1
|
Kirkland AE, Browning BD, Green R, Agbeh SO, Squeglia LM. Neurometabolite Alterations Associated With Cannabis Use: A Proton Magnetic Resonance Spectroscopy Meta-Analysis. Hum Brain Mapp 2025; 46:e70236. [PMID: 40421881 PMCID: PMC12107604 DOI: 10.1002/hbm.70236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 04/17/2025] [Accepted: 05/09/2025] [Indexed: 05/28/2025] Open
Abstract
Little is known about the neurometabolic effects of cannabis use. Using meta-analytic modeling of proton magnetic resonance spectroscopy (1H-MRS) studies, this study aimed to assess the differences in brain metabolite levels associated with cannabis use (PROSPERO: CRD42020209890) to inform treatment development for cannabis use disorder (CUD). Hedge's g with random-effects modeling was used, and heterogeneity and publication bias indices were assessed. A complete literature search was conducted, and 15 studies met the inclusion criteria (e.g., 1H-MRS, cannabis group compared to a control group, brain region-specific results, necessary data to complete modeling). There were 29 models across gray matter regions in the brain. All models had between 2 and 5 studies (k), indicating that results should be interpreted with caution due to the limited number of available studies. Compared to the control groups, the cannabis-using groups showed lower levels of GABA and N-acetylaspartate in the anterior cingulate cortex (k = 3); lower glutamate in the basal ganglia/striatum (k = 2); and lower glutamine and myo-inositol in the thalamus (k = 2; although the two effect sizes came from the same sample). This is the first meta-analysis to consolidate the extant 1H-MRS studies focused on the neurometabolic effects of cannabis. Despite the few studies available, the evidence suggests cannabis use may impact important neural processes, including glutamatergic and GABAergic functioning (glutamate, glutamine, and GABA), neural health (N-acetylaspartate), and glial functioning (myo-inositol). The findings should be interpreted with caution considering the small sample size; the inability to test the impact of demographic, substance use, and methodological factors; and the heterogeneity of studies. Understanding the neurobiological effects of cannabis may inspire novel pharmacotherapy and/or psychosocial interventions for CUD.
Collapse
Affiliation(s)
- Anna E. Kirkland
- Department of Psychiatry and Behavioral SciencesMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Brittney D. Browning
- Department of Psychiatry and Behavioral SciencesMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - ReJoyce Green
- Department of Psychiatry and Behavioral SciencesMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Samuel O. Agbeh
- Department of Psychiatry and Behavioral SciencesMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Lindsay M. Squeglia
- Department of Psychiatry and Behavioral SciencesMedical University of South CarolinaCharlestonSouth CarolinaUSA
| |
Collapse
|
2
|
Niznikiewicz M, Lin A, DeLisi LE. The Relationship of glutamate signaling to cannabis use and schizophrenia. Curr Opin Psychiatry 2025; 38:177-181. [PMID: 40071480 DOI: 10.1097/yco.0000000000001003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
PURPOSE OF REVIEW This review examines the literature associating cannabis with schizophrenia, glutamate dysregulation in schizophrenia, and cannabis involvement in glutamate pathways. Cannabis use is widespread among adolescents world-wide and is sold legally in many countries for recreational use in a variety of forms. Most people use it without lasting effects, but a portion of individuals have negative reactions that manifest in acute psychotic symptoms, and in some, symptoms continue even after the use of cannabis has ceased. To date, there is a huge gap in our understanding of why this occurs. RECENT FINDINGS Recent studies have focused on abnormalities in the glutamate pathway in schizophrenia, the effect of cannabis on the glutamate system, and the role of glutamate in the brain Default Mode Network. SUMMARY Given these observations, we hypothesize that perturbance of glutamate neuronal connectivity by cannabis in the brains of individuals genetically at high risk for psychosis will initiate a schizophrenia-like psychosis. Future studies may tie together these diverse observations by combining magnetic resonance spectroscopy (MRS) and functional magnetic resonance imaging (fMRI) of the default resting state network in patients with new onset schizophrenia who do and do not use cannabis compared with nonpsychotic individuals who do and do not use cannabis.
Collapse
Affiliation(s)
| | - Alexander Lin
- Harvard Medical School
- Brigham and Women's Hospital, Boston
| | - Lynn E DeLisi
- Harvard Medical School
- Cambridge Health Alliance, Cambridge, Massachusetts, USA
| |
Collapse
|
3
|
Erdei V, Mészár Z, Varga A. The Burning Pain Transcriptome in the Mouse Primary Somatosensory Cortex. Int J Mol Sci 2025; 26:3538. [PMID: 40332032 PMCID: PMC12027419 DOI: 10.3390/ijms26083538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/21/2025] [Accepted: 04/08/2025] [Indexed: 05/08/2025] Open
Abstract
Our previous research has demonstrated that the spinal cord undergoes epigenetic and molecular alterations following non-severe burn injury (BI). However, the primary somatosensory cortex (S1), crucial for pain perception, remains unexplored in this context. Here, we investigated transcriptomic alterations in the S1 cortex of mice subjected to BI or formalin application (FA) to the hind paw, utilizing RNA sequencing (RNA-seq) one hour after injury. RNA-seq identified 1116 differentially expressed genes (DEGs) in BI and 136 DEGs in formalin-induced inflammatory pain. Notably, 82.4% of DEGs in BI and 32.4% in FA were downregulated. A total of 42 upregulated and 17 downregulated overlapping DEGs were identified, indicating significant differences in the cortical processing of pain based on its origins. Gene Ontology analysis reveals that BI upregulated mitochondrial functions and ribosome synthesis, whereas axon guidance, synaptic plasticity, and neurotransmission-related processes were downregulated. By contrast, formalin treatment mainly impacted metabolic processes. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis highlights the significance of retrograde endocannabinoid signaling (REC) in the response to burn injury. These findings demonstrate that transcriptomic remodeling in the S1 cortex is dependent on the sensory modality and suggest that the REC network is activated during acute pain responses following BI.
Collapse
Affiliation(s)
- Virág Erdei
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (V.E.); (Z.M.)
- Department of Radiology, Central Hospital of Northern Pest—Military Hospital, Budapest, H-1134 Budapest, Hungary
| | - Zoltán Mészár
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (V.E.); (Z.M.)
| | - Angelika Varga
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (V.E.); (Z.M.)
| |
Collapse
|
4
|
Caccavano AP, Vlachos A, McLean N, Kimmel S, Kim JH, Vargish G, Mahadevan V, Hewitt L, Rossi AM, Spineux I, Wu SJ, Furlanis E, Dai M, Leyva Garcia B, Wang Y, Chittajallu R, London E, Yuan X, Hunt S, Abebe D, Eldridge MAG, Cummins AC, Hines BE, Plotnikova A, Mohanty A, Averbeck BB, Zaghloul KA, Dimidschstein J, Fishell G, Pelkey KA, McBain CJ. Divergent opioid-mediated suppression of inhibition between hippocampus and neocortex across species and development. Neuron 2025:S0896-6273(25)00177-1. [PMID: 40147437 DOI: 10.1016/j.neuron.2025.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 11/01/2024] [Accepted: 03/03/2025] [Indexed: 03/29/2025]
Abstract
Within adult rodent hippocampus (HPC), opioids suppress inhibitory parvalbumin-expressing interneurons (PV-INs), disinhibiting local microcircuits. However, it is unknown whether this disinhibitory motif is conserved across cortical regions, species, or development. We observed that PV-IN-mediated inhibition is robustly suppressed by opioids in HPC proper but not primary neocortex in mice and non-human primates, with spontaneous inhibitory tone in resected human tissue also following a consistent dichotomy. This hippocampal disinhibitory motif is established in early development when PV-INs and opioids regulate early population activity. Morphine pretreatment partially occludes this acute opioid-mediated suppression, with implications for the effects of opioids on hippocampal network activity important for learning and memory. Our findings demonstrate that PV-INs exhibit divergent opioid sensitivity across brain regions, which is remarkably conserved over evolution, and highlight the underappreciated role of opioids acting through immature PV-INs in shaping hippocampal development.
Collapse
Affiliation(s)
- Adam P Caccavano
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Section on Cellular and Synaptic Physiology, National Institutes of Health (NIH), Bethesda, MD 20892, USA.
| | - Anna Vlachos
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Section on Cellular and Synaptic Physiology, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Nadiya McLean
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Section on Cellular and Synaptic Physiology, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Sarah Kimmel
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Section on Cellular and Synaptic Physiology, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - June Hoan Kim
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Section on Cellular and Synaptic Physiology, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Geoffrey Vargish
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Section on Cellular and Synaptic Physiology, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Vivek Mahadevan
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Section on Cellular and Synaptic Physiology, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Lauren Hewitt
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Section on Cellular and Synaptic Physiology, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Anthony M Rossi
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ilona Spineux
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Sherry Jingjing Wu
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Elisabetta Furlanis
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Min Dai
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Brenda Leyva Garcia
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Yating Wang
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ramesh Chittajallu
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Section on Cellular and Synaptic Physiology, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Edra London
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Section on Cellular and Synaptic Physiology, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Xiaoqing Yuan
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Section on Cellular and Synaptic Physiology, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Steven Hunt
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Section on Cellular and Synaptic Physiology, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Daniel Abebe
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Section on Cellular and Synaptic Physiology, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Mark A G Eldridge
- National Institute of Mental Health (NIMH), NIH, Bethesda, MD 20892, USA
| | - Alex C Cummins
- National Institute of Mental Health (NIMH), NIH, Bethesda, MD 20892, USA
| | - Brendan E Hines
- National Institute of Mental Health (NIMH), NIH, Bethesda, MD 20892, USA
| | - Anya Plotnikova
- National Institute of Mental Health (NIMH), NIH, Bethesda, MD 20892, USA
| | - Arya Mohanty
- National Institute of Mental Health (NIMH), NIH, Bethesda, MD 20892, USA
| | - Bruno B Averbeck
- National Institute of Mental Health (NIMH), NIH, Bethesda, MD 20892, USA
| | - Kareem A Zaghloul
- National Institute of Neurological Disorders and Stroke (NINDS) Intramural Research Program, NIH, Bethesda, MD 20892, USA
| | - Jordane Dimidschstein
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Gord Fishell
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Kenneth A Pelkey
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Section on Cellular and Synaptic Physiology, National Institutes of Health (NIH), Bethesda, MD 20892, USA.
| | - Chris J McBain
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Section on Cellular and Synaptic Physiology, National Institutes of Health (NIH), Bethesda, MD 20892, USA.
| |
Collapse
|
5
|
From M, Crosby KM. Endocannabinoid and nitric oxide interactions in the brain. Neuroscience 2025; 569:267-276. [PMID: 39909337 DOI: 10.1016/j.neuroscience.2025.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 01/16/2025] [Accepted: 02/02/2025] [Indexed: 02/07/2025]
Abstract
Endogenous cannabinoids (eCBs) and nitric oxide (NO) are classical retrograde transmitters that modulate synaptic function throughout the brain. Although much is known about how these signals individually control synaptic activity and behavior, accumulating evidence suggests that they can also interact in a multitude of ways in the brain and beyond. Here, we present evidence for interactions between endogenous cannabinoids and nitric oxide in the brain. Specifically, we describe the effects of eCBs on NO synthesis and downstream signaling and in turn, we discuss how NO alters eCB levels and signaling pathways. We also provide an overview on how these transmitters work together or in opposition at the same synapses. This information will further our understanding of how two important, ubiquitous signals interact in the brain to ultimately affect neural function and behavior. Because eCBs and NO are involved in many physiological and pathological phenomena, understanding how these transmitters interact in non-human animals could lead to important therapeutic interventions in humans that potentially target both systems.
Collapse
Affiliation(s)
- Mary From
- Biology Department, Mount Allison University, 63B York Street, Sackville, NB E4L1G7, Canada
| | - Karen M Crosby
- Biology Department, Mount Allison University, 63B York Street, Sackville, NB E4L1G7, Canada.
| |
Collapse
|
6
|
Wang S, Wang P, Ma X, Qiao F, Zhang Z, Li J, Yi H, De Souza C, Zhang L, Lin K. Effects of refrigeration and freezing on milk fat globule membrane lipids in stored breast milk: Insights from non-targeted lipidomics. Food Chem 2025; 468:142478. [PMID: 39700807 DOI: 10.1016/j.foodchem.2024.142478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 12/21/2024]
Abstract
Breast milk storage provides flexibility for working mothers, though its effects on milk fat globule membrane (MFGM) lipids are not fully understood. This study examined breast milk stored under refrigerated (2 and 4 days) and frozen (7, 14, and 21 days) conditions, finding that these storage durations preserved similar structural characteristics during in vitro gastrointestinal digestion. The analysis focused on MFGM lipid composition under various storage conditions using non-targeted lipidomics. Results revealed that freezing for 14 days reduced phosphatidylserine (PS) levels by 64.55%, while 21 days of freezing significantly decreased both PS (74.59%) and sphingomyelin (SM) (43.85%). Examination of MFGM lipid species indicated that refrigeration for 4 days and freezing for 21 days led to notable reductions in key MFGM lipid species. Thus, breast milk should be refrigerated for up to 4 days to minimize nutrient depletion or frozen for no more than 7 days.
Collapse
Affiliation(s)
- Shaolei Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Pengyue Wang
- National Center of Technology Innovation for Dairy, Hohhot 010000, China
| | - Xia Ma
- National Center of Technology Innovation for Dairy, Hohhot 010000, China
| | - Fengzhi Qiao
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Zhe Zhang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Jiadong Li
- Innochina Biotech Co., Ltd, Shanghai 201400, China
| | - Huaxi Yi
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Cristabelle De Souza
- Department of Stem Cell Research and Regenerative Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Lanwei Zhang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| | - Kai Lin
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
7
|
Trevelyan AJ, Marks VS, Graham RT, Denison T, Jackson A, Smith EH. On brain stimulation in epilepsy. Brain 2025; 148:746-752. [PMID: 39745924 PMCID: PMC11884764 DOI: 10.1093/brain/awae385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/07/2024] [Accepted: 11/11/2024] [Indexed: 01/04/2025] Open
Abstract
Brain stimulation has, for many decades, been considered as a potential solution for the unmet needs of the many people living with drug-resistant epilepsy. Clinically, there are several different approaches in use, including vagus nerve stimulation, deep brain stimulation of the thalamus, and responsive neurostimulation. Across populations of patients, all deliver reductions in seizure load and sudden unexpected death in epilepsy risk, yet do so variably, and the improvements seem incremental rather than transformative. In contrast, within the field of experimental neuroscience, the transformational impact of optogenetic stimulation is evident; by providing a means to control subsets of neurons in isolation, it has revolutionized our ability to dissect out the functional relations within neuronal microcircuits. It is worth asking, therefore, how preclinical optogenetics research could advance clinical practice in epilepsy? Here, we review the state of the clinical field, and the recent progress in preclinical animal research. We report various breakthrough results, including the development of new models of seizure initiation, its use for seizure prediction, and for fast, closed-loop control of pathological brain rhythms, and what these experiments tell us about epileptic pathophysiology. Finally, we consider how these preclinical research advances may be translated into clinical practice.
