1
|
Ma T, Zhang X, Jia L, Hua Y, Li X, Qiu S, Chen Y, Wang X, Zhu S, Mao C, Xu L, Ding W. OsCYP22 Interacts With OsCSN5 to Affect Rice Root Growth and Auxin Signalling. PLANT, CELL & ENVIRONMENT 2025; 48:3955-3967. [PMID: 39865977 DOI: 10.1111/pce.15391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 12/09/2024] [Accepted: 01/07/2025] [Indexed: 01/28/2025]
Abstract
Beyond structural support, plant root systems play crucial roles in the absorption of water and nutrients, fertiliser efficiency and crop yield. However, the molecular mechanism regulating root architecture in rice remains largely unknown. In this study, a short-root rice mutant was identified and named Oscyp22. Oscyp22 showed impairment in the growth of primary, adventitious and lateral roots. Histochemical and fluorescent staining analyses revealed reduced cell elongation and division activity in the root of Oscyp22. Further analysis showed that Oscyp22 displayed an impaired response to auxin treatment, indicating a disruption in the auxin signal transduction. Transcriptome analysis and auxin content measurement suggested that OsCYP22 might be involved in auxin synthesis and transport. Protein assays demonstrated that OsCYP22 could interact with OsCSN5 and induce its rapid degradation. Notably, Oscsn5 mutants also showed short root phenotypes and deficiencies in auxin response. These findings suggest that OsCYP22 plays a role in rice root growth potentially through auxin signalling and OsCSN5 stability.
Collapse
Affiliation(s)
- Tao Ma
- Ningbo Key Laboratory of Agricultural Germplasm Resources Mining and Environmental Regulation, College of Science and Technology, Ningbo University, Ningbo, China
| | - Xiaofang Zhang
- Ningbo Key Laboratory of Agricultural Germplasm Resources Mining and Environmental Regulation, College of Science and Technology, Ningbo University, Ningbo, China
| | - Lihuiying Jia
- Ningbo Key Laboratory of Agricultural Germplasm Resources Mining and Environmental Regulation, College of Science and Technology, Ningbo University, Ningbo, China
| | - Yunyan Hua
- Ningbo Key Laboratory of Agricultural Germplasm Resources Mining and Environmental Regulation, College of Science and Technology, Ningbo University, Ningbo, China
| | - Xu Li
- Ningbo Key Laboratory of Agricultural Germplasm Resources Mining and Environmental Regulation, College of Science and Technology, Ningbo University, Ningbo, China
| | - Shiyou Qiu
- Ningbo Key Laboratory of Agricultural Germplasm Resources Mining and Environmental Regulation, College of Science and Technology, Ningbo University, Ningbo, China
| | - Yujie Chen
- Ningbo Key Laboratory of Agricultural Germplasm Resources Mining and Environmental Regulation, College of Science and Technology, Ningbo University, Ningbo, China
| | - Xiaofei Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Shihua Zhu
- Ningbo Key Laboratory of Agricultural Germplasm Resources Mining and Environmental Regulation, College of Science and Technology, Ningbo University, Ningbo, China
| | - Chuanzao Mao
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Linying Xu
- Cixi Bureau of Agriculture and Rural Affair, Cixi City Agricultural Technology Extension Center, Ningbo, China
| | - Wona Ding
- Ningbo Key Laboratory of Agricultural Germplasm Resources Mining and Environmental Regulation, College of Science and Technology, Ningbo University, Ningbo, China
| |
Collapse
|
2
|
Wang W, Dai Z, Liang L, Mao Y, Yin Y. Mechanistic Insights Into the Assembly of Functional CRL3 Dimeric Complexes. Bioessays 2025; 47:e202400175. [PMID: 40211562 DOI: 10.1002/bies.202400175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 05/24/2025]
Abstract
The assembly of Cullin3-based RING E3 ubiquitin ligase (CRL3) complexes is orchestrated in two consecutive steps: the formation of the dimeric BTB domain core and the recruitment of CUL3-RBX1 subunits. Each step is tightly regulated to ensure the formation of complete and functional dimeric CRL3s. The first assembly step is regulated by two mechanisms: "co-co assembly" and proteasome-dependent degradation of aberrant heterodimers. The second step is facilitated by a conserved CUL3 N-terminal assembly (NA) motif. The CUL3 NA motif contributes to the assembly of CRL3s in two aspects: interacting with both BTB domain-containing protein protomers to facilitate complete dimeric assembly, and enhancing the stability of CRL3s by overcoming the tensions generated by conformational entropy during ubiquitin transfer. Given that all Cullin proteins contain N-terminal extensions, we postulate that these extensions, similar to the CUL3 NA motif-contributed assembly, play an important role in the functional regulation of CRLs and thus warrant further investigation.
Collapse
Affiliation(s)
- Weize Wang
- Institute of Systems Biomedicine, Department of Pathology, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Zonglin Dai
- Institute of Systems Biomedicine, Department of Pathology, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Ling Liang
- Department of Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Youdong Mao
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
- State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, Center for Quantitative Biology, National Biomedical Imaging Center, School of Physics, Peking University, Beijing, China
| | - Yuxin Yin
- Institute of Systems Biomedicine, Department of Pathology, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| |
Collapse
|
3
|
Wang W, Sun J, Fan C, Yuan G, Zhou R, Lu J, Liu J, Wang C. RcSRR1 interferes with the RcCSN5B-mediated deneddylation of RcCRL4 to modulate RcCO proteolysis and prevent rose flowering under red light. HORTICULTURE RESEARCH 2025; 12:uhaf025. [PMID: 40206513 PMCID: PMC11979331 DOI: 10.1093/hr/uhaf025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 01/12/2025] [Indexed: 04/11/2025]
Abstract
Light is essential for rose (Rosa spp.) growth and development. Different light qualities play differing roles in the rose floral transition, but the molecular mechanisms underlying their effects are not fully understood. Here, we observed that red light suppresses rose flowering and increases the expression of sensitivity to red light reduced 1 (RcSRR1) compared with white light. Virus-induced gene silencing (VIGS) of RcSRR1 led to early flowering under white light and especially under red light, suggesting that this gene is a flowering repressor with a predominant function under red light. We determined that RcSRR1 interacts with the COP9 signalosome subunit 5B (RcCSN5B), while RcCSN5B, RcCOP1, and RcCO physically interact with each other. Furthermore, the RcCSN5B-induced deneddylation of Cullin4-RING E3 ubiquitin ligase (RcCRL4) in rose was reduced by the addition of RcSRR1, suggesting that the interaction between RcSRR1 and RcCSN5B relieves the deneddylation of the RcCRL4-COP1/SPA complex to enhance RcCO proteolysis, which subsequently suppresses the transcriptional activation of RcFT and ultimately flowering. Far-red light-related sequence like 1 (RcFRSL3) was shown to specifically bind to the G-box motif of the RcSRR1 promoter to repress its transcription, removing its inhibition of RcFT expression and inducing flowering. Red light inhibited RcFRSL3 expression, thereby promoting the expression of RcSRR1 to inhibit flowering. Taken together, these results provide a previously uncharacterized mechanism by which the RcFRSL3-RcSRR1-RcCSN5B module targets RcCO stability to regulate flowering under different light conditions in rose plants.
Collapse
Affiliation(s)
- Weinan Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, Nanjing 210095, China
- School of Civil Engineering, Yantai University, Yantai 264005, China
| | - Jingjing Sun
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, Nanjing 210095, China
| | - Chunguo Fan
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, Nanjing 210095, China
| | - Guozhen Yuan
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, Nanjing 210095, China
| | - Rui Zhou
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, Nanjing 210095, China
| | - Jun Lu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, Nanjing 210095, China
| | - Jinyi Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, Nanjing 210095, China
| | - Changquan Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, Nanjing 210095, China
| |
Collapse
|
4
|
Li Q, Wang X, Wang J, Su Y, Guo Y, Yang J, Liu J, Xue Z, Dong J, Ma P. SmCSN5 is a synergist in the transcription factor SmMYB36-mediated biosynthesis of tanshinones and phenolic acids in Salvia miltiorrhiza. HORTICULTURE RESEARCH 2025; 12:uhaf005. [PMID: 40078719 PMCID: PMC11896976 DOI: 10.1093/hr/uhaf005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/20/2024] [Indexed: 03/14/2025]
Abstract
The ubiquitin-26S proteasome system (UPS) is associated with protein stability and activity, regulation of hormone signaling, and the production of secondary metabolites in plants. Though the mechanism of action of SmMYB36 on the tanshinone and phenolic acid biosynthesis is well understood, its regulation through post-translational modifications is unclear. A constitutive photomorphogenesis 9 (COP9) signalosome subunit 5 (SmCSN5), which interacted with SmMYB36 and inhibited its ubiquitination-based degradation, was identified in Salvia miltiorrhiza. SmCSN5 promoted tanshinone biosynthesis but inhibited phenolic acid biosynthesis in the hairy roots of S. miltiorrhiza. SmMYB36 also activated the transcription of the target genes SmDXS2 and SmCPS1 but repressed that of SmRAS in a SmCSN5-dependent manner. SmCSN5 acts as a positive regulator in MeJA-induced biosynthesis of tanshinones and phenolic acids. Specifically, SmCSN5 alone, when expressed transiently in tobacco and rice protoplasts, was localized to the cytoplasm, cell membrane, and nucleus, whereas when coexpressed with SmMYB36, it was detected only in the nucleus. Additionally, the degradation of SmMYB361-153 by ubiquitination was lowered after truncation of the self-activating structural domain of SmMYB36154-160. Collectively, these results suggest that SmCSN5 affected the transcriptional activation of SmMYB36 and stabilized SmMYB36, providing insights into the SmMYB36-based regulation of the accumulation of tanshinone and phenolic acid at the transcriptional and post-translational levels.
Collapse
Affiliation(s)
- Qi Li
- College of Life Sciences, Northwest A&F University, No.22 Xinong Road, Yangling 712100, China
- College of Tobacco Science, Yunnan Agricultural University, No. 452 Fengyuan Road, Panlong District, Kunming 650201, China
| | - Xiujuan Wang
- College of Life Sciences, Northwest A&F University, No.22 Xinong Road, Yangling 712100, China
| | - Jie Wang
- College of Life Sciences, Northwest A&F University, No.22 Xinong Road, Yangling 712100, China
| | - Yan Su
- College of Life Sciences, Northwest A&F University, No.22 Xinong Road, Yangling 712100, China
| | - Yuanyi Guo
- College of Life Sciences, Northwest A&F University, No.22 Xinong Road, Yangling 712100, China
| | - Jie Yang
- College of Life Sciences, Northwest A&F University, No.22 Xinong Road, Yangling 712100, China
| | - Jingying Liu
- College of Life Sciences, Northwest A&F University, No.22 Xinong Road, Yangling 712100, China
| | - Zheyong Xue
- Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, No. 26, Hexing Road, Xiangfang District, Harbin 150040, China
| | - Juane Dong
- College of Life Sciences, Northwest A&F University, No.22 Xinong Road, Yangling 712100, China
| | - Pengda Ma
- College of Life Sciences, Northwest A&F University, No.22 Xinong Road, Yangling 712100, China
| |
Collapse
|
5
|
Huang Y, Gao J, Ji G, Li W, Wang J, Wang Q, Shen Y, Guo J, Gao F. COP9 SIGNALOSOME SUBUNIT 5A facilitates POLYAMINE OXIDASE 5 degradation to regulate strawberry plant growth and fruit ripening. THE PLANT CELL 2025; 37:koaf022. [PMID: 39899466 PMCID: PMC11845351 DOI: 10.1093/plcell/koaf022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/13/2024] [Accepted: 01/20/2025] [Indexed: 02/05/2025]
Abstract
Polyamines (PAs), such as putrescine, spermidine, and spermine, are essential for plant growth and development. However, the post-translational regulation of PA metabolism remains unknown. Here, we report the COP9 SIGNALOSOME SUBUNIT 5A (FvCSN5A) mediates the degradation of the POLYAMINE OXIDASE 5 (FvPAO5), which catalyzes the conversion of spermidine/spermine to produce H2O2 in strawberry (Fragaria vesca). FvCSN5A is localized in the cytoplasm and nucleus, is ubiquitously expressed in strawberry plants, and is rapidly induced during fruit ripening. FvCSN5A RNA interference (RNAi) transgenic strawberry lines exhibit pleiotropic effects on plant development, fertility, and fruit ripening due to altered PA and H2O2 homeostasis, similar to FvPAO5 transgenic overexpression lines. Moreover, FvCSN5A interacts with FvPAO5 in vitro and in vivo, and the ubiquitination and degradation of FvPAO5 are impaired in FvCSN5A RNAi lines. Additionally, FvCSN5A interacts with cullin 1 (FvCUL1), a core component of the E3 ubiquitin-protein ligase complex. Transient genetic analysis in cultivated strawberry (Fragaria × ananassa) fruits showed that inhibiting FaPAO5 expression could partially rescue the ripening phenotype of FaCSN5A RNAi fruits. Taken together, our results suggest that the CSN5A-CUL1-PAO5 signaling pathway responsible for PA and H2O2 homeostasis is crucial for strawberry vegetative and reproductive growth in particular fruit ripening. Our findings present a promising strategy for improving crop yield and quality.
