1
|
Tsai CL, Sun DS, Su MT, Lien TS, Chen YH, Lin CY, Huang CH, King CC, Li CR, Chen TH, Chiu YH, Lu CC, Chang HH. Suppressed humoral immunity is associated with dengue nonstructural protein NS1-elicited anti-death receptor antibody fractions in mice. Sci Rep 2020; 10:6294. [PMID: 32286343 PMCID: PMC7156414 DOI: 10.1038/s41598-020-62958-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 03/12/2020] [Indexed: 02/08/2023] Open
Abstract
Dengue virus (DENV) infections may cause life-threatening dengue hemorrhagic fever (DHF). Suppressed protective immunity was shown in these patients. Although several hypotheses have been formulated, the mechanism of DENV-induced immunosuppression remains unclear. Previously, we found that cross-reactive antibodies against tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor 1 (death receptor 4 [DR4]) were elicited in DHF patients, and that anti-DR4 autoantibody fractions were elicited by nonstructural protein 1 (NS1) immunizations in experimental mice. In this study, we found that anti-DR4 antibodies could suppress B lymphocyte function in vitro and in vivo. Treatment with the anti-DR4 immunoglobulin (Ig) induced caspase-dependent cell death in immortalized B lymphocyte Raji cells in vitro. Anti-DR4 Igs elicited by NS1 and DR4 immunizations markedly suppressed mouse spleen transitional T2 B (IgM+IgD+), bone marrow pre-pro-B (B220+CD43+), pre-B (B220+CD43-), and mature B cell (B220+IgD+) subsets in mice. Furthermore, functional analysis revealed that the pre-elicitation of anti-NS1 and anti-DR4 Ig titers suppressed subsequently neutralizing antibody production by immunization with DENV envelop protein. Our data suggest that the elicitation of anti-DR4 titers through DENV NS1 immunization plays a suppressive role in humoral immunity in mice.
Collapse
Affiliation(s)
- Chung-Lin Tsai
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien, Taiwan
| | - Der-Shan Sun
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien, Taiwan
| | - Mei-Tzu Su
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien, Taiwan
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Te-Sheng Lien
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien, Taiwan
| | - Yen-Hsu Chen
- Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
- School of Medicine, Graduate Institute of Medicine, Sepsis Research Center, Center of Tropical Medicine and Infectious diseases, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, HsinChu, Taiwan
| | - Chun-Yu Lin
- School of Medicine, Graduate Institute of Medicine, Sepsis Research Center, Center of Tropical Medicine and Infectious diseases, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chung-Hao Huang
- School of Medicine, Graduate Institute of Medicine, Sepsis Research Center, Center of Tropical Medicine and Infectious diseases, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chwan-Chuen King
- Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan
| | - Chen-Ru Li
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien, Taiwan
| | - Tai-Hung Chen
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien, Taiwan
| | - Yu-Hsiang Chiu
- Division of Rheumatology/Immunology and Allergy, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chun-Chi Lu
- Division of Rheumatology/Immunology and Allergy, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Hsin-Hou Chang
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien, Taiwan.
| |
Collapse
|
2
|
Liu Y, Yuan X, Li L, Lin L, Zuo X, Cong Y, Li Y. Increased Ileal Immunoglobulin A Production and Immunoglobulin A-Coated Bacteria in Diarrhea-Predominant Irritable Bowel Syndrome. Clin Transl Gastroenterol 2020; 11:e00146. [PMID: 32352710 PMCID: PMC7145038 DOI: 10.14309/ctg.0000000000000146] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES Immune activation and intestinal microbial dysbiosis could induce diarrhea-predominant irritable bowel syndrome (IBS-D). We examined the roles of ileal immunoglobulin A (IgA) and IgA-coated bacteria in IBS-D pathogenesis. METHODS Peripheral blood, fecal samples, and ileal and cecal biopsies were collected from 32 healthy volunteers and 44 patients with IBS-D. Quantitative reverse transcriptase polymerase chain reaction was used to assess differential gene expression. IgA levels in the blood and fecal samples were quantified by an enzyme-linked immunosorbent assay. IgA cells were assessed by immunofluorescence imaging. Flow-cytometry-based IgA bacterial cell sorting and 16S rRNA gene sequencing (IgA-SEQ) was used to isolate and identify fecal IgA bacteria. RESULTS Fecal IgA, particularly IgA1, was upregulated in patients with IBS-D. IgA class switch and B cell-activating factor-receptor were increased in the terminal ileum of patients. The intestinal microbiota composition was altered in patients compared with that in controls. IgA-SEQ showed that the proportion of fecal IgA-coated bacteria was increased significantly in patients with IBS-D. IgA bacteria in patients with IBS-D showed higher abundances of Escherichia-Shigella, Granulicatella, and Haemophilus compared with healthy controls and IgA bacteria in patients with IBS-D. The Escherichia-Shigella IgA coating index was positively correlated with anxiety and depression. The Escherichia-Shigella relative abundance, luminal IgA activity, and some altered IgA-coated bacteria were positively associated with the clinical manifestations of IBS-D. DISCUSSION Microbial dysbiosis may promote the terminal ileal mucosa to produce higher levels of IgA, increasing the proportion of IgA-coated bacteria by activating IgA class switching, which might regulate local inflammation and clinical manifestations in IBS-D. IgA may mediate the effects of microbial dysbiosis on the pathogenesis of IBS-D.
