1
|
Otlu B, Alexandrov LB. Evaluating topography of mutational signatures with SigProfilerTopography. Genome Biol 2025; 26:134. [PMID: 40394581 DOI: 10.1186/s13059-025-03612-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/08/2025] [Indexed: 05/22/2025] Open
Abstract
The mutations found in a cancer genome are shaped by diverse processes, each displaying a characteristic mutational signature that may be influenced by the genome's architecture. While prior analyses have evaluated the effect of topographical genomic features on mutational signatures, there has been no computational tool that can comprehensively examine this interplay. Here, we present SigProfilerTopography, a Python package that allows evaluating the effect of chromatin organization, histone modifications, transcription factor binding, DNA replication, and DNA transcription on the activities of different mutational processes. SigProfilerTopography elucidates the unique topographical characteristics of mutational signatures, unveiling their underlying biological and molecular mechanisms.
Collapse
Affiliation(s)
- Burçak Otlu
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA, 92093, USA
- Department of Bioengineering, UC San Diego, La Jolla, CA, 92093, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA, 92037, USA
- Department of Health Informatics, Graduate School of Informatics, Middle East Technical University, Ankara, 06800, Turkey
| | - Ludmil B Alexandrov
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA, 92093, USA.
- Department of Bioengineering, UC San Diego, La Jolla, CA, 92093, USA.
- Moores Cancer Center, UC San Diego, La Jolla, CA, 92037, USA.
- Sanford Stem Cell Institute, University of California San Diego, La Jolla, CA, 92037, USA.
| |
Collapse
|
2
|
Zhu X, Kanemaki MT. Replication initiation sites and zones in the mammalian genome: Where are they located and how are they defined? DNA Repair (Amst) 2024; 141:103713. [PMID: 38959715 DOI: 10.1016/j.dnarep.2024.103713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 07/05/2024]
Abstract
Eukaryotic DNA replication is a tightly controlled process that occurs in two main steps, i.e., licensing and firing, which take place in the G1 and S phases of the cell cycle, respectively. In Saccharomyces cerevisiae, the budding yeast, replication origins contain consensus sequences that are recognized and bound by the licensing factor Orc1-6, which then recruits the replicative Mcm2-7 helicase. By contrast, mammalian initiation sites lack such consensus sequences, and the mammalian ORC does not exhibit sequence specificity. Studies performed over the past decades have identified replication initiation sites in the mammalian genome using sequencing-based assays, raising the question of whether replication initiation occurs at confined sites or in broad zones across the genome. Although recent reports have shown that the licensed MCMs in mammalian cells are broadly distributed, suggesting that ORC-dependent licensing may not determine the initiation sites/zones, they are predominantly located upstream of actively transcribed genes. This review compares the mechanism of replication initiation in yeast and mammalian cells, summarizes the sequencing-based technologies used for the identification of initiation sites/zones, and proposes a possible mechanism of initiation-site/zone selection in mammalian cells. Future directions and challenges in this field are also discussed.
Collapse
Affiliation(s)
- Xiaoxuan Zhu
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Yata 1111, Shizuoka, Mishima 411-8540, Japan.
| | - Masato T Kanemaki
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Yata 1111, Shizuoka, Mishima 411-8540, Japan; Graduate Institute for Advanced Studies, SOKENDAI, Yata 1111, Shizuoka, Mishima 411-8540, Japan; Department of Biological Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
3
|
Takahashi S, Kyogoku H, Hayakawa T, Miura H, Oji A, Kondo Y, Takebayashi SI, Kitajima TS, Hiratani I. Embryonic genome instability upon DNA replication timing program emergence. Nature 2024; 633:686-694. [PMID: 39198647 PMCID: PMC11410655 DOI: 10.1038/s41586-024-07841-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/17/2024] [Indexed: 09/01/2024]
Abstract
Faithful DNA replication is essential for genome integrity1-4. Under-replicated DNA leads to defects in chromosome segregation, which are common during embryogenesis5-8. However, the regulation of DNA replication remains poorly understood in early mammalian embryos. Here we constructed a single-cell genome-wide DNA replication atlas of pre-implantation mouse embryos and identified an abrupt replication program switch accompanied by a transient period of genomic instability. In 1- and 2-cell embryos, we observed the complete absence of a replication timing program, and the entire genome replicated gradually and uniformly using extremely slow-moving replication forks. In 4-cell embryos, a somatic-cell-like replication timing program commenced abruptly. However, the fork speed was still slow, S phase was extended, and markers of replication stress, DNA damage and repair increased. This was followed by an increase in break-type chromosome segregation errors specifically during the 4-to-8-cell division with breakpoints enriched in late-replicating regions. These errors were rescued by nucleoside supplementation, which accelerated fork speed and reduced the replication stress. By the 8-cell stage, forks gained speed, S phase was no longer extended and chromosome aberrations decreased. Thus, a transient period of genomic instability exists during normal mouse development, preceded by an S phase lacking coordination between replisome-level regulation and megabase-scale replication timing regulation, implicating a link between their coordination and genome stability.
Collapse
Affiliation(s)
- Saori Takahashi
- Laboratory for Developmental Epigenetics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Hirohisa Kyogoku
- Laboratory for Chromosome Segregation, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan.
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan.
| | - Takuya Hayakawa
- Laboratory of Molecular & Cellular Biology, Graduate School of Bioresources, Mie University, Tsu, Japan
| | - Hisashi Miura
- Laboratory for Developmental Epigenetics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Asami Oji
- Laboratory for Developmental Epigenetics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Yoshiko Kondo
- Laboratory for Developmental Epigenetics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Shin-Ichiro Takebayashi
- Laboratory of Molecular & Cellular Biology, Graduate School of Bioresources, Mie University, Tsu, Japan
| | - Tomoya S Kitajima
- Laboratory for Chromosome Segregation, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan.
| | - Ichiro Hiratani
- Laboratory for Developmental Epigenetics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan.
| |
Collapse
|
4
|
Halawa EM, Fadel M, Al-Rabia MW, Behairy A, Nouh NA, Abdo M, Olga R, Fericean L, Atwa AM, El-Nablaway M, Abdeen A. Antibiotic action and resistance: updated review of mechanisms, spread, influencing factors, and alternative approaches for combating resistance. Front Pharmacol 2024; 14:1305294. [PMID: 38283841 PMCID: PMC10820715 DOI: 10.3389/fphar.2023.1305294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 12/18/2023] [Indexed: 01/30/2024] Open
Abstract
Antibiotics represent a frequently employed therapeutic modality for the management of bacterial infections across diverse domains, including human health, agriculture, livestock breeding, and fish farming. The efficacy of antibiotics relies on four distinct mechanisms of action, which are discussed in detail in this review, along with accompanying diagrammatic illustrations. Despite their effectiveness, antibiotic resistance has emerged as a significant challenge to treating bacterial infections. Bacteria have developed defense mechanisms against antibiotics, rendering them ineffective. This review delves into the specific mechanisms that bacteria have developed to resist antibiotics, with the help of diagrammatic illustrations. Antibiotic resistance can spread among bacteria through various routes, resulting in previously susceptible bacteria becoming antibiotic-resistant. Multiple factors contribute to the worsening crisis of antibiotic resistance, including human misuse of antibiotics. This review also emphasizes alternative solutions proposed to mitigate the exacerbation of antibiotic resistance.
Collapse
Affiliation(s)
- Esraa M. Halawa
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, Egypt
| | - Mohamed Fadel
- Department of Microbial Chemistry, Biotechnology Research Institute, National Research Centre, Dokki, Cairo, Egypt
| | - Mohammed W. Al-Rabia
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Clinical Laboratories-Diagnostic Immunology Division, King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| | - Ali Behairy
- Department of Pharmacology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Nehal A. Nouh
- Department of Microbiology, Medicine Program, Batterjee Medical College, Jeddah, Saudi Arabia
- Inpatient Pharmacy, Mansoura University Hospitals, Mansoura, Egypt
| | - Mohamed Abdo
- Department of Animal Histology and Anatomy, School of Veterinary Medicine, Badr University in Cairo (BUC), Badr City, Egypt
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Rada Olga
- Department of Biology and Plant Protection, Faculty of Agriculture, University of Life Sciences “King Michael I” from Timișoara, Timișoara, Romania
| | - Liana Fericean
- Department of Biology and Plant Protection, Faculty of Agriculture, University of Life Sciences “King Michael I” from Timișoara, Timișoara, Romania
| | - Ahmed M. Atwa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Mohammad El-Nablaway
- Department of Medical Biochemistry, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia
| | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| |
Collapse
|
5
|
Otlu B, Alexandrov LB. Evaluating topography of mutational signatures with SigProfilerTopography. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.08.574683. [PMID: 38260507 PMCID: PMC10802511 DOI: 10.1101/2024.01.08.574683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The mutations found in a cancer genome are shaped by diverse processes, each displaying a characteristic mutational signature that may be influenced by the genome's architecture. While prior analyses have evaluated the effect of topographical genomic features on mutational signatures, there has been no computational tool that can comprehensively examine this interplay. Here, we present SigProfilerTopography, a Python package that allows evaluating the effect of chromatin organization, histone modifications, transcription factor binding, DNA replication, and DNA transcription on the activities of different mutational processes. SigProfilerTopography elucidates the unique topographical characteristics of mutational signatures, unveiling their underlying biological and molecular mechanisms.
Collapse
Affiliation(s)
- Burçak Otlu
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA, 92093, USA
- Department of Bioengineering, UC San Diego, La Jolla, CA, 92093, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA, 92037, USA
- Department of Health Informatics, Graduate School of Informatics, Middle East Technical University, 06800, Ankara, Turkey
| | - Ludmil B. Alexandrov
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA, 92093, USA
- Department of Bioengineering, UC San Diego, La Jolla, CA, 92093, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA, 92037, USA
- Sanford Stem Cell Institute, University of California San Diego, La Jolla, CA 92037
| |
Collapse
|
6
|
Pflug FG, Bhat D, Pigolotti S. Genome replication in asynchronously growing microbial populations. PLoS Comput Biol 2024; 20:e1011753. [PMID: 38181054 PMCID: PMC10796026 DOI: 10.1371/journal.pcbi.1011753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/18/2024] [Accepted: 12/11/2023] [Indexed: 01/07/2024] Open
Abstract
Biological cells replicate their genomes in a well-planned manner. The DNA replication program of an organism determines the timing at which different genomic regions are replicated, with fundamental consequences for cell homeostasis and genome stability. In a growing cell culture, genomic regions that are replicated early should be more abundant than regions that are replicated late. This abundance pattern can be experimentally measured using deep sequencing. However, a general quantitative theory linking this pattern to the replication program is still lacking. In this paper, we predict the abundance of DNA fragments in asynchronously growing cultures from any given stochastic model of the DNA replication program. As key examples, we present stochastic models of the DNA replication programs in budding yeast and Escherichia coli. In both cases, our model results are in excellent agreement with experimental data and permit to infer key information about the replication program. In particular, our method is able to infer the locations of known replication origins in budding yeast with high accuracy. These examples demonstrate that our method can provide insight into a broad range of organisms, from bacteria to eukaryotes.