Collapse
Affiliation(s)
- Yun Huang
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Jiahui Gao
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Guiming Ji
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, College of Bioscience and Resources Environment, Beijing University of Agriculture, Beijing 102206, China
| | - Wenjing Li
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, College of Bioscience and Resources Environment, Beijing University of Agriculture, Beijing 102206, China
| | - Jiaxue Wang
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Qinghua Wang
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Yuanyue Shen
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Jiaxuan Guo
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, College of Bioscience and Resources Environment, Beijing University of Agriculture, Beijing 102206, China
| | - Fan Gao
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, College of Bioscience and Resources Environment, Beijing University of Agriculture, Beijing 102206, China
| |
Collapse
|
6
|
Liu L, Song S, Liu N, Wang Z, Zhao Y, Zhong N, Zhao P, Wang H. The Silencing of the StPAM16-1 Gene Enhanced the Resistance of Potato Plants to the Phytotoxin Thaxtomin A. Int J Mol Sci 2025; 26:1361. [PMID: 39941134 PMCID: PMC11818755 DOI: 10.3390/ijms26031361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/26/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
Potato common scab (CS) caused by Streptomyces scabiei is a severe disease that threatens tuber quality and its market value. To date, little is known about the mechanism regulating the resistance of potato to CS. In this study, we identified a presequence translocase-associated motor 16 gene from potato (designated StPAM16-1) that is involved in the response to the phytotoxin thaxtomin A (TA) secreted by S. scabiei. The StPAM16-1 protein was localized in the mitochondria, and the expression of the gene was upregulated in potato leaves treated with TA. The suppression of StPAM16-1 in potato led to enhanced resistance to TA and S. scabiei. Protein interaction analyses revealed that StPAM16-1 interacted with the subunit 5b of the COP9 signalosome complex (StCSN5). Similar to that of StPAM16-1, the expression levels of StCSN5 significantly increased in potato leaves treated with TA. These results indicated that StPAM16-1 acted as a negative regulator and was functionally associated with StCSN5 in the immune response of potato plants against CS. Our study sheds light on the molecular mechanism by which PAM16 participates in the plant immune response. Furthermore, both StPAM16-1 and StCSN5 could be potential target genes in the molecular breeding of potato cultivars with increased resistance to CS.
Collapse
Affiliation(s)
- Lu Liu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (L.L.); (S.S.); (Z.W.); (Y.Z.); (N.Z.)
- Engineering Laboratory for Advanced Microbial Technology of Agriculture, Chinese Academy of Sciences, Beijing 100101, China
| | - Shuangwei Song
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (L.L.); (S.S.); (Z.W.); (Y.Z.); (N.Z.)
- Engineering Laboratory for Advanced Microbial Technology of Agriculture, Chinese Academy of Sciences, Beijing 100101, China
| | - Ning Liu
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China;
- National Engineering Research Center for Vegetables (NERCV), State Key Laboratory of Vegetable Biobreeding, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Zhiqin Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (L.L.); (S.S.); (Z.W.); (Y.Z.); (N.Z.)
- Engineering Laboratory for Advanced Microbial Technology of Agriculture, Chinese Academy of Sciences, Beijing 100101, China
| | - Yonglong Zhao
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (L.L.); (S.S.); (Z.W.); (Y.Z.); (N.Z.)
- Engineering Laboratory for Advanced Microbial Technology of Agriculture, Chinese Academy of Sciences, Beijing 100101, China
| | - Naiqin Zhong
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (L.L.); (S.S.); (Z.W.); (Y.Z.); (N.Z.)
- Engineering Laboratory for Advanced Microbial Technology of Agriculture, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Potato Industry Integration and Development Enterprises in Inner Mongolia Autonomous Region, Hulunbuir 021000, China
| | - Pan Zhao
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (L.L.); (S.S.); (Z.W.); (Y.Z.); (N.Z.)
- Engineering Laboratory for Advanced Microbial Technology of Agriculture, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Potato Industry Integration and Development Enterprises in Inner Mongolia Autonomous Region, Hulunbuir 021000, China
| | - Haiyun Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (L.L.); (S.S.); (Z.W.); (Y.Z.); (N.Z.)
| |
Collapse
|
7
|
Zhang C, Fang L, He F, You X, Wang M, Zhao T, Hou Y, Xiao N, Li A, Yang J, Ruan J, Francis F, Wang GL, Wang R, Ning Y. Ubiquitination of OsCSN5 by OsPUB45 activates immunity by modulating the OsCUL3a-OsNPR1 module. SCIENCE ADVANCES 2025; 11:eadr2441. [PMID: 39752489 PMCID: PMC11698096 DOI: 10.1126/sciadv.adr2441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 11/27/2024] [Indexed: 01/06/2025]
Abstract
The COP9 signalosome (CSN) is a highly conserved protein complex in eukaryotes, with CSN5 serving as its critical catalytic subunit. However, the role of CSN5 in plant immunity is largely unexplored. Here, we found that suppression of OsCSN5 in rice enhances resistance against the fungal pathogen Magnaporthe oryzae and the bacterial pathogen Xanthomonas oryzae pv. oryzae (Xoo) without affecting growth. OsCSN5 is ubiquitinated and degraded by the E3 ligase OsPUB45. Overexpression of OsPUB45 increased resistance against M. oryzae and Xoo, while dysfunction of OsPUB45 decreased resistance. In addition, OsCSN5 stabilized OsCUL3a to promote the degradation of a positive regulator OsNPR1. Overexpression of OsPUB45 compromised accumulation of OsCUL3a, leading to stabilization of OsNPR1, whereas mutations in OsPUB45 destabilized OsNPR1. These findings suggest that OsCSN5 stabilizes OsCUL3a to facilitate the degradation of OsNPR1, preventing its constitutive activation without infection. Conversely, OsPUB45 promotes the degradation of OsCSN5, contributing to immunity activation upon pathogen infection.
Collapse
Affiliation(s)
- Chongyang Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 440307, China
| | - Liang Fang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Feng He
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaoman You
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Min Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Tianxiao Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yanyan Hou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ning Xiao
- Institute of Agricultural Sciences for Lixiahe Region in Jiangsu, Yangzhou 225009, China
| | - Aihong Li
- Institute of Agricultural Sciences for Lixiahe Region in Jiangsu, Yangzhou 225009, China
| | - Jian Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jue Ruan
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 440307, China
| | - Frédéric Francis
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Guo-Liang Wang
- Department of Plant Pathology, The Ohio State University, Columbus, OH 43210, USA
| | - Ruyi Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuese Ning
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
8
|
Martínez C, Iniesto E, García-León M, García-Corredera D, Fonseca S, Santiago C, Yang M, Yu R, Chen H, Altmann E, Renatus M, Deng XW, Rubio V. Hormone-mediated disassembly and inactivation of a plant E3 ubiquitin ligase complex. Cell Rep 2024; 43:114802. [PMID: 39365702 DOI: 10.1016/j.celrep.2024.114802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/06/2024] [Accepted: 09/12/2024] [Indexed: 10/06/2024] Open
Abstract
Phytohormone abscisic acid (ABA) regulates key plant development and environmental stress responses. The ubiquitin-proteasome system tightly controls ABA signaling. CULLIN4-RING (CRL4) E3 ubiquitin ligases use the substrate receptor module CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP10)-DDB1-DET1-DDA1 (CDDD) to target Arabidopsis ABA receptor PYL8, acting as negative regulators of ABA responses. Conversely, ABA treatment attenuates PYL8 receptor degradation, although the molecular mechanism remained elusive. Here, we show that ABA promotes the disruption of CRL4-CDDD complexes, leading to PYL8 stabilization. ABA-mediated CRL4-CDDD dissociation likely involves an altered association between DDA1-containing complexes and the COP9 signalosome (CSN), a master regulator of the assembly of cullin-based E3 ligases, including CRL4-CDDD. Indeed, treatment with CSN inhibitor CSN5i-3 suppresses the ABA effect on CRL4-CDDD assembly. Our findings indicate that ABA stabilizes PYL8 by altering the dynamics of the CRL4-CDDD-CSN complex association, showing a regulatory mechanism by which a plant hormone inhibits an E3 ubiquitin ligase to protect its own receptors from degradation.
Collapse
Affiliation(s)
- Cristina Martínez
- Departments of Plant Molecular Genetics, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Darwin 3, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Elisa Iniesto
- Departments of Plant Molecular Genetics, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Darwin 3, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Marta García-León
- Departments of Plant Molecular Genetics, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Darwin 3, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Daniel García-Corredera
- Departments of Plant Molecular Genetics, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Darwin 3, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Sandra Fonseca
- Departments of Plant Molecular Genetics, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Darwin 3, Campus de Cantoblanco, 28049 Madrid, Spain
| | - César Santiago
- Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Darwin 3, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Mei Yang
- Peking University Institute of Advanced Agricultural Sciences, Weifang, Shandong 261325, China
| | - Renbo Yu
- National Key Laboratory of Tropical Crop Biobreeding, Hainan University, Sanya/Haikou, Hainan 572024/571101, China
| | - Haodong Chen
- Center for Plant Biology, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Eva Altmann
- Global Discovery Chemistry, WSJ-386 1 14.32, 4056 Basel, Switzerland
| | - Martin Renatus
- Novartis Institutes for BioMedical Research, Forum 1, Novartis Campus, 4002 Basel, Switzerland
| | - Xing Wang Deng
- Peking University Institute of Advanced Agricultural Sciences, Weifang, Shandong 261325, China; State Key Laboratory of Wheat Improvement, Peking-Tsinghua Center for Life Sciences, School of Advanced Agriculture Sciences and School of Life Sciences, Peking University, Beijing 100871, China
| | - Vicente Rubio
- Departments of Plant Molecular Genetics, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Darwin 3, Campus de Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
9
|
Lu J, Yu J, Liu P, Gu J, Chen Y, Zhang T, Li J, Wang T, Yang W, Lin R, Wang F, Qi M, Li T, Liu Y. Ubiquitin-mediated degradation of SlPsbS regulates low night temperature tolerance in tomatoes. Cell Rep 2024; 43:114757. [PMID: 39302836 DOI: 10.1016/j.celrep.2024.114757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/26/2024] [Accepted: 08/29/2024] [Indexed: 09/22/2024] Open
Abstract
PsbS protein is essential for the rapid induction of non-photochemical quenching (NPQ) under low night temperatures (LNTs), but its stability is often affected by adverse environmental conditions. However, the regulatory mechanism for the stability of PsbS or chloroplast proteins remains to be fully characterized. We show that LNT decreases NPQ levels and SlPsbS protein abundance in tomato leaves. LNT-activated chloroplast vesicles (SlCVs) targeting the chloroplasts induce the formation of CV-containing vesicles (CCVs) containing SlPsbS, exported from the chloroplasts. Subsequently, SlCV and SlPsbS contact COP9 signalosome subunit 5A (SlCSN5A) in the cytosol and are ubiquitinated and degraded. Genetic evidence demonstrates that the overexpression of SlCV aggravates SlPsbS protein degradation, whereas silencing of SlCSN5 and SlCV delays LNT-induced NPQ reduction and SlPsbS protein turnover. This study reveals a ubiquitin-dependent degradation pathway of chloroplast proteins co-mediated by CV and CSN5A, thereby providing a basic reference for the regulation of chloroplast protein stability under stress conditions.
Collapse
Affiliation(s)
- Jiazhi Lu
- The Modern Facilities Horticultural Engineering Technology Center, Shenyang Agricultural University, Shenyang 110866, China; The Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang 110866, China; Yazhouwan National Laboratory, Sanya 572024, China
| | - Junchi Yu
- Key Laboratory of Agriculture Biotechnology, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Pengkun Liu
- The Modern Facilities Horticultural Engineering Technology Center, Shenyang Agricultural University, Shenyang 110866, China; The Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang 110866, China
| | - Jiamao Gu
- The Modern Facilities Horticultural Engineering Technology Center, Shenyang Agricultural University, Shenyang 110866, China; The Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang 110866, China
| | - Yu Chen
- The Modern Facilities Horticultural Engineering Technology Center, Shenyang Agricultural University, Shenyang 110866, China; The Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang 110866, China
| | - Tianyi Zhang
- The Modern Facilities Horticultural Engineering Technology Center, Shenyang Agricultural University, Shenyang 110866, China; The Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang 110866, China
| | - Jialong Li
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Taotao Wang
- Key Laboratory of Horticulture Plant Biology, Ministry of Education, Huazhong Agriculture University, Wuhan 430070, China
| | - Wenqiang Yang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Rongcheng Lin
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Feng Wang
- The Modern Facilities Horticultural Engineering Technology Center, Shenyang Agricultural University, Shenyang 110866, China; The Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang 110866, China
| | - Mingfang Qi
- The Modern Facilities Horticultural Engineering Technology Center, Shenyang Agricultural University, Shenyang 110866, China; The Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang 110866, China
| | - Tianlai Li
- The Modern Facilities Horticultural Engineering Technology Center, Shenyang Agricultural University, Shenyang 110866, China; The Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang 110866, China.
| | - Yufeng Liu
- The Modern Facilities Horticultural Engineering Technology Center, Shenyang Agricultural University, Shenyang 110866, China; The Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang 110866, China.
| |
Collapse
|
10
|
Eckardt NA, Avin-Wittenberg T, Bassham DC, Chen P, Chen Q, Fang J, Genschik P, Ghifari AS, Guercio AM, Gibbs DJ, Heese M, Jarvis RP, Michaeli S, Murcha MW, Mursalimov S, Noir S, Palayam M, Peixoto B, Rodriguez PL, Schaller A, Schnittger A, Serino G, Shabek N, Stintzi A, Theodoulou FL, Üstün S, van Wijk KJ, Wei N, Xie Q, Yu F, Zhang H. The lowdown on breakdown: Open questions in plant proteolysis. THE PLANT CELL 2024; 36:2931-2975. [PMID: 38980154 PMCID: PMC11371169 DOI: 10.1093/plcell/koae193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/16/2024] [Accepted: 06/19/2024] [Indexed: 07/10/2024]
Abstract
Proteolysis, including post-translational proteolytic processing as well as protein degradation and amino acid recycling, is an essential component of the growth and development of living organisms. In this article, experts in plant proteolysis pose and discuss compelling open questions in their areas of research. Topics covered include the role of proteolysis in the cell cycle, DNA damage response, mitochondrial function, the generation of N-terminal signals (degrons) that mark many proteins for degradation (N-terminal acetylation, the Arg/N-degron pathway, and the chloroplast N-degron pathway), developmental and metabolic signaling (photomorphogenesis, abscisic acid and strigolactone signaling, sugar metabolism, and postharvest regulation), plant responses to environmental signals (endoplasmic-reticulum-associated degradation, chloroplast-associated degradation, drought tolerance, and the growth-defense trade-off), and the functional diversification of peptidases. We hope these thought-provoking discussions help to stimulate further research.
