1
|
Bai M, Xu P, Cheng R, Li N, Cao S, Guo Q, Wang X, Li C, Bai N, Jiang B, Wu X, Song X, Sun C, Zhao M, Cao L. ROS-ATM-CHK2 axis stabilizes HIF-1α and promotes tumor angiogenesis in hypoxic microenvironment. Oncogene 2025; 44:1609-1619. [PMID: 40057605 PMCID: PMC12095048 DOI: 10.1038/s41388-025-03336-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 02/02/2025] [Accepted: 02/27/2025] [Indexed: 05/23/2025]
Abstract
Hypoxia is an established hallmark of tumorigenesis. HIF-1α activation may be the prime driver of adaptive regulation of tumor cells reacting to hypoxic conditions of the tumor microenvironment. Here, we report a novel regulatory mechanism in charge of the fundamental stability of HIF-1α in solid tumor. Under hypoxic conditions, the checkpoint kinase CHK2 binds to HIF-1α and inhibits its ubiquitination, which is highly likely due to phosphorylation of a threonine residue (Thr645), a formerly uncharacterized site within the inhibitory domain. Meanwhile, HIF-1α phosphorylation induced by CHK2 promotes complex formation between HIF-1-α and the deubiquitination enzyme USP7, increasing stability under hypoxic conditions. This novel modification of the crosstalk between phosphorylation and ubiquitination of HIF-1α mediated by CHK2 enriches the post-translational modification spectrum of HIF-1α, thus offering novel insights into potential anti-angiogenesis therapies.
Collapse
Affiliation(s)
- Ming Bai
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Pengzhi Xu
- Department of Orthopedics, Linyi People's Hospital, Shandong Second Medical University, Linyi, Shandong Province, China
| | - Rong Cheng
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning Province, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning Province, China
| | - Na Li
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Sunrun Cao
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning Province, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning Province, China
| | - Qiqiang Guo
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning Province, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning Province, China
| | - Xiaoxun Wang
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Chunlu Li
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning Province, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning Province, China
| | - Ning Bai
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning Province, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning Province, China
| | - Bo Jiang
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning Province, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning Province, China
| | - Xuan Wu
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning Province, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning Province, China
| | - Xiaoyu Song
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning Province, China.
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning Province, China.
| | - Chen Sun
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China.
| | - Mingfang Zhao
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China.
| | - Liu Cao
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning Province, China.
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning Province, China.
| |
Collapse
|
2
|
Wu Y, Li Z, Kaur S, Zhang Z, Yue J, Tumber A, Zhang H, Song Z, Yang P, Dong Y, Yang F, Li X, Schofield CJ, Zhang X. Light-Induced, Lysine-Targeting Irreversible Covalent Inhibition of the Human Oxygen Sensing Hydroxylase Factor Inhibiting HIF (FIH). J Am Chem Soc 2025; 147:17871-17879. [PMID: 40344676 PMCID: PMC12123601 DOI: 10.1021/jacs.5c01935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/30/2025] [Accepted: 05/02/2025] [Indexed: 05/11/2025]
Abstract
Factor inhibiting hypoxia-inducible factor (FIH) is a JmjC domain 2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase that catalyzes protein hydroxylations, including of specific asparagines in the C-terminal transcriptional activation domains of hypoxia-inducible factor alpha (HIF-α) isoforms. FIH is of medicinal interest due to its ability to alter metabolism and modulate the course of the HIF-mediated hypoxic response. We report the development of a light-induced, lysine (Lys106)-targeting irreversible covalent inhibitor of FIH. The approach is complementary to optogenetic methods for regulation of transcription. The covalently reacting inhibitor NBA-ZG-2291 was the result of structure-guided modification of the reported active site binding FIH inhibitor ZG-2291 with an appropriately positioned o-nitrobenzyl alcohol (o-NBA) group. The results demonstrate that NBA-ZG-2291 forms a stable covalent bond in a light-dependent process with Lys106 of FIH, inactivating its hydroxylation activity and resulting in sustained upregulation of FIH-dependent HIF target genes. The light-controlled inhibitors targeting a lysine residue enable light and spatiotemporal control of FIH activity in a manner useful for dissecting the context-dependent physiological roles of FIH.
Collapse
Affiliation(s)
- Yue Wu
- State
Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug
Design and Optimization, and Department of Chemistry, China Pharmaceutical University, Nanjing211198, China
| | - Zhihong Li
- State
Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug
Design and Optimization, and Department of Chemistry, China Pharmaceutical University, Nanjing211198, China
| | - Samanpreet Kaur
- Chemistry
Research Laboratory and the Ineos Oxford Institute for Antimicrobial
Research, University of Oxford, 12 Mansfield Road, OxfordOX1 3TA, U.K.
| | - Zewei Zhang
- State
Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug
Design and Optimization, and Department of Chemistry, China Pharmaceutical University, Nanjing211198, China
| | - Jie Yue
- State
Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug
Design and Optimization, and Department of Chemistry, China Pharmaceutical University, Nanjing211198, China
| | - Anthony Tumber
- Chemistry
Research Laboratory and the Ineos Oxford Institute for Antimicrobial
Research, University of Oxford, 12 Mansfield Road, OxfordOX1 3TA, U.K.
| | - Haoshu Zhang
- State
Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug
Design and Optimization, and Department of Chemistry, China Pharmaceutical University, Nanjing211198, China
| | - Zhe Song
- State
Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug
Design and Optimization, and Department of Chemistry, China Pharmaceutical University, Nanjing211198, China
| | - Peiyao Yang
- State
Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug
Design and Optimization, and Department of Chemistry, China Pharmaceutical University, Nanjing211198, China
| | - Ying Dong
- State
Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug
Design and Optimization, and Department of Chemistry, China Pharmaceutical University, Nanjing211198, China
| | - Fulai Yang
- State
Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug
Design and Optimization, and Department of Chemistry, China Pharmaceutical University, Nanjing211198, China
| | - Xiang Li
- State
Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug
Design and Optimization, and Department of Chemistry, China Pharmaceutical University, Nanjing211198, China
| | - Christopher J. Schofield
- Chemistry
Research Laboratory and the Ineos Oxford Institute for Antimicrobial
Research, University of Oxford, 12 Mansfield Road, OxfordOX1 3TA, U.K.
| | - Xiaojin Zhang
- State
Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug
Design and Optimization, and Department of Chemistry, China Pharmaceutical University, Nanjing211198, China
| |
Collapse
|
3
|
El-Naggar AM, Li Y, Turgu B, Ding Y, Wei L, Chen SY, Trigo-Gonzalez G, Kalantari F, Vallejos R, Lynch B, Senz J, Lum A, Douglas JM, Salamanca C, Thornton S, Qin Y, Parmar K, Spencer SE, Leung S, Woo MM, Yong PJ, Zhang HF, Hughes CS, Negri GL, Wang Y, Morin GB, Sorensen PH, Huntsman DG. Cystathionine gamma-lyase-mediated hypoxia inducible factor 1-alpha expression drives clear cell ovarian cancer progression. J Pathol 2025. [PMID: 40371821 DOI: 10.1002/path.6433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/07/2025] [Accepted: 03/26/2025] [Indexed: 05/16/2025]
Abstract
Clear cell ovarian cancer (CCOC) is the second most common ovarian cancer subtype, accounting for 5%-11% of ovarian cancers in North America. Late-stage CCOC is associated with a worse prognosis compared to other ovarian cancer histotypes, a challenge that has seen limited progress in recent decades. CCOC typically originates within the toxic microenvironment of endometriotic ovarian cysts and is characterized by its intrinsic chemoresistance, a strong hypoxic signature, and abundant expression of cystathionine gamma-lyase (CTH). CTH is a key enzyme in the transsulfuration pathway and serves as a marker of ciliated cells derived from the Müllerian tract. CTH plays a pivotal role in de novo cysteine synthesis, which is essential for glutathione (GSH) production and redox homeostasis. Using an array of molecular tools and cancer models, including in vivo studies, we demonstrated that CTH expression was induced under various stress conditions, such as exposure to endometriotic cyst content and hypoxia. This induction enables cell survival and creates a differentiation state manifested by CCOC that potentiates tumor progression and metastasis. In addition to regulating redox homeostasis, CTH enhances hypoxia inducible factor 1-alpha (HIF1α) expression, independently of hydrogen sulfide (H2S) production. Re-expression of HIF1α in CTH KO cells fully restored metastatic capacity in in vivo models. Co-expression of CTH and HIF1α proteins was also observed in human CCOC samples. Importantly, targeting CTH in CCOC significantly reduced its metastatic potential in in vivo models and enhanced sensitivity to chemotherapy. These findings underscore that CTH is both a defining feature of CCOC and a promising therapeutic target, not only for CCOC patients but also for those with other CTH-expressing cancers. © 2025 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Amal M El-Naggar
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Pathology, Faculty of Medicine, Menoufia University, Shibin El Kom, Egypt
| | - Yuqin Li
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Busra Turgu
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Yuchen Ding
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Longyijie Wei
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Shary Yuting Chen
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Genny Trigo-Gonzalez
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Forouh Kalantari
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Rodrigo Vallejos
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Branden Lynch
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Janine Senz
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Amy Lum
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | - J Maxwell Douglas
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Clara Salamanca
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Shelby Thornton
- Molecular and Advanced Pathology Core (MAPCore), University of British Columbia, Vancouver, BC, Canada
| | - Yimei Qin
- Molecular and Advanced Pathology Core (MAPCore), University of British Columbia, Vancouver, BC, Canada
| | - Kiran Parmar
- BC Centre for Pelvic Pain and Endometriosis, BC Women's Hospital, Vancouver, BC, Canada
| | - Sandra E Spencer
- Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Samuel Leung
- Genetic Pathology Evaluation Centre, Vancouver, BC, Canada
| | - Michelle Mm Woo
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, BC, Canada
- BC's Gynecologic Cancer Research Program, OVCARE, Vancouver, BC, Canada
| | - Paul J Yong
- BC Centre for Pelvic Pain and Endometriosis, BC Women's Hospital, Vancouver, BC, Canada
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, BC, Canada
| | - Hai-Feng Zhang
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | - Gian Luca Negri
- Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Yemin Wang
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Gregg B Morin
- Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Poul H Sorensen
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - David G Huntsman
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Molecular and Advanced Pathology Core (MAPCore), University of British Columbia, Vancouver, BC, Canada
- Genetic Pathology Evaluation Centre, Vancouver, BC, Canada
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, BC, Canada
- BC's Gynecologic Cancer Research Program, OVCARE, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
4
|
Hwang J, Lauinger L, Kaiser P. Distinct Stress Regulators in the CRL Family: Emerging Roles of F-Box Proteins: Cullin-RING Ligases and Stress-Sensing. Bioessays 2025; 47:e202400249. [PMID: 40091294 DOI: 10.1002/bies.202400249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/19/2025] [Accepted: 02/24/2025] [Indexed: 03/19/2025]
Abstract
Cullin-RING ligases (CRLs) are central regulators of environmental and cellular stress responses, orchestrating diverse processes through the ubiquitination of substrate proteins. As modular complexes, CRLs employ substrate-specific adaptors to target proteins for degradation and other ubiquitin-mediated processes, enabling dynamic adaptation to environmental cues. Recent advances have highlighted the largest CRL subfamily SCF (Skp1-cullin-F-box) in environmental sensing, a role historically underappreciated for SCF ubiquitin ligases. Notably, emerging evidence suggests that the F-box domain, a 50-amino acid motif traditionally recognized for mediating protein-protein interactions, can act as a direct environmental sensor due to its ability to bind heavy metals. Despite these advances, the roles of many CRL components in environmental sensing remain poorly understood. This review provides an overview of CRLs in stress response regulation and emphasizes the emerging functions of F-box proteins in environmental adaptation.
Collapse
Affiliation(s)
- Jiwon Hwang
- Department of Biological Chemistry, University of California, Irvine, Irvine, California, USA
| | - Linda Lauinger
- Department of Biological Chemistry, University of California, Irvine, Irvine, California, USA
| | - Peter Kaiser
- Department of Biological Chemistry, University of California, Irvine, Irvine, California, USA
| |
Collapse
|
5
|
Poimenidi E, Droggiti E, Karavasili K, Kotsirilou D, Mourkogianni E, Koolwijk P, Papadimitriou E. Regulation of Pleiotrophin and PTPRZ1 Expression by Hypoxia to Restrict Hypoxia-Induced Cell Migration. Cancers (Basel) 2025; 17:1516. [PMID: 40361445 PMCID: PMC12070880 DOI: 10.3390/cancers17091516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 04/17/2025] [Accepted: 04/24/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND/OBJECTIVES In the tumor microenvironment, hypoxia regulates genes that support tumor cell invasion and angiogenesis under the control of the hypoxia-inducible transcription factors (HIFs). Pleiotrophin (PTN) is a secreted protein that activates cell migration in endothelial and cancer cells that express ανβ3 integrin but has inhibitory effects in cells that do not express ανβ3 integrin. In both cases, the protein tyrosine phosphatase receptor zeta 1 (PTPRZ1) seems to mediate the effects of PTN. In the present work, we studied the effect of hypoxia on PTN and PTPRZ1 expression and the functional consequences of this effect. METHODS Western blot, quantitative real-time PCR, and luciferase assays were used to study the impact of hypoxia at the protein, mRNA, and transcriptional levels, respectively. Decoy oligonucleotides (ODNs), siRNA technology, and plasmid overexpression were used to study the involvement of the transcription factors studied. Functional assays were used to study the effect of hypoxia on cell proliferation and migration. RESULTS Hypoxia increases PTN expression through the transcriptional activation of the corresponding gene in ανβ3 integrin-expressing cells. The transcription factors HIF-1α, HIF-2α, and AP-1 mediate the up-regulation of PTN by hypoxia. Functional assays in endothelial cells from PTN knockout mice or endothelial and cancer cells following the downregulation of PTN expression showed that PTN negatively affects chemical hypoxia-induced cell proliferation and migration. In cancer cells that do not express ανβ3 integrin, hypoxia or chemical hypoxia inhibits PTN expression in a HIF-1α-, HIF-2α-, and AP-1-independent manner. The expression of PTPRZ1 is up-regulated by chemical hypoxia, is HIF-1α- and HIF-2α-dependent, and seems to limit the activation of HIF-1α, at least in endothelial cells. CONCLUSIONS Hypoxia or chemical hypoxia regulates PTN and PTPRZ1 expressions to restrict the stimulatory effects of hypoxia on endothelial and cancer cell migration.