Collapse
Affiliation(s)
- Florian G. Pflug
- Biological Complexity Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Deepak Bhat
- Department of Physics, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Simone Pigolotti
- Biological Complexity Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| |
Collapse
|
7
|
Tye BK, Zhai Y. The Origin Recognition Complex: From Origin Selection to Replication Licensing in Yeast and Humans. BIOLOGY 2023; 13:13. [PMID: 38248444 PMCID: PMC10813338 DOI: 10.3390/biology13010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024]
Abstract
Understanding human DNA replication through the study of yeast has been an extremely fruitful journey. The minichromosome maintenance (MCM) 2-7 genes that encode the catalytic core of the eukaryotic replisome were initially identified through forward yeast genetics. The origin recognition complexes (ORC) that load the MCM hexamers at replication origins were purified from yeast extracts. We have reached an age where high-resolution cryoEM structures of yeast and human replication complexes can be compared side-by-side. Their similarities and differences are converging as alternative strategies that may deviate in detail but are shared by both species.
Collapse
Affiliation(s)
- Bik-Kwoon Tye
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Yuanliang Zhai
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China;
| |
Collapse
|
8
|
Xue H, Dong Y, Li Z, Wang J, Yuan X, He F, Li Z, Gao X, Liu J. Transcriptome analysis reveals the molecular mechanisms by which carbon dots regulate the growth of Chlamydomonas reinhardtii. J Colloid Interface Sci 2023; 649:22-35. [PMID: 37331107 DOI: 10.1016/j.jcis.2023.06.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/20/2023] [Accepted: 06/09/2023] [Indexed: 06/20/2023]
Abstract
Carbon dots (CDs) have attracted increasing attention for their ability to artificially improve photosynthesis. Microalgal bioproducts have emerged as promising sources of sustainable nutrition and energy. However, the gene regulation mechanism of CDs on microalgae remains unexplored. The study synthesized red-emitting CDs and applied them to Chlamydomonas reinhardtii. Results showed that 0.5 mg/L-CDs acted as light supplements to promote cell division and biomass in C. reinhardtii. CDs improved the energy transfer of PS II, photochemical efficiency of PS II, and photosynthetic electron transfer. The pigment content and carbohydrate production slightly increased, while protein and lipid contents significantly increased (by 28.4% and 27.7%, respectively) in a short cultivation time. Transcriptome analysis identified 1166 differentially expressed genes. CDs resulted in faster cell growth by up-regulating the expression of genes associated with cell growth and death, promoting sister chromatid separation, accelerating the mitotic process and shortening the cell cycle. CDs improved the ability of energy conversion by up-regulating photosynthetic electron transfer-related genes. Carbohydrate metabolism-related genes were regulated and provided more available pyruvate for the citrate cycle. The study provides evidence for the genetic regulation of microalgal bioresources by artificially synthesized CDs.
Collapse
Affiliation(s)
- Huidan Xue
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710012, China.
| | - Yibei Dong
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Zhihuan Li
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Jing Wang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xiaolong Yuan
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Fei He
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Zhengke Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xiang Gao
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jianxi Liu
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China.
| |
Collapse
|
9
|
Hu Y, Stillman B. Origins of DNA replication in eukaryotes. Mol Cell 2023; 83:352-372. [PMID: 36640769 PMCID: PMC9898300 DOI: 10.1016/j.molcel.2022.12.024] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 01/15/2023]
Abstract
Errors occurring during DNA replication can result in inaccurate replication, incomplete replication, or re-replication, resulting in genome instability that can lead to diseases such as cancer or disorders such as autism. A great deal of progress has been made toward understanding the entire process of DNA replication in eukaryotes, including the mechanism of initiation and its control. This review focuses on the current understanding of how the origin recognition complex (ORC) contributes to determining the location of replication initiation in the multiple chromosomes within eukaryotic cells, as well as methods for mapping the location and temporal patterning of DNA replication. Origin specification and configuration vary substantially between eukaryotic species and in some cases co-evolved with gene-silencing mechanisms. We discuss the possibility that centromeres and origins of DNA replication were originally derived from a common element and later separated during evolution.
Collapse
Affiliation(s)
- Yixin Hu
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA; Program in Molecular and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Bruce Stillman
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
10
|
Abdel-Banat BMA, Hoshida H, Akada R. Various short autonomously replicating sequences from the yeast Kluyveromyces marxianus seemingly without canonical consensus. CURRENT RESEARCH IN MICROBIAL SCIENCES 2021; 2:100053. [PMID: 34841344 PMCID: PMC8610295 DOI: 10.1016/j.crmicr.2021.100053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/08/2021] [Accepted: 07/27/2021] [Indexed: 12/03/2022] Open
Abstract
Eukaryotic autonomously replicating sequences (ARSs) are composed of three domains, A, B, and C. Domain A is comprised of an ARS consensus sequence (ACS), while the B domain has the DNA unwinding element and the C domain is important for DNA-protein interactions. In Saccharomyces cerevisiae and Kluyveromyces lactis ARS101, the ACS is commonly composed of 11 bp, 5ˊ-(A/T)AAA(C/T)ATAAA(A/T)-3ˊ. This core sequence is essential for S. cerevisiae and K. lactis ARS activity. In this study, we identified ARS-containing sequences from genomic libraries of the yeast Kluyveromyces marxianus DMKU3-1042 and validated their replication activities. The identified K. marxianus DMKU3-1042 ARSs (KmARSs) have very effective replication ability but their sequences are divergent and share no common consensus. We have carried out point mutations, deletions, and base pairs substitutions within the sequences of some of the KmARSs to identify the sequence(s) that influence the replication activity. Consensus sequences same as the 11 bp ACS of S. cerevisiae and K. lactis were not found in all minimum functional KmARSs reported here except KmARS7. Moreover, partial sequences from different KmARSs are interchangeable among each other to retain the ARS activity. We have also specifically identified the essential nucleotides, which are indispensable for replication, within some of the KmARSs. Our deletions analysis revealed that only 21 bp in KmARS18 could retain the ARS activity. The identified KmARSs in this study are unique compared to other yeasts’ ARSs, do not share common ACS, and are interchangeable. Identification of minimal autonomously replicating sequences (ARSs) from the yeast Kluyveromyces marxianus DMKU3-1042. The identities of the isolated ARSs are divergent and have no common consensus with the ARSs of other yeasts. A short ARS sequence of twenty-one nucleotides functions as an effective replicator in K. marxianus DMKU3-1042. Segments of ARSs from the yeast K. marxianus are interchangeable among each other. Functional ARSs are found in both the intergenic and coding sequences of the strain DMKU3-1042.
Collapse
Affiliation(s)
- Babiker M A Abdel-Banat
- Date Palm Research Center of Excellence, King Faisal University, Al-Ahsa 31982, Saudi Arabia.,Department of Crop Protection, University of Khartoum, Shambat 13314, Sudan
| | - Hisashi Hoshida
- Department of Applied Molecular Bioscience, Yamaguchi University Graduate School of Medicine, Tokiwadai, Ube, Japan
| | - Rinji Akada
- Department of Applied Molecular Bioscience, Yamaguchi University Graduate School of Medicine, Tokiwadai, Ube, Japan
| |
Collapse
|
11
|
Munisha M, Schimenti JC. Genome maintenance during embryogenesis. DNA Repair (Amst) 2021; 106:103195. [PMID: 34358805 DOI: 10.1016/j.dnarep.2021.103195] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/25/2022]
Abstract
Genome maintenance during embryogenesis is critical, because defects during this period can be perpetuated and thus have a long-term impact on individual's health and longevity. Nevertheless, genome instability is normal during certain aspects of embryonic development, indicating that there is a balance between the exigencies of timely cell proliferation and mutation prevention. In particular, early embryos possess unique cellular and molecular features that underscore the challenge of having an appropriate balance. Here, we discuss genome instability during embryonic development, the mechanisms used in various cell compartments to manage genomic stress and address outstanding questions regarding the balance between genome maintenance mechanisms in key cell types that are important for adulthood and progeny.
Collapse
Affiliation(s)
- Mumingjiang Munisha
- Dept. of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, United States
| | - John C Schimenti
- Dept. of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, United States.
| |
Collapse
|
12
|
Yamamoto Y, Gustafson EA, Foulk MS, Smith HS, Gerbi SA. Anatomy and evolution of a DNA replication origin. Chromosoma 2021; 130:199-214. [PMID: 34254172 DOI: 10.1007/s00412-021-00756-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/09/2021] [Accepted: 03/09/2021] [Indexed: 10/20/2022]
Abstract
DNA amplification occurs at the DNA puff II/9A locus in the fungus fly Sciara coprophila. As a foundation to study the molecular mechanism for the initiating events of II/9A DNA re-replication, we have sequenced 14 kb spanning a DNase hypersensitive site (DHS) upstream of the 1 kb amplification origin and through transcription units II/9-1 and II/9-2 downstream of the origin. These elements are annotated as well as the ORC binding site at the origin and the transition point (TP) between continuous and discontinuous DNA syntheses that marks the origin of bidirectional replication at the nucleotide level. A 9 bp motif found at the TP is repeated near the other end of the 1 kb ORI and may identify a putative second TP. The steroid hormone ecdysone induces DNA amplification as well as transcription and puffing at locus II/9A. Within the 14 kb, several matches to the ecdysone response element (EcRE) consensus sequence were identified, including some in the amplification origin region. EcRE O-P is at a central axis of a remarkable symmetry, equidistant to the TPs that are themselves equidistant to EcRE O-1 and EcRE O-2. DNA sequence alterations have occurred throughout the II/9A region in a newly discovered polymorphism (#2). Polymorphism #2 is not specific to developmental stage, sex, or tissue, and it does not impair DNA amplification. The DHS, both 9 bp TP sequences, and EcREs O-1, O-P, and O-2 are conserved between the polymorphism #1 and #2 sequences, suggesting their functional importance and retention during evolutionary selection. Moreover, a 72 bp sequence in the Sciara DHS at DNA puff II/9A is conserved in DNA puff C-3 of Rhynchosciara americana. Comparisons are discussed between the Sciara II/9A amplicon and the chorion locus amplicon on the third chromosome of Drosophila.
