1
|
Glueck M, Lucaciu A, Subburayalu J, Kestner RI, Pfeilschifter W, Vutukuri R, Pfeilschifter J. Atypical sphingosine-1-phosphate metabolites-biological implications of alkyl chain length. Pflugers Arch 2024; 476:1833-1843. [PMID: 39297971 PMCID: PMC11582160 DOI: 10.1007/s00424-024-03018-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/21/2024]
Abstract
Sphingosine-1-phosphate (S1P) is a bioactive lipid signaling molecule with pleiotropic implications by both auto- and paracrine signaling. Signaling occurs by engaging five G protein-coupled receptors (S1P1-5) or intracellular pathways. While the extensively studied S1P with a chain length of 18 carbon atoms (d18:1 S1P) affects lymphocyte trafficking, immune cell survival and inflammatory responses, the biological implication of atypical S1Ps such as d16:1 or d20:1 remains elusive. As S1P lipids have far-reaching implications in health and disease states in mammalian organisms, the previous contrasting results may be attributed to differences in S1P's alkyl chain length. Current research is beginning to appreciate these less abundant atypical S1P moieties. This review provides an up-to-date foundation of recent findings on the biological implications of atypical S1P chain lengths and offers a perspective on future research endeavors on S1P alkyl chain length-influenced signaling and its implications for drug discovery.
Collapse
Affiliation(s)
- Melanie Glueck
- Institute of General Pharmacology and Toxicology, Pharmazentrum Frankfurt, Goethe University, Frankfurt am Main, 60596, Frankfurt, Germany
- Institute for Transfusion Medicine and Immunohaematology, German Red Cross Blood Donor Service Baden-Württemberg-Hessen, Goethe University Hospital, 60528, Frankfurt Am Main, Germany
| | - Alexandra Lucaciu
- Institute of General Pharmacology and Toxicology, Pharmazentrum Frankfurt, Goethe University, Frankfurt am Main, 60596, Frankfurt, Germany
- Department of Neurology, University Hospital Frankfurt, Frankfurt, Goethe University, Frankfurt am Main, 60528, Frankfurt, Germany
| | - Julien Subburayalu
- Department of Internal Medicine, University Hospital Carl Gustav Carus TU Dresden, Fetscherstraße 74, 01307, Dresden, Saxony, Germany
- Center of Regenerative Therapies Dresden, TU Dresden, Fetscherstraße 74, 01307, Dresden, Saxony, Germany
| | - Roxane Isabelle Kestner
- Institute of General Pharmacology and Toxicology, Pharmazentrum Frankfurt, Goethe University, Frankfurt am Main, 60596, Frankfurt, Germany
- Department of Neurology, University Hospital Frankfurt, Frankfurt, Goethe University, Frankfurt am Main, 60528, Frankfurt, Germany
| | - Waltraud Pfeilschifter
- Institute of General Pharmacology and Toxicology, Pharmazentrum Frankfurt, Goethe University, Frankfurt am Main, 60596, Frankfurt, Germany
- Department of Neurology and Clinical Neurophysiology, Städtisches Klinikum Lüneburg, 21339, Lüneburg, Germany
| | - Rajkumar Vutukuri
- Institute of General Pharmacology and Toxicology, Pharmazentrum Frankfurt, Goethe University, Frankfurt am Main, 60596, Frankfurt, Germany.
| | - Josef Pfeilschifter
- Institute of General Pharmacology and Toxicology, Pharmazentrum Frankfurt, Goethe University, Frankfurt am Main, 60596, Frankfurt, Germany.
| |
Collapse
|
2
|
Martínez-Gardeazabal J, Pereira-Castelo G, Moreno-Rodríguez M, Llorente-Ovejero A, Fernández M, Fernández-Vega I, Manuel I, Rodríguez-Puertas R. Sphingosine 1-phosphate receptor subtype 1 (S1P 1) activity in the course of Alzheimer's disease. Neurobiol Dis 2024; 202:106713. [PMID: 39448041 DOI: 10.1016/j.nbd.2024.106713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/10/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024] Open
Abstract
Some specific lipid molecules in the brain act as signaling molecules, neurotransmitters, or neuromodulators, by binding to specific G protein-coupled receptors (GPCR) for neurolipids. One such receptor, sphingosine 1-phosphate receptor subtype 1 (S1P1), is coupled to Gi/o proteins and is involved in cell proliferation, growth, and neuroprotection. S1P1 constitutes an interesting target for neurodegenerative diseases like multiple sclerosis and Alzheimer's disease (AD), in which changes in the sphingolipid metabolism have been observed. This study analyzes S1P1 receptor-mediated activity in healthy brains and during AD progression using postmortem samples from controls and patients at different Braak's stages. Additionally, the distribution of S1P1 receptor activity in human brains is compared to that in commonly used rodent models, rats and mice, through functional autoradiography, measuring [35S]GTPγS binding stimulated by the S1P1 receptor selective agonist CYM-5442 to obtain the distribution of functional activity of S1P1 receptors. S1P1 receptor-mediated activity, along with that of the cannabinoid CB1 receptor, is one of the highest recorded for any GPCR in many gray matter areas of the brain, reaching maximum values in the cerebellar cortex, specific areas of the hippocampus and the basal forebrain. S1P1 signaling is crucial in areas that regulate learning, memory, motor control, and nociception, such as the basal forebrain and basal ganglia. In AD, S1P1 receptor activity is increased in the inner layers of the frontal cortex and underlying cortical white matter at early stages, but decreases in the hippocampus in advanced stages, indicating ongoing brain impairment. Importantly, we identified significant correlations between S1P1 receptor activity and Braak stages, suggesting that S1P1 receptor dysfunction is associated to disease progression, particularly in memory-related regions. The S1P signaling via S1P1 receptor is a promising neurological target due to its role in key neurophysiological functions and its potential to modify the progression of neurodegenerative diseases. Finally, rats are suggested as a preferred experimental model for studying S1P1 receptor-mediated responses in the human brain.
Collapse
Affiliation(s)
- Jonatan Martínez-Gardeazabal
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), B° Sarriena s/n, 48940 Leioa, Spain; Neurodegenerative Diseases, BioBizkaia Health Research Institute, Bizkaia, Spain, 48903 Barakaldo, Spain
| | - Gorka Pereira-Castelo
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), B° Sarriena s/n, 48940 Leioa, Spain
| | - Marta Moreno-Rodríguez
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), B° Sarriena s/n, 48940 Leioa, Spain
| | - Alberto Llorente-Ovejero
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), B° Sarriena s/n, 48940 Leioa, Spain
| | - Manuel Fernández
- Neurodegenerative Diseases, BioBizkaia Health Research Institute, Bizkaia, Spain, 48903 Barakaldo, Spain; Department of Neurology, Hospital Universitario de Cruces, 48903 Barakaldo, Spain
| | - Iván Fernández-Vega
- Department of Pathology, Hospital Universitario Central de Asturias, Avda. Roma, s/n, 33011 Oviedo, Spain; Health Research Institute of Principality of Asturias (ISPA), Av. del Hospital Universitario, s/n, 33011 Oviedo, Spain
| | - Iván Manuel
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), B° Sarriena s/n, 48940 Leioa, Spain; Neurodegenerative Diseases, BioBizkaia Health Research Institute, Bizkaia, Spain, 48903 Barakaldo, Spain.
| | - Rafael Rodríguez-Puertas
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), B° Sarriena s/n, 48940 Leioa, Spain; Neurodegenerative Diseases, BioBizkaia Health Research Institute, Bizkaia, Spain, 48903 Barakaldo, Spain
| |
Collapse
|
3
|
Kuo A, Hla T. Regulation of cellular and systemic sphingolipid homeostasis. Nat Rev Mol Cell Biol 2024; 25:802-821. [PMID: 38890457 PMCID: PMC12034107 DOI: 10.1038/s41580-024-00742-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2024] [Indexed: 06/20/2024]
Abstract
One hundred and fifty years ago, Johann Thudichum described sphingolipids as unusual "Sphinx-like" lipids from the brain. Today, we know that thousands of sphingolipid molecules mediate many essential functions in embryonic development and normal physiology. In addition, sphingolipid metabolism and signalling pathways are dysregulated in a wide range of pathologies, and therapeutic agents that target sphingolipids are now used to treat several human diseases. However, our understanding of sphingolipid regulation at cellular and organismal levels and their functions in developmental, physiological and pathological settings is rudimentary. In this Review, we discuss recent advances in sphingolipid pathways in different organelles, how secreted sphingolipid mediators modulate physiology and disease, progress in sphingolipid-targeted therapeutic and diagnostic research, and the trans-cellular sphingolipid metabolic networks between microbiota and mammals. Advances in sphingolipid biology have led to a deeper understanding of mammalian physiology and may lead to progress in the management of many diseases.
Collapse
Affiliation(s)
- Andrew Kuo
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Timothy Hla
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Lv L, Liu Y, Xiong J, Wang S, Li Y, Zhang B, Huang Y, Zhao J. Role of G protein coupled receptors in acute kidney injury. Cell Commun Signal 2024; 22:423. [PMID: 39223553 PMCID: PMC11367933 DOI: 10.1186/s12964-024-01802-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Acute kidney injury (AKI) is a clinical condition characterized by a rapid decline in kidney function, which is associated with local inflammation and programmed cell death in the kidney. The G protein-coupled receptors (GPCRs) represent the largest family of signaling transduction proteins in the body, and approximately 40% of drugs on the market target GPCRs. The expressions of various GPCRs, prostaglandin receptors and purinergic receptors, to name a few, are significantly altered in AKI models. And the role of GPCRs in AKI is catching the eyes of researchers due to their distinctive biological functions, such as regulation of hemodynamics, metabolic reprogramming, and inflammation. Therefore, in this review, we aim to discuss the role of GPCRs in the pathogenesis of AKI and summarize the relevant clinical trials involving GPCRs to assess the potential of GPCRs and their ligands as therapeutic targets in AKI and the transition to AKI-CKD.
Collapse
Affiliation(s)
- Liangjing Lv
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University, Third Military Medical University), Chongqing, 400037, China
| | - Yong Liu
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University, Third Military Medical University), Chongqing, 400037, China
| | - Jiachuan Xiong
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University, Third Military Medical University), Chongqing, 400037, China
| | - Shaobo Wang
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University, Third Military Medical University), Chongqing, 400037, China
| | - Yan Li
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University, Third Military Medical University), Chongqing, 400037, China
| | - Bo Zhang
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University, Third Military Medical University), Chongqing, 400037, China
| | - Yinghui Huang
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University, Third Military Medical University), Chongqing, 400037, China
| | - Jinghong Zhao
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University, Third Military Medical University), Chongqing, 400037, China.
| |
Collapse
|
5
|
Sikdar S, Mitra D, Das O, Bhaumik M, Dutta S. The functional antagonist of sphingosine-1-phosphate, FTY720, impairs gut barrier function. Front Pharmacol 2024; 15:1407228. [PMID: 39224783 PMCID: PMC11366638 DOI: 10.3389/fphar.2024.1407228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
FTY720 or fingolimod is a known functional antagonist of sphingosine-1-phosphate (S1P), and it is effective in treating multiple sclerosis and preventing inflammatory bowel disease (IBD). Evidence shows that its use in mice can increase the susceptibility to mucosal infections. Despite the significant contribution of S1P to barrier function, the effect of the administration of FTY720 on the mucosal barrier has never been investigated. In this study, we looked into how FTY720 therapy affected the function of the gut barrier susceptibility. Administration of FTY720 to C57BL/6 mice enhances the claudin-2 expression and reduces the expression of claudin-4 and occludin, as studied by qPCR, Western blot, and immunofluorescence. FTY720 inhibits the Akt-mTOR pathway to decrease occludin and claudin-4 expression and increase claudin-2 expression. FTY720 treatment induced increased colonic inflammation, with notably greater immune cell infiltration, colon histopathology, and increased production of TNF-α, IFN-γ, CXCL-1, and CXCL-2 than that in control mice. Taking into account the close association of "the leaky gut" and gut dysbiosis among the major diseases, we therefore can infer that the vigilance of gut pathology should be maintained, where FTY720 is used as a treatment option.
Collapse
Affiliation(s)
- Sohini Sikdar
- Division of Immunology , ICMR-National Institute for Research in Bacterial Infections (NIRBI), Kolkata, India
| | - Debmalya Mitra
- Center of Radiological Research, Columbia University Irving Medical Center, New York, NY, United States
| | - Oishika Das
- Division of Immunology , ICMR-National Institute for Research in Bacterial Infections (NIRBI), Kolkata, India
| | - Moumita Bhaumik
- Division of Immunology , ICMR-National Institute for Research in Bacterial Infections (NIRBI), Kolkata, India
| | - Shanta Dutta
- Division of Immunology , ICMR-National Institute for Research in Bacterial Infections (NIRBI), Kolkata, India
| |
Collapse
|
6
|
Xiao J, Gong X, Fu Z, Song X, Ma Q, Miao J, Cai R, Yan Z, Wang S, Li Q, Chen Y, Yang L, Bian X, Chen Y. The influence of inflammation on the characteristics of adipose-derived mesenchymal stem cells (ADMSCs) and tissue repair capability in a hepatic injury mouse model. Stem Cell Res Ther 2023; 14:334. [PMID: 37981679 PMCID: PMC10659042 DOI: 10.1186/s13287-023-03532-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/10/2023] [Indexed: 11/21/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are adult stem cells with self-renewal and multi-directional differentiation potential and possess the functions of immunomodulation, regulation of cell growth, and repair of damage. Over recent years, MSCs have been found to regulate the secretion of inflammatory factors and to exert regulatory effects on various lymphocytes in inflammatory states, and on the subsequent repair of tissue damage caused by inflammation. In the present study, we analyzed the effects of tissue inflammation on the characteristics of MSCs. METHODS Human fat derived from the infrapatellar fat pad (IPFP) of knees with differing degrees of inflammation was extracted from specimens derived from total knee arthroplasties. HE and immunohistochemical staining was performed to directly observe the evidence and degree of inflammation in human infrapatellar fat pad tissue in order to classify MSCs cells, by their origin, into highly inflamed and lowly inflamed groups, and to study the effect of tissue inflammation on cell acquisition rates via cellular counting data. Flow cytometry assays were performed to investigate the effect of tissue inflammation on MSC surface marker expression. Trilineage differentiation, including osteogenesis, adipogenesis, and chondrogenesis, was performed to assess the effect of tissue inflammation on the ability of MSCs to undergo directed differentiation. The effect of tissue inflammation on the ability of MSCs to proliferate was investigated via clone formation studies. RNA-sequencing was performed to evaluate the transcriptomes of MSCs derived from different areas of inflammation. The effect of tissue inflammation on tissue repair capacity and safety of MSCs was investigated via a murine model of acute liver injury. RESULTS The results of cell count data indicate that a high degree of tissue inflammation significantly decreases the acquisition rate of MSCs, and the proportion of CD34+ and CD146+ cells. The results of our trilineage differentiation assay show that a higher degree of inflammation decreases osteogenic differentiation and enhances adipogenic and chondrogenic differentiation of MSCs. However, these differences were not statistically significant. Clone formation assays indicate that the degree of tissue inflammation at the MSC source does not significantly affect the proliferative capacity of MSCs. The transcriptomes of MSCs remain relatively stable in fat pad tissues derived from both highly and lowly inflamed samples. The results of acute liver injury investigations in mice indicate that MSCs of high and low inflammatory tissue origin have no significant difference in their tissue repair capability. CONCLUSIONS High tissue inflammation at the source of MSCs reduces the acquisition rate of MSCs and the percentage of CD34+ and CD146+ cells acquisition. However, source tissue inflammation may not significantly affect trilineage differentiation potential and proliferative capacity of MSCs. Also, MSCs obtained from differing source degrees of inflammation retain stable and similar transcriptomic profile and are both safe and efficacious for tissue repair/regeneration without detectable differences.