Collapse
Affiliation(s)
- Andrew J Trevelyan
- Newcastle University Biosciences Institute, Newcastle upon Tyne, NE2 4HH, UK
| | - Victoria S Marks
- Institute of Biomedical Engineering, Oxford University, Oxford, OX3 7DQ, UK
| | - Robert T Graham
- Institute of Neurology, University College London, Queens Square, London, WC1N 3BG, UK
| | - Timothy Denison
- Institute of Biomedical Engineering, Oxford University, Oxford, OX3 7DQ, UK
| | - Andrew Jackson
- Newcastle University Biosciences Institute, Newcastle upon Tyne, NE2 4HH, UK
| | - Elliot H Smith
- Department of Neurosurgery, University of Utah, Salt Lake City, UT 84132, USA
| |
Collapse
|
8
|
Tisi A, Scipioni L, Carozza G, Di Re L, Cimino G, Di Meo C, Palaniappan S, Valle FD, Fanti F, Giacovazzo G, Compagnone D, Maccarone R, Oddi S, Maccarrone M. Alterations of endocannabinoid signaling and microglia reactivity in the retinas of AD-like mice precede the onset of hippocampal β-amyloid plaques. J Neurochem 2025; 169:e16256. [PMID: 39556462 PMCID: PMC11808635 DOI: 10.1111/jnc.16256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 09/26/2024] [Accepted: 10/18/2024] [Indexed: 11/20/2024]
Abstract
Extra-cerebral manifestations of Alzheimer's disease (AD) develop in the retina, which is, therefore, considered a "window to the brain". Recent studies demonstrated the dysregulation of the endocannabinoid (eCB) system (ECS) in AD brain. Here, we explored the possible alterations of ECS and the onset of gliosis in the retina of AD-like mice. Tg2576 (TG) mice overexpressing the amyloid precursor protein (APP) were used at the age of 12 months, when hippocampal β-amyloid plaques had not been developed yet. Analysis of retinal gliosis showed a significant increase in the number of IBA1 (+) microglia cells in TG versus wild type (WT). Gliosis was not associated with retinal β-amyloid plaques, evident retinal degenerative signatures, or excitotoxicity; instead, oxidative stress burden was observed as increased acrolein levels. Analysis of the ECS (receptors/metabolic enzymes) through western blotting (WB) revealed the up-regulation of cannabinoid receptor 2 (CB2) and monoacylglycerol lipase (MAGL), the enzyme responsible for the degradation of 2-arachidonoylglycerol (2-AG), in TG retinas. Fluorescence intensity analysis of anti-CB2 and anti-MAGL immuno-stained cryosections was consistent with WB, showing their up-regulation throughout the retinal layers. No statistically significant differences were found for the other enzymes/receptors of the ECS under study. However, linear regression analysis for individual animals showed a significant correlation between CB2 and fatty acid amide hydrolase (FAAH), diacylglycerol lipase α/β (DAGLα/β), and APP; instead, a significant negative correlation was found between MAGL and APP. Finally, ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) demonstrated a significant reduction of 2-AG in TG retinas (~0.34 ng/mg) compared to WT (~1.70 ng/mg), while a trend toward increase was found for the other eCB anandamide (AEA). Overall, our data indicate that gliosis and ECS dysregulation-in particular of CB2, MAGL and 2-AG-occur in the retina of AD-like mice before retinal degeneration and development of hippocampal β-amyloid plaques.
Collapse
Affiliation(s)
- Annamaria Tisi
- Department of Biotechnological and Applied Clinical SciencesUniversity of L'AquilaL'AquilaItaly
| | - Lucia Scipioni
- Department of Biotechnological and Applied Clinical SciencesUniversity of L'AquilaL'AquilaItaly
- Laboratory of Lipid Neurochemistry, European Center for Brain Research (CERC)Santa Lucia Foundation IRCCSRomeItaly
| | - Giulia Carozza
- Department of Biotechnological and Applied Clinical SciencesUniversity of L'AquilaL'AquilaItaly
| | - Lucia Di Re
- Department of Biotechnological and Applied Clinical SciencesUniversity of L'AquilaL'AquilaItaly
| | - Giacomo Cimino
- Department of Biotechnological and Applied Clinical SciencesUniversity of L'AquilaL'AquilaItaly
| | - Camilla Di Meo
- Department of Biotechnological and Applied Clinical SciencesUniversity of L'AquilaL'AquilaItaly
- Department of Veterinary MedicineUniversity of TeramoTeramoItaly
| | - Sakthimala Palaniappan
- Department of Biotechnological and Applied Clinical SciencesUniversity of L'AquilaL'AquilaItaly
| | - Francesco Della Valle
- Department of Bioscience and Technology for Food, Agriculture and EnvironmentUniversity of TeramoTeramoItaly
| | - Federico Fanti
- Department of Bioscience and Technology for Food, Agriculture and EnvironmentUniversity of TeramoTeramoItaly
| | - Giacomo Giacovazzo
- Laboratory of Lipid Neurochemistry, European Center for Brain Research (CERC)Santa Lucia Foundation IRCCSRomeItaly
- Department of Veterinary MedicineUniversity of TeramoTeramoItaly
| | - Dario Compagnone
- Department of Bioscience and Technology for Food, Agriculture and EnvironmentUniversity of TeramoTeramoItaly
| | - Rita Maccarone
- Department of Biotechnological and Applied Clinical SciencesUniversity of L'AquilaL'AquilaItaly
| | - Sergio Oddi
- Laboratory of Lipid Neurochemistry, European Center for Brain Research (CERC)Santa Lucia Foundation IRCCSRomeItaly
- Department of Veterinary MedicineUniversity of TeramoTeramoItaly
| | - Mauro Maccarrone
- Department of Biotechnological and Applied Clinical SciencesUniversity of L'AquilaL'AquilaItaly
- Laboratory of Lipid Neurochemistry, European Center for Brain Research (CERC)Santa Lucia Foundation IRCCSRomeItaly
| |
Collapse
|
9
|
Caccavano AP, Vlachos A, McLean N, Kimmel S, Kim JH, Vargish G, Mahadevan V, Hewitt L, Rossi AM, Spineux I, Wu SJ, Furlanis E, Dai M, Garcia BL, Wang Y, Chittajallu R, London E, Yuan X, Hunt S, Abebe D, Eldridge MAG, Cummins AC, Hines BE, Plotnikova A, Mohanty A, Averbeck BB, Zaghloul K, Dimidschstein J, Fishell G, Pelkey KA, McBain CJ. Divergent opioid-mediated suppression of inhibition between hippocampus and neocortex across species and development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.01.20.576455. [PMID: 38313283 PMCID: PMC10836073 DOI: 10.1101/2024.01.20.576455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Within the adult rodent hippocampus, opioids suppress inhibitory parvalbumin-expressing interneurons (PV-INs), thus disinhibiting local micro-circuits. However, it is unknown if this disinhibitory motif is conserved in other cortical regions, species, or across development. We observed that PV-IN mediated inhibition is robustly suppressed by opioids in hippocampus proper but not primary neocortex in mice and nonhuman primates, with spontaneous inhibitory tone in resected human tissue also following a consistent dichotomy. This hippocampal disinhibitory motif was established in early development when PV-INs and opioids were found to regulate early population activity. Acute opioid-mediated modulation was partially occluded with morphine pretreatment, with implications for the effects of opioids on hippocampal network activity important for learning and memory. Together, these findings demonstrate that PV-INs exhibit a divergence in opioid sensitivity across brain regions that is remarkably conserved across evolution and highlights the underappreciated role of opioids acting through immature PV-INs in shaping hippocampal development.
Collapse
Affiliation(s)
- Adam P Caccavano
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Section on Cellular and Synaptic Physiology, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Anna Vlachos
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Section on Cellular and Synaptic Physiology, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Nadiya McLean
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Section on Cellular and Synaptic Physiology, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Sarah Kimmel
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Section on Cellular and Synaptic Physiology, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - June Hoan Kim
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Section on Cellular and Synaptic Physiology, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Geoffrey Vargish
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Section on Cellular and Synaptic Physiology, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Vivek Mahadevan
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Section on Cellular and Synaptic Physiology, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Lauren Hewitt
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Section on Cellular and Synaptic Physiology, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Anthony M Rossi
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ilona Spineux
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Sherry Jingjing Wu
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Elisabetta Furlanis
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Min Dai
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Brenda Leyva Garcia
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Yating Wang
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ramesh Chittajallu
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Section on Cellular and Synaptic Physiology, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Edra London
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Section on Cellular and Synaptic Physiology, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Xiaoqing Yuan
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Section on Cellular and Synaptic Physiology, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Steven Hunt
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Section on Cellular and Synaptic Physiology, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Daniel Abebe
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Section on Cellular and Synaptic Physiology, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Mark A G Eldridge
- National Institute of Mental Health (NIMH), NIH, Bethesda, MD 20892, USA
| | - Alex C Cummins
- National Institute of Mental Health (NIMH), NIH, Bethesda, MD 20892, USA
| | - Brendan E Hines
- National Institute of Mental Health (NIMH), NIH, Bethesda, MD 20892, USA
| | - Anya Plotnikova
- National Institute of Mental Health (NIMH), NIH, Bethesda, MD 20892, USA
| | - Arya Mohanty
- National Institute of Mental Health (NIMH), NIH, Bethesda, MD 20892, USA
| | - Bruno B Averbeck
- National Institute of Mental Health (NIMH), NIH, Bethesda, MD 20892, USA
| | - Kareem Zaghloul
- National Institute of Neurological Disorders and Stroke (NINDS) Intramural Research Program, NIH, Bethesda, MD 20892, USA
| | - Jordane Dimidschstein
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Gord Fishell
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Kenneth A Pelkey
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Section on Cellular and Synaptic Physiology, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Chris J McBain
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Section on Cellular and Synaptic Physiology, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| |
Collapse
|
10
|
Gebregzi HH, Zeiger JS, Smith JP, Stuyt L, Cullen L, Carsella J, Rogers DC, Lafebre J, Knalfec J, Vargas A, Diawara MM. Oral cannabidiol did not impair learning and memory in healthy adults. J Cannabis Res 2025; 7:5. [PMID: 39849639 PMCID: PMC11756171 DOI: 10.1186/s42238-025-00262-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 01/14/2025] [Indexed: 01/25/2025] Open
Abstract
BACKGROUND The effect of oral Cannabidiol (CBD) on interference during learning and memory (L&M) in healthy human volunteers has not been studied. METHOD A two-arm crossover, randomized, double-blind, placebo-controlled trial was conducted at Colorado State University Pueblo (CSU Pueblo) to evaluate the effects of 246 mg oral CBD on L&M in healthy adults. Among 57 healthy volunteers enrolled, 35 were included in the analyses. For assessment of L&M, Montreal Cognitive Assessment (MOCA) was used to evaluate verbal baseline cognitive function; RAVLT-R tests (List A and List B recalls, Proactive and Retroactive Interference ratios, and Forgetting Speed ratio) were used to evaluate verbal declarative memory; and total prose recall was used to evaluate verbal logical memory. Linear Mixed Models with Bonferroni Corrections were used to compare L&M results between primary outcomes (CBD vs. placebo) and secondary demographic outcomes, with a two-tailed statistical significance of P < 0.05. RESULTS CBD administration did not affect any of the dependent variables measured compared to the placebo group. There were no effects of THC, history of CBD use, or sex on CBD's modulation of L&M. However, a highly significant interaction effect between treatment groups (CBD vs. placebo) and age of subjects was observed for the PI ratio (P = 0.008; n = 35). CONCLUSIONS The results of this study suggest that administration of oral CBD alone does not significantly impair L&M in healthy adults. However, age might influence CBD related modulation of proactive interference during human L&M. Future research involving a larger group of older adults is needed to confirm this potential effect. TRIAL REGISTRATION The study was approved by the CSU Pueblo IRB, conducted in accordance with the Declaration of Helsinki, and registered with ClinicalTrials.gov (NCT06074172).
Collapse
Affiliation(s)
- Hanna H Gebregzi
- Department of Biology, Colorado State University Pueblo, 2200 Bonforte Blvd, Pueblo, CO, 81001, USA
- Clinical Research Organization, ICON PLC, 8307 Gault Lane, San Antonio, TX, 78209, USA
| | - Joanna S Zeiger
- Cann Research Foundation, 3996 Savannah Ct, Boulder, CO, 80301, USA
| | - Jeffrey P Smith
- Department of Biology, Colorado State University Pueblo, 2200 Bonforte Blvd, Pueblo, CO, 81001, USA
| | - Libby Stuyt
- Circle Program, Colorado Mental Health Institute at Pueblo, 1600 W 24th Street, Pueblo, CO, 81003, USA
| | - Luann Cullen
- Cullen Regenerative Medicine, Naturopathic Medicine, 112 W D St, Pueblo, CO, 81003, USA
- Department of Chemistry, Colorado State University Pueblo, 2200 Bonforte Blvd, Pueblo, CO, 81001, USA
| | - Jim Carsella
- Cullen Regenerative Medicine, Naturopathic Medicine, 112 W D St, Pueblo, CO, 81003, USA
| | - Daniel C Rogers
- Department of Biology, Colorado State University Pueblo, 2200 Bonforte Blvd, Pueblo, CO, 81001, USA
| | - Jordan Lafebre
- Department of Biology, Colorado State University Pueblo, 2200 Bonforte Blvd, Pueblo, CO, 81001, USA
| | - Jennah Knalfec
- Department of Biology, Colorado State University Pueblo, 2200 Bonforte Blvd, Pueblo, CO, 81001, USA
| | - Alfredo Vargas
- Department of Biology, Colorado State University Pueblo, 2200 Bonforte Blvd, Pueblo, CO, 81001, USA
| | - Moussa M Diawara
- Department of Biology, Colorado State University Pueblo, 2200 Bonforte Blvd, Pueblo, CO, 81001, USA.
| |
Collapse
|
11
|
Maharati A, Rajabloo Y, Moghbeli M. Molecular mechanisms of mTOR-mediated cisplatin response in tumor cells. Heliyon 2025; 11:e41483. [PMID: 39834411 PMCID: PMC11743095 DOI: 10.1016/j.heliyon.2024.e41483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/22/2025] Open
Abstract
Cisplatin (CDDP) is one of the main chemotherapeutic drugs that is widely used in many cancers. However, CDDP resistance is a frequent therapeutic challenge that reduces prognosis in cancer patients. Since, CDDP has noticeable side effects in normal tissues and organs, it is necessary to assess the molecular mechanisms associated with CDDP resistance to improve the therapeutic methods in cancer patients. Drug efflux, detoxifying systems, DNA repair mechanisms, and drug-induced apoptosis are involved in multidrug resistance in CDDP-resistant tumor cells. Mammalian target of rapamycin (mTOR), as a serine/threonine kinase has a pivotal role in various cellular mechanisms such as autophagy, metabolism, drug efflux, and cell proliferation. Although, mTOR is mainly activated by PI3K/AKT pathway, it can also be regulated by many other signaling pathways. PI3K/Akt/mTOR axis functions as a key modulator of drug resistance and unfavorable prognosis in different cancers. Regarding, the pivotal role of mTOR in CDDP response, in the present review we discussed the molecular mechanisms that regulate mTOR mediated CDDP response in tumor cells.
Collapse
Affiliation(s)
- Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yasamin Rajabloo
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
12
|
Incontro S, Musella ML, Sammari M, Di Scala C, Fantini J, Debanne D. Lipids shape brain function through ion channel and receptor modulations: physiological mechanisms and clinical perspectives. Physiol Rev 2025; 105:137-207. [PMID: 38990068 DOI: 10.1152/physrev.00004.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/28/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024] Open
Abstract
Lipids represent the most abundant molecular type in the brain, with a fat content of ∼60% of the dry brain weight in humans. Despite this fact, little attention has been paid to circumscribe the dynamic role of lipids in brain function and disease. Membrane lipids such as cholesterol, phosphoinositide, sphingolipids, arachidonic acid, and endocannabinoids finely regulate both synaptic receptors and ion channels that ensure critical neural functions. After a brief introduction on brain lipids and their respective properties, we review here their role in regulating synaptic function and ion channel activity, action potential propagation, neuronal development, and functional plasticity and their contribution in the development of neurological and neuropsychiatric diseases. We also provide possible directions for future research on lipid function in brain plasticity and diseases.
Collapse
Affiliation(s)
| | | | - Malika Sammari
- UNIS, INSERM, Aix-Marseille Université, Marseille, France
| | | | | | | |
Collapse
|
13
|
Warjri GB, Gowtham L, Venkatraman V, Velpandian T, Dada T, Angmo D. Role of Endocannabinoids in Glaucoma: A Review. J Curr Glaucoma Pract 2025; 19:28-37. [PMID: 40417140 PMCID: PMC12096862 DOI: 10.5005/jp-journals-10078-1467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 02/19/2025] [Indexed: 05/27/2025] Open
Abstract
Aims A review of the published literature was done to understand the role of endocannabinoids in glaucoma. Background As evidence mounts that intraocular pressure (IOP) is not the only factor in the pathogenesis and progression of glaucoma, a look into other aspects is the need of the hour. From the first instance of a drop in IOP linked to marijuana in the 1970s to the present, research has been ongoing, mostly in animals and in vitro models, with a scarcity of human studies, to delve into the world of the endocannabinoid system (ECS). Methods PubMed, ScienceDirect, and Google Scholar were searched for studies relating to endocannabinoids and their role in glaucoma. Results The ECS comprises ligands, receptors, and the synthesizing and degrading enzymes and is ubiquitous throughout the human body, including the visual system, from the eye to the occipital lobe. Apart from the IOP-lowering effect of the system, another property being investigated and implicated as an attribute of its receptors is neuroprotection. This neuroprotection seems to be mediated by excitotoxicity reduction and changes in vascular tone by acting on cannabinoid receptors. Conclusion The possibilities are indeed immense, and further research into the complex relationship between ECS and glaucoma is imperative to enable us to develop therapies for this otherwise chronic, progressive neuropathy, where the only armament in our hands is early diagnosis and maintenance therapy. Clinical significance We still do not have drugs for the prevention of retinal ganglion cell loss and for neuroprotection in glaucoma. Drugs that target cannabinoid receptors can revolutionize glaucoma management owing to their IOP-lowering action and neuroprotective effects. Based on the findings, we argue that further studies on the ECS and its implications in glaucoma are warranted to develop newer, effective, and better-targeted treatment strategies. How to cite this article Warjri GB, Gowtham L, Venkatraman V, et al. Role of Endocannabinoids in Glaucoma: A Review. J Curr Glaucoma Pract 2025;19(1):28-37.