Collapse
Affiliation(s)
- Yutaka Yamamoto
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University Division of Biology and Medicine, Box G - Sidney Frank Life Sciences Building room 260, Providence, RI, 02912, USA
| | - Eric A Gustafson
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University Division of Biology and Medicine, Box G - Sidney Frank Life Sciences Building room 260, Providence, RI, 02912, USA.,Zipher Medical Affairs Co., 380 Wareham Street, Marion, MA, 02738, USA
| | - Michael S Foulk
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University Division of Biology and Medicine, Box G - Sidney Frank Life Sciences Building room 260, Providence, RI, 02912, USA.,Department of Biology, Mercyhurst University, 501 East 38th Street, Erie, PA, 16546, USA
| | - Heidi S Smith
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University Division of Biology and Medicine, Box G - Sidney Frank Life Sciences Building room 260, Providence, RI, 02912, USA
| | - Susan A Gerbi
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University Division of Biology and Medicine, Box G - Sidney Frank Life Sciences Building room 260, Providence, RI, 02912, USA.
| |
Collapse
|
13
|
Droghetti R, Agier N, Fischer G, Gherardi M, Cosentino Lagomarsino M. An evolutionary model identifies the main evolutionary biases for the evolution of genome-replication profiles. eLife 2021; 10:63542. [PMID: 34013887 PMCID: PMC8213407 DOI: 10.7554/elife.63542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 05/20/2021] [Indexed: 12/13/2022] Open
Abstract
Recent results comparing the temporal program of genome replication of yeast species belonging to the Lachancea clade support the scenario that the evolution of the replication timing program could be mainly driven by correlated acquisition and loss events of active replication origins. Using these results as a benchmark, we develop an evolutionary model defined as birth-death process for replication origins and use it to identify the evolutionary biases that shape the replication timing profiles. Comparing different evolutionary models with data, we find that replication origin birth and death events are mainly driven by two evolutionary pressures, the first imposes that events leading to higher double-stall probability of replication forks are penalized, while the second makes less efficient origins more prone to evolutionary loss. This analysis provides an empirically grounded predictive framework for quantitative evolutionary studies of the replication timing program.
Collapse
Affiliation(s)
- Rossana Droghetti
- Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, Milan, Italy
| | - Nicolas Agier
- Sorbonne Universitè, CNRS, Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, Paris, France
| | - Gilles Fischer
- Sorbonne Universitè, CNRS, Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, Paris, France
| | - Marco Gherardi
- Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, Milan, Italy and INFN sezione di Milano, Milan, Italy
| | - Marco Cosentino Lagomarsino
- Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, Milan, Italy and INFN sezione di Milano, Milan, Italy.,IFOM Foundation, FIRC Institute for Molecular Oncology, via Adamello 16, Milan, Italy
| |
Collapse
|
14
|
Sheriff O, Yaw A, Lai SK, Loo HL, Sze SK, Preiser PR. Plasmodium falciparum replication factor C subunit 1 is involved in genotoxic stress response. Cell Microbiol 2020; 23:e13277. [PMID: 33040440 DOI: 10.1111/cmi.13277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 02/03/2023]
Abstract
About half the world's population is at risk of malaria, with Plasmodium falciparum malaria being responsible for the most malaria related deaths globally. Antimalarial drugs such as chloroquine and artemisinin are directed towards the proliferating intra-erythrocytic stages of the parasite, which is responsible for all the clinical symptoms of the disease. These antimalarial drugs have been reported to function via multiple pathways, one of which induces DNA damage via the generation of free radicals and reactive oxygen species. An urgent need to understand the mechanistic details of drug response and resistance is highlighted by the decreasing clinical efficacy of the front line drug, Artemisinin. The replication factor C subunit 1 is an important component of the DNA replication machinery and DNA damage response mechanism. Here we show the translocation of PfRFC1 from an intranuclear localisation to the nuclear periphery, indicating an orchestrated progression of distinct patterns of replication in the developing parasites. PfRFC1 responds to genotoxic stress via elevated protein levels in soluble and chromatin bound fractions. Reduction of PfRFC1 protein levels upon treatment with antimalarials suggests an interplay of replication, apoptosis and DNA repair pathways leading to cell death. Additionally, mislocalisation of the endogenously tagged protein confirmed its essential role in parasites' replication and DNA repair. This study provides key insights into DNA replication, DNA damage response and cell death in P. falciparum.
Collapse
Affiliation(s)
- Omar Sheriff
- School of Biological Sciences, Nanyang Technological University Singapore, Singapore, Singapore
| | - Aniweh Yaw
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Ghana
| | - Soak Kuan Lai
- School of Biological Sciences, Nanyang Technological University Singapore, Singapore, Singapore
| | - Hooi Linn Loo
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University Singapore, Singapore, Singapore
| | - Peter Rainer Preiser
- School of Biological Sciences, Nanyang Technological University Singapore, Singapore, Singapore.,Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| |
Collapse
|
15
|
Wang D, Lai FL, Gao F. Ori-Finder 3: a web server for genome-wide prediction of replication origins in Saccharomyces cerevisiae. Brief Bioinform 2020; 22:6278693. [PMID: 34020544 DOI: 10.1093/bib/bbaa182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/29/2020] [Accepted: 07/15/2020] [Indexed: 12/26/2022] Open
Abstract
DNA replication is a fundamental process in all organisms; this event initiates at sites termed origins of replication. The characteristics of eukaryotic replication origins are best understood in Saccharomyces cerevisiae. For this species, origin prediction algorithms or web servers have been developed based on the sequence features of autonomously replicating sequences (ARSs). However, their performances are far from satisfactory. By utilizing the Z-curve methodology, we present a novel pipeline, Ori-Finder 3, for the computational prediction of replication origins in S. cerevisiae at the genome-wide level based solely on DNA sequences. The ARS exhibiting both an AT-rich stretch and ARS consensus sequence element can be predicted at the single-nucleotide level. For the identified ARSs in the S. cerevisiae reference genome, 83 and 60% of the top 100 and top 300 predictions matched the known ARS records, respectively. Based on Ori-Finder 3, we subsequently built a database of the predicted ARSs identified in more than a hundred S. cerevisiae genomes. Consequently, we developed a user-friendly web server including the ARS prediction pipeline and the predicted ARSs database, which can be freely accessed at http://tubic.tju.edu.cn/Ori-Finder3.
Collapse
Affiliation(s)
- Dan Wang
- Department of Physics, School of Science, Tianjin University
| | - Fei-Liao Lai
- Department of Physics, School of Science, Tianjin University
| | - Feng Gao
- Department of Physics, School of Science, and the Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University
| |
Collapse
|
16
|
Zhao PA, Sasaki T, Gilbert DM. High-resolution Repli-Seq defines the temporal choreography of initiation, elongation and termination of replication in mammalian cells. Genome Biol 2020; 21:76. [PMID: 32209126 PMCID: PMC7092589 DOI: 10.1186/s13059-020-01983-8] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/04/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND DNA replication in mammalian cells occurs in a defined temporal order during S phase, known as the replication timing (RT) programme. Replication timing is developmentally regulated and correlated with chromatin conformation and local transcriptional potential. Here, we present RT profiles of unprecedented temporal resolution in two human embryonic stem cell lines, human colon carcinoma line HCT116, and mouse embryonic stem cells and their neural progenitor derivatives. RESULTS Fine temporal windows revealed a remarkable degree of cell-to-cell conservation in RT, particularly at the very beginning and ends of S phase, and identified 5 temporal patterns of replication in all cell types, consistent with varying degrees of initiation efficiency. Zones of replication initiation (IZs) were detected throughout S phase and interacted in 3D space preferentially with other IZs of similar firing time. Temporal transition regions were resolved into segments of uni-directional replication punctuated at specific sites by small, inefficient IZs. Sites of convergent replication were divided into sites of termination or large constant timing regions consisting of many synchronous IZs in tandem. Developmental transitions in RT occured mainly by activating or inactivating individual IZs or occasionally by altering IZ firing time, demonstrating that IZs, rather than individual origins, are the units of developmental regulation. Finally, haplotype phasing revealed numerous regions of allele-specific and allele-independent asynchronous replication. Allele-independent asynchronous replication was correlated with the presence of previously mapped common fragile sites. CONCLUSIONS Altogether, these data provide a detailed temporal choreography of DNA replication in mammalian cells.
Collapse
Affiliation(s)
- Peiyao A Zhao
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, FL, 32306, USA
| | - Takayo Sasaki
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, FL, 32306, USA
| | - David M Gilbert
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, FL, 32306, USA.
| |
Collapse
|
17
|
Abstract
The transition between proliferating and quiescent states must be carefully regulated to ensure that cells divide to create the cells an organism needs only at the appropriate time and place. Cyclin-dependent kinases (CDKs) are critical for both transitioning cells from one cell cycle state to the next, and for regulating whether cells are proliferating or quiescent. CDKs are regulated by association with cognate cyclins, activating and inhibitory phosphorylation events, and proteins that bind to them and inhibit their activity. The substrates of these kinases, including the retinoblastoma protein, enforce the changes in cell cycle status. Single cell analysis has clarified that competition among factors that activate and inhibit CDK activity leads to the cell's decision to enter the cell cycle, a decision the cell makes before S phase. Signaling pathways that control the activity of CDKs regulate the transition between quiescence and proliferation in stem cells, including stem cells that generate muscle and neurons. © 2020 American Physiological Society. Compr Physiol 10:317-344, 2020.
Collapse
Affiliation(s)
- Hilary A Coller
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, California, USA.,Department of Biological Chemistry, David Geffen School of Medicine, and the Molecular Biology Institute, University of California, Los Angeles, California, USA.,Molecular Biology Institute, University of California, Los Angeles, California, USA
| |
Collapse
|
18
|
Marchal C, Sima J, Gilbert DM. Control of DNA replication timing in the 3D genome. Nat Rev Mol Cell Biol 2019; 20:721-737. [PMID: 31477886 PMCID: PMC11567694 DOI: 10.1038/s41580-019-0162-y] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2019] [Indexed: 12/27/2022]
Abstract
The 3D organization of mammalian chromatin was described more than 30 years ago by visualizing sites of DNA synthesis at different times during the S phase of the cell cycle. These early cytogenetic studies revealed structurally stable chromosome domains organized into subnuclear compartments. Active-gene-rich domains in the nuclear interior replicate early, whereas more condensed chromatin domains that are largely at the nuclear and nucleolar periphery replicate later. During the past decade, this spatiotemporal DNA replication programme has been mapped along the genome and found to correlate with epigenetic marks, transcriptional activity and features of 3D genome architecture such as chromosome compartments and topologically associated domains. But the causal relationship between these features and DNA replication timing and the regulatory mechanisms involved have remained an enigma. The recent identification of cis-acting elements regulating the replication time and 3D architecture of individual replication domains and of long non-coding RNAs that coordinate whole chromosome replication provide insights into such mechanisms.