Collapse
Affiliation(s)
- Yi Liu
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Department of Gastroenterology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xunyi Yuan
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Lixiang Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Lin Lin
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xiuli Zuo
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yingzi Cong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Yanqing Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
3
|
Yong PF, Dziadzio M, Grimbacher B. Defects in B Cell Survival and Activation. ENCYCLOPEDIA OF IMMUNOBIOLOGY 2016:466-478. [DOI: 10.1016/b978-0-12-374279-7.18014-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
4
|
Libbey JE, Fujinami RS. Adaptive immune response to viral infections in the central nervous system. HANDBOOK OF CLINICAL NEUROLOGY 2014. [PMID: 25015488 DOI: 10.1016/b978-0-444-0.00010-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Jane E Libbey
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Robert S Fujinami
- Department of Pathology, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
5
|
Libbey JE, Fujinami RS. Adaptive immune response to viral infections in the central nervous system. HANDBOOK OF CLINICAL NEUROLOGY 2014; 123:225-47. [PMID: 25015488 DOI: 10.1016/b978-0-444-53488-0.00010-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jane E Libbey
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Robert S Fujinami
- Department of Pathology, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
6
|
Sanchez-Perez L, Choi BD, Reap EA, Sayour EJ, Norberg P, Schmittling RJ, Archer GE, Herndon JE, Mitchell DA, Heimberger AB, Bigner DD, Sampson JH. BLyS levels correlate with vaccine-induced antibody titers in patients with glioblastoma lymphodepleted by therapeutic temozolomide. Cancer Immunol Immunother 2013; 62:983-7. [PMID: 23591978 DOI: 10.1007/s00262-013-1405-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Accepted: 02/11/2013] [Indexed: 11/28/2022]
Abstract
B lymphocyte stimulator (BLyS) is a cytokine involved in differentiation and survival of follicular B cells along with humoral response potentiation. Lymphopenia is known to precipitate dramatic elevation in serum BLyS; however, the use of this effect to enhance humoral responses following vaccination has not been evaluated. We evaluated BLyS serum levels and antigen-specific antibody titers in 8 patients undergoing therapeutic temozolomide (TMZ)-induced lymphopenia, with concomitant vaccine against a tumor-specific mutation in the epidermal growth factor receptor (EGFRvIII). Our studies demonstrate that TMZ-induced lymphopenia corresponded with spikes in serum BLyS that directly preceded the induction of anti-EGFRvIII antigen-specific antibody titers, in some cases as high as 1:2,000,000. Our data are the first clinical observation of BLyS serum elevation and greatly enhanced humoral immune responses as a consequence of chemotherapy-induced lymphopenia. These observations should be considered for the development of future vaccination strategies in the setting of malignancy.