Collapse
Affiliation(s)
- Gazella B Warjri
- Department of Ophthalmology, Atal Bihari Vajpayee Institute of Medical Sciences and Dr Ram Manohar Lohia Hospital, New Delhi, India
| | | | | | - Thirumurthy Velpandian
- Department of Ocular pharmacology, All India Institute of Medical Sciences, New Delhi, India
| | - Tanuj Dada
- Department of Glaucoma, Dr R P Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Dewang Angmo
- Department of Glaucoma, Dr R P Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
14
|
Zhang M, Wang T, Meng F, Jiang M, Wu S, Xu H. The endocannabinoid system in the brain undergoes long-lasting changes following neuropathic pain. iScience 2024; 27:111409. [PMID: 39717086 PMCID: PMC11664153 DOI: 10.1016/j.isci.2024.111409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024] Open
Abstract
The endocannabinoid system (ECS), which is composed of endocannabinoids (eCBs), cannabinoid receptors (CBRs), and associated signaling molecules, has been identified within the brain. In neuropathic pain animal models and patients, long-lasting alterations in the ECS have been observed. These changes of neurons and glial cells in the ECS contribute to the modulation of neuropathic pain. Intervention strategies such as the activation of CBRs, the enhancement of hydrolytic enzyme function, and the inhibition of synthetizing enzymes typically alleviate neuropathic pain through CBR-dependent mechanisms. Additionally, emotions such as fear, anxiety, and depression are frequently experienced with neuropathic pain. Exogenous cannabinoids can mitigate these mood disorders via CBR signaling pathways. Therefore, the targeting of long-lasting ECS alterations represents a potential therapeutic approach for both neuropathic pain and emotional disorders. In this review, the long-lasting variations in neurons and glial cells in the ECS related to neuropathic pain and the accompanying emotional comorbidities are elucidated. Furthermore, the cellular and molecular mechanisms underlying synaptic plasticity and neural circuit activities in the brain are reviewed.
Collapse
Affiliation(s)
- Ming Zhang
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, The Fourth Military Medical University, Xi’an 710032, China
- Department of Basic Medical Laboratory, The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Tao Wang
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, The Fourth Military Medical University, Xi’an 710032, China
- Department of Thoracic Surgery, Air Force Specialty Medical Center, Beijing 100142, China
| | - Fancheng Meng
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, The Fourth Military Medical University, Xi’an 710032, China
| | - Mengyang Jiang
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, The Fourth Military Medical University, Xi’an 710032, China
| | - Shengxi Wu
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, The Fourth Military Medical University, Xi’an 710032, China
| | - Hui Xu
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, The Fourth Military Medical University, Xi’an 710032, China
| |
Collapse
|
15
|
Serra MP, Boi M, Lai Y, Trucas M, Fernández-Teruel A, Corda MG, Giorgi O, Quartu M. Acute stress induces different changes on the expression of CB1 receptors in the hippocampus of two lines of male rats differing in their response to stressors. Pharmacol Biochem Behav 2024; 245:173901. [PMID: 39477019 DOI: 10.1016/j.pbb.2024.173901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 10/13/2024] [Accepted: 10/24/2024] [Indexed: 11/07/2024]
Abstract
The stress-induced alterations in cognitive processes and psychiatric disorders can be accelerated when acute stressors challenge the hippocampal functions. To address this issue, we used Western Blot (WB) and immunohistochemistry assays to investigate the impact of acute forced swimming (FS) on the expression of the CB1 cannabinoid receptors (CB1R) in the hippocampus (HC) of the male outbred Roman High- (RHA) and Low-Avoidance (RLA) rat lines, one of the most validated genetic models for the study of behavior related to fear/anxiety and stress-induced depression. The distinct responses to FS confirmed the different behavioral strategies displayed by the two phenotypes when exposed to stressors, with RLA and RHA rats displaying reactive vs. proactive coping, respectively. In control rats, the WB analysis showed lower hippocampal CB1R relative levels in RLA rats than in their RHA counterparts. After FS, RLA rats showed increased CB1R levels in the dorsal HC (dHC) vs. no change in the ventral HC (vHC), while RHA rats displayed no change in the dHC vs. a decrease in the vHC. In the tissue sections from dHC, FS elicited an increment over the control level of CB1R-like immunoreactivity (LI) in the CA1 and CA3 sectors of the Ammon's horn of RLA rats, while in RHA rats the density of CB1R-LI increased only in the CA1 sector. In tissue sections from the vHC, FS caused an increase over the control values of CB1R-LI only in the CA1 sector of RLA rats and a decrement of the CB1R-LI in the CA1 sector and dentate gyrus of control RHA rats. This study shows for the first time that, in baseline conditions, the CB1Rs are present in the dHC and the vHC of the Roman rat lines with a different distribution along the septo-temporal extension of the HC and that the FS induces rapid and distinct changes in the hippocampal expression of CB1R of RLA vs. RLA rats, in keeping with the view that endocannabinoid signaling may contribute to the molecular mechanisms that regulate the different responses of the dHC vs. the vHC to aversive situations in male Roman rats. Our results also provide evidence supporting the involvement of CB1R in the molecular underpinnings of the susceptibility of RLA rats and the resistance of RHA rats to stress-induced depression-like behavior.
Collapse
Affiliation(s)
- Maria Pina Serra
- Department of Biomedical Sciences, Section of Cytomorphology, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, CA, Italy.
| | - Marianna Boi
- Department of Biomedical Sciences, Section of Cytomorphology, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, CA, Italy.
| | - Ylenia Lai
- Department of Biomedical Sciences, Section of Cytomorphology, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, CA, Italy.
| | - Marcello Trucas
- Department of Biomedical Sciences, Section of Cytomorphology, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, CA, Italy.
| | - Alberto Fernández-Teruel
- Medical Psychology Unit, Department of Psychiatry and Legal Medicine, Institute of Neuroscience, School of Medicine, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain.
| | - Maria Giuseppa Corda
- Department of Life and Environmental Sciences, Section of Pharmaceutical, Pharmacological and Nutraceutical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, CA, Italy.
| | - Osvaldo Giorgi
- Department of Life and Environmental Sciences, Section of Pharmaceutical, Pharmacological and Nutraceutical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, CA, Italy.
| | - Marina Quartu
- Department of Biomedical Sciences, Section of Cytomorphology, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, CA, Italy.
| |
Collapse
|
16
|
Sobue A, Komine O, Endo F, Kakimi C, Miyoshi Y, Kawade N, Watanabe S, Saito Y, Murayama S, Saido TC, Saito T, Yamanaka K. Microglial cannabinoid receptor type II stimulation improves cognitive impairment and neuroinflammation in Alzheimer's disease mice by controlling astrocyte activation. Cell Death Dis 2024; 15:858. [PMID: 39587077 PMCID: PMC11589152 DOI: 10.1038/s41419-024-07249-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 11/27/2024]
Abstract
Alzheimer's disease (AD) is the most common form of dementia and is characterized by the accumulation of amyloid β (Aβ) and phosphorylated tau. Neuroinflammation, mainly mediated by glial activation, plays an important role in AD progression. Although there is growing evidence for the anti-neuroinflammatory and neuroprotective effects of the cannabinoid system modulation, the detailed mechanism remains unclear. To address these issues, we analyzed the expression levels of cannabinoid receptor type II (Cnr2/Cb2) in AppNL-G-F/NL-G-F mice and human AD precuneus, which is vulnerable to amyloid deposition in AD, and the effects of JWH 133, a selective CB2 agonist, on neuroinflammation in primary glial cells and neuroinflammation and cognitive impairment in AppNL-G-F/NL-G-F mice. The levels of Cnr2/Cb2 were upregulated in microglia isolated from the cerebral cortex of AppNL-G-F/NL-G-F mice. CNR2 expression was also increased in RNAs derived from human precuneus with advanced AD pathology. Chronic oral administration of JWH 133 significantly ameliorated the cognitive impairment of AppNL-G-F/NL-G-F mice without neuropsychiatric side effects. Microglia and astrocyte mRNAs were directly isolated from the mouse cerebral cortex by magnetic-activated cell sorting, and the gene expression was determined by quantitative PCR. JWH 133 administration significantly decreased reactive astrocyte markers and microglial C1q, an inducer for the reactive astrocytes in AppNL-G-F/NL-G-F mice. In addition, JWH133 administration inhibited the expression of p-STAT3 (signal transducer and activator of transcription 3) in astrocytes in AppNL-G-F/NL-G-F mice. Furthermore, JWH 133 administration suppressed dystrophic presynaptic terminals surrounding amyloid plaques. In conclusion, stimulation of microglial CB2 ameliorates cognitive dysfunction in AppNL-G-F/NL-G-F mice by controlling astrocyte activation and inducing beneficial neuroinflammation, and our study has implications that CB2 may represent an attractive therapeutic target for the treatment of AD and perhaps other neurodegenerative diseases involving neuroinflammation.
Collapse
Affiliation(s)
- Akira Sobue
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Aichi, 464-8601, Japan
- Department of Neuroscience and Pathobiology, Nagoya University Graduate School of Medicine, Aichi, 466-8550, Japan
- Medical Interactive Research and Academia Industry Collaboration Center, Research Institute of Environmental Medicine, Nagoya University, Aichi, 464-8601, Japan
| | - Okiru Komine
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Aichi, 464-8601, Japan
- Department of Neuroscience and Pathobiology, Nagoya University Graduate School of Medicine, Aichi, 466-8550, Japan
| | - Fumito Endo
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Aichi, 464-8601, Japan
- Department of Neuroscience and Pathobiology, Nagoya University Graduate School of Medicine, Aichi, 466-8550, Japan
| | - Chihiro Kakimi
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Aichi, 464-8601, Japan
| | - Yuka Miyoshi
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Aichi, 464-8601, Japan
| | - Noe Kawade
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Aichi, 464-8601, Japan
- Department of Neuroscience and Pathobiology, Nagoya University Graduate School of Medicine, Aichi, 466-8550, Japan
| | - Seiji Watanabe
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Aichi, 464-8601, Japan
- Department of Neuroscience and Pathobiology, Nagoya University Graduate School of Medicine, Aichi, 466-8550, Japan
| | - Yuko Saito
- Brain Bank for Aging Research (Neuropathology), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, 173-0015, Japan
| | - Shigeo Murayama
- Brain Bank for Aging Research (Neuropathology), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, 173-0015, Japan
- Brain Bank for Neurodevelopmental, Neurological and Psychiatric Disorders, United Graduate School of Child Development, Osaka University, Osaka, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, 351-0198, Japan
| | - Takashi Saito
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Aichi, 464-8601, Japan
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Aichi, 467-8601, Japan
| | - Koji Yamanaka
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Aichi, 464-8601, Japan.
- Department of Neuroscience and Pathobiology, Nagoya University Graduate School of Medicine, Aichi, 466-8550, Japan.
- Institute for Glyco-core Research (iGCORE), Nagoya University, Aichi, Japan.
- Center for One Medicine Innovative Translational Research (COMIT), Nagoya University, Aichi, Japan.
- Research Institute for Quantum and Chemical Innovation, Institutes of Innovation for Future Society, Nagoya University, Aichi, Japan.
| |
Collapse
|
17
|
Chiu DN, Carter BC. Extracellular glutamate is not modulated by cannabinoid receptor activity. Sci Rep 2024; 14:26889. [PMID: 39505963 PMCID: PMC11541540 DOI: 10.1038/s41598-024-75962-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/09/2024] [Indexed: 11/08/2024] Open
Abstract
Cannabinoid receptor activation has been proposed to trigger glutamate release from astrocytes located in cortical layer 2/3. Here, we measure the basal concentration of extracellular glutamate in layer 2/3 of mouse somatosensory cortex and find it to be 20-30 nM. We further examine the effect of cannabinoid receptor signaling on extracellular glutamate, and find no evidence for increased extracellular glutamate upon cannabinoid receptor agonist application.
Collapse
Affiliation(s)
- Delia N Chiu
- ENI-G, a Joint Initiative of the University Medical Center Göttingen and the Max Planck Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
| | - Brett C Carter
- ENI-G, a Joint Initiative of the University Medical Center Göttingen and the Max Planck Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany.
| |
Collapse
|
18
|
Jahn K, Blumer N, Wieltsch C, Duzzi L, Fuchs H, Meister R, Groh A, Schulze Westhoff M, Krüger THC, Bleich S, Khan AQ, Frieling H. Impact of cannabinoids on synapse markers in an SH-SY5Y cell culture model. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:96. [PMID: 39448630 PMCID: PMC11502758 DOI: 10.1038/s41537-024-00498-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/18/2024] [Indexed: 10/26/2024]
Abstract
Patients suffering from schizophrenic psychosis show reduced synaptic connectivity compared to healthy individuals, and often, the use of cannabis precedes the onset of schizophrenic psychosis. Therefore, we investigated if different types of cannabinoids impact methylation patterns and expression of schizophrenia candidate genes concerned with the development and preservation of synapses and synaptic function in a SH-SY5Y cell culture model. For this purpose, SH-SY5Y cells were differentiated into a neuron-like cell type as previously described. Effects of the cannabinoids delta-9-THC, HU-210, and Anandamide were investigated by analysis of cell morphology and measurement of neurite/dendrite lengths as well as determination of methylation pattern, expression (real time-qPCR, western blot) and localization (immunocytochemistry) of different target molecules concerned with the formation of synapses. Regarding the global impression of morphology, cells, and neurites appeared to be a bit more blunted/roundish and to have more structures that could be described a bit boldly as resembling transport vesicles under the application of the three cannabinoids in comparison to a sole application of retinoic acid (RA). However, there were no obvious differences between the three cannabinoids. Concerning dendrites or branch lengths, there was a significant difference with longer dendrites and branches in RA-treated cells than in undifferentiated control cells (as shown previously), but there were no differences between cannabinoid treatment and exclusive RA application. Methylation rates in the promoter regions of synapse candidate genes in cannabinoid-treated cells were in between those of differentiated cells and untreated controls, even though findings were significant only in some of the investigated genes. In other targets, the methylation rates of cannabinoid-treated cells did not only approach those of undifferentiated cells but were also valued even beyond. mRNA levels also showed the same tendency of values approaching those of undifferentiated controls under the application of the three cannabinoids for most investigated targets except for the structural molecules (NEFH, MAPT). Likewise, the quantification of expression via western blot analysis revealed a higher expression of targets in RA-treated cells compared to undifferentiated controls and, again, lower expression under the additional application of THC in trend. In line with our earlier findings, the application of RA led to higher fluorescence intensity and/or a differential signal distribution in the cell in most of the investigated targets in ICC. Under treatment with THC, fluorescence intensity decreased, or the signal distribution became similar to the dispersion in the undifferentiated control condition. Our findings point to a decline of neuronal differentiation markers in our in vitro cell-culture system under the application of cannabinoids.