Collapse
Affiliation(s)
- Evangelia Poimenidi
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, 26504 Patras, Greece; (E.P.)
- Department of Physiology, Amsterdam UMC, 1081 HV Amsterdam, The Netherlands
| | - Eirini Droggiti
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, 26504 Patras, Greece; (E.P.)
| | - Katerina Karavasili
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, 26504 Patras, Greece; (E.P.)
| | - Dimitra Kotsirilou
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, 26504 Patras, Greece; (E.P.)
- Department of Physiology, Amsterdam UMC, 1081 HV Amsterdam, The Netherlands
| | - Eleni Mourkogianni
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, 26504 Patras, Greece; (E.P.)
| | - Pieter Koolwijk
- Department of Physiology, Amsterdam UMC, 1081 HV Amsterdam, The Netherlands
| | - Evangelia Papadimitriou
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, 26504 Patras, Greece; (E.P.)
| |
Collapse
|
6
|
Bauer N, Mao Q, Vashistha A, Seshadri A, Nancy Du YC, Otterbein L, Tan C, de Caestecker MP, Wang B. Compelling Evidence: A Critical Update on the Therapeutic Potential of Carbon Monoxide. Med Res Rev 2025. [PMID: 40302550 DOI: 10.1002/med.22116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 04/08/2025] [Accepted: 04/11/2025] [Indexed: 05/02/2025]
Abstract
Carbon monoxide (CO) is an endogenous signaling molecule. It is produced via heme degradation by heme oxygenase (HMOX), releasing stoichiometric amounts of CO, iron, and biliverdin (then bilirubin). The HMOX-CO axis has long been shown to offer beneficial effects by modulating inflammation, proliferation and cell death as they relate to tissue and organ protection. Recent years have seen a large number of studies examining CO pharmacology, its molecular targets, cellular mechanisms of action, pharmacokinetics, and detection methods using various delivery modalities including inhaled CO gas, CO solutions, and various types of CO donors. Unfortunately, one widely used donor type includes four commercially available carbonyl complexes with metal or borane, CORM-2 (Ru2+), CORM-3 (Ru2+), CORM-A1 (BH3), and CORM-401 (Mn+), which have been shown to have minimal and/or unpredictable CO production and extensive CO-independent chemical reactivity and biological activity. As a result, not all "CO biological activities" in the literature can be attributed to CO. In this review, we summarize key findings based on CO gas and CO in solution for the certainty of the active principal and to avoid data contamination resulting from the confirmed or potential reactivities and activities of the "carrier" portion of CORMs. Along a similar line, we discuss interesting potential research areas of CO in the brain including a newly proposed CO/HMOX/dopamine axis and the role of CO in cognitive stimulation and circadian rhythm. This review is critical for the future development of the CO field by steering clear of complications caused by chemically reactive donor molecules.
Collapse
Affiliation(s)
- Nicola Bauer
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Qiyue Mao
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Aditi Vashistha
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Anupamaa Seshadri
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Yi-Chieh Nancy Du
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York City, New York, USA
| | - Leo Otterbein
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Chalet Tan
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Mark P de Caestecker
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| |
Collapse
|
7
|
Zhu YY, Zhang DF, Tong XW, Zhao WM, Shi R, Li XL, Wang ZJ, Wang DG. Roxadustat increases markers of calcification in patients with end-stage kidney disease: prospective cohort study. J Bone Miner Res 2025; 40:492-499. [PMID: 40036574 DOI: 10.1093/jbmr/zjaf032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 02/07/2025] [Accepted: 02/14/2025] [Indexed: 03/06/2025]
Abstract
To determine the effects of roxadustat on calcification when treating renal anemia in end-stage kidney disease (ESKD) patients. A prospective cohort study enrolled participants with ESKD that either received roxadustat or no roxadustat treatment. The primary outcome was the change in the degree of hydroxyapatite (HAP) crystals deposition. The secondary outcome was calcification propensity, a measure of calcification, allowing an evaluation of the conversion process from primary to secondary calciprotein particles. A total of 205 patients were enrolled, and 187 (91.2%) completed follow-up for inclusion in the analysis and were divided into the roxadustat group (n = 92) and the control group (n = 95) based on whether or not they were taking roxadustat regularly over a 6-mo period. After roxadustat administration for 6 mo, patients exhibited increases in total RBC counts, hematocrit, hemoglobin, calcium, total ferritin binding, intact fibroblast growth factor 23 (iFGF23), secreted phosphoprotein 24 (SPP24), and calcification propensity relative to pre-treatment levels. No significant differences were observed in patients who were not treated with roxadustat. The deposition degree of HAP crystals increased by 5% and 0.01% following treatment with roxadustat in the roxadustat group and control group, respectively. Linear regression analysis found that the use of roxadustat was an independent risk factor for calcification propensity and changes in the degree of HAP crystals deposition. Roxadustat treatment may increase iFGF23, SPP24, and calcification propensity in patients with ESKD when treating these patients for renal anemia. Therefore, the clinicians should aware of this risk when treating patients with prolyl hydroxylase domain inhibitors.
Collapse
Affiliation(s)
- Yu-Yu Zhu
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, China
| | - Dan-Feng Zhang
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, China
| | - Xiao-Wen Tong
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, China
| | - Wen-Man Zhao
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, China
| | - Rui Shi
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, China
| | - Xun-Liang Li
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, China
| | - Zhi-Juan Wang
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, China
| | - De-Guang Wang
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, China
| |
Collapse
|
8
|
Cai Y, Chai T, Nguyen W, Liu J, Xiao E, Ran X, Ran Y, Du D, Chen W, Chen X. Phototherapy in cancer treatment: strategies and challenges. Signal Transduct Target Ther 2025; 10:115. [PMID: 40169560 PMCID: PMC11961771 DOI: 10.1038/s41392-025-02140-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/11/2024] [Accepted: 01/13/2025] [Indexed: 04/03/2025] Open
Abstract
Phototherapy has emerged as a promising modality in cancer treatment, garnering considerable attention for its minimal side effects, exceptional spatial selectivity, and optimal preservation of normal tissue function. This innovative approach primarily encompasses three distinct paradigms: Photodynamic Therapy (PDT), Photothermal Therapy (PTT), and Photoimmunotherapy (PIT). Each of these modalities exerts its antitumor effects through unique mechanisms-specifically, the generation of reactive oxygen species (ROS), heat, and immune responses, respectively. However, significant challenges impede the advancement and clinical application of phototherapy. These include inadequate ROS production rates, subpar photothermal conversion efficiency, difficulties in tumor targeting, and unfavorable physicochemical properties inherent to traditional phototherapeutic agents (PTs). Additionally, the hypoxic microenvironment typical of tumors complicates therapeutic efficacy due to limited agent penetration in deep-seated lesions. To address these limitations, ongoing research is fervently exploring innovative solutions. The unique advantages offered by nano-PTs and nanocarrier systems aim to enhance traditional approaches' effectiveness. Strategies such as generating oxygen in situ within tumors or inhibiting mitochondrial respiration while targeting the HIF-1α pathway may alleviate tumor hypoxia. Moreover, utilizing self-luminescent materials, near-infrared excitation sources, non-photoactivated sensitizers, and wireless light delivery systems can improve light penetration. Furthermore, integrating immunoadjuvants and modulating immunosuppressive cell populations while deploying immune checkpoint inhibitors holds promise for enhancing immunogenic cell death through PIT. This review seeks to elucidate the fundamental principles and biological implications of phototherapy while discussing dominant mechanisms and advanced strategies designed to overcome existing challenges-ultimately illuminating pathways for future research aimed at amplifying this intervention's therapeutic efficacy.
Collapse
Affiliation(s)
- Yeyu Cai
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Tian Chai
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi'an, Shanxi Province, China
| | - William Nguyen
- School of Chips, XJTLU Entrepreneur College (Taicang), Xi'an Jiaotong-Liverpool University, Taicang, Suzhou, China
| | - Jiayi Liu
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Enhua Xiao
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Xin Ran
- Department of Dermatovenereology, The West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yuping Ran
- Department of Dermatovenereology, The West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Dan Du
- Department of Dermatovenereology, The West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Chen
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi'an, Shanxi Province, China.
| | - Xiangyu Chen
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China.
| |
Collapse
|
9
|
Suzuki J. Exercise performance in well-trained male mice is promoted by intermittent hyperoxia via improving metabolic properties and capillary profiles. Physiol Rep 2025; 13:e70341. [PMID: 40260844 PMCID: PMC12012744 DOI: 10.14814/phy2.70341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/08/2025] [Accepted: 04/08/2025] [Indexed: 04/24/2025] Open
Abstract
Although training under intermittent hyperoxia has been shown to improve exercise performance, its effect on well-trained mice remains undetermined. Voluntary run for 7 weeks increased maximal work values by 7.4-fold (Bayes factor, BF ≥ 30). Subsequently, mice underwent 4 weeks of treadmill training with (INT) or without (ET) intermittent hyperoxia (30% O2). INT training significantly increased maximal exercise capacity compared to ET (BF ≥ 30). INT group exhibited significantly higher levels of cytochrome-c-oxidase (COX) in soleus muscle (SOL, BF ≥ 3.0). Additionally, INT enhanced 3-hydroxyacyl-CoA-dehydrogenase (HAD) levels in white gastrocnemius (Gw) and plantaris (PL) muscles compared to ET (BF ≥ 3.0). Pyruvate dehydrogenase complex (PDHc) levels were significantly higher in the INT group compared to the ET group in red gastrocnemius and left ventricle (BF ≥ 30). Capillary-to-fiber ratio (C/F) was significantly higher in the INT group than in the ET group in SOL and PL muscles (BF ≥ 3.0). COX, PDHc, capillary density (CD), and catalase protein values in SOL, HAD, and C/F levels in Gw and PL, as well as CD values in Gw showed a significant positive correlation with maximal work values using data from ET and INT groups (p < 0.05). These findings suggest that training under intermittent hyperoxia promotes endurance performance probably by improving metabolic enzyme levels and capillary profiles in well-trained mice.
Collapse
Affiliation(s)
- Junichi Suzuki
- Laboratory of Exercise Physiology, Health and Sports Sciences, Course of Sports Education, Department of EducationHokkaido University of EducationMidorigaoka, IwamizawaHokkaidoJapan
| |
Collapse
|
10
|
Chiba N, Ohnishi T, Matsuguchi T. Hypoxia-Inducible Factor 1 Alpha Potentiates Lipopolysaccharide-Induced Expression of IL-13 and IL-33 in Mast Cells Under Hypoxia. Microbiol Immunol 2025; 69:247-255. [PMID: 39945318 DOI: 10.1111/1348-0421.13202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 01/21/2025] [Accepted: 01/23/2025] [Indexed: 04/08/2025]
Abstract
Lipopolysaccharide (LPS) is an exacerbating factor for allergic airway inflammation at least partly due to the activation of mast cells (MCs). LPS stimulates MCs to express both pro-inflammatory and type 2 cytokines, among which interleukin (IL)-13 is essential for the generation of allergic diseases. LPS also induces the expression of "alarmins" such as IL-25, IL-33, and thymic stromal lymphopoietin (TSLP) from various cell types including epithelial cells, and increased serum IL-33 levels were reported to correlate with disease severity of asthma. MCs reside in peripheral tissues where the oxygen concentration is significantly lower than that in the air and further decreased by inflammation and bronchoconstriction in asthma. However, the effects of hypoxia on LPS-induced cytokine expression in MCs have not been fully elucidated. Here we show that LPS induces Il4, Il6, Il13, Il33, Tnf, and Tslp mRNAs in MCs. Notably, hypoxia robustly enhanced expressions of Il13 and Il33, but not the other cytokines in LPS-stimulated MCs. We also found that this promotive effect is dependent on the presence of hypoxia-inducible factor (HIF) 1α protein. Our study will provide new insight on the role of MCs in the LPS-associated pathogenesis of allergic diseases.
