic novelty in the adaptation and diversification of species.
Collapse
Affiliation(s)
- José M Ranz
- Department of Ecology and Evolutionary Biology, University of California-Irvine, CA, USA.
| | | |
Collapse
|
13
|
Wu YC, Rasmussen MD, Kellis M. Evolution at the subgene level: domain rearrangements in the Drosophila phylogeny. Mol Biol Evol 2011; 29:689-705. [PMID: 21900599 PMCID: PMC3258039 DOI: 10.1093/molbev/msr222] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Although the possibility of gene evolution by domain rearrangements has long been appreciated, current methods for reconstructing and systematically analyzing gene family evolution are limited to events such as duplication, loss, and sometimes, horizontal transfer. However, within the Drosophila clade, we find domain rearrangements occur in 35.9% of gene families, and thus, any comprehensive study of gene evolution in these species will need to account for such events. Here, we present a new computational model and algorithm for reconstructing gene evolution at the domain level. We develop a method for detecting homologous domains between genes and present a phylogenetic algorithm for reconstructing maximum parsimony evolutionary histories that include domain generation, duplication, loss, merge (fusion), and split (fission) events. Using this method, we find that genes involved in fusion and fission are enriched in signaling and development, suggesting that domain rearrangements and reuse may be crucial in these processes. We also find that fusion is more abundant than fission, and that fusion and fission events occur predominantly alongside duplication, with 92.5% and 34.3% of fusion and fission events retaining ancestral architectures in the duplicated copies. We provide a catalog of ∼9,000 genes that undergo domain rearrangement across nine sequenced species, along with possible mechanisms for their formation. These results dramatically expand on evolution at the subgene level and offer several insights into how new genes and functions arise between species.
Collapse
Affiliation(s)
- Yi-Chieh Wu
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Massachusetts, USA.
| | | | | |
Collapse
|
14
|
Carmona-Mora P, Molina J, Encina CA, Walz K. Mouse models of genomic syndromes as tools for understanding the basis of complex traits: an example with the smith-magenis and the potocki-lupski syndromes. Curr Genomics 2011; 10:259-68. [PMID: 19949547 PMCID: PMC2709937 DOI: 10.2174/138920209788488508] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 04/07/2009] [Accepted: 04/09/2009] [Indexed: 11/29/2022] Open
Abstract
Each human's genome is distinguished by extra and missing DNA that can be “benign” or powerfully impact everything from development to disease. In the case of genomic disorders DNA rearrangements, such as deletions or duplications, correlate with a clinical specific phenotype. The clinical presentations of genomic disorders were thought to result from altered gene copy number of physically linked dosage sensitive genes. Genomic disorders are frequent diseases (~1 per 1,000 births). Smith-Magenis syndrome (SMS) and Potocki-Lupski syndrome (PTLS) are genomic disorders, associated with a deletion and a duplication, of 3.7 Mb respectively, within chromosome 17 band p11.2. This region includes 23 genes. Both syndromes have complex and distinctive phenotypes including multiple congenital and neurobehavioral abnormalities. Human chromosome 17p11.2 is syntenic to the 32-34 cM region of murine chromosome 11. The number and order of the genes are highly conserved. In this review, we will exemplify how genomic disorders can be modeled in mice and the advantages that such models can give in the study of genomic disorders in particular and gene copy number variation (CNV) in general. The contributions of the SMS and PTLS animal models in several aspects ranging from more specific ones, as the definition of the clinical aspects of the human clinical spectrum, the identification of dosage sensitive genes related to the human syndromes, to the more general contributions as the definition of genetic locus impacting obesity and behavior and the elucidation of general mechanisms related to the pathogenesis of gene CNV are discussed.
Collapse
|
15
|
Bittencourt JC. Anatomical organization of the melanin-concentrating hormone peptide family in the mammalian brain. Gen Comp Endocrinol 2011; 172:185-97. [PMID: 21463631 DOI: 10.1016/j.ygcen.2011.03.028] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Revised: 03/23/2011] [Accepted: 03/28/2011] [Indexed: 11/24/2022]
Abstract
More than 20 years ago, melanin-concentrating hormone (MCH) and its peptide family members - neuropeptide EI (NEI) and neuropeptide GE (NGE) - were described in various species, including mammals (rodents, humans, and non-human primates). Since then, most studies have focused on the role of MCH as an orexigenic peptide, as well as on its participation in learning, spatial memory, neuroendocrine control, and sleep. It has been shown that MCH mRNA or the neuropeptide MCH are present in neurons of the prosencephalon, hypothalamus and brainstem. However, most of the neurons containing MCH/NEI are within the incerto-hypothalamic and lateral hypothalamic areas. In addition, the terminals of those neurons are distributed widely throughout the central nervous system. In this review, we will discuss the relationship between those territories and the roles played by MCH/NEI, as well as the importance of MCH receptor 1 in the respective terminal fields. Certain neurochemical features of MCH- and NEI-immunoreactive (MCH-ir and NEI-ir) neurons will also be discussed. The overarching theme is the anatomical organization of an inhibitory neuropeptide colocalized with an inhibitory neurotransmitter in integrative territories of the central nervous system, such as the IHy and LHA. Although these territories have connections to few brain regions, the regions to which they are connected are relevant, being responsible for the organization of motivated behaviors. All available information on this peptidergic system (anatomical, neurochemical, hodological, physiological, pharmacological and behavioral data) suggests that MCH is intimately involved in arousal and the initiation of motivated behaviors.
Collapse
Affiliation(s)
- Jackson C Bittencourt
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, SP, Brazil.
| |
Collapse
|
16
|
Elrouby N, Bureau TE. Bs1, a new chimeric gene formed by retrotransposon-mediated exon shuffling in maize. PLANT PHYSIOLOGY 2010; 153:1413-24. [PMID: 20488894 PMCID: PMC2899935 DOI: 10.1104/pp.110.157420] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Accepted: 05/16/2010] [Indexed: 05/19/2023]
Abstract
Transposons are major components of all eukaryotic genomes. Although traditionally regarded as causes of detrimental mutations, recent evidence suggests that transposons may play a role in host gene diversification and evolution. For example, host gene transduction by retroelements has been suggested to be both common and to have the potential to create new chimeric genes by the shuffling of existing sequences. We have previously shown that the maize (Zea mays subsp. mays) retrotransposon Bs1 has transduced sequences from three different host genes. Here, we provide evidence that these transduction events led to the generation of a chimeric new gene that is both transcribed and translated. Expression of Bs1 is tightly controlled and occurs during a narrow developmental window in early ear development. Although all Bs1-associated transduction events took place before Zea speciation, a full uninterrupted open reading frame encoding the BS1 protein may have arisen in domesticated maize or in the diverse populations of its progenitor Z. mays subsp. parviglumis. We discuss potential functions based on domain conservation and evidence for functional constraints between the transduced sequences and their host gene counterparts.
Collapse
Affiliation(s)
- Nabil Elrouby
- Department of Biology, McGill University, Montreal, Quebec, Canada.
| | | |
Collapse
|
17
|
Berman JR, Skariah G, Maro GS, Mignot E, Mourrain P. Characterization of two melanin-concentrating hormone genes in zebrafish reveals evolutionary and physiological links with the mammalian MCH system. J Comp Neurol 2010; 517:695-710. [PMID: 19827161 DOI: 10.1002/cne.22171] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Melanin-concentrating hormone (MCH) regulates feeding and complex behaviors in mammals and pigmentation in fish. The relationship between fish and mammalian MCH systems is not well understood. Here, we identify and characterize two MCH genes in zebrafish, Pmch1 and Pmch2. Whereas Pmch1 and its corresponding MCH1 peptide resemble MCH found in other fish, the zebrafish Pmch2 gene and MCH2 peptide share genomic structure, synteny, and high peptide sequence homology with mammalian MCH. Zebrafish Pmch genes are expressed in closely associated but non-overlapping neurons within the hypothalamus, and MCH2 neurons send numerous projections to multiple MCH receptor-rich targets with presumed roles in sensory perception, learning and memory, arousal, and homeostatic regulation. Preliminary functional analysis showed that whereas changes in zebrafish Pmch1 expression correlate with pigmentation changes, the number of MCH2-expressing neurons increases in response to chronic food deprivation. These findings demonstrate that zebrafish MCH2 is the putative structural and functional ortholog of mammalian MCH and help elucidate the nature of MCH evolution among vertebrates.