Collapse
Affiliation(s)
- Kirsten Jahn
- Laboratory of Molecular Neurosciences, Department of Clinical Psychiatry, Medical School Hannover, Hanover, Germany.
| | - Nina Blumer
- Laboratory of Molecular Neurosciences, Department of Clinical Psychiatry, Medical School Hannover, Hanover, Germany
| | - Caroline Wieltsch
- Laboratory of Molecular Neurosciences, Department of Clinical Psychiatry, Medical School Hannover, Hanover, Germany
| | - Laura Duzzi
- Laboratory of Molecular Neurosciences, Department of Clinical Psychiatry, Medical School Hannover, Hanover, Germany
| | - Heiko Fuchs
- Laboratory for Experimental Eye Research, Department of Ophthalmology, Medical School Hannover, Hanover, Germany
| | - Roland Meister
- Laboratory for Experimental Eye Research, Department of Ophthalmology, Medical School Hannover, Hanover, Germany
| | - Adrian Groh
- Laboratory of Molecular Neurosciences, Department of Clinical Psychiatry, Medical School Hannover, Hanover, Germany
| | - Martin Schulze Westhoff
- Laboratory of Molecular Neurosciences, Department of Clinical Psychiatry, Medical School Hannover, Hanover, Germany
| | - Tillmann Horst Christoph Krüger
- Department of Clinical Psychiatry, Division of clinical psychology and sexual medicine, Medical School Hannover, Hanover, Germany
- Center for Systems Neurosciences Hannover, Hanover, Germany
| | - Stefan Bleich
- Laboratory of Molecular Neurosciences, Department of Clinical Psychiatry, Medical School Hannover, Hanover, Germany
- Center for Systems Neurosciences Hannover, Hanover, Germany
| | - Abdul Qayyum Khan
- Laboratory of Molecular Neurosciences, Department of Clinical Psychiatry, Medical School Hannover, Hanover, Germany
| | - Helge Frieling
- Laboratory of Molecular Neurosciences, Department of Clinical Psychiatry, Medical School Hannover, Hanover, Germany
- Center for Systems Neurosciences Hannover, Hanover, Germany
| |
Collapse
|
19
|
Basavarajappa BS, Subbanna S. Unveiling the Potential of Phytocannabinoids: Exploring Marijuana's Lesser-Known Constituents for Neurological Disorders. Biomolecules 2024; 14:1296. [PMID: 39456229 PMCID: PMC11506053 DOI: 10.3390/biom14101296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/11/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Cannabis sativa is known for producing over 120 distinct phytocannabinoids, with Δ9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD) being the most prominent, primarily in their acidic forms. Beyond Δ9-THC and CBD, a wide array of lesser-known phytocannabinoids, along with terpenes, flavonoids, and alkaloids, demonstrate diverse pharmacological activities, interacting with the endocannabinoid system (eCB) and other biological pathways. These compounds, characterized by phenolic structures and hydroxyl groups, possess lipophilic properties, allowing them to cross the blood-brain barrier (BBB) effectively. Notably, their antioxidant, anti-inflammatory, and neuro-modulatory effects position them as promising agents in treating neurodegenerative disorders. While research has extensively examined the neuropsychiatric and neuroprotective effects of Δ9-THC, other minor phytocannabinoids remain underexplored. Due to the well-established neuroprotective potential of CBD, there is growing interest in the therapeutic benefits of non-psychotropic minor phytocannabinoids (NMPs) in brain disorders. This review highlights the emerging research on these lesser-known compounds and their neuroprotective potential. It offers insights into their therapeutic applications across various major neurological conditions.
Collapse
Affiliation(s)
- Balapal S. Basavarajappa
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA;
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Shivakumar Subbanna
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA;
| |
Collapse
|
20
|
Meier P, Glasmacher S, Salmen A, Chan A, Gertsch J. Comparative targeted lipidomics between serum and cerebrospinal fluid of multiple sclerosis patients shows sex and age-specific differences of endocannabinoids and glucocorticoids. Acta Neuropathol Commun 2024; 12:160. [PMID: 39385315 PMCID: PMC11465707 DOI: 10.1186/s40478-024-01864-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/14/2024] [Indexed: 10/12/2024] Open
Abstract
Multiple sclerosis (MS) is a complex chronic neuroinflammatory disease characterized by demyelination leading to neuronal dysfunction and neurodegeneration manifested by various neurological impairments. The endocannabinoid system (ECS) is a lipid signalling network, which plays multiple roles in the central nervous system and the periphery, including synaptic signal transmission and modulation of inflammation. The ECS has been identified as a potential target for the development of novel therapeutic interventions in MS patients. It remains unclear whether ECS-associated metabolites are changed in MS and could serve as biomarkers in blood or cerebrospinal fluid (CSF). In this retrospective study we applied targeted lipidomics to matching CSF and serum samples of 74 MS and 80 non-neuroinflammatory control patients. We found that MS-associated lipidomic changes overall did not coincide between CSF and serum. While glucocorticoids correlated positively, only the endocannabinoid (eCB) 2-arachidonoyl glycerol (2-AG) showed a weak positive correlation (r = 0.3, p < 0.05) between CSF and serum. Peptide endocannabinoids could be quantified for the first time in CSF but did not differ between MS and controls. MS patients showed elevated levels of prostaglandin E2 and steaorylethanolamide in serum, and 2-oleoylglycerol and cortisol in CSF. Sex-specific differences were found in CSF of MS patients showing increased levels of 2-AG and glucocorticoids in males only. Overall, arachidonic acid was elevated in CSF of males. Interestingly, CSF eCBs correlated positively with age only in the control patients due to the increased levels of eCBs in young relapsing-remitting MS patients. Our findings reveal significant discrepancies between CSF and serum, underscoring that measuring eCBs in blood matrices is not optimal for detecting MS-associated changes in the central nervous system. The identified sex and age-specific changes of analytes of the stress axis and ECS specifically in the CSF of MS patients supports the role of the ECS in MS and may be relevant for drug development strategies.
Collapse
Affiliation(s)
- Philip Meier
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, Bern, 3012, Switzerland
| | - Sandra Glasmacher
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, Bern, 3012, Switzerland
- Synendos Therapeutics AG, Barfuesserplatz 3, Basel, 4051, Switzerland
| | - Anke Salmen
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 16, Bern, 3010, Switzerland
- Department of Neurology, St. Josef-Hospital, Ruhr-University, Gudrunstrasse 56, 44791, Bochum, Germany
| | - Andrew Chan
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 16, Bern, 3010, Switzerland
| | - Jürg Gertsch
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, Bern, 3012, Switzerland.
| |
Collapse
|
21
|
Zhu D, Zhang J, Ma X, Hu M, Gao F, Hashem JB, Lyu J, Wei J, Cui Y, Qiu S, Chen C. Overabundant endocannabinoids in neurons are detrimental to cognitive function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.17.613513. [PMID: 39345517 PMCID: PMC11430108 DOI: 10.1101/2024.09.17.613513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
2-Arachidonoylglycerol (2-AG) is the most prevalent endocannabinoid involved in maintaining brain homeostasis. Previous studies have demonstrated that inactivating monoacylglycerol lipase (MAGL), the primary enzyme responsible for degrading 2-AG in the brain, alleviates neuropathology and prevents synaptic and cognitive decline in animal models of neurodegenerative diseases. However, we show that selectively inhibiting 2-AG metabolism in neurons impairs cognitive function in mice. This cognitive impairment appears to result from decreased expression of synaptic proteins and synapse numbers, impaired long-term synaptic plasticity and cortical circuit functional connectivity, and diminished neurogenesis. Interestingly, the synaptic and cognitive deficits induced by neuronal MAGL inactivation can be counterbalanced by inhibiting astrocytic 2-AG metabolism. Transcriptomic analyses reveal that inhibiting neuronal 2-AG degradation leads to widespread changes in expression of genes associated with synaptic function. These findings suggest that crosstalk in 2-AG signaling between astrocytes and neurons is crucial for maintaining synaptic and cognitive functions and that excessive 2-AG in neurons alone is detrimental to cognitive function.
Collapse
Affiliation(s)
- Dexiao Zhu
- Department of Cellular and Integrative Physiology, Joe R. & Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229
| | - Jian Zhang
- Department of Cellular and Integrative Physiology, Joe R. & Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229
| | - Xiaokuang Ma
- Departments of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ 85004, USA
| | - Mei Hu
- Department of Cellular and Integrative Physiology, Joe R. & Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229
| | - Fei Gao
- Department of Cellular and Integrative Physiology, Joe R. & Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229
| | - Jack B. Hashem
- Department of Cellular and Integrative Physiology, Joe R. & Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229
| | - Jianlu Lyu
- Department of Cellular and Integrative Physiology, Joe R. & Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229
| | - Jing Wei
- Departments of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ 85004, USA
| | - Yuehua Cui
- Departments of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ 85004, USA
| | - Shenfeng Qiu
- Departments of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ 85004, USA
| | - Chu Chen
- Department of Cellular and Integrative Physiology, Joe R. & Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229
| |
Collapse
|
22
|
Aguirre-Rodríguez CA, Delgado A, Alatorre A, Oviedo-Chávez A, Martínez-Escudero JR, Barrientos R, Querejeta E. Local activation of CB1 receptors by synthetic and endogenous cannabinoids dampens burst firing mode of reticular thalamic nucleus neurons in rats under ketamine anesthesia. Exp Brain Res 2024; 242:2137-2157. [PMID: 38980339 DOI: 10.1007/s00221-024-06889-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024]
Abstract
The reticular thalamic nucleus (RTN) is a thin shell that covers the dorsal thalamus and controls the overall information flow from the thalamus to the cerebral cortex through GABAergic projections that contact thalamo-cortical neurons (TC). RTN neurons receive glutamatergic afferents fibers from neurons of the sixth layer of the cerebral cortex and from TC collaterals. The firing mode of RTN neurons facilitates the generation of sleep-wake cycles; a tonic mode or desynchronized mode occurs during wake and REM sleep and a burst-firing mode or synchronized mode is associated with deep sleep. Despite the presence of cannabinoid receptors CB1 (CB1Rs) and mRNA that encodes these receptors in RTN neurons, there are few works that have analyzed the participation of endocannabinoid-mediated transmission on the electrical activity of RTN. Here, we locally blocked or activated CB1Rs in ketamine anesthetized rats to analyze the spontaneous extracellular spiking activity of RTN neurons. Our results show the presence of a tonic endocannabinoid input, since local infusion of AM 251, an antagonist/inverse agonist, modifies RTN neurons electrical activity; furthermore, local activation of CB1Rs by anandamide or WIN 55212-2 produces heterogeneous effects in the basal spontaneous spiking activity, where the main effect is an increase in the spiking rate accompanied by a decrease in bursting activity in a dose-dependent manner; this effect is inhibited by AM 251. In addition, previous activation of GABA-A receptors suppresses the effects of CB1Rs on reticular neurons. Our results show that local activation of CB1Rs primarily diminishes the burst firing mode of RTn neurons.
Collapse
Affiliation(s)
- Carlos A Aguirre-Rodríguez
- Sección de Investigación y Posgrado de la Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Casco de Santo Tomás, Ciudad de México, 11340, México
| | - Alfonso Delgado
- Departamento de Fisiología Experimental, Facultad de Medicina y Ciencias Biomédicas, Universidad Autónoma de Chihuahua, Circuito Universitario Campus II, 31127, Chihuahua, Chihuahua, México
| | - Alberto Alatorre
- Academia de Fisiología, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Casco de Santo Tomás, Ciudad de México, 11340, México
- Sección de Investigación y Posgrado de la Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Casco de Santo Tomás, Ciudad de México, 11340, México
| | - Aldo Oviedo-Chávez
- Academia de Fisiología, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Casco de Santo Tomás, Ciudad de México, 11340, México
- Sección de Investigación y Posgrado de la Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Casco de Santo Tomás, Ciudad de México, 11340, México
| | - José R Martínez-Escudero
- Sección de Investigación y Posgrado de la Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Casco de Santo Tomás, Ciudad de México, 11340, México
| | - Rafael Barrientos
- Academia de Fisiología, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Casco de Santo Tomás, Ciudad de México, 11340, México
- Sección de Investigación y Posgrado de la Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Casco de Santo Tomás, Ciudad de México, 11340, México
| | - Enrique Querejeta
- Academia de Fisiología, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Casco de Santo Tomás, Ciudad de México, 11340, México.
- Sección de Investigación y Posgrado de la Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Casco de Santo Tomás, Ciudad de México, 11340, México.
| |
Collapse
|
23
|
Medeiros AC, Medeiros P, Pigatto GR, Maione S, Coimbra NC, de Freitas RL. Cannabidiol in the dorsal hippocampus attenuates emotional and cognitive impairments related to neuropathic pain: The role of prelimbic neocortex-hippocampal connections. Prog Neuropsychopharmacol Biol Psychiatry 2024; 134:111039. [PMID: 38797491 DOI: 10.1016/j.pnpbp.2024.111039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND AND PURPOSE Chronic neuropathic pain (NP) is commonly associated with cognitive and emotional impairments. Cannabidiol (CBD) presents a broad spectrum of action with a potential analgesic effect. This work investigates the CBD effect on comorbidity between chronic NP, depression, and memory impairment. EXPERIMENTAL APPROACH The connection between the neocortex and the hippocampus was investigated with biotinylated dextran amine (BDA) deposits in the prelimbic cortex (PrL). Wistar rats were submitted to chronic constriction injury (CCI) of the sciatic nerve and CA1 treatment with CBD (15, 30, 60 nmol). KEY RESULTS BDA-labeled perikarya and terminal buttons were found in CA1 and dentate gyrus. CCI-induced mechanical and cold allodynia increased c-Fos protein expression in the PrL and CA1. The number of astrocytes in PrL and CA1 increased, and the number of neuroblasts decreased in CA1. Animals submitted to CCI procedure showed increasing depressive-like behaviors, such as memory impairment. CBD (60 nmol) treatment decreased mechanical and cold allodynia, attenuated depressive-associated behaviors, and improved memory performance. Cobalt chloride (CoCl2: 1 nM), WAY-100635 (0.37 nmol), and AM251 (100 nmol) intra-PrL reversed the effect of CA1 treatment with CBD (60 nmol) on nociceptive, cognitive, and depressive behaviors. CONCLUSION CBD represents a promising therapeutic perspective in the pharmacological treatment of chronic NP and associated comorbidities such as depression and memory impairments. The CBD effects possibly recruit the CA1-PrL pathway, inducing neuroplasticity. CBD acute treatment into the CA1 produces functional and molecular morphological improvements.
Collapse
Affiliation(s)
- Ana Carolina Medeiros
- Multi-User Center of Neuroelectrophysiology, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, SP 14049-900, Brazil; Laboratory of Neurosciences of Pain & Emotions, Department of Surgery and Anatomy, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, SP 14049-900, Brazil; Behavioural Neurosciences Institute (INeC), Av. do Café, 2450, Ribeirão Preto, SP 14050-220, Brazil
| | - Priscila Medeiros
- Multi-User Center of Neuroelectrophysiology, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, SP 14049-900, Brazil; Laboratory of Neurosciences of Pain & Emotions, Department of Surgery and Anatomy, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, SP 14049-900, Brazil; Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, SP 14049-900, Brazil; Department of General and Specialized Nursing, Ribeirão Preto Nursing School of the University of São Paulo (EERP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, SP 14049-900, Brazil
| | - Glauce Regina Pigatto
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, SP 14049-900, Brazil
| | - Sabatino Maione
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples 80138, Italy
| | - Norberto Cysne Coimbra
- Multi-User Center of Neuroelectrophysiology, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, SP 14049-900, Brazil; Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, SP 14049-900, Brazil; Behavioural Neurosciences Institute (INeC), Av. do Café, 2450, Ribeirão Preto, SP 14050-220, Brazil
| | - Renato Leonardo de Freitas
- Multi-User Center of Neuroelectrophysiology, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, SP 14049-900, Brazil; Laboratory of Neurosciences of Pain & Emotions, Department of Surgery and Anatomy, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, SP 14049-900, Brazil; Behavioural Neurosciences Institute (INeC), Av. do Café, 2450, Ribeirão Preto, SP 14050-220, Brazil; Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples 80138, Italy.
| |
Collapse
|
24
|
van Hooijdonk CFM, Balvers MGJ, van der Pluijm M, Smith CLC, de Haan L, Schrantee A, Yaqub M, Witkamp RF, van de Giessen E, van Amelsvoort TAMJ, Booij J, Selten JP. Endocannabinoid levels in plasma and neurotransmitters in the brain: a preliminary report on patients with a psychotic disorder and healthy individuals. Psychol Med 2024; 54:2189-2199. [PMID: 38389452 DOI: 10.1017/s0033291724000291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
BACKGROUND Interactions between the endocannabinoid system (ECS) and neurotransmitter systems might mediate the risk of developing a schizophrenia spectrum disorder (SSD). Consequently, we investigated in patients with SSD and healthy controls (HC) the relations between (1) plasma concentrations of two prototypical endocannabinoids (N-arachidonoylethanolamine [anandamide] and 2-arachidonoylglycerol [2-AG]) and (2) striatal dopamine synthesis capacity (DSC), and glutamate and y-aminobutyric acid (GABA) levels in the anterior cingulate cortex (ACC). As anandamide and 2-AG might reduce the activity of these neurotransmitters, we hypothesized negative correlations between their plasma levels and the abovementioned neurotransmitters in both groups. METHODS Blood samples were obtained from 18 patients and 16 HC to measure anandamide and 2-AG plasma concentrations. For all subjects, we acquired proton magnetic resonance spectroscopy scans to assess Glx (i.e. glutamate plus glutamine) and GABA + (i.e. GABA plus macromolecules) concentrations in the ACC. Ten patients and 14 HC also underwent [18F]F-DOPA positron emission tomography for assessment of striatal DSC. Multiple linear regression analyses were used to investigate the relations between the outcome measures. RESULTS A negative association between 2-AG plasma concentration and ACC Glx concentration was found in patients (p = 0.008). We found no evidence of other significant relationships between 2-AG or anandamide plasma concentrations and dopaminergic, glutamatergic, or GABAergic measures in either group. CONCLUSIONS Our preliminary results suggest an association between peripheral 2-AG and ACC Glx levels in patients.