Collapse
Affiliation(s)
- Jingfang Xiao
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Xiaoyuan Gong
- Center for Joint Surgery, Southwest Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Zhenlan Fu
- Center for Joint Surgery, Southwest Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Xiongbo Song
- Center for Joint Surgery, Southwest Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Qinghua Ma
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Jingya Miao
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Ruili Cai
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Zexuan Yan
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Shuai Wang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Qian Li
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Yaokai Chen
- Biobank and Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, People's Republic of China
| | - Liu Yang
- Center for Joint Surgery, Southwest Hospital, Army Medical University, Chongqing, People's Republic of China.
| | - Xiuwu Bian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University, Chongqing, People's Republic of China.
| | - Yemiao Chen
- Biobank and Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, People's Republic of China.
| |
Collapse
|
7
|
Al-Kuraishy HM, Batiha GES, Al-Gareeb AI, Al-Harcan NAH, Welson NN. Receptor-dependent effects of sphingosine-1-phosphate (S1P) in COVID-19: the black side of the moon. Mol Cell Biochem 2023; 478:2271-2279. [PMID: 36652045 PMCID: PMC9848039 DOI: 10.1007/s11010-023-04658-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 01/02/2023] [Indexed: 01/19/2023]
Abstract
Severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection leads to hyper-inflammation and amplified immune response in severe cases that may progress to cytokine storm and multi-organ injuries like acute respiratory distress syndrome and acute lung injury. In addition to pro-inflammatory cytokines, different mediators are involved in SARS-CoV-2 pathogenesis and infection, such as sphingosine-1-phosphate (S1P). S1P is a bioactive lipid found at a high level in plasma, and it is synthesized from sphingomyelin by the action of sphingosine kinase. It is involved in inflammation, immunity, angiogenesis, vascular permeability, and lymphocyte trafficking through G-protein coupled S1P receptors. Reduction of the circulating S1P level correlates with COVID-19 severity. S1P binding to sphingosine-1-phosphate receptor 1 (S1PR1) elicits endothelial protection and anti-inflammatory effects during SARS-CoV-2 infection, by limiting excessive INF-α response and hindering mitogen-activated protein kinase and nuclear factor kappa B action. However, binding to S1PR2 opposes the effect of S1PR1 with vascular inflammation, endothelial permeability, and dysfunction as the concomitant outcome. This binding also promotes nod-like receptor pyrin 3 (NLRP3) inflammasome activation, causing liver inflammation and fibrogenesis. Thus, higher expression of macrophage S1PR2 contributes to the activation of the NLRP3 inflammasome and the release of pro-inflammatory cytokines. In conclusion, S1PR1 agonists and S1PR2 antagonists might effectively manage COVID-19 and its severe effects. Further studies are recommended to elucidate the potential conflict in the effects of S1P in COVID-19.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriya University, Baghdad, Iraq
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriya University, Baghdad, Iraq
| | - Nasser A Hadi Al-Harcan
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Rasheed University College, Baghdad, Iraq
| | - Nermeen N Welson
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt.
| |
Collapse
|
8
|
Torres RM, Turner JA, D’Antonio M, Pelanda R, Kremer KN. Regulation of CD8 T-cell signaling, metabolism, and cytotoxic activity by extracellular lysophosphatidic acid. Immunol Rev 2023; 317:203-222. [PMID: 37096808 PMCID: PMC10523933 DOI: 10.1111/imr.13208] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/07/2023] [Accepted: 04/08/2023] [Indexed: 04/26/2023]
Abstract
Lysophosphatidic acid (LPA) is an endogenous bioactive lipid that is produced extracellularly and signals to cells via cognate LPA receptors, which are G-protein coupled receptors (GPCRs). Mature lymphocytes in mice and humans express three LPA receptors, LPA2 , LPA5, and LPA6 , and work from our group has determined that LPA5 signaling by T lymphocytes inhibits specific antigen-receptor signaling pathways that ultimately impair lymphocyte activation, proliferation, and function. In this review, we discuss previous and ongoing work characterizing the ability of an LPA-LPA5 axis to serve as a peripheral immunological tolerance mechanism that restrains adaptive immunity but is subverted during settings of chronic inflammation. Specifically, LPA-LPA5 signaling is found to regulate effector cytotoxic CD8 T cells by (at least) two mechanisms: (i) regulating the actin-microtubule cytoskeleton in a manner that impairs immunological synapse formation between an effector CD8 T cell and antigen-specific target cell, thus directly impairing cytotoxic activity, and (ii) shifting T-cell metabolism to depend on fatty-acid oxidation for mitochondrial respiration and reducing metabolic efficiency. The in vivo outcome of LPA5 inhibitory activity impairs CD8 T-cell killing and tumor immunity in mouse models providing impetus to consider LPA5 antagonism for the treatment of malignancies and chronic infections.
Collapse
Affiliation(s)
- Raul M. Torres
- Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora Colorado, 80045
| | - Jacqueline A. Turner
- Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora Colorado, 80045
| | - Marc D’Antonio
- Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora Colorado, 80045
| | - Roberta Pelanda
- Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora Colorado, 80045
| | - Kimberly N. Kremer
- Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora Colorado, 80045
| |
Collapse
|
9
|
Alizadeh AA, Jafari B, Dastmalchi S. Drug Repurposing for Identification of S1P1 Agonists with Potential Application in Multiple Sclerosis Using In Silico Drug Design Approaches. Adv Pharm Bull 2023; 13:113-122. [PMID: 36721815 PMCID: PMC9871275 DOI: 10.34172/apb.2023.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 10/09/2021] [Accepted: 12/31/2021] [Indexed: 02/03/2023] Open
Abstract
Purpose: Drug repurposing is an approach successfully used for discovery of new therapeutic applications for the existing drugs. The current study was aimed to use the combination of in silico methods to identify FDA-approved drugs with possible S1P1 agonistic activity useful in multiple sclerosis (MS). Methods: For this, a 3D-QSAR model for the known 21 S1P1 agonists were generated based on 3D-QSAR approach and used to predict the possible S1P1 agonistic activity of FDA-approved drugs. Then, the selected compounds were screened by docking into S1P1 and S1P3 receptors to select the S1P1 potent and selective compounds. Further evaluation was carried out by molecular dynamics (MD) simulation studies where the S1P1 binding energies of selected compounds were calculated. Results: The analyses resulted in identification of cobicistat, benzonatate and brigatinib as the selective and potent S1P1 agonists with the binding energies of -85.93, -69.77 and -67.44 kcal. mol-1, calculated using MM-GBSA algorithm based on 50 ns MD simulation trajectories. These values are better than that of siponimod (-59.35 kcal mol-1), an FDA approved S1P1 agonist indicated for MS treatment. Furthermore, similarity network analysis revealed that cobicistat and brigatinib are the most structurally favorable compounds to interact with S1P1. Conclusion: The findings in this study revealed that cobicistat and brigatinib can be evaluated in experimental studies as potential S1P1 agonist candidates useful in the treatment of MS.
Collapse
Affiliation(s)
- Ali Akbar Alizadeh
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Jafari
- Department of Medicinal Chemistry, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Siavoush Dastmalchi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.,Corresponding Author: Siavoush Dastmalchi, Emails: ,
| |
Collapse
|
10
|
Di Paolo A, Vignini A, Alia S, Membrino V, Delli Carpini G, Giannella L, Ciavattini A. Pathogenic Role of the Sphingosine 1-Phosphate (S1P) Pathway in Common Gynecologic Disorders (GDs): A Possible Novel Therapeutic Target. Int J Mol Sci 2022; 23:13538. [PMID: 36362323 PMCID: PMC9658294 DOI: 10.3390/ijms232113538] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/21/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022] Open
Abstract
Sphingosine 1-phosphate (S1P) is a bioactive sphingolipid, noteworthy for its involvement both in the modulation of various biological processes and in the development of many diseases. S1P signaling can be either pro or anti-inflammatory, and the sphingosine kinase (SphK)-S1P-S1P receptor (S1PR) axis is a factor in accelerating the growth of several cells, including endometriotic cells and fibrosis. Gynecologic disorders, including endometriosis, adenomyosis, and uterine fibroids are characterized by inflammation and fibrosis. S1P signaling and metabolism have been shown to be dysregulated in those disorders and they are likely implicated in their pathogenesis and pathophysiology. Enzymes responsible for inactivating S1P are the most affected by the dysregulation of S1P balanced levels, thus causing accumulation of sphingolipids within these cells and tissues. The present review highlights the past and latest evidence on the role played by the S1P pathways in common gynecologic disorders (GDs). Furthermore, it discusses potential future approaches in the regulation of this signaling pathway that could represent an innovative and promising therapeutical target, also for ovarian cancer treatment.
Collapse
Affiliation(s)
- Alice Di Paolo
- Department of Clinical Sciences, Section of Biochemistry, Biology and Physics, Università Politecnica delle Marche, 60121 Ancona, Italy
| | - Arianna Vignini
- Department of Clinical Sciences, Section of Biochemistry, Biology and Physics, Università Politecnica delle Marche, 60121 Ancona, Italy
- Research Center of Health Education and Health Promotion, Università Politecnica delle Marche, 60121 Ancona, Italy
| | - Sonila Alia
- Department of Clinical Sciences, Section of Biochemistry, Biology and Physics, Università Politecnica delle Marche, 60121 Ancona, Italy
| | - Valentina Membrino
- Department of Clinical Sciences, Section of Biochemistry, Biology and Physics, Università Politecnica delle Marche, 60121 Ancona, Italy
| | - Giovanni Delli Carpini
- Department of Clinical Sciences, Section of Obstetrics and Gynecology, Università Politecnica delle Marche, 60121 Ancona, Italy
| | - Luca Giannella
- Department of Clinical Sciences, Section of Obstetrics and Gynecology, Università Politecnica delle Marche, 60121 Ancona, Italy
| | - Andrea Ciavattini
- Department of Clinical Sciences, Section of Obstetrics and Gynecology, Università Politecnica delle Marche, 60121 Ancona, Italy
| |
Collapse
|
11
|
Cheng X, Song X, Li Z, Yuan C, Lei X, Feng M, Hong Z, Zhang L, Hong D. Acyloxyacyl hydrolase deficiency induces chronic inflammation and bone loss in male mice. J Mol Med (Berl) 2022; 100:1599-1616. [PMID: 36112153 DOI: 10.1007/s00109-022-02252-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/10/2022] [Accepted: 08/29/2022] [Indexed: 12/14/2022]
Abstract
Hormonal homeostasis is essential in bone remodeling. Recent studies have shown that the treatment of intestinal inflammation can result in the regulation of bone resorption in distant bones. Increased intestinal permeability may lead to systemic inflammation and bone loss, also known as gut-bone axis. However, the underlying mechanism remains to be elucidated. Lipopolysaccharide (LPS) is a component of gram-negative bacteria that can increase osteoclastic differentiation in vitro. Acyloxyacyl hydrolase (AOAH) is a specific degrading enzyme of LPS, but little is known about the role of AOAH in bone metabolism. In this study, adult Aoah-/- mice showed a chronic inflammatory state and osteopenic phenotype analyzed by micro-CT and HE staining. Tartrate-resistant acid phosphatase (TRAP) staining of femurs showed an increase in TRAP-positive cells from Aoah-/- mice. AOAH depletion enhanced the osteoclast differentiation and bone resorption capacity of bone marrow-derived macrophages (BMMs). The enhanced osteoclast differentiation and bone resorption capacity of Aoah-/- BMMs were reversed by rAOAH. In conclusion, the chronic inflammatory state of adult Aoah-/- mice promotes bone resorption. AOAH participates in bone metabolism, which is mainly mediated by inhibiting osteoclast differentiation. LPS may be a key mediator of the gut-bone axis, and targeting AOAH may represent a feasible strategy for the treatment of chronic inflammatory bone resorption. KEY MESSAGES : AOAH knockout mice exhibited chronic inflammation mediated by LPS, and LPS may also serve as an important mediator in the regulation of bone metabolism in the gut-bone axis. AOAH regulated bone resorption by blocking the osteoclast differentiation via classical ERK and JNK pathways. rAOAH could rescue the enhanced osteoclast differentiation caused by AOAH deficiency.