Collapse
Affiliation(s)
- Jennifer R Berman
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, California 94304, USA
| | | | | | | | | |
Collapse
|
18
|
Evolution in health and medicine Sackler colloquium: Genomic disorders: a window into human gene and genome evolution. Proc Natl Acad Sci U S A 2010; 107 Suppl 1:1765-71. [PMID: 20080665 DOI: 10.1073/pnas.0906222107] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Gene duplications alter the genetic constitution of organisms and can be a driving force of molecular evolution in humans and the great apes. In this context, the study of genomic disorders has uncovered the essential role played by the genomic architecture, especially low copy repeats (LCRs) or segmental duplications (SDs). In fact, regardless of the mechanism, LCRs can mediate or stimulate rearrangements, inciting genomic instability and generating dynamic and unstable regions prone to rapid molecular evolution. In humans, copy-number variation (CNV) has been implicated in common traits such as neuropathy, hypertension, color blindness, infertility, and behavioral traits including autism and schizophrenia, as well as disease susceptibility to HIV, lupus nephritis, and psoriasis among many other clinical phenotypes. The same mechanisms implicated in the origin of genomic disorders may also play a role in the emergence of segmental duplications and the evolution of new genes by means of genomic and gene duplication and triplication, exon shuffling, exon accretion, and fusion/fission events.
Collapse
|
19
|
Ubiquitous internal gene duplication and intron creation in eukaryotes. Proc Natl Acad Sci U S A 2009; 106:20818-23. [PMID: 19926850 DOI: 10.1073/pnas.0911093106] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Duplication of genomic segments provides a primary resource for the origin of evolutionary novelties. However, most previous studies have focused on duplications of complete protein-coding genes, whereas little is known about the significance of duplication segments that are entirely internal to genes. Our examination of six fully sequenced genomes reveals that internal duplications of gene segments occur at a high frequency (0.001-0.013 duplications/gene per million years), similar to that of complete gene duplications, such that 8-17% of the genes in a genome carry duplicated intronic and/or exonic regions. At least 7-30% of such genes have acquired novel introns, either because a prior intron in the same gene has been duplicated, or more commonly, because a spatial change has activated a latent splice site. These results strongly suggest a major evolutionary role for internal gene duplications in the origin of genomic novelties, particularly as a mechanism for intron gain.
Collapse
|
20
|
Adamantidis A, de Lecea L. A role for Melanin-Concentrating Hormone in learning and memory. Peptides 2009; 30:2066-70. [PMID: 19576257 PMCID: PMC4287368 DOI: 10.1016/j.peptides.2009.06.024] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Revised: 06/19/2009] [Accepted: 06/22/2009] [Indexed: 11/26/2022]
Abstract
The neurobiological substrate of learning process and persistent memory storage involves multiple brain areas. The neocortex and hippocampal formation are known as processing and storage sites for explicit memory, whereas the striatum, amygdala, neocortex and cerebellum support implicit memory. Synaptic plasticity, long-term changes in synaptic transmission efficacy and transient recruitment of intracellular signaling pathways in these brain areas have been proposed as possible mechanisms underlying short- and long-term memory retention. In addition to the classical neurotransmitters (glutamate, GABA), experimental evidence supports a role for neuropeptides in modulating memory processes. This review focuses on the role of the Melanin-Concentrating Hormone (MCH) and receptors on memory formation in animal studies. Possible mechanisms may involve direct MCH modulation of neural circuit activity that support memory storage and cognitive functions, as well as indirect effect on arousal.
Collapse
Affiliation(s)
- Antoine Adamantidis
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94304-5742, USA.
| | | |
Collapse
|
21
|
Catania F, Gao X, Scofield DG. Endogenous mechanisms for the origins of spliceosomal introns. J Hered 2009; 100:591-6. [PMID: 19635762 DOI: 10.1093/jhered/esp062] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Over 30 years since their discovery, the origin of spliceosomal introns remains uncertain. One nearly universally accepted hypothesis maintains that spliceosomal introns originated from self-splicing group-II introns that invaded the uninterrupted genes of the last eukaryotic common ancestor (LECA) and proliferated by "insertion" events. Although this is a possible explanation for the original presence of introns and splicing machinery, the emphasis on a high number of insertion events in the genome of the LECA neglects a considerable body of empirical evidence showing that spliceosomal introns can simply arise from coding or, more generally, nonintronic sequences within genes. After presenting a concise overview of some of the most common hypotheses and mechanisms for intron origin, we propose two further hypotheses that are broadly based on central cellular processes: 1) internal gene duplication and 2) the response to aberrant and fortuitously spliced transcripts. These two nonmutually exclusive hypotheses provide a powerful way to explain the establishment of spliceosomal introns in eukaryotes without invoking an exogenous source.
Collapse
Affiliation(s)
- Francesco Catania
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| | | | | |
Collapse
|
22
|
Hahn MW. Distinguishing among evolutionary models for the maintenance of gene duplicates. J Hered 2009; 100:605-17. [PMID: 19596713 DOI: 10.1093/jhered/esp047] [Citation(s) in RCA: 267] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Determining the evolutionary forces responsible for the maintenance of gene duplicates is key to understanding the processes leading to evolutionary adaptation and novelty. In his highly prescient book, Susumu Ohno recognized that duplicate genes are fixed and maintained within a population with 3 distinct outcomes: neofunctionalization, subfunctionalization, and conservation of function. Subsequent researchers have proposed a multitude of population genetic models that lead to these outcomes, each differing largely in the role played by adaptive natural selection. In this paper, I present a nonmathematical review of these models, their predictions, and the evidence collected in support of each of them. Though the various outcomes of gene duplication are often strictly associated with the presence or absence of adaptive natural selection, I argue that determining the outcome of duplication is orthogonal to determining whether natural selection has acted. Despite an ever-growing field of research into the fate of gene duplicates, there is not yet clear evidence for the preponderance of one outcome over the others, much less evidence for the importance of adaptive or nonadaptive forces in maintaining these duplicates.
Collapse
Affiliation(s)
- Matthew W Hahn
- Department of Biology and School of Informatics, Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|
23
|
Costa V, Casamassimi A, Roberto R, Gianfrancesco F, Matarazzo MR, D'Urso M, D'Esposito M, Rocchi M, Ciccodicola A. DDX11L: a novel transcript family emerging from human subtelomeric regions. BMC Genomics 2009; 10:250. [PMID: 19476624 PMCID: PMC2705379 DOI: 10.1186/1471-2164-10-250] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Accepted: 05/28/2009] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND The subtelomeric regions of human chromosomes exhibit an extraordinary plasticity. To date, due to the high GC content and to the presence of telomeric repeats, the subtelomeric sequences are underrepresented in the genomic libraries and consequently their sequences are incomplete in the finished human genome sequence, and still much remains to be learned about subtelomere organization, evolution and function. Indeed, only in recent years, several studies have disclosed, within human subtelomeres, novel gene family members. RESULTS During a project aimed to analyze genes located in the telomeric region of the long arm of the human X chromosome, we have identified a novel transcript family, DDX11L, members of which map to 1pter, 2q13/14.1, 2qter, 3qter, 6pter, 9pter/9qter, 11pter, 12pter, 15qter, 16pter, 17pter, 19pter, 20pter/20qter, Xpter/Xqter and Yqter. Furthermore, we partially sequenced the underrepresented subtelomeres of human chromosomes showing a common evolutionary origin. CONCLUSION Our data indicate that an ancestral gene, originated as a rearranged portion of the primate DDX11 gene, and propagated along many subtelomeric locations, is emerging within subtelomeres of human chromosomes, defining a novel gene family. These findings support the possibility that the high plasticity of these regions, sites of DNA exchange among different chromosomes, could trigger the emergence of new genes.