Collapse
Affiliation(s)
- Norika Chiba
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Tomokazu Ohnishi
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Tetsuya Matsuguchi
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
11
|
Heidarian Y, Fasteen TD, Mungcal L, Buddika K, Mahmoudzadeh NH, Nemkov T, D'Alessandro A, Tennessen JM. Hypoxia-inducible factor 1α is required to establish the larval glycolytic program in Drosophila melanogaster. Mol Metab 2025; 93:102106. [PMID: 39894213 PMCID: PMC11869853 DOI: 10.1016/j.molmet.2025.102106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 01/23/2025] [Accepted: 01/25/2025] [Indexed: 02/04/2025] Open
Abstract
OBJECTIVES The rapid growth that occurs during Drosophila larval development requires a dramatic rewiring of central carbon metabolism to support biosynthesis. Larvae achieve this metabolic state, in part, by coordinately up-regulating the expression of genes involved in carbohydrate metabolism. The resulting metabolic program exhibits hallmark characteristics of aerobic glycolysis and establishes a physiological state that supports growth. To date, the only factor known to activate the larval glycolytic program is the Drosophila Estrogen-Related Receptor (dERR). However, dERR is dynamically regulated during the onset of this metabolic switch, indicating that other factors must be involved. Here we examine the possibility that the Drosophila ortholog of Hypoxia inducible factor 1α (Hif1α) is also required to activate the larval glycolytic program. METHODS CRISPR/Cas9 was used to generate new loss-of-function alleles in the Drosophila gene similar (sima), which encodes the sole fly ortholog of Hif1α. The resulting mutant strains were analyzed using a combination of metabolomics and RNAseq for defects in carbohydrate metabolism. RESULTS Our studies reveal that sima mutants fail to activate aerobic glycolysis and die during larval development with metabolic phenotypes that mimic those displayed by dERR mutants. Moreover, we demonstrate that dERR and Sima/Hif1α protein accumulation is mutually dependent, as loss of either transcription factor results in decreased abundance of the other protein. CONCLUSIONS These findings demonstrate that Sima/HIF1α is required during embryogenesis to coordinately up-regulate carbohydrate metabolism in preparation for larval growth. Notably, our study also reveals that the Sima/HIF1α-dependent gene expression program shares considerable overlap with that observed in dERR mutant, suggesting that Sima/HIF1α and dERR cooperatively regulate embryonic and larval glycolytic gene expression.
Collapse
Affiliation(s)
- Yasaman Heidarian
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Tess D Fasteen
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Liam Mungcal
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Kasun Buddika
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Jason M Tennessen
- Department of Biology, Indiana University, Bloomington, IN 47405, USA; Member, Melvin and Bren Simon Cancer Center, Indianapolis, IN 46202, USA.
| |
Collapse
|
12
|
Berto Gomes LA, Smith OE, Bollwein H, Kowalewski MP. Dynamic Regulation of HIF1α and Oxygen-Sensing Factors in Cyclic Bovine Corpus Luteum and During LPS Challenge. Animals (Basel) 2025; 15:595. [PMID: 40003076 PMCID: PMC11851762 DOI: 10.3390/ani15040595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/04/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
Understanding the corpus luteum (CL) and its role in cattle reproduction is crucial, particularly as it is a progesterone source for the establishment and maintenance of pregnancy. Reduced oxygen levels significantly impact these processes. This study investigated the effects of the luteal stage on the spatio-temporal gene expression patterns of HIF1α and oxygen-sensing factors, as well as the impact of lipopolysaccharide (LPS)-induced inflammation on these factors. Endothelial inflammatory responses were also addressed. The samples included CL collected at the early, mid, and late stages, as well as biopsies from mid-luteal stage cows treated either with saline (controls) or LPS. Samples collected in subsequent cycles assessed potential carryover effects. RT-PCR revealed upregulation of HIF1α, PHD1, PHD3, FIH, and VHL encoding genes in the mid-luteal stage. In situ hybridization revealed the compartmentalization of HIF1α and its regulators within the luteal and endothelial cells, suggesting their cell-specific roles. LPS treatment affected PHD1 and PHD3 expression, while increasing endothelial pro-inflammatory factors ICAM1 and NFκB, suggesting vascular inflammation and modulated oxygen sensing. These findings reveal new insights into the spatio-temporal expression of HIF1α-regulating factors in the CL, highlighting their potential role in controlling luteal function, detailing their cellular compartmentalization, and the effects of LPS-mediated inflammatory responses.
Collapse
Affiliation(s)
- Luiz Antonio Berto Gomes
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland; (L.A.B.G.); (O.E.S.)
| | - Olivia Eilers Smith
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland; (L.A.B.G.); (O.E.S.)
| | - Heinrich Bollwein
- Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland;
- AgroVet-Strickhof, Vetsuisse Faculty, University of Zurich, CH-8315 Eschikon, Switzerland
| | - Mariusz Pawel Kowalewski
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland; (L.A.B.G.); (O.E.S.)
- Center for Clinical Studies (ZKS), Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland
| |
Collapse
|
13
|
McDermott A, Tavassoli A. Hypoxia-inducible transcription factors: architects of tumorigenesis and targets for anticancer drug discovery. Transcription 2025; 16:86-117. [PMID: 39470609 PMCID: PMC11970764 DOI: 10.1080/21541264.2024.2417475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 10/30/2024] Open
Abstract
Hypoxia-inducible factors (HIFs) play a pivotal role as master regulators of tumor survival and growth, controlling a wide array of cellular processes in response to hypoxic stress. Clinical data correlates upregulated HIF-1 and HIF-2 levels with an aggressive tumor phenotype and poor patient outcome. Despite extensive validation as a target in cancer, pharmaceutical targeting of HIFs, particularly the interaction between α and βsubunits that forms the active transcription factor, has proved challenging. Nonetheless, many indirect inhibitors of HIFs have been identified, targeting diverse parts of this pathway. Significant strides have also been made in the development of direct inhibitors of HIF-2, exemplified by the FDA approval of Belzutifan for the treatment of metastatic clear cell renal carcinoma. While efforts to target HIF-1 using various therapeutic modalities have shown promise, no clinical candidates have yet emerged. This review aims to provide insights into the intricate and extensive role played by HIFs in cancer, and the ongoing efforts to develop therapeutic agents against this target.
Collapse
Affiliation(s)
| | - Ali Tavassoli
- School of Chemistry, University of Southampton, Southampton, UK
| |
Collapse
|
14
|
Peter A, Berneman ZN, Cools N. Cellular respiration in dendritic cells: Exploring oxygen-dependent pathways for potential therapeutic interventions. Free Radic Biol Med 2025; 227:536-556. [PMID: 39643130 DOI: 10.1016/j.freeradbiomed.2024.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/01/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Dendritic cells (DCs) are specialized antigen-presenting cells crucial for initiating and regulating adaptive immune responses, making them promising candidates for therapeutic interventions in various immune-mediated diseases. Increasing evidence suggests that the microenvironment in which cells are cultured, as well as the milieu in which they perform their functions, significantly impact their immunomodulatory properties. Among these environmental factors, the role of oxygen in DC biology and its significance for both their in vitro generation and in vivo therapeutic application require investigation. Unlike the atmospheric oxygen level of 21 % commonly used in in vitro assays, physiological oxygen levels are much lower (3-9 %), and hypoxia (<1.3 %) is a prevalent condition of both healthy tissues and disease states. This mismatch between laboratory and physiological conditions underscores the critical need to culture and evaluate therapeutic cells under physiologically relevant oxygen levels to improve their translational relevance and clinical outcomes. This review explores the characteristic hallmarks of human DCs that are influenced by oxygen-dependent pathways, including metabolism, phenotype, cytokine secretion, and migration. Furthermore, we discuss the potential of manipulating oxygen levels to refine the generation and functionality of DCs for therapeutic purposes.
Collapse
Affiliation(s)
- Antonia Peter
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium.
| | - Zwi N Berneman
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium; Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, 2650 Edegem, Belgium
| | - Nathalie Cools
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium; Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, 2650 Edegem, Belgium
| |
Collapse
|
15
|
Branco H, Xavier CPR, Riganti C, Vasconcelos MH. Hypoxia as a critical player in extracellular vesicles-mediated intercellular communication between tumor cells and their surrounding microenvironment. Biochim Biophys Acta Rev Cancer 2025; 1880:189244. [PMID: 39672279 DOI: 10.1016/j.bbcan.2024.189244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 12/15/2024]
Abstract
In the past years, increasing attention has been paid to the role of extracellular vesicles (EVs) as mediators of intercellular communication in cancer. These small size particles mediate the intercellular transfer of important bioactive molecules involved in malignant initiation and progression. Hypoxia, or low partial pressure of oxygen, is recognized as a remarkable feature of solid tumors and has been demonstrated to exert a profound impact on tumor prognosis and therapeutic efficacy. Indeed, the high-pitched growth rate and chaotic neovascular architecture that embodies solid tumors results in a profound reduction in oxygen pressure within the tumor microenvironment (TME). In response to oxygen-deprived conditions, tumor cells and their surrounding milieu develop homeostatic adaptation mechanisms that contribute to the establishment of a pro-tumoral phenotype. Latest evidence suggests that the hypoxic microenvironment that surrounds the tumor bulk may be a clincher for the observed elevated levels of circulating EVs in cancer patients. Thus, it is proposed that EVs may play a role in mediating intercellular communication in response to hypoxic conditions. This review focuses on the EVs-mediated crosstalk that is established between tumor cells and their surrounding immune, endothelial, and stromal cell populations, within the hypoxic TME.
Collapse
Affiliation(s)
- Helena Branco
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal; Department of Biological Sciences, FFUP - Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Cristina P R Xavier
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Toxicologic Pathology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU, 4585-116 Gandra, Portugal.
| | - Chiara Riganti
- Department of Oncology, University of Torino, 10126 Torino, Italy; Interdepartmental Research Center for Molecular Biotechnology "G. Tarone", University of Torino, 10126 Torino, Italy
| | - M Helena Vasconcelos
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal; Department of Biological Sciences, FFUP - Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| |
Collapse
|
16
|
Malcolm JR, Bridge KS, Holding AN, Brackenbury WJ. Identification of robust RT-qPCR reference genes for studying changes in gene expression in response to hypoxia in breast cancer cell lines. BMC Genomics 2025; 26:59. [PMID: 39838295 PMCID: PMC11748566 DOI: 10.1186/s12864-025-11216-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 01/07/2025] [Indexed: 01/23/2025] Open
Abstract
Hypoxia is common in breast tumours and is linked to therapy resistance and advanced disease. To understand hypoxia-driven breast cancer progression, RT-qPCR is a widely used technique to quantify transcriptional changes that occur during malignant transformation. Reference genes (RGs) are endogenous RT-qPCR controls used to normalise mRNA levels, allowing accurate assessment of transcriptional changes. However, hypoxia reprograms transcription and post-transcriptional processing of RNA such that favoured RGs including GAPDH or PGK1 are unsuitable for this purpose. To address the need for robust RGs to study hypoxic breast cancer cell lines, we identified 10 RG candidates by analysing public RNA-seq data of MCF-7 and T-47D (Luminal A), and, MDA-MB-231 and MDA-MB-468 (triple negative breast cancer (TNBC)) cells cultured in normoxia or hypoxia. We used RT-qPCR to determine RG candidate levels in normoxic breast cancer cells, removing TBP and EPAS1 from downstream analysis due to insufficient transcript abundance. Assessing primer efficiency further removed ACTB, CCSER2 and GUSB from consideration. Following culture in normoxia, acute, or chronic hypoxia, we ascertained robust non-variable RGs using RefFinder. Here we present RPLP1 and RPL27 as optimal RGs for our panel of two Luminal A and two TNBC cell lines cultured in normoxia or hypoxia. Our result enables accurate evaluation of gene expression in selected hypoxic breast cancer cell lines and provides an essential resource for assessing the impact of hypoxia on breast cancer progression.
Collapse
Affiliation(s)
- Jodie R Malcolm
- Department of Biology, University of York, York, YO10 5DD, UK
- York Biomedical Research Institute, University of York, York, YO10 5DD, UK
| | - Katherine S Bridge
- Department of Biology, University of York, York, YO10 5DD, UK
- York Biomedical Research Institute, University of York, York, YO10 5DD, UK
- Centre for Blood Research, University of York, York, YO10 5DD, UK
| | - Andrew N Holding
- Department of Biology, University of York, York, YO10 5DD, UK
- York Biomedical Research Institute, University of York, York, YO10 5DD, UK
| | - William J Brackenbury
- Department of Biology, University of York, York, YO10 5DD, UK.
- York Biomedical Research Institute, University of York, York, YO10 5DD, UK.
| |
Collapse
|
17
|
Shi Y, Gilkes DM. HIF-1 and HIF-2 in cancer: structure, regulation, and therapeutic prospects. Cell Mol Life Sci 2025; 82:44. [PMID: 39825916 PMCID: PMC11741981 DOI: 10.1007/s00018-024-05537-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/27/2024] [Accepted: 12/01/2024] [Indexed: 01/20/2025]
Abstract
Hypoxia, or a state of low tissue oxygenation, has been characterized as an important feature of solid tumors that is related to aggressive phenotypes. The cellular response to hypoxia is controlled by Hypoxia-inducible factors (HIFs), a family of transcription factors. HIFs promote the transcription of gene products that play a role in tumor progression including proliferation, angiogenesis, metastasis, and drug resistance. HIF-1 and HIF-2 are well known and widely described. Although these proteins share a high degree of homology, HIF-1 and HIF-2 have non-redundant roles in cancer. In this review, we summarize the similarities and differences between HIF-1α and HIF-2α in their structure, expression, and DNA binding. We also discuss the canonical and non-canonical regulation of HIF-1α and HIF-2α under hypoxic and normal conditions. Finally, we outline recent strategies aimed at targeting HIF-1α and/or HIF-2α.