Collapse
Affiliation(s)
| | - Tamar Avin-Wittenberg
- Department of Plant and Environmental Sciences, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Diane C Bassham
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Poyu Chen
- School of Biological Science and Technology, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Qian Chen
- Ministry of Agriculture and Rural Affairs Key Laboratory for Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Jun Fang
- Section of Molecular Plant Biology, Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| | - Pascal Genschik
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 12, rue du Général Zimmer, Strasbourg 67084, France
| | - Abi S Ghifari
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Angelica M Guercio
- Department of Plant Biology, College of Biological Sciences, University of California-Davis, Davis, CA 95616, USA
| | - Daniel J Gibbs
- School of Biosciences, University of Birmingham, Edgbaston B1 2RU, UK
| | - Maren Heese
- Department of Developmental Biology, University of Hamburg, Ohnhorststr. 18, Hamburg 22609, Germany
| | - R Paul Jarvis
- Section of Molecular Plant Biology, Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| | - Simon Michaeli
- Department of Postharvest Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel
| | - Monika W Murcha
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Sergey Mursalimov
- Department of Postharvest Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel
| | - Sandra Noir
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 12, rue du Général Zimmer, Strasbourg 67084, France
| | - Malathy Palayam
- Department of Plant Biology, College of Biological Sciences, University of California-Davis, Davis, CA 95616, USA
| | - Bruno Peixoto
- Section of Molecular Plant Biology, Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| | - Pedro L Rodriguez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Cientificas-Universidad Politecnica de Valencia, Valencia ES-46022, Spain
| | - Andreas Schaller
- Department of Plant Physiology and Biochemistry, Institute of Biology, University of Hohenheim, Stuttgart 70599, Germany
| | - Arp Schnittger
- Department of Developmental Biology, University of Hamburg, Ohnhorststr. 18, Hamburg 22609, Germany
| | - Giovanna Serino
- Department of Biology and Biotechnology, Sapienza Universita’ di Roma, p.le A. Moro 5, Rome 00185, Italy
| | - Nitzan Shabek
- Department of Plant Biology, College of Biological Sciences, University of California-Davis, Davis, CA 95616, USA
| | - Annick Stintzi
- Department of Plant Physiology and Biochemistry, Institute of Biology, University of Hohenheim, Stuttgart 70599, Germany
| | | | - Suayib Üstün
- Faculty of Biology and Biotechnology, Ruhr-University of Bochum, Bochum 44780, Germany
| | - Klaas J van Wijk
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, NY 14853, USA
| | - Ning Wei
- School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Qi Xie
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feifei Yu
- College of Grassland Science and Technology, China Agricultural University, Beijing 100083, China
| | - Hongtao Zhang
- Plant Sciences and the Bioeconomy, Rothamsted Research, Harpenden AL5 2JQ, UK
| |
Collapse
|
11
|
de Roij M, Borst JW, Weijers D. Protein degradation in auxin response. THE PLANT CELL 2024; 36:3025-3035. [PMID: 38652687 PMCID: PMC11371164 DOI: 10.1093/plcell/koae125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/14/2024] [Accepted: 03/01/2024] [Indexed: 04/25/2024]
Abstract
The signaling molecule auxin sits at the nexus of plant biology where it coordinates essentially all growth and developmental processes. Auxin molecules are transported throughout plant tissues and are capable of evoking highly specific physiological responses by inducing various molecular pathways. In many of these pathways, proteolysis plays a crucial role for correct physiological responses. This review provides a chronology of the discovery and characterization of the auxin receptor, which is a fascinating example of separate research trajectories ultimately converging on the discovery of a core auxin signaling hub that relies on degradation of a family of transcriptional inhibitor proteins-the Aux/IAAs. Beyond describing the "classical" proteolysis-driven auxin response system, we explore more recent examples of the interconnection of proteolytic systems, which target a range of other auxin signaling proteins, and auxin response. By highlighting these emerging concepts, we provide potential future directions to further investigate the role of protein degradation within the framework of auxin response.
Collapse
Affiliation(s)
- Martijn de Roij
- Laboratory of Biochemistry, Wageningen University, Wageningen 6708WE, The Netherlands
| | - Jan Willem Borst
- Laboratory of Biochemistry, Wageningen University, Wageningen 6708WE, The Netherlands
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, Wageningen 6708WE, The Netherlands
| |
Collapse
|
12
|
Liu J, Han D, Xuan J, Xie J, Wang W, Zhou Q, Chen K. COP9 signalosome complex is a prognostic biomarker and corresponds with immune infiltration in hepatocellular carcinoma. Aging (Albany NY) 2024; 16:5264-5287. [PMID: 38466642 PMCID: PMC11006475 DOI: 10.18632/aging.205646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 01/15/2024] [Indexed: 03/13/2024]
Abstract
Hepatocellular carcinoma (HCC) is among the most common deadly tumors but still lacks specific biomarkers for diagnosis, prognosis, and treatment guidance. The COP9 signalosome (COPS) is an essential regulator of the ubiquitin conjugation pathway upregulated in various cancers. We evaluated the contributions of COPS subunits to HCC tumorigenesis and their utility for prognosis. We comprehensively evaluated the tumor expression pattern and tumorigenic functions of COPS subunits using The Cancer Genome Atlas (TCGA), The Human Protein Atlas and immunohistochemistry. Kaplan-Meier, Cox regression, ROC curve, and nomogram analyses were used to assess the predictive values of COPS subunits for clinical outcome. Expression levels of COPS subunits were significantly upregulated in HCC tissues, which predicted shorter overall survival (OS). Further, Cox regression analysis identified COPS5, COPS7B, and COPS9 as independent prognostic biomarkers for OS. High mutation rates were also found in COPS subunits. Functional network analysis indicated that COPS and neighboring genes regulate 'protein neddylation', 'protein deneddylation', and 'protein ubiquitination'. The COPS PPI included strong interactions with p53, CUL1/2/3/4, and JUN. Moreover, the correlations between COPS subunit expression levels and tumor immune cell infiltration rates were examined using TIMER, TISIDB, ssGSEA, and ESTIMATE packages. COPS subunits expression levels were positively correlated with specific tumor immune cell infiltration rates, immunoregulator expression levels, and microsatellite instability in HCC. Finally, knockout of COPS6 and COPS9 in HCC cells reduced while overexpression enhanced proliferation rate and metastasis capacity. Our study revealed that COPS potential biomarker for unfavorable HCC prognosis and indicators of immune infiltration, tumorigenicity, and metastasis.
Collapse
Affiliation(s)
- Jiahui Liu
- Department of Clinical Laboratory, Zhongshan City People’s Hospital, The Affiliated Zhongshan Hospital of Sun Yat-Sen University, Zhongshan 528400, Guangdong, China
- Laboratory of Basic Medical Science, General Hospital of Southern Theater Command of PLA, Guangzhou 510000, Guangdong, China
| | - Dexing Han
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510000, Guangdong, China
| | - Junfeng Xuan
- Laboratory of Basic Medical Science, General Hospital of Southern Theater Command of PLA, Guangzhou 510000, Guangdong, China
| | - Jinye Xie
- Department of Clinical Laboratory, Zhongshan City People’s Hospital, The Affiliated Zhongshan Hospital of Sun Yat-Sen University, Zhongshan 528400, Guangdong, China
| | - Weijia Wang
- Department of Clinical Laboratory, Zhongshan City People’s Hospital, The Affiliated Zhongshan Hospital of Sun Yat-Sen University, Zhongshan 528400, Guangdong, China
| | - Quan Zhou
- Laboratory of Basic Medical Science, General Hospital of Southern Theater Command of PLA, Guangzhou 510000, Guangdong, China
- Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510000, Guangdong, China
| | - Kang Chen
- Department of Clinical Laboratory, Zhongshan City People’s Hospital, The Affiliated Zhongshan Hospital of Sun Yat-Sen University, Zhongshan 528400, Guangdong, China
| |
Collapse
|
13
|
Hu Y, Zhang Z, Mao Q, Zhang X, Hao A, Xun Y, Wang Y, Han L, Zhan W, Liu Q, Yin Y, Peng C, Moresco EMY, Chen Z, Beutler B, Sun L. Dynamic molecular architecture and substrate recruitment of cullin3-RING E3 ligase CRL3 KBTBD2. Nat Struct Mol Biol 2024; 31:336-350. [PMID: 38332366 PMCID: PMC11791872 DOI: 10.1038/s41594-023-01182-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 11/16/2023] [Indexed: 02/10/2024]
Abstract
Phosphatidylinositol 3-kinase α, a heterodimer of catalytic p110α and one of five regulatory subunits, mediates insulin- and insulin like growth factor-signaling and, frequently, oncogenesis. Cellular levels of the regulatory p85α subunit are tightly controlled by regulated proteasomal degradation. In adipose tissue and growth plates, failure of K48-linked p85α ubiquitination causes diabetes, lipodystrophy and dwarfism in mice, as in humans with SHORT syndrome. Here we elucidated the structures of the key ubiquitin ligase complexes regulating p85α availability. Specificity is provided by the substrate receptor KBTBD2, which recruits p85α to the cullin3-RING E3 ubiquitin ligase (CRL3). CRL3KBTBD2 forms multimers, which disassemble into dimers upon substrate binding (CRL3KBTBD2-p85α) and/or neddylation by the activator NEDD8 (CRL3KBTBD2~N8), leading to p85α ubiquitination and degradation. Deactivation involves dissociation of NEDD8 mediated by the COP9 signalosome and displacement of KBTBD2 by the inhibitor CAND1. The hereby identified structural basis of p85α regulation opens the way to better understanding disturbances of glucose regulation, growth and cancer.
Collapse
Affiliation(s)
- Yuxia Hu
- Shanghai Fifth People's Hospital, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Key Laboratory of Medical Epigenetics and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Zhao Zhang
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Division of Endocrinology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Qiyu Mao
- Shanghai Fifth People's Hospital, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Key Laboratory of Medical Epigenetics and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xiang Zhang
- Shanghai Fifth People's Hospital, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Key Laboratory of Medical Epigenetics and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Aihua Hao
- Shanghai Fifth People's Hospital, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Key Laboratory of Medical Epigenetics and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yu Xun
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Division of Endocrinology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yeda Wang
- Shanghai Fifth People's Hospital, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Key Laboratory of Medical Epigenetics and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Lin Han
- Shanghai Fifth People's Hospital, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Key Laboratory of Medical Epigenetics and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Wuqiang Zhan
- Shanghai Fifth People's Hospital, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Key Laboratory of Medical Epigenetics and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Qianying Liu
- Shanghai Fifth People's Hospital, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Key Laboratory of Medical Epigenetics and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yue Yin
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, China
| | - Chao Peng
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, China
| | - Eva Marie Y Moresco
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Zhenguo Chen
- Shanghai Fifth People's Hospital, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Key Laboratory of Medical Epigenetics and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| | - Bruce Beutler
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Lei Sun
- Shanghai Fifth People's Hospital, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Key Laboratory of Medical Epigenetics and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
14
|
Wang K, Diaz S, Li L, Lohman JR, Liu X. CAND1 inhibits Cullin-2-RING ubiquitin ligases for enhanced substrate specificity. Nat Struct Mol Biol 2024; 31:323-335. [PMID: 38177676 PMCID: PMC10923007 DOI: 10.1038/s41594-023-01167-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 10/29/2023] [Indexed: 01/06/2024]
Abstract
Through targeting essential cellular regulators for ubiquitination and serving as a major platform for discovering proteolysis-targeting chimera (PROTAC) drugs, Cullin-2 (CUL2)-RING ubiquitin ligases (CRL2s) comprise an important family of CRLs. The founding members of CRLs, the CUL1-based CRL1s, are known to be activated by CAND1, which exchanges the variable substrate receptors associated with the common CUL1 core and promotes the dynamic assembly of CRL1s. Here we find that CAND1 inhibits CRL2-mediated protein degradation in human cells. This effect arises due to altered binding kinetics, involving CAND1 and CRL2VHL, as we illustrate that CAND1 dramatically increases the dissociation rate of CRL2s but barely accelerates the assembly of stable CRL2s. Using PROTACs that differently recruit neo-substrates to CRL2VHL, we demonstrate that the inhibitory effect of CAND1 helps distinguish target proteins with different affinities for CRL2s, presenting a mechanism for selective protein degradation with proper pacing in the changing cellular environment.
Collapse
Affiliation(s)
- Kankan Wang
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
| | - Stephanie Diaz
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
- Department of Neurosurgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA
| | - Lihong Li
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
- Center for Plant Biology, Purdue University, West Lafayette, IN, USA
| | - Jeremy R Lohman
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Xing Liu
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA.