Collapse
Affiliation(s)
- Valerio Costa
- Institute of Genetics and Biophysics A, Buzzati-Traverso , CNR, 80131 Naples, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Kojima KK, Okada N. mRNA retrotransposition coupled with 5' inversion as a possible source of new genes. Mol Biol Evol 2009; 26:1405-20. [PMID: 19289598 DOI: 10.1093/molbev/msp050] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Human long interspersed nuclear element-1 (L1) occupies one-sixth of our genome and has contributed to genome evolution in various ways. Approximately 10% of human L1 copies are composed of two L1 segments; the 5' segment and 3' segment are in head-to-head (i.e., 5'-inverted) orientation. Besides mediating their own retrotransposition, L1 has the ability to mobilize mRNA "in trans," and the number of retrotransposed mRNA sequences (retrocopies) is estimated to be >6,000. In this study, we identified 48 human-specific retrocopies and 95 chimpanzee-specific retrocopies by comparing the human and chimpanzee genomes. Among these retrocopies, 12 were 5'-inverted. The characteristics of these 5'-inverted retrocopies were similar to those of 5'-inverted L1 copies, indicating that the 5' inversion is generated by the same mechanism. With these findings, we examined the possibility that 5' inversion of the retrocopy generates a new gene that codes for a peptide with a different N terminus. We identified several potential 5'-inverted retrogenes, including those of thymopoietin beta (TMPO) and eukaryotic translation initiation factor 3 subunit 5 (EIF3F). The most interesting candidate was the 5'-inverted retrocopy of small nuclear ribonucleoprotein polypeptide N (SNRPN). This retrocopy was transcribed in the reverse orientation in several organs, had multiple transcript variants, and encoded a protein containing a peptide fragment derived from the N-terminal portion of SNRPN. Our results suggest that mRNA retrotransposition coupled with 5' inversion may be a mechanism to generate new genes distinct from parental genes.
Collapse
Affiliation(s)
- Kenji K Kojima
- Department of Biological Sciences, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
| | | |
Collapse
|
25
|
Koszul R, Fischer G. A prominent role for segmental duplications in modeling Eukaryotic genomes. C R Biol 2009; 332:254-66. [DOI: 10.1016/j.crvi.2008.07.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Accepted: 07/12/2008] [Indexed: 01/22/2023]
|
26
|
Schmieder S, Darré-Toulemonde F, Arguel MJ, Delerue-Audegond A, Christen R, Nahon JL. Primate-specific spliced PMCHL RNAs are non-protein coding in human and macaque tissues. BMC Evol Biol 2008; 8:330. [PMID: 19068116 PMCID: PMC2621205 DOI: 10.1186/1471-2148-8-330] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Accepted: 12/09/2008] [Indexed: 11/24/2022] Open
Abstract
Background Brain-expressed genes that were created in primate lineage represent obvious candidates to investigate molecular mechanisms that contributed to neural reorganization and emergence of new behavioural functions in Homo sapiens. PMCHL1 arose from retroposition of a pro-melanin-concentrating hormone (PMCH) antisense mRNA on the ancestral human chromosome 5p14 when platyrrhines and catarrhines diverged. Mutations before divergence of hylobatidae led to creation of new exons and finally PMCHL1 duplicated in an ancestor of hominids to generate PMCHL2 at the human chromosome 5q13. A complex pattern of spliced and unspliced PMCHL RNAs were found in human brain and testis. Results Several novel spliced PMCHL transcripts have been characterized in human testis and fetal brain, identifying an additional exon and novel splice sites. Sequencing of PMCHL genes in several non-human primates allowed to carry out phylogenetic analyses revealing that the initial retroposition event took place within an intron of the brain cadherin (CDH12) gene, soon after platyrrhine/catarrhine divergence, i.e. 30–35 Mya, and was concomitant with the insertion of an AluSg element. Sequence analysis of the spliced PMCHL transcripts identified only short ORFs of less than 300 bp, with low (VMCH-p8 and protein variants) or no evolutionary conservation. Western blot analyses of human and macaque tissues expressing PMCHL RNA failed to reveal any protein corresponding to VMCH-p8 and protein variants encoded by spliced transcripts. Conclusion Our present results improve our knowledge of the gene structure and the evolutionary history of the primate-specific chimeric PMCHL genes. These genes produce multiple spliced transcripts, bearing short, non-conserved and apparently non-translated ORFs that may function as mRNA-like non-coding RNAs.
Collapse
Affiliation(s)
- Sandra Schmieder
- Université de Nice-Sophia Antipolis, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France.
| | | | | | | | | | | |
Collapse
|
27
|
Zhou Q, Wang W. On the origin and evolution of new genes—a genomic and experimental perspective. J Genet Genomics 2008; 35:639-48. [DOI: 10.1016/s1673-8527(08)60085-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2008] [Revised: 09/18/2008] [Accepted: 09/19/2008] [Indexed: 01/07/2023]
|
28
|
Durrens P, Nikolski M, Sherman D. Fusion and fission of genes define a metric between fungal genomes. PLoS Comput Biol 2008; 4:e1000200. [PMID: 18949021 PMCID: PMC2557144 DOI: 10.1371/journal.pcbi.1000200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Accepted: 09/05/2008] [Indexed: 12/19/2022] Open
Abstract
Gene fusion and fission events are key mechanisms in the evolution of gene architecture, whose effects are visible in protein architecture when they occur in coding sequences. Until now, the detection of fusion and fission events has been performed at the level of protein sequences with a post facto removal of supernumerary links due to paralogy, and often did not include looking for events defined only in single genomes. We propose a method for the detection of these events, defined on groups of paralogs to compensate for the gene redundancy of eukaryotic genomes, and apply it to the proteomes of 12 fungal species. We collected an inventory of 1,680 elementary fusion and fission events. In half the cases, both composite and element genes are found in the same species. Per-species counts of events correlate with the species genome size, suggesting a random mechanism of occurrence. Some biological functions of the genes involved in fusion and fission events are slightly over- or under-represented. As already noted in previous studies, the genes involved in an event tend to belong to the same functional category. We inferred the position of each event in the evolution tree of the 12 fungal species. The event localization counts for all the segments of the tree provide a metric that depicts the “recombinational” phylogeny among fungi. A possible interpretation of this metric as distance in adaptation space is proposed. One consequence of genome remodelling in evolution is the modification of genes, either by fusion with other genes, or by fission into several parts. By tracking the mathematical relations between groups of similar genes, rather than between individual genes, we can paint a global picture of remodelling across many species simultaneously. The strengths of our method are that it allows us to include highly redundant eukaryote genomes, and that it avoids alignment artifacts by representing each group of similar genes by a mathematical model. Applying our method to a set of fungal genomes, we confirmed first that the number of fusion/fission events is correlated with genome size, second that the fusion to fission ratio favors fusions, third that the set of events is not saturated, and fourth that while genes assembled in a fusion tend to have the same biochemical function, there appears to be little bias for the functions that are involved. Indeed, fusion and fission events are landmarks of random remodelling, independent of mutation rate: they define a metric of “recombination distance.” This distance lets us build a genome evolution history of species and may well be a better measure than mutation distance of the process of adaptation.