Collapse
Affiliation(s)
- Xu Cheng
- Department of Orthopedics, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China.,Enze Medical Center, Taizhou, China.,Bone Metabolism and Development Research Center, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China
| | - Xiaoting Song
- Department of Orthopedics, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China.,Enze Medical Center, Taizhou, China.,Bone Metabolism and Development Research Center, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China
| | - Zhiyan Li
- Department of Orthopedics, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China.,Enze Medical Center, Taizhou, China.,Bone Metabolism and Development Research Center, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China
| | - Chiting Yuan
- Department of Orthopedics, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China.,Enze Medical Center, Taizhou, China.,Bone Metabolism and Development Research Center, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China
| | - Xinhuan Lei
- Department of Orthopedics, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China.,Enze Medical Center, Taizhou, China.,Bone Metabolism and Development Research Center, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China
| | - Mingxuan Feng
- Department of Orthopedics, Taizhou Central Hospital Affiliated to Taizhou College, Taizhou, Zhejiang, China
| | - Zhenghua Hong
- Department of Orthopedics, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China.,Enze Medical Center, Taizhou, China.,Bone Metabolism and Development Research Center, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China
| | - Liwei Zhang
- Department of Orthopedics, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China. .,Enze Medical Center, Taizhou, China. .,Bone Metabolism and Development Research Center, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China.
| | - Dun Hong
- Department of Orthopedics, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China. .,Enze Medical Center, Taizhou, China. .,Bone Metabolism and Development Research Center, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China.
| |
Collapse
|
12
|
Wilkerson JL, Basu SK, Stiles MA, Prislovsky A, Grambergs RC, Nicholas SE, Karamichos D, Allegood JC, Proia RL, Mandal N. Ablation of Sphingosine Kinase 1 Protects Cornea from Neovascularization in a Mouse Corneal Injury Model. Cells 2022; 11:2914. [PMID: 36139489 PMCID: PMC9497123 DOI: 10.3390/cells11182914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/03/2022] [Accepted: 09/10/2022] [Indexed: 11/24/2022] Open
Abstract
The purpose of this study was to investigate the role of sphingosine kinase 1 (SphK1), which generates sphingosine-1-phosphate (S1P), in corneal neovascularization (NV). Wild-type (WT) and Sphk1 knockout (Sphk1-/-) mice received corneal alkali-burn treatment to induce corneal NV by placing a 2 mm round piece of Whatman No. 1 filter paper soaked in 1N NaOH on the center of the cornea for 20 s. Corneal sphingolipid species were extracted and identified using liquid chromatography/mass spectrometry (LC/MS). The total number of tip cells and those positive for ethynyl deoxy uridine (EdU) were quantified. Immunocytochemistry was done to examine whether pericytes were present on newly forming blood vessels. Cytokine signaling and angiogenic markers were compared between the two groups using multiplex assays. Data were analyzed using appropriate statistical tests. Here, we show that ablation of SphK1 can significantly reduce NV invasion in the cornea following injury. Corneal sphingolipid analysis showed that total levels of ceramides, monohexosyl ceramides (HexCer), and sphingomyelin were significantly elevated in Sphk-/- corneas compared to WT corneas, with a comparable level of sphingosine among the two genotypes. The numbers of total and proliferating endothelial tip cells were also lower in the Sphk1-/- corneas following injury. This study underscores the role of S1P in post-injury corneal NV and raises further questions about the roles played by ceramide, HexCer, and sphingomyelin in regulating corneal NV. Further studies are needed to unravel the role played by bioactive sphingolipids in maintenance of corneal transparency and clear vision.
Collapse
Affiliation(s)
- Joseph L. Wilkerson
- Dean A. McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 84112, USA
| | - Sandip K. Basu
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | - Megan A. Stiles
- Dean A. McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Amanda Prislovsky
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | - Richard C. Grambergs
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | - Sarah E. Nicholas
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Dimitrios Karamichos
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Jeremy C. Allegood
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Richard L. Proia
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nawajes Mandal
- Dean A. McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
- Departments of Anatomy and Neurobiology, and Pharmaceutical Sciences, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
- Memphis VA Medical Center, Memphis, TN 38104, USA
| |
Collapse
|
13
|
Batra R, Whalen W, Alvarez-Mulett S, Gomez-Escobar LG, Hoffman KL, Simmons W, Harrington J, Chetnik K, Buyukozkan M, Benedetti E, Choi ME, Suhre K, Schenck E, Choi AMK, Schmidt F, Cho SJ, Krumsiek J. Multi-omic comparative analysis of COVID-19 and bacterial sepsis-induced ARDS. PLoS Pathog 2022; 18:e1010819. [PMID: 36121875 PMCID: PMC9484674 DOI: 10.1371/journal.ppat.1010819] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/19/2022] [Indexed: 12/06/2022] Open
Abstract
BACKGROUND Acute respiratory distress syndrome (ARDS), a life-threatening condition characterized by hypoxemia and poor lung compliance, is associated with high mortality. ARDS induced by COVID-19 has similar clinical presentations and pathological manifestations as non-COVID-19 ARDS. However, COVID-19 ARDS is associated with a more protracted inflammatory respiratory failure compared to traditional ARDS. Therefore, a comprehensive molecular comparison of ARDS of different etiologies groups may pave the way for more specific clinical interventions. METHODS AND FINDINGS In this study, we compared COVID-19 ARDS (n = 43) and bacterial sepsis-induced (non-COVID-19) ARDS (n = 24) using multi-omic plasma profiles covering 663 metabolites, 1,051 lipids, and 266 proteins. To address both between- and within- ARDS group variabilities we followed two approaches. First, we identified 706 molecules differently abundant between the two ARDS etiologies, revealing more than 40 biological processes differently regulated between the two groups. From these processes, we assembled a cascade of therapeutically relevant pathways downstream of sphingosine metabolism. The analysis suggests a possible overactivation of arginine metabolism involved in long-term sequelae of ARDS and highlights the potential of JAK inhibitors to improve outcomes in bacterial sepsis-induced ARDS. The second part of our study involved the comparison of the two ARDS groups with respect to clinical manifestations. Using a data-driven multi-omic network, we identified signatures of acute kidney injury (AKI) and thrombocytosis within each ARDS group. The AKI-associated network implicated mitochondrial dysregulation which might lead to post-ARDS renal-sequalae. The thrombocytosis-associated network hinted at a synergy between prothrombotic processes, namely IL-17, MAPK, TNF signaling pathways, and cell adhesion molecules. Thus, we speculate that combination therapy targeting two or more of these processes may ameliorate thrombocytosis-mediated hypercoagulation. CONCLUSION We present a first comprehensive molecular characterization of differences between two ARDS etiologies-COVID-19 and bacterial sepsis. Further investigation into the identified pathways will lead to a better understanding of the pathophysiological processes, potentially enabling novel therapeutic interventions.
Collapse
Affiliation(s)
- Richa Batra
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, New York, United States of America
| | - William Whalen
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Weill Cornell Medicine, New York, New York, United States of America
| | - Sergio Alvarez-Mulett
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Weill Cornell Medicine, New York, New York, United States of America
| | - Luis G. Gomez-Escobar
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Weill Cornell Medicine, New York, New York, United States of America
| | - Katherine L. Hoffman
- Department of Population Health Sciences, Division of Biostatistics, Weill Cornell Medicine, New York, New York, United States of America
| | - Will Simmons
- Department of Population Health Sciences, Division of Biostatistics, Weill Cornell Medicine, New York, New York, United States of America
| | - John Harrington
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Weill Cornell Medicine, New York, New York, United States of America
| | - Kelsey Chetnik
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, New York, United States of America
| | - Mustafa Buyukozkan
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, New York, United States of America
| | - Elisa Benedetti
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, New York, United States of America
| | - Mary E. Choi
- Division of Nephrology and Hypertension, Joan and Sanford I. Weill Department of Medicine, New York, New York, United States of America
| | - Karsten Suhre
- Bioinformatics Core, Weill Cornell Medicine–Qatar, Qatar Foundation, Doha, Qatar
| | - Edward Schenck
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Weill Cornell Medicine, New York, New York, United States of America
| | - Augustine M. K. Choi
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Weill Cornell Medicine, New York, New York, United States of America
| | - Frank Schmidt
- Proteomics Core, Weill Cornell Medicine–Qatar, Qatar Foundation, Doha, Qatar
| | - Soo Jung Cho
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Weill Cornell Medicine, New York, New York, United States of America
| | - Jan Krumsiek
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, New York, United States of America
| |
Collapse
|
14
|
Simón MV, Vera MS, Tenconi PE, Soto T, Prado Spalm FH, Torlaschi C, Mateos MV, Rotstein NP. Sphingosine-1-phosphate and ceramide-1-phosphate promote migration, pro-inflammatory and pro-fibrotic responses in retinal pigment epithelium cells. Exp Eye Res 2022; 224:109222. [PMID: 36041511 DOI: 10.1016/j.exer.2022.109222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/04/2022] [Accepted: 08/16/2022] [Indexed: 11/18/2022]
Abstract
Retinal pigment epithelium (RPE) cells, essential for preserving retina homeostasis, also contribute to the development of retina proliferative diseases, through their exacerbated migration, epithelial to mesenchymal transition (EMT) and inflammatory response. Uncovering the mechanisms inducing these changes is crucial for designing effective treatments for these pathologies. Sphingosine-1-phosphate (S1P) and ceramide-1-phosphate (C1P) are bioactive sphingolipids that promote migration and inflammation in several cell types; we recently established that they stimulate the migration of retina Müller glial cells (Simón et al., 2015; Vera et al., 2021). We here analyzed whether S1P and C1P regulate migration, inflammation and EMT in RPE cells. We cultured two human RPE cell lines, ARPE-19 and D407 cells, and supplemented them with either 5 μM S1P or 10 μM C1P, or their vehicles, for 24 h. Analysis of cell migration by the scratch wound assay showed that S1P addition significantly enhanced migration in both cell lines. Pre-treatment with W146 and BML-241, antagonists for S1P receptor 1 (S1P1) and 3 (S1P3), respectively, blocked exogenous S1P-induced migration. Inhibiting sphingosine kinase 1 (SphK1), the enzyme involved in S1P synthesis, significantly reduced cell migration and exogenous S1P only partially restored it. Addition of C1P markedly stimulated cell migration. Whereas inhibiting C1P synthesis did not affect C1P-induced migration, inhibiting S1P synthesis strikingly decreased it; noteworthy, addition of C1P promoted the transcription of SphK1. These results suggest that S1P and C1P stimulate RPE cell migration and their effect requires S1P endogenous synthesis. Both S1P and C1P increase the transcription of pro-inflammatory cytokines IL-6 and IL-8, and of EMT marker α-smooth muscle actin (α-SMA) in ARPE-19 cells. Collectively, our results suggest new roles for S1P and C1P in the regulation of RPE cell migration and inflammation; since the deregulation of sphingolipid metabolism is involved in several proliferative retinopathies, targeting their metabolism might provide new tools for treating these pathologies.
Collapse
Affiliation(s)
- M Victoria Simón
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Dept. of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur (UNS) and National Research Council of Argentina (CONICET), Bahía Blanca, Buenos Aires, Argentina.
| | - Marcela S Vera
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Dept. of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur (UNS) and National Research Council of Argentina (CONICET), Bahía Blanca, Buenos Aires, Argentina
| | - Paula E Tenconi
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Dept. of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur (UNS) and National Research Council of Argentina (CONICET), Bahía Blanca, Buenos Aires, Argentina
| | - Tamara Soto
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Dept. of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur (UNS) and National Research Council of Argentina (CONICET), Bahía Blanca, Buenos Aires, Argentina
| | - Facundo H Prado Spalm
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Dept. of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur (UNS) and National Research Council of Argentina (CONICET), Bahía Blanca, Buenos Aires, Argentina
| | - Camila Torlaschi
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Dept. of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur (UNS) and National Research Council of Argentina (CONICET), Bahía Blanca, Buenos Aires, Argentina
| | - Melina V Mateos
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Dept. of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur (UNS) and National Research Council of Argentina (CONICET), Bahía Blanca, Buenos Aires, Argentina
| | - Nora P Rotstein
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Dept. of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur (UNS) and National Research Council of Argentina (CONICET), Bahía Blanca, Buenos Aires, Argentina.
| |
Collapse
|
15
|
Zheng R, Su R, Xing F, Li Q, Liu B, Wang D, Du Y, Huang K, Yan F, Wang J, Chen H, Feng S. Metabolic-Dysregulation-Based iEESI-MS Reveals Potential Biomarkers Associated with Early-Stage and Progressive Colorectal Cancer. Anal Chem 2022; 94:11821-11830. [PMID: 35976989 DOI: 10.1021/acs.analchem.2c02072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
The application of rapid and accurate diagnostic methods can improve colorectal cancer (CRC) survival rates dramatically. Here, we used a non-targeted metabolic analysis strategy based on internal extractive electrospray ionization mass spectrometry (iEESI-MS) to detect metabolite ions associated with the progression of CRC from 172 tissues (45 stage I/II CRC, 41 stage III/IV CRC, and 86 well-matched normal tissues). A support vector machine (SVM) model based on 10 differential metabolite ions for differentiating early-stage CRC from normal tissues was built with a good prediction accuracy of 92.6%. The biomarker panel consisting of lysophosphatidylcholine (LPC) (18:0) has good diagnostic potential in differentiating early-stage CRC from advanced-stage CRC. We showed that the down-regulation of LPC (18:0) in tumor tissues is associated with CRC progression and related to the regulation of the epidermal growth factor receptor. Pathway analysis showed that metabolic pathways in CRC are related to glycerophospholipid metabolism and purine metabolism. In conclusion, we built an SVM model with good performance to distinguish between early-stage CRC and normal groups based on iEESI-MS and found that LPC (18:0) is associated with the progression of CRC.
Collapse
Affiliation(s)
- Ran Zheng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Rui Su
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Fan Xing
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Qing Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Botong Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Daguang Wang
- Department of Gastric Colorectal and Anal Surgery, First Hospital of Jilin University, Changchun 130021, China
| | - Yechao Du
- Department of Gastric Colorectal and Anal Surgery, First Hospital of Jilin University, Changchun 130021, China
| | - Keke Huang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Fei Yan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Jianfeng Wang
- Department of Radiotherapy, China-Japan Union Hospital of Jilin University, Changchun 130021, China
| | - Huanwen Chen
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Shouhua Feng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
16
|
Batra R, Whalen W, Alvarez-Mulett S, Gómez-Escobar LG, Hoffman KL, Simmons W, Harrington J, Chetnik K, Buyukozkan M, Benedetti E, Choi ME, Suhre K, Schenck E, Choi AMK, Schmidt F, Cho SJ, Krumsiek J. Multi-omic comparative analysis of COVID-19 and bacterial sepsis-induced ARDS. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022:2022.05.16.22274587. [PMID: 35982655 PMCID: PMC9387161 DOI: 10.1101/2022.05.16.22274587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background Acute respiratory distress syndrome (ARDS), a life-threatening condition characterized by hypoxemia and poor lung compliance, is associated with high mortality. ARDS induced by COVID-19 has similar clinical presentations and pathological manifestations as non-COVID-19 ARDS. However, COVID-19 ARDS is associated with a more protracted inflammatory respiratory failure compared to traditional ARDS. Therefore, a comprehensive molecular comparison of ARDS of different etiologies groups may pave the way for more specific clinical interventions. Methods and Findings In this study, we compared COVID-19 ARDS (n=43) and bacterial sepsis-induced (non-COVID-19) ARDS (n=24) using multi-omic plasma profiles covering 663 metabolites, 1,051 lipids, and 266 proteins. To address both between- and within-ARDS group variabilities we followed two approaches. First, we identified 706 molecules differently abundant between the two ARDS etiologies, revealing more than 40 biological processes differently regulated between the two groups. From these processes, we assembled a cascade of therapeutically relevant pathways downstream of sphingosine metabolism. The analysis suggests a possible overactivation of arginine metabolism involved in long-term sequelae of ARDS and highlights the potential of JAK inhibitors to improve outcomes in bacterial sepsis-induced ARDS. The second part of our study involved the comparison of the two ARDS groups with respect to clinical manifestations. Using a data-driven multi-omic network, we identified signatures of acute kidney injury (AKI) and thrombocytosis within each ARDS group. The AKI-associated network implicated mitochondrial dysregulation which might lead to post-ARDS renal-sequalae. The thrombocytosis-associated network hinted at a synergy between prothrombotic processes, namely IL-17, MAPK, TNF signaling pathways, and cell adhesion molecules. Thus, we speculate that combination therapy targeting two or more of these processes may ameliorate thrombocytosis-mediated hypercoagulation. Conclusion We present a first comprehensive molecular characterization of differences between two ARDS etiologies - COVID-19 and bacterial sepsis. Further investigation into the identified pathways will lead to a better understanding of the pathophysiological processes, potentially enabling novel therapeutic interventions.