Collapse
Affiliation(s)
- Claire Marchal
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Jiao Sima
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - David M Gilbert
- Department of Biological Science, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
19
|
Wang D, Gao F. Comprehensive Analysis of Replication Origins in Saccharomyces cerevisiae Genomes. Front Microbiol 2019; 10:2122. [PMID: 31572328 PMCID: PMC6753640 DOI: 10.3389/fmicb.2019.02122] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 08/29/2019] [Indexed: 12/15/2022] Open
Abstract
DNA replication initiates from multiple replication origins (ORIs) in eukaryotes. Discovery and characterization of replication origins are essential for a better understanding of the molecular mechanism of DNA replication. In this study, the features of autonomously replicating sequences (ARSs) in Saccharomyces cerevisiae have been comprehensively analyzed as follows. Firstly, we carried out the analysis of the ARSs available in S. cerevisiae S288C. By evaluating the sequence similarity of experimentally established ARSs, we found that 94.32% of ARSs are unique across the whole genome of S. cerevisiae S288C and those with high sequence similarity are prone to locate in subtelomeres. Subsequently, we built a non-redundant dataset with a total of 520 ARSs, which are based on ARSs annotation of S. cerevisiae S288C from SGD and then supplemented with those from OriDB and DeOri databases. We conducted a large-scale comparison of ORIs among the diverse budding yeast strains from a population genomics perspective. We found that 82.7% of ARSs are not only conserved in genomic sequence but also relatively conserved in chromosomal position. The non-conserved ARSs tend to distribute in the subtelomeric regions. We also conducted a pan-genome analysis of ARSs among the S. cerevisiae strains, and a total of 183 core ARSs existing in all yeast strains were determined. We extracted the genes adjacent to replication origins among the 104 yeast strains to examine whether there are differences in their gene functions. The result showed that the genes involved in the initiation of DNA replication, such as orc3, mcm2, mcm4, mcm6, and cdc45, are conservatively located adjacent to the replication origins. Furthermore, we found the genes adjacent to conserved ARSs are significantly enriched in DNA binding, enzyme activity, transportation, and energy, whereas for the genes adjacent to non-conserved ARSs are significantly enriched in response to environmental stress, metabolites biosynthetic process and biosynthesis of antibiotics. In general, we characterized the replication origins from the genome-wide and population genomics perspectives, which would provide new insights into the replication mechanism of S. cerevisiae and facilitate the design of algorithms to identify genome-wide replication origins in yeast.
Collapse
Affiliation(s)
- Dan Wang
- Department of Physics, School of Science, Tianjin University, Tianjin, China
| | - Feng Gao
- Department of Physics, School of Science, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| |
Collapse
|
20
|
Heinz KS, Casas-Delucchi CS, Török T, Cmarko D, Rapp A, Raska I, Cardoso MC. Peripheral re-localization of constitutive heterochromatin advances its replication timing and impairs maintenance of silencing marks. Nucleic Acids Res 2019; 46:6112-6128. [PMID: 29750270 PMCID: PMC6158597 DOI: 10.1093/nar/gky368] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 04/25/2018] [Indexed: 11/13/2022] Open
Abstract
The replication of the genome is a highly organized process, both spatially and temporally. Although a lot is known on the composition of the basic replication machinery, how its activity is regulated is mostly unknown. Several chromatin properties have been proposed as regulators, but a potential role of the nuclear DNA position remains unclear. We made use of the prominent structure and well-defined heterochromatic landscape of mouse pericentric chromosome domains as a well-studied example of late replicating constitutive heterochromatin. We established a method to manipulate its nuclear position and evaluated the effect on replication timing, DNA compaction and epigenetic composition. Using time-lapse microscopy, we observed that constitutive heterochromatin, known to replicate during late S-phase, was replicated in mid S-phase when repositioned to the nuclear periphery. Out-of-schedule replication resulted in deficient post-replicative maintenance of chromatin modifications, namely silencing marks. We propose that repositioned constitutive heterochromatin was activated in trans according to the domino model of origin firing by nearby (mid S) firing origins. In summary, our data provide, on the one hand, a novel approach to manipulate nuclear DNA position and, on the other hand, establish nuclear DNA position as a novel mechanism regulating DNA replication timing and epigenetic maintenance.
Collapse
Affiliation(s)
- Kathrin S Heinz
- Cell Biology and Epigenetics, Department of Biology, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Corella S Casas-Delucchi
- Cell Biology and Epigenetics, Department of Biology, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Timea Török
- Cell Biology and Epigenetics, Department of Biology, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Dusan Cmarko
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, 128 00 Prague, Czech Republic
| | - Alexander Rapp
- Cell Biology and Epigenetics, Department of Biology, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Ivan Raska
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, 128 00 Prague, Czech Republic
| | - M Cristina Cardoso
- Cell Biology and Epigenetics, Department of Biology, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| |
Collapse
|
21
|
Maksimenko OG, Belova EV, Georgiev PG. Study of the Ability of the gypsy Insulator to Stabilize Amplification of the chorion Replication Origin of Drosophila melanogaster. DOKL BIOCHEM BIOPHYS 2018; 480:166-168. [PMID: 30008102 DOI: 10.1134/s1607672918030110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Indexed: 11/22/2022]
Abstract
The role of the gypsy insulator in the replication origin (RO) activity in the presence and absence of one and two copies of this insulator in several genomic sites was studied. Due to the fact that the prepared model system makes it possible to study the activity of this element in a given genomic site, it was shown that the RO stabilization, indeed, is determined by the activity of the insulator rather than by the construct integration site into the genome. The role of the Su(Hw) protein in this process was also studied in detail.
Collapse
Affiliation(s)
- O G Maksimenko
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia.
| | - E V Belova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - P G Georgiev
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| |
Collapse
|
22
|
Qin L, Jiang X, Dong Z, Huang J, Chen X. Identification of two integration sites in favor of transgene expression in Trichoderma reesei. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:142. [PMID: 29796083 PMCID: PMC5956788 DOI: 10.1186/s13068-018-1139-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 05/02/2018] [Indexed: 05/28/2023]
Abstract
BACKGROUND The ascomycete fungus Trichoderma reesei was widely used as a biotechnological workhorse for production of cellulases and recombinant proteins due to its large capacity of protein secretion. Transgenesis by random integration of a gene of interest (GOI) into the genome of T. reesei can generate series of strains that express different levels of the indicated transgene. The insertion site of the GOI plays an important role in the ultimate production of the targeted proteins. However, so far no systematic studies have been made to identify transgene integration loci for optimal expression of the GOI in T. reesei. Currently, only the locus of exocellobiohydrolases I encoding gene (cbh1) is widely used as a promising integration site to lead to high expression level of the GOI. No additional sites associated with efficient gene expression have been characterized. RESULTS To search for gene integration sites that benefit for the secreted expression of GOI, the food-and-mouth disease virus 2A protein was applied for co-expression of an Aspergillus niger lipA gene and Discosoma sp. DsRed1 gene in T. reesei, by random integration of the expression cassette into the genome. We demonstrated that the fluorescent intensity of RFP (red fluorescent protein) inside of the cell was well correlated with the secreted lipase yields, based on which, we successfully developed a high-throughput screening method to screen strains with relatively higher secreted expression of the GOI (in this study, lipase). The copy number and the insertion sites of the transgene were investigated among the selected highly expressed strains. Eventually, in addition to cbh1 gene locus, two other genome insertion loci that efficiently facilitate gene expression in T. reesei were identified. CONCLUSIONS We have successfully developed a high-throughput screening method to screen strains with optimal expression of the indicated secreted proteins in T. reesei. Moreover, we identified two optimal genome loci for transgene expression, which could provide new approach to modulate gene expression levels while retaining the indicated promoter and culture conditions.
Collapse
Affiliation(s)
- Lina Qin
- National and Local Joint Engineering Research Center of Industrial Microbiology and Fermentation Technology, College of Life Sciences, Fujian Normal University, Qishan Campus, No.1 Keji Road, Shangjie, Minhou, Fuzhou, 350117 Fujian China
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou, 350117 Fujian China
| | - Xianzhang Jiang
- National and Local Joint Engineering Research Center of Industrial Microbiology and Fermentation Technology, College of Life Sciences, Fujian Normal University, Qishan Campus, No.1 Keji Road, Shangjie, Minhou, Fuzhou, 350117 Fujian China
| | - Zhiyang Dong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Jianzhong Huang
- National and Local Joint Engineering Research Center of Industrial Microbiology and Fermentation Technology, College of Life Sciences, Fujian Normal University, Qishan Campus, No.1 Keji Road, Shangjie, Minhou, Fuzhou, 350117 Fujian China
| | - Xiuzhen Chen
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
| |
Collapse
|
23
|
Singh VK, Kumar V, Krishnamachari A. Prediction of replication sites in Saccharomyces cerevisiae genome using DNA segment properties: Multi-view ensemble learning (MEL) approach. Biosystems 2018; 163:59-69. [DOI: 10.1016/j.biosystems.2017.12.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 10/27/2017] [Accepted: 12/07/2017] [Indexed: 10/18/2022]
|
24
|
Zhang Q, Bassetti F, Gherardi M, Lagomarsino MC. Cell-to-cell variability and robustness in S-phase duration from genome replication kinetics. Nucleic Acids Res 2017; 45:8190-8198. [PMID: 28854733 PMCID: PMC5737480 DOI: 10.1093/nar/gkx556] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 06/19/2017] [Indexed: 11/13/2022] Open
Abstract
Genome replication, a key process for a cell, relies on stochastic initiation by replication origins, causing a variability of replication timing from cell to cell. While stochastic models of eukaryotic replication are widely available, the link between the key parameters and overall replication timing has not been addressed systematically. We use a combined analytical and computational approach to calculate how positions and strength of many origins lead to a given cell-to-cell variability of total duration of the replication of a large region, a chromosome or the entire genome. Specifically, the total replication timing can be framed as an extreme-value problem, since it is due to the last region that replicates in each cell. Our calculations identify two regimes based on the spread between characteristic completion times of all inter-origin regions of a genome. For widely different completion times, timing is set by the single specific region that is typically the last to replicate in all cells. Conversely, when the completion time of all regions are comparable, an extreme-value estimate shows that the cell-to-cell variability of genome replication timing has universal properties. Comparison with available data shows that the replication program of three yeast species falls in this extreme-value regime.
Collapse
Affiliation(s)
- Qing Zhang
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7238, Computational and Quantitative Biology, 4 Place Jussieu, Paris, France
| | | | - Marco Gherardi
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7238, Computational and Quantitative Biology, 4 Place Jussieu, Paris, France.,IFOM, FIRC Institute of Molecular Oncology, Milan, Italy
| | - Marco Cosentino Lagomarsino
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7238, Computational and Quantitative Biology, 4 Place Jussieu, Paris, France.,IFOM, FIRC Institute of Molecular Oncology, Milan, Italy.,CNRS, UMR 7238, Paris, France
| |
Collapse
|
25
|
Abstract
Complete duplication of large metazoan chromosomes requires thousands of potential initiation sites, only a small fraction of which are selected in each cell cycle. Assembly of the replication machinery is highly conserved and tightly regulated during the cell cycle, but the sites of initiation are highly flexible, and their temporal order of firing is regulated at the level of large-scale multi-replicon domains. Importantly, the number of replication forks must be quickly adjusted in response to replication stress to prevent genome instability. Here we argue that large genomes are divided into domains for exactly this reason. Once established, domain structure abrogates the need for precise initiation sites and creates a scaffold for the evolution of other chromosome functions.