Collapse
Affiliation(s)
- Pascal Durrens
- MAGNOME Team, INRIA Centre de Recherche Bordeaux- Sud-Ouest, Laboratoire Bordelais de Recherche en Informatique, UMR 5800 CNRS, Domaine Universitaire, Talence Cedex, France.
| | | | | |
Collapse
|
29
|
Rosso L, Marques AC, Weier M, Lambert N, Lambot MA, Vanderhaeghen P, Kaessmann H. Birth and rapid subcellular adaptation of a hominoid-specific CDC14 protein. PLoS Biol 2008; 6:e140. [PMID: 18547142 PMCID: PMC2422853 DOI: 10.1371/journal.pbio.0060140] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Accepted: 04/28/2008] [Indexed: 11/18/2022] Open
Abstract
Gene duplication was prevalent during hominoid evolution, yet little is known about the functional fate of new ape gene copies. We characterized the CDC14B cell cycle gene and the functional evolution of its hominoid-specific daughter gene, CDC14Bretro. We found that CDC14B encodes four different splice isoforms that show different subcellular localizations (nucleus or microtubule-associated) and functional properties. A microtubular CDC14B variant spawned CDC14Bretro through retroposition in the hominoid ancestor 18-25 million years ago (Mya). CDC14Bretro evolved brain-/testis-specific expression after the duplication event and experienced a short period of intense positive selection in the African ape ancestor 7-12 Mya. Using resurrected ancestral protein variants, we demonstrate that by virtue of amino acid substitutions in distinct protein regions during this time, the subcellular localization of CDC14Bretro progressively shifted from the association with microtubules (stabilizing them) to an association with the endoplasmic reticulum. CDC14Bretro evolution represents a paradigm example of rapid, selectively driven subcellular relocalization, thus revealing a novel mode for the emergence of new gene function.
Collapse
Affiliation(s)
- Lia Rosso
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Ana Claudia Marques
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Manuela Weier
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Nelle Lambert
- Institut de Recherches en Biologie Humaine et Moleculaire (IRIBHM), University of Brussels, Brussels, Belgium
| | - Marie-Alexandra Lambot
- Institut de Recherches en Biologie Humaine et Moleculaire (IRIBHM), University of Brussels, Brussels, Belgium
| | - Pierre Vanderhaeghen
- Institut de Recherches en Biologie Humaine et Moleculaire (IRIBHM), University of Brussels, Brussels, Belgium
| | - Henrik Kaessmann
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
30
|
Payen C, Koszul R, Dujon B, Fischer G. Segmental duplications arise from Pol32-dependent repair of broken forks through two alternative replication-based mechanisms. PLoS Genet 2008; 4:e1000175. [PMID: 18773114 PMCID: PMC2518615 DOI: 10.1371/journal.pgen.1000175] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Accepted: 07/18/2008] [Indexed: 11/18/2022] Open
Abstract
The propensity of segmental duplications (SDs) to promote genomic instability is of increasing interest since their involvement in numerous human genomic diseases and cancers was revealed. However, the mechanism(s) responsible for their appearance remain mostly speculative. Here, we show that in budding yeast, replication accidents, which are most likely transformed into broken forks, play a causal role in the formation of SDs. The Pol32 subunit of the major replicative polymerase Polδ is required for all SD formation, demonstrating that SDs result from untimely DNA synthesis rather than from unequal crossing-over. Although Pol32 is known to be required for classical (Rad52-dependant) break-induced replication, only half of the SDs can be attributed to this mechanism. The remaining SDs are generated through a Rad52-independent mechanism of template switching between microsatellites or microhomologous sequences. This new mechanism, named microhomology/microsatellite-induced replication (MMIR), differs from all known DNA double-strand break repair pathways, as MMIR-mediated duplications still occur in the combined absence of homologous recombination, microhomology-mediated, and nonhomologous end joining machineries. The interplay between these two replication-based pathways explains important features of higher eukaryotic genomes, such as the strong, but not strict, association between SDs and transposable elements, as well as the frequent formation of oncogenic fusion genes generating protein innovations at SD junctions. Duplications of long segments of chromosomes are frequently observed in multicellular organisms (∼5% of our genome, for instance). They appear as a fundamental trait of the recent genome evolution in great apes and are often associated with chromosomal instability, capable of increasing genetic polymorphism among individuals, but also having dramatic consequences as a source of diseases and cancer. Despite their importance, the molecular mechanisms of formation of segmental duplications remain unclear. Using a specifically designed experimental system in the baker's yeast Saccharomyces cerevisiae, hundreds of naturally occurring segmental duplications encompassing dozens of genes were selected. With the help of modern molecular methods coupled to detailed genetic analysis, we show that such duplication events are frequent and result from untimely DNA synthesis accidents produced by two distinct molecular mechanisms: the well-known break-induced replication and a novel mechanism of template switching between low-complexity or microhomologous sequences. These two mechanisms, rather than unequal recombination events, contribute in comparable proportions to duplication formation, the latter being prone to create novel gene fusions at chromosomal junctions. The mechanisms identified in yeast could explain the origin of a variety of genetic diseases in human, such as hemophilia A, Pelizaeus-Merzbacher disease, or some neurological disorders.
Collapse
Affiliation(s)
- Celia Payen
- Institut Pasteur, Unité de Génétique Moléculaire des Levures, CNRS, URA2171, Université Pierre et Marie Curie-Paris 6, UFR927, Paris, France
| | - Romain Koszul
- Institut Pasteur, Unité de Génétique Moléculaire des Levures, CNRS, URA2171, Université Pierre et Marie Curie-Paris 6, UFR927, Paris, France
| | - Bernard Dujon
- Institut Pasteur, Unité de Génétique Moléculaire des Levures, CNRS, URA2171, Université Pierre et Marie Curie-Paris 6, UFR927, Paris, France
| | - Gilles Fischer
- Institut Pasteur, Unité de Génétique Moléculaire des Levures, CNRS, URA2171, Université Pierre et Marie Curie-Paris 6, UFR927, Paris, France
- * E-mail:
| |
Collapse
|
31
|
Marques-Bonet T, Cheng Z, She X, Eichler EE, Navarro A. The genomic distribution of intraspecific and interspecific sequence divergence of human segmental duplications relative to human/chimpanzee chromosomal rearrangements. BMC Genomics 2008; 9:384. [PMID: 18699995 PMCID: PMC2542386 DOI: 10.1186/1471-2164-9-384] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Accepted: 08/12/2008] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND It has been suggested that chromosomal rearrangements harbor the molecular footprint of the biological phenomena which they induce, in the form, for instance, of changes in the sequence divergence rates of linked genes. So far, all the studies of these potential associations have focused on the relationship between structural changes and the rates of evolution of single-copy DNA and have tried to exclude segmental duplications (SDs). This is paradoxical, since SDs are one of the primary forces driving the evolution of structure and function in our genomes and have been linked not only with novel genes acquiring new functions, but also with overall higher DNA sequence divergence and major chromosomal rearrangements. RESULTS Here we take the opposite view and focus on SDs. We analyze several of the features of SDs, including the rates of intraspecific divergence between paralogous copies of human SDs and of interspecific divergence between human SDs and chimpanzee DNA. We study how divergence measures relate to chromosomal rearrangements, while considering other factors that affect evolutionary rates in single copy DNA. CONCLUSION We find that interspecific SD divergence behaves similarly to divergence of single-copy DNA. In contrast, old and recent paralogous copies of SDs do present different patterns of intraspecific divergence. Also, we show that some relatively recent SDs accumulate in regions that carry inversions in sister lineages.