Collapse
Affiliation(s)
- Richa Batra
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - William Whalen
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Sergio Alvarez-Mulett
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Luis G Gómez-Escobar
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Katherine L Hoffman
- Department of Population Health Sciences, Division of Biostatistics, Weill Cornell Medicine, New York, NY, USA
| | - Will Simmons
- Department of Population Health Sciences, Division of Biostatistics, Weill Cornell Medicine, New York, NY, USA
| | - John Harrington
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Kelsey Chetnik
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Mustafa Buyukozkan
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Elisa Benedetti
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Mary E Choi
- Division of Nephrology and Hypertension, Joan and Sanford I. Weill Department of Medicine, New York, NY, USA
| | - Karsten Suhre
- Bioinformatics Core, Weill Cornell Medicine - Qatar, Qatar Foundation, Doha, Qatar
| | - Edward Schenck
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Augustine M K Choi
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Frank Schmidt
- Proteomics Core, Weill Cornell Medicine - Qatar, Qatar Foundation, Doha, Qatar
| | - Soo Jung Cho
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jan Krumsiek
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| |
Collapse
|
17
|
Takagi Y, Nishikado S, Omi J, Aoki J. The Many Roles of Lysophospholipid Mediators and Japanese Contributions to This Field. Biol Pharm Bull 2022; 45:1008-1021. [DOI: 10.1248/bpb.b22-00304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yugo Takagi
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo
| | - Shun Nishikado
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo
| | - Jumpei Omi
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo
| | - Junken Aoki
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo
| |
Collapse
|
18
|
Zhou Y, Chang M, Wang N, Zhuang Y, Wang F, Zhang X, Guo M, Lin N, Li JZ, Wang Q. Phosphatidylserine-Specific Phospholipase A1 Limits Aggressiveness of Lung Adenocarcinoma by Lysophosphatidylserine and Protein Kinase A-Dependent Pathway. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:970-983. [PMID: 35358472 DOI: 10.1016/j.ajpath.2022.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/27/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Lipid metabolic abnormalities in cancer cells are increasingly being studied. Several studies have reported that phosphatidylserine-specific phospholipase A1 (PLA1A) might be involved in the pathogenesis of cancers. Nevertheless, the function and mechanistic details of PLA1A in lung adenocarcinoma (LUAD) progression remain largely undefined. In the present study, low PLA1A expression was correlated with poor prognosis in patients with LUAD. Results from in vitro and in vivo animal studies showed that overexpressed PLA1A suppressed the proliferation of LUAD cells in vitro and tumor growth in vivo through regulation of cyclin abundance, thereby inducing S-phase arrest. Meanwhile, PLA1A overexpression attenuated migration and invasion of LUAD cells, including by inhibiting the epithelial-mesenchymal transition. Mechanistically, PLA1A overexpression inhibited aggressiveness of LUAD cells through elevated lysophosphatidylserine, which acts via G-protein-coupled receptor 174, further activating cAMP/protein kinase A pathway. Activating G-protein-coupled receptor 174/protein kinase A pathway may involve effects on cell cycle regulators and transcription factors-regulated epithelial-mesenchymal transition. The study uncovered the mechanism through which PLA1A regulates LUAD proliferation, invasion, and migration. These results demonstrate the potential use of PLA1A as a biomarker for diagnosing LUAD, which may therefore potentially serve as a therapeutic target for LUAD.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Thoracic Surgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Meijia Chang
- Jiangsu Province Key Lab of Human Functional Genomics, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| | - Ning Wang
- Jiangsu Province Key Lab of Human Functional Genomics, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| | - Yuan Zhuang
- Jiangsu Province Key Lab of Human Functional Genomics, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| | - Fang Wang
- State Key Lab of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Xu Zhang
- Jiangsu Province Key Lab of Human Functional Genomics, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| | - Min Guo
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Ning Lin
- National Health Commission Contraceptives Adverse Reaction Surveillance Center, Jiangsu Health Development Research Center, Nanjing, China.
| | - John Zhong Li
- Jiangsu Province Key Lab of Human Functional Genomics, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| | - Qian Wang
- Jiangsu Province Key Lab of Human Functional Genomics, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
19
|
Gurgul-Convey E. To Be or Not to Be: The Divergent Action and Metabolism of Sphingosine-1 Phosphate in Pancreatic Beta-Cells in Response to Cytokines and Fatty Acids. Int J Mol Sci 2022; 23:ijms23031638. [PMID: 35163559 PMCID: PMC8835924 DOI: 10.3390/ijms23031638] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 01/02/2023] Open
Abstract
Sphingosine-1 phosphate (S1P) is a bioactive sphingolipid with multiple functions conveyed by the activation of cell surface receptors and/or intracellular mediators. A growing body of evidence indicates its important role in pancreatic insulin-secreting beta-cells that are necessary for maintenance of glucose homeostasis. The dysfunction and/or death of beta-cells lead to diabetes development. Diabetes is a serious public health burden with incidence growing rapidly in recent decades. The two major types of diabetes are the autoimmune-mediated type 1 diabetes (T1DM) and the metabolic stress-related type 2 diabetes (T2DM). Despite many differences in the development, both types of diabetes are characterized by chronic hyperglycemia and inflammation. The inflammatory component of diabetes remains under-characterized. Recent years have brought new insights into the possible mechanism involved in the increased inflammatory response, suggesting that environmental factors such as a westernized diet may participate in this process. Dietary lipids, particularly palmitate, are substrates for the biosynthesis of bioactive sphingolipids. Disturbed serum sphingolipid profiles were observed in both T1DM and T2DM patients. Many polymorphisms were identified in genes encoding enzymes of the sphingolipid pathway, including sphingosine kinase 2 (SK2), the S1P generating enzyme which is highly expressed in beta-cells. Proinflammatory cytokines and free fatty acids have been shown to modulate the expression and activity of S1P-generating and S1P-catabolizing enzymes. In this review, the similarities and differences in the action of extracellular and intracellular S1P in beta-cells exposed to cytokines or free fatty acids will be identified and the outlook for future research will be discussed.
Collapse
Affiliation(s)
- Ewa Gurgul-Convey
- Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| |
Collapse
|
20
|
Gutner UA, Shupik MA. The Role of Sphingosine-1-Phosphate in Neurodegenerative Diseases. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1068162021050277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Chen L, Li L, Song Y, Lv T. Blocking SphK1/S1P/S1PR1 Signaling Pathway Alleviates Lung Injury Caused by Sepsis in Acute Ethanol Intoxication Mice. Inflammation 2021; 44:2170-2179. [PMID: 34109517 PMCID: PMC8189277 DOI: 10.1007/s10753-021-01490-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/12/2021] [Accepted: 05/25/2021] [Indexed: 12/11/2022]
Abstract
Acute ethanol intoxication increases the risk of sepsis and aggravates the symptoms of sepsis and lung injury. Therefore, this study aimed to explore whether sphingosine kinase 1 (SphK1)/sphingosine-1-phosphate (S1P)/S1P receptor 1 (S1PR1) signaling pathway functions in lung injury caused by acute ethanol intoxication-enhanced sepsis, as well as its underlying mechanism. The acute ethanol intoxication model was simulated by intraperitoneally administering mice with 32% ethanol solution, and cecal ligation and puncture (CLP) was used to construct the sepsis model. The lung tissue damage was observed by hematoxylin-eosin (H&E) staining, and the wet-to-dry (W/D) ratio was used to evaluate the degree of pulmonary edema. Inflammatory cell counting and protein concentration in bronchoalveolar lavage fluid (BALF) were, respectively, detected by hemocytometer and bicinchoninic acid (BCA) method. The levels of tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-1β, and IL-18 in BALF were detected by their commercial enzyme-linked immunosorbent assay (ELISA) kits. The myeloperoxidase (MPO) activity and expression of apoptosis-related proteins and SphK1/S1P/S1PR1 pathway-related proteins were, respectively, analyzed by MPO ELISA kit and Western blot analysis. The cell apoptosis in lung tissues was observed by TUNEL assay. Acute ethanol intoxication (EtOH) decreased the survival rate of mice and exacerbated the lung injury caused by sepsis through increasing pulmonary vascular permeability, neutrophil infiltration, release of inflammatory factors, and cell apoptosis. In addition, EtOH could activate the SphK1/S1P/S1PR1 pathway in CLP mice. However, PF-543, as a specific inhibitor of SphK1, could partially reverse the deleterious effects on lung injury of CLP mice. PF-543 alleviated lung injury caused by sepsis in acute ethanol intoxication rats by suppressing the SphK1/S1P/S1PR1 signaling pathway.
Collapse
Affiliation(s)
- Liang Chen
- Department of Respiratory and Critical Care Medicine, The Affiliated No.1 People's Hospital of Nanjing Medical University, Huaian, 223300, Jiangsu, China
| | - Lingling Li
- Department of Respiratory and Critical Care Medicine, The Affiliated No.1 People's Hospital of Nanjing Medical University, Huaian, 223300, Jiangsu, China
| | - Yong Song
- Jinling Clinical Medical College, Nanjing Medical University, 305 Zhongshan East Road, Xuanwu District, Nanjing City, 210002, Jiangsu Province, China.
| | - Tangfeng Lv
- Jinling Clinical Medical College, Nanjing Medical University, 305 Zhongshan East Road, Xuanwu District, Nanjing City, 210002, Jiangsu Province, China.
| |
Collapse
|
22
|
Generalized lipoatrophy syndromes. Presse Med 2021; 50:104075. [PMID: 34562560 DOI: 10.1016/j.lpm.2021.104075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/31/2021] [Accepted: 09/15/2021] [Indexed: 11/23/2022] Open
Abstract
Generalized lipodystrophy (GL) syndromes are a group of rare heterogenous disorders, characterized by total subcutaneous fat loss. The frequency of GL is currently assessed as approximately 0,23 cases per million of the population, in Europe - as 0,96 cases per million of the population. They can be congenital (CGL) or acquired (AGL) depending on the etiology and the time of the onset of fat loss. Both CGL and AGL are often associated with different metabolic complications, such as hypertriglyceridemia, insulin resistance and lipoatrophic diabetes mellitus, metabolically associated FLD, arterial hypertension, proteinuria, reproductive system disorders. In this review we aimed to summarize the information on all forms of generalized lipodystrophy, especially the ones of genetic etiology, their clinical manifestations and complications, the perspectives for diagnostics, treatment and further research.
Collapse
|
23
|
Rudzitis-Auth J, Christoffel A, Menger MD, Laschke MW. Targeting sphingosine kinase-1 with the low MW inhibitor SKI-5C suppresses the development of endometriotic lesions in mice. Br J Pharmacol 2021; 178:4104-4118. [PMID: 34185874 DOI: 10.1111/bph.15601] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 05/17/2021] [Accepted: 06/08/2021] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND AND PURPOSE Limited evidence suggests that the sphingosine-1-phosphate/sphingosine kinase 1 (S1P/SPHK1) signalling pathway is involved in the pathogenesis of endometriosis. Therefore, we analyzed in this study whether the inhibition of SPHK1 and, consequently, decreased levels of S1P affected the vascularization and growth of endometriotic lesions. EXPERIMENTAL APPROACH Endometriotic lesions were surgically induced in the peritoneal cavity and the dorsal skinfold chamber of female BALB/c mice. The animals received a daily dose of the SPHK1 inhibitor SKI-5C or vehicle (control). Analyses involved the determination of lesion growth, cyst formation, microvessel density and cell proliferation within peritoneal endometriotic lesions by means of high-resolution ultrasound imaging, caliper measurement, histology and immunohistochemistry. In the dorsal skinfold chamber model the development of newly formed microvascular networks and their microhemodynamic parameters within endometriotic lesions were investigated by means of intravital fluorescence microscopy. KEY RESULTS SKI-5C significantly inhibited the development and vascularization of peritoneal endometriotic lesions, as indicated by a reduced growth and cyst formation, a lower microvessel density and a suppressed cell proliferation, when compared to vehicle-treated controls. Endometriotic lesions in dorsal skinfold chambers of SKI-5C-treated animals exhibited a significantly smaller lesion size, lower functional microvessel density, smaller microvessel diameters and a reduced blood perfusion of the newly developing microvascular networks. CONCLUSIONS AND IMPLICATIONS SPHK1/S1P signalling promotes the establishment and progression of endometriotic lesions. The inhibition of this pathway suppresses the development of endometriotic lesions, suggesting SPHK1 as a potential novel target for future endometriosis therapy.