Collapse
Affiliation(s)
- Luis Sanchez-Perez
- Duke Brain Tumor Immunotherapy Program, Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Antibody deficiency associated with an inherited autosomal dominant mutation in TWEAK. Proc Natl Acad Sci U S A 2013; 110:5127-32. [PMID: 23493554 DOI: 10.1073/pnas.1221211110] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mutations in the TNF family of proteins have been associated with inherited forms of immune deficiency. Using an array-based sequencing assay, we identified an autosomal-dominant deficiency in TNF-like weak inducer of apoptosis (TWEAK; TNFSF12) in a kindred with recurrent infection and impaired antibody responses to protein and polysaccharide vaccines. This mutation occurs in the sixth exon of TWEAK and results in the amino acid substitution R145C within the conserved TNF-homology domain of the full-length protein. TWEAK mutant protein formed high molecular weight aggregates under nonreducing conditions, suggesting an increased propensity for intermolecular interactions. As a result, mutant TWEAK associated with B-cell-activating factor (BAFF) protein and down-regulated the BAFF-mediated activation of the noncanonical NF-κB pathway through inhibition of p100 processing to p52, resulting in inhibition of BAFF-dependent B-cell survival and proliferation. As BAFF mediates T-cell-independent isotype switching and B-cell survival, our data implicate TWEAK as a disease-susceptibility gene for a humoral immunodeficiency.
Collapse
|
8
|
Pahl MV, Gollapudi S, Sepassi L, Gollapudi P, Elahimehr R, Vaziri ND. Effect of end-stage renal disease on B-lymphocyte subpopulations, IL-7, BAFF and BAFF receptor expression. Nephrol Dial Transplant 2009; 25:205-12. [PMID: 19684120 PMCID: PMC2796898 DOI: 10.1093/ndt/gfp397] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND End-stage renal disease (ESRD) results in increased susceptibility to infections, impaired response to vaccination and diffuse B-cell lymphopenia. However, the precise nature and mechanism of ESRD-induced B-cell lymphopenia remains unclear. Therefore, we studied the distribution of major B-cell subsets, B-cell growth, differentiation and survival factors, IL-7 and BAFF, and their receptors in 21 haemodialysis patients and 21 controls. METHODS Innate B1 cells (CD19+, CD5+), conventional B2 cells (CD19+, CD5-), newly formed transitional B cells (CD19+, CD10+, CD27-), naïve B cells (CD19+, CD27-) and memory B cells (CD19+, CD27+) and BAFF receptor were quantified by flow cytometry. Plasma IL-7, BAFF, IL-6, TNF-alpha and IL-10 were measured by ELISA. RESULTS The ESRD group exhibited significant reductions of all B-cell subpopulations except for transitional B cells that were less severely affected. No significant difference was found in B-cell apoptosis between the ESRD and control groups. Moreover, plasma IL-7 and BAFF levels were elevated in ESRD patients, therefore excluding their deficiencies as a possible culprit. However, BAFF receptor expression was significantly reduced in transitional but not mature B cells in the ESRD group. Interestingly, B-cell activation with the TLR9 agonist resulted in significantly greater production of IL-6 and TNF alpha but not IL-10 in the ESRD group. CONCLUSIONS Thus, despite elevation of B-cell growth, differentiation and survival factors, ESRD patients exhibited diffuse reduction of B-cell subpopulations. This was associated with the down-regulation of BAFF receptor in transitional B cells. The latter can, in part, contribute to B-cell lymphopenia by promoting resistance to the biological actions of BAFF that is a potent B-cell differentiation and survival factor.
Collapse
Affiliation(s)
- Madeleine V Pahl
- Division of Nephrology and Hypertension, University of California, Irvine, CA, USA
| | | | | | | | | | | |
Collapse
|
9
|
Abstract
B cells are induced to enter the cell cycle by stimuli including ligation of the B-cell receptor (BCR) complex and Toll-like receptor (TLR) agonists. This review discusses the contribution of several molecules, which act at distinct steps in B-cell activation. The adapter molecule Bam32 (B-lymphocyte adapter of 32 kDa) helps promote BCR-induced cell cycle entry, while the secondary messenger superoxide has the opposite effect. Bam32 and superoxide may fine tune BCR-induced activation by competing for the same limited resources, namely Rac1 and the plasma membrane phospholipid PI(3,4)P(2). The co-receptor CD22 can inhibit BCR-induced proliferation by binding to novel CD22 ligands. Finally, regulators of B-cell survival and death also play roles in B-cell transit through the cell cycle. Caspase 6 negatively regulates CD40- and TLR-dependent G(1) entry, while acting later in the cell cycle to promote S-phase entry. Caspase 6 deficiency predisposes B cells to differentiate rather than proliferate after stimulation. Bim, a pro-apoptotic Bcl-2 family member, exerts a positive regulatory effect on cell cycle entry, which is opposed by Bcl-2. New insights into what regulates B-cell transit through the cell cycle may lead to thoughtful design of highly selective drugs that target pathogenic B cells.