Collapse
Affiliation(s)
- Tomàs Marques-Bonet
- Unitat de Biologia Evolutiva Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | - Ze Cheng
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | - Xinwei She
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | - Arcadi Navarro
- Unitat de Biologia Evolutiva Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
- Institucio Catalana de Recerca i Estudis Avancats (ICREA) and Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
- Population Genomics Node (GNV8), National Institute for Bioinformatics (INB) Universitat Pompeu Fabra, Spain
| |
Collapse
|
32
|
Rosso L, Marques AC, Reichert AS, Kaessmann H. Mitochondrial targeting adaptation of the hominoid-specific glutamate dehydrogenase driven by positive Darwinian selection. PLoS Genet 2008; 4:e1000150. [PMID: 18688271 PMCID: PMC2478720 DOI: 10.1371/journal.pgen.1000150] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Accepted: 07/02/2008] [Indexed: 11/18/2022] Open
Abstract
Many new gene copies emerged by gene duplication in hominoids, but little is known with respect to their functional evolution. Glutamate dehydrogenase (GLUD) is an enzyme central to the glutamate and energy metabolism of the cell. In addition to the single, GLUD-encoding gene present in all mammals (GLUD1), humans and apes acquired a second GLUD gene (GLUD2) through retroduplication of GLUD1, which codes for an enzyme with unique, potentially brain-adapted properties. Here we show that whereas the GLUD1 parental protein localizes to mitochondria and the cytoplasm, GLUD2 is specifically targeted to mitochondria. Using evolutionary analysis and resurrected ancestral protein variants, we demonstrate that the enhanced mitochondrial targeting specificity of GLUD2 is due to a single positively selected glutamic acid-to-lysine substitution, which was fixed in the N-terminal mitochondrial targeting sequence (MTS) of GLUD2 soon after the duplication event in the hominoid ancestor ∼18–25 million years ago. This MTS substitution arose in parallel with two crucial adaptive amino acid changes in the enzyme and likely contributed to the functional adaptation of GLUD2 to the glutamate metabolism of the hominoid brain and other tissues. We suggest that rapid, selectively driven subcellular adaptation, as exemplified by GLUD2, represents a common route underlying the emergence of new gene functions. Little is known about the functional evolution of new hominoid genes. In this study, we utilized a combination of evolutionary analyses and cell biology experiments to unveil a novel mode by which the human- and ape-specific glutamate dehydrogenase enzyme (GLUD2) functionally adapted. We find that whereas the GLUD1 parental protein (present in all mammals) localizes to mitochondria and also to the cytoplasm, GLUD2 is specifically targeted to mitochondria. Using resurrected ancestral proteins and site-directed mutagenesis, we show that the optimized mitochondrial targeting capacity of GLUD2 is due to a single positively selected amino acid substitution in its N-terminal targeting sequence, which occurred soon after the duplication event in the ape ancestor 18–25 million years ago. The specialization in mitochondrial localization is probably linked to the function of GLUD2 in the glutamate metabolism of the brain (recycling of glutamate in astrocytes), but is likely also of functional relevance in other tissues in which GLUD2 is expressed. We suggest that in addition to the traditionally considered modes of functional adaptation (changes in gene expression and/or the biochemical function of the protein), rapid and selectively driven subcellular adaptation to specific ancestral compartments may represent a common yet previously little-considered mechanism for the origin of new gene functions.
Collapse
Affiliation(s)
- Lia Rosso
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Ana C. Marques
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Andreas S. Reichert
- Cluster of Excellence “Macromolecular Complexes”, Mitochondriale Biologie, Fachbereich Medizin, Johann Wolfgang Goethe–Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Henrik Kaessmann
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
33
|
Lee TM, Lipovich L. Structural differences of orthologous genes: insights from human-primate comparisons. Genomics 2008; 92:134-43. [PMID: 18606524 DOI: 10.1016/j.ygeno.2008.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2007] [Revised: 04/16/2008] [Accepted: 05/02/2008] [Indexed: 01/15/2023]
Abstract
The genomic basis of phenotypic distinctions between humans and nonhuman primates remains insufficiently explained. We hypothesized that interspecies structural differences of orthologous genes can cause such distinctions and searched protein-coding genes conserved between humans and nonhuman primates for species-specific initial and terminal exons. We inferred gene structure differences from genomic locations where portions of primate transcripts aligned with the human genome outside of any human exons. Of 22,466 high-confidence FANTOM3 human transcriptional units, 7424 (33%) had nonhuman primate full-length cDNA support. One hundred eighty-three of the loci contained 68,424 bp of sequence exonic in nonhuman primates but not humans. Fifty-four of 183 included species-specific portions of protein-coding regions. Six genes had evidence of intergenic splicing in a nonhuman primate but not in human. It is imperative that primate transcriptome projects be accelerated on par with genome projects to understand better interspecies gene structure distinctions.
Collapse
Affiliation(s)
- Tuan Meng Lee
- School of Computer Engineering, Nanyang Technological University, Singapore
| | | |
Collapse
|
34
|
Semyonov J, Park JI, Chang CL, Hsu SYT. GPCR genes are preferentially retained after whole genome duplication. PLoS One 2008; 3:e1903. [PMID: 18382678 PMCID: PMC2270905 DOI: 10.1371/journal.pone.0001903] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Accepted: 01/27/2008] [Indexed: 11/19/2022] Open
Abstract
One of the most interesting questions in biology is whether certain pathways have been favored during evolution, and if so, what properties could cause such a preference. Due to the lack of experimental evidence, whether select gene families have been preferentially retained over time after duplication in metazoan organisms remains unclear. Here, by syntenic mapping of nonchemosensory G protein-coupled receptor genes (nGPCRs which represent half the receptome for transmembrane signaling) in the vertebrate genomes, we found that, as opposed to the 8–15% retention rate for whole genome duplication (WGD)-derived gene duplicates in the entire genome of pufferfish, greater than 27.8% of WGD-derived nGPCRs which interact with a nonpeptide ligand were retained after WGD in pufferfish Tetraodon nigroviridis. In addition, we show that concurrent duplication of cognate ligand genes by WGD could impose selection of nGPCRs that interact with a polypeptide ligand. Against less than 2.25% probability for parallel retention of a pair of WGD-derived ligands and a pair of cognate receptor duplicates, we found a more than 8.9% retention of WGD-derived ligand-nGPCR pairs–threefold greater than one would surmise. These results demonstrate that gene retention is not uniform after WGD in vertebrates, and suggest a Darwinian selection of GPCR-mediated intercellular communication in metazoan organisms.
Collapse
Affiliation(s)
- Jenia Semyonov
- Division of Reproductive Biology, Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Jae-Il Park
- Division of Reproductive Biology, Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Chia Lin Chang
- Chang Gung University School of Medicine, and Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan
| | - Sheau Yu Teddy Hsu
- Division of Reproductive Biology, Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
35
|
Frittoli E, Palamidessi A, Pizzigoni A, Lanzetti L, Garrè M, Troglio F, Troilo A, Fukuda M, Di Fiore PP, Scita G, Confalonieri S. The primate-specific protein TBC1D3 is required for optimal macropinocytosis in a novel ARF6-dependent pathway. Mol Biol Cell 2008; 19:1304-16. [PMID: 18199687 DOI: 10.1091/mbc.e07-06-0594] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The generation of novel genes and proteins throughout evolution has been proposed to occur as a result of whole genome and gene duplications, exon shuffling, and retrotransposition events. The analysis of such genes might thus shed light into the functional complexity associated with highly evolved species. One such case is represented by TBC1D3, a primate-specific gene, harboring a TBC domain. Because TBC domains encode Rab-specific GAP activities, TBC-containing proteins are predicted to play a major role in endocytosis and intracellular traffic. Here, we show that the TBC1D3 gene originated late in evolution, likely through a duplication of the RNTRE locus, and underwent gene amplification during primate speciation. Despite possessing a TBC domain, TBC1D3 is apparently devoid of Rab-GAP activity. However, TBC1D3 regulates the optimal rate of epidermal growth factor-mediated macropinocytosis by participating in a novel pathway involving ARF6 and RAB5. In addition, TBC1D3 binds and colocalize to GGA3, an ARF6-effector, in an ARF6-dependent manner, and synergize with it in promoting macropinocytosis, suggesting that the two proteins act together in this process. Accordingly, GGA3 siRNA-mediated ablation impaired TBC1D3-induced macropinocytosis. We thus uncover a novel signaling pathway that appeared after primate speciation. Within this pathway, a TBC1D3:GGA3 complex contributes to optimal propagation of signals, ultimately facilitating the macropinocytic process.
Collapse
Affiliation(s)
- Emanuela Frittoli
- IFOM, the FIRC Institute of Molecular Oncology Foundation, 20139 Milan, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Saito Y, Nagasaki H. The melanin-concentrating hormone system and its physiological functions. Results Probl Cell Differ 2008; 46:159-179. [PMID: 18227983 DOI: 10.1007/400_2007_052] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Melanin-concentrating hormone (MCH) is a neuropeptide that was originally isolated from salmon pituitary where it causes pigment aggregation. MCH is also abundantly present in mammalian neurons and expressed in the lateral hypothalamus and zona incerta, brain regions that are known to be at the center of feeding behavior. MCH binds to and activates two G protein-coupled receptors, MCH1R and MCH2R. Although MCH2R is non-functional in rodents, genetic and pharmacological studies have demonstrated that rodent MCH1R is involved in the regulation of feeding behavior and energy balance. Unexpectedly, some antagonists have provided evidence that MCH signaling participates in the regulation of other processes, such as emotion and stress. The discovery of MCH receptors has extensively promoted the progress of MCH studies and may represent an ideal example of how deorphanized receptors can open new directions toward more detailed physiological studies.