Collapse
Affiliation(s)
| | - Anika Christoffel
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Michael D Menger
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Matthias W Laschke
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg/Saar, Germany
| |
Collapse
|
24
|
Kim JH, Han J, Suk K. Protective Effects of Complement Component 8 Gamma Against Blood-Brain Barrier Breakdown. Front Physiol 2021; 12:671250. [PMID: 34149451 PMCID: PMC8209513 DOI: 10.3389/fphys.2021.671250] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/27/2021] [Indexed: 11/13/2022] Open
Abstract
The blood-brain barrier (BBB) regulates the traffic of micromolecules and macromolecules between the peripheral blood and the central nervous system, to maintain brain homeostasis. BBB disruption and dysfunction accompany a variety of neurological disorders and are closely related with the neuroinflammatory cascades that are triggered by leukocyte infiltration and glial activation. Here, we explored the role of complement component 8 gamma (C8G) in the maintenance of BBB integrity. Previously, C8G was shown to inhibit neuroinflammation by interfering with the sphingosine-1-phosphate (S1P)-S1PR2 interaction. The results of the present study revealed that C8G is localized in perivascular astrocytes, whereas S1PR2 is expressed in endothelial cells (ECs). In the lipopolysaccharide (LPS)-induced neuroinflammation model, the intracerebroventricular administration of the recombinant C8G protein protected the integrity of the BBB, whereas shRNA-mediated C8G knockdown enhanced BBB permeability and neutrophil infiltration. Using pharmacological agonists and antagonists of S1PR2, we demonstrated that C8G inhibited the inflammatory activation of ECs in culture by antagonizing S1PR2. In the in vitro BBB model, the addition of the recombinant C8G protein preserved endothelial integrity, whereas the knockdown of C8G exacerbated endothelial leakage under inflammatory conditions. Together, our findings indicate an important role for astrocytic C8G in protecting the BBB in the inflamed brain, suggesting a novel mechanism of cross talk between astrocytes and ECs in terms of BBB maintenance.
Collapse
Affiliation(s)
- Jong-Heon Kim
- Brain Science and Engineering Institute, Kyungpook National University, Daegu, South Korea
| | - Jin Han
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, South Korea.,Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Kyoungho Suk
- Brain Science and Engineering Institute, Kyungpook National University, Daegu, South Korea.,Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, South Korea.,Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
25
|
Metabolomics shows the Australian dingo has a unique plasma profile. Sci Rep 2021; 11:5245. [PMID: 33664285 PMCID: PMC7933249 DOI: 10.1038/s41598-021-84411-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/04/2021] [Indexed: 01/02/2023] Open
Abstract
Dingoes occupy a wide range of the Australian mainland and play a crucial role as an apex predator with a generalist omnivorous feeding behaviour. Dingoes are ecologically, phenotypically and behaviourally distinct from modern breed dogs and have not undergone artificial selection since their arrival in Australia. In contrast, humans have selected breed dogs for novel and desirable traits. First, we examine whether the distinct evolutionary histories of dingoes and domestic dogs has lead to differences in plasma metabolomes. We study metabolite composition differences between dingoes (n = 15) and two domestic dog breeds (Basenji n = 9 and German Shepherd Dog (GSD) n = 10). Liquid chromatography mass spectrometry, type II and type III ANOVA with post-hoc tests and adjustments for multiple comparisons were used for data evaluation. After accounting for within group variation, 62 significant metabolite differences were detected between dingoes and domestic dogs, with the majority of differences in protein (n = 14) and lipid metabolites (n = 12), mostly lower in dingoes. Most differences were observed between dingoes and domestic dogs and fewest between the domestic dog breeds. Next, we collect a second set of data to investigate variation between pure dingoes (n = 10) and dingo-dog hybrids (n = 10) as hybridisation is common in regional Australia. We detected no significant metabolite differences between dingoes and dingo-dog hybrids after Bonferroni correction. However, power analysis showed that increasing the sample size to 15 could result in differences in uridine 5′-diphosphogalactose (UDPgal) levels related to galactose metabolism. We suggest this may be linked to an increase in Amylase 2B copy number in hybrids. Our study illustrates that the dingo metabolome is significantly different from domestic dog breeds and hybridisation is likely to influence carbohydrate metabolism.
Collapse
|
26
|
Permissive Modulation of Sphingosine-1-Phosphate-Enhanced Intracellular Calcium on BK Ca Channel of Chromaffin Cells. Int J Mol Sci 2021; 22:ijms22042175. [PMID: 33671654 PMCID: PMC7926978 DOI: 10.3390/ijms22042175] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/10/2021] [Accepted: 02/18/2021] [Indexed: 12/18/2022] Open
Abstract
Sphingosine-1-phosphate (S1P), is a signaling sphingolipid which acts as a bioactive lipid mediator. We assessed whether S1P had multiplex effects in regulating the large-conductance Ca2+-activated K+ channel (BKCa) in catecholamine-secreting chromaffin cells. Using multiple patch-clamp modes, Ca2+ imaging, and computational modeling, we evaluated the effects of S1P on the Ca2+-activated K+ currents (IK(Ca)) in bovine adrenal chromaffin cells and in a pheochromocytoma cell line (PC12). In outside-out patches, the open probability of BKCa channel was reduced with a mean-closed time increment, but without a conductance change in response to a low-concentration S1P (1 µM). The intracellular Ca2+ concentration (Cai) was elevated in response to a high-dose (10 µM) but not low-dose of S1P. The single-channel activity of BKCa was also enhanced by S1P (10 µM) in the cell-attached recording of chromaffin cells. In the whole-cell voltage-clamp, a low-dose S1P (1 µM) suppressed IK(Ca), whereas a high-dose S1P (10 µM) produced a biphasic response in the amplitude of IK(Ca), i.e., an initial decrease followed by a sustained increase. The S1P-induced IK(Ca) enhancement was abolished by BAPTA. Current-clamp studies showed that S1P (1 µM) increased the action potential (AP) firing. Simulation data revealed that the decreased BKCa conductance leads to increased AP firings in a modeling chromaffin cell. Over a similar dosage range, S1P (1 µM) inhibited IK(Ca) and the permissive role of S1P on the BKCa activity was also effectively observed in the PC12 cell system. The S1P-mediated IK(Ca) stimulation may result from the elevated Cai, whereas the inhibition of BKCa activity by S1P appears to be direct. By the differentiated tailoring BKCa channel function, S1P can modulate stimulus-secretion coupling in chromaffin cells.
Collapse
|
27
|
Simon MV, Basu SK, Qaladize B, Grambergs R, Rotstein NP, Mandal N. Sphingolipids as critical players in retinal physiology and pathology. J Lipid Res 2021; 62:100037. [PMID: 32948663 PMCID: PMC7933806 DOI: 10.1194/jlr.tr120000972] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/04/2020] [Indexed: 12/24/2022] Open
Abstract
Sphingolipids have emerged as bioactive lipids involved in the regulation of many physiological and pathological processes. In the retina, they have been established to participate in numerous processes, such as neuronal survival and death, proliferation and migration of neuronal and vascular cells, inflammation, and neovascularization. Dysregulation of sphingolipids is therefore crucial in the onset and progression of retinal diseases. This review examines the involvement of sphingolipids in retinal physiology and diseases. Ceramide (Cer) has emerged as a common mediator of inflammation and death of neuronal and retinal pigment epithelium cells in animal models of retinopathies such as glaucoma, age-related macular degeneration (AMD), and retinitis pigmentosa. Sphingosine-1-phosphate (S1P) has opposite roles, preventing photoreceptor and ganglion cell degeneration but also promoting inflammation, fibrosis, and neovascularization in AMD, glaucoma, and pro-fibrotic disorders. Alterations in Cer, S1P, and ceramide 1-phosphate may also contribute to uveitis. Notably, use of inhibitors that either prevent Cer increase or modulate S1P signaling, such as Myriocin, desipramine, and Fingolimod (FTY720), preserves neuronal viability and retinal function. These findings underscore the relevance of alterations in the sphingolipid metabolic network in the etiology of multiple retinopathies and highlight the potential of modulating their metabolism for the design of novel therapeutic approaches.
Collapse
Affiliation(s)
- M Victoria Simon
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Departamento De Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Argentine National Research Council (CONICET), Bahía Blanca, Argentina
| | - Sandip K Basu
- Departments of Ophthalmology and Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Bano Qaladize
- Departments of Ophthalmology and Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Richard Grambergs
- Departments of Ophthalmology and Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Nora P Rotstein
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Departamento De Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Argentine National Research Council (CONICET), Bahía Blanca, Argentina.
| | - Nawajes Mandal
- Departments of Ophthalmology and Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
28
|
Comi G, Dalla Costa G, Moiola L. Newly approved agents for relapsing remitting multiple sclerosis: how real-world evidence compares with randomized clinical trials? Expert Rev Neurother 2020; 21:21-34. [PMID: 33043718 DOI: 10.1080/14737175.2021.1829478] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
INTRODUCTION In recent years, many treatment options have become available for relapsing remitting MS. Randomized clinical trials and real-world studies are complementary sources of information, and together have the potential to offer a comprehensive understanding of the safety and efficacy profiles of each drug, a critical factor for a personalized management of the disease. AREAS COVERED In this review, the authors provide an up-to-date review of both RCTs and real-world studies assessing the safety and efficacy profiles of recently developed disease-modifying drugs for relapsing remitting MS. These include fingolimod, teriflunomide, dimethyl fumarate, alemtuzumab and ocrelizumab. EXPERT OPINION From the authors' review of the literature, the efficacy profiles resulted from RCTs were confirmed by observational studies with regard to the disease-modifying drugs considered. The magnitude of the effects on annualized relapse rates and MRI active lesions was generally even larger in the observational studies compared to RCTs. From the safety point of view, observational studies revealed new adverse events, mostly in the area of bacterial and opportunistic infections, not seen in the relative registration programme. This is a very important gain because it allows to elaborate appropriate strategies to prevent and handle the risks.
Collapse
Affiliation(s)
- Giancarlo Comi
- Institute of Experimental Neurology of San Raffaele Hospital , Milan, Italy
| | - Gloria Dalla Costa
- Institute of Experimental Neurology of San Raffaele Hospital , Milan, Italy.,Vita-Salute San Raffaele University , Milan, Italy
| | - Lucia Moiola
- Institute of Experimental Neurology of San Raffaele Hospital , Milan, Italy.,Neurology Unit and MS Center, San Raffaele Hospital , Milan, Italy
| |
Collapse
|
29
|
Chiba K. Discovery of fingolimod based on the chemical modification of a natural product from the fungus, Isaria sinclairii. J Antibiot (Tokyo) 2020; 73:666-678. [PMID: 32681100 DOI: 10.1038/s41429-020-0351-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/30/2020] [Indexed: 12/15/2022]
Abstract
Fingolimod is a first-in-class of sphingosine-1-phosphate (S1P) receptor modulator and is widely used a therapeutic drug for multiple sclerosis (MS), autoimmune disease in the central nervous system. About 25 year ago, a natural product, myriocin was isolated from culture broths of the fungus Isaria sinclairii. Myriocin, a rather complex amino acid having three successive asymmetric centers, was found to show a potent immunosuppressive activity in vitro; however, it induced a strong toxicity in vivo. To find out a less toxic immunosuppressive candidate, the chemical structure of myriocin was simplified to a nonchiral symmetric 2-substituted-2-aminoproane-1,3-diol framework. Finally, a highly potent immunosuppressant, fingolimod was found by the extensive chemical modification and pharmacological evaluation using skin allograft model in vivo. Throughout the analyses of the mechanism action of fingolimod, it is revealed that S1P receptor 1 (S1P1) plays an essential role in lymphocyte circulation and that the molecular target of fingolimod is S1P1. Phosphorylated fingolimod acts as a "functional" antagonist at S1P1, modulates lymphocyte circulation, and shows a potent immunosuppressive activity. Fingolimod significantly reduced the relapse rate of MS in the clinical studies and has been approved as a new therapeutic drug for MS in more than 80 countries.
Collapse
Affiliation(s)
- Kenji Chiba
- Research Unit Immunology & Inflammation, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000, Kamoshida-cho, Aoba-ku, Yokohama, Kanagawa, 227-0033, Japan.
| |
Collapse
|
30
|
Park WJ, Park JW. The role of sphingolipids in endoplasmic reticulum stress. FEBS Lett 2020; 594:3632-3651. [PMID: 32538465 DOI: 10.1002/1873-3468.13863] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/15/2020] [Accepted: 06/08/2020] [Indexed: 12/19/2022]
Abstract
The endoplasmic reticulum (ER) is an important intracellular compartment in eukaryotic cells and has diverse functions, including protein synthesis, protein folding, lipid metabolism and calcium homeostasis. ER functions are disrupted by various intracellular and extracellular stimuli that cause ER stress, including the inhibition of glycosylation, disulphide bond reduction, ER calcium store depletion, impaired protein transport to the Golgi, excessive ER protein synthesis, impairment of ER-associated protein degradation and mutated ER protein expression. Distinct ER stress signalling pathways, which are known as the unfolded protein response, are deployed to maintain ER homeostasis, and a failure to reverse ER stress triggers cell death. Sphingolipids are lipids that are structurally characterized by long-chain bases, including sphingosine or dihydrosphingosine (also known as sphinganine). Sphingolipids are bioactive molecules long known to regulate various cellular processes, including cell proliferation, migration, apoptosis and cell-cell interaction. Recent studies have uncovered that specific sphingolipids are involved in ER stress. This review summarizes the roles of sphingolipids in ER stress and human diseases in the context of pathogenic events.
Collapse
Affiliation(s)
- Woo-Jae Park
- Department of Biochemistry, College of Medicine, Gachon University, Incheon, South Korea
| | - Joo-Won Park
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul, South Korea
| |
Collapse
|
31
|
Nonaka S, Salim E, Kamiya K, Hori A, Nainu F, Asri RM, Masyita A, Nishiuchi T, Takeuchi S, Kodera N, Kuraishi T. Molecular and Functional Analysis of Pore-Forming Toxin Monalysin From Entomopathogenic Bacterium Pseudomonas entomophila. Front Immunol 2020; 11:520. [PMID: 32292407 PMCID: PMC7118224 DOI: 10.3389/fimmu.2020.00520] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 03/06/2020] [Indexed: 01/05/2023] Open
Abstract
Pseudomonas entomophila is a highly pathogenic bacterium that infects insects. It is also used as a suitable model pathogen to analyze Drosophila's innate immunity. P. entomophila's virulence is largely derived from Monalysin, a β-barrel pore-forming toxin that damages Drosophila tissues, inducing necrotic cell death. Here we report the first and efficient purification of endogenous Monalysin and its characterization. Monalysin is successfully purified as a pro-form, and trypsin treatment results in a cleaved mature form of purified Monalysin which kills Drosophila cell lines and adult flies. Electrophysiological measurement of Monalysin in a lipid membrane with an on-chip device confirms that Monalysin forms a pore, in a cleavage-dependent manner. This analysis also provides a pore-size estimate of Monalysin using current amplitude for a single pore and suggests lipid preferences for the insertion. Atomic Force Microscope (AFM) analysis displays its structure in a solution and shows that active-Monalysin is stable and composed of an 8-mer complex; this observation is consistent with mass spectrometry data. AFM analysis also shows the 8-mer structure of active-Monalysin in a lipid bilayer, and real-time imaging demonstrates the moment at which Monalysin is inserted into the lipid membrane. These results collectively suggest that endogenous Monalysin is indeed a pore-forming toxin composed of a rigid structure before pore formation in the lipid membrane. The endogenous Monalysin characterized in this study could be a desirable tool for analyzing host defense mechanisms against entomopathogenic bacteria producing damage-inducing toxins.