- Center for Plant Biology, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
15
|
Dong J, Li Y, Cheng S, Li X, Wei N. COP9 signalosome-mediated deneddylation of CULLIN1 is necessary for SCF EBF1 assembly in Arabidopsis thaliana. Cell Rep 2024; 43:113638. [PMID: 38184853 DOI: 10.1016/j.celrep.2023.113638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 11/06/2023] [Accepted: 12/15/2023] [Indexed: 01/09/2024] Open
Abstract
Functions of the SKP1-CUL1-F box (SCF) ubiquitin E3 ligases are essential in plants. The F box proteins (FBPs) are substrate receptors that recruit substrates and assemble an active SCF complex, but the regulatory mechanism underlying the FBPs binding to CUL1 to activate the SCF cycle is not fully understood. We show that Arabidopsis csn1-10 is defective in SCFEBF1-mediated PIF3 degradation during de-etiolation, due to impaired association of EBF1 with CUL1 in csn1-10. EBF1 preferentially associates with un-neddylated CUL1 that is deficient in csn1-10 and the EBF1-CUL1 binding is rescued by the neddylation inhibitor MLN4924. Furthermore, we identify a subset of FBPs with impaired binding to CUL1 in csn1-10, indicating their assembly to form SCF complexes may depend on COP9 signalosome (CSN)-mediated deneddylation of CUL1. This study reports that a key role of CSN-mediated CULLIN deneddylation is to gate the binding of the FBP-substrate module to CUL1, thus initiating the SCF cycle of substrate ubiquitination.
Collapse
Affiliation(s)
- Jie Dong
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yuanyuan Li
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Shuyang Cheng
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xuehui Li
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences at Weifang, Weifang 261325, China
| | - Ning Wei
- School of Life Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
16
|
Hu S, Yu K, Yan J, Shan X, Xie D. Jasmonate perception: Ligand-receptor interaction, regulation, and evolution. MOLECULAR PLANT 2023; 16:23-42. [PMID: 36056561 DOI: 10.1016/j.molp.2022.08.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/10/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
Phytohormones integrate external environmental and developmental signals with internal cellular responses for plant survival and multiplication in changing surroundings. Jasmonate (JA), which might originate from prokaryotes and benefit plant terrestrial adaptation, is a vital phytohormone that regulates diverse developmental processes and defense responses against various environmental stresses. In this review, we first provide an overview of ligand-receptor binding techniques used for the characterization of phytohormone-receptor interactions, then introduce the identification of the receptor COI1 and active JA molecules, and finally summarize recent advances on the regulation of JA perception and its evolution.
Collapse
Affiliation(s)
- Shuai Hu
- MOE Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Kaiming Yu
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jianbin Yan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; Kunpeng Institute of Modern Agriculture at Foshan, Chinese Academy of Agricultural Sciences, Foshan 528200, China.
| | - Xiaoyi Shan
- MOE Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Daoxin Xie
- MOE Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China; Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
17
|
Chen A, Ren Y, Han X, Liu C, Zhou Y, Xu C, Qi H, Ma Z, Chen Y. The COP9 signalosome complex regulates fungal development and virulence in the wheat scab fungus Fusarium graminearum. Front Microbiol 2023; 14:1179676. [PMID: 37168110 PMCID: PMC10165099 DOI: 10.3389/fmicb.2023.1179676] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 04/03/2023] [Indexed: 05/13/2023] Open
Abstract
The COP9 signalosome (Csn) complex is an evolutionarily conserved complex that regulates various important cellular processes. However, the function of the Csn complex in pathogenic fungi remains elusive. Here, the distribution of Csn subunits in the fungal kingdom was surveyed, and their biological functions were systematically characterized in the fungal pathogen Fusarium graminearum, which is among the top 10 plant fungal pathogens. The results obtained from bioinformatic analyses suggested that the F. graminearum Csn complex consisted of seven subunits (Csn1-Csn7) and that Csn5 was the most conserved subunit across the fungi kingdom. Yeast two-hybrid assays demonstrated that the seven Csn subunits formed a complex in F. graminearum. The Csn complex was localized to both the nucleus and cytoplasm and necessary for hyphal growth, asexual and sexual development and stress response. Transcriptome profiling revealed that the Csn complex regulated the transcription abundance of TRI genes necessary for mycotoxin deoxynivalenol (DON) biosynthesis, subsequently regulating DON production to control fungal virulence. Collectively, the roles of the Csn complex in F. graminearum were comprehensively analyzed, providing new insights into the functions of the Csn complex in fungal virulence and suggesting that the complex may be a potential target for combating fungal diseases.
Collapse
|
18
|
Casagrande F, Serino G. Immunoprecipitation of Cullin-Ring Ligases (CRLs) in Arabidopsis thaliana Seedlings. Methods Mol Biol 2023; 2581:31-42. [PMID: 36413308 DOI: 10.1007/978-1-0716-2784-6_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
CRL (Cullin-Ring ubiquitin ligases) are the major class of plant E3 ubiquitin ligases. Immunoprecipitation-based methods are useful techniques for revealing interactions among Cullin-Ring Ligase (CRL) subunits or between CRLs and other proteins, as well as for detecting poly-ubiquitin modifications of the CRLs themselves. Here, we describe two immunoprecipitation (IP) procedures suitable for CRLs in Arabidopsis: (1) a procedure for IP analysis of CRL subunits and their interactors and a second procedure for in vivo ubiquitination analysis of the CRLs. Both protocols can be divided into two major steps: (1) preparation of cell extracts without disruption of protein interactions and (2) affinity purification of the protein complexes and subsequent detection. We provide a thorough description of all the steps, as well as advice on how to choose proper buffers for these analyses. We also suggest a series of negative controls that can be used to verify the specificity of the procedure.
Collapse
Affiliation(s)
- Federica Casagrande
- Dipartimento di Biologia e Biotecnologie "C. Darwin", Sapienza Università di Roma, Rome, Italy
| | - Giovanna Serino
- Dipartimento di Biologia e Biotecnologie "C. Darwin", Sapienza Università di Roma, Rome, Italy.
| |
Collapse
|
19
|
Han S, Liu Y, Bao A, Zeng H, Huang G, Geng M, Zhang C, Zhang Q, Lu J, Wu M, Guo L. OsCSN1 regulates the growth of rice seedlings through the GA signaling pathway in blue light. JOURNAL OF PLANT PHYSIOLOGY 2023; 280:153904. [PMID: 36566672 DOI: 10.1016/j.jplph.2022.153904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Blue light can regulate the photomorphogenesis of plants through blue light receptors to influence seedling growth and development. The COP9 signaling complex (CSN), a vital regulator of photomorphogenesis, is a highly conserved protein complex. CSN1 is the largest and most critical subunit in the CSN with a complex N-terminal function that supports most of the functions of CSN1 and is mainly involved in plant growth and development processes. The CSN is also required in the blue light-mediated photomorphogenesis response of seedlings. In this study, the OsCSN1 subunit of Oryza sativa subsp. japonica (rice) was edited and screened, and OsCSN1 deletion mutant, OsCSN1 weak expression mutant and OsCSN1 overexpression mutant were constructed. The mechanism of OsCSN1 and its N-terminal effects on rice seedling growth and development under blue light conditions were investigated. The addition of exogenous hormone gibberellin (GA3) and gibberellin synthesis inhibitor paclobutrazol (PAC) caused aboveground phenotypic and protein (such as CUL4 and SLR1) changes. Blue light regulates the degradation of SLR1 through OsCSN1, which regulates the growth and development of rice seedling height, the first incomplete leaf, and the coleoptile. It is hypothesized that rice affects CRY-COP1 interactions after sensing blue light signals through the cryptochrome, and the nuclear localization of COP1 is regulated by the CSN complex. OsCSN1 is a negative regulator in response to blue light. The core structural domain of action that inhibits the growth of the aboveground part of rice seedlings is located at the N-terminal of OsCSN1. OsCSN1 regulates the nuclear localization of COP1 through the COP9 signaling complex and degrades SLR1 through CUL4-based E3 ligase. Ultimately, it affects the synthesis of the endogenous hormone GA, thereby inhibiting the aboveground growth and development of rice seedlings.
Collapse
Affiliation(s)
- Shining Han
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, PR China
| | - Yanxi Liu
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, PR China
| | - Anar Bao
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, PR China
| | - Hua Zeng
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, PR China
| | - Guohui Huang
- School of Life Sciences, Northeast Normal University, Changchun, 130024, PR China
| | - Min Geng
- College of Food and Biotechnology, Changchun Polytechnic, Changchun, 130033, PR China
| | - Chunyu Zhang
- College of Food and Biotechnology, Changchun Polytechnic, Changchun, 130033, PR China
| | - Qi Zhang
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, PR China
| | - Jingmei Lu
- School of Life Sciences, Northeast Normal University, Changchun, 130024, PR China
| | - Ming Wu
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, PR China.
| | - Liquan Guo
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, PR China.
| |
Collapse
|
20
|
Genome-Wide Analysis of Wheat GATA Transcription Factor Genes Reveals Their Molecular Evolutionary Characteristics and Involvement in Salt and Drought Tolerance. Int J Mol Sci 2022; 24:ijms24010027. [PMID: 36613470 PMCID: PMC9820438 DOI: 10.3390/ijms24010027] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 12/24/2022] Open
Abstract
GATA transcription factor genes participate in plant growth, development, morphogenesis, and stress response. In this study, we carried out a comprehensive genome-wide analysis of wheat GATA transcription factor genes to reveal their molecular evolutionary characteristics and involvement in salt and drought tolerance. In total, 79 TaGATA genes containing a conserved GATA domain were identified in the wheat genome, which were classified into four subfamilies. Collinear analysis indicated that fragment duplication plays an important role in the amplification of the wheat GATA gene family. Functional disproportionation analysis between subfamilies found that both type I and type II functional divergence simultaneously occurs in wheat GATA genes, which might result in functional differentiation of the TaGATA gene family. Transcriptional expression analysis showed that TaGATA genes generally have a high expression level in leaves and in response to drought and salt stresses. Overexpression of TaGATA62 and TaGATA73 genes significantly enhanced the drought and salt tolerance of yeast and Arabidopsis. Protein-protein docking indicated that TaGATAs can enhance drought and salt tolerance by interacting between the DNA-binding motif of GATA transcription factors and photomorphogenesis-related protein TaCOP9-5A. Our results provided a base for further understanding the molecular evolution and functional characterization of the plant GATA gene family in response to abiotic stresses.
Collapse
|
21
|
Fan K, Sze CC, Li MW, Lam HM. Roles of non-coding RNAs in the hormonal and nutritional regulation in nodulation and nitrogen fixation. FRONTIERS IN PLANT SCIENCE 2022; 13:997037. [PMID: 36330261 PMCID: PMC9623164 DOI: 10.3389/fpls.2022.997037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Symbiotic nitrogen fixation is an important component in the nitrogen cycle and is a potential solution for sustainable agriculture. It is the result of the interactions between the plant host, mostly restricted to legume species, and the rhizobial symbiont. From the first encounter between the host and the symbiont to eventual successful nitrogen fixation, there are delicate processes involved, such as nodule organogenesis, rhizobial infection thread progression, differentiation of the bacteroid, deregulation of the host defense systems, and reallocation of resources. All these processes are tightly regulated at different levels. Recent evidence revealed that non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), participate in these processes by controlling the transcription and translation of effector genes. In general, ncRNAs are functional transcripts without translation potential and are important gene regulators. MiRNAs, negative gene regulators, bind to the target mRNAs and repress protein production by causing the cleavage of mRNA and translational silencing. LncRNAs affect the formation of chromosomal loops, DNA methylation, histone modification, and alternative splicing to modulate gene expression. Both lncRNAs and circRNAs could serve as target mimics of miRNA to inhibit miRNA functions. In this review, we summarized and discussed the current understanding of the roles of ncRNAs in legume nodulation and nitrogen fixation in the root nodule, mainly focusing on their regulation of hormone signal transduction, the autoregulation of nodulation (AON) pathway and nutrient homeostasis in nodules. Unraveling the mediation of legume nodulation by ncRNAs will give us new insights into designing higher-performance leguminous crops for sustainable agriculture.
Collapse
|
22
|
Gao DM, Zhang ZJ, Qiao JH, Gao Q, Zang Y, Xu WY, Xie L, Fang XD, Ding ZH, Yang YZ, Wang Y, Wang XB. A rhabdovirus accessory protein inhibits jasmonic acid signaling in plants to attract insect vectors. PLANT PHYSIOLOGY 2022; 190:1349-1364. [PMID: 35771641 PMCID: PMC9516739 DOI: 10.1093/plphys/kiac319] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Plant rhabdoviruses heavily rely on insect vectors for transmission between sessile plants. However, little is known about the underlying mechanisms of insect attraction and transmission of plant rhabdoviruses. In this study, we used an arthropod-borne cytorhabdovirus, Barley yellow striate mosaic virus (BYSMV), to demonstrate the molecular mechanisms of a rhabdovirus accessory protein in improving plant attractiveness to insect vectors. Here, we found that BYSMV-infected barley (Hordeum vulgare L.) plants attracted more insect vectors than mock-treated plants. Interestingly, overexpression of BYSMV P6, an accessory protein, in transgenic wheat (Triticum aestivum L.) plants substantially increased host attractiveness to insect vectors through inhibiting the jasmonic acid (JA) signaling pathway. The BYSMV P6 protein interacted with the constitutive photomorphogenesis 9 signalosome subunit 5 (CSN5) of barley plants in vivo and in vitro, and negatively affected CSN5-mediated deRUBylation of cullin1 (CUL1). Consequently, the defective CUL1-based Skp1/Cullin1/F-box ubiquitin E3 ligases could not mediate degradation of jasmonate ZIM-domain proteins, resulting in compromised JA signaling and increased insect attraction. Overexpression of BYSMV P6 also inhibited JA signaling in transgenic Arabidopsis (Arabidopsis thaliana) plants to attract insects. Our results provide insight into how a plant cytorhabdovirus subverts plant JA signaling to attract insect vectors.