Collapse
Affiliation(s)
| | - David M Gilbert
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4295, USA; Center for Genomics and Personalized Medicine, Florida State University, Tallahassee, FL 32306-4295, USA.
| |
Collapse
|
26
|
Li X, Omotere O, Qian L, Dougherty ER. Review of stochastic hybrid systems with applications in biological systems modeling and analysis. EURASIP JOURNAL ON BIOINFORMATICS & SYSTEMS BIOLOGY 2017; 2017:8. [PMID: 28667450 PMCID: PMC5493609 DOI: 10.1186/s13637-017-0061-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 06/05/2017] [Indexed: 11/10/2022]
Abstract
Stochastic hybrid systems (SHS) have attracted a lot of research interests in recent years. In this paper, we review some of the recent applications of SHS to biological systems modeling and analysis. Due to the nature of molecular interactions, many biological processes can be conveniently described as a mixture of continuous and discrete phenomena employing SHS models. With the advancement of SHS theory, it is expected that insights can be obtained about biological processes such as drug effects on gene regulation. Furthermore, combining with advanced experimental methods, in silico simulations using SHS modeling techniques can be carried out for massive and rapid verification or falsification of biological hypotheses. The hope is to substitute costly and time-consuming in vitro or in vivo experiments or provide guidance for those experiments and generate better hypotheses.
Collapse
Affiliation(s)
- Xiangfang Li
- Department of Electrical and Computer Engineering, Prairie View A&M University, Prairie View, 77446, TX, USA.
| | - Oluwaseyi Omotere
- Department of Electrical and Computer Engineering, Prairie View A&M University, Prairie View, 77446, TX, USA
| | - Lijun Qian
- Department of Electrical and Computer Engineering, Prairie View A&M University, Prairie View, 77446, TX, USA
| | - Edward R Dougherty
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, 77843, TX, USA
| |
Collapse
|
27
|
|
28
|
Singh VK, Krishnamachari A. Context based computational analysis and characterization of ARS consensus sequences (ACS) of Saccharomyces cerevisiae genome. GENOMICS DATA 2016; 9:130-6. [PMID: 27508123 PMCID: PMC4971157 DOI: 10.1016/j.gdata.2016.07.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 06/27/2016] [Accepted: 07/06/2016] [Indexed: 01/08/2023]
Abstract
Genome-wide experimental studies in Saccharomyces cerevisiae reveal that autonomous replicating sequence (ARS) requires an essential consensus sequence (ACS) for replication activity. Computational studies identified thousands of ACS like patterns in the genome. However, only a few hundreds of these sites act as replicating sites and the rest are considered as dormant or evolving sites. In a bid to understand the sequence makeup of replication sites, a content and context-based analysis was performed on a set of replicating ACS sequences that binds to origin-recognition complex (ORC) denoted as ORC-ACS and non-replicating ACS sequences (nrACS), that are not bound by ORC. In this study, DNA properties such as base composition, correlation, sequence dependent thermodynamic and DNA structural profiles, and their positions have been considered for characterizing ORC-ACS and nrACS. Analysis reveals that ORC-ACS depict marked differences in nucleotide composition and context features in its vicinity compared to nrACS. Interestingly, an A-rich motif was also discovered in ORC-ACS sequences within its nucleosome-free region. Profound changes in the conformational features, such as DNA helical twist, inclination angle and stacking energy between ORC-ACS and nrACS were observed. Distribution of ACS motifs in the non-coding segments points to the locations of ORC-ACS which are found far away from the adjacent gene start position compared to nrACS thereby enabling an accessible environment for ORC-proteins. Our attempt is novel in considering the contextual view of ACS and its flanking region along with nucleosome positioning in the S. cerevisiae genome and may be useful for any computational prediction scheme.
Collapse
|
29
|
Morganella S, Alexandrov LB, Glodzik D, Zou X, Davies H, Staaf J, Sieuwerts AM, Brinkman AB, Martin S, Ramakrishna M, Butler A, Kim HY, Borg Å, Sotiriou C, Futreal PA, Campbell PJ, Span PN, Van Laere S, Lakhani SR, Eyfjord JE, Thompson AM, Stunnenberg HG, van de Vijver MJ, Martens JWM, Børresen-Dale AL, Richardson AL, Kong G, Thomas G, Sale J, Rada C, Stratton MR, Birney E, Nik-Zainal S. The topography of mutational processes in breast cancer genomes. Nat Commun 2016; 7:11383. [PMID: 27136393 PMCID: PMC5001788 DOI: 10.1038/ncomms11383] [Citation(s) in RCA: 200] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 03/18/2016] [Indexed: 12/28/2022] Open
Abstract
Somatic mutations in human cancers show unevenness in genomic distribution that correlate with aspects of genome structure and function. These mutations are, however, generated by multiple mutational processes operating through the cellular lineage between the fertilized egg and the cancer cell, each composed of specific DNA damage and repair components and leaving its own characteristic mutational signature on the genome. Using somatic mutation catalogues from 560 breast cancer whole-genome sequences, here we show that each of 12 base substitution, 2 insertion/deletion (indel) and 6 rearrangement mutational signatures present in breast tissue, exhibit distinct relationships with genomic features relating to transcription, DNA replication and chromatin organization. This signature-based approach permits visualization of the genomic distribution of mutational processes associated with APOBEC enzymes, mismatch repair deficiency and homologous recombinational repair deficiency, as well as mutational processes of unknown aetiology. Furthermore, it highlights mechanistic insights including a putative replication-dependent mechanism of APOBEC-related mutagenesis.
Collapse
Affiliation(s)
- Sandro Morganella
- European Molecular Biology Laboratory, European Bioinformatics
Institute, Wellcome Trust Genome Campus, Cambridgeshire
CB10 1SD, UK
| | - Ludmil B. Alexandrov
- Wellcome Trust Sanger Institute, Cambridge
CB10 1SA, UK
- Theoretical Biology and Biophysics (T-6), Los Alamos National
Laboratory, Los Alamos
NM 87545, New Mexico, USA
- Center for Nonlinear Studies, Los Alamos National Laboratory,
Los Alamos
NM 87545, New Mexico, USA
| | | | - Xueqing Zou
- Wellcome Trust Sanger Institute, Cambridge
CB10 1SA, UK
| | - Helen Davies
- Wellcome Trust Sanger Institute, Cambridge
CB10 1SA, UK
| | - Johan Staaf
- Division of Oncology and Pathology, Department of Clinical Sciences
Lund, Lund University, Lund
SE-223 81, Sweden
| | - Anieta M. Sieuwerts
- Department of Medical Oncology, Erasmus MC Cancer Institute and
Cancer Genomics Netherlands, Erasmus University Medical Center,
Rotterdam
3015CN, The Netherlands
| | - Arie B. Brinkman
- Radboud University, Faculty of Science, Department of Molecular
Biology, 6525GA
Nijmegen, The Netherlands
| | - Sancha Martin
- Wellcome Trust Sanger Institute, Cambridge
CB10 1SA, UK
| | | | - Adam Butler
- Wellcome Trust Sanger Institute, Cambridge
CB10 1SA, UK
| | - Hyung-Yong Kim
- Department of Pathology, College of Medicine, Hanyang
University, Seoul
133-791, South Korea
| | - Åke Borg
- Division of Oncology and Pathology, Department of Clinical Sciences
Lund, Lund University, Lund
SE-223 81, Sweden
| | - Christos Sotiriou
- Breast Cancer Translational Research Laboratory, Université
Libre de Bruxelles, Institut Jules Bordet, Bd de Waterloo 121,
B-1000
Brussels, Belgium
| | - P. Andrew Futreal
- European Molecular Biology Laboratory, European Bioinformatics
Institute, Wellcome Trust Genome Campus, Cambridgeshire
CB10 1SD, UK
- Department of Genomic Medicine, UT MD Anderson Cancer
Center, Houston, Texas
77230, USA
| | | | - Paul N. Span
- Department of Radiation Oncology, and department of Laboratory
Medicine, Radboud university medical center, Nijmegen
6525GA, The Netherlands
| | - Steven Van Laere
- Translational Cancer Research Unit, GZA Hospitals Sint-Augustinus,
Wilrijk, Belgium and Center for Oncological Research, University of Antwerp,
Antwerp
B-2610, Belgium
| | - Sunil R. Lakhani
- Centre for Clinical Research and School of Medicine, University of
Queensland, Brisbane, Queensland
4059, Australia
- Pathology Queensland, The Royal Brisbane and Women's
Hospital, Brisbane, Queensland
4029, Australia
| | - Jorunn E. Eyfjord
- Cancer Research Laboratory, Faculty of Medicine, University of
Iceland, 101
Reykjavik, Iceland
| | - Alastair M. Thompson
- Department of Breast Surgical Oncology, University of Texas MD
Anderson Cancer Center, 1400 Pressler
Street,Houston, Texas
77030, USA
- Department of Surgical Oncology, University of Dundee,
Dundee
DD1 9SY, UK
| | - Hendrik G. Stunnenberg
- Radboud University, Faculty of Science, Department of Molecular
Biology, 6525GA
Nijmegen, The Netherlands
| | - Marc J. van de Vijver
- Department of Pathology, Academic Medical Center,
Meibergdreef 9, 1105 AZ
Amsterdam, The Netherlands
| | - John W. M. Martens
- Department of Medical Oncology, Erasmus MC Cancer Institute and
Cancer Genomics Netherlands, Erasmus University Medical Center,
Rotterdam
3015CN, The Netherlands
| | - Anne-Lise Børresen-Dale
- Department of Cancer Genetics, Institute for Cancer Research, Oslo
University Hospital, The Norwegian Radium Hospital, Oslo
0310, Norway
- K.G. Jebsen Centre for Breast Cancer Research, Institute for
Clinical Medicine, University of Oslo, Oslo
0310, Norway
| | - Andrea L. Richardson
- Department of Pathology, Brigham and Women's Hospital,
Boston, Massachusetts
02115, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute,
Boston, Massachusetts
02215, USA
| | - Gu Kong
- Department of Pathology, College of Medicine, Hanyang
University, Seoul
133-791, South Korea
| | - Gilles Thomas
- Synergie Lyon Cancer, Centre Léon Bérard,
28 rue Laënnec, Lyon
Cedex 08, France
| | - Julian Sale
- MRC Laboratory of Molecular Biology, Francis Crick Avenue,
Cambridge
CB2 0QH, UK
| | - Cristina Rada
- MRC Laboratory of Molecular Biology, Francis Crick Avenue,
Cambridge
CB2 0QH, UK
| | | | - Ewan Birney
- European Molecular Biology Laboratory, European Bioinformatics
Institute, Wellcome Trust Genome Campus, Cambridgeshire
CB10 1SD, UK
| | - Serena Nik-Zainal
- Wellcome Trust Sanger Institute, Cambridge
CB10 1SA, UK
- East Anglian Medical Genetics Service, Cambridge University
Hospitals NHS Foundation Trust, Cambridge
CB2 9NB, UK
| |
Collapse
|
30
|
Abstract
The mechanism that duplicates the nuclear genome during the trillions of cell divisions required to develop from zygote to adult is the same throughout the eukarya, but the mechanisms that determine where, when and how much nuclear genome duplication occur regulate development and differ among the eukarya. They allow organisms to change the rate of cell proliferation during development, to activate zygotic gene expression independently of DNA replication, and to restrict nuclear DNA replication to once per cell division. They allow specialized cells to exit their mitotic cell cycle and differentiate into polyploid cells, and in some cases, to amplify the number of copies of specific genes. It is genome duplication that drives evolution, by virtue of the errors that inevitably occur when the same process is repeated trillions of times. It is, unfortunately, the same errors that produce age-related genetic disorders such as cancer.