Collapse
Affiliation(s)
- Saori Nonaka
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Emil Salim
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan.,Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Koki Kamiya
- Kanagawa Institute of Industrial Science and Technology, Kawasaki, Japan.,Graduate School of Science and Technology, Gunma University, Maebashi, Japan
| | - Aki Hori
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Firzan Nainu
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan.,Faculty of Pharmacy, Universitas Hasanuddin, Makassar, Indonesia
| | - Rangga Meidianto Asri
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan.,Faculty of Pharmacy, Universitas Hasanuddin, Makassar, Indonesia
| | - Ayu Masyita
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan.,Faculty of Pharmacy, Universitas Hasanuddin, Makassar, Indonesia
| | - Takumi Nishiuchi
- Institute for Gene Research, Kanazawa University, Kanazawa, Japan
| | - Shoji Takeuchi
- Kanagawa Institute of Industrial Science and Technology, Kawasaki, Japan.,Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Noriyuki Kodera
- WPI Nano Life Science Institute, Kanazawa University, Kanazawa, Japan
| | - Takayuki Kuraishi
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
32
|
Yanagida K, Engelbrecht E, Niaudet C, Jung B, Gaengel K, Holton K, Swendeman S, Liu CH, Levesque MV, Kuo A, Fu Z, Smith LEH, Betsholtz C, Hla T. Sphingosine 1-Phosphate Receptor Signaling Establishes AP-1 Gradients to Allow for Retinal Endothelial Cell Specialization. Dev Cell 2020; 52:779-793.e7. [PMID: 32059774 DOI: 10.1016/j.devcel.2020.01.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 12/09/2019] [Accepted: 01/16/2020] [Indexed: 12/17/2022]
Abstract
Transcriptional mechanisms that drive angiogenesis and organotypic vascular endothelial cell specialization are poorly understood. Here, we show that retinal endothelial sphingosine 1-phosphate receptors (S1PRs), which restrain vascular endothelial growth factor (VEGF)-induced angiogenesis, spatially restrict expression of JunB, a member of the activator protein 1 (AP-1) family of transcription factors (TFs). Mechanistically, VEGF induces JunB expression at the sprouting vascular front while S1PR-dependent vascular endothelial (VE)-cadherin assembly suppresses JunB expression in the nascent vascular network, thus creating a gradient of this TF. Endothelial-specific JunB knockout mice showed diminished expression of neurovascular guidance genes and attenuated retinal vascular network progression. In addition, endothelial S1PR signaling is required for normal expression of β-catenin-dependent genes such as TCF/LEF1 and ZIC3 TFs, transporters, and junctional proteins. These results show that S1PR signaling restricts JunB function to the expanding vascular front, thus creating an AP-1 gradient and enabling organotypic endothelial cell specialization of the vascular network.
Collapse
Affiliation(s)
- Keisuke Yanagida
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Eric Engelbrecht
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Colin Niaudet
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Bongnam Jung
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Konstantin Gaengel
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | | | - Steven Swendeman
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Catherine H Liu
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Michel V Levesque
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Andrew Kuo
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Zhongjie Fu
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lois E H Smith
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Christer Betsholtz
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden; ICMC (Integrated Cardio Metabolic Centre), Karolinska Institutet, Novum, Huddinge, Sweden
| | - Timothy Hla
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
33
|
Volpi C, Orabona C, Macchiarulo A, Bianchi R, Puccetti P, Grohmann U. Preclinical discovery and development of fingolimod for the treatment of multiple sclerosis. Expert Opin Drug Discov 2019; 14:1199-1212. [PMID: 31389262 DOI: 10.1080/17460441.2019.1646244] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Introduction: Fingolimod, the first oral disease-modifying treatment (DMT) in multiple sclerosis (MS), is a sphingosine 1-phosphate receptor (S1PR) ligand. Approved in 2010, fingolimod has been extensively studied and has been credited with several mechanisms of actions that contribute to its efficacy in MS, among which is the regulation of lymphocyte circulation between the central nervous system and the periphery. Concerns about toxicity, off-target effects, and real-life performance have been raised over time in post-marketing studies of such that next-generation sphingosine-1 phosphate receptor ligands are now being developed. Areas covered: Herein, the authors expand upon previous systematic reviews obtained via PubMed and through their expert opinion on fingolimod use in clinical practice. Long-term data including long-term efficacy, safety, tolerability, and management especially within growing DMT options and pre-treatment constellation in MS patients are discussed, together with the results of an increased understanding of the chemistry underlying the structure-activity relationship. Expert opinion: Despite the limitations illustrated in this article, fingolimod still constitutes a paradigm shift in MS treatment. However, although immunomodulation via S1PRs on lymphocytes has represented a major breakthrough in the clinical management of MS, modifying the evolution of progressive MS will likely require the development of approaches other than merely targeting S1PRs.
Collapse
Affiliation(s)
- Claudia Volpi
- Department of Experimental Medicine, University of Perugia , Perugia , Italy
| | - Ciriana Orabona
- Department of Experimental Medicine, University of Perugia , Perugia , Italy
| | - Antonio Macchiarulo
- Department of Pharmaceutical Sciences, University of Perugia , Perugia , Italy
| | - Roberta Bianchi
- Department of Experimental Medicine, University of Perugia , Perugia , Italy
| | - Paolo Puccetti
- Department of Experimental Medicine, University of Perugia , Perugia , Italy
| | - Ursula Grohmann
- Department of Experimental Medicine, University of Perugia , Perugia , Italy
| |
Collapse
|
34
|
Simón MV, Prado Spalm FH, Vera MS, Rotstein NP. Sphingolipids as Emerging Mediators in Retina Degeneration. Front Cell Neurosci 2019; 13:246. [PMID: 31244608 PMCID: PMC6581011 DOI: 10.3389/fncel.2019.00246] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 05/17/2019] [Indexed: 12/12/2022] Open
Abstract
The sphingolipids ceramide (Cer), sphingosine-1-phosphate (S1P), sphingosine (Sph), and ceramide-1-phosphate (C1P) are key signaling molecules that regulate major cellular functions. Their roles in the retina have gained increasing attention during the last decade since they emerge as mediators of proliferation, survival, migration, neovascularization, inflammation and death in retina cells. As exacerbation of these processes is central to retina degenerative diseases, they appear as crucial players in their progression. This review analyzes the functions of these sphingolipids in retina cell types and their possible pathological roles. Cer appears as a key arbitrator in diverse retinal pathologies; it promotes inflammation in endothelial and retina pigment epithelium (RPE) cells and its increase is a common feature in photoreceptor death in vitro and in animal models of retina degeneration; noteworthy, inhibiting Cer synthesis preserves photoreceptor viability and functionality. In turn, S1P acts as a double edge sword in the retina. It is essential for retina development, promoting the survival of photoreceptors and ganglion cells and regulating proliferation and differentiation of photoreceptor progenitors. However, S1P has also deleterious effects, stimulating migration of Müller glial cells, angiogenesis and fibrosis, contributing to the inflammatory scenario of proliferative retinopathies and age related macular degeneration (AMD). C1P, as S1P, promotes photoreceptor survival and differentiation. Collectively, the expanding role for these sphingolipids in the regulation of critical processes in retina cell types and in their dysregulation in retina degenerations makes them attractive targets for treating these diseases.
Collapse
Affiliation(s)
- M Victoria Simón
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Departamento De Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Argentine National Research Council (CONICET), Bahía Blanca, Argentina
| | - Facundo H Prado Spalm
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Departamento De Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Argentine National Research Council (CONICET), Bahía Blanca, Argentina
| | - Marcela S Vera
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Departamento De Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Argentine National Research Council (CONICET), Bahía Blanca, Argentina
| | - Nora P Rotstein
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Departamento De Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Argentine National Research Council (CONICET), Bahía Blanca, Argentina
| |
Collapse
|
35
|
Qi H, Cole J, Grambergs RC, Gillenwater JR, Mondal K, Khanam S, Dutta S, Stiles M, Proia RL, Allegood J, Mandal N. Sphingosine Kinase 2 Phosphorylation of FTY720 is Unnecessary for Prevention of Light-Induced Retinal Damage. Sci Rep 2019; 9:7771. [PMID: 31123291 PMCID: PMC6533254 DOI: 10.1038/s41598-019-44047-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 05/02/2019] [Indexed: 12/11/2022] Open
Abstract
Mammalian Sphingosine kinase 2 is the primary enzyme responsible for phosphorylating FTY720 to its active form, FTY720-P. Systemic FTY720 treatment confers significant protection to murine retinas from light- and disease-mediated photoreceptor cell death. It is not clear whether FTY720-P, FTY720, or both are responsible for this photoreceptor protection. We investigated Sphingosine kinase 2 knockout (Sphk2 KO) mouse retinas, tested their sensitivity to light, and measured what degree of protection from light-induced damage they receive from systemic FTY720 treatment. Sphk2 KO retinas were found to be similar to their wild-type counterparts in sensitivity to light damage. Additionally, FTY720 treatment protected Sphk2 KO retinas from light-induced damage despite significant retardation of FTY720 phosphorylation in Sphk2 KO mice. We conclude that FTY720 serves an active role in preventing photoreceptor cell death. Furthermore, we conclude that the phosphorylation of FTY720 is not necessary to provide this protective effect.
Collapse
Affiliation(s)
- Hui Qi
- Department of Ophthalmology, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, OK, 73104, USA
| | - Jerome Cole
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Richard C Grambergs
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - John R Gillenwater
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Koushik Mondal
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Sufiya Khanam
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Soma Dutta
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Megan Stiles
- Department of Ophthalmology, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, OK, 73104, USA
| | - Richard L Proia
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jeremy Allegood
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, 2329, USA
| | - Nawajes Mandal
- Department of Ophthalmology, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, OK, 73104, USA. .,Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA. .,Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| |
Collapse
|
36
|
Xu T, Zhou L, Shi Y, Liu L, Zuo L, Jia Q, Du S, Kang J, Zhang X, Sun Z. Metabolomics approach in lung tissue of septic rats and the interventional effects of Xuebijing injection using UHPLC-Q-Orbitrap-HRMS. J Biochem 2019; 164:427-435. [PMID: 30165618 DOI: 10.1093/jb/mvy070] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/23/2018] [Indexed: 12/22/2022] Open
Abstract
Sepsis is the dysregulated host response to an infection which leads to life-threatening organ dysfunction. Metabolomic profiling in bio-fluid or tissue is vital for elucidating the pathogenesis of sepsis and evaluating therapeutic effects of medication. In this study, an untargeted metabolomics approach was applied to study the metabolic changes in lung tissue of septic rats induced by cecal ligation and puncture (CLP) and investigate the treatment effects of Xubijing injection (XBJ). Metabolomics analyses were performed on ultra-high performance liquid chromatography-Q Exactive hybrid quadrupole-orbitrap high-resolution accurate mass spectrometry (UHPLC-Q-Orbitrap-HRMS) together with multivariate statistical analysis. A total of 26 differential metabolites between CLP and sham-operated group were identified. The altered metabolic pathways included energy metabolism, amino metabolism, lipid metabolism, fatty acid metabolism and hormone metabolism. Among the 26-varied metabolites, 15 were significantly regulated after XBJ treatment. The metabolic pathway network of sepsis was drawn to interpret the pathological feature of lung damage caused by sepsis and the underlying regulating mechanism of XBJ on the molecular levels. Our findings display that LC-MS-based metabolomics is a useful tool for uncovering the underlying molecular mechanism of sepsis, and XBJ may exert therapeutic effect by regulating multiple metabolic pathways.
Collapse
Affiliation(s)
- Tanye Xu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Erqi District, Zhengzhou, Henan Province,, PR China.,College of Food Science and Engineering, Dalian Ocean University, No. 52 Heishijiao Street, Shahekou District, Dalian, Liaoning Province, PR China
| | - Lin Zhou
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Erqi District, Zhengzhou, Henan Province,, PR China
| | - Yingying Shi
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Erqi District, Zhengzhou, Henan Province,, PR China
| | - Liwei Liu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Erqi District, Zhengzhou, Henan Province,, PR China
| | - Lihua Zuo
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Erqi District, Zhengzhou, Henan Province,, PR China
| | - Qingquan Jia
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Erqi District, Zhengzhou, Henan Province,, PR China
| | - Shuzhang Du
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Erqi District, Zhengzhou, Henan Province,, PR China
| | - Jian Kang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Erqi District, Zhengzhou, Henan Province,, PR China
| | - Xiaojian Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Erqi District, Zhengzhou, Henan Province,, PR China
| | - Zhi Sun
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Erqi District, Zhengzhou, Henan Province,, PR China
| |
Collapse
|
37
|
Wang E, He X, Zeng M. The Role of S1P and the Related Signaling Pathway in the Development of Tissue Fibrosis. Front Pharmacol 2019; 9:1504. [PMID: 30687087 PMCID: PMC6338044 DOI: 10.3389/fphar.2018.01504] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 12/10/2018] [Indexed: 12/12/2022] Open
Abstract
Tissue fibrosis, including pulmonary fibrosis, hepatic fibrosis, and cardiac fibrosis, is an important stage in the development of many diseases. It can lead to structural damage and dysfunction and even severe carcinogenesis or death. There is currently no effective method for the treatment of fibrosis. At present, the molecular mechanism of tissue fibrosis has not yet been fully elucidated, but many studies have demonstrated that it is involved in conveying the complex messages between fibroblasts and various cytokines. Sphingosine 1-phosphate (S1P) is a naturally bioactive sphingolipid. S1P and the related signaling pathways are important intracellular metabolic pathways involved in many life activities, including cell proliferation, differentiation, apoptosis, and cellular signal transduction. Increasing evidence suggests that S1P and its signaling pathways play an important role in the development of tissue fibrosis; however, the mechanisms of these effects have not yet been fully elucidated, and even the role of S1P and its signaling pathways are still controversial. This article focuses on the role of S1P and the related signaling pathways in the development of fibrosis of lung, liver, heart, and other tissues, with emphasis on the application of inhibitors of some of molecules in the pathway in clinical treatment of fibrosis diseases.