Collapse
Affiliation(s)
- Carmen F M van Hooijdonk
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), University of Maastricht, Maastricht, The Netherlands
- Rivierduinen, Institute for Mental Health Care, Leiden, The Netherlands
| | - Michiel G J Balvers
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Marieke van der Pluijm
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Charlotte L C Smith
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Lieuwe de Haan
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Anouk Schrantee
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Maqsood Yaqub
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Renger F Witkamp
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Elsmarieke van de Giessen
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Therese A M J van Amelsvoort
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), University of Maastricht, Maastricht, The Netherlands
| | - Jan Booij
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jean-Paul Selten
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), University of Maastricht, Maastricht, The Netherlands
- Rivierduinen, Institute for Mental Health Care, Leiden, The Netherlands
| |
Collapse
|
25
|
Soares-Cardoso C, Leal S, Sá SI, Dantas-Barros R, Dinis-Oliveira RJ, Faria J, Barbosa J. Unraveling the Hippocampal Molecular and Cellular Alterations behind Tramadol and Tapentadol Neurobehavioral Toxicity. Pharmaceuticals (Basel) 2024; 17:796. [PMID: 38931463 PMCID: PMC11206790 DOI: 10.3390/ph17060796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Tramadol and tapentadol are chemically related opioids prescribed for the analgesia of moderate to severe pain. Although safer than classical opioids, they are associated with neurotoxicity and behavioral dysfunction, which arise as a concern, considering their central action and growing misuse and abuse. The hippocampal formation is known to participate in memory and learning processes and has been documented to contribute to opioid dependence. Accordingly, the present study assessed molecular and cellular alterations in the hippocampal formation of Wistar rats intraperitoneally administered with 50 mg/kg tramadol or tapentadol for eight alternate days. Alterations were found in serum hydrogen peroxide, cysteine, homocysteine, and dopamine concentrations upon exposure to one or both opioids, as well as in hippocampal 8-hydroxydeoxyguanosine and gene expression levels of a panel of neurotoxicity, neuroinflammation, and neuromodulation biomarkers, assessed through quantitative real-time polymerase chain reaction (qRT-PCR). Immunohistochemical analysis of hippocampal formation sections showed increased glial fibrillary acidic protein (GFAP) and decreased cluster of differentiation 11b (CD11b) protein expression, suggesting opioid-induced astrogliosis and microgliosis. Collectively, the results emphasize the hippocampal neuromodulator effects of tramadol and tapentadol, with potential behavioral implications, underlining the need to prescribe and use both opioids cautiously.
Collapse
Affiliation(s)
- Cristiana Soares-Cardoso
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116 Gandra, Portugal; (C.S.-C.); (S.L.); (R.D.-B.); or (R.J.D.-O.)
- UCIBIO—Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
| | - Sandra Leal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116 Gandra, Portugal; (C.S.-C.); (S.L.); (R.D.-B.); or (R.J.D.-O.)
- UCIBIO—Applied Molecular Biosciences Unit, Toxicologic Pathology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
| | - Susana I. Sá
- RISE-HEALTH, Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto, Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal;
| | - Rita Dantas-Barros
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116 Gandra, Portugal; (C.S.-C.); (S.L.); (R.D.-B.); or (R.J.D.-O.)
- UCIBIO—Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
| | - Ricardo Jorge Dinis-Oliveira
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116 Gandra, Portugal; (C.S.-C.); (S.L.); (R.D.-B.); or (R.J.D.-O.)
- UCIBIO—Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
- Department of Public Health and Forensic Sciences, and Medical Education, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- FOREN-Forensic Science Experts, Av. Dr. Mário Moutinho 33-A, 1400-136 Lisboa, Portugal
| | - Juliana Faria
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116 Gandra, Portugal; (C.S.-C.); (S.L.); (R.D.-B.); or (R.J.D.-O.)
- UCIBIO—Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
| | - Joana Barbosa
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116 Gandra, Portugal; (C.S.-C.); (S.L.); (R.D.-B.); or (R.J.D.-O.)
- UCIBIO—Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
| |
Collapse
|
26
|
Brockhaus J, Kahl I, Ahmad M, Repetto D, Reissner C, Missler M. Conditional Knockout of Neurexins Alters the Contribution of Calcium Channel Subtypes to Presynaptic Ca 2+ Influx. Cells 2024; 13:981. [PMID: 38891114 PMCID: PMC11171642 DOI: 10.3390/cells13110981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/23/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Presynaptic Ca2+ influx through voltage-gated Ca2+ channels (VGCCs) is a key signal for synaptic vesicle release. Synaptic neurexins can partially determine the strength of transmission by regulating VGCCs. However, it is unknown whether neurexins modulate Ca2+ influx via all VGCC subtypes similarly. Here, we performed live cell imaging of synaptic boutons from primary hippocampal neurons with a Ca2+ indicator. We used the expression of inactive and active Cre recombinase to compare control to conditional knockout neurons lacking either all or selected neurexin variants. We found that reduced total presynaptic Ca2+ transients caused by the deletion of all neurexins were primarily due to the reduced contribution of P/Q-type VGCCs. The deletion of neurexin1α alone also reduced the total presynaptic Ca2+ influx but increased Ca2+ influx via N-type VGCCs. Moreover, we tested whether the decrease in Ca2+ influx induced by activation of cannabinoid receptor 1 (CB1-receptor) is modulated by neurexins. Unlike earlier observations emphasizing a role for β-neurexins, we found that the decrease in presynaptic Ca2+ transients induced by CB1-receptor activation depended more strongly on the presence of α-neurexins in hippocampal neurons. Together, our results suggest that neurexins have unique roles in the modulation of presynaptic Ca2+ influx through VGCC subtypes and that different neurexin variants may affect specific VGCCs.
Collapse
Affiliation(s)
- Johannes Brockhaus
- Institute of Anatomy and Molecular Neurobiology, University of Münster, 48149 Münster, Germany
| | - Iris Kahl
- Institute of Anatomy and Molecular Neurobiology, University of Münster, 48149 Münster, Germany
| | - Mohiuddin Ahmad
- Institute of Anatomy and Molecular Neurobiology, University of Münster, 48149 Münster, Germany
- Department of Cell Biology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Daniele Repetto
- Institute of Anatomy and Molecular Neurobiology, University of Münster, 48149 Münster, Germany
| | - Carsten Reissner
- Institute of Anatomy and Molecular Neurobiology, University of Münster, 48149 Münster, Germany
| | - Markus Missler
- Institute of Anatomy and Molecular Neurobiology, University of Münster, 48149 Münster, Germany
| |
Collapse
|
27
|
Haller J. Herbal Cannabis and Depression: A Review of Findings Published over the Last Three Years. Pharmaceuticals (Basel) 2024; 17:689. [PMID: 38931356 PMCID: PMC11206863 DOI: 10.3390/ph17060689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Public perception contrasts scientific findings on the depression-related effects of cannabis. However, earlier studies were performed when cannabis was predominantly illegal, its production was mostly uncontrolled, and the idea of medical cannabis was incipient only. We hypothesized that recent changes in attitudes and legislations may have favorably affected research. In addition, publication bias against cannabis may have also decreased. To investigate this hypothesis, we conducted a review of research studies published over the last three years. We found 156 relevant research articles. In most cross-sectional studies, depression was higher in those who consumed cannabis than in those who did not. An increase in cannabis consumption was typically followed by an increase in depression, whereas withdrawal from cannabis ameliorated depression in most cases. Although medical cannabis reduced depression in most studies, none of these were placebo-controlled. In clinical studies published in the same period, the placebo also ameliorated depression and, in addition, the average effect size of the placebo was larger than the average effect size of medical cannabis. We also investigated the plausibility of the antidepressant effects of cannabis by reviewing molecular and pharmacological studies. Taken together, the reviewed findings do not support the antidepressant effects of herbal cannabis.
Collapse
Affiliation(s)
- Jozsef Haller
- Drug Research Institute, 1137 Budapest, Hungary;
- Department of Criminal Psychology, Faculty of Law Enforcement, Ludovika University of Public Service, 1083 Budapest, Hungary
| |
Collapse
|
28
|
Wiącek J, Podgórski T, Kusy K, Łoniewski I, Skonieczna-Żydecka K, Karolkiewicz J. Evaluating the Impact of Probiotic Therapy on the Endocannabinoid System, Pain, Sleep and Fatigue: A Randomized, Double-Blind, Placebo-Controlled Trial in Dancers. Int J Mol Sci 2024; 25:5611. [PMID: 38891799 PMCID: PMC11171887 DOI: 10.3390/ijms25115611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/16/2024] [Accepted: 05/19/2024] [Indexed: 06/21/2024] Open
Abstract
Emerging research links the endocannabinoid system to gut microbiota, influencing nociception, mood, and immunity, yet the molecular interactions remain unclear. This study focused on the effects of probiotics on ECS markers-cannabinoid receptor type 2 (CB2) and fatty acid amide hydrolase (FAAH)-in dancers, a group selected due to their high exposure to physical and psychological stress. In a double-blind, placebo-controlled trial (ClinicalTrials.gov NCT05567653), 15 dancers were assigned to receive either a 12-week regimen of Lactobacillus helveticus Rosell-52 and Bifidobacterium longum Rosell-17 or a placebo (PLA: n = 10, PRO: n = 5). There were no significant changes in CB2 (probiotic: 0.55 to 0.29 ng/mL; placebo: 0.86 to 0.72 ng/mL) or FAAH levels (probiotic: 5.93 to 6.02 ng/mL; placebo: 6.46 to 6.94 ng/mL; p > 0.05). A trend toward improved sleep quality was observed in the probiotic group, while the placebo group showed a decline (PRO: from 1.4 to 1.0; PLA: from 0.8 to 1.2; p = 0.07841). No other differences were noted in assessed outcomes (pain and fatigue). Probiotic supplementation showed no significant impact on CB2 or FAAH levels, pain, or fatigue but suggested potential benefits for sleep quality, suggesting an area for further research.
Collapse
Affiliation(s)
- Jakub Wiącek
- Department of Food and Nutrition, Poznan University of Physical Education, 61-871 Poznan, Poland
| | - Tomasz Podgórski
- Department of Biochemistry and Physiology, Poznan University of Physical Education, 61-871 Poznan, Poland;
| | - Krzysztof Kusy
- Department of Athletics, Strength and Conditioning, Poznan University of Physical Education, 61-871 Poznan, Poland;
| | - Igor Łoniewski
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460 Szczecin, Poland; (I.Ł.); (K.S.-Ż.)
| | - Karolina Skonieczna-Żydecka
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460 Szczecin, Poland; (I.Ł.); (K.S.-Ż.)
| | - Joanna Karolkiewicz
- Department of Food and Nutrition, Poznan University of Physical Education, 61-871 Poznan, Poland
| |
Collapse
|
29
|
Wu J, Hua L, Liu W, Yang X, Tang X, Yuan S, Zhou S, Ye Q, Cui S, Wu Z, Lai L, Tang C, Wang L, Yi W, Yao L, Xu N. Electroacupuncture Exerts Analgesic Effects by Restoring Hyperactivity via Cannabinoid Type 1 Receptors in the Anterior Cingulate Cortex in Chronic Inflammatory Pain. Mol Neurobiol 2024; 61:2949-2963. [PMID: 37957422 PMCID: PMC11043129 DOI: 10.1007/s12035-023-03760-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023]
Abstract
As one of the commonly used therapies for pain-related diseases in clinical practice, electroacupuncture (EA) has been proven to be effective. In chronic pain, neurons in the anterior cingulate cortex (ACC) have been reported to be hyperactive, while the mechanism by which cannabinoid type 1 receptors (CB1Rs) in the ACC are involved in EA-mediated analgesic mechanisms remains to be elucidated. In this study, we investigated the potential central mechanism of EA analgesia. A combination of techniques was used to detect the expression and function of CB1R, including quantitative real-time PCR (q-PCR), western blot (WB), immunofluorescence (IF), enzyme-linked immunosorbent assay (ELISA), and in vivo multichannel optical fibre recording, and neuronal activity was examined by in vivo two-photon imaging and in vivo electrophysiological recording. We found that the hyperactivity of pyramidal neurons in the ACC during chronic inflammatory pain is associated with impairment of the endocannabinoid system. EA at the Zusanli acupoint (ST36) can reduce the hyperactivity of pyramidal neurons and exert analgesic effects by increasing the endocannabinoid ligands anandamide (AEA), 2-arachidonoylglycerol (2-AG) and CB1R. More importantly, CB1R in the ACC is one of the necessary conditions for the EA-mediated analgesia effect, which may be related to the negative regulation of the N-methyl-D-aspartate receptor (NMDAR) by the activation of CB1R downregulating NR1 subunits of NMDAR (NR1) via histidine triad nucleotide-binding protein 1 (HINT1). Our study suggested that the endocannabinoid system in the ACC plays an important role in acupuncture analgesia and provides evidence for a central mechanism of EA-mediated analgesia.
Collapse
Affiliation(s)
- Junshang Wu
- Department of Acupuncture and Moxibustion, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Libo Hua
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenhao Liu
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoyun Yang
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
- Research Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaorong Tang
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Si Yuan
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Sheng Zhou
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qiuping Ye
- Department of Rehabilitation MedicineThe Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Shuai Cui
- Acupuncture and Meridian Research Institute, Anhui Academy of Chinese Medicine, Anhui, China
| | - Zhennan Wu
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lanfeng Lai
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chunzhi Tang
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lin Wang
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei Yi
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lulu Yao
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Nenggui Xu
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
30
|
de Fátima Dos Santos Sampaio M, de Paiva YB, Sampaio TB, Pereira MG, Coimbra NC. Therapeutic applicability of cannabidiol and other phytocannabinoids in epilepsy, multiple sclerosis and Parkinson's disease and in comorbidity with psychiatric disorders. Basic Clin Pharmacol Toxicol 2024; 134:574-601. [PMID: 38477419 DOI: 10.1111/bcpt.13997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024]
Abstract
Studies have demonstrated the neuroprotective effect of cannabidiol (CBD) and other Cannabis sativa L. derivatives on diseases of the central nervous system caused by their direct or indirect interaction with endocannabinoid system-related receptors and other molecular targets, such as the 5-HT1A receptor, which is a potential pharmacological target of CBD. Interestingly, CBD binding with the 5-HT1A receptor may be suitable for the treatment of epilepsies, parkinsonian syndromes and amyotrophic lateral sclerosis, in which the 5-HT1A serotonergic receptor plays a key role. The aim of this review was to provide an overview of cannabinoid effects on neurological disorders, such as epilepsy, multiple sclerosis and Parkinson's diseases, and discuss their possible mechanism of action, highlighting interactions with molecular targets and the potential neuroprotective effects of phytocannabinoids. CBD has been shown to have significant therapeutic effects on epilepsy and Parkinson's disease, while nabiximols contribute to a reduction in spasticity and are a frequent option for the treatment of multiple sclerosis. Although there are multiple theories on the therapeutic potential of cannabinoids for neurological disorders, substantially greater progress in the search for strong scientific evidence of their pharmacological effectiveness is needed.