Collapse
Affiliation(s)
- Yi Shi
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniele M Gilkes
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
18
|
Heidarian Y, Fasteen TD, Mungcal L, Buddika K, Mahmoudzadeh NH, Nemkov T, D'Alessandro A, Tennessen JM. Hypoxia-inducible factor 1α is required to establish the larval glycolytic program in Drosophila melanogaster. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.07.631819. [PMID: 39829828 PMCID: PMC11741260 DOI: 10.1101/2025.01.07.631819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The rapid growth that occurs during Drosophila larval development requires a dramatic rewiring of central carbon metabolism to support biosynthesis. Larvae achieve this metabolic state, in part, by coordinately up-regulating the expression of genes involved in carbohydrate metabolism. The resulting metabolic program exhibits hallmark characteristics of aerobic glycolysis and establishes a physiological state that supports growth. To date, the only factor known to activate the larval glycolytic program is the Drosophila Estrogen-Related Receptor (dERR). However, dERR is dynamically regulated during the onset of this metabolic switch, indicating that other factors must be involved. Here we discover that Sima, the Drosophila ortholog of Hif1α, is also essential for establishing the larval glycolytic program. Using a multi-omics approach, we demonstrate that sima mutants fail to properly activate aerobic glycolysis and die during larval development with metabolic defects that phenocopy dERR mutants. Moreover, we demonstrate that dERR and Sima/Hif1α protein accumulation is mutually dependent, as loss of either transcription factor results in decreased abundance of the other protein. Considering that the mammalian homologs of ERR and Hif1α also cooperatively regulate aerobic glycolysis in cancer cells, our findings establish the fly as a powerful genetic model for studying the interaction between these two key metabolic regulators.
Collapse
Affiliation(s)
- Yasaman Heidarian
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Tess D Fasteen
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Liam Mungcal
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Kasun Buddika
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Jason M Tennessen
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
- Affiliate Member, Melvin and Bren Simon Cancer Center, Indianapolis, IN, 46202, USA
| |
Collapse
|
19
|
Beck WR, Scariot PPM, Papoti M, Pejon TMM, Polisel EEC, Manchado-Gobatto FB, Gobatto CA. Living High-Training Low on Mice Bone Parameters Analyzed through Complex Network Approach. Int J Sports Med 2025; 46:32-40. [PMID: 39536786 DOI: 10.1055/a-2361-2840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The aim of this study was to investigate the effect of 8 weeks of hypoxic exposition and physical training on healthy mice femur outcomes analyzed through conventional statistic and complex networks. The mice were divided into four groups, subjected to physical training (T; 40 min per day at 80% of critical velocity intensity) or not (N), exposed to hypoxic environment ("Living High-Training Low" model - LHTL; 18 h per day, FIO2=19.5%; Hyp) or not (Nor). The complex network analysis performed interactions among parameters using values of critical "r" of 0.5 by Pearson correlations to edges construction, with Fruchterman-Reingold layout adopted for graph visualization. Pondered Degree, Betweenness, and Eigenvector metrics were chosen as centrality metrics. Two-way ANOVA, t-test and Pearson correlation were used with P<0.05. Femur phosphorus of T-Hyp was higher than all other groups (P<0.05) and correlated with bone density (r=0.65; P=0.042), bone mineral density (r=0.67; P=0.034) and% of mineral material (r=0.66, P=0.038). Overall, the complex network demonstrated improvements in bone volume, % of mineral material, bone density, and bone mineral density for T-Hyp over other groups. Association of physical training and hypoxia improved bone quality for healthy mice.
Collapse
Affiliation(s)
| | | | - Marcelo Papoti
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | | | | | | | | |
Collapse
|
20
|
Tsuru M, Ito T, Komai K, Kunitomo F, Nakayama Y, Murakami T, Ohuchi K, Shinkai Y, Kimura T, Miura N, Kumagai Y, Hozumi I, Inden M, Kurita H. Hypoxia-Inducible Factor Prolyl Hydroxylase Inhibitor, FG4592, Induces Endogenous Metallothionein3 Expression in Human Neuronal Cell Line, ReNcell CX Cells. Biol Pharm Bull 2025; 48:137-143. [PMID: 39993744 DOI: 10.1248/bpb.b24-00792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Metallothionein (MT) is a small-molecule protein that functions in essential trace element homeostasis. Among MT isoforms, MT3 is involved in neuronal activity, and its expression is reported to be decreased in patients with neurodegenerative conditions such as Alzheimer's disease; however, only a few effective drugs have been reported to induce MT3 expression. In this study, we evaluated existing drugs for the induction of MT3 expression in the neuronal cell line of ReNcell CX cells. Using recombinant proteins of MT isoforms with the 3× Flag tag, we performed Western blotting (WB) with the primary antibodies against MT3 or Flag tag, and this method of WB for MT3 was confirmed specifically to detect the MT3 protein. We treated ReNcell CX cells with several HIF-PH inhibitors and evaluated MT3 expression via real-time RT-PCR. We found that FG4592 significantly enhanced MT3 expression at both RNA and protein levels. FG4592 treatment increased the amount of hypoxia-inducible factor 1 alpha (HIF1α) binding to the MT3 promoter. These findings indicate that FG4592 induces MT3 expression via increased HIF1α. In conclusion, we found FG4592 to be an endogenous MT3 inducer in the cells of the nervous system in this study. The findings of this study are expected to lead to the development of new MT3-inducing drugs for neurodegenerative diseases based on FG4592.
Collapse
Affiliation(s)
- Mizuki Tsuru
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Taisei Ito
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Kazuki Komai
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Fukuto Kunitomo
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Yukie Nakayama
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Takanori Murakami
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Kazuki Ohuchi
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Yasuhiro Shinkai
- Environmental Biology Laboratory, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Tomoki Kimura
- Laboratory of Public Health & Preventive Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan
| | - Nobuhiko Miura
- Department of Health Science, Yokohama University of Pharmacy, 601 Matano-cho, Totsuka-ku, Yokohama 245-2006, Japan
| | - Yoshito Kumagai
- Graduate School of Pharmaceutical Sciences, Kyusyu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Isao Hozumi
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Masatoshi Inden
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Hisaka Kurita
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| |
Collapse
|
21
|
Li Z, Stachon T, Häcker S, Fries FN, Chai N, Seitz B, Shi L, Hsu SL, Li S, Liu S, Amini M, Suiwal S, Szentmáry N. Increased glucose concentration modifies TGF-β1 and NFκB signaling pathways in aniridia limbal fibroblasts, in vitro. Exp Eye Res 2025; 250:110163. [PMID: 39577605 DOI: 10.1016/j.exer.2024.110163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/13/2024] [Accepted: 11/18/2024] [Indexed: 11/24/2024]
Abstract
To determine the impact of increased glucose concentration on gene expression of primary healthy human limbal fibroblasts (LFCs) and congenital aniridia human limbal fibroblasts (AN-LFCs), in vitro. LFCs (n = 8) and AN-LFCs (n = 8) were isolated and cultured in serum containing DMEM, including either normal glucose (17.5 mM) or increased glucose (70 mM) concentration for 48h or 72h, respectively. mRNA and protein expression of transforming growth factor beta 1 (TGF-β1), alpha-smooth muscle actin (ACTA)2A1, SMAD 2/3, hypoxia markers such as nuclear factor kappa B (NFκB), inducible nitric oxide synthase (iNOS), hypoxia-inducible factor 1-alpha (HIF-1ɑ), oxidative stress markers such as nuclear factor erythroid 2-related factor 2 (Nrf2) and Catalase (CAT) were analyzed using qPCR and Western blot. In 70 mM glucose concentration medium for 48 h, TGF-β1 mRNA expression was significantly lower (p = 0.001, p < 0.001), Nrf2 (p = 0.001, p = 0.001) and CAT (p = 0.001, p = 0.001) mRNA expression was significantly higher in LFCs and AN-LFCs, than using 17.5 mM glucose concentration medium. In addition, in 70 mM glucose concentration medium for 48 h, SMAD 2, SMAD 3, NFκB, HIF-1ɑ mRNA expression was significantly lower in AN-LFCs, than in 17.5 mM glucose concentration medium (p = 0.003, p = 0.002, p = 0.008, p = 0.020). At this time-point in 70 mM glucose concentration medium, at protein level, TGF-β1, SMAD2/3 and NFκB were significantly lower in AN-LFCs, than in 17.5 mM glucose concentration medium (p = 0.041, p = 0.002, p = 0.012). In 70 mM glucose concentration medium for 72h, TGF-β1 was significantly higher (p < 0.001, p < 0.001) and Nrf2 (p = 0.001, p = 0.001) and CAT (p < 0.001, p < 0.001) mRNA were significantly lower in LFCs and AN-LFCs, than in 17.5 mM glucose concentration medium. At this time-point, in 70 mM glucose concentration medium, NFκB mRNA was significantly higher (p < 0.001) in LFCs, than in 17.5 mM glucose concentration DMEM medium. In 70 mM glucose concentration medium for 72 h, TGF-β1 and NFκB protein were significantly lower in AN-LFCs, than in 17.5 mM glucose concentration medium (p < 0.001, p < 0.001). Our study confirmed that high glucose concentration has an impact on TGF-β1 and NFκB signaling both in AN-LFCs and LFCs. These findings highlight that prolonged exposure to high glucose levels may contribute to cellular stress and dysfunction in LFCs and AN-LFCs.
Collapse
Affiliation(s)
- Zhen Li
- Center for Limbal Stem Cell and Congenital Aniridia Research, Saarland University, Homburg, Saar, Germany.
| | - Tanja Stachon
- Center for Limbal Stem Cell and Congenital Aniridia Research, Saarland University, Homburg, Saar, Germany
| | - Sabrina Häcker
- Center for Limbal Stem Cell and Congenital Aniridia Research, Saarland University, Homburg, Saar, Germany
| | - Fabian N Fries
- Center for Limbal Stem Cell and Congenital Aniridia Research, Saarland University, Homburg, Saar, Germany; Department of Ophthalmology, Saarland University Medical Center, Homburg, Saar, Germany
| | - Ning Chai
- Center for Limbal Stem Cell and Congenital Aniridia Research, Saarland University, Homburg, Saar, Germany
| | - Berthold Seitz
- Department of Ophthalmology, Saarland University Medical Center, Homburg, Saar, Germany
| | - Lei Shi
- Department of Ophthalmology, Anhui No. 2 Provincial People's Hospital, Hefei, Anhui, China
| | - Shao-Lun Hsu
- Center for Limbal Stem Cell and Congenital Aniridia Research, Saarland University, Homburg, Saar, Germany
| | - Shuailin Li
- Center for Limbal Stem Cell and Congenital Aniridia Research, Saarland University, Homburg, Saar, Germany
| | - Shanhe Liu
- Center for Limbal Stem Cell and Congenital Aniridia Research, Saarland University, Homburg, Saar, Germany
| | - Maryam Amini
- Center for Limbal Stem Cell and Congenital Aniridia Research, Saarland University, Homburg, Saar, Germany
| | - Shweta Suiwal
- Center for Limbal Stem Cell and Congenital Aniridia Research, Saarland University, Homburg, Saar, Germany
| | - Nóra Szentmáry
- Center for Limbal Stem Cell and Congenital Aniridia Research, Saarland University, Homburg, Saar, Germany
| |
Collapse
|
22
|
Lin H, Guo X, Liu J, Chen L, Chen H, Zhao Y, Li H, Rong S, Yao P. Refining the Rab7-V1G1 axis to mitigate iron deposition: Protective effects of quercetin in alcoholic liver disease. J Nutr Biochem 2025; 135:109767. [PMID: 39284533 DOI: 10.1016/j.jnutbio.2024.109767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 10/07/2024]
Abstract
Iron overload is a common feature of alcoholic liver disease (ALD) and contributes significantly to disease progression. Quercetin, a flavonoid known for its iron-chelating properties, has emerged as a potential protective compound against ALD. However, research on quercetin's regulatory effects on iron levels in ALD is limited. To address this, we conducted a study using male C57BL/6J mice were subjected to a Lieber De Carli liquid diet containing ethanol (28% energy replacement) with or without quercetin supplementation (100 mg/kg.BW) for 12 weeks. Additionally, HepG2 cells, after transfection with the CYP2E1 plasmid, were incubated with ethanol and/or quercetin. Our findings revealed that ethanol consumption led to iron overload in both hepatocytes and lysosomes. Interestingly, despite the increase in iron levels, cells exhibited impaired iron utilization, disrupting normal iron metabolism. Further analysis identified a potential mechanism involving the Rab7-V1G1 (V-ATPase subunit) axis. Inhibition of V-ATPase by Concanamycin A caused elevated ROS levels, impaired lysosomal and mitochondria function, and increased expression of HIF1α and IRP2. Ultimately, this disruption in cellular processes led to iron overload and mitochondrial iron deficiency. Quercetin supplementation mitigated ethanol-induced hepatocyte damage by reversing iron overload through modulation of the Rab7-V1G1 axis and improving the interaction between lysosomes and mitochondria. In conclusion, this study elucidates a novel pathophysiological mechanism by which quercetin protects against ALD through its regulation of iron homeostasis.
Collapse
Affiliation(s)
- Hongkun Lin
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China; Department of Food and Nutrition Health, School of Public Health, Wuhan University, Wuhan, China
| | - Xiaoping Guo
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Jingjing Liu
- Henan Provincial Center for Disease Control and Prevention, Zhengzhou, China
| | - Li Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Huimin Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Ying Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Hongxia Li
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Shuang Rong
- Department of Food and Nutrition Health, School of Public Health, Wuhan University, Wuhan, China; Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan, China.
| | - Ping Yao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China; Ministry of Education Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China.
| |
Collapse
|
23
|
Roviello G, De Gennaro I, Vascotto I, Venturi G, D’Angelo A, Winchler C, Guarino A, Cacioppo S, Modesti M, Mela MM, Francini E, Doni L, Rossi V, Gambale E, Giorgione R, Antonuzzo L, Nesi G, Catalano M. Hypoxia-Inducible Factor in Renal Cell Carcinoma: From Molecular Insights to Targeted Therapies. Genes (Basel) 2024; 16:6. [PMID: 39858553 PMCID: PMC11764647 DOI: 10.3390/genes16010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/21/2024] [Accepted: 12/23/2024] [Indexed: 01/27/2025] Open
Abstract
Mutations of the von Hippel-Lindau (VHL) tumor suppressor gene occur frequently in clear cell renal cell carcinoma (RCC), the predominant histology of kidney cancer, and have been associated with its pathogenesis and progression. Alterations of VHL lead to impaired degradation of hypoxia-inducible factor 1α (HIF1α) and HIF2α promoting neoangiogenesis, which is pivotal for cancer growth. As such, targeting the VHL-HIF axis holds relevant potential for therapeutic purposes. Belzutifan, an HIF-2α inhibitor, has been recently indicated for metastatic RCC and other antiangiogenic drugs directed against HIF-2α are currently under investigation. Further, clinical and preclinical studies of combination approaches for metastatic RCC including belzutifan with cyclin-dependent kinase 4-6 inhibitors, tyrosine kinase inhibitors, or immune checkpoint inhibitors achieved promising results or are ongoing. This review aims to summarize the existing evidence regarding the VHL/HIF pathway, and the approved and emerging treatment strategies that target this pivotal molecular axis and their mechanisms of resistance.