Collapse
Affiliation(s)
- Erjin Wang
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, China
| | - Xingxuan He
- Department of Human Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Ming Zeng
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, China
| |
Collapse
|
38
|
Yuza K, Nakajima M, Nagahashi M, Tsuchida J, Hirose Y, Miura K, Tajima Y, Abe M, Sakimura K, Takabe K, Wakai T. Different Roles of Sphingosine Kinase 1 and 2 in Pancreatic Cancer Progression. J Surg Res 2018; 232:186-194. [PMID: 30463717 DOI: 10.1016/j.jss.2018.06.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/11/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND Pancreatic cancer is a disease with poor prognosis, and development of new treatments is necessary. Sphingosine-1-phosphate (S1P), a bioactive lipid mediator produced by sphingosine kinases (SphK1 and SphK2), plays a critical role in progression of many types of cancer. However, little is known about the role of sphingosine kinases in pancreatic cancer. This study investigated the roles of sphingosine kinases in pancreatic cancer progression. MATERIALS AND METHODS S1P levels in pancreatic cancer and noncancerous pancreatic tissue were measured in 10 patients. We generated PAN02 murine pancreatic cancer cell lines with a clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated system genes 9 (Cas9)-mediated deletion of SphK1 or SphK2 and assessed cell growth and migration. In an animal model, we assessed the survival of mice injected with PAN02 cells intraperitoneally. RESULTS S1P levels in the pancreatic cancer tissue were significantly higher than those in noncancerous tissue. SphK1 knockout (KO) cells showed greater proliferation and migration than wild type (WT) cells, and SphK2 KO cells showed less proliferation and migration than WT cells. Animal experiments showed that the survival of mice injected with SphK1 KO cells was significantly shorter than those injected with WT cells, and the survival of mice injected with SphK2 KO cells was longer than those injected with WT cells. Surprisingly, cytotoxic assay using gemcitabine showed that SphK1 KO cells survived less than WT cells, and SphK2 KO cells survived more than WT cells. CONCLUSIONS S1P produced by SphK1 and SphK2 may have different functions in pancreatic cancer cells. Targeting both SphK1 and SphK2 may be a potential strategy for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Kizuki Yuza
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Niigata, Japan
| | - Masato Nakajima
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Niigata, Japan
| | - Masayuki Nagahashi
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Niigata, Japan.
| | - Junko Tsuchida
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Niigata, Japan
| | - Yuki Hirose
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Niigata, Japan
| | - Kohei Miura
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Niigata, Japan
| | - Yosuke Tajima
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Niigata, Japan
| | - Manabu Abe
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata City, Niigata, Japan
| | - Kenji Sakimura
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata City, Niigata, Japan
| | - Kazuaki Takabe
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Niigata, Japan; Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York; Department of Surgery, University at Buffalo Jacobs School of Medicine and Biosciences, the State University of New York, Buffalo, New York
| | - Toshifumi Wakai
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Niigata, Japan
| |
Collapse
|
39
|
Pramipexole and Fingolimod exert neuroprotection in a mouse model of Parkinson's disease by activation of sphingosine kinase 1 and Akt kinase. Neuropharmacology 2018; 135:139-150. [DOI: 10.1016/j.neuropharm.2018.02.023] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 02/14/2018] [Accepted: 02/22/2018] [Indexed: 12/14/2022]
|
40
|
Chiricozzi E, Loberto N, Schiumarini D, Samarani M, Mancini G, Tamanini A, Lippi G, Dechecchi MC, Bassi R, Giussani P, Aureli M. Sphingolipids role in the regulation of inflammatory response: From leukocyte biology to bacterial infection. J Leukoc Biol 2018; 103:445-456. [PMID: 29345379 DOI: 10.1002/jlb.3mr0717-269r] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 10/13/2017] [Accepted: 11/07/2017] [Indexed: 12/14/2022] Open
Abstract
Sphingolipids (SLs) are amphiphilic molecules mainly associated with the external leaflet of eukaryotic plasma membrane, and are structural membrane components with key signaling properties. Since the beginning of the last century, a large number of papers described the involvement of these molecules in several aspects of cell physiology and pathology. Several lines of evidence support the critical role of SLs in inflammatory diseases, by acting as anti- or pro-inflammatory mediators. They are involved in control of leukocyte activation and migration, and are recognized as essential players in host response to pathogenic infection. We propose here a critical overview of current knowledge on involvement of different classes of SLs in inflammation, focusing on the role of simple and complex SLs in pathogen-mediated inflammatory response.
Collapse
Affiliation(s)
- Elena Chiricozzi
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Nicoletta Loberto
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Domitilla Schiumarini
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Maura Samarani
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Giulia Mancini
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Anna Tamanini
- Laboratorio di Patologia Molecolare-Laboratorio Analisi, Dipartimento di Patologia e Diagnostica, Azienda Ospedaliera Universitaria Integrata di Verona, Verona, Italy
| | - Giuseppe Lippi
- Sezione di Biochimica Clinica, Università degli Studi di Verona, Verona, Italy
| | - Maria Cristina Dechecchi
- Laboratorio di Patologia Molecolare-Laboratorio Analisi, Dipartimento di Patologia e Diagnostica, Azienda Ospedaliera Universitaria Integrata di Verona, Verona, Italy
| | - Rosaria Bassi
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Paola Giussani
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Massimo Aureli
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
41
|
Yin J, Guo YM, Chen P, Xiao H, Wang XH, DiSanto ME, Zhang XH. Testosterone regulates the expression and functional activity of sphingosine-1-phosphate receptors in the rat corpus cavernosum. J Cell Mol Med 2017; 22:1507-1516. [PMID: 29266713 PMCID: PMC5824404 DOI: 10.1111/jcmm.13416] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Accepted: 09/12/2017] [Indexed: 01/29/2023] Open
Abstract
The bioactive lipid sphingosine‐1‐phosphate (S1P) regulates smooth muscle (SM) contractility predominantly via three G protein‐coupled receptors. The S1P1 receptor is associated with nitric oxide (NO)‐mediated SM relaxation, while S1P2 & S1P3 receptors are linked to SM contraction via activation of the Rho‐kinase pathway. This study is to determine testosterone (T) modulating the expression and functional activity of S1P receptors in corpus cavernosum (CC). Adult male Sprague‐Dawley rats were randomly divided into three groups: sham‐operated controls, surgical castration and T supplemented group. Serum S1P levels were detected by high‐performance liquid chromatography. The expression of S1P1‐3 receptors and sphingosine kinases was detected by real‐time RT‐PCR. In vitro organ bath contractility and in vivo intracavernous pressure (ICP) measurement were also performed. T deprivation significantly decreased ICP rise. Meanwhile, surgical castration induced a significant increase in serum S1P level and the expression of S1P2‐3 receptors by twofold (P < 0.05) but a decrease in the expression of S1P1 receptor. Castration also augmented exogenous phenylephrine (PE), S1P, S1P1,3 receptor agonist FTY720‐P contractility and S1P2‐specific antagonist JTE013 relaxation effect. T supplemented could restore the aforementioned changes. We provide novel data that castration increased serum S1P concentration and up‐regulated the expression of S1P2‐3 receptors in CC. Consistently, agonizing S1P receptors induced CCSM contraction and antagonizing mediated relaxation were augmented. This provides the first clear evidence that S1P system dysregulation may contribute to hypogonadism‐related erectile dysfunction (ED), and S1P receptors may be expected as a potential target for treating ED.
Collapse
Affiliation(s)
- Jing Yin
- Department of Rehabilitation, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yu-Ming Guo
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ping Chen
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - He Xiao
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xing-Huan Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Michael E DiSanto
- Surgery and Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA
| | - Xin-Hua Zhang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
42
|
Yin J, Guo YM, Chen P, Xiao H, Wang XH, DiSanto ME, Zhang XH. Testosterone regulates the expression and functional activity of sphingosine-1-phosphate receptors in the rat corpus cavernosum. J Cell Mol Med 2017. [DOI: 10.1111/jcmm.13416 29266713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Jing Yin
- Department of Rehabilitation; Zhongnan Hospital of Wuhan University; Wuhan China
| | - Yu-ming Guo
- Department of Urology; Zhongnan Hospital of Wuhan University; Wuhan China
| | - Ping Chen
- Department of Urology; Zhongnan Hospital of Wuhan University; Wuhan China
| | - He Xiao
- Department of Urology; Zhongnan Hospital of Wuhan University; Wuhan China
| | - Xing-huan Wang
- Department of Urology; Zhongnan Hospital of Wuhan University; Wuhan China
| | - Michael E DiSanto
- Surgery and Biomedical Sciences; Cooper Medical School of Rowan University; Camden NJ USA
| | - Xin-hua Zhang
- Department of Urology; Zhongnan Hospital of Wuhan University; Wuhan China
| |
Collapse
|
43
|
Hahn C, Tyka K, Saba JD, Lenzen S, Gurgul-Convey E. Overexpression of sphingosine-1-phosphate lyase protects insulin-secreting cells against cytokine toxicity. J Biol Chem 2017; 292:20292-20304. [PMID: 29070677 DOI: 10.1074/jbc.m117.814491] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 10/25/2017] [Indexed: 12/21/2022] Open
Abstract
Increasing evidence suggests a crucial role of inflammation in cytokine-mediated β-cell dysfunction and death in type 1 diabetes mellitus, although the mechanisms are incompletely understood. Sphingosine 1-phosphate (S1P) is a multifunctional bioactive sphingolipid involved in the development of many autoimmune and inflammatory diseases. Here, we investigated the role of intracellular S1P in insulin-secreting INS1E cells by genetically manipulating the S1P-metabolizing enzyme S1P lyase (SPL). The expression of spl was down-regulated by cytokines in INS1E cells and rat islets. Overexpression of SPL protected against cytokine toxicity. Interestingly, the SPL overexpression did not suppress the cytokine-induced NFκB-iNOS-NO pathway but attenuated calcium leakage from endoplasmic reticulum (ER) stores as manifested by lower cytosolic calcium levels, higher expression of the ER protein Sec61a, decreased dephosphorylation of Bcl-2-associated death promoter (Bad) protein, and weaker caspase-3 activation in cytokine-treated (IL-1β, TNFα, and IFNγ) cells. This coincided with reduced cytokine-mediated ER stress, indicated by measurements of CCAAT/enhancer-binding protein homologous protein (chop) and immunoglobulin heavy chain binding protein (bip) levels. Moreover, cytokine-treated SPL-overexpressing cells exhibited increased expression of prohibitin 2 (Phb2), involved in the regulation of mitochondrial assembly and respiration. SPL-overexpressing cells were partially protected against cytokine-mediated ATP reduction and inhibition of glucose-induced insulin secretion. siRNA-mediated spl suppression resulted in effects opposite to those observed for SPL overexpression. Knockdown of phb2 partially reversed beneficial effects of SPL overexpression. In conclusion, the relatively low endogenous Spl expression level in insulin-secreting cells contributes to their extraordinary vulnerability to proinflammatory cytokine toxicity and may therefore represent a promising target for β-cell protection in type 1 diabetes mellitus.
Collapse
Affiliation(s)
- Claudine Hahn
- Institute of Clinical Biochemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Karolina Tyka
- Institute of Clinical Biochemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Julie D Saba
- Children's Hospital Oakland Research Institute, University of California, San Francisco, California 94609
| | - Sigurd Lenzen
- Institute of Clinical Biochemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Ewa Gurgul-Convey
- Institute of Clinical Biochemistry, Hannover Medical School, 30625 Hannover, Germany.
| |
Collapse
|
44
|
Ferrarini A, Righetti L, Martínez MP, Fernández-López M, Mastrangelo A, Horcajada JP, Betbesé A, Esteban A, Ordóñez J, Gea J, Cabello JR, Pellati F, Lorente JA, Nin N, Rupérez FJ. Discriminant biomarkers of acute respiratory distress syndrome associated to H1N1 influenza identified by metabolomics HPLC-QTOF-MS/MS platform. Electrophoresis 2017; 38:2341-2348. [PMID: 28714069 DOI: 10.1002/elps.201700112] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 06/15/2017] [Accepted: 06/24/2017] [Indexed: 12/21/2022]
Abstract
Acute respiratory distress syndrome (ARDS) is a serious complication of influenza A (H1N1) virus infection. Its pathogenesis is unknown and biomarkers are lacking. Untargeted metabolomics allows the analysis of the whole metabolome in a biological compartment, identifying patterns associated with specific conditions. We hypothesized that LC-MS could help identify discriminant metabolites able to define the metabolic alterations occurring in patients with influenza A (H1N1) virus infection that developed ARDS. Serum samples from patients diagnosed with 2009 influenza A (H1N1) virus infection with (n = 25) or without (n = 32) ARDS were obtained on the day of hospital admission and analyzed by LC-MS/MS. Metabolite identification was determined by MS/MS analysis and analysis of standards. The specificity of the patterns identified was confirmed in patients without 2009 influenza A(H1N1) virus pneumonia (15 without and 17 with ARDS). Twenty-three candidate biomarkers were found to be significantly different between the two groups, including lysophospholipids and sphingolipids related to inflammation; bile acids, tryptophan metabolites, and thyroxine, related to the metabolism of the gut microflora. Confirmation results demonstrated the specificity of major alterations occurring in ARDS patients with influenza A (H1N1) virus infection.