Collapse
Affiliation(s)
- Yumiko Saito
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima, Japan.
| | | |
Collapse
|
37
|
Cooper GM, Nickerson DA, Eichler EE. Mutational and selective effects on copy-number variants in the human genome. Nat Genet 2007; 39:S22-9. [PMID: 17597777 DOI: 10.1038/ng2054] [Citation(s) in RCA: 185] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Comprehensive descriptions of large insertion/deletion or segmental duplication polymorphisms (SDs) in the human genome have recently been generated. These annotations, known collectively as structural or copy-number variants (CNVs), include thousands of discrete genomic regions and span hundreds of millions of nucleotides. Here we review the genomic distribution of CNVs, which is strongly correlated with gene, repeat and segmental duplication content. We explore the evolutionary mechanisms giving rise to this nonrandom distribution, considering the available data on both human polymorphisms and the fixed changes that differentiate humans from other species. It is likely that mutational biases, selective effects and interactions between these forces all contribute substantially to the spectrum of human copy-number variation. Although defining these variants with nucleotide-level precision remains a largely unmet but critical challenge, our understanding of their potential medical impact and evolutionary importance is rapidly emerging.
Collapse
Affiliation(s)
- Gregory M Cooper
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA.
| | | | | |
Collapse
|
38
|
Portin P. Evolution of man in the light of molecular genetics: a review. Part I. Our evolutionary history and genomics. Hereditas 2007; 144:80-95. [PMID: 17663700 DOI: 10.1111/j.2007.0018-0661.02003.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
The discovery in the mid 1970s of efficient methods of DNA sequencing and their subsequent development into more and more rapid procedures followed by sequencing the genomes of many species, including man in 2001, revolutionised the whole of biology. Remarkably, new light could be cast on the evolutionary relations of different species, and the tempo and mode of evolution within a given species, notably man, could quantitatively be illuminated including ongoing evolution possibly involving also the size of the brains. This review is a short summary of the results of the molecular genetic investigations of human evolution including the time and place of the formation of our species, our evolutionary relation to the closest living species relatives as well as extinct forms of the genus Homo. The nature and amount of genetic polymorphism in man is also considered with special emphasis on the causes of this variation, and the role of natural selection in human evolution. A consensus about the mosaic nature of our genome and the rather dynamic structure of our ancestral population is gradually emerging. The modern gene pool has most likely been contributed to several different ancestral demes either before or after the emergence of the anatomically modern human phenotype in the extent that even the nature of the evolutionary lineage leading to the anatomically modern man as a distinct biological species is disputable. Regulation of the function of genes, as well as the evolution of brains will be dealt with in the second part of this review.
Collapse
Affiliation(s)
- Petter Portin
- Laboratory of Genetics, Department of Biology, University of Turku, Turku, Finland.
| |
Collapse
|
39
|
Bosch N, Cáceres M, Cardone MF, Carreras A, Ballana E, Rocchi M, Armengol L, Estivill X. Characterization and evolution of the novel gene family FAM90A in primates originated by multiple duplication and rearrangement events. Hum Mol Genet 2007; 16:2572-82. [PMID: 17684299 DOI: 10.1093/hmg/ddm209] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Genomic plasticity of human chromosome 8p23.1 region is highly influenced by two groups of complex segmental duplications (SDs), termed REPD and REPP, that mediate different kinds of rearrangements. Part of the difficulty to explain the wide range of phenotypes associated with 8p23.1 rearrangements is that REPP and REPD are not yet well characterized, probably due to their polymorphic status. Here, we describe a novel primate-specific gene family, named FAM90A (family with sequence similarity 90), found within these SDs. According to the current human reference sequence assembly, the FAM90A family includes 24 members along 8p23.1 region plus a single member on chromosome 12p13.31, showing copy number variation (CNV) between individuals. These genes can be classified into subfamilies I and II, which differ in their upstream and 5'-untranslated region sequences, but both share the same open reading frame and are ubiquitously expressed. Sequence analysis and comparative fluorescence in situ hybridization studies showed that FAM90A subfamily II suffered a big expansion in the hominoid lineage, whereas subfamily I members were likely generated sometime around the divergence of orangutan and African great apes by a fusion process. In addition, the analysis of the Ka/Ks ratios provides evidence of functional constraint of some FAM90A genes in all species. The characterization of the FAM90A gene family contributes to a better understanding of the structural polymorphism of the human 8p23.1 region and constitutes a good example of how SDs, CNVs and rearrangements within themselves can promote the formation of new gene sequences with potential functional consequences.
Collapse
Affiliation(s)
- Nina Bosch
- Genes and Disease Program, Center for Genomic Regulation (CRG-UPF) and CIBERESP, Barcelona, Catalonia, Spain
| | | | | | | | | | | | | | | |
Collapse
|
40
|
HYBRIDdb: a database of hybrid genes in the human genome. BMC Genomics 2007; 8:128. [PMID: 17519042 PMCID: PMC1890557 DOI: 10.1186/1471-2164-8-128] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Accepted: 05/23/2007] [Indexed: 11/30/2022] Open
Abstract
Background Hybrid genes are candidate risk factors for human tumors by inducing mutation, translocation, inversion, or rearrangement of genes. The occurrence of hybrid genes may also have given rise to new transcripts during hominid evolution. Description HYBRIDdb is a database of hybrid genes in humans. This system encompasses the bioinformatics analysis of mRNA, EST, cDNA, and genomic DNA sequences in the INDC databases, and can be used to identify hybrid genes. We searched for hybrid genes among the 28,171 genes listed in the NCBI database, and analyzed their structural patterns in the human genome. The 2,344 gene pairs were detected as hybrid forms of transcriptional products. We classified the hybrid genes into two groups: chromosomal-mediated translocation fusion transcripts and transcription-mediated fusion transcripts. Conclusion The HYBRIDdb database will provide genome scientists with insight into potential roles for hybrid genes in human evolution and disease.
Collapse
|
41
|
Zhong Z, Qiu J, Chen X, Wan B, Ni J, Yang Y, Bai M, Zhang H, Yu L. Identification of TCP10L as primate-specific gene derived via segmental duplication and homodimerization of TCP10L through the leucine zipper motif. Mol Biol Rep 2007; 35:171-8. [PMID: 17377852 DOI: 10.1007/s11033-007-9067-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2006] [Accepted: 02/26/2007] [Indexed: 01/28/2023]
Abstract
TCP10L, a transcriptional repression factor gene that was localized on human chromosome 21q22.11, was identified to be derived through segmental duplication since the divergence of primates and rodents. It was elucidated that TCP10L gene was a primate-specific gene in this study. Subsequently it was demonstrated that the putative leucine zipper motif mediated the homodimerization of TCP10L. Using in vitro and in vivo methodologies, it was shown that either deletion or point mutation of the leucine zipper motif was sufficient to abolish TCP10L homodimerization. In Hela cells, both the exogenous wild type TCP10L and endogenous TCP10L were detected on nuclei with immunofluorescence assay. However, the leucine zipper motif mutants of TCP10L could also be detected on nuclei. The results suggested that the leucine zipper motif enabled TCP10L to homodimerize, but was not essential for the TCP10L nuclear localization.