Collapse
Affiliation(s)
- Melvin L DePamphilis
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
31
|
|
32
|
Nik-Zainal S, Kucab JE, Morganella S, Glodzik D, Alexandrov LB, Arlt VM, Weninger A, Hollstein M, Stratton MR, Phillips DH. The genome as a record of environmental exposure. Mutagenesis 2015; 30:763-70. [PMID: 26443852 PMCID: PMC4637815 DOI: 10.1093/mutage/gev073] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Whole genome sequencing of human tumours has revealed distinct patterns of mutation that hint at the causative origins of cancer. Experimental investigations of the mutations and mutation spectra induced by environmental mutagens have traditionally focused on single genes. With the advent of faster cheaper sequencing platforms, it is now possible to assess mutation spectra in experimental models across the whole genome. As a proof of principle, we have examined the whole genome mutation profiles of mouse embryo fibroblasts immortalised following exposure to benzo[a]pyrene (BaP), ultraviolet light (UV) and aristolochic acid (AA). The results reveal that each mutagen induces a characteristic mutation signature: predominantly G→T mutations for BaP, C→T and CC→TT for UV and A→T for AA. The data are not only consistent with existing knowledge but also provide additional information at higher levels of genomic organisation. The approach holds promise for identifying agents responsible for mutations in human tumours and for shedding light on the aetiology of human cancer.
Collapse
Affiliation(s)
| | - Jill E Kucab
- Analytical and Environmental Sciences Division, MRC-PHE Centre for Environment and Health, King's College London, Franklin-Wilkins Building, London SE1 9NH, UK
| | - Sandro Morganella
- European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | | | | | - Volker M Arlt
- Analytical and Environmental Sciences Division, MRC-PHE Centre for Environment and Health, King's College London, Franklin-Wilkins Building, London SE1 9NH, UK
| | - Annette Weninger
- German Cancer Research Center (Deutsches Krebsforschungszentrum), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany and
| | - Monica Hollstein
- German Cancer Research Center (Deutsches Krebsforschungszentrum), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany and University of Leeds, Faculty of Medicine and Health, Leeds LS2 9JT, UK
| | | | - David H Phillips
- Analytical and Environmental Sciences Division, MRC-PHE Centre for Environment and Health, King's College London, Franklin-Wilkins Building, London SE1 9NH, UK,
| |
Collapse
|
33
|
Functional dissection of proliferating-cell nuclear antigens (1 and 2) in human malarial parasite Plasmodium falciparum: possible involvement in DNA replication and DNA damage response. Biochem J 2015; 470:115-29. [PMID: 26251451 DOI: 10.1042/bj20150452] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 06/22/2015] [Indexed: 11/17/2022]
Abstract
Eukaryotic PCNAs (proliferating-cell nuclear antigens) play diverse roles in nucleic acid metabolism in addition to DNA replication. Plasmodium falciparum, which causes human malaria, harbours two PCNA homologues: PfPCNA1 and PfPCNA2. The functional role of two distinct PCNAs in the parasite still eludes us. In the present study, we show that, whereas both PfPCNAs share structural and biochemical properties, only PfPCNA1 functionally complements the ScPCNA mutant and forms distinct replication foci in the parasite, which PfPCNA2 fails to do. Although PfPCNA1 appears to be the primary replicative PCNA, both PfPCNA1 and PfPCNA2 participate in an active DDR (DNA-damage-response) pathway with significant accumulation in the parasite upon DNA damage induction. Interestingly, PfPCNA genes were found to be regulated not at the transcription level, but presumably at the protein stability level upon DNA damage. Such regulation of PCNA has not been shown in eukaryotes before. Moreover, overexpression of PfPCNA1 and PfPCNA2 in the parasite confers a survival edge on the parasite in a genotoxic environment. This is the first evidence of a PfPCNA-mediated DDR in the parasite and gives new insights and rationale for the presence of two PCNAs as a parasite survival strategy and its probable success.
Collapse
|
34
|
Kara N, Hossain M, Prasanth SG, Stillman B. Orc1 Binding to Mitotic Chromosomes Precedes Spatial Patterning during G1 Phase and Assembly of the Origin Recognition Complex in Human Cells. J Biol Chem 2015; 290:12355-69. [PMID: 25784553 DOI: 10.1074/jbc.m114.625012] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Indexed: 12/21/2022] Open
Abstract
Replication of eukaryotic chromosomes occurs once every cell division cycle in normal cells and is a tightly controlled process that ensures complete genome duplication. The origin recognition complex (ORC) plays a key role during the initiation of DNA replication. In human cells, the level of Orc1, the largest subunit of ORC, is regulated during the cell division cycle, and thus ORC is a dynamic complex. Upon S phase entry, Orc1 is ubiquitinated and targeted for destruction, with subsequent dissociation of ORC from chromosomes. Time lapse and live cell images of human cells expressing fluorescently tagged Orc1 show that Orc1 re-localizes to condensing chromatin during early mitosis and then displays different nuclear localization patterns at different times during G1 phase, remaining associated with late replicating regions of the genome in late G1 phase. The initial binding of Orc1 to mitotic chromosomes requires C-terminal amino acid sequences that are similar to mitotic chromosome-binding sequences in the transcriptional pioneer protein FOXA1. Depletion of Orc1 causes concomitant loss of the mini-chromosome maintenance (Mcm2-7) helicase proteins on chromatin. The data suggest that Orc1 acts as a nucleating center for ORC assembly and then pre-replication complex assembly by binding to mitotic chromosomes, followed by gradual removal from chromatin during the G1 phase.
Collapse
Affiliation(s)
- Nihan Kara
- From the Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, the Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, New York 11779, and
| | - Manzar Hossain
- From the Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724
| | - Supriya G Prasanth
- From the Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, the Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana-Champaign, Illinois 61801
| | - Bruce Stillman
- From the Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724,
| |
Collapse
|
35
|
Calderano SG, Drosopoulos WC, Quaresma MM, Marques CA, Kosiyatrakul S, McCulloch R, Schildkraut CL, Elias MC. Single molecule analysis of Trypanosoma brucei DNA replication dynamics. Nucleic Acids Res 2015; 43:2655-65. [PMID: 25690894 PMCID: PMC4357695 DOI: 10.1093/nar/gku1389] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Eukaryotic genome duplication relies on origins of replication, distributed over multiple chromosomes, to initiate DNA replication. A recent genome-wide analysis of Trypanosoma brucei, the etiological agent of sleeping sickness, localized its replication origins to the boundaries of multigenic transcription units. To better understand genomic replication in this organism, we examined replication by single molecule analysis of replicated DNA. We determined the average speed of replication forks of procyclic and bloodstream form cells and we found that T. brucei DNA replication rate is similar to rates seen in other eukaryotes. We also analyzed the replication dynamics of a central region of chromosome 1 in procyclic forms. We present evidence for replication terminating within the central part of the chromosome and thus emanating from both sides, suggesting a previously unmapped origin toward the 5′ extremity of chromosome 1. Also, termination is not at a fixed location in chromosome 1, but is rather variable. Importantly, we found a replication origin located near an ORC1/CDC6 binding site that is detected after replicative stress induced by hydroxyurea treatment, suggesting it may be a dormant origin activated in response to replicative stress. Collectively, our findings support the existence of more replication origins in T. brucei than previously appreciated.
Collapse
Affiliation(s)
- Simone Guedes Calderano
- Laboratório Especial de Ciclo Celular, Instituto Butantan, São Paulo, SP 05503-900, Brasil Center of Toxins, Immune Response and Cell Signaling - CeTICS, Instituto Butantan, São Paulo, SP 05503-900, Brasil
| | - William C Drosopoulos
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Marina Mônaco Quaresma
- Laboratório Especial de Ciclo Celular, Instituto Butantan, São Paulo, SP 05503-900, Brasil Center of Toxins, Immune Response and Cell Signaling - CeTICS, Instituto Butantan, São Paulo, SP 05503-900, Brasil
| | - Catarina A Marques
- The Wellcome Trust Centre for Molecular Parasitology, College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, G128TA, UK
| | | | - Richard McCulloch
- The Wellcome Trust Centre for Molecular Parasitology, College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, G128TA, UK
| | - Carl L Schildkraut
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Maria Carolina Elias
- Laboratório Especial de Ciclo Celular, Instituto Butantan, São Paulo, SP 05503-900, Brasil Center of Toxins, Immune Response and Cell Signaling - CeTICS, Instituto Butantan, São Paulo, SP 05503-900, Brasil
| |
Collapse
|
36
|
Embryonic stem cell specific "master" replication origins at the heart of the loss of pluripotency. PLoS Comput Biol 2015; 11:e1003969. [PMID: 25658386 PMCID: PMC4319821 DOI: 10.1371/journal.pcbi.1003969] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 10/06/2014] [Indexed: 11/29/2022] Open
Abstract
Epigenetic regulation of the replication program during mammalian cell differentiation remains poorly understood. We performed an integrative analysis of eleven genome-wide epigenetic profiles at 100 kb resolution of Mean Replication Timing (MRT) data in six human cell lines. Compared to the organization in four chromatin states shared by the five somatic cell lines, embryonic stem cell (ESC) line H1 displays (i) a gene-poor but highly dynamic chromatin state (EC4) associated to histone variant H2AZ rather than a HP1-associated heterochromatin state (C4) and (ii) a mid-S accessible chromatin state with bivalent gene marks instead of a polycomb-repressed heterochromatin state. Plastic MRT regions (≲ 20% of the genome) are predominantly localized at the borders of U-shaped timing domains. Whereas somatic-specific U-domain borders are gene-dense GC-rich regions, 31.6% of H1-specific U-domain borders are early EC4 regions enriched in pluripotency transcription factors NANOG and OCT4 despite being GC poor and gene deserts. Silencing of these ESC-specific “master” replication initiation zones during differentiation corresponds to a loss of H2AZ and an enrichment in H3K9me3 mark characteristic of late replicating C4 heterochromatin. These results shed a new light on the epigenetically regulated global chromatin reorganization that underlies the loss of pluripotency and lineage commitment. During development, embryonic stem cell (ESC) enter a program of cell differentiation eventually leading to all the necessary differentiated cell types. Understanding the mechanisms responsible for the underlying modifications of the gene expression program is of fundamental importance, as it will likely have strong impact on the development of regenerative medicine. We show that besides some epigenetic regulation, ubiquitous master replication origins at replication timing U-domain borders shared by 6 human cell types are transcriptionally active open chromatin regions specified by a local enrichment in nucleosome free regions encoded in the DNA sequence suggesting that they have been selected during evolution. In contrast, ESC specific master replication origins bear a unique epigenetic signature (enrichment in CTCF, H2AZ, NANOG, OCT4, …) likely contributing to maintain ESC chromatin in a highly dynamic and accessible state that is refractory to polycomb and HP1 heterochromatin spreading. These ESC specific master origins thus appear as key genomic regions where epigenetic control of chromatin organization is at play to maintain pluripotency of stem cell lineages and to guide lineage commitment to somatic cell types.