Collapse
Affiliation(s)
- Alessia Ferrarini
- Centre for Metabolomics and Bioanalysis (CEMBIO), Facultad de Farmacia, Universidad San Pablo CEU, Madrid, Spain
| | - Laura Righetti
- Centre for Metabolomics and Bioanalysis (CEMBIO), Facultad de Farmacia, Universidad San Pablo CEU, Madrid, Spain.,Dipartimento di Scienze della Vita, Università degli Studi di Modena e Reggio Emilia, Modena, Italy
| | - Ma Paz Martínez
- Centre for Metabolomics and Bioanalysis (CEMBIO), Facultad de Farmacia, Universidad San Pablo CEU, Madrid, Spain
| | | | - Annalaura Mastrangelo
- Centre for Metabolomics and Bioanalysis (CEMBIO), Facultad de Farmacia, Universidad San Pablo CEU, Madrid, Spain
| | - Juan P Horcajada
- Hospital del Mar. IMIM. DCEXS, Universitat Pompeu Fabra, Barcelona, Spain
| | - Antoni Betbesé
- Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Andrés Esteban
- Hospital Universitario de Getafe, Madrid, Spain.,Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES, ISCiii), Madrid, Spain
| | - Jordi Ordóñez
- Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Joaquín Gea
- Hospital del Mar. IMIM. DCEXS, Universitat Pompeu Fabra, Barcelona, Spain.,Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES, ISCiii), Madrid, Spain
| | - Jesús Ruiz Cabello
- Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES, ISCiii), Madrid, Spain.,Departamento de Química Física II, Universidad Complutense de Madrid Facultad de Farmacia, Madrid, Spain
| | - Federica Pellati
- Dipartimento di Scienze della Vita, Università degli Studi di Modena e Reggio Emilia, Modena, Italy
| | - José A Lorente
- Hospital Universitario de Getafe, Madrid, Spain.,Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES, ISCiii), Madrid, Spain
| | - Nicolás Nin
- Hospital de Torrejón de Ardoz, Madrid, Spain.,Hospital Español Juan José Crottogini, Montevideo, Uruguay
| | - Francisco J Rupérez
- Centre for Metabolomics and Bioanalysis (CEMBIO), Facultad de Farmacia, Universidad San Pablo CEU, Madrid, Spain
| |
Collapse
|
45
|
Cannavo A, Liccardo D, Komici K, Corbi G, de Lucia C, Femminella GD, Elia A, Bencivenga L, Ferrara N, Koch WJ, Paolocci N, Rengo G. Sphingosine Kinases and Sphingosine 1-Phosphate Receptors: Signaling and Actions in the Cardiovascular System. Front Pharmacol 2017; 8:556. [PMID: 28878674 PMCID: PMC5572949 DOI: 10.3389/fphar.2017.00556] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 08/07/2017] [Indexed: 12/20/2022] Open
Abstract
The sphingosine kinases 1 and 2 (SphK1 and 2) catalyze the phosphorylation of the lipid, sphingosine, generating the signal transmitter, sphingosine 1-phosphate (S1P). The activation of such kinases and the subsequent S1P generation and secretion in the blood serum of mammals represent a major checkpoint in many cellular signaling cascades. In fact, activating the SphK/S1P system is critical for cell motility and proliferation, cytoskeletal organization, cell growth, survival, and response to stress. In the cardiovascular system, the physiological effects of S1P intervene through the binding and activation of a family of five highly selective G protein-coupled receptors, called S1PR1-5. Importantly, SphK/S1P signal is present on both vascular and myocardial cells. S1P is a well-recognized survival factor in many tissues. Therefore, it is not surprising that the last two decades have seen a flourishing of interest and investigative efforts directed to obtain additional mechanistic insights into the signaling, as well as the biological activity of this phospholipid, and of its receptors, especially in the cardiovascular system. Here, we will provide an up-to-date account on the structure and function of sphingosine kinases, discussing the generation, release, and function of S1P. Keeping the bull's eye on the cardiovascular system, we will review the structure and signaling cascades and biological actions emanating from the stimulation of different S1P receptors. We will end this article with a summary of the most recent, experimental and clinical observations targeting S1PRs and SphKs as possible new therapeutic avenues for cardiovascular disorders, such as heart failure.
Collapse
Affiliation(s)
- Alessandro Cannavo
- Lewis Katz School of Medicine, Center for Translational Medicine, Temple University, PhiladelphiaPA, United States.,Department of Translational Medical Sciences, University of Naples Federico IINaples, Italy
| | - Daniela Liccardo
- Lewis Katz School of Medicine, Center for Translational Medicine, Temple University, PhiladelphiaPA, United States.,Department of Translational Medical Sciences, University of Naples Federico IINaples, Italy
| | - Klara Komici
- Department of Translational Medical Sciences, University of Naples Federico IINaples, Italy
| | - Graziamaria Corbi
- Department of Medicine and Health Science, University of MoliseCampobasso, Italy
| | - Claudio de Lucia
- Lewis Katz School of Medicine, Center for Translational Medicine, Temple University, PhiladelphiaPA, United States
| | | | - Andrea Elia
- Istituti Clinici Scientifici Maugeri SpA Società Benefit, Telese Terme Institute (BN)Telese, Italy
| | - Leonardo Bencivenga
- Department of Translational Medical Sciences, University of Naples Federico IINaples, Italy
| | - Nicola Ferrara
- Department of Translational Medical Sciences, University of Naples Federico IINaples, Italy.,Istituti Clinici Scientifici Maugeri SpA Società Benefit, Telese Terme Institute (BN)Telese, Italy
| | - Walter J Koch
- Lewis Katz School of Medicine, Center for Translational Medicine, Temple University, PhiladelphiaPA, United States
| | - Nazareno Paolocci
- Division of Cardiology, Johns Hopkins University Medical Institutions, BaltimoreMD, United States.,Department of Experimental Medicine, University of PerugiaPerugia, Italy
| | - Giuseppe Rengo
- Department of Translational Medical Sciences, University of Naples Federico IINaples, Italy.,Istituti Clinici Scientifici Maugeri SpA Società Benefit, Telese Terme Institute (BN)Telese, Italy
| |
Collapse
|
46
|
McLaughlin MF, Donoviel DB, Jones JA. Novel Indications for Commonly Used Medications as Radiation Protectants in Spaceflight. Aerosp Med Hum Perform 2017. [PMID: 28641684 DOI: 10.3357/amhp.4735.2017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND In the space environment, the traditional radioprotective principles of time, distance, and shielding become difficult to implement. Additionally, the complex radiation environment inherent in space, the chronic exposure timeframe, and the presence of numerous confounding variables complicate the process of creating appropriate risk models for astronaut exposure. Pharmaceutical options hold tremendous promise to attenuate acute and late effects of radiation exposure in the astronaut population. Pharmaceuticals currently approved for other indications may also offer radiation protection, modulation, or mitigation properties along with a well-established safety profile. Currently there are only three agents which have been clinically approved to be employed for radiation exposure, and these only for very narrow indications. This review identifies a number of agents currently approved by the U.S. Food and Drug Administration (FDA) which could warrant further investigation for use in astronauts. Specifically, we examine preclinical and clinical evidence for statins, nonsteroidal anti-inflammatory drugs (NSAIDs), angiotensin converting enzyme inhibitors (ACEIs), angiotensin II receptor blockers (ARBs), metformin, calcium channel blockers, β adrenergic receptor blockers, fingolimod, N-acetylcysteine, and pentoxifylline as potential radiation countermeasures.McLaughlin MF, Donoviel DB, Jones JA. Novel indications for commonly used medications as radiation protectants in spaceflight. Aerosp Med Hum Perform. 2017; 88(7):665-676.
Collapse
|
47
|
Emam MN, Abd El-latif RN. Effect of immunomodulator, fingolimod, on ischemia reperfusion testicular injury in rats: Targeting the role of sphingolipid rheostat (fingolimod on I/R induced testicular injury). ALEXANDRIA JOURNAL OF MEDICINE 2017. [DOI: 10.1016/j.ajme.2016.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Marwa N. Emam
- Physiology Department, Faculty of Medicine, Tanta University, Egypt
| | | |
Collapse
|
48
|
Chen H, Liu S, Liu X, Yang J, Wang F, Cong X, Chen X. Lysophosphatidic Acid Pretreatment Attenuates Myocardial Ischemia/Reperfusion Injury in the Immature Hearts of Rats. Front Physiol 2017; 8:153. [PMID: 28377726 PMCID: PMC5359218 DOI: 10.3389/fphys.2017.00153] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 02/27/2017] [Indexed: 02/01/2023] Open
Abstract
The cardioprotection of the immature heart during cardiac surgery remains controversial due to the differences between the adult heart and the newborn heart. Lysophosphatidic acid (LPA) is a small bioactive molecule with diverse functions including cell proliferation and survival via its receptor: LPA1–LPA6. We previously reported that the expressions of LPA1 and LPA3 in rat hearts were much higher in immature hearts and then declined rapidly with age. In this study, we aimed to investigate whether LPA signaling plays a potential protective role in immature hearts which had experienced ischemia/reperfusion (I/R) injury. The results showed that in Langendorff-perfused immature rat hearts (2 weeks), compared to I/R group, LPA pretreatment significantly enhanced the cardiac function, attenuated myocardial infarct size and CK-MB release, decreased myocardial apoptosis and increased the expression of pro-survival signaling molecules. All these effects could be abolished by Ki16425, an antagonist to LPA1 and LPA3. Similarly, LPA pretreatment protected H9C2 from hypoxia-reoxygenation (H/R) induced apoptosis and necrosis in vitro. The mechanisms underlying the anti-apoptosis effects were related to activation of the phosphatidylinositol 3-kinase (PI3K)/protein kinas B (AKT) signaling pathways as well as phosphorylation of the downstream effector of AKT, glycogen synthase kinase 3 beta (GSK3β), through LPA1 and/or LPA3. What's more, we found that LPA preconditioning increased glucose uptake of H9C2 subjected to H/R by the activation of AMP-Activated Protein Kinase (AMPK) but not the translocation of GLUT4. In conclusion, our study indicates that LPA is a potent survival factor for immature hearts against I/R injuries and has the potential therapeutic function as a cardioplegia additive for infantile cardiac surgery.
Collapse
Affiliation(s)
- Haibo Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences - Peking Union Medical College Beijing, China
| | - Si Liu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences - Peking Union Medical College Beijing, China
| | - Xuewen Liu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences - Peking Union Medical College Beijing, China
| | - Jinjing Yang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences - Peking Union Medical College Beijing, China
| | - Fang Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences - Peking Union Medical College Beijing, China
| | - Xiangfeng Cong
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences - Peking Union Medical College Beijing, China
| | - Xi Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences - Peking Union Medical College Beijing, China
| |
Collapse
|
49
|
FTY720 Attenuates Angiotensin II-Induced Podocyte Damage via Inhibiting Inflammatory Cytokines. Mediators Inflamm 2017; 2017:3701385. [PMID: 28270699 PMCID: PMC5320072 DOI: 10.1155/2017/3701385] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 12/08/2016] [Accepted: 12/26/2016] [Indexed: 12/29/2022] Open
Abstract
FTY720, a new chemical substance derived from the ascomycete Isaria sinclairii, is used for treating multiple sclerosis, renal cancer, and asthma. Sphingosine 1-phosphate (S1P) is a bioactive sphingolipid metabolite and exists in red blood cells. FTY720 is a synthetic S1P analog which can block S1P evoking physiological effects. Recently studies show that S1P was participating in activated inflammation cells induced renal injury. The objective of this study was to assess the protective effect of FTY720 on kidney damage and the potential mechanism of FTY720 which alleviate podocyte injury in chronic kidney disease. In this study, we selected 40 patients with IgA nephropathy and examined their clinical characteristics. Ang II-infusion rat renal injury model was established to evaluate the glomeruli and tubulointerstitial lesion. The result showed that the concentration of S1P in serum and urine was positively correlated with IgA nephropathy patients' renal injury. FTY720 could reduce renal histological lesions induced by Ang II-infusion in rats. Moreover, FTY720 decreased S1P synthesis in Ang II-infusion rats via downregulation of inflammatory cytokines including TNF-α and IL-6. In addition, FTY720 alleviated exogenous S1P-induced podocyte damage. In conclusion, FTY720 is able to attenuate S1P-induced podocyte damage via reducing inflammatory cytokines.
Collapse
|
50
|
Cannavo A, Liccardo D, Komici K, Corbi G, de Lucia C, Femminella GD, Elia A, Bencivenga L, Ferrara N, Koch WJ, Paolocci N, Rengo G. Sphingosine Kinases and Sphingosine 1-Phosphate Receptors: Signaling and Actions in the Cardiovascular System. Front Pharmacol 2017. [PMID: 28878674 DOI: 10.3389/fphar.2017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023] Open
Abstract
The sphingosine kinases 1 and 2 (SphK1 and 2) catalyze the phosphorylation of the lipid, sphingosine, generating the signal transmitter, sphingosine 1-phosphate (S1P). The activation of such kinases and the subsequent S1P generation and secretion in the blood serum of mammals represent a major checkpoint in many cellular signaling cascades. In fact, activating the SphK/S1P system is critical for cell motility and proliferation, cytoskeletal organization, cell growth, survival, and response to stress. In the cardiovascular system, the physiological effects of S1P intervene through the binding and activation of a family of five highly selective G protein-coupled receptors, called S1PR1-5. Importantly, SphK/S1P signal is present on both vascular and myocardial cells. S1P is a well-recognized survival factor in many tissues. Therefore, it is not surprising that the last two decades have seen a flourishing of interest and investigative efforts directed to obtain additional mechanistic insights into the signaling, as well as the biological activity of this phospholipid, and of its receptors, especially in the cardiovascular system. Here, we will provide an up-to-date account on the structure and function of sphingosine kinases, discussing the generation, release, and function of S1P. Keeping the bull's eye on the cardiovascular system, we will review the structure and signaling cascades and biological actions emanating from the stimulation of different S1P receptors. We will end this article with a summary of the most recent, experimental and clinical observations targeting S1PRs and SphKs as possible new therapeutic avenues for cardiovascular disorders, such as heart failure.
Collapse
Affiliation(s)
- Alessandro Cannavo
- Lewis Katz School of Medicine, Center for Translational Medicine, Temple University, PhiladelphiaPA, United States
- Department of Translational Medical Sciences, University of Naples Federico IINaples, Italy
| | - Daniela Liccardo
- Lewis Katz School of Medicine, Center for Translational Medicine, Temple University, PhiladelphiaPA, United States
- Department of Translational Medical Sciences, University of Naples Federico IINaples, Italy
| | - Klara Komici
- Department of Translational Medical Sciences, University of Naples Federico IINaples, Italy
| | - Graziamaria Corbi
- Department of Medicine and Health Science, University of MoliseCampobasso, Italy
| | - Claudio de Lucia
- Lewis Katz School of Medicine, Center for Translational Medicine, Temple University, PhiladelphiaPA, United States
| | | | - Andrea Elia
- Istituti Clinici Scientifici Maugeri SpA Società Benefit, Telese Terme Institute (BN)Telese, Italy
| | - Leonardo Bencivenga
- Department of Translational Medical Sciences, University of Naples Federico IINaples, Italy
| | - Nicola Ferrara
- Department of Translational Medical Sciences, University of Naples Federico IINaples, Italy
- Istituti Clinici Scientifici Maugeri SpA Società Benefit, Telese Terme Institute (BN)Telese, Italy
| | - Walter J Koch
- Lewis Katz School of Medicine, Center for Translational Medicine, Temple University, PhiladelphiaPA, United States
| | - Nazareno Paolocci
- Division of Cardiology, Johns Hopkins University Medical Institutions, BaltimoreMD, United States
- Department of Experimental Medicine, University of PerugiaPerugia, Italy
| | - Giuseppe Rengo
- Department of Translational Medical Sciences, University of Naples Federico IINaples, Italy
- Istituti Clinici Scientifici Maugeri SpA Società Benefit, Telese Terme Institute (BN)Telese, Italy
| |
Collapse
|