Collapse
Affiliation(s)
- Zhaomin Zhong
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, 200433, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Kehrer-Sawatzki H, Cooper DN. Understanding the recent evolution of the human genome: insights from human-chimpanzee genome comparisons. Hum Mutat 2007; 28:99-130. [PMID: 17024666 DOI: 10.1002/humu.20420] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The sequencing of the chimpanzee genome and the comparison with its human counterpart have begun to reveal the spectrum of genetic changes that has accompanied human evolution. In addition to gross karyotypic rearrangements such as the fusion that formed human chromosome 2 and the human-specific pericentric inversions of chromosomes 1 and 18, there is considerable submicroscopic structural variation involving deletions, duplications, and inversions. Lineage-specific segmental duplications, detected by array comparative genomic hybridization and direct sequence comparison, have made a very significant contribution to this structural divergence, which is at least three-fold greater than that due to nucleotide substitutions. Since structural genomic changes may have given rise to irreversible functional differences between the diverging species, their detailed analysis could help to identify the biological processes that have accompanied speciation. To this end, interspecies comparisons have revealed numerous human-specific gains and losses of genes as well as changes in gene expression. The very considerable structural diversity (polymorphism) evident within both lineages has, however, hampered the analysis of the structural divergence between the human and chimpanzee genomes. The concomitant evaluation of genetic divergence and diversity at the nucleotide level has nevertheless served to identify many genes that have evolved under positive selection and may thus have been involved in the development of human lineage-specific traits. Genes that display signs of weak negative selection have also been identified and could represent candidate loci for complex genomic disorders. Here, we review recent progress in comparing the human and chimpanzee genomes and discuss how the differences detected have improved our understanding of the evolution of the human genome.
Collapse
|
43
|
Martínez-Pérez F, Durán-Gutiérrez D, Delaye L, Becerra A, Aguilar G, Zinker S. Loss of DNA: a plausible molecular level explanation for crustacean neuropeptide gene evolution. Peptides 2007; 28:76-82. [PMID: 17161507 DOI: 10.1016/j.peptides.2006.09.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2006] [Revised: 09/11/2006] [Accepted: 09/11/2006] [Indexed: 11/16/2022]
Abstract
Alignment of nucleotides of APGWamide, RPCH and AKH genes gives region stretches (common regions) present in all family member variants. Common regions were separated by gap sections in the larger variants of family members. Consensus sequences for single polynucleotides from virtual hybrid molecules of DNA were obtained by joining the common regions of DNA and deleting the extra DNA nucleotides. Conceptual translation of these virtual hybrids resulted in polypeptides similar to APGWamide, RPCH and the AKH pre-pro-peptide. Virtual polypeptides were also similar to LWamide and RFamide along hydras to mammals. DNA loss probably explains the origin of neuropeptides.
Collapse
Affiliation(s)
- Francisco Martínez-Pérez
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del I.P.N., Apartado Postal 14-740, México D.F. 07000, México
| | | | | | | | | | | |
Collapse
|
44
|
Johnson ME, Cheng Z, Morrison VA, Scherer S, Ventura M, Gibbs RA, Green ED, Eichler EE. Recurrent duplication-driven transposition of DNA during hominoid evolution. Proc Natl Acad Sci U S A 2006; 103:17626-31. [PMID: 17101969 PMCID: PMC1693797 DOI: 10.1073/pnas.0605426103] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2006] [Indexed: 12/13/2022] Open
Abstract
The underlying mechanism by which the interspersed pattern of human segmental duplications has evolved is unknown. Based on a comparative analysis of primate genomes, we show that a particular segmental duplication (LCR16a) has been the source locus for the formation of the majority of intrachromosomal duplications blocks on human chromosome 16. We provide evidence that this particular segment has been active independently in each great ape and human lineage at different points during evolution. Euchromatic sequence that flanks sites of LCR16a integration are frequently lineage-specific duplications. This process has mobilized duplication blocks (15-200 kb in size) to new genomic locations in each species. Breakpoint analysis of lineage-specific insertions suggests coordinated deletion of repeat-rich DNA at the target site, in some cases deleting genes in that species. Our data support a model of duplication where the probability that a segment of DNA becomes duplicated is determined by its proximity to core duplicons, such as LCR16a.
Collapse
Affiliation(s)
- Matthew E. Johnson
- *Department of Genome Sciences and the
- Department of Genetics and Center for Human Genetics, Case Western Reserve School of Medicine and University Hospitals of Cleveland, Cleveland, OH 44106
| | - Ze Cheng
- *Department of Genome Sciences and the
| | - V. Anne Morrison
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195
| | - Steven Scherer
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030; and
| | - Mario Ventura
- **Sezione di Genetica, Dipartimento di Anatomia Patologica e di Genetica, University of Bari, 70126 Bari, Italy
| | - Richard A. Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030; and
| | | | - Evan E. Eichler
- *Department of Genome Sciences and the
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195
| |
Collapse
|
45
|
Lee Y, Ise T, Ha D, Saint Fleur A, Hahn Y, Liu XF, Nagata S, Lee B, Bera TK, Pastan I. Evolution and expression of chimeric POTE-actin genes in the human genome. Proc Natl Acad Sci U S A 2006; 103:17885-90. [PMID: 17101985 PMCID: PMC1693842 DOI: 10.1073/pnas.0608344103] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We previously described a primate-specific gene family, POTE, that is expressed in many cancers but in a limited number of normal organs. The 13 POTE genes are dispersed among eight different chromosomes and evolved by duplications and remodeling of the human genome from an ancestral gene, ANKRD26. Based on sequence similarity, the POTE gene family members can be divided into three groups. By genome database searches, we identified an actin retroposon insertion at the carboxyl terminus of one of the ancestral POTE paralogs. By Northern blot analysis, we identified the expected 7.5-kb POTE-actin chimeric transcript in a breast cancer cell line. The protein encoded by the POTE-actin transcript is predicted to be 120 kDa in size. Using anti-POTE mAbs that recognize the amino-terminal portion of the POTE protein, we detected the 120-kDa POTE-actin fusion protein in breast cancer cell lines known to express the fusion transcript. These data demonstrate that insertion of a retroposon produced an altered functional POTE gene. This example indicates that new functional human genes can evolve by insertion of retroposons.
Collapse
Affiliation(s)
- Yoomi Lee
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4264
| | - Tomoko Ise
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4264
| | - Duc Ha
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4264
| | - Ashley Saint Fleur
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4264
| | - Yoonsoo Hahn
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4264
| | - Xiu-Fen Liu
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4264
| | - Satoshi Nagata
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4264
| | - Byungkook Lee
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4264
| | - Tapan K. Bera
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4264
| | - Ira Pastan
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4264
| |
Collapse
|
46
|
Walz K, Paylor R, Yan J, Bi W, Lupski JR. Rai1 duplication causes physical and behavioral phenotypes in a mouse model of dup(17)(p11.2p11.2). J Clin Invest 2006; 116:3035-41. [PMID: 17024248 PMCID: PMC1590269 DOI: 10.1172/jci28953] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2006] [Accepted: 08/01/2006] [Indexed: 01/20/2023] Open
Abstract
Genomic disorders are conditions that result from DNA rearrangements, such as deletions or duplications. The identification of the dosage-sensitive gene(s) within the rearranged genomic interval is important for the elucidation of genes responsible for complex neurobehavioral phenotypes. Smith-Magenis syndrome is associated with a 3.7-Mb deletion in 17p11.2, and its clinical presentation is caused by retinoic acid inducible 1 (RAI1) haploinsufficiency. The reciprocal microduplication syndrome, dup(17)(p11.2p11.2), manifests several neurobehavioral abnormalities, but the responsible dosage-sensitive gene(s) remain undefined. We previously generated a mouse model for dup(17)(p11.2p11.2), Dp(11)17/+, that recapitulated most of the phenotypes observed in human patients. We have now analyzed compound heterozygous mice carrying a duplication [Dp(11)17] in one chromosome 11 along with a null allele of Rai1 in the other chromosome 11 homologue [Dp(11)17/Rai1(-) mice] in order to study the relationship between Rai1 gene copy number and the Dp(11)17/+ phenotypes. Normal disomic Rai1 gene dosage was sufficient to rescue the complex physical and behavioral phenotypes observed in Dp(11)17/+ mice, despite altered trisomic copy number of the other 18 genes present in the rearranged genomic interval. These data provide a model for variation in copy number of single genes that could influence common traits such as obesity and behavior.
Collapse
Affiliation(s)
- Katherina Walz
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.
Centro de Estudios Científicos, Valdivia, Chile.