Collapse
Affiliation(s)
- Sabrina Richards
- Department of Immunology and Microbiology, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | |
Collapse
|
10
|
Libbey JE, Peterson LK, Tsunoda I, Fujinami RS. Monoclonal MOG-reactive autoantibody from progressive EAE has the characteristics of a natural antibody. J Neuroimmunol 2006; 173:135-145. [PMID: 16469392 DOI: 10.1016/j.jneuroim.2005.12.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2005] [Revised: 12/15/2005] [Accepted: 12/21/2005] [Indexed: 02/08/2023]
Abstract
A.SW mice sensitized with myelin oligodendrocyte glycoprotein (MOG)92-106 is an animal model for progressive multiple sclerosis (MS). We isolated MOG-reactive monoclonal antibodies that were immunoglobulin (Ig)M and polyreactive, similar to natural autoantibodies. Upon analysis of the variable (V) light chains and the diversity (D) and joining (J) regions of V heavy chains, we found they were identical to germ line Vkappa19/28, Jkappa5, DFL16.1e and JH4, respectively. The sequence of the VH region had 99.7% and 100% identity at the nucleotide and amino acid levels, respectively, compared with the germ line encoded antibody, P3, of the Q52 family. Although A strain mice have been reported to have an insertion in BAFF-R, the receptor for BAFF (B cell activation factor from the tumor necrosis factor family), which could explain our results, A.SW mice have no mutations in BAFF-R.
Collapse
Affiliation(s)
- Jane E Libbey
- Department of Neurology, University of Utah School of Medicine, 30 North 1900 East, 3R330 SOM, Salt Lake City, UT 84132-2305, USA
| | | | | | | |
Collapse
|
11
|
Crowley JE, Treml LS, Stadanlick JE, Carpenter E, Cancro MP. Homeostatic niche specification among naïve and activated B cells: A growing role for the BLyS family of receptors and ligands. Semin Immunol 2005; 17:193-9. [PMID: 15826824 DOI: 10.1016/j.smim.2005.02.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
B lymphocyte homeostasis encompasses the establishment and maintenance of independently regulated niches, within which cells compete for viability promoting resources. The BLyS/BLyS receptor family controls the size and composition of these niches, by governing the selection and survival of most peripheral B cells. Moreover, different receptor-ligand sets from this family dominate the regulation of various B cell subsets. These observations suggest a model whereby the regulation of BLyS receptors by differentiative and stimulatory cues yield characteristic BLyS receptor signatures, thus specifying homeostatic niche and competitive advantage.
Collapse
Affiliation(s)
- Jenni E Crowley
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, 284 John Morgan Building, 36th And Hamilton Walk, Philadelphia, PA 19104-8062, USA
| | | | | | | | | |
Collapse
|
12
|
Cancro MP. The BLyS family of ligands and receptors: an archetype for niche-specific homeostatic regulation. Immunol Rev 2005; 202:237-49. [PMID: 15546397 DOI: 10.1111/j.0105-2896.2004.00212.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Discovery and characterization of the tumor necrosis factor (TNF) family member B-lymphocyte stimulator (BLyS) has opened a novel chapter in the role of TNF family members in the homeostatic control of lymphocyte populations. BLyS and its sister cytokine APRIL (a proliferation-inducing ligand) act primarily as soluble trimers and serve to regulate the steady-state numbers of nearly all B-cell compartments. This homeostatic regulation is accomplished through the regulation of B-cell production rates, selection thresholds, and lifespan. Differential expression of the three BLyS receptors during differentiation and activation provides related yet distinct homeostatic niches for follicular, marginal zone, and memory B-cell subsets.
Collapse
Affiliation(s)
- Michael P Cancro
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6082, USA.
| |
Collapse
|
13
|
Abstract
B cells complete maturation after migrating to the periphery, where they transit several intermediate developmental stages prior to recruitment into the long-lived primary pool. Because B-lineage commitment is not regulated by peripheral pool size and most peripheral B cells are quiescent, the primary factors governing steady-state numbers are the proportion of immature B cells surviving transit through later developmental stages and the longevity of mature B cells themselves. Substantial evidence indicates that the B-cell receptor (BCR) plays an essential role in all these processes, but recent findings suggest a central role for the recently described tumor necrosis factor (TNF) family member, B-lymphocyte stimulator (BLyS). Signaling through one of the BLyS receptors, BLyS receptor 3 (BR3), controls B-cell numbers in two ways: by varying the proportion of cells that complete transitional B-cell development and by serving as the primary determinant of mature B-cell longevity. The recent discovery that BCR signaling is selectively coupled to BR3 expression in a developmentally regulated fashion links BCR- and BLyS-mediated events, suggesting that specificity-based selection and survival may be mechanistically similar processes.