Collapse
Affiliation(s)
- Dong-Min Gao
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhen-Jia Zhang
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Ji-Hui Qiao
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qiang Gao
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Ying Zang
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Wen-Ya Xu
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Liang Xie
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiao-Dong Fang
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhi-Hang Ding
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yi-Zhou Yang
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Ying Wang
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | | |
Collapse
|
23
|
Shi B, Hou J, Yang J, Han IJ, Tu D, Ye S, Yu J, Li L. Genome-wide analysis of the CSN genes in land plants and their expression under various abiotic stress and phytohormone conditions in rice. Gene 2022; 850:146905. [PMID: 36181988 DOI: 10.1016/j.gene.2022.146905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/30/2022] [Accepted: 09/15/2022] [Indexed: 11/29/2022]
Abstract
The CONSTITUTIVE PHOTOMORPHOGENIC9 (COP9) signalosome (CSN) is a multi-functional protein complex, which is involved in plant growth and abiotic stress response. However, the evolution and function of the CSN genes in land plants are still largely unclear. Here, we have identified 124 CSN genes and constructed phylogenetic trees of these CSN proteins to elucidate their feature and evolution in twelve land plants. Analysis of gene structure, protein property and protein motif composition shows the evolutional conservation and variation of the CSN proteins in land plants. These CSN genes might evolve through whole genome duplication (WGD)/segmental duplication (SD) and tandem duplication (TD). Analysis of promoter cis-elements shows that the CSN genes are implicated in diverse biological processes and different signaling pathways. RT-qPCR indicates that the transcript abundance of the OsCSN genes is up-regulated or down-regulated in response to abiotic stress and treatment with various hormones in rice. These results provide new insights into the CSN gene evolution and its possible function in land plants.
Collapse
Affiliation(s)
- Bozhang Shi
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jiaqi Hou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jin Yang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Il-Jin Han
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Daoyi Tu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Shiqi Ye
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jinfu Yu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Lijia Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
24
|
Sia J, Zhang W, Jonckheere E, Cook D, Bogdan P. Inferring functional communities from partially observed biological networks exploiting geometric topology and side information. Sci Rep 2022; 12:10883. [PMID: 35760826 PMCID: PMC9237089 DOI: 10.1038/s41598-022-14631-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/09/2022] [Indexed: 11/16/2022] Open
Abstract
Cellular biological networks represent the molecular interactions that shape function of living cells. Uncovering the organization of a biological network requires efficient and accurate algorithms to determine the components, termed communities, underlying specific processes. Detecting functional communities is challenging because reconstructed biological networks are always incomplete due to technical bias and biological complexity, and the evaluation of putative communities is further complicated by a lack of known ground truth. To address these challenges, we developed a geometric-based detection framework based on Ollivier-Ricci curvature to exploit information about network topology to perform community detection from partially observed biological networks. We further improved this approach by integrating knowledge of gene function, termed side information, into the Ollivier-Ricci curvature algorithm to aid in community detection. This approach identified essential conserved and varied biological communities from partially observed Arabidopsis protein interaction datasets better than the previously used methods. We show that Ollivier-Ricci curvature with side information identified an expanded auxin community to include an important protein stability complex, the Cop9 signalosome, consistent with previous reported links to auxin response and root development. The results show that community detection based on Ollivier-Ricci curvature with side information can uncover novel components and novel communities in biological networks, providing novel insight into the organization and function of complex networks.
Collapse
Affiliation(s)
- Jayson Sia
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Wei Zhang
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Edmond Jonckheere
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - David Cook
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA.
| | - Paul Bogdan
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
25
|
Zeng Y, Schotte S, Trinh HK, Verstraeten I, Li J, Van de Velde E, Vanneste S, Geelen D. Genetic Dissection of Light-Regulated Adventitious Root Induction in Arabidopsis thaliana Hypocotyls. Int J Mol Sci 2022; 23:5301. [PMID: 35628112 PMCID: PMC9140560 DOI: 10.3390/ijms23105301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 01/27/2023] Open
Abstract
Photomorphogenic responses of etiolated seedlings include the inhibition of hypocotyl elongation and opening of the apical hook. In addition, dark-grown seedlings respond to light by the formation of adventitious roots (AR) on the hypocotyl. How light signaling controls adventitious rooting is less well understood. Hereto, we analyzed adventitious rooting under different light conditions in wild type and photomorphogenesis mutants in Arabidopsis thaliana. Etiolation was not essential for AR formation but raised the competence to form AR under white and blue light. The blue light receptors CRY1 and PHOT1/PHOT2 are key elements contributing to the induction of AR formation in response to light. Furthermore, etiolation-controlled competence for AR formation depended on the COP9 signalosome, E3 ubiquitin ligase CONSTITUTIVELY PHOTOMORPHOGENIC (COP1), the COP1 interacting SUPPRESSOR OF PHYA-105 (SPA) kinase family members (SPA1,2 and 3) and Phytochrome-Interacting Factors (PIF). In contrast, ELONGATED HYPOCOTYL5 (HY5), suppressed AR formation. These findings provide a genetic framework that explains the high and low AR competence of Arabidopsis thaliana hypocotyls that were treated with dark, and light, respectively. We propose that light-induced auxin signal dissipation generates a transient auxin maximum that explains AR induction by a dark to light switch.
Collapse
Affiliation(s)
- Yinwei Zeng
- Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (Y.Z.); (S.S.); (H.K.T.); (I.V.); (J.L.); (E.V.d.V.)
| | - Sebastien Schotte
- Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (Y.Z.); (S.S.); (H.K.T.); (I.V.); (J.L.); (E.V.d.V.)
| | - Hoang Khai Trinh
- Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (Y.Z.); (S.S.); (H.K.T.); (I.V.); (J.L.); (E.V.d.V.)
- Biotechnology Research and Development Institute, Can Tho University, Can Tho City 900000, Vietnam
| | - Inge Verstraeten
- Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (Y.Z.); (S.S.); (H.K.T.); (I.V.); (J.L.); (E.V.d.V.)
| | - Jing Li
- Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (Y.Z.); (S.S.); (H.K.T.); (I.V.); (J.L.); (E.V.d.V.)
| | - Ellen Van de Velde
- Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (Y.Z.); (S.S.); (H.K.T.); (I.V.); (J.L.); (E.V.d.V.)
| | - Steffen Vanneste
- Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (Y.Z.); (S.S.); (H.K.T.); (I.V.); (J.L.); (E.V.d.V.)
- Department of Plant Biotechnology and Bioinformatics, Faculty of Sciences, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant SystemsBiology, VIB, Technologiepark 71, 9052 Ghent, Belgium
- Lab of Plant Growth Analysis, Ghent University Global Campus, Incheon 21985, Korea
| | - Danny Geelen
- Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (Y.Z.); (S.S.); (H.K.T.); (I.V.); (J.L.); (E.V.d.V.)
| |
Collapse
|
26
|
Zhang X, Nomoto M, Garcia-León M, Takahashi N, Kato M, Yura K, Umeda M, Rubio V, Tada Y, Furumoto T, Aoyama T, Tsuge T. CFI 25 Subunit of Cleavage Factor I is Important for Maintaining the Diversity of 3' UTR Lengths in Arabidopsis thaliana (L.) Heynh. PLANT & CELL PHYSIOLOGY 2022; 63:369-383. [PMID: 35016226 DOI: 10.1093/pcp/pcac002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/28/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Cleavage and polyadenylation at the 3' end of the pre-mRNA is essential for mRNA function, by regulating its translatability, stability and translocation to the cytoplasm. Cleavage factor I (CFI) is a multi-subunit component of the pre-mRNA 3' end processing machinery in eukaryotes. Here, we report that plant CFI 25 subunit of CFI plays an important role in maintaining the diversity of the 3' ends of mRNA. The genome of Arabidopsis thaliana (L.) Heynh. contained four genes encoding three putative CFI subunits (AtCFI 25, AtCFI 59 and AtCFI 68), orthologous to the mammalian CFI subunits. There were two CFI 25 paralogs (AtCFI 25a and AtCFI 25b) that shared homology with human CFI 25. Two null alleles of AtCFI 25a displayed smaller rosette leaves, longer stigmatic papilla, smaller anther, earlier flowering and lower fertility compared to wild-type plants. Null alleles of AtCFI 25b, as well as, plants ectopically expressing full-length cDNA of AtCFI 25a, displayed no obvious morphological defects. AtCFI 25a was shown to interact with AtCFI 25b, AtCFI 68 and itself, suggesting various forms of CFI in plants. Furthermore, we show that AtCFI 25a function was essential for maintaining proper diversity of the 3' end lengths of transcripts coding for CFI subunits, suggesting a self-regulation of the CFI machinery in plants. AtCFI 25a was also important to maintain 3' ends for other genes to different extent. Collectively, AtCFI 25a, but not AtCFI 25b, seemed to play important roles during Arabidopsis development by maintaining proper diversity of the 3' UTR lengths.
Collapse
Affiliation(s)
- Xiaojuan Zhang
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011 Japan
| | - Mika Nomoto
- Center for Gene Research, Nagoya University, Nagoya, Aichi, 464-8601 Japan
| | - Marta Garcia-León
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología-CSIC, Cantoblanco, Madrid 28049, Spain
| | - Naoki Takahashi
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192 Japan
| | - Mariko Kato
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011 Japan
| | - Kei Yura
- School of Advanced Science and Engineering, Waseda University, Shinjuku, Tokyo, 162-0041 Japan
- Graduate School of Humanities and Sciences, Ochanomizu University, Bunkyo, Tokyo, 112-8610 Japan
- Center for Interdisciplinary AI and Data Science, Ochanomizu University, Bunkyo, Tokyo, 112-8610 Japan
| | - Masaaki Umeda
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192 Japan
| | - Vicente Rubio
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología-CSIC, Cantoblanco, Madrid 28049, Spain
| | - Yasuomi Tada
- Center for Gene Research, Nagoya University, Nagoya, Aichi, 464-8601 Japan
| | - Tsuyoshi Furumoto
- Department of Plant Life Science, Graduate School of Agriculture, Ryukoku University, Otsu, Shiga, 520-2194 Japan
| | - Takashi Aoyama
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011 Japan
| | - Tomohiko Tsuge
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011 Japan
| |
Collapse
|
27
|
Wang D, Musazade E, Wang H, Liu J, Zhang C, Liu W, Liu Y, Guo L. Regulatory Mechanism of the Constitutive Photomorphogenesis 9 Signalosome Complex in Response to Abiotic Stress in Plants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2777-2788. [PMID: 35199516 DOI: 10.1021/acs.jafc.1c07224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The constitutive photomorphogenesis 9 (COP9) signalosome (CSN) is a highly conserved protein complex that regulates signaling pathways in plants under abiotic stress. We discuss the potential molecular mechanisms of CSN under abiotic stress, including oxidative stress with reactive oxygen species signaling, salt stress with jasmonic acid, gibberellic acid, and abscisic acid signaling, high-temperature stress with auxin signaling, and optical radiation with DNA damage and repair response. We conclude that CSN likely participates in affecting antioxidant biosynthesis and hormone signaling by targeting receptors, kinases, and transcription factors in response to abiotic stress, which potentially provides valuable information for engineering stress-tolerant crops.
Collapse
Affiliation(s)
- Dan Wang
- College of Life Science, Key Laboratory of Straw Biology and Higher Value Application, Ministry of Education, Jilin Agricultural University, Changchun, Jilin 130118, People's Republic of China
- School of Public Health, Jilin Medical University, Jilin, Jilin 132013, People's Republic of China
| | - Elshan Musazade
- College of Life Science, Key Laboratory of Straw Biology and Higher Value Application, Ministry of Education, Jilin Agricultural University, Changchun, Jilin 130118, People's Republic of China
| | - Huan Wang
- Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, People's Republic of China
| | - Junmei Liu
- Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, People's Republic of China
| | - Chunyu Zhang
- College of Food and Biotechnology, Changchun Polytechnic, Changchun, Jilin 130033, People's Republic of China
| | - Wencong Liu
- College of Resources and Environment, Jilin Agricultural University, Changchun, Jilin 130118, People's Republic of China
| | - Yanxi Liu
- College of Life Science, Key Laboratory of Straw Biology and Higher Value Application, Ministry of Education, Jilin Agricultural University, Changchun, Jilin 130118, People's Republic of China
| | - Liquan Guo
- College of Life Science, Key Laboratory of Straw Biology and Higher Value Application, Ministry of Education, Jilin Agricultural University, Changchun, Jilin 130118, People's Republic of China
| |
Collapse
|
28
|
Roles of Cullin-RING Ubiquitin Ligases in Cardiovascular Diseases. Biomolecules 2022; 12:biom12030416. [PMID: 35327608 PMCID: PMC8946067 DOI: 10.3390/biom12030416] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 12/18/2022] Open
Abstract
Maintenance of protein homeostasis is crucial for virtually every aspect of eukaryotic biology. The ubiquitin-proteasome system (UPS) represents a highly regulated quality control machinery that protects cells from a variety of stress conditions as well as toxic proteins. A large body of evidence has shown that UPS dysfunction contributes to the pathogenesis of cardiovascular diseases. This review highlights the latest findings regarding the physiological and pathological roles of cullin-RING ubiquitin ligases (CRLs), an essential player in the UPS, in the cardiovascular system. To inspire potential therapeutic invention, factors regulating CRL activities are also discussed.