Division of Neurosciences and
Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA.
Texas Children’s Hospital, Houston, Texas, USA
| | - Richard Paylor
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.
Centro de Estudios Científicos, Valdivia, Chile.
Division of Neurosciences and
Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA.
Texas Children’s Hospital, Houston, Texas, USA
| | - Jiong Yan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.
Centro de Estudios Científicos, Valdivia, Chile.
Division of Neurosciences and
Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA.
Texas Children’s Hospital, Houston, Texas, USA
| | - Weimin Bi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.
Centro de Estudios Científicos, Valdivia, Chile.
Division of Neurosciences and
Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA.
Texas Children’s Hospital, Houston, Texas, USA
| | - James R. Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.
Centro de Estudios Científicos, Valdivia, Chile.
Division of Neurosciences and
Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA.
Texas Children’s Hospital, Houston, Texas, USA
| |
Collapse
|
47
|
Goidts V, Cooper DN, Armengol L, Schempp W, Conroy J, Estivill X, Nowak N, Hameister H, Kehrer-Sawatzki H. Complex patterns of copy number variation at sites of segmental duplications: an important category of structural variation in the human genome. Hum Genet 2006; 120:270-84. [PMID: 16838144 DOI: 10.1007/s00439-006-0217-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Accepted: 05/26/2006] [Indexed: 10/24/2022]
Abstract
The structural diversity of the human genome is much higher than previously assumed although its full extent remains unknown. To investigate the association between segmental duplications that display constitutive copy number differences (CNDs) between humans and the great apes and those which exhibit polymorphic copy number variations (CNVs) between humans, we analysed a BAC array enriched with segmental duplications displaying such CNDs. This study documents for the first time that in addition to human-specific gains common to all humans, these duplication clusters (DCs) also exhibit polymorphic CNVs > 40 kb. Segmental duplication is known to have been a frequent event during human genome evolution. Importantly, among the CNV-associated genes identified here, those involved in transcriptional regulation were found to be significantly overrepresented. Complex patterns of variation were evident at sites of DCs, manifesting as inter-individual differentially sized copy number alterations at the same genomic loci. Thus, CNVs associated with segmental duplications do not simply represent insertion/deletion polymorphisms, but rather constitute a wide variety of rearrangements involving differential amplification and partial gains and losses with high inter-individual variability. Although the number of CNVs was not found to differ between Africans and Caucasians/Asians, the average number of variant patterns per locus was significantly lower in Africans. Thus, complex variation patterns characterizing segmental duplications result from relatively recent genomic rearrangements. The high number of these rearrangements, some of which are potentially recurrent, together with differences in population size and expansion dynamics, may account for the greater diversity of CNV in Caucasians/Asians as compared with Africans.
Collapse
Affiliation(s)
- Violaine Goidts
- Department of Human Genetics, University of Ulm, Albert Einstein Allee 11, 89081, Ulm, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Bailey JA, Eichler EE. Primate segmental duplications: crucibles of evolution, diversity and disease. Nat Rev Genet 2006; 7:552-64. [PMID: 16770338 DOI: 10.1038/nrg1895] [Citation(s) in RCA: 395] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Compared with other mammals, the genomes of humans and other primates show an enrichment of large, interspersed segmental duplications (SDs) with high levels of sequence identity. Recent evidence has begun to shed light on the origin of primate SDs, pointing to a complex interplay of mechanisms and indicating that distinct waves of duplication took place during primate evolution. There is also evidence for a strong association between duplication, genomic instability and large-scale chromosomal rearrangements. Exciting new findings suggest that SDs have not only created novel primate gene families, but might have also influenced current human genic and phenotypic variation on a previously unappreciated scale. A growing number of examples link natural human genetic variation of these regions to susceptibility to common disease.
Collapse
Affiliation(s)
- Jeffrey A Bailey
- Department of Pathology, Case Western University School of Medicine and University Hospitals of Cleveland, Ohio 44106, USA
| | | |
Collapse
|
49
|
Lipovich L, King MC. Abundant novel transcriptional units and unconventional gene pairs on human chromosome 22. Genome Res 2005; 16:45-54. [PMID: 16344557 PMCID: PMC1356128 DOI: 10.1101/gr.3883606] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Novel transcriptional units (TUs) are EST-supported transcribed features not corresponding to known genes. Unconventional gene pairs (UGPs) are pairs of genes and/or TUs sharing exon-to-exon cis-antisense overlaps or putative bidirectional promoters. Computational TU and UGP discovery followed by manual curation was performed in the entire published 34.9-Mb human chromosome 22 euchromatic sequence. Novel TUs (n = 517) were as abundant as known genes (n = 492) and typically did not have nonprimate DNA and protein homologies. One hundred seventy-one (33%) of TUs, but only 13 (3%) of genes, both lacked nonprimate conservation and localized to gaps in the human-mouse BLASTZ alignment. Novel TUs were richer in exonic primate-specific interspersed repetitive elements (P = 0.001) and were more likely to rely on splice junctions provided by them, than were known genes: 19% of spliced TUs, versus 5% of spliced genes, had a splice site within a primate-specific repeat. Hence, novel TUs and known genes may represent different portions of the transcriptome. Two hundred nine (21%) of chromosome 22 transcripts participated in 77 cis-antisense and 42 promoter-sharing UGPs. Transcripts involved simultaneously in both UGP types were more common than was expected (P = 0.01). UGPs were nonrandomly distributed along the sequence: 89 (75%) clustered in distinct regions, the sum of which equaled 4.4 Mb (<13% of the chromosome). Eighty (67%) of the UGPs possessed significant locus structure differences between primates and rodents. Since some TUs may be functional noncoding transcripts and since the cis-regulatory potential of UGPs is well recognized, TUs and UGPs specific to the primate lineage may contribute to the genomic basis for primate-specific phenotypes.
Collapse
Affiliation(s)
- Leonard Lipovich
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195-7730, USA.
| | | |
Collapse
|
50
|
Lipovich L, Vanisri RR, Kong SL, Lin CY, Liu ET. Primate-specific endogenous cis-antisense transcription in the human 5q31 protocadherin gene cluster. J Mol Evol 2005; 62:73-88. [PMID: 16341467 DOI: 10.1007/s00239-005-0041-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2005] [Accepted: 07/31/2005] [Indexed: 10/25/2022]
Abstract
Protocadherins (PCDH), localized to synaptic junctions, contribute to the formation of neuronal networks during brain development; thus, it is speculated that protocadherins may play a role in evolution of neuronal complexity. While protocadherin genes are highly conserved in vertebrates, EST evidence from the locus suggests apparently species-specific cis-antisense transcripts. Novel cis-antisense transcripts, which partially overlap the PCDHalpha12 variable exon, PCDHbeta3 single-exon gene, and PCDHpsi5 unprocessed pseudogene in the human 5q31 PCDHalpha/beta/gamma gene cluster and which are coexpressed with sense-strand transcripts in fetal and adult brain, were identified computationally and validated by gene-specific strand-specific reverse transcriptase PCR (SSRTPCR) and sequencing. Absence of antisense transcripts arising from equivalent genomic locations in mouse indicates that the antisense transcripts originated in the primates after the primate-rodent divergence. Furthermore, not all expected orthologues of human sense and antisense PCDH transcripts were detected in rhesus macaque brain, implying that protocadherin expression patterns differ between primate species. RT followed by quantitative real-time PCR (QPCR) analysis of the three genes in the brain of all three species, and of the PCDHbeta15 gene paralogous to PCDHpsi5 in human and rhesus, revealed that the presence of antisense transcripts was significantly associated with lower sense expression levels across all orthologues. This inverse relationship, along with the pattern of sense and antisense coexpression in the brain, is consistent with a regulatory role for the primate-specific PCDH cis-antisense transcripts, which may represent recent evolutionary inventions modulating the activity of this conserved gene cluster.
Collapse
Affiliation(s)
- Leonard Lipovich
- Genome Institute of Singapore, 60 Biopolis Street #02-01, Singapore 138672, Singapore.
| | | | | | | | | |
Collapse
|