Collapse
Affiliation(s)
| | - Irene De Gennaro
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (I.D.G.); (I.V.); (G.V.); (C.W.); (A.G.); (S.C.); (M.M.); (E.F.); (R.G.); (L.A.)
| | - Ismaela Vascotto
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (I.D.G.); (I.V.); (G.V.); (C.W.); (A.G.); (S.C.); (M.M.); (E.F.); (R.G.); (L.A.)
| | - Giulia Venturi
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (I.D.G.); (I.V.); (G.V.); (C.W.); (A.G.); (S.C.); (M.M.); (E.F.); (R.G.); (L.A.)
| | - Alberto D’Angelo
- Department of Medicine, Sheffield Teaching Hospital NHS Foundation Trust, Sheffield S10 2JF, UK;
| | - Costanza Winchler
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (I.D.G.); (I.V.); (G.V.); (C.W.); (A.G.); (S.C.); (M.M.); (E.F.); (R.G.); (L.A.)
| | - Adriana Guarino
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (I.D.G.); (I.V.); (G.V.); (C.W.); (A.G.); (S.C.); (M.M.); (E.F.); (R.G.); (L.A.)
| | - Salvatore Cacioppo
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (I.D.G.); (I.V.); (G.V.); (C.W.); (A.G.); (S.C.); (M.M.); (E.F.); (R.G.); (L.A.)
| | - Mikol Modesti
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (I.D.G.); (I.V.); (G.V.); (C.W.); (A.G.); (S.C.); (M.M.); (E.F.); (R.G.); (L.A.)
| | - Marinella Micol Mela
- Clinical Oncology Unit, Careggi University Hospital, 50234 Florence, Italy; (M.M.M.); (L.D.); (V.R.); (E.G.)
| | - Edoardo Francini
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (I.D.G.); (I.V.); (G.V.); (C.W.); (A.G.); (S.C.); (M.M.); (E.F.); (R.G.); (L.A.)
| | - Laura Doni
- Clinical Oncology Unit, Careggi University Hospital, 50234 Florence, Italy; (M.M.M.); (L.D.); (V.R.); (E.G.)
| | - Virginia Rossi
- Clinical Oncology Unit, Careggi University Hospital, 50234 Florence, Italy; (M.M.M.); (L.D.); (V.R.); (E.G.)
| | - Elisabetta Gambale
- Clinical Oncology Unit, Careggi University Hospital, 50234 Florence, Italy; (M.M.M.); (L.D.); (V.R.); (E.G.)
| | - Roberta Giorgione
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (I.D.G.); (I.V.); (G.V.); (C.W.); (A.G.); (S.C.); (M.M.); (E.F.); (R.G.); (L.A.)
| | - Lorenzo Antonuzzo
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (I.D.G.); (I.V.); (G.V.); (C.W.); (A.G.); (S.C.); (M.M.); (E.F.); (R.G.); (L.A.)
| | - Gabriella Nesi
- Department of Health Sciences, Section of Anatomic Pathology, University of Florence, 50139 Florence, Italy;
| | - Martina Catalano
- Department of Health Science, University of Florence, 50134 Florence, Italy;
| |
Collapse
|
24
|
Pauzaite T, Nathan JA. A closer look at the role of deubiquitinating enzymes in the Hypoxia Inducible Factor pathway. Biochem Soc Trans 2024; 52:2253-2265. [PMID: 39584532 PMCID: PMC11668284 DOI: 10.1042/bst20230861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/26/2024]
Abstract
Hypoxia Inducible transcription Factors (HIFs) are central to the metazoan oxygen-sensing response. Under low oxygen conditions (hypoxia), HIFs are stabilised and govern an adaptive transcriptional programme to cope with prolonged oxygen starvation. However, when oxygen is present, HIFs are continuously degraded by the proteasome in a process involving prolyl hydroxylation and subsequent ubiquitination by the Von Hippel Lindau (VHL) E3 ligase. The essential nature of VHL in the HIF response is well established but the role of other enzymes involved in ubiquitination is less clear. Deubiquitinating enzymes (DUBs) counteract ubiquitination and provide an important regulatory aspect to many signalling pathways involving ubiquitination. In this review, we look at the complex network of ubiquitination and deubiquitination in controlling HIF signalling in normal and low oxygen tensions. We discuss the relative importance of DUBs in opposing VHL, and explore roles of DUBs more broadly in hypoxia, in both VHL and HIF independent contexts. We also consider the catalytic and non-catalytic roles of DUBs, and elaborate on the potential benefits and challenges of inhibiting these enzymes for therapeutic use.
Collapse
Affiliation(s)
- Tekle Pauzaite
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah, Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge CB2 0AW, U.K
| | - James A. Nathan
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah, Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge CB2 0AW, U.K
| |
Collapse
|
25
|
Ouyang H, How CY, Wang X, Yu C, Luo A, Huang L, Chen Y. Crosslinking-mediated Interactome Analysis Identified PHD2-HIF1α Interaction Hotspots and the Role of PHD2 in Regulating Protein Neddylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.16.628769. [PMID: 39763868 PMCID: PMC11702602 DOI: 10.1101/2024.12.16.628769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Prolyl Hydroxylase Domain protein 2 (PHD2) targets Hypoxia Inducible Factor alpha subunits (HIFα) for oxygen-dependent proline hydroxylation that leads to subsequent ubiquitination and degradation of HIFα. In addition to HIF proteins, growing evidence suggested that PHD2 may exert its multifaceted function through hydroxylase-dependent or independent activities. Given the critical role of PHD2 in diverse biological processes, it is important to comprehensively identify potential PHD2 interacting proteins. In this study, we engineered HeLa cells that stably express HTBH-tagged PHD2 to facilitate the identification of PHD2 interactome. Using DSSO-based cross-linking mass spectrometry (XL-MS) technology and LC-MSn analysis, we mapped PHD2-HIF1α interaction hotspots and identified over 300 PHD2 interacting proteins. Furthermore, we validated the COP9 Signalosome (CSN) complex, a major deneddylase complex, as a novel PHD2 interactor. DMOG treatment promoted interaction between PHD2 and CSN complex and enhanced the deneddylase activity of the CSN complex, resulting in increased level of free Cullin and reduced target protein ubiquitination. This mechanism may serve as a negative feedback regulation of the HIF transcription pathway.
Collapse
Affiliation(s)
- Haiping Ouyang
- Department of Biochemistry, Molecular Biology and Biophysics, the University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA
| | - Cindy Y. How
- Department of Biochemistry, Molecular Biology and Biophysics, the University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA
| | - Xiaorong Wang
- Department of Physiology & Biophysics, University of California at Irvine, Irvine, CA 92697, USA
| | - Clinton Yu
- Department of Physiology & Biophysics, University of California at Irvine, Irvine, CA 92697, USA
| | - Ang Luo
- Department of Biochemistry, Molecular Biology and Biophysics, the University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA
| | - Lan Huang
- Department of Physiology & Biophysics, University of California at Irvine, Irvine, CA 92697, USA
| | - Yue Chen
- Department of Biochemistry, Molecular Biology and Biophysics, the University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA
| |
Collapse
|
26
|
Windsor P, Ouyang H, G da Costa JA, Rama Damodaran A, Chen Y, Bhagi-Damodaran A. Gas Tunnel Engineering of Prolyl Hydroxylase Reprograms Hypoxia Signaling in Cells. Angew Chem Int Ed Engl 2024; 63:e202409234. [PMID: 39168829 DOI: 10.1002/anie.202409234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/02/2024] [Accepted: 08/20/2024] [Indexed: 08/23/2024]
Abstract
Cells have evolved intricate mechanisms for recognizing and responding to changes in oxygen (O2) concentrations. Here, we have reprogrammed cellular hypoxia (low O2) signaling via gas tunnel engineering of prolyl hydroxylase 2 (PHD2), a non-heme iron dependent O2 sensor. Using computational modeling and protein engineering techniques, we identify a gas tunnel and critical residues therein that limit the flow of O2 to PHD2's catalytic core. We show that systematic modification of these residues can open the constriction topology of PHD2's gas tunnel. Using kinetic stopped-flow measurements with NO as a surrogate diatomic gas, we demonstrate up to 3.5-fold enhancement in its association rate to the iron center of tunnel-engineered mutants. Our most effectively designed mutant displays 9-fold enhanced catalytic efficiency (kcat/KM=830±40 M-1 s-1) in hydroxylating a peptide mimic of hypoxia inducible transcription factor HIF-1α, as compared to WT PHD2 (kcat/KM=90±9 M-1 s-1). Furthermore, transfection of plasmids that express designed PHD2 mutants in HEK-293T mammalian cells reveal significant reduction of HIF-1α and downstream hypoxia response transcripts under hypoxic conditions of 1 % O2. Overall, these studies highlight activation of PHD2 as a new pathway to reprogram hypoxia responses and HIF signaling in cells.
Collapse
Affiliation(s)
- Peter Windsor
- Department of Chemistry, University of Minnesota, Twin Cities, Minneapolis, MN 55455, United States
| | - Haiping Ouyang
- Department of Biochemistry and Molecular Biology, University of Minnesota, Twin Cities, Minneapolis, MN 55455, United States
| | - Joseph A G da Costa
- Department of Chemistry, University of Minnesota, Twin Cities, Minneapolis, MN 55455, United States
| | - Anoop Rama Damodaran
- Department of Chemistry, University of Minnesota, Twin Cities, Minneapolis, MN 55455, United States
| | - Yue Chen
- Department of Biochemistry and Molecular Biology, University of Minnesota, Twin Cities, Minneapolis, MN 55455, United States
| | - Ambika Bhagi-Damodaran
- Department of Chemistry, University of Minnesota, Twin Cities, Minneapolis, MN 55455, United States
| |
Collapse
|
27
|
Kuratani A, Okamoto M, Kishida K, Okuzaki D, Sasai M, Sakaguchi S, Arase H, Yamamoto M. Platelet factor 4-induced T H1-T reg polarization suppresses antitumor immunity. Science 2024; 386:eadn8608. [PMID: 39571033 DOI: 10.1126/science.adn8608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 09/08/2024] [Indexed: 11/24/2024]
Abstract
The tumor microenvironment (TME) contains a number of immune-suppressive cells such as T helper 1-polarized regulatory T cells (TH1-Treg cells). However, little is known about the mechanism behind the abundant presence of TH1-Treg cells in the TME. We demonstrate that selective depletion of arginase I (Arg1)-expressing tumor-associated macrophages (Arg1+ TAMs) inhibits tumor growth and concurrently reduces the ratio of TH1-Treg cells in the TME. Arg1+ TAMs secrete the chemokine platelet factor 4 (PF4), which reinforces interferon-γ (IFN-γ)-induced Treg cell polarization into TH1-Treg cells in a manner dependent on CXCR3 and the IFN-γ receptor. Both genetic PF4 inactivation and PF4 neutralization hinder TH1-Treg cell accumulation in the TME and reduce tumor growth. Collectively, our study highlights the importance of Arg1+ TAM-produced PF4 for high TH1-Treg cell levels in the TME to suppress antitumor immunity.
Collapse
Affiliation(s)
- Ayumi Kuratani
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Masaaki Okamoto
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Kazuki Kishida
- Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- Laboratory of Immunochemistry, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Daisuke Okuzaki
- Genome Information Research Center, Osaka University, Suita, Osaka, Japan
| | - Miwa Sasai
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Department of Immunoparasitology, Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan
- Center for Advances Modalities and Drug Delivery Systems, Osaka University, Suita, Osaka, Japan
| | - Shimon Sakaguchi
- Laboratory of Experimental Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Hisashi Arase
- Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- Laboratory of Immunochemistry, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Center for Advances Modalities and Drug Delivery Systems, Osaka University, Suita, Osaka, Japan
- Department of Immunochemistry, Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan
| | - Masahiro Yamamoto
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Department of Immunoparasitology, Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan
- Center for Advances Modalities and Drug Delivery Systems, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
28
|
Choya-Foces C, Navarro E, Ríos CDL, López MG, Egea J, Hernansanz-Agustín P, Martínez-Ruiz A. The mitochondrial Na +/Ca 2+ exchanger NCLX is implied in the activation of hypoxia-inducible factors. Redox Biol 2024; 77:103364. [PMID: 39341036 PMCID: PMC11470253 DOI: 10.1016/j.redox.2024.103364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Eukaryotic cells and organisms depend on oxygen for basic living functions, and they display a panoply of adaptations to situations in which oxygen availability is diminished (hypoxia). A number of these responses in animals are mediated by changes in gene expression programs directed by hypoxia-inducible factors (HIFs), whose main mechanism of stabilization and functional activation in response to decreased cytosolic oxygen concentration was elucidated two decades ago. Human acute responses to hypoxia have been known for decades, although their precise molecular mechanism for oxygen sensing is not fully understood. It is already known that a redox component, linked with reactive oxygen species (ROS) production of mitochondrial origin, is implied in these responses. We have recently described a mechanism by which the mitochondrial sodium/calcium exchanger, NCLX, participates in mitochondrial electron transport chain regulation and ROS production in response to acute hypoxia. Here we show that NCLX is also implied in the response to hypoxia mediated by the HIFs. By using a NCLX inhibitor and interference RNA we show that NCLX activity is necessary for HIF-α subunits stabilization in hypoxia and for HIF-1-dependent transcriptional activity. We also show that hypoxic mitochondrial ROS production is not required for HIF-1α stabilization under all circumstances, suggesting that the basal cytosolic redox state or other mechanism(s) could be operating in the NCLX-mediated response to hypoxia that operates through HIF-α stabilization. This finding provides a link between acute and medium-term responses to hypoxia, reinforcing a central role of mitochondrial cell signalling in the response to hypoxia.
Collapse
Affiliation(s)
- Carmen Choya-Foces
- Unidad de Investigación, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain
| | - Elisa Navarro
- Instituto Teófilo Hernando, Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain; Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Cristóbal de Los Ríos
- Instituto Teófilo Hernando, Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain; Grupo de Investigación de Alto Rendimiento en Fisiopatología y Farmacología del Sistema Digestivo (NeuGut), Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos, Alcorcón (Madrid), Spain
| | - Manuela G López
- Instituto Teófilo Hernando, Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain
| | - Javier Egea
- Unidad de Investigación, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain
| | - Pablo Hernansanz-Agustín
- Unidad de Investigación, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain; Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain; Departamento de Neurobiología Molecular, Celular y del Desarrollo, Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.
| | - Antonio Martínez-Ruiz
- Unidad de Investigación, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain.
| |
Collapse
|
29
|
Kling L, Eulenberg-Gustavus C, Jerke U, Rousselle A, Eckardt KU, Schreiber A, Kettritz R. β 2-integrins control HIF1α activation in human neutrophils. Front Immunol 2024; 15:1406967. [PMID: 39469705 PMCID: PMC11513320 DOI: 10.3389/fimmu.2024.1406967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 09/12/2024] [Indexed: 10/30/2024] Open
Abstract
During inflammation, human neutrophils engage β2-integrins to migrate from the blood circulation to inflammatory sites with high cytokine but low oxygen concentrations. We tested the hypothesis that the inhibition of prolyl hydroxylase domain-containing enzymes (PHDs), cytokines, and β2-integrins cooperates in HIF pathway activation in neutrophils. Using either the PHD inhibitor roxadustat (ROX) (pseudohypoxia) or normobaric hypoxia to stabilize HIF, we observed HIF1α protein accumulation in adherent neutrophils. Several inflammatory mediators did not induce HIF1α protein but provided additive or even synergistic signals (e.g., GM-CSF) under pseudohypoxic and hypoxic conditions. Importantly, and in contrast to adherent neutrophils, HIF1α protein expression was not detected in strictly suspended neutrophils despite PHD enzyme inhibition and the presence of inflammatory mediators. Blocking β2-integrins in adherent and activating β2-integrins in suspension neutrophils established the indispensability of β2-integrins for increasing HIF1α protein. Using GM-CSF as an example, increased HIF1α mRNA transcription via JAK2-STAT3 was necessary but not sufficient for HIF1α protein upregulation. Importantly, we found that β2-integrins led to HIF1α mRNA translation through the phosphorylation of the essential translation initiation factors eIF4E and 4EBP1. Finally, pseudohypoxic and hypoxic conditions inducing HIF1α consistently delayed apoptosis in adherent neutrophils on fibronectin under low serum concentrations. Pharmacological HIF1α inhibition reversed delayed apoptosis, supporting the importance of this pathway for neutrophil survival under conditions mimicking extravascular sites. We describe a novel β2-integrin-controlled mechanism of HIF1α stabilization in human neutrophils. Conceivably, this mechanism restricts HIF1α activation in response to hypoxia and pharmacological PHD enzyme inhibitors to neutrophils migrating toward inflammatory sites.
Collapse
Affiliation(s)
- Lovis Kling
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité – Universitätsmedizin Berlin, Berlin, Germany
- Department of Nephrology and Medical Intensive Care, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Claudia Eulenberg-Gustavus
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Uwe Jerke
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Anthony Rousselle
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Kai-Uwe Eckardt
- Department of Nephrology and Medical Intensive Care, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Adrian Schreiber
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité – Universitätsmedizin Berlin, Berlin, Germany
- Department of Nephrology and Medical Intensive Care, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ralph Kettritz
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité – Universitätsmedizin Berlin, Berlin, Germany
- Department of Nephrology and Medical Intensive Care, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
30
|
Bjørgen H, Brimsholm M, Asserson CF, Skaar K, Knutsen GM, Oaland Ø, Haldorsen R, Fjelldal PG, Hansen T, Rimstad E, Kleist BA, Lund-Iversen M, Kowalewski MP, Koppang EO. Deciphering the pathogenesis of melanized focal changes in the white skeletal muscle of farmed Atlantic salmon (Salmo salar). JOURNAL OF FISH DISEASES 2024; 47:e13988. [PMID: 38943363 DOI: 10.1111/jfd.13988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 07/01/2024]
Abstract
Melanized focal changes (MFCs) in the fillet of farmed Atlantic salmon is a major quality concern. The changes are thought to initially appear as acute red focal changes (RFCs) that progress into chronic MFCs. Recent findings have indicated that hypoxia may be important in their development, possibly leading to necrosis affecting not only myocytes but also adipocytes. Thus, the aim of this study was to investigate possible hypoxic conditions in RFCs and the subsequent inflammatory responses and lesions in the adipose tissue in RFCs and MFCs. A collection of RFCs, MFCs and control muscle samples from several groups of farmed salmon was studied. Using immunohistochemistry, we found induction of the hypoxia-inducible factor 1 pathway in RFCs. Histological investigations of RFCs and MFCs revealed different stages of fat necrosis, including necrotic adipocytes, a myospherulosis-like reaction and the formation of pseudocystic spaces. Accumulations of foamy macrophages were detected in MFCs, indicating degradation and phagocytosis of lipids. Using in situ hybridization, we showed the presence of tyrosinase- and tyrosinase-related protein-1-expressing amelanotic cells in RFCs, which in turn became melanized in MFCs. In conclusion, we propose a sequence of events leading to the formation of MFCs, highlighting the pivotal role of adiposity, hypoxia and fat necrosis.
Collapse
Affiliation(s)
- Håvard Bjørgen
- Unit of Anatomy, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Malin Brimsholm
- Unit of Anatomy, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | | | - Kirstin Skaar
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich (UZH), Zurich, Switzerland
| | | | | | | | | | - Tom Hansen
- Matre Research Station, Institute of Marine Research, Matredal, Norway
| | - Espen Rimstad
- Unit of Virology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | | | | | - Mariusz Pawel Kowalewski
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich (UZH), Zurich, Switzerland
| | - Erling Olaf Koppang
- Unit of Anatomy, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
31
|
Cutler C, Viljanto M, Taylor P, Hincks P, Habershon-Butcher J, Gray B, Scarth J. Detection of FG-4592 and metabolites in equine plasma, urine and hair following oral administration. Drug Test Anal 2024; 16:1167-1181. [PMID: 38217093 DOI: 10.1002/dta.3643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 07/17/2023] [Accepted: 10/02/2023] [Indexed: 01/15/2024]
Abstract
FG-4592 is a hypoxia-inducible factor inhibitor that has been approved for therapeutic use in some countries. This class of compounds can increase the oxygen carrying capacity of the blood and thus have the potential to be used as performance enhancing agents in sports. The purpose of this study was to investigate the detection of FG-4592 and metabolites in equine plasma and mane hair following a multiple dose oral administration to two Thoroughbred racehorses, to identify the best analytical targets for doping control laboratories. Urine samples were also analysed, and the results compared to previously published urine data. Liquid chromatography-high resolution mass spectrometry was used for metabolite identification in urine and plasma. Liquid chromatography-tandem mass spectrometry was used for full sample analysis of urine, plasma and hair samples and generation of urine and plasma profiles. FG-4592 and a mono-hydroxylated metabolite were detected in plasma. FG-4592 was detected with the greatest abundance and gave the longest duration of detection, up to 312 h post-administration, and would be the recommended target in routine doping samples. FG-4592 was detected in all mane hair samples collected post-administration, up to 166 days following the final dose, showing extended detection can be achieved with this matrix. To the best of the authors' knowledge, this is the first report of FG-4592 and metabolites in equine plasma and hair samples. Urine results were consistent with the previously published data, with FG-4592 offering the best target for detection and longest detection periods.
Collapse
|
32
|
Gao Y, Zhang J, Tang T, Liu Z. Hypoxia Pathways in Parkinson's Disease: From Pathogenesis to Therapeutic Targets. Int J Mol Sci 2024; 25:10484. [PMID: 39408813 PMCID: PMC11477385 DOI: 10.3390/ijms251910484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
The human brain is highly dependent on oxygen, utilizing approximately 20% of the body's oxygen at rest. Oxygen deprivation to the brain can lead to loss of consciousness within seconds and death within minutes. Recent studies have identified regions of the brain with spontaneous episodic hypoxia, referred to as "hypoxic pockets". Hypoxia can also result from impaired blood flow due to conditions such as heart disease, blood clots, stroke, or hemorrhage, as well as from reduced oxygen intake or excessive oxygen consumption caused by factors like low ambient oxygen, pulmonary diseases, infections, inflammation, and cancer. Severe hypoxia in the brain can manifest symptoms similar to Parkinson's disease (PD), including cerebral edema, mood disturbances, and cognitive impairments. Additionally, the development of PD appears to be closely associated with hypoxia and hypoxic pathways. This review seeks to investigate the molecular interactions between hypoxia and PD, emphasizing the pathological role of hypoxic pathways in PD and exploring their potential as therapeutic targets.
Collapse
Affiliation(s)
- Yuanyuan Gao
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; (Y.G.); (J.Z.)
| | - Jiarui Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; (Y.G.); (J.Z.)
| | - Tuoxian Tang
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Zhenjiang Liu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; (Y.G.); (J.Z.)
| |
Collapse
|
33
|
Germeys C, Vandoorne T, Davie K, Poovathingal S, Heeren K, Vermeire W, Nami F, Moisse M, Quaegebeur A, Sierksma A, Rué L, Sicart A, Eykens C, De Cock L, De Strooper B, Carmeliet P, Van Damme P, De Bock K, Van Den Bosch L. Targeting EGLN2/PHD1 protects motor neurons and normalizes the astrocytic interferon response. Cell Rep 2024; 43:114719. [PMID: 39255062 DOI: 10.1016/j.celrep.2024.114719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/08/2024] [Accepted: 08/20/2024] [Indexed: 09/12/2024] Open
Abstract
Neuroinflammation and dysregulated energy metabolism are linked to motor neuron degeneration in amyotrophic lateral sclerosis (ALS). The egl-9 family hypoxia-inducible factor (EGLN) enzymes, also known as prolyl hydroxylase domain (PHD) enzymes, are metabolic sensors regulating cellular inflammation and metabolism. Using an oligonucleotide-based and a genetic approach, we showed that the downregulation of Egln2 protected motor neurons and mitigated the ALS phenotype in two zebrafish models and a mouse model of ALS. Single-nucleus RNA sequencing of the murine spinal cord revealed that the loss of EGLN2 induced an astrocyte-specific downregulation of interferon-stimulated genes, mediated via the stimulator of interferon genes (STING) protein. In addition, we found that the genetic deletion of EGLN2 restored this interferon response in patient induced pluripotent stem cell (iPSC)-derived astrocytes, confirming the link between EGLN2 and astrocytic interferon signaling. In conclusion, we identified EGLN2 as a motor neuron protective target normalizing the astrocytic interferon-dependent inflammatory axis in vivo, as well as in patient-derived cells.
Collapse
Affiliation(s)
- Christine Germeys
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), 3000 Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, 3000 Leuven, Belgium
| | - Tijs Vandoorne
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), 3000 Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, 3000 Leuven, Belgium
| | - Kristofer Davie
- VIB-KU Leuven, Center for Brain & Disease Research Technologies, Single Cell Bioinformatics Unit, 3000 Leuven, Belgium
| | - Suresh Poovathingal
- VIB-KU Leuven, Center for Brain & Disease Research Technologies, Single Cell Microfluidics & Analytics Unit, 3000 Leuven, Belgium; VIB, Center for AI & Computational Biology (VIB.AI), 3000 Leuven, Belgium
| | - Kara Heeren
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), 3000 Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, 3000 Leuven, Belgium
| | - Wendy Vermeire
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), 3000 Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, 3000 Leuven, Belgium
| | - FatemehArefeh Nami
- KU Leuven - University of Leuven, Department of Development and Regeneration, Stem Cell Institute Leuven (SCIL), 3000 Leuven, Belgium
| | - Matthieu Moisse
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), 3000 Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, 3000 Leuven, Belgium
| | - Annelies Quaegebeur
- University of Cambridge, Department of Clinical Neurosciences, CB2 2PY Cambridge, UK; Cambridge University Hospitals, Department of Histopathology, CB2 0QQ Cambridge, UK
| | - Annerieke Sierksma
- KU Leuven - University of Leuven, Department of Neurosciences, Research Group Molecular Neurobiology and Leuven Brain Institute (LBI), 3000 Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory for the Research of Neurodegenerative Diseases, 3000 Leuven, Belgium
| | - Laura Rué
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), 3000 Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, 3000 Leuven, Belgium
| | - Adrià Sicart
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), 3000 Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, 3000 Leuven, Belgium
| | - Caroline Eykens
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), 3000 Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, 3000 Leuven, Belgium
| | - Lenja De Cock
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), 3000 Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, 3000 Leuven, Belgium
| | - Bart De Strooper
- KU Leuven - University of Leuven, Department of Neurosciences, Research Group Molecular Neurobiology and Leuven Brain Institute (LBI), 3000 Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory for the Research of Neurodegenerative Diseases, 3000 Leuven, Belgium; Dementia Research Institute, University College London, WC1E 6BT London, UK
| | - Peter Carmeliet
- KU Leuven - University of Leuven, Department of Oncology and Leuven Cancer Institute (LKI), Laboratory of Angiogenesis and Vascular Metabolism, 3000 Leuven, Belgium; VIB, Center for Cancer Biology, Laboratory of Angiogenesis and Vascular Metabolism, 3000 Leuven, Belgium; Khalifa University of Science and Technology, Center for Biotechnology, Abu Dhabi, United Arab Emirates
| | - Philip Van Damme
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), 3000 Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, 3000 Leuven, Belgium; University Hospitals Leuven, Department of Neurology, 3000 Leuven, Belgium
| | - Katrien De Bock
- ETH Zürich, Department of Health Sciences and Technology, 8092 Zürich, Switzerland
| | - Ludo Van Den Bosch
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), 3000 Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, 3000 Leuven, Belgium.
| |
Collapse
|
34
|
Yu G, Yuan L, Li X, Zuo M, Wang R, Chen M, Liu Y, Liu X, Xiao W. Zebrafish phd1 enhances mavs-mediated antiviral responses in a hydroxylation-independent manner. J Virol 2024; 98:e0103824. [PMID: 39162481 PMCID: PMC11406971 DOI: 10.1128/jvi.01038-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/08/2024] [Indexed: 08/21/2024] Open
Abstract
PHD1 is a member of the prolyl hydroxylase domain protein (PHD1-4) family, which plays a prominent role in the post-translational modification of its target proteins by hydroxylating proline residues. The best-characterized targets of PHD1 are hypoxia-inducible factor α (HIF-1α and HIF-2α), two master regulators of the hypoxia signaling pathway. In this study, we show that zebrafish phd1 positively regulates mavs-mediated antiviral innate immunity. Overexpression of phd1 enhances the cellular antiviral response. Consistently, zebrafish lacking phd1 are more susceptible to spring viremia of carp virus infection. Further assays indicate that phd1 interacts with mavs through the C-terminal transmembrane domain of mavs and promotes mavs aggregation. In addition, zebrafish phd1 attenuates K48-linked polyubiquitination of mavs, leading to stabilization of mavs. However, the enzymatic activity of phd1 is not required for phd1 to activate mavs. In conclusion, this study reveals a novel function of phd1 in the regulation of antiviral innate immunity.IMPORTANCEPHD1 is a key regulator of the hypoxia signaling pathway, but its role in antiviral innate immunity is largely unknown. In this study, we found that zebrafish phd1 enhances cellular antiviral responses in a hydroxylation-independent manner. Phd1 interacts with mavs through the C-terminal transmembrane domain of mavs and promotes mavs aggregation. In addition, phd1 attenuates K48-linked polyubiquitination of mavs, leading to stabilization of mavs. Zebrafish lacking phd1 are more susceptible to spring viremia of carp virus infection. These findings reveal a novel role for phd1 in the regulation of mavs-mediated antiviral innate immunity.
Collapse
Affiliation(s)
- Guangqing Yu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Le Yuan
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Xiong Li
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Mingzhong Zuo
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Rui Wang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Mengjuan Chen
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Yuqing Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Xing Liu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Wuhan, People's Republic of China
- Hubei Hongshan Laboratory, Wuhan, People's Republic of China
- The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Wuhan Xiao
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Wuhan, People's Republic of China
- Hubei Hongshan Laboratory, Wuhan, People's Republic of China
- The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| |
Collapse
|
35
|
Babin CH, Leiva FP, Verberk WCEP, Rees BB. Evolution of Key Oxygen-Sensing Genes Is Associated with Hypoxia Tolerance in Fishes. Genome Biol Evol 2024; 16:evae183. [PMID: 39165136 PMCID: PMC11370800 DOI: 10.1093/gbe/evae183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 08/05/2024] [Accepted: 08/14/2024] [Indexed: 08/22/2024] Open
Abstract
Low dissolved oxygen (hypoxia) is recognized as a major threat to aquatic ecosystems worldwide. Because oxygen is paramount for the energy metabolism of animals, understanding the functional and genetic drivers of whole-animal hypoxia tolerance is critical to predicting the impacts of aquatic hypoxia. In this study, we investigate the molecular evolution of key genes involved in the detection of and response to hypoxia in ray-finned fishes: the prolyl hydroxylase domain (PHD)-hypoxia-inducible factor (HIF) oxygen-sensing system, also known as the EGLN (egg-laying nine)-HIF oxygen-sensing system. We searched fish genomes for HIFA and EGLN genes, discovered new paralogs from both gene families, and analyzed protein-coding sites under positive selection. The physicochemical properties of these positively selected amino acid sites were summarized using linear discriminants for each gene. We employed phylogenetic generalized least squares to assess the relationship between these linear discriminants for each HIFA and EGLN and hypoxia tolerance as reflected by the critical oxygen tension (Pcrit) of the corresponding species. Our results demonstrate that Pcrit in ray-finned fishes correlates with the physicochemical variation of positively selected sites in specific HIFA and EGLN genes. For HIF2A, two linear discriminants captured more than 90% of the physicochemical variation of these sites and explained between 20% and 39% of the variation in Pcrit. Thus, variation in HIF2A among fishes may contribute to their capacity to cope with aquatic hypoxia, similar to its proposed role in conferring tolerance to high-altitude hypoxia in certain lineages of terrestrial vertebrates.
Collapse
Affiliation(s)
- Courtney H Babin
- Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA
| | - Félix P Leiva
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven 27570, Germany
| | - Wilco C E P Verberk
- Department of Animal Ecology and Physiology, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Bernard B Rees
- Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA
| |
Collapse
|
36
|
Chen R, Lin Z, Shen S, Zhu C, Yan K, Suo C, Liu R, Wei H, Gao L, Fan K, Zhang H, Sun L, Gao P. Citrullination modulation stabilizes HIF-1α to promote tumour progression. Nat Commun 2024; 15:7654. [PMID: 39227578 PMCID: PMC11372217 DOI: 10.1038/s41467-024-51882-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 08/21/2024] [Indexed: 09/05/2024] Open
Abstract
Citrullination plays an essential role in various physiological or pathological processes, however, whether citrullination is involved in regulating tumour progression and the potential therapeutic significance have not been well explored. Here, we find that peptidyl arginine deiminase 4 (PADI4) directly interacts with and citrullinates hypoxia-inducible factor 1α (HIF-1α) at R698, promoting HIF-1α stabilization. Mechanistically, PADI4-mediated HIF-1αR698 citrullination blocks von Hippel-Lindau (VHL) binding, thereby antagonizing HIF-1α ubiquitination and subsequent proteasome degradation. We also show that citrullinated HIF-1αR698, HIF-1α and PADI4 are highly expressed in hepatocellular carcinoma (HCC) tumour tissues, suggesting a potential correlation between PADI4-mediated HIF-1αR698 citrullination and cancer development. Furthermore, we identify that dihydroergotamine mesylate (DHE) acts as an antagonist of PADI4, which ultimately suppresses tumour progression. Collectively, our results reveal citrullination as a posttranslational modification related to HIF-1α stability, and suggest that targeting PADI4-mediated HIF-1α citrullination is a promising therapeutic strategy for cancers with aberrant HIF-1α expression.
Collapse
Affiliation(s)
- Rui Chen
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, China
| | - Zhiyuan Lin
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, China
| | - Shengqi Shen
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Chuxu Zhu
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Kai Yan
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Caixia Suo
- Department of Colorectal Surgery, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China
| | - Rui Liu
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Haoran Wei
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Li Gao
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Kaixiang Fan
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Huafeng Zhang
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Linchong Sun
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China.
| | - Ping Gao
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, China.
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|
37
|
Jucht AE, Scholz CC. PHD1-3 oxygen sensors in vivo-lessons learned from gene deletions. Pflugers Arch 2024; 476:1307-1337. [PMID: 38509356 PMCID: PMC11310289 DOI: 10.1007/s00424-024-02944-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/02/2024] [Accepted: 03/07/2024] [Indexed: 03/22/2024]
Abstract
Oxygen sensors enable cells to adapt to limited oxygen availability (hypoxia), affecting various cellular and tissue responses. Prolyl-4-hydroxylase domain 1-3 (PHD1-3; also called Egln1-3, HIF-P4H 1-3, HIF-PH 1-3) proteins belong to the Fe2+- and 2-oxoglutarate-dependent dioxygenase superfamily and utilise molecular oxygen (O2) alongside 2-oxoglutarate as co-substrate to hydroxylate two proline residues of α subunits of the dimeric hypoxia inducible factor (HIF) transcription factor. PHD1-3-mediated hydroxylation of HIF-α leads to its degradation and inactivation. Recently, various PHD inhibitors (PHI) have entered the clinics for treatment of renal anaemia. Pre-clinical analyses indicate that PHI treatment may also be beneficial in numerous other hypoxia-associated diseases. Nonetheless, the underlying molecular mechanisms of the observed protective effects of PHIs are only partly understood, currently hindering their translation into the clinics. Moreover, the PHI-mediated increase of Epo levels is not beneficial in all hypoxia-associated diseases and PHD-selective inhibition may be advantageous. Here, we summarise the current knowledge about the relevance and function of each of the three PHD isoforms in vivo, based on the deletion or RNA interference-mediated knockdown of each single corresponding gene in rodents. This information is crucial for our understanding of the physiological relevance and function of the PHDs as well as for elucidating their individual impact on hypoxia-associated diseases. Furthermore, this knowledge highlights which diseases may best be targeted by PHD isoform-selective inhibitors in case such pharmacologic substances become available.
Collapse
Affiliation(s)
- Agnieszka E Jucht
- Institute of Physiology, University of Zurich, Zurich, 8057, Switzerland
| | - Carsten C Scholz
- Institute of Physiology, University Medicine Greifswald, Friedrich-Ludwig-Jahn-Str. 15a, 17475, Greifswald, Germany.
| |
Collapse
|
38
|
Schofield LC, Dialpuri JS, Murshudov GN, Agirre J. Post-translational modifications in the Protein Data Bank. Acta Crystallogr D Struct Biol 2024; 80:647-660. [PMID: 39207896 PMCID: PMC11394121 DOI: 10.1107/s2059798324007794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
Proteins frequently undergo covalent modification at the post-translational level, which involves the covalent attachment of chemical groups onto amino acids. This can entail the singular or multiple addition of small groups, such as phosphorylation; long-chain modifications, such as glycosylation; small proteins, such as ubiquitination; as well as the interconversion of chemical groups, such as the formation of pyroglutamic acid. These post-translational modifications (PTMs) are essential for the normal functioning of cells, as they can alter the physicochemical properties of amino acids and therefore influence enzymatic activity, protein localization, protein-protein interactions and protein stability. Despite their inherent importance, accurately depicting PTMs in experimental studies of protein structures often poses a challenge. This review highlights the role of PTMs in protein structures, as well as the prevalence of PTMs in the Protein Data Bank, directing the reader to accurately built examples suitable for use as a modelling reference.
Collapse
Affiliation(s)
- Lucy C Schofield
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, United Kingdom
| | - Jordan S Dialpuri
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, United Kingdom
| | - Garib N Murshudov
- MRC Laboratory of Molecular Biology, University of Cambridge, Cambridge, United Kingdom
| | - Jon Agirre
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, United Kingdom
| |
Collapse
|
39
|
Pauzaite T, Wit N, Seear RV, Nathan JA. Deubiquitinating enzyme mutagenesis screens identify a USP43-dependent HIF-1 transcriptional response. EMBO J 2024; 43:3677-3709. [PMID: 39009674 PMCID: PMC11377827 DOI: 10.1038/s44318-024-00166-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/13/2024] [Accepted: 06/24/2024] [Indexed: 07/17/2024] Open
Abstract
The ubiquitination and proteasome-mediated degradation of Hypoxia Inducible Factors (HIFs) is central to metazoan oxygen-sensing, but the involvement of deubiquitinating enzymes (DUBs) in HIF signalling is less clear. Here, using a bespoke DUBs sgRNA library we conduct CRISPR/Cas9 mutagenesis screens to determine how DUBs are involved in HIF signalling. Alongside defining DUBs involved in HIF activation or suppression, we identify USP43 as a DUB required for efficient activation of a HIF response. USP43 is hypoxia regulated and selectively associates with the HIF-1α isoform, and while USP43 does not alter HIF-1α stability, it facilitates HIF-1 nuclear accumulation and binding to its target genes. Mechanistically, USP43 associates with 14-3-3 proteins in a hypoxia and phosphorylation dependent manner to increase the nuclear pool of HIF-1. Together, our results highlight the multifunctionality of DUBs, illustrating that they can provide important signalling functions alongside their catalytic roles.
Collapse
Affiliation(s)
- Tekle Pauzaite
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, United Kingdom
| | - Niek Wit
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, United Kingdom
| | - Rachel V Seear
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, United Kingdom
| | - James A Nathan
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, United Kingdom.
| |
Collapse
|
40
|
Schönberger T, Jakobs M, Friedel AL, Hörbelt-Grünheidt T, Tebbe B, Witzke O, Schedlowski M, Fandrey J. Exposure to normobaric hypoxia shapes the acute inflammatory response in human whole blood cells in vivo. Pflugers Arch 2024; 476:1369-1381. [PMID: 38714572 PMCID: PMC11310243 DOI: 10.1007/s00424-024-02969-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/10/2024]
Abstract
Cells of the immune defence, especially leukocytes, often have to perform their function in tissue areas that are characterized by oxygen deficiency, so-called hypoxia. Physiological hypoxia significantly affects leukocyte function and controls the innate and adaptive immune response mainly through transcriptional gene regulation via the hypoxia-inducible factors (HIFs). Multiple pathogens including components of bacteria, such as lipopolysaccharides (LPS) trigger the activation of leukocytes. HIF pathway activation enables immune cells to adapt to both hypoxic environments in physiological and inflammatory settings and modulates immune cell responses through metabolism changes and crosstalk with other immune-relevant signalling pathways. To study the mutual influence of both processes in vivo, we used a human endotoxemia model, challenging participants with an intravenous LPS injection post or prior to a 4-h stay in a hypoxic chamber with normobaric hypoxia of 10.5% oxygen. We analysed changes in gene expression in whole blood cells and determined inflammatory markers to unveil the crosstalk between both processes. Our investigations showed differentially altered gene expression patterns of HIF and target genes upon in vivo treatment with LPS and hypoxia. Further, we found evidence for effects of hypoxic priming upon inflammation in combination with immunomodulatory effects in whole blood cells in vivo. Our work elucidates the complex interplay of hypoxic and inflammatory HIF regulation in human immune cells and offers new perspectives for further clinical research.
Collapse
Affiliation(s)
- Tina Schönberger
- Institute of Physiology, University Duisburg-Essen, University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany.
| | - Marie Jakobs
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, 45147, Essen, Germany
| | - Anna-Lena Friedel
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, 45147, Essen, Germany
| | - Tina Hörbelt-Grünheidt
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, 45147, Essen, Germany
| | - Bastian Tebbe
- Institute of Physiology, University Duisburg-Essen, University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany
- Department of Nephrology, University Hospital Essen, 45147, Essen, Germany
| | - Oliver Witzke
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, 45147, Essen, Germany
| | - Manfred Schedlowski
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, 45147, Essen, Germany
- Department of Clinical Neuroscience, Osher Center for Integrative Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Joachim Fandrey
- Institute of Physiology, University Duisburg-Essen, University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany
| |
Collapse
|
41
|
Jiao Y, Zhang X, Yang Z. SUMO-specific proteases: SENPs in oxidative stress-related signaling and diseases. Biofactors 2024; 50:910-921. [PMID: 38551331 DOI: 10.1002/biof.2055] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 03/17/2024] [Indexed: 10/04/2024]
Abstract
Oxidative stress is employed to depict a series of responses detrimental to normal cellular functions resulting from an imbalance between intracellular oxidants, mainly reactive oxygen species and antioxidant defenses. Oxidative stress often contributes to the development of various diseases, including cancer, cardiovascular diseases, and neurodegenerative diseases. In this process, the relationship between small ubiquitin-like modifier (SUMO) and oxidative stress has garnered significant attention, with its posttranslational modification (PTM) frequently serving as a marker of oxidative stress status. Sentrin/SUMO-specific proteases (SENPs), affected by alternative splicing, PTMs such as phosphorylation and ubiquitination, and various protein interactions, are crucial molecules in the SUMO process. The human SENP family has six members (SENP1-3, SENP5-7), which are classified into two categories based on sequence similarity, substrate specificity, and subcellular location. They have two core functions in the human body: first, by cleaving the precursor SUMO and exposing the C-terminal glycine, they initiate the SUMO process; second, they can specifically recognize and dissociate SUMO proteins bound to substrates, a process known as deSUMOylation. However, the connection between deSUMOylation and oxidative stress remains a relatively unexplored area despite their strong association with oxidative diseases such as cancer and cardiovascular disease. This article aims to illustrate the significant contribution of SENPs to the oxidative stress pathway through deSUMOylation by reviewing their structure and classification, their roles in oxidative stress, and the changes in their expression and activity in several typical oxidative stress-related diseases.
Collapse
Affiliation(s)
- Yaqi Jiao
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xiaojuan Zhang
- Department of Cell Biochemistry, University of Groningen, Groningen, The Netherlands
| | - Zhenshan Yang
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| |
Collapse
|
42
|
Mezentsev A, Durymanov M, Makarov VA. A Comprehensive Review of Protein Biomarkers for Invasive Lung Cancer. Curr Oncol 2024; 31:4818-4854. [PMID: 39329988 PMCID: PMC11431409 DOI: 10.3390/curroncol31090360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/16/2024] [Accepted: 08/22/2024] [Indexed: 09/28/2024] Open
Abstract
Invasion and metastasis are important hallmarks of lung cancer, and affect patients' survival. Early diagnostics of metastatic potential are important for treatment management. Recent findings suggest that the transition to an invasive phenotype causes changes in the expression of 700-800 genes. In this context, the biomarkers restricted to the specific type of cancer, like lung cancer, are often overlooked. Some well-known protein biomarkers correlate with the progression of the disease and the immunogenicity of the tumor. Most of these biomarkers are not exclusive to lung cancer because of their significant role in tumorigenesis. The dysregulation of others does not necessarily indicate cell invasiveness, as they play an active role in cell division. Clinical studies of lung cancer use protein biomarkers to assess the invasiveness of cancer cells for therapeutic purposes. However, there is still a need to discover new biomarkers for lung cancer. In the future, minimally invasive techniques, such as blood or saliva analyses, may be sufficient for this purpose. Many researchers suggest unconventional biomarkers, like circulating nucleic acids, exosomal proteins, and autoantibodies. This review paper aims to discuss the advantages and limitations of protein biomarkers of invasiveness in lung cancer, to assess their prognostic value, and propose novel biomarker candidates.
Collapse
Affiliation(s)
- Alexandre Mezentsev
- Medical Informatics Laboratory, Yaroslav-the-Wise Novgorod State University, 173003 Veliky Novgorod, Russia; (M.D.); (V.A.M.)
- Center for Theoretical Problems of Physicochemical Pharmacology, 109029 Moscow, Russia
| | - Mikhail Durymanov
- Medical Informatics Laboratory, Yaroslav-the-Wise Novgorod State University, 173003 Veliky Novgorod, Russia; (M.D.); (V.A.M.)
| | - Vladimir A. Makarov
- Medical Informatics Laboratory, Yaroslav-the-Wise Novgorod State University, 173003 Veliky Novgorod, Russia; (M.D.); (V.A.M.)
| |
Collapse
|
43
|
Ting KKY. Revisiting the role of hypoxia-inducible factors and nuclear factor erythroid 2-related factor 2 in regulating macrophage inflammation and metabolism. Front Cell Infect Microbiol 2024; 14:1403915. [PMID: 39119289 PMCID: PMC11306205 DOI: 10.3389/fcimb.2024.1403915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
The recent birth of the immunometabolism field has comprehensively demonstrated how the rewiring of intracellular metabolism is critical for supporting the effector functions of many immune cell types, such as myeloid cells. Among all, the transcriptional regulation mediated by Hypoxia-Inducible Factors (HIFs) and Nuclear factor erythroid 2-related factor 2 (NRF2) have been consistently shown to play critical roles in regulating the glycolytic metabolism, redox homeostasis and inflammatory responses of macrophages (Mφs). Although both of these transcription factors were first discovered back in the 1990s, new advances in understanding their function and regulations have been continuously made in the context of immunometabolism. Therefore, this review attempts to summarize the traditionally and newly identified functions of these transcription factors, including their roles in orchestrating the key events that take place during glycolytic reprogramming in activated myeloid cells, as well as their roles in mediating Mφ inflammatory responses in various bacterial infection models.
Collapse
Affiliation(s)
- Kenneth K. Y. Ting
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| |
Collapse
|
44
|
Kubyshkin V, Rubini M. Proline Analogues. Chem Rev 2024; 124:8130-8232. [PMID: 38941181 DOI: 10.1021/acs.chemrev.4c00007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Within the canonical repertoire of the amino acid involved in protein biogenesis, proline plays a unique role as an amino acid presenting a modified backbone rather than a side-chain. Chemical structures that mimic proline but introduce changes into its specific molecular features are defined as proline analogues. This review article summarizes the existing chemical, physicochemical, and biochemical knowledge about this peculiar family of structures. We group proline analogues from the following compounds: substituted prolines, unsaturated and fused structures, ring size homologues, heterocyclic, e.g., pseudoproline, and bridged proline-resembling structures. We overview (1) the occurrence of proline analogues in nature and their chemical synthesis, (2) physicochemical properties including ring conformation and cis/trans amide isomerization, (3) use in commercial drugs such as nirmatrelvir recently approved against COVID-19, (4) peptide and protein synthesis involving proline analogues, (5) specific opportunities created in peptide engineering, and (6) cases of protein engineering with the analogues. The review aims to provide a summary to anyone interested in using proline analogues in systems ranging from specific biochemical setups to complex biological systems.
Collapse
Affiliation(s)
| | - Marina Rubini
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
45
|
Deng H, Wang Z, Zhu C, Chen Z. Prolyl hydroxylase domain enzyme PHD2 inhibits proliferation and metabolism in non-small cell lung cancer cells in HIF-dependent and HIF-independent manners. Front Oncol 2024; 14:1370393. [PMID: 39007099 PMCID: PMC11240288 DOI: 10.3389/fonc.2024.1370393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 06/14/2024] [Indexed: 07/16/2024] Open
Abstract
Prolyl hydroxylase domain protein 2 (PHD2) is one of the intracellular oxygen sensors that mediates proteasomal degradation of hypoxia-inducible factor (HIF)-α via hydroxylation under normoxic conditions. Because of its canonical function in the hypoxia signaling pathway, PHD2 is generally regarded as a tumor suppressor. However, the effects of PHD2 in tumorigenesis are not entirely dependent on HIF-α. Based on analysis of data from the Cancer Genome Atlas (TCGA) database, we observed that the expression of PHD2 is upregulated in non-small cell lung cancer (NSCLC), which accounts for approximately 80-85% of lung cancers. This suggests that PHD2 may play an important role in NSCLC. However, the function of PHD2 in NSCLC remains largely unknown. In this study, we established PHD2-deficient H1299 cells and PHD2-knockdown A549 cells to investigate the function of PHD2 in NSCLC and found that PHD2 suppresses cell proliferation and metabolism but induces ROS levels in human NSCLC cells. Further results indicated that the function of PHD2 in NSCLC is dependent on its enzymatic activity and partially independent of HIF. Moreover, we performed RNA-sequencing and transcriptomic analysis to explore the underlying mechanisms and identified some potential targets and pathways regulated by PHD2, apart from the canonical HIF-mediated hypoxia signaling pathway. These results provide some clues to uncover novel roles of PHD2 in lung cancer progression.
Collapse
Affiliation(s)
- Hongyan Deng
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Life Science, Wuhan University, Wuhan, China
| | - Zixuan Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Chunchun Zhu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Zhu Chen
- Department of Reproduction, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
46
|
Stuart S, Tarade D, Ohh M. Cathepsins L and B target HIF1α for oxygen-independent proteolytic cleavage. Sci Rep 2024; 14:14799. [PMID: 38926538 PMCID: PMC11208597 DOI: 10.1038/s41598-024-65537-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024] Open
Abstract
The oxygen-labile transcription factor called hypoxia-inducible factor (HIF) is responsible for the cellular and organismal adaptive response to reduced oxygen availability. Deregulation of HIF is associated with the pathogenesis of major human diseases including cardiovascular disease and cancer. Under normoxia, the HIFα subunit is hydroxylated on conserved proline residues within the oxygen-dependent degradation domain (ODD) that labels HIFα for proteasome-mediated degradation. Despite similar oxygen-dependent degradation machinery acting on HIF1α and HIF2α, these two paralogs have been shown to exhibit unique kinetics under hypoxia, which suggests that other regulatory processes may be at play. Here, we characterize the protease activity found in rabbit reticulocytes that specifically cleaves the ODD of HIF1α but not HIF2α. Notably, the cleavage product is observed irrespective of the oxygen-dependent prolyl-hydroxylation potential of HIF1α, suggesting independence from oxygen. HIF1α M561T substitution, which mimics an evolutionary substitution that occurred during the duplication and divergence of HIF1α and HIF2α, diminished the cleavage of HIF1α. Protease inhibitor screening suggests that cysteine proteases cathepsins L and B preferentially cleave HIF1αODD, thereby revealing an additional layer of differential HIF regulation.
Collapse
Affiliation(s)
- Sarah Stuart
- Department of Laboratory Medicine & Pathobiology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
- Department of Biochemistry, University of Toronto, 661 University Avenue, Toronto, ON, M5G 1M1, Canada
| | - Daniel Tarade
- Department of Laboratory Medicine & Pathobiology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Michael Ohh
- Department of Laboratory Medicine & Pathobiology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
- Department of Biochemistry, University of Toronto, 661 University Avenue, Toronto, ON, M5G 1M1, Canada.
| |
Collapse
|
47
|
Kavaliauskas P, Gu Y, Hasin N, Graf KT, Alqarihi A, Shetty AC, McCracken C, Walsh TJ, Ibrahim AS, Bruno VM. Multiple roles for hypoxia inducible factor 1-alpha in airway epithelial cells during mucormycosis. Nat Commun 2024; 15:5282. [PMID: 38902255 PMCID: PMC11190229 DOI: 10.1038/s41467-024-49637-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 06/12/2024] [Indexed: 06