Collapse
|
29
|
Zhao X, Wang W, Yao Y, Li X, Huang X, Wang Y, Ding M, Huang X. An RDH‐Plin2 axis modulates lipid droplet size by antagonizing Bmm lipase. EMBO Rep 2022; 23:e52669. [PMID: 35132760 PMCID: PMC8892243 DOI: 10.15252/embr.202152669] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 12/04/2021] [Accepted: 12/21/2021] [Indexed: 12/18/2022] Open
Abstract
The size of lipid droplets varies greatly in vivo and is determined by both intrinsic and extrinsic factors. From an RNAi screen in Drosophila, we found that knocking down subunits of COP9 signalosome (CSN) results in enlarged lipid droplets under high‐fat, but not normal, conditions. We identified CG2064, a retinol dehydrogenase (RDH) homolog, as the proteasomal degradation target of CSN in regulating lipid droplet size. RDH/CG2064 interacts with the lipid droplet‐resident protein Plin2 and the RDH/CG2064‐Plin2 axis acts to reduce the overall level and lipid droplet localization of Bmm/ATGL lipase. This axis is important for larval survival under prolonged starvation. Thus, we discovered an RDH‐Plin2 axis modulates lipid droplet size.
Collapse
Affiliation(s)
- Xuefan Zhao
- State Key Laboratory of Molecular Developmental Biology Institute of Genetics and Developmental Biology Innovation Academy for Seed Design Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| | - Wei Wang
- State Key Laboratory of Molecular Developmental Biology Institute of Genetics and Developmental Biology Innovation Academy for Seed Design Chinese Academy of Sciences Beijing China
| | - Yan Yao
- State Key Laboratory of Molecular Developmental Biology Institute of Genetics and Developmental Biology Innovation Academy for Seed Design Chinese Academy of Sciences Beijing China
| | - Xia Li
- State Key Laboratory of Molecular Developmental Biology Institute of Genetics and Developmental Biology Innovation Academy for Seed Design Chinese Academy of Sciences Beijing China
| | - Xiahe Huang
- State Key Laboratory of Molecular Developmental Biology Institute of Genetics and Developmental Biology Innovation Academy for Seed Design Chinese Academy of Sciences Beijing China
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology Institute of Genetics and Developmental Biology Innovation Academy for Seed Design Chinese Academy of Sciences Beijing China
| | - Mei Ding
- State Key Laboratory of Molecular Developmental Biology Institute of Genetics and Developmental Biology Innovation Academy for Seed Design Chinese Academy of Sciences Beijing China
| | - Xun Huang
- State Key Laboratory of Molecular Developmental Biology Institute of Genetics and Developmental Biology Innovation Academy for Seed Design Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
30
|
Kim WD, Mathavarajah S, Huber RJ. The Cellular and Developmental Roles of Cullins, Neddylation, and the COP9 Signalosome in Dictyostelium discoideum. Front Physiol 2022; 13:827435. [PMID: 35586714 PMCID: PMC9108976 DOI: 10.3389/fphys.2022.827435] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/03/2022] [Indexed: 12/02/2022] Open
Abstract
Cullins (CULs) are a core component of cullin-RING E3 ubiquitin ligases (CRLs), which regulate the degradation, function, and subcellular trafficking of proteins. CULs are post-translationally regulated through neddylation, a process that conjugates the ubiquitin-like modifier protein neural precursor cell expressed developmentally downregulated protein 8 (NEDD8) to target cullins, as well as non-cullin proteins. Counteracting neddylation is the deneddylase, COP9 signalosome (CSN), which removes NEDD8 from target proteins. Recent comparative genomics studies revealed that CRLs and the CSN are highly conserved in Amoebozoa. A well-studied representative of Amoebozoa, the social amoeba Dictyostelium discoideum, has been used for close to 100 years as a model organism for studying conserved cellular and developmental processes owing to its unique life cycle comprised of unicellular and multicellular phases. The organism is also recognized as an exceptional model system for studying cellular processes impacted by human diseases, including but not limited to, cancer and neurodegeneration. Recent work shows that the neddylation inhibitor, MLN4924 (Pevonedistat), inhibits growth and multicellular development in D. discoideum, which supports previous work that revealed the cullin interactome in D. discoideum and the roles of cullins and the CSN in regulating cellular and developmental processes during the D. discoideum life cycle. Here, we review the roles of cullins, neddylation, and the CSN in D. discoideum to guide future work on using this biomedical model system to further explore the evolutionarily conserved functions of cullins and neddylation.
Collapse
Affiliation(s)
- William D. Kim
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON, Canada
| | | | - Robert J. Huber
- Department of Biology, Trent University, Peterborough, ON, Canada
| |
Collapse
|
31
|
Sriwastva MK, Deng Z, Wang B, Teng Y, Kumar A, Sundaram K, Mu J, Lei C, Dryden GW, Xu F, Zhang L, Yan J, Zhang X, Park JW, Merchant ML, Egilmez NK, Zhang H. Exosome-like nanoparticles from Mulberry bark prevent DSS-induced colitis via the AhR/COPS8 pathway. EMBO Rep 2022; 23:e53365. [PMID: 34994476 PMCID: PMC8892346 DOI: 10.15252/embr.202153365] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 12/02/2021] [Accepted: 12/15/2021] [Indexed: 12/12/2022] Open
Abstract
Bark protects the tree against environmental insults. Here, we analyzed whether this defensive strategy could be utilized to broadly enhance protection against colitis. As a proof of concept, we show that exosome-like nanoparticles (MBELNs) derived from edible mulberry bark confer protection against colitis in a mouse model by promoting heat shock protein family A (Hsp70) member 8 (HSPA8)-mediated activation of the AhR signaling pathway. Activation of this pathway in intestinal epithelial cells leads to the induction of COP9 Constitutive Photomorphogenic Homolog Subunit 8 (COPS8). Utilizing a gut epithelium-specific knockout of COPS8, we demonstrate that COPS8 acts downstream of the AhR pathway and is required for the protective effect of MBELNs by inducing an array of anti-microbial peptides. Our results indicate that MBELNs represent an undescribed mode of inter-kingdom communication in the mammalian intestine through an AhR-COPS8-mediated anti-inflammatory pathway. These data suggest that inflammatory pathways in a microbiota-enriched intestinal environment are regulated by COPS8 and that edible plant-derived ELNs may hold the potential as new agents for the prevention and treatment of gut-related inflammatory disease.
Collapse
Affiliation(s)
- Mukesh K Sriwastva
- Department of Microbiology & ImmunologyBrown Cancer CenterUniversity of LouisvilleLouisvilleKYUSA
| | - Zhong‐Bin Deng
- Department of Microbiology & ImmunologyBrown Cancer CenterUniversity of LouisvilleLouisvilleKYUSA
| | - Bomei Wang
- Department of Translational OncologyGenentechSan FranciscoCaliforniaUSA
| | - Yun Teng
- Department of Microbiology & ImmunologyBrown Cancer CenterUniversity of LouisvilleLouisvilleKYUSA
| | - Anil Kumar
- Department of Microbiology & ImmunologyBrown Cancer CenterUniversity of LouisvilleLouisvilleKYUSA
| | - Kumaran Sundaram
- Department of Microbiology & ImmunologyBrown Cancer CenterUniversity of LouisvilleLouisvilleKYUSA
| | - Jingyao Mu
- Department of Microbiology & ImmunologyBrown Cancer CenterUniversity of LouisvilleLouisvilleKYUSA
| | - Chao Lei
- Department of Microbiology & ImmunologyBrown Cancer CenterUniversity of LouisvilleLouisvilleKYUSA
| | - Gerald W Dryden
- Department of Microbiology & ImmunologyBrown Cancer CenterUniversity of LouisvilleLouisvilleKYUSA
- Robley Rex Veterans Affairs Medical CenterLouisvilleKYUSA
- Department of Pharmacology and ToxicologyUniversity of LouisvilleLouisvilleKYUSA
| | - Fangyi Xu
- Department of Microbiology & ImmunologyBrown Cancer CenterUniversity of LouisvilleLouisvilleKYUSA
| | - Lifeng Zhang
- Department of Microbiology & ImmunologyBrown Cancer CenterUniversity of LouisvilleLouisvilleKYUSA
| | - Jun Yan
- Department of Microbiology & ImmunologyBrown Cancer CenterUniversity of LouisvilleLouisvilleKYUSA
| | - Xiang Zhang
- KBRIN Bioinformatics CoreUniversity of LouisvilleLouisvilleKYUSA
| | - Juw Won Park
- KBRIN Bioinformatics CoreUniversity of LouisvilleLouisvilleKYUSA
- Department of Computer Engineering and Computer ScienceUniversity of LouisvilleLouisvilleKYUSA
| | - Michael L Merchant
- Kidney Disease Program and Clinical Proteomics CenterUniversity of LouisvilleLouisvilleKYUSA
| | - Nejat K Egilmez
- Department of Microbiology & ImmunologyBrown Cancer CenterUniversity of LouisvilleLouisvilleKYUSA
| | - Huang‐Ge Zhang
- Department of Microbiology & ImmunologyBrown Cancer CenterUniversity of LouisvilleLouisvilleKYUSA
- Robley Rex Veterans Affairs Medical CenterLouisvilleKYUSA
| |
Collapse
|
32
|
Transcriptomic analysis of a wild and a cultivated varieties of Capsicum annuum over fruit development and ripening. PLoS One 2021; 16:e0256319. [PMID: 34428253 PMCID: PMC8384167 DOI: 10.1371/journal.pone.0256319] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/03/2021] [Indexed: 12/13/2022] Open
Abstract
Chili pepper (Capsicum annuum) is one of the most important crops worldwide. Its fruits contain metabolites produced over the maturation process like capsaicinoids and carotenoids. This metabolic process produces internal changes in flavor, color, texture, and aroma in fruits to make them more attractive for seed dispersal organisms. The chiltepin (C. annuum L. var. glabriusculum) is a wild variety of the C. annuum L. species that is considered a source of genetic resources that could be used to improve the current chili crops. In this study, we performed a transcriptomic analysis on two fruit maturation stages: immature stage (green fruit) and mature stage (red fruit) of a wild and a cultivated pepper variety. We found 19,811 genes expressed, and 1,008 genes differentially expressed (DEGs) in at least one of the five contrast used; 730 DEGs were found only in one contrast, and most DEGs in all contrasts were downregulated. GO enrichment analysis showed that the majority of DEGs are related to stress responses. KEGG enrichment analysis detected differences in expression patterns in metabolic pathways related to phenylpropanoid biosynthesis, secondary metabolites, plant hormone signal transduction, carotenoid biosynthesis and sesquiterpenoid and triterpenoid biosynthesis. We selected 105 tomato fruit ripening-related genes, and found 53 pepper homologs differentially expressed related to shape, size, and secondary metabolite biosynthesis. According to the transcriptome analysis, the two peppers showed very similar gene expression patterns; differences in expression patterns of genes related to shape, size, ethylene and secondary metabolites biosynthesis suggest that changes produced by domestication of chilli pepper could be very specific to the expression of genes related to traits desired in commercial fruits.
Collapse
|
33
|
Harper JW, Schulman BA. Cullin-RING Ubiquitin Ligase Regulatory Circuits: A Quarter Century Beyond the F-Box Hypothesis. Annu Rev Biochem 2021; 90:403-429. [PMID: 33823649 PMCID: PMC8217159 DOI: 10.1146/annurev-biochem-090120-013613] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cullin-RING ubiquitin ligases (CRLs) are dynamic modular platforms that regulate myriad biological processes through target-specific ubiquitylation. Our knowledge of this system emerged from the F-box hypothesis, posited a quarter century ago: Numerous interchangeable F-box proteins confer specific substrate recognition for a core CUL1-based RING E3 ubiquitin ligase. This paradigm has been expanded through the evolution of a superfamily of analogous modular CRLs, with five major families and over 200 different substrate-binding receptors in humans. Regulation is achieved by numerous factors organized in circuits that dynamically control CRL activation and substrate ubiquitylation. CRLs also serve as a vast landscape for developing small molecules that reshape interactions and promote targeted ubiquitylation-dependent turnover of proteins of interest. Here, we review molecular principles underlying CRL function, the role of allosteric and conformational mechanisms in controlling substrate timing and ubiquitylation, and how the dynamics of substrate receptor interchange drives the turnover of selected target proteins to promote cellular decision-making.
Collapse
Affiliation(s)
- J Wade Harper
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA;
| | - Brenda A Schulman
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried 82152, Germany;
| |
Collapse
|
34
|
Huber RJ, Kim WD, Mathavarajah S. Inhibiting Neddylation with MLN4924 Suppresses Growth and Delays Multicellular Development in Dictyostelium discoideum. Biomolecules 2021; 11:482. [PMID: 33807046 PMCID: PMC8005062 DOI: 10.3390/biom11030482] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 12/18/2022] Open
Abstract
Neddylation is a post-translational modification that is essential for a variety of cellular processes and is linked to many human diseases including cancer, neurodegeneration, and autoimmune disorders. Neddylation involves the conjugation of the ubiquitin-like modifier neural precursor cell expressed developmentally downregulated protein 8 (NEDD8) to target proteins, and has been studied extensively in various eukaryotes including fungi, plants, and metazoans. Here, we examine the biological processes influenced by neddylation in the social amoeba, Dictyostelium discoideum, using a well-established inhibitor of neddylation, MLN4924 (pevonedistat). NEDD8, and the target of MLN4924 inhibition, NEDD8-activating enzyme E1 (NAE1), are highly conserved in D. discoideum (Nedd8 and Nae1, respectively). Treatment of D. discoideum cells with MLN4924 increased the amount of free Nedd8, suggesting that MLN4924 inhibited neddylation. During growth, MLN4924 suppressed cell proliferation and folic acid-mediated chemotaxis. During multicellular development, MLN4924 inhibited cyclic adenosine monophosphate (cAMP)-mediated chemotaxis, delayed aggregation, and suppressed fruiting body formation. Together, these findings indicate that neddylation plays an important role in regulating cellular and developmental events during the D. discoideum life cycle and that this organism can be used as a model system to better understand the essential roles of neddylation in eukaryotes, and consequently, its involvement in human disease.