Collapse
Affiliation(s)
- Michael P Cancro
- Department of Pathology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6082, USA.
| |
Collapse
|
14
|
Calame KL, Lin KI, Tunyaplin C. Regulatory mechanisms that determine the development and function of plasma cells. Annu Rev Immunol 2003; 21:205-30. [PMID: 12524387 DOI: 10.1146/annurev.immunol.21.120601.141138] [Citation(s) in RCA: 261] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Plasma cells are terminally differentiated final effectors of the humoral immune response. Plasma cells that result from antigen activation of B-1 and marginal zone B cells provide the first, rapid response to antigen. Plasma cells that develop after a germinal center reaction provide higher-affinity antibody and often survive many months in the bone marrow. Transcription factors Bcl-6 and Pax5, which are required for germinal center B cells, block plasmacytic differentiation and repress Blimp-1 and XBP-1, respectively. When Bcl-6-dependent repression of Blimp-1 is relieved, Blimp-1 ensures that plasmacytic development is irreversible by repressing BCL-6 and PAX5. In plasma cells, Blimp-1, XBP-1, IRF4, and other regulators cause cessation of cell cycle, decrease signaling from the B cell receptor and communication with T cells, inhibit isotype switching and somatic hypermutation, downregulate CXCR5, and induce copious immunoglobulin synthesis and secretion. Thus, commitment to plasmacytic differentiation involves inhibition of activities associated with earlier B cell developmental stages as well as expression of the plasma cell phenotype.
Collapse
Affiliation(s)
- Kathryn L Calame
- Department of Microbiology and Biochemistry, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA.
| | | | | |
Collapse
|
15
|
Shanahan JC, Moreland LW, Carter RH. Upcoming biologic agents for the treatment of rheumatic diseases. Curr Opin Rheumatol 2003; 15:226-36. [PMID: 12707575 DOI: 10.1097/00002281-200305000-00009] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The development of biologic agents has provided rheumatologists with a variety of new and effective treatment options. The success of early biologics, especially etanercept and infliximab for the treatment of rheumatoid arthritis, has spurred research into novel targets for the management of systemic inflammatory and autoimmune diseases. In addition, existing biologics approved for use in other diseases, such as rituximab, are now under study for the treatment of new indications. This article reviews ongoing research on the treatment of rheumatic diseases with new and existing biologic agents.
Collapse
Affiliation(s)
- Joseph C Shanahan
- Division of Clinical Immunology and Rheumatology, University of Alabama-Birmingham, Alabama, USA.
| | | | | |
Collapse
|
16
|
Amanna IJ, Dingwall JP, Hayes CE. Enforced bcl-xL gene expression restored splenic B lymphocyte development in BAFF-R mutant mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:4593-600. [PMID: 12707337 DOI: 10.4049/jimmunol.170.9.4593] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The TNFR family member BAFF-R facilitates peripheral B cell development, although it is unclear whether it promotes survival of B cells, or also initiates a differentiation program. We show that disruption of the BAFF-R encoding gene Tnfrsf13c in strain A/WySnJ mice causes a progressive decline in peripheral B cell numbers, beginning at the transitional 1 developmental stage and continuing through the mature peripheral B cell stage. Bcl-x(L) overexpression in A/WySnJ B cells decreased the turnover of transitional B cells, as determined by 5-bromo-2'-deoxyuridine labeling, and restored follicular B cell development. We conclude that the mutant A/WySnJ allele of Tnfrsf13c can be complemented through the survival signal provided by Bcl-x(L).