Collapse
Affiliation(s)
- Maria de Fátima Dos Santos Sampaio
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), São Paulo, Brazil
- Center for Agropastoralism Sciences and Technology (CCTA), North Fluminense State University (UENF), Rio de Janeiro, Brazil
- Psychobiology Division, Behavioural Neurosciences Institute (INeC), Ribeirão Preto, São Paulo, Brazil
| | - Yara Bezerra de Paiva
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), São Paulo, Brazil
- Psychobiology Division, Behavioural Neurosciences Institute (INeC), Ribeirão Preto, São Paulo, Brazil
- NAP-USP-Neurobiology of Emotions Research Center (NuPNE), Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
| | - Tuane Bazanella Sampaio
- Pharmacology Post-Graduation Program, Health Sciences Centre, Santa Maria Federal University, Santa Maria, Brazil
| | - Messias Gonzaga Pereira
- Center for Agropastoralism Sciences and Technology (CCTA), North Fluminense State University (UENF), Rio de Janeiro, Brazil
| | - Norberto Cysne Coimbra
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), São Paulo, Brazil
- Psychobiology Division, Behavioural Neurosciences Institute (INeC), Ribeirão Preto, São Paulo, Brazil
- NAP-USP-Neurobiology of Emotions Research Center (NuPNE), Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
31
|
Costas-Insua C, Hermoso-López A, Moreno E, Montero-Fernández C, Álvaro-Blázquez A, Maroto IB, Sánchez-Ruiz A, Diez-Alarcia R, Blázquez C, Morales P, Canela EI, Casadó V, Urigüen L, Perea G, Bellocchio L, Rodríguez-Crespo I, Guzmán M. The CB 1 receptor interacts with cereblon and drives cereblon deficiency-associated memory shortfalls. EMBO Mol Med 2024; 16:755-783. [PMID: 38514794 PMCID: PMC11018632 DOI: 10.1038/s44321-024-00054-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 02/26/2024] [Accepted: 03/05/2024] [Indexed: 03/23/2024] Open
Abstract
Cereblon/CRBN is a substrate-recognition component of the Cullin4A-DDB1-Roc1 E3 ubiquitin ligase complex. Destabilizing mutations in the human CRBN gene cause a form of autosomal recessive non-syndromic intellectual disability (ARNSID) that is modelled by knocking-out the mouse Crbn gene. A reduction in excitatory neurotransmission has been proposed as an underlying mechanism of the disease. However, the precise factors eliciting this impairment remain mostly unknown. Here we report that CRBN molecules selectively located on glutamatergic neurons are necessary for proper memory function. Combining various in vivo approaches, we show that the cannabinoid CB1 receptor (CB1R), a key suppressor of synaptic transmission, is overactivated in CRBN deficiency-linked ARNSID mouse models, and that the memory deficits observed in these animals can be rescued by acute CB1R-selective pharmacological antagonism. Molecular studies demonstrated that CRBN interacts physically with CB1R and impairs the CB1R-Gi/o-cAMP-PKA pathway in a ubiquitin ligase-independent manner. Taken together, these findings unveil that CB1R overactivation is a driving mechanism of CRBN deficiency-linked ARNSID and anticipate that the antagonism of CB1R could constitute a new therapy for this orphan disease.
Collapse
Affiliation(s)
- Carlos Costas-Insua
- Department of Biochemistry and Molecular Biology, Instituto Universitario de Investigación Neuroquímica (IUIN), Complutense University, 28040, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034, Madrid, Spain
| | - Alba Hermoso-López
- Department of Biochemistry and Molecular Biology, Instituto Universitario de Investigación Neuroquímica (IUIN), Complutense University, 28040, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034, Madrid, Spain
| | - Estefanía Moreno
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology and Institute of Biomedicine of the University of Barcelona, University of Barcelona, 08028, Barcelona, Spain
| | - Carlos Montero-Fernández
- Department of Biochemistry and Molecular Biology, Instituto Universitario de Investigación Neuroquímica (IUIN), Complutense University, 28040, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034, Madrid, Spain
| | - Alicia Álvaro-Blázquez
- Department of Biochemistry and Molecular Biology, Instituto Universitario de Investigación Neuroquímica (IUIN), Complutense University, 28040, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034, Madrid, Spain
| | - Irene B Maroto
- Department of Biochemistry and Molecular Biology, Instituto Universitario de Investigación Neuroquímica (IUIN), Complutense University, 28040, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034, Madrid, Spain
| | | | - Rebeca Diez-Alarcia
- Department of Pharmacology, University of the Basque Country/Euskal Herriko Unibertsitatea, 48940, Leioa, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), 28029, Madrid, Spain
- BioBizkaia Health Research Institute, 48903, Barakaldo, Bizkaia, Spain
| | - Cristina Blázquez
- Department of Biochemistry and Molecular Biology, Instituto Universitario de Investigación Neuroquímica (IUIN), Complutense University, 28040, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034, Madrid, Spain
| | - Paula Morales
- Instituto de Química Médica, CSIC, 28006, Madrid, Spain
| | - Enric I Canela
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology and Institute of Biomedicine of the University of Barcelona, University of Barcelona, 08028, Barcelona, Spain
| | - Vicent Casadó
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology and Institute of Biomedicine of the University of Barcelona, University of Barcelona, 08028, Barcelona, Spain
| | - Leyre Urigüen
- Department of Pharmacology, University of the Basque Country/Euskal Herriko Unibertsitatea, 48940, Leioa, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), 28029, Madrid, Spain
- BioBizkaia Health Research Institute, 48903, Barakaldo, Bizkaia, Spain
| | | | - Luigi Bellocchio
- Institut National de la Santé et de la Recherche Médicale (INSERM) and University of Bordeaux, NeuroCentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, 33077, Bordeaux, France
| | - Ignacio Rodríguez-Crespo
- Department of Biochemistry and Molecular Biology, Instituto Universitario de Investigación Neuroquímica (IUIN), Complutense University, 28040, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034, Madrid, Spain
| | - Manuel Guzmán
- Department of Biochemistry and Molecular Biology, Instituto Universitario de Investigación Neuroquímica (IUIN), Complutense University, 28040, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029, Madrid, Spain.
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034, Madrid, Spain.
| |
Collapse
|
32
|
Boujenoui F, Nkambeu B, Salem JB, Castano Uruena JD, Beaudry F. Cannabidiol and Tetrahydrocannabinol Antinociceptive Activity is Mediated by Distinct Receptors in Caenorhabditis elegans. Neurochem Res 2024; 49:935-948. [PMID: 38141130 DOI: 10.1007/s11064-023-04069-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/05/2023] [Accepted: 11/16/2023] [Indexed: 12/24/2023]
Abstract
Cannabis has gained popularity in recent years as a substitute treatment for pain following the risks of typical treatments uncovered by the opioid crisis. The active ingredients frequently associated with pain-relieving effects are the phytocannabinoids Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD), but their effectiveness and mechanisms of action are still under research. In this study, we used Caenorhabditis elegans, an ideal model organism for the study of nociception that expresses mammal ortholog cannabinoid (NPR-19 and NPR-32) and vanilloid (OSM-9 and OCR-2) receptors. Here, we evaluated the antinociceptive activity of THC and CBD, identifying receptor targets and several metabolic pathways activated following exposure to these molecules. The thermal avoidance index was used to phenotype each tested C. elegans experimental group. The data revealed for the first time that THC and CBD decreases the nocifensive response of C. elegans to noxious heat (32-35 °C). The effect was reversed 6 h post- CBD exposure but not for THC. Further investigations using specific mutants revealed CBD and THC are targeting different systems, namely the vanilloid and cannabinoid systems, respectively. Proteomic analysis revealed differences following Reactome pathways and gene ontology biological process database enrichment analyses between CBD or THC-treated nematodes and provided insights into potential targets for future drug development.
Collapse
Affiliation(s)
- Fatma Boujenoui
- Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, Québec, J2S 2M2, Canada
- Centre de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montréal, Québec, Canada
| | - Bruno Nkambeu
- Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, Québec, J2S 2M2, Canada
- Centre de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montréal, Québec, Canada
| | - Jennifer Ben Salem
- Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, Québec, J2S 2M2, Canada
- Centre de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montréal, Québec, Canada
| | - Jesus David Castano Uruena
- Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, Québec, J2S 2M2, Canada
- Centre de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montréal, Québec, Canada
| | - Francis Beaudry
- Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, Québec, J2S 2M2, Canada.
- Centre de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
33
|
Zhu C, Lan X, Wei Z, Yu J, Zhang J. Allosteric modulation of G protein-coupled receptors as a novel therapeutic strategy in neuropathic pain. Acta Pharm Sin B 2024; 14:67-86. [PMID: 38239234 PMCID: PMC10792987 DOI: 10.1016/j.apsb.2023.07.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/09/2023] [Accepted: 07/12/2023] [Indexed: 01/22/2024] Open
Abstract
Neuropathic pain is a debilitating pathological condition that presents significant therapeutic challenges in clinical practice. Unfortunately, current pharmacological treatments for neuropathic pain lack clinical efficacy and often lead to harmful adverse reactions. As G protein-coupled receptors (GPCRs) are widely distributed throughout the body, including the pain transmission pathway and descending inhibition pathway, the development of novel neuropathic pain treatments based on GPCRs allosteric modulation theory is gaining momentum. Extensive research has shown that allosteric modulators targeting GPCRs on the pain pathway can effectively alleviate symptoms of neuropathic pain while reducing or eliminating adverse effects. This review aims to provide a comprehensive summary of the progress made in GPCRs allosteric modulators in the treatment of neuropathic pain, and discuss the potential benefits and adverse factors of this treatment. We will also concentrate on the development of biased agonists of GPCRs, and based on important examples of biased agonist development in recent years, we will describe universal strategies for designing structure-based biased agonists. It is foreseeable that, with the continuous improvement of GPCRs allosteric modulation and biased agonist theory, effective GPCRs allosteric drugs will eventually be available for the treatment of neuropathic pain with acceptable safety.
Collapse
Affiliation(s)
- Chunhao Zhu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
- School of Basic Medical Science, Ningxia Medical University, Yinchuan 750004, China
| | - Xiaobing Lan
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Zhiqiang Wei
- Medicinal Chemistry and Bioinformatics Center, Ocean University of China, Qingdao 266100, China
| | - Jianqiang Yu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Jian Zhang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China
| |
Collapse
|
34
|
Rapaka D, Adiukwu PC, Challa SR, Bitra VR. Interplay Between Astroglial Endocannabinoid System and the Cognitive Dysfunction in Alzheimer's Disease. Physiol Res 2023; 72:575-586. [PMID: 38015757 PMCID: PMC10751057 DOI: 10.33549/physiolres.935156] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 06/29/2023] [Indexed: 01/05/2024] Open
Abstract
Cannabinoid CB1 receptors have been shown to regulate wide array of functions ranging from homeostasis to the cognitive functioning but recent data support the hypothesis that astrocytes also operate as a mediator of synaptic plasticity and contribute to cognition and learning. The receptor heterogeneity plays a key role in understanding the molecular mechanisms underlying these processes. Despite the fact that the majority of CB1 receptors act on neurons, studies have revealed that cannabinoids have direct control over astrocytes, including energy generation and neuroprotection. The tripartite synapse connects astrocytes to neurons and allows them to interact with one another and the astrocytes are key players in synaptic plasticity, which is associated with cognitive functions. This review focuses on our growing understanding of the intricate functions of astroglial CB1 that underpin physiological brain function, and in Alzheimer's disease.
Collapse
Affiliation(s)
- D Rapaka
- School of Pharmacy, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana. ,
| | | | | | | |
Collapse
|
35
|
Barnett D, Bohmbach K, Grelot V, Charlet A, Dallérac G, Ju YH, Nagai J, Orr AG. Astrocytes as Drivers and Disruptors of Behavior: New Advances in Basic Mechanisms and Therapeutic Targeting. J Neurosci 2023; 43:7463-7471. [PMID: 37940585 PMCID: PMC10634555 DOI: 10.1523/jneurosci.1376-23.2023] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/13/2023] [Accepted: 08/22/2023] [Indexed: 11/10/2023] Open
Abstract
Astrocytes are emerging as key regulators of cognitive function and behavior. This review highlights some of the latest advances in the understanding of astrocyte roles in different behavioral domains across lifespan and in disease. We address specific molecular and circuit mechanisms by which astrocytes modulate behavior, discuss their functional diversity and versatility, and highlight emerging astrocyte-targeted treatment strategies that might alleviate behavioral and cognitive dysfunction in pathologic conditions. Converging evidence across different model systems and manipulations is revealing that astrocytes regulate behavioral processes in a precise and context-dependent manner. Improved understanding of these astrocytic functions may generate new therapeutic strategies for various conditions with cognitive and behavioral impairments.
Collapse
Affiliation(s)
- Daniel Barnett
- Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, New York 10021
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10021
- Neuroscience Graduate Program, Weill Cornell Medicine, New York, New York 10021
| | - Kirsten Bohmbach
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Valentin Grelot
- Institute of Cellular and Integrative Neuroscience, Centre National de la Recherche Scientifique and University of Strasbourg, Strasbourg, 67000, France
| | - Alexandre Charlet
- Institute of Cellular and Integrative Neuroscience, Centre National de la Recherche Scientifique and University of Strasbourg, Strasbourg, 67000, France
| | - Glenn Dallérac
- Centre National de la Recherche Scientifique and Paris-Saclay University, Paris-Saclay Institute for Neurosciences, Paris, 91400, France
| | - Yeon Ha Ju
- Department of Psychiatry and Neuroscience, University of Texas-Austin Dell Medical School, Austin, Texas 78712
| | - Jun Nagai
- RIKEN Center for Brain Science, Laboratory for Glia-Neuron Circuit Dynamics, Saitama, 351-0198, Japan
| | - Anna G Orr
- Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, New York 10021
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10021
- Neuroscience Graduate Program, Weill Cornell Medicine, New York, New York 10021
| |
Collapse
|
36
|
Haller J. Anxiety Modulation by Cannabinoids-The Role of Stress Responses and Coping. Int J Mol Sci 2023; 24:15777. [PMID: 37958761 PMCID: PMC10650718 DOI: 10.3390/ijms242115777] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Endocannabinoids were implicated in a variety of pathological conditions including anxiety and are considered promising new targets for anxiolytic drug development. The optimism concerning the potentials of this system for anxiolysis is probably justified. However, the complexity of the mechanisms affected by endocannabinoids, and discrepant findings obtained with various experimental approaches makes the interpretation of research results difficult. Here, we review the anxiety-related effects of the three main interventions used to study the endocannabinoid system: pharmacological agents active at endocannabinoid-binding sites present on both the cell membrane and in the cytoplasm, genetic manipulations targeting cannabinoid receptors, and function-enhancers represented by inhibitors of endocannabinoid degradation and transport. Binding-site ligands provide inconsistent findings probably because they activate a multitude of mechanisms concomitantly. More robust findings were obtained with genetic manipulations and particularly with function enhancers, which heighten ongoing endocannabinoid activation rather than affecting all mechanisms indiscriminately. The enhancement of ongoing activity appears to ameliorate stress-induced anxiety without consistent effects on anxiety in general. Limited evidence suggests that this effect is achieved by promoting active coping styles in critical situations. These findings suggest that the functional enhancement of endocannabinoid signaling is a promising drug development target for stress-related anxiety disorders.
Collapse
Affiliation(s)
- József Haller
- Drug Research Institute, 1137 Budapest, Hungary;
- Department of Criminal Psychology, University of Public Service, 1082 Budapest, Hungary
| |
Collapse
|
37
|
Fonseca C, Ettcheto M, Bicker J, Fernandes MJ, Falcão A, Camins A, Fortuna A. Under the umbrella of depression and Alzheimer's disease physiopathology: Can cannabinoids be a dual-pleiotropic therapy? Ageing Res Rev 2023; 90:101998. [PMID: 37414155 DOI: 10.1016/j.arr.2023.101998] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/17/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Depression and Alzheimer´s disease (AD) are two disorders highly prevalent worldwide. Depression affects more than 300 million people worldwide while AD affects 60-80% of the 55 million cases of dementia. Both diseases are affected by aging with high prevalence in elderly and share not only the main brain affected areas but also several physiopathological mechanisms. Depression disease is already ascribed as a risk factor to the development of AD. Despite the wide diversity of pharmacological treatments currently available in clinical practice for depression management, they remain associated to a slow recovery process and to treatment-resistant depression. On the other hand, AD treatment is essentially based in symptomatology relieve. Thus, the need for new multi-target treatments arises. Herein, we discuss the current state-of-art regarding the contribution of the endocannabinoid system (ECS) in synaptic transmission processes, synapses plasticity and neurogenesis and consequently the use of exogenous cannabinoids in the treatment of depression and on delaying the progression of AD. Besides the well-known imbalance of neurotransmitter levels, including serotonin, noradrenaline, dopamine and glutamate, recent scientific evidence highlights aberrant spine density, neuroinflammation, dysregulation of neurotrophic factor levels and formation of amyloid beta (Aβ) peptides, as the main physiopathological mechanisms compromised in depression and AD. The contribution of the ECS in these mechanisms is herein specified as well as the pleiotropic effects of phytocannabinoids. At the end, it became evident that Cannabinol, Cannabidiol, Cannabigerol, Cannabidivarin and Cannabichromene may act in novel therapeutic targets, presenting high potential in the pharmacotherapy of both diseases.