Collapse
|
37
|
Somatic mosaicism in the human genome. Genes (Basel) 2014; 5:1064-94. [PMID: 25513881 PMCID: PMC4276927 DOI: 10.3390/genes5041064] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 11/26/2014] [Accepted: 11/28/2014] [Indexed: 12/17/2022] Open
Abstract
Somatic mosaicism refers to the occurrence of two genetically distinct populations of cells within an individual, derived from a postzygotic mutation. In contrast to inherited mutations, somatic mosaic mutations may affect only a portion of the body and are not transmitted to progeny. These mutations affect varying genomic sizes ranging from single nucleotides to entire chromosomes and have been implicated in disease, most prominently cancer. The phenotypic consequences of somatic mosaicism are dependent upon many factors including the developmental time at which the mutation occurs, the areas of the body that are affected, and the pathophysiological effect(s) of the mutation. The advent of second-generation sequencing technologies has augmented existing array-based and cytogenetic approaches for the identification of somatic mutations. We outline the strengths and weaknesses of these techniques and highlight recent insights into the role of somatic mosaicism in causing cancer, neurodegenerative, monogenic, and complex disease.
Collapse
|
38
|
MCM Paradox: Abundance of Eukaryotic Replicative Helicases and Genomic Integrity. Mol Biol Int 2014; 2014:574850. [PMID: 25386362 PMCID: PMC4217321 DOI: 10.1155/2014/574850] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 09/30/2014] [Indexed: 12/03/2022] Open
Abstract
As a crucial component of DNA replication licensing system, minichromosome maintenance (MCM) 2–7 complex acts as the eukaryotic DNA replicative helicase. The six related MCM proteins form a heterohexamer and bind with ORC, CDC6, and Cdt1 to form the prereplication complex. Although the MCMs are well known as replicative helicases, their overabundance and distribution patterns on chromatin present a paradox called the “MCM paradox.” Several approaches had been taken to solve the MCM paradox and describe the purpose of excess MCMs distributed beyond the replication origins. Alternative functions of these MCMs rather than a helicase had also been proposed. This review focuses on several models and concepts generated to solve the MCM paradox coinciding with their helicase function and provides insight into the concept that excess MCMs are meant for licensing dormant origins as a backup during replication stress. Finally, we extend our view towards the effect of alteration of MCM level. Though an excess MCM constituent is needed for normal cells to withstand stress, there must be a delineation of the threshold level in normal and malignant cells. This review also outlooks the future prospects to better understand the MCM biology.
Collapse
|
39
|
Dynamics of DNA replication during premeiosis and early meiosis in wheat. PLoS One 2014; 9:e107714. [PMID: 25275307 PMCID: PMC4183481 DOI: 10.1371/journal.pone.0107714] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 08/21/2014] [Indexed: 11/19/2022] Open
Abstract
Meiosis is a specialised cell division that involves chromosome replication, two rounds of chromosome segregation and results in the formation of the gametes. Meiotic DNA replication generally precedes chromosome pairing, recombination and synapsis in sexually developing eukaryotes. In this work, replication has been studied during premeiosis and early meiosis in wheat using flow cytometry, which has allowed the quantification of the amount of DNA in wheat anther in each phase of the cell cycle during premeiosis and each stage of early meiosis. Flow cytometry has been revealed as a suitable and user-friendly tool to detect and quantify DNA replication during early meiosis in wheat. Chromosome replication was detected in wheat during premeiosis and early meiosis until the stage of pachytene, when chromosomes are associated in pairs to further recombine and correctly segregate in the gametes. In addition, the effect of the Ph1 locus, which controls chromosome pairing and affects replication in wheat, was also studied by flow cytometry. Here we showed that the Ph1 locus plays an important role on the length of meiotic DNA replication in wheat, particularly affecting the rate of replication during early meiosis in wheat.
Collapse
|
40
|
Barlow JH, Nussenzweig A. Replication initiation and genome instability: a crossroads for DNA and RNA synthesis. Cell Mol Life Sci 2014; 71:4545-59. [PMID: 25238783 DOI: 10.1007/s00018-014-1721-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 08/28/2014] [Indexed: 12/16/2022]
Abstract
Nuclear DNA replication requires the concerted action of hundreds of proteins to efficiently unwind and duplicate the entire genome while also retaining epigenetic regulatory information. Initiation of DNA replication is tightly regulated, rapidly firing thousands of origins once the conditions to promote rapid and faithful replication are in place, and defects in replication initiation lead to proliferation defects, genome instability, and a range of developmental abnormalities. Interestingly, DNA replication in metazoans initiates in actively transcribed DNA, meaning that replication initiation occurs in DNA that is co-occupied with tens of thousands of poised and active RNA polymerase complexes. Active transcription can induce genome instability, particularly during DNA replication, as RNA polymerases can induce torsional stress, formation of secondary structures, and act as a physical barrier to other enzymes involved in DNA metabolism. Here we discuss the challenges facing mammalian DNA replication, their impact on genome instability, and the development of cancer.
Collapse
|
41
|
Peace JM, Ter-Zakarian A, Aparicio OM. Rif1 regulates initiation timing of late replication origins throughout the S. cerevisiae genome. PLoS One 2014; 9:e98501. [PMID: 24879017 PMCID: PMC4039536 DOI: 10.1371/journal.pone.0098501] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 05/03/2014] [Indexed: 12/20/2022] Open
Abstract
Chromosomal DNA replication involves the coordinated activity of hundreds to thousands of replication origins. Individual replication origins are subject to epigenetic regulation of their activity during S-phase, resulting in differential efficiencies and timings of replication initiation during S-phase. This regulation is thought to involve chromatin structure and organization into timing domains with differential ability to recruit limiting replication factors. Rif1 has recently been identified as a genome-wide regulator of replication timing in fission yeast and in mammalian cells. However, previous studies in budding yeast have suggested that Rif1’s role in controlling replication timing may be limited to subtelomeric domains and derives from its established role in telomere length regulation. We have analyzed replication timing by analyzing BrdU incorporation genome-wide, and report that Rif1 regulates the timing of late/dormant replication origins throughout the S. cerevisiae genome. Analysis of pfa4Δ cells, which are defective in palmitoylation and membrane association of Rif1, suggests that replication timing regulation by Rif1 is independent of its role in localizing telomeres to the nuclear periphery. Intra-S checkpoint signaling is intact in rif1Δ cells, and checkpoint-defective mec1Δ cells do not comparably deregulate replication timing, together indicating that Rif1 regulates replication timing through a mechanism independent of this checkpoint. Our results indicate that the Rif1 mechanism regulates origin timing irrespective of proximity to a chromosome end, and suggest instead that telomere sequences merely provide abundant binding sites for proteins that recruit Rif1. Still, the abundance of Rif1 binding in telomeric domains may facilitate Rif1-mediated repression of non-telomeric origins that are more distal from centromeres.
Collapse
Affiliation(s)
- Jared M. Peace
- Molecular and Computational Biology Program, University of Southern California, Los Angeles, California, United States of America
| | - Anna Ter-Zakarian
- Program in Global Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Oscar M. Aparicio
- Molecular and Computational Biology Program, University of Southern California, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
42
|
Masai H. A personal reflection on the replicon theory: from R1 plasmid to replication timing regulation in human cells. J Mol Biol 2013; 425:4663-72. [PMID: 23579064 DOI: 10.1016/j.jmb.2013.03.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 03/15/2013] [Accepted: 03/21/2013] [Indexed: 01/09/2023]
Abstract
Fifty years after the Replicon Theory was originally presented, detailed mechanistic insight into prokaryotic replicons has been obtained and rapid progress is being made to elucidate the more complex regulatory mechanisms of replicon regulation in eukaryotic cells. Here, I present my personal perspectives on how studies of model replicons have contributed to our understanding of the basic mechanisms of DNA replication as well as the evolution of replication regulation in human cells. I will also discuss how replication regulation contributes to the stable maintenance of the genome and how disruption of replication regulation leads to human diseases.
Collapse
Affiliation(s)
- Hisao Masai
- Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamkitazawa, Setagaya-ku, Tokyo 156-8506, Japan.
| |
Collapse
|
43
|
Julienne H, Zoufir A, Audit B, Arneodo A. Human genome replication proceeds through four chromatin states. PLoS Comput Biol 2013; 9:e1003233. [PMID: 24130466 PMCID: PMC3794905 DOI: 10.1371/journal.pcbi.1003233] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 08/06/2013] [Indexed: 12/26/2022] Open
Abstract
Advances in genomic studies have led to significant progress in understanding the epigenetically controlled interplay between chromatin structure and nuclear functions. Epigenetic modifications were shown to play a key role in transcription regulation and genome activity during development and differentiation or in response to the environment. Paradoxically, the molecular mechanisms that regulate the initiation and the maintenance of the spatio-temporal replication program in higher eukaryotes, and in particular their links to epigenetic modifications, still remain elusive. By integrative analysis of the genome-wide distributions of thirteen epigenetic marks in the human cell line K562, at the 100 kb resolution of corresponding mean replication timing (MRT) data, we identify four major groups of chromatin marks with shared features. These states have different MRT, namely from early to late replicating, replication proceeds though a transcriptionally active euchromatin state (C1), a repressive type of chromatin (C2) associated with polycomb complexes, a silent state (C3) not enriched in any available marks, and a gene poor HP1-associated heterochromatin state (C4). When mapping these chromatin states inside the megabase-sized U-domains (U-shaped MRT profile) covering about 50% of the human genome, we reveal that the associated replication fork polarity gradient corresponds to a directional path across the four chromatin states, from C1 at U-domains borders followed by C2, C3 and C4 at centers. Analysis of the other genome half is consistent with early and late replication loci occurring in separate compartments, the former correspond to gene-rich, high-GC domains of intermingled chromatin states C1 and C2, whereas the latter correspond to gene-poor, low-GC domains of alternating chromatin states C3 and C4 or long C4 domains. This new segmentation sheds a new light on the epigenetic regulation of the spatio-temporal replication program in human and provides a framework for further studies in different cell types, in both health and disease. Previous studies revealed spatially coherent and biological-meaningful chromatin mark combinations in human cells. Here, we analyze thirteen epigenetic mark maps in the human cell line K562 at 100 kb resolution of MRT data. The complexity of epigenetic data is reduced to four chromatin states that display remarkable similarities with those reported in fly, worm and plants. These states have different MRT: (C1) is transcriptionally active, early replicating, enriched in CTCF; (C2) is Polycomb repressed, mid-S replicating; (C3) lacks of marks and replicates late and (C4) is a late-replicating gene-poor HP1 repressed heterochromatin state. When mapping these states inside the 876 replication U-domains of K562, the replication fork polarity gradient observed in these U-domains comes along with a remarkable epigenetic organization from C1 at U-domain borders to C2, C3 and ultimately C4 at centers. The remaining genome half displays early replicating, gene rich and high GC domains of intermingled C1 and C2 states segregating from late replicating, gene poor and low GC domains of concatenated C3 and/or C4 states. This constitutes the first evidence of epigenetic compartmentalization of the human genome into replication domains likely corresponding to autonomous units in the 3D chromatin architecture.