Collapse
Affiliation(s)
- Robert J. Huber
- Department of Biology, Trent University, Peterborough, ON K9L 0G2, Canada
| | - William D. Kim
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON K9L 0G2, Canada;
| | | |
Collapse
|
35
|
Iqbal Z, Iqbal MS, Hashem A, Abd_Allah EF, Ansari MI. Plant Defense Responses to Biotic Stress and Its Interplay With Fluctuating Dark/Light Conditions. FRONTIERS IN PLANT SCIENCE 2021; 12:631810. [PMID: 33763093 PMCID: PMC7982811 DOI: 10.3389/fpls.2021.631810] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 02/08/2021] [Indexed: 05/24/2023]
Abstract
Plants are subjected to a plethora of environmental cues that cause extreme losses to crop productivity. Due to fluctuating environmental conditions, plants encounter difficulties in attaining full genetic potential for growth and reproduction. One such environmental condition is the recurrent attack on plants by herbivores and microbial pathogens. To surmount such attacks, plants have developed a complex array of defense mechanisms. The defense mechanism can be either preformed, where toxic secondary metabolites are stored; or can be inducible, where defense is activated upon detection of an attack. Plants sense biotic stress conditions, activate the regulatory or transcriptional machinery, and eventually generate an appropriate response. Plant defense against pathogen attack is well understood, but the interplay and impact of different signals to generate defense responses against biotic stress still remain elusive. The impact of light and dark signals on biotic stress response is one such area to comprehend. Light and dark alterations not only regulate defense mechanisms impacting plant development and biochemistry but also bestow resistance against invading pathogens. The interaction between plant defense and dark/light environment activates a signaling cascade. This signaling cascade acts as a connecting link between perception of biotic stress, dark/light environment, and generation of an appropriate physiological or biochemical response. The present review highlights molecular responses arising from dark/light fluctuations vis-à-vis elicitation of defense mechanisms in plants.
Collapse
Affiliation(s)
- Zahra Iqbal
- Molecular Crop Research Unit, Department of Biochemistry, Chulalongkorn University, Bangkok, Thailand
| | | | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
- Mycology and Plant Disease Survey Department, Plant Pathology Research Institute, ARC, Giza, Egypt
| | - Elsayed Fathi Abd_Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | | |
Collapse
|
36
|
Aki SS, Yura K, Aoyama T, Tsuge T. SAP130 and CSN1 interact and regulate male gametogenesis in Arabidopsis thaliana. JOURNAL OF PLANT RESEARCH 2021; 134:279-289. [PMID: 33555481 DOI: 10.1007/s10265-021-01260-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/29/2021] [Indexed: 06/12/2023]
Abstract
COP9 signalosome (CSN) is a nuclear complex composed of eight distinct subunits that governs vast developmental processes in Arabidopsis thaliana (L.) Heynh. The null alleles of csn mutants display pleiotropic phenotypes that result in seedling lethality. To date, several partially complemented transgenic plants, expressing the particular CSN subunit in its corresponding null mutant allele, were utilized to bypass seedling lethality and investigate CSN regulation at later stages of development. One such transgenic plant corresponding to CSN1 subunit, fus6/CSN1-3-4, accumulates wild-type level of CSN1 and displays normal plant architecture at vegetative stage. Here we show through histological analyses that fus6/CSN1-3-4 plants display impairment of pollen development at the bicellular stage. This defect is identical to that observed in RNAi plants of SAP130, encoding a subunit of the multiprotein splicing factor SF3b. We further dissected the previously reported interaction between CSN1 and SAP130, to reveal that approximately 100 amino-acid residues located at the N-terminal end of CSN1 (CSN1NN) were essential for this interaction. In silico structure modeling demonstrated that CSN1NN could swing out towards SAP130 to dock onto its Helical Insertion protruding from the structure. These results support our model that CSN1 embeds itself within CSN protein complex through its C-terminal half and reaches out to targets through its N-terminal portion of the protein. Taken together, this is the first report to document the identical loss-of-function phenotypes of CSN1 and SAP130 during male gametogenesis. Thus, we propose that SAP130 and CSN1 coordinately regulate development of male reproductive organs.
Collapse
Affiliation(s)
- Shiori S Aki
- Molecular Biology Laboratory, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Takayama 8916-5, Ikoma, Nara, 630-0192, Japan
| | - Kei Yura
- School of Advanced Science and Engineering, Waseda University, 513 Tsurumaki, Waseda, Shinjuku, Tokyo, 162-0041, Japan
- Graduate School of Humanities and Sciences, Ochanomizu University, 2-1-1 Otsuka, Bunkyo, Tokyo, 112-8610, Japan
- Center for Interdisciplinary AI and Data Science, Ochanomizu University, 2-1-1 Otsuka, Bunkyo, Tokyo, 112-8610, Japan
| | - Takashi Aoyama
- Molecular Biology Laboratory, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Tomohiko Tsuge
- Molecular Biology Laboratory, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan.
| |
Collapse
|
37
|
Regulation of Sixth Seminal Root Formation by Jasmonate in Triticum aestivum L. PLANTS 2021; 10:plants10020219. [PMID: 33498738 PMCID: PMC7911905 DOI: 10.3390/plants10020219] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 01/08/2023]
Abstract
A well-developed root system is an important characteristic of crop plants, which largely determines their productivity, especially under conditions of water and nutrients deficiency. Being Poaceous, wheat has more than one seminal root. The number of grown seminal roots varies in different wheat accessions and is regulated by environmental factors. Currently, the molecular mechanisms determining the number of germinated seminal roots remain poorly understood. The analysis of the root system development in germinating seeds of genetically modified hexaploid wheat plants with altered activity of jasmonate biosynthesis pathway and seeds exogenously treated with methyl jasmonate revealed the role of jasmonates in the regulation of sixth seminal root development. This regulatory effect strongly depends on the jasmonate concentration and the duration of the exposure to this hormone. The maximum stimulatory effect of exogenously applied methyl jasmonate on the formation of the sixth seminal root was achieved at 200 μM concentration after 48 h of treatment. Further increase in concentration and exposure time does not increase the stimulating effect. While 95% of non-transgenic plants under non-stress conditions possess five or fewer seminal roots, the number of plants with developed sixth seminal root reaches up to 100% when selected transgenic lines are treated with methyl jasmonate.
Collapse
|
38
|
Todd OE, Figueiredo MRA, Morran S, Soni N, Preston C, Kubeš MF, Napier R, Gaines TA. Synthetic auxin herbicides: finding the lock and key to weed resistance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 300:110631. [PMID: 33180710 DOI: 10.1016/j.plantsci.2020.110631] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/17/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
Synthetic auxin herbicides are designed to mimic indole-3-acetic acid (IAA), an integral plant hormone affecting cell growth, development, and tropism. In this review, we explore target site genes in the auxin signaling pathway including SCFTIR1/AFB, Aux/IAA, and ARFs that are confirmed or proposed mechanisms for weed resistance to synthetic auxin herbicides. Resistance to auxin herbicides by metabolism, either by enhanced cytochrome P450 detoxification or by loss of pro-herbicide activation, is a major non-target-site resistance pathway. We speculate about potential fitness costs of resistance due to effects of resistance-conferring mutations, provide insight into the role of polyploidy in synthetic auxin resistance evolution, and address the genetic resources available for weeds. This knowledge will be the key to unlock the long-standing questions as to which components of the auxin signaling pathway are most likely to have a role in resistance evolution. We propose that an ambitious research effort into synthetic auxin herbicide/target site interactions is needed to 1) explain why some synthetic auxin chemical families have activity on certain dicot plant families but not others and 2) fully elucidate target-site cross-resistance patterns among synthetic auxin chemical families to guide best practices for resistance management.
Collapse
Affiliation(s)
- Olivia E Todd
- Department of Agricultural Biology, 1177 Campus Delivery, Colorado State University, Fort Collins, CO 80525, USA.
| | - Marcelo R A Figueiredo
- Department of Agricultural Biology, 1177 Campus Delivery, Colorado State University, Fort Collins, CO 80525, USA.
| | - Sarah Morran
- Department of Agricultural Biology, 1177 Campus Delivery, Colorado State University, Fort Collins, CO 80525, USA.
| | - Neeta Soni
- Department of Agricultural Biology, 1177 Campus Delivery, Colorado State University, Fort Collins, CO 80525, USA.
| | - Christopher Preston
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA, 5005, Australia.
| | - Martin F Kubeš
- School of Life Sciences, The University of Warwick, Coventry, CV4 7AL, UK.
| | - Richard Napier
- School of Life Sciences, The University of Warwick, Coventry, CV4 7AL, UK.
| | - Todd A Gaines
- Department of Agricultural Biology, 1177 Campus Delivery, Colorado State University, Fort Collins, CO 80525, USA.
| |
Collapse
|
39
|
Pham VN, Paik I, Hoecker U, Huq E. Genomic evidence reveals SPA-regulated developmental and metabolic pathways in dark-grown Arabidopsis seedlings. PHYSIOLOGIA PLANTARUM 2020; 169:380-396. [PMID: 32187694 PMCID: PMC8630753 DOI: 10.1111/ppl.13095] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/12/2020] [Accepted: 02/24/2020] [Indexed: 05/30/2023]
Abstract
Photomorphogenesis is repressed in the dark mainly by an E3 ubiquitin ligase complex comprising CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) and four homologous proteins called SUPPRESSOR OF PHYA-105 (SPA1-SPA4) in Arabidopsis. This complex induces the ubiquitination and subsequent degradation of positively acting transcription factors (TFs; e.g. ELONGATED HYPOCOTYL (HY5), LONG HYPOCOTYL IN FAR-RED 1 (HFR1), PRODUCTION OF ANTHOCYANIN PIGMENT 1 (PAP1) and others] in the dark to repress photomorphogenesis. Genomic evidence showed a large number of genes regulated by COP1 in the dark, of which many are direct targets of HY5. However, the genomic basis for the constitute photomorphogenic phenotype of spaQ remains unknown. Here, we show that >7200 genes are differentially expressed in the spaQ background compared to wild-type in the dark. Comparison of the RNA sequencing (RNA-Seq) data between cop1 and spaQ revealed a large overlapping set of genes regulated by the COP1-SPA complex. In addition, many of the genes coordinately regulated by the COP1-SPA complex are also regulated by HY5 directly and indirectly. Taken together, our data reveal that SPA proteins repress photomorphogenesis by controlling gene expression in concert with COP1, likely through regulating the abundance of downstream TFs in light signaling pathways. Moreover, SPA proteins may function both in a COP1-dependent and -independent manner in regulating many biological processes and developmental pathways in Arabidopsis.
Collapse
Affiliation(s)
- Vinh Ngoc Pham
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Inyup Paik
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Ute Hoecker
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), Biocenter, University of Cologne, Zülpicher Str. 47b, D-50674 Cologne, Germany
| | - Enamul Huq
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
40
|
Marzi D, Brunetti P, Mele G, Napoli N, Calò L, Spaziani E, Matsui M, De Panfilis S, Costantino P, Serino G, Cardarelli M. Light controls stamen elongation via cryptochromes, phytochromes and COP1 through HY5 and HYH. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:379-394. [PMID: 32142184 DOI: 10.1111/tpj.14736] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/18/2020] [Accepted: 02/27/2020] [Indexed: 05/25/2023]
Abstract
In Arabidopsis, stamen elongation, which ensures male fertility, is controlled by the auxin response factor ARF8, which regulates the expression of the auxin repressor IAA19. Here, we uncover a role for light in controlling stamen elongation. By an extensive genetic and molecular analysis we show that the repressor of light signaling COP1, through its targets HY5 and HYH, controls stamen elongation, and that HY5 - oppositely to ARF8 - directly represses the expression of IAA19 in stamens. In addition, we show that in closed flower buds, when light is shielded by sepals and petals, the blue light receptors CRY1/CRY2 repress stamen elongation. Coherently, at flower disclosure and in subsequent stages, stamen elongation is repressed by the red and far-red light receptors PHYA/PHYB. In conclusion, different light qualities - sequentially perceived by specific photoreceptors - and the downstream COP1-HY5/HYH module finely tune auxin-induced stamen elongation and thus male fertility.