Collapse
Affiliation(s)
- Carla Fonseca
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal; Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain; Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain
| | - Miren Ettcheto
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain; Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain; Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Carlos III Health Institute, Madrid, Spain
| | - Joana Bicker
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - Maria José Fernandes
- Departamento de Neurologia/Neurocirurgia, Escola Paulista de Medicina, Universidade Federal de São Paulo-UNIFESP, Rua Pedro de Toledo, 669, CEP, São Paulo 04039-032, Brazil
| | - Amílcar Falcão
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - Antoni Camins
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain; Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain; Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Carlos III Health Institute, Madrid, Spain
| | - Ana Fortuna
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
38
|
Sultan AA, Mio M, Dimick MK, Zou Y, Karthikeyan S, Kolla N, Lanctot K, Zack M, Goldstein BI. Association of cannabis use with neurocognition in adolescents with bipolar disorder. J Psychopharmacol 2023; 37:920-927. [PMID: 37497695 DOI: 10.1177/02698811231187128] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
BACKGROUND Bipolar disorder (BD) and cannabis use are each associated with neurocognitive deficits in adolescents. However, little is known regarding the association of neurocognition with cannabis use among adolescents with BD. Therefore, we examined this topic in a sample of adolescents with BD and healthy control (HC) adolescents. METHODS Participants included 121 adolescents (n = 32 with BD and lifetime cannabis use (BDCB+), n = 31 with BD and no lifetime cannabis use (BDCB-), n = 58 HC with no lifetime cannabis use), aged 14-20 years. Five neurocognitive subtests of the computerized CANTAB battery were assessed. Groups were compared using an analysis of covariance (ANCOVA) covarying for age, sex, and intelligence quotient. RESULTS The three groups differed significantly on tests of visuospatial working memory (F = 4.41, p = 0.014, η p 2 = 0 . 07 ) and sustained attention (F = 5.15, p = 0.007, η p 2 = 0 . 08 ). Post hoc analyses revealed working memory scores were significantly worse in BDCB+ versus HC (p = 0.04, d = 0.59), and sustained attention was significantly worse in BDCB- versus HC (p = 0.006, d = 0.70). CONCLUSION These preliminary findings suggest that cannabis use among adolescents with BD is associated with working memory deficits. Future studies in larger samples are warranted to evaluate causation versus predisposition to cannabis use, and to evaluate duration, quantity, and potency of cannabis on neurocognition among adolescents with BD.
Collapse
Affiliation(s)
- Alysha A Sultan
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Megan Mio
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Mikaela K Dimick
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Yi Zou
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | | | - Nathan Kolla
- Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Krista Lanctot
- Department of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Martin Zack
- Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Benjamin I Goldstein
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
39
|
Mosley PE, Webb L, Suraev A, Hingston L, Turnbull T, Foster K, Ballard E, Gomes L, Mohan A, Sachdev PS, Kevin R, Gordon R, Benson M, McGregor IS. Tetrahydrocannabinol and Cannabidiol in Tourette Syndrome. NEJM EVIDENCE 2023; 2:EVIDoa2300012. [PMID: 38320199 DOI: 10.1056/evidoa2300012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
BACKGROUND: Tourette syndrome is characterized by chronic motor and vocal tics. There is preliminary evidence of benefit from cannabis products containing Δ9-tetrahydrocannabinol (THC) and that coadministration of cannabidiol (CBD) improves the side-effect profile and safety. METHODS: In this double-blind, crossover trial, participants with severe Tourette syndrome were randomly assigned to a 6-week treatment period with escalating doses of an oral oil containing 5 mg/ml of THC and 5 mg/ml of CBD, followed by a 6-week course of placebo, or vice versa, separated by a 4-week washout period. The primary outcome was the total tic score on the Yale Global Tic Severity Scale (YGTSS; range, 0 to 50 [higher scores indicate greater severity of symptoms]). Secondary outcomes included video-based assessment of tics, global impairment, anxiety, depression, and obsessive-compulsive symptoms. Outcomes were correlated with plasma levels of cannabinoid metabolites. A computerized cognitive battery was administered at the beginning and the end of each treatment period. RESULTS: Overall, 22 participants (eight female participants) were enrolled. Reduction in total tic score (at week 6 relative to baseline) as measured by the YGTSS was 8.9 (±7.6) in the active group and 2.5 (±8.5) in the placebo group. In a linear mixed-effects model, there was a significant interaction of treatment (active/placebo) and visit number on tic score (coefficient = −2.28; 95% confidence interval, −3.96 to −0.60; P=0.008), indicating a greater decrease (improvement) in tics under active treatment. There was a correlation between plasma 11-carboxy-tetrahydrocannabinol levels and the primary outcome, which was attenuated after exclusion of an outlier. The most common adverse effect in the placebo period was headache (n=7); in the active treatment period, it was cognitive difficulties, including slowed mentation, memory lapses, and poor concentration (n=8). CONCLUSIONS: In severe Tourette syndrome, treatment with THC and CBD reduced tics and may reduce impairment due to tics, anxiety, and obsessive-compulsive disorder; although in some participants this was associated with slowed mentation, memory lapses, and poor concentration. (Funded by the Wesley Medical Research Institute, Brisbane, and the Lambert Initiative for Cannabinoid Therapeutics, a philanthropically-funded research organization at the University of Sydney, Australia; Australian and New Zealand Clinical Trials Registry number, ACTRN12618000545268.)
Collapse
Affiliation(s)
- Philip E Mosley
- Clinical Brain Networks Group, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
- Wesley Medical Research Institute, Wesley Hospital, Auchenflower, QLD, Australia
- Queensland Brain Institute, University of Queensland, St. Lucia, QLD, Australia
- Australian eHealth Research Centre, CSIRO Health and Biosecurity, Herston, QLD, Australia
| | - Lachlan Webb
- Statistics Unit, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Anastasia Suraev
- The Lambert Initiative for Cannabinoid Therapeutics, University of Sydney, Camperdown, NSW, Australia
- School of Psychology, Faculty of Science, University of Sydney, Camperdown, NSW, Australia
| | - Leah Hingston
- Wesley Medical Research Institute, Wesley Hospital, Auchenflower, QLD, Australia
| | - Tracy Turnbull
- Wesley Medical Research Institute, Wesley Hospital, Auchenflower, QLD, Australia
| | - Kelley Foster
- Wesley Medical Research Institute, Wesley Hospital, Auchenflower, QLD, Australia
| | - Emma Ballard
- Statistics Unit, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Lauren Gomes
- Queensland Eye Institute, South Brisbane, QLD, Australia
| | - Adith Mohan
- Centre for Healthy Brain Ageing (CHeBA), Discipline of Psychiatry and Mental Health, University of New South Wales, Sydney
- Neuropsychiatric Institute, The Prince of Wales Hospital, Randwick, NSW, Australia
| | - Perminder S Sachdev
- Centre for Healthy Brain Ageing (CHeBA), Discipline of Psychiatry and Mental Health, University of New South Wales, Sydney
- Neuropsychiatric Institute, The Prince of Wales Hospital, Randwick, NSW, Australia
| | - Richard Kevin
- The Lambert Initiative for Cannabinoid Therapeutics, University of Sydney, Camperdown, NSW, Australia
| | - Rebecca Gordon
- The Lambert Initiative for Cannabinoid Therapeutics, University of Sydney, Camperdown, NSW, Australia
| | - Melissa Benson
- The Lambert Initiative for Cannabinoid Therapeutics, University of Sydney, Camperdown, NSW, Australia
- Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia
| | - Iain S McGregor
- The Lambert Initiative for Cannabinoid Therapeutics, University of Sydney, Camperdown, NSW, Australia
- Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia
- School of Psychology, Faculty of Science, University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
40
|
Shahen-Zoabi S, Smoum R, Bingor A, Grad E, Nemirovski A, Shekh-Ahmad T, Mechoulam R, Yaka R. N-oleoyl glycine and N-oleoyl alanine attenuate alcohol self-administration and preference in mice. Transl Psychiatry 2023; 13:273. [PMID: 37524707 PMCID: PMC10390512 DOI: 10.1038/s41398-023-02574-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 08/02/2023] Open
Abstract
The endocannabinoid system (ECS) plays a key modulatory role during synaptic plasticity and homeostatic processes in the brain and has an important role in the neurobiological processes underlying drug addiction. We have previously shown that an elevated ECS response to psychostimulant (cocaine) is involved in regulating the development and expression of cocaine-conditioned reward and sensitization. We therefore hypothesized that drug-induced elevation in endocannabinoids (eCBs) and/or eCB-like molecules (eCB-Ls) may represent a protective mechanism against drug insult, and boosting their levels exogenously may strengthen their neuroprotective effects. Here, we determine the involvement of ECS in alcohol addiction. We first measured the eCBs and eCB-Ls levels in different brain reward system regions following chronic alcohol self-administration using LC-MS. We have found that following chronic intermittent alcohol consumption, N-oleoyl glycine (OlGly) levels were significantly elevated in the prefrontal cortex (PFC), and N-oleoyl alanine (OlAla) was significantly elevated in the PFC, nucleus accumbens (NAc) and ventral tegmental area (VTA) in a region-specific manner. We next tested whether exogenous administration of OlGly or OlAla would attenuate alcohol consumption and preference. We found that systemic administration of OlGly or OlAla (60 mg/kg, intraperitoneal) during intermittent alcohol consumption significantly reduced alcohol intake and preference without affecting the hedonic state. These findings suggest that the ECS negatively regulates alcohol consumption and boosting selective eCBs exogenously has beneficial effects against alcohol consumption and potentially in preventing relapse.
Collapse
Affiliation(s)
- Samah Shahen-Zoabi
- Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel
| | - Reem Smoum
- Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel
| | - Alexey Bingor
- Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel
| | - Etty Grad
- Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel
| | - Alina Nemirovski
- Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel
| | - Tawfeeq Shekh-Ahmad
- Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel
| | - Raphael Mechoulam
- Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel
| | - Rami Yaka
- Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel.
| |
Collapse
|
41
|
Oddi S, Fiorenza MT, Maccarrone M. Endocannabinoid signaling in adult hippocampal neurogenesis: A mechanistic and integrated perspective. Prog Lipid Res 2023; 91:101239. [PMID: 37385352 DOI: 10.1016/j.plipres.2023.101239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 06/01/2023] [Accepted: 06/25/2023] [Indexed: 07/01/2023]
Abstract
Dentate gyrus of the hippocampus continuously gives rise to new neurons, namely, adult-born granule cells, which contribute to conferring plasticity to the mature brain throughout life. Within this neurogenic region, the fate and behavior of neural stem cells (NSCs) and their progeny result from a complex balance and integration of a variety of cell-autonomous and cell-to-cell-interaction signals and underlying pathways. Among these structurally and functionally diverse signals, there are endocannabinoids (eCBs), the main brain retrograde messengers. These pleiotropic bioactive lipids can directly and/or indirectly influence adult hippocampal neurogenesis (AHN) by modulating, both positively and negatively, multiple molecular and cellular processes in the hippocampal niche, depending on the cell type or stage of differentiation. Firstly, eCBs act directly as cell-intrinsic factors, cell-autonomously produced by NSCs following their stimulation. Secondly, in many, if not all, niche-associated cells, including some local neuronal and nonneuronal elements, the eCB system indirectly modulates the neurogenesis, linking neuronal and glial activity to regulating distinct stages of AHN. Herein, we discuss the crosstalk of the eCB system with other neurogenesis-relevant signal pathways and speculate how the hippocampus-dependent neurobehavioral effects elicited by (endo)cannabinergic medications are interpretable in light of the key regulatory role that eCBs play on AHN.
Collapse
Affiliation(s)
- Sergio Oddi
- Department of Veterinary Medicine, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; European Center for Brain Research/IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 64, 00143 Rome, Italy.
| | - Maria Teresa Fiorenza
- European Center for Brain Research/IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 64, 00143 Rome, Italy; Department of Psychology, Division of Neuroscience and "Daniel Bovet" Neurobiology Research Center, Sapienza University of Rome, Via dei Sardi 70, 00185 Rome, Italy
| | - Mauro Maccarrone
- European Center for Brain Research/IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 64, 00143 Rome, Italy; Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio Snc, 67100 L'Aquila, Italy
| |
Collapse
|
42
|
Song Q, Zhang W, Shi D, Zhang Z, Zhao Q, Wang M, Huang M, Meng J, Cui W, Luo X. Overexpression of cannabinoid receptor 2 is associated with human breast cancer proliferation, apoptosis, chemosensitivity and prognosis via the PI3K/Akt/mTOR signaling pathway. Cancer Med 2023; 12:13538-13550. [PMID: 37220224 PMCID: PMC10315729 DOI: 10.1002/cam4.6037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 03/29/2023] [Accepted: 04/06/2023] [Indexed: 05/25/2023] Open
Abstract
INTRODUCTION The cannabinoid receptor 2 (CB2) is mainly involved in the immune system. However, although CB2 has been reported to play an anti-tumor function in breast cancer (BC), its specific mechanism in BC remains unclear. METHODS We examined the expression and prognostic significance of CB2 in BC tissues by qPCR, second-generation sequencing, western blot, and immunohistochemistry. We assessed the impacts of overexpression and a specific agonist of CB2 on the growth, proliferation, apoptosis, and drug resistance of BC cells in vitro and in vivo using CCK-8, flow cytometry, TUNEL staining, immunofluorescence, tumor xenografts, western blot, and colony formation assays. RESULTS CB2 expression was significantly lower in BC compared with paracancerous tissues. It was also highly expressed in benign tumors and ductal carcinoma in situ, and its expression was correlated with prognosis in BC patients. CB2 overexpression and treatment of BC cells with a CB2 agonist inhibited proliferation and promoted apoptosis, and these actions were achieved by suppressing the PI3K/Akt/mTOR signaling pathway. Moreover, CB2 expression was increased in MDA-MB-231 cell treated with cisplatin, doxorubicin, and docetaxel, and sensitivity to these anti-tumor drugs was increased in BC cells overexpressing CB2. CONCLUSIONS These findings reveal that CB2 mediates BC via the PI3K/Akt/mTOR signaling pathway. CB2 could be a novel target for the diagnosis and treatment of BC.