Collapse
Affiliation(s)
- Hanna Julienne
- Université de Lyon, Lyon, France
- Laboratoire de Physique, CNRS UMR 5672, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Azedine Zoufir
- Université de Lyon, Lyon, France
- Laboratoire de Physique, CNRS UMR 5672, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Benjamin Audit
- Université de Lyon, Lyon, France
- Laboratoire de Physique, CNRS UMR 5672, Ecole Normale Supérieure de Lyon, Lyon, France
- * E-mail:
| | - Alain Arneodo
- Université de Lyon, Lyon, France
- Laboratoire de Physique, CNRS UMR 5672, Ecole Normale Supérieure de Lyon, Lyon, France
| |
Collapse
|
44
|
Yoshida K, Poveda A, Pasero P. Time to be versatile: regulation of the replication timing program in budding yeast. J Mol Biol 2013; 425:4696-705. [PMID: 24076190 DOI: 10.1016/j.jmb.2013.09.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 09/17/2013] [Accepted: 09/18/2013] [Indexed: 01/24/2023]
Abstract
Eukaryotic replication origins are activated at different times during the S phase of the cell cycle, following a temporal program that is stably transmitted to daughter cells. Although the mechanisms that control initiation at the level of individual origins are now well understood, much less is known on how cells coordinate replication at hundreds of origins distributed on the chromosomes. In this review, we discuss recent advances shedding new light on how this complex process is regulated in the budding yeast Saccharomyces cerevisiae. The picture that emerges from these studies is that replication timing is regulated in cis by mechanisms modulating the chromatin structure and the subnuclear organization of origins. These mechanisms do not affect the licensing of replication origins but determine their ability to compete for limiting initiation factors, which are recycled from early to late origins throughout the length of the S phase.
Collapse
Affiliation(s)
- Kazumasa Yoshida
- Institute of Human Genetics, CNRS UPR 1142, 141 rue de la Cardonille, Equipe Labellisée Ligue Contre le Cancer, 34396 Montpellier cedex 5, France; Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | |
Collapse
|
45
|
Julienne H, Zoufir A, Audit B, Arneodo A. Epigenetic regulation of the human genome: coherence between promoter activity and large-scale chromatin environment. FRONTIERS IN LIFE SCIENCE 2013. [DOI: 10.1080/21553769.2013.832706] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
46
|
Evertts AG, Coller HA. Back to the origin: reconsidering replication, transcription, epigenetics, and cell cycle control. Genes Cancer 2013; 3:678-96. [PMID: 23634256 DOI: 10.1177/1947601912474891] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In bacteria, replication is a carefully orchestrated event that unfolds the same way for each bacterium and each cell division. The process of DNA replication in bacteria optimizes cell growth and coordinates high levels of simultaneous replication and transcription. In metazoans, the organization of replication is more enigmatic. The lack of a specific sequence that defines origins of replication has, until recently, severely limited our ability to define the organizing principles of DNA replication. This question is of particular importance as emerging data suggest that replication stress is an important contributor to inherited genetic damage and the genomic instability in tumors. We consider here the replication program in several different organisms including recent genome-wide analyses of replication origins in humans. We review recent studies on the role of cytosine methylation in replication origins, the role of transcriptional looping and gene gating in DNA replication, and the role of chromatin's 3-dimensional structure in DNA replication. We use these new findings to consider several questions surrounding DNA replication in metazoans: How are origins selected? What is the relationship between replication and transcription? How do checkpoints inhibit origin firing? Why are there early and late firing origins? We then discuss whether oncogenes promote cancer through a role in DNA replication and whether errors in DNA replication are important contributors to the genomic alterations and gene fusion events observed in cancer. We conclude with some important areas for future experimentation.
Collapse
|
47
|
Audit B, Zaghloul L, Baker A, Arneodo A, Chen CL, d'Aubenton-Carafa Y, Thermes C. Megabase replication domains along the human genome: relation to chromatin structure and genome organisation. Subcell Biochem 2013; 61:57-80. [PMID: 23150246 DOI: 10.1007/978-94-007-4525-4_3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In higher eukaryotes, the absence of specific sequence motifs, marking the origins of replication has been a serious hindrance to the understanding of (i) the mechanisms that regulate the spatio-temporal replication program, and (ii) the links between origins activation, chromatin structure and transcription. In this chapter, we review the partitioning of the human genome into megabased-size replication domains delineated as N-shaped motifs in the strand compositional asymmetry profiles. They collectively span 28.3% of the genome and are bordered by more than 1,000 putative replication origins. We recapitulate the comparison of this partition of the human genome with high-resolution experimental data that confirms that replication domain borders are likely to be preferential replication initiation zones in the germline. In addition, we highlight the specific distribution of experimental and numerical chromatin marks along replication domains. Domain borders correspond to particular open chromatin regions, possibly encoded in the DNA sequence, and around which replication and transcription are highly coordinated. These regions also present a high evolutionary breakpoint density, suggesting that susceptibility to breakage might be linked to local open chromatin fiber state. Altogether, this chapter presents a compartmentalization of the human genome into replication domains that are landmarks of the human genome organization and are likely to play a key role in genome dynamics during evolution and in pathological situations.
Collapse
|
48
|
Audit B, Baker A, Chen CL, Rappailles A, Guilbaud G, Julienne H, Goldar A, d'Aubenton-Carafa Y, Hyrien O, Thermes C, Arneodo A. Multiscale analysis of genome-wide replication timing profiles using a wavelet-based signal-processing algorithm. Nat Protoc 2012; 8:98-110. [PMID: 23237832 DOI: 10.1038/nprot.2012.145] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In this protocol, we describe the use of the LastWave open-source signal-processing command language (http://perso.ens-lyon.fr/benjamin.audit/LastWave/) for analyzing cellular DNA replication timing profiles. LastWave makes use of a multiscale, wavelet-based signal-processing algorithm that is based on a rigorous theoretical analysis linking timing profiles to fundamental features of the cell's DNA replication program, such as the average replication fork polarity and the difference between replication origin density and termination site density. We describe the flow of signal-processing operations to obtain interactive visual analyses of DNA replication timing profiles. We focus on procedures for exploring the space-scale map of apparent replication speeds to detect peaks in the replication timing profiles that represent preferential replication initiation zones, and for delimiting U-shaped domains in the replication timing profile. In comparison with the generally adopted approach that involves genome segmentation into regions of constant timing separated by timing transition regions, the present protocol enables the recognition of more complex patterns of the spatio-temporal replication program and has a broader range of applications. Completing the full procedure should not take more than 1 h, although learning the basics of the program can take a few hours and achieving full proficiency in the use of the software may take days.
Collapse
|
49
|
Arakawa K, Tomita M. Measures of compositional strand bias related to replication machinery and its applications. Curr Genomics 2012; 13:4-15. [PMID: 22942671 PMCID: PMC3269016 DOI: 10.2174/138920212799034749] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Revised: 09/10/2011] [Accepted: 09/20/2011] [Indexed: 11/22/2022] Open
Abstract
The compositional asymmetry of complementary bases in nucleotide sequences implies the existence of a mutational or selectional bias in the two strands of the DNA duplex, which is commonly shaped by strand-specific mechanisms in transcription or replication. Such strand bias in genomes, frequently visualized by GC skew graphs, is used for the computational prediction of transcription start sites and replication origins, as well as for comparative evolutionary genomics studies. The use of measures of compositional strand bias in order to quantify the degree of strand asymmetry is crucial, as it is the basis for determining the applicability of compositional analysis and comparing the strength of the mutational bias in different biological machineries in various species. Here, we review the measures of strand bias that have been proposed to date, including the ∆GC skew, the B1 index, the predictability score of linear discriminant analysis for gene orientation, the signal-to-noise ratio of the oligonucleotide bias, and the GC skew index. These measures have been predominantly designed for and applied to the analysis of replication-related mutational processes in prokaryotes, but we also give research examples in eukaryotes.
Collapse
Affiliation(s)
- Kazuharu Arakawa
- Institute for Advanced Biosciences, Keio University, Fujisawa 252-8520, Japan
| | | |
Collapse
|
50
|
Baker A, Julienne H, Chen CL, Audit B, d'Aubenton-Carafa Y, Thermes C, Arneodo A. Linking the DNA strand asymmetry to the spatio-temporal replication program. I. About the role of the replication fork polarity in genome evolution. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2012; 35:92. [PMID: 23001787 DOI: 10.1140/epje/i2012-12092-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 08/08/2012] [Accepted: 08/21/2012] [Indexed: 06/01/2023]
Abstract
Two key cellular processes, namely transcription and replication, require the opening of the DNA double helix and act differently on the two DNA strands, generating different mutational patterns (mutational asymmetry) that may result, after long evolutionary time, in different nucleotide compositions on the two DNA strands (compositional asymmetry). We elaborate on the simplest model of neutral substitution rates that takes into account the strand asymmetries generated by the transcription and replication processes. Using perturbation theory, we then solve the time evolution of the DNA composition under strand-asymmetric substitution rates. In our minimal model, the compositional and substitutional asymmetries are predicted to decompose into a transcription- and a replication-associated components. The transcription-associated asymmetry increases in magnitude with transcription rate and changes sign with gene orientation while the replication-associated asymmetry is proportional to the replication fork polarity. These results are confirmed experimentally in the human genome, using substitution rates obtained by aligning the human and chimpanzee genomes using macaca and orangutan as outgroups, and replication fork polarity determined in the HeLa cell line as estimated from the derivative of the mean replication timing. When further investigating the dynamics of compositional skew evolution, we show that it is not at equilibrium yet and that its evolution is an extremely slow process with characteristic time scales of several hundred Myrs.
Collapse
Affiliation(s)
- A Baker
- Université de Lyon, Lyon, France
| | | | | | | | | | | | | |
Collapse
|