Collapse
Affiliation(s)
- Davide Marzi
- IBPM-CNR c/o Sapienza Università di Roma, Roma, Italy
- Dipartimento di Biologia e Biotecnologie Sapienza, Università di Roma, Roma, Italy
| | | | | | - Nadia Napoli
- Dipartimento di Biologia e Biotecnologie Sapienza, Università di Roma, Roma, Italy
| | - Lorenzo Calò
- Dipartimento di Biologia e Biotecnologie Sapienza, Università di Roma, Roma, Italy
| | - Erica Spaziani
- Dipartimento di Biologia e Biotecnologie Sapienza, Università di Roma, Roma, Italy
| | - Minami Matsui
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| | - Simone De Panfilis
- Centre for Life Nano Science, Istituto Italiano di Tecnologia, Viale Regina Elena, 291, Roma, I-00161, Italy
| | - Paolo Costantino
- IBPM-CNR c/o Sapienza Università di Roma, Roma, Italy
- Dipartimento di Biologia e Biotecnologie Sapienza, Università di Roma, Roma, Italy
| | - Giovanna Serino
- Dipartimento di Biologia e Biotecnologie Sapienza, Università di Roma, Roma, Italy
| | | |
Collapse
|
41
|
Wu T, Yoon H, Xiong Y, Dixon-Clarke SE, Nowak RP, Fischer ES. Targeted protein degradation as a powerful research tool in basic biology and drug target discovery. Nat Struct Mol Biol 2020; 27:605-614. [PMID: 32541897 PMCID: PMC7923177 DOI: 10.1038/s41594-020-0438-0] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 04/23/2020] [Indexed: 12/16/2022]
Abstract
Controlled perturbation of protein activity is essential to study protein function in cells and living organisms. Small molecules that hijack the cellular protein ubiquitination machinery to selectively degrade proteins of interest, so-called degraders, have recently emerged as alternatives to selective chemical inhibitors, both as therapeutic modalities and as powerful research tools. These systems offer unprecedented temporal and spatial control over protein function. Here, we review recent developments in this field, with a particular focus on the use of degraders as research tools to interrogate complex biological problems.
Collapse
Affiliation(s)
- Tao Wu
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Hojong Yoon
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Yuan Xiong
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Sarah E Dixon-Clarke
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Radosław P Nowak
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Eric S Fischer
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA, USA.
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
42
|
The Antioxidant Enzyme Methionine Sulfoxide Reductase A (MsrA) Interacts with Jab1/CSN5 and Regulates Its Function. Antioxidants (Basel) 2020; 9:antiox9050452. [PMID: 32456285 PMCID: PMC7278660 DOI: 10.3390/antiox9050452] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 05/18/2020] [Accepted: 05/22/2020] [Indexed: 12/05/2022] Open
Abstract
Methionine sulfoxide (MetO) is an oxidative posttranslational modification that primarily occurs under oxidative stress conditions, leading to alteration of protein structure and function. This modification is regulated by MetO reduction through the evolutionarily conserved methionine sulfoxide reductase (Msr) system. The Msr type A enzyme (MsrA) plays an important role as a cellular antioxidant and promotes cell survival. The ubiquitin- (Ub) like neddylation pathway, which is controlled by the c-Jun activation domain-binding protein-1 (Jab1), also affects cell survival. Jab1 negatively regulates expression of the cell cycle inhibitor cyclin-dependent kinase inhibitor 1B (P27) through binding and targeting P27 for ubiquitination and degradation. Here we report the finding that MsrA interacts with Jab1 and enhances Jab1′s deneddylase activity (removal of Nedd8). In turn, an increase is observed in the level of deneddylated Cullin-1 (Cul-1, a component of E3 Ub ligase complexes). Furthermore, the action of MsrA increases the binding affinity of Jab1 to P27, while MsrA ablation causes a dramatic increase in P27 expression. Thus, an interaction between MsrA and Jab1 is proposed to have a positive effect on the function of Jab1 and to serve as a means to regulate cellular resistance to oxidative stress and to enhance cell survival.
Collapse
|
43
|
Mao Z, Chen C, Pei DS. The Emerging Role of CSN6 in Biological Behavior and Cancer Progress. Anticancer Agents Med Chem 2020; 19:1198-1204. [PMID: 30961513 DOI: 10.2174/1871520619666190408142131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/23/2018] [Accepted: 03/27/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND The Constitutive Photomorphogenesis 9 (COP9) signalosome (CSN) subunit 6 (CSN6) noticeably acts as a regulator of the degradation of cancer-related proteins, which contributes to cancerogenesis. The aims of this paper are to expound the research advances of CSN6, particularly focusing on roles of CSN6 in the regulation of biological behavior and cancer progress. METHODS Literature from PubMed and Web of Science databases about biological characteristics and application of CSN6 published in recent years was collected to conduct a review. RESULTS CSN6, not only the non-catalytic Mpr1p and Pad1p N-terminal (MPN) subunit of CSN, but also a relatively independent protein molecule, has received great attention as a regulator of a wide range of developmental processes by taking part in the ubiquitin-proteasome system and signal transduction, as well as regulating genome integrity and DNA damage response. In addition, phosphorylation of CSN6 increases the stability of CSN6, thereby promoting its regulatory capacity. Moreover, CSN6 is overexpressed in many types of cancer compared with normal tissues and is involved in the regulation of several important intracellular pathways, consisting of cell proliferation, migration, invasion, transformation, and tumorigenesis. CONCLUSION We mainly present insights into the function and research development of CSN6, hoping that it can help guide the treatment of developmental defects and improve clinical care, especially in the regulation of cancer signaling pathways.
Collapse
Affiliation(s)
- Zun Mao
- Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, 209 Tong-shan Road, Xuzhou 221004, Jiangsu, China
| | - Cheng Chen
- Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, 209 Tong-shan Road, Xuzhou 221004, Jiangsu, China
| | - Dong-Sheng Pei
- Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, 209 Tong-shan Road, Xuzhou 221004, Jiangsu, China
| |
Collapse
|
44
|
A Quantitative Genetic Interaction Map of HIV Infection. Mol Cell 2020; 78:197-209.e7. [PMID: 32084337 DOI: 10.1016/j.molcel.2020.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 01/10/2020] [Accepted: 02/02/2020] [Indexed: 12/16/2022]
Abstract
We have developed a platform for quantitative genetic interaction mapping using viral infectivity as a functional readout and constructed a viral host-dependency epistasis map (vE-MAP) of 356 human genes linked to HIV function, comprising >63,000 pairwise genetic perturbations. The vE-MAP provides an expansive view of the genetic dependencies underlying HIV infection and can be used to identify drug targets and study viral mutations. We found that the RNA deadenylase complex, CNOT, is a central player in the vE-MAP and show that knockout of CNOT1, 10, and 11 suppressed HIV infection in primary T cells by upregulating innate immunity pathways. This phenotype was rescued by deletion of IRF7, a transcription factor regulating interferon-stimulated genes, revealing a previously unrecognized host signaling pathway involved in HIV infection. The vE-MAP represents a generic platform that can be used to study the global effects of how different pathogens hijack and rewire the host during infection.
Collapse
|
45
|
Global site-specific neddylation profiling reveals that NEDDylated cofilin regulates actin dynamics. Nat Struct Mol Biol 2020; 27:210-220. [PMID: 32015554 DOI: 10.1038/s41594-019-0370-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 12/27/2019] [Indexed: 01/19/2023]
Abstract
Neddylation is the post-translational protein modification most closely related to ubiquitination. Whereas the ubiquitin-like protein NEDD8 is well studied for its role in activating cullin-RING E3 ubiquitin ligases, little is known about other substrates. We developed serial NEDD8-ubiquitin substrate profiling (sNUSP), a method that employs NEDD8 R74K knock-in HEK293 cells, allowing discrimination of endogenous NEDD8- and ubiquitin-modification sites by MS after Lys-C digestion and K-εGG-peptide enrichment. Using sNUSP, we identified 607 neddylation sites dynamically regulated by the neddylation inhibitor MLN4924 and the de-neddylating enzyme NEDP1, implying that many non-cullin proteins are neddylated. Among the candidates, we characterized lysine 112 of the actin regulator cofilin as a novel neddylation event. Global inhibition of neddylation in developing neurons leads to cytoskeletal defects, altered actin dynamics and neurite growth impairments, whereas site-specific neddylation of cofilin at K112 regulates neurite outgrowth, suggesting that cofilin neddylation contributes to the regulation of neuronal actin organization.
Collapse
|
46
|
Rao F, Lin H, Su Y. Cullin-RING Ligase Regulation by the COP9 Signalosome: Structural Mechanisms and New Physiologic Players. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1217:47-60. [PMID: 31898221 DOI: 10.1007/978-981-15-1025-0_4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The Cullin-RING E3 ligases (CRLs) are major ubiquitylation machineries regulated by reversible cycles of neddylation and deneddylation. The deneddylase COP9 Signalosome (CSN) terminates CRL catalytic cycle. CSN also provides a docking platform for several kinases and deubiquitinases that might play a role in regulating CRL. Recently, remarkable progress has been made in elucidating the biochemical principles and physiological implications of such exquisite regulation. The cryo-EM structures of CRL-CSN complexes provide the biochemical basis of their cognate interactions and reveal potential regulatory mechanisms during complex disassembly. Moreover, novel players beyond the canonical eight subunits of CSN were identified. This includes CSNAP, a potential 9th CSN subunit with regulatory functions, and the metabolite inositol hexakisphosphate (IP6), which enhances CRL-CSN complex formation, with IP6-metabolizing enzymes possibly instilling dynamics to the CRL-CSN system. Here, we review and summarize these new mechanistic insights along with progress in understanding CSN biology based on model organisms with genetically edited CSN subunits.
Collapse
Affiliation(s)
- Feng Rao
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| | - Hong Lin
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Yang Su
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, Guangdong, China
| |
Collapse
|
47
|
Wang K, Deshaies RJ, Liu X. Assembly and Regulation of CRL Ubiquitin Ligases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1217:33-46. [DOI: 10.1007/978-981-15-1025-0_3] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
48
|
Qin N, Xu D, Li J, Deng XW. COP9 signalosome: Discovery, conservation, activity, and function. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:90-103. [PMID: 31894894 DOI: 10.1111/jipb.12903] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 12/26/2019] [Indexed: 05/22/2023]
Abstract
The COP9 signalosome (CSN) is a conserved protein complex, typically composed of eight subunits (designated as CSN1 to CSN8) in higher eukaryotes such as plants and animals, but of fewer subunits in some lower eukaryotes such as yeasts. The CSN complex is originally identified in plants from a genetic screen for mutants that mimic light-induced photomorphogenic development when grown in the dark. The CSN complex regulates the activity of cullin-RING ligase (CRL) families of E3 ubiquitin ligase complexes, and play critical roles in regulating gene expression, cell proliferation, and cell cycle. This review aims to summarize the discovery, composition, structure, and function of CSN in the regulation of plant development in response to external (light and temperature) and internal cues (phytohormones).
Collapse
Affiliation(s)
- Nanxun Qin
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Dongqing Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jigang Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xing Wang Deng
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| |
Collapse
|
49
|
Zheng Q, Zhang L, Zhang Q, Pang Z, Sun Y, Yin Z, Lou Z. Discovery of Interacting Proteins of ABA Receptor PYL5 via Covalent Chemical Capture. ACS Chem Biol 2019; 14:2557-2563. [PMID: 31617999 DOI: 10.1021/acschembio.9b00806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Abscisic acid (ABA) is a key phytohormone with diverse functions in plants, and its signal transduction is mainly mediated by ABA receptors termed PYR/PYL/RCARs (hereafter referred to as PYLs) through the PYLs-PP2Cs-SnRK2s regulatory systems. However, the model failed to account for the roles of some important known regulators of ABA physiology. Given the central role of PYLs in ABA signal transduction, we therefore speculated that ABA receptors PYLs might be involved in regulatory pathways other than PP2Cs. Thus, a comprehensive analysis of PYLs-interacting partners could greatly facilitate the identification of unknown regulatory pathways, advancing our knowledge of the ABA signaling mechanism. Herein, we present a strategy involving covalent chemical capture coupled with HPLC-MS/MS analysis, to profile PYL5-interacting partners in plant cell lysates. With this strategy, three new PYL5-interacting partners, ubiquitin receptor RAD23C, COP9 signalosome complex subunit 1 (CSN1), and cyclase-associated protein 1 (CAP1), along with their key binding sites with PYL5 were identified. Among these proteins, CAP1 was verified to interact with PYL5 both in vitro and in vivo. The discovery of a new PYL5 binding partner showed the versatility of covalent chemical cross-linking and laid the foundation for future efforts to further elucidate the ABA signaling mechanism.
Collapse
Affiliation(s)
- Qizhen Zheng
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Liang Zhang
- College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Qian Zhang
- College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Zhengyuan Pang
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yang Sun
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zheng Yin
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zhiyong Lou
- School of Medicine, Tsinghua University, Beijing 100084, China
| |
Collapse
|
50
|
CSN5A Subunit of COP9 Signalosome Temporally Buffers Response to Heat in Arabidopsis. Biomolecules 2019; 9:biom9120805. [PMID: 31795414 PMCID: PMC6995552 DOI: 10.3390/biom9120805] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 11/25/2022] Open
Abstract
The COP9 (constitutive photomorphogenesis 9) signalosome (CSN) is an evolutionarily conserved protein complex which regulates various growth and developmental processes. However, the role of CSN during environmental stress is largely unknown. Using Arabidopsis as model organism, we used CSN hypomorphic mutants to study the role of the CSN in plant responses to environmental stress and found that heat stress specifically enhanced the growth of csn5a-1 but not the growth of other hypomorphic photomorphogenesis mutants tested. Following heat stress, csn5a-1 exhibits an increase in cell size, ploidy, photosynthetic activity, and number of lateral roots and an upregulation of genes connected to the auxin response. Immunoblot analysis revealed an increase in deneddylation of CUL1 but not CUL3 following heat stress in csn5a-1, implicating improved CUL1 activity as a basis for the improved growth of csn5a-1 following heat stress. Studies using DR5::N7-VENUS and DII-VENUS reporter constructs confirm that the heat-induced growth is due to an increase in auxin signaling. Our results indicate that CSN5A has a specific role in deneddylation of CUL1 and that CSN5A is required for the recovery of AUX/IAA repressor levels following recurrent heat stress to regulate auxin homeostasis in Arabidopsis.
Collapse
|