Collapse
Affiliation(s)
- Ian J Amanna
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
| | | | | |
Collapse
|
17
|
Abstract
The parsimony of nature can be stated as "if its not broke don't fix it, just tweak it and reuse it again and again." Nature recycles: once a motif is demonstrably useful it shows up again, often in unexpected places. Tumor necrosis factor and its receptor(s) are examples of this. At least 20 molecules have now been identified as being 25% homologous or more identical with tumor necrosis factor and being involved in a variety of immune and nonimmune functions. Members of the receptor superfamily have shared structural motifs and trigger shared intracellular signaling pathways. Rather than having been implicated in arcane and rare syndromes, some of these activities are pivotal in immune function and, when perturbed, some predispose to known immunodeficiency and autoimmune disease. Not surprisingly, some of these are becoming targets for immunomodulation. New members of these 2 superfamilies are currently being described and the newcomers and the "original stock" will show up in the clinic before you know it! Part of the confusion has always been that each laboratory describing a new biologic principle names the mediating compound. Thus, multiple labs, multiple names for the same protein (recall Ro/SS-A, La/SS-B). Thus, special attention is paid below to acronyms and their synonyms.
Collapse
Affiliation(s)
- Leonard H Sigal
- Division of Rheumatology and Connective Tissue Research, Department of Medicine, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA.
| |
Collapse
|
18
|
Roschke V, Sosnovtseva S, Ward CD, Hong JS, Smith R, Albert V, Stohl W, Baker KP, Ullrich S, Nardelli B, Hilbert DM, Migone TS. BLyS and APRIL form biologically active heterotrimers that are expressed in patients with systemic immune-based rheumatic diseases. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:4314-21. [PMID: 12370363 DOI: 10.4049/jimmunol.169.8.4314] [Citation(s) in RCA: 196] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BLyS and APRIL are two members of the TNF superfamily that are secreted by activated myeloid cells and have costimulatory activity on B cells. BLyS and APRIL share two receptors, TACI and BCMA, whereas a third receptor, BAFF-R, specifically binds BLyS. Both BLyS and APRIL have been described as homotrimeric molecules, a feature common to members of the TNF superfamily. In this study, we show that APRIL and BLyS can form active heterotrimeric molecules when coexpressed and that circulating heterotrimers are present in serum samples from patients with systemic immune-based rheumatic diseases. These findings raise the possibility that active BLyS/APRIL heterotrimers may play a role in rheumatic and other autoimmune diseases and that other members of the TNF ligand superfamily may also form active soluble heterotrimers.
Collapse
MESH Headings
- Animals
- Arthritis, Psoriatic/blood
- Arthritis, Psoriatic/immunology
- Arthritis, Reactive/blood
- Arthritis, Reactive/immunology
- Arthritis, Rheumatoid/blood
- Arthritis, Rheumatoid/immunology
- B-Cell Activation Factor Receptor
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- Cell Line
- Cells, Cultured
- Female
- Humans
- Lupus Erythematosus, Systemic/blood
- Lupus Erythematosus, Systemic/immunology
- Lymphocyte Activation/genetics
- Membrane Proteins/biosynthesis
- Membrane Proteins/blood
- Membrane Proteins/isolation & purification
- Membrane Proteins/physiology
- Mice
- Mice, Inbred BALB C
- Polymyositis/blood
- Polymyositis/immunology
- Receptors, Tumor Necrosis Factor/biosynthesis
- Receptors, Tumor Necrosis Factor/blood
- Receptors, Tumor Necrosis Factor/isolation & purification
- Receptors, Tumor Necrosis Factor/physiology
- Rheumatic Diseases/blood
- Rheumatic Diseases/immunology
- Spondylitis, Ankylosing/blood
- Spondylitis, Ankylosing/immunology
- Transfection
- Tumor Cells, Cultured
- Tumor Necrosis Factor Ligand Superfamily Member 13
- Tumor Necrosis Factor-alpha/biosynthesis
- Tumor Necrosis Factor-alpha/isolation & purification
- Tumor Necrosis Factor-alpha/physiology
Collapse
Affiliation(s)
- Viktor Roschke
- Department of Antibody Development, Human Genome Sciences, 9410 Key West Avenue, Rockville, MD 20850, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
There is growing evidence that the development of naïve B cells depends on the interaction of self antigens with the BCR. A view that has emerged over the past year is that BCR signal output contributes in a large part to the developmental fate of peripheral B cells. Differences in antigen-receptor signal strength may determine whether B cells assume a marginal zone, follicular or B-1 phenotype.
Collapse
Affiliation(s)
- Annaiah Cariappa
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA 02129, USA
| | | |
Collapse
|
20
|
Metzler DE, Metzler CM, Sauke DJ. Biochemical Defense Mechanisms. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50034-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|