Collapse
Affiliation(s)
- Qiang Song
- Department of Central LaboratoryChongqing University Three Gorges HospitalChongqing UniversityWanzhou, ChongqingChina
| | - Wenjin Zhang
- Department of Central LaboratoryChongqing University Three Gorges HospitalChongqing UniversityWanzhou, ChongqingChina
| | - Dan Shi
- Department of Pathology, Chongqing University Three Gorges HospitalChongqing UniversityWanzhou, ChongqingChina
| | - Zhiliang Zhang
- Department of Breast SurgeryChongqing University Three Gorges Hospital, Chongqing UniversityWanzhou, ChongqingChina
| | - Qiurong Zhao
- Department of Central LaboratoryChongqing University Three Gorges HospitalChongqing UniversityWanzhou, ChongqingChina
| | - Mengyuan Wang
- Department of Breast SurgeryChongqing University Three Gorges Hospital, Chongqing UniversityWanzhou, ChongqingChina
| | - Man Huang
- Department of Breast SurgeryChongqing University Three Gorges Hospital, Chongqing UniversityWanzhou, ChongqingChina
| | - Juanjuan Meng
- Department of Central LaboratoryChongqing University Three Gorges HospitalChongqing UniversityWanzhou, ChongqingChina
| | - Wei Cui
- Department of Central LaboratoryChongqing University Three Gorges HospitalChongqing UniversityWanzhou, ChongqingChina
| | - Xiaohe Luo
- Department of Central LaboratoryChongqing University Three Gorges HospitalChongqing UniversityWanzhou, ChongqingChina
| |
Collapse
|
43
|
Xie J, Li Y, Liang Y, Kui H, Wang C, Huang J. Integration of non-targeted metabolomics with network pharmacology deciphers the anxiolytic mechanisms of Platycladi Semen extracts in CUMS mice. JOURNAL OF ETHNOPHARMACOLOGY 2023; 315:116571. [PMID: 37201666 DOI: 10.1016/j.jep.2023.116571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/22/2023] [Accepted: 05/01/2023] [Indexed: 05/20/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Platycladi Semen was recorded in Shen Nong's Herbal Classic and was considered a herbal medicine with low toxicity after long-term medication. Multiple traditional Chinese medicine prescriptions containing Platycladi Semen have been used to treat insomnia. Modern clinical practitioners commonly use Platycladi Semen to treat anxiety disorders, but there are few studies on its composition and anxiolytic mechanisms. AIM OF THE STUDY To describe the main components of Platycladi Semen and investigate its anxiolytic effects and mechanisms. MATERIALS AND METHODS The main components of Platycladi Semen were characterized by liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS). The anxiolytic effects of oral Platycladi Semen were evaluated in chronic unpredictable mild stress (CUMS) induced mice. To explore the anxiolytic mechanisms of Platycladi Semen, serum non-targeted metabolomics combined with network pharmacology and molecular docking was performed. RESULTS Fourteen compounds were identified in the 50% methanol extract and 11 fatty acid derivatives were identified in the methyl-esterified fatty oil of Platycladi Semen. In CUMS mice, both the aqueous extract and fatty oil of Platycladi Semen had anxiolytic effects, which were shown by the increase in the time and frequency of mice entering the open arm in the elevated plus maze (EPM) experiment. Through serum non-targeted metabolomics, 34 differential metabolites were identified, and lipid metabolic pathways such as sphingolipid metabolism, steroidogenesis, alpha-linoleic acid, and linoleic acid metabolism were enriched. Through network pharmacology, 109 targets of the main components in Platycladi Semen were identified, and the 'neuroactive ligand-receptor interaction' and 'lipid metabolism' were enriched. The molecular docking results showed that the main components in Platycladi Semen could bind to the key targets such as peroxisome proliferator-activated receptor delta (PPARD), peroxisome proliferator-activated receptor alpha (PPARA), fatty acid binding protein 5 (FABP5), fatty acid binding protein 3 (FABP3), peroxisome proliferator-activated receptor gamma (PPARG), arachidonate 5-lipoxygenase (ALOX5) and fatty acid amide hydrolase (FAAH). CONCLUSION This study indicated that Platycladi Semen has anxiolytic effects, and the anxiolytic mechanisms may be the regulation of lipid metabolism and the neuroactive ligand-receptor interaction.
Collapse
Affiliation(s)
- Jiaqi Xie
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Yihong Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Yulu Liang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Hongqian Kui
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Can Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Jianmei Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
44
|
Chen C. Inhibiting degradation of 2-arachidonoylglycerol as a therapeutic strategy for neurodegenerative diseases. Pharmacol Ther 2023; 244:108394. [PMID: 36966972 PMCID: PMC10123871 DOI: 10.1016/j.pharmthera.2023.108394] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023]
Abstract
Endocannabinoids are endogenous lipid signaling mediators that participate in a variety of physiological and pathological processes. 2-Arachidonoylglycerol (2-AG) is the most abundant endocannabinoid and is a full agonist of G-protein-coupled cannabinoid receptors (CB1R and CB2R), which are targets of Δ9-tetrahydrocannabinol (Δ9-THC), the main psychoactive ingredient in cannabis. While 2-AG has been well recognized as a retrograde messenger modulating synaptic transmission and plasticity at both inhibitory GABAergic and excitatory glutamatergic synapses in the brain, growing evidence suggests that 2-AG also functions as an endogenous terminator of neuroinflammation in response to harmful insults, thus maintaining brain homeostasis. Monoacylglycerol lipase (MAGL) is the key enzyme that degrades 2-AG in the brain. The immediate metabolite of 2-AG is arachidonic acid (AA), a precursor of prostaglandins (PGs) and leukotrienes. Several lines of evidence indicate that pharmacological or genetic inactivation of MAGL, which boosts 2-AG levels and reduces its hydrolytic metabolites, resolves neuroinflammation, mitigates neuropathology, and improves synaptic and cognitive functions in animal models of neurodegenerative diseases, including Alzheimer's disease (AD), multiple sclerosis (MS), Parkinson's disease (PD), and traumatic brain injury (TBI)-induced neurodegenerative disease. Thus, it has been proposed that MAGL is a potential therapeutic target for treatment of neurodegenerative diseases. As the main enzyme hydrolyzing 2-AG, several MAGL inhibitors have been identified and developed. However, our understanding of the mechanisms by which inactivation of MAGL produces neuroprotective effects in neurodegenerative diseases remains limited. A recent finding that inhibition of 2-AG metabolism in astrocytes, but not in neurons, protects the brain from TBI-induced neuropathology might shed some light on this unsolved issue. This review provides an overview of MAGL as a potential therapeutic target for neurodegenerative diseases and discusses possible mechanisms underlying the neuroprotective effects of restraining degradation of 2-AG in the brain.
Collapse
|
45
|
Chronic exposure to a synthetic cannabinoid alters cerebral brain metabolism and causes long-lasting behavioral deficits in adult mice. J Neural Transm (Vienna) 2023:10.1007/s00702-023-02607-8. [PMID: 36853560 PMCID: PMC10374737 DOI: 10.1007/s00702-023-02607-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/17/2023] [Indexed: 03/01/2023]
Abstract
In recent years, there has been growing evidence that cannabinoids have promising medicinal and pharmacological effects. However, the growing interest in medical cannabis highlights the need to better understand brain alterations linking phytocannabinoids or synthetic cannabinoids to clinical and behavioral phenotypes. Therefore, the aim of this study was to investigate the effects of long-term WIN 55,212-2 treatment-with and without prolonged abstinence-on cerebral metabolism and memory function in healthy wildtype mice. Adult C57BI/6J mice were divided into two treatment groups to study the acute effects of WIN 55,212-2 treatment as well the effects of WIN 55,212-2 treatment after an extended washout phase. We could demonstrate that 3 mg/kg WIN 55,212-2 treatment in early adulthood leads to a hypometabolism in several brain regions including the hippocampus, cerebellum, amygdala and midbrain, even after prolonged abstinence. Furthermore, prolonged acute WIN 55,212-2 treatment in 6-months-old mice reduced the glucose metabolism in the hippocampus and midbrain. In addition, Win 55,212-2 treatment during adulthood lead to spatial memory and recognition memory deficits without affecting anxiety behavior. Overall we could demonstrate that treatment with the synthetic CB1/CB2 receptor aganist Win 55,212-2 during adulthood causes persistent memory deficits, especially when mice were treated in early adulthood. Our findings highlight the risks of prolonged WIN 55,212-2 use and provide new insights into the mechanisms underlying the effects of chronic cannabinoid exposure on the brain and behavior.
Collapse
|
46
|
Therapeutic Molecular Insights into the Active Engagement of Cannabinoids in the Therapy of Parkinson's Disease: A Novel and Futuristic Approach. Neurotox Res 2023; 41:85-102. [PMID: 36567416 DOI: 10.1007/s12640-022-00619-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/09/2022] [Accepted: 12/05/2022] [Indexed: 12/27/2022]
Abstract
Parkinson's disease is a neurodegenerative disorder which is characterised mostly by loss of dopaminergic nerve cells throughout the nigral area mainly as a consequence of oxidative stress. Muscle stiffness, disorganised bodily responses, disturbed sleep, weariness, amnesia, and voice impairment are all symptoms of dopaminergic neuron degeneration and existing symptomatic treatments are important to arrest additional neuronal death. Some cannabinoids have recently been demonstrated as robust antioxidants that might protect the nerve cells from degeneration even when cannabinoid receptors are not triggered. Cannabinoids are likely to have property to slow or presumably cease the steady deterioration of the brain's dopaminergic systems, a condition for which there is now no treatment. The use of cannabinoids in combination with currently available drugs has the potential to introduce a radically new paradigm for treatment of Parkinson's disease, making it immensely useful in the treatment of such a debilitating illness.
Collapse
|
47
|
Iglesias LP, Bedeschi L, Aguiar DC, Asth L, Moreira FA. Effects of Δ 9-THC and Type-1 Cannabinoid Receptor Agonists in the Elevated Plus Maze Test of Anxiety: A Systematic Review and Meta-Analysis. Cannabis Cannabinoid Res 2023; 8:24-33. [PMID: 35984927 DOI: 10.1089/can.2022.0078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Δ9-THC (the main active compound from Cannabis sativa) and related cannabinoids have been used as drugs of abuse and as medications. They induce a complex set of emotional responses in humans and experimental animals, consisting of either anxiolysis or heightened anxiety. These discrepant effects pose a major challenge for data reproducibility and for developing new cannabinoid-based medicines. In this study, we review and analyze previous data on cannabinoids and anxiety-like behavior in experimental animals. Systematic review and meta-analysis on the effects of type-1 cannabinoid receptor agonists (full or partial, selective or not) in rodents exposed to the elevated plus maze, a widely used test of anxiety-like behavior. Cannabinoids tend to reduce anxiety-like behavior if administered at low doses. THC effects are moderated by the dose factor, with anxiolytic- and anxiogenic-like effects occurring at low-dose (0.075-1 mg/kg) and high-dose (1-10 mg/kg) ranges, respectively. However, some studies report no effect at all regardless of the dose tested. Finally, motor impairment represents a potential confounding factor when high doses are administered. The present analysis may contribute to elucidate the experimental factors underlying cannabinoid effects on anxiety-like behavior and facilitate data reproducibility in future studies.
Collapse
Affiliation(s)
- Lia P Iglesias
- Graduate School in Neuroscience; Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
- Department of Pharmacology; Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Lucas Bedeschi
- Department of Pharmacology; Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Daniele C Aguiar
- Graduate School in Neuroscience; Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
- Department of Pharmacology; Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
- Graduate School in Physiology and Pharmacology; Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Laila Asth
- Graduate School in Neuroscience; Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
- Graduate School in Physiology and Pharmacology; Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Fabrício A Moreira
- Graduate School in Neuroscience; Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
- Department of Pharmacology; Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
- Graduate School in Physiology and Pharmacology; Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| |
Collapse
|
48
|
Endocannabinoid 2-Arachidonoylglycerol Levels in the Anterior Cingulate Cortex, Caudate Putamen, Nucleus Accumbens, and Piriform Cortex Were Upregulated by Chronic Restraint Stress. Cells 2023; 12:cells12030393. [PMID: 36766735 PMCID: PMC9913316 DOI: 10.3390/cells12030393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
Endocannabinoid 2-arachidonoylglycerol (2-AG) has been implicated in habituation to stress, and its augmentation reduces stress-induced anxiety-like behavior. Chronic restraint stress (CRS) changes the 2-AG levels in some gross brain areas, such as the forebrain. However, the detailed spatial distribution of 2-AG and its changes by CRS in stress processing-related anatomical structures such as the anterior cingulate cortex (ACC), caudate putamen (CP), nucleus accumbens (NAc), and piriform cortex (PIR) are still unclear. In this study, mice were restrained for 30 min in a 50 mL-centrifuge tube for eight consecutive days, followed by imaging of the coronal brain sections of control and stressed mice using desorption electrospray ionization mass spectrometry imaging (DESI-MSI). The results showed that from the forebrain to the cerebellum, 2-AG levels were highest in the hypothalamus and lowest in the hippocampal region. 2-AG levels were significantly (p < 0.05) upregulated and 2-AG precursors levels were significantly (p < 0.05) downregulated in the ACC, CP, NAc, and PIR of stressed mice compared with control mice. This study provided direct evidence of 2-AG expression and changes, suggesting that 2-AG levels are increased in the ACC CP, NAc, and PIR when individuals are under chronic stress.
Collapse
|
49
|
Nazari M, Karimi SA, Komaki S, Kourosh Arami M, Komaki A. Underlying mechanisms of long-term potentiation during the inhibition of the cannabinoid CB1 and GABAB receptors in the dentate gyrus of hippocampus. BMC Neurosci 2023; 24:3. [PMID: 36635629 PMCID: PMC9835329 DOI: 10.1186/s12868-022-00767-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/13/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The release of various neurotransmitters and thereby the excitability of neuronal circuits are regulated by the endocannabinoid system in an activity-dependent manner. Hippocampal long-term potentiation (LTP) is augmented in cannabinoid type 1 (CB1) receptor-deficient mice. CB1 receptors exist on GABAergic axon terminals in the hippocampus. In our previous work, we showed that CB1 antagonists increased the population spike (PS) amplitude, field excitatory post-synaptic potential (fEPSP), and the LTP induction in the dentate gyrus (DG) of the rat hippocampus while the GABAB antagonist decreased these parameters. Determining the underlying mechanisms of the pre- and/or postsynaptic locus of LTP expression is of great importance. In this study, we investigated whether LTP alteration acutely caused by CB1 and GABAB receptor antagonists (AM251 and CGP55845, respectively) happens at the postsynaptic or presynaptic regions, or at both. Therefore, the paired-pulse ratio (PPR) was assessed prior to and following the LTP induction in the studied groups. METHODS Male Wistar rats were randomly assigned to the groups of control, AM251, CGP55845, CGP55845 + AM251. A high-frequency stimulation (HFS) of the perforant path (PP) was used to induce LTP in the DG region. RESULTS Statistical analysis revealed that AM251 produced significant increase in excitatory postsynaptic potential (EPSP) slope and amplitude of PS. Conversely, administration of CGP55845 produced decrease in slope of EPSP. The current results indicated that the PPR was not influenced by LTP induction in the presence of AM251 or CGP55845 either alone or their combination. CONCLUSIONS It can be concluded that the site causing LTP expression is, at least in part, the postsynaptic site because PPR was not influenced by LTP induction in the presence of AM251 or CGP55845 either alone or their combination.
Collapse
Affiliation(s)
- Masoumeh Nazari
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Shahid Fahmideh Street, 65178/518, Hamadan, Iran
| | - Seyed Asaad Karimi
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Shahid Fahmideh Street, 65178/518, Hamadan, Iran
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Somayeh Komaki
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Shahid Fahmideh Street, 65178/518, Hamadan, Iran
| | - Masoumeh Kourosh Arami
- Department of Neuroscience, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Komaki
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Shahid Fahmideh Street, 65178/518, Hamadan, Iran.
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
50
|
Cáceres D, Ochoa M, González-Ortiz M, Bravo K, Eugenín J. Effects of Prenatal Cannabinoids Exposure upon Placenta and Development of Respiratory Neural Circuits. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1428:199-232. [PMID: 37466775 DOI: 10.1007/978-3-031-32554-0_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Cannabis use has risen dangerously during pregnancy in the face of incipient therapeutic use and a growing perception of safety. The main psychoactive compound of the Cannabis sativa plant is the phytocannabinoid delta-9-tetrahydrocannabinol (A-9 THC), and its status as a teratogen is controversial. THC and its endogenous analogues, anandamide (AEA) and 2-AG, exert their actions through specific receptors (eCBr) that activate intracellular signaling pathways. CB1r and CB2r, also called classic cannabinoid receptors, together with their endogenous ligands and the enzymes that synthesize and degrade them, constitute the endocannabinoid system. This system is distributed ubiquitously in various central and peripheral tissues. Although the endocannabinoid system's most studied role is controlling the release of neurotransmitters in the central nervous system, the study of long-term exposure to cannabinoids on fetal development is not well known and is vital for understanding environmental or pathological embryo-fetal or postnatal conditions. Prenatal exposure to cannabinoids in animal models has induced changes in placental and embryo-fetal organs. Particularly, cannabinoids could influence both neural and nonneural tissues and induce embryo-fetal pathological conditions in critical processes such as neural respiratory control. This review aims at the acute and chronic effects of prenatal exposure to cannabinoids on placental function and the embryo-fetal neurodevelopment of the respiratory pattern. The information provided here will serve as a theoretical framework to critically evaluate the teratogen effects of the consumption of cannabis during pregnancy.
Collapse
Affiliation(s)
- Daniela Cáceres
- Laboratorio de Sistemas Neurales, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Martín Ochoa
- Laboratorio de Sistemas Neurales, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Marcelo González-Ortiz
- Laboratorio de Investigación Materno-Fetal (LIMaF), Departamento de Obstetricia y Ginecología, Facultad de Medicina, Universidad de Concepción, Concepción, Chile
| | - Karina Bravo
- Laboratorio de Sistemas Neurales, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Facultad de Ingeniería, Universidad Autónoma de Chile, Providencia, Chile
| | - Jaime Eugenín
- Laboratorio de Sistemas Neurales, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.
| |
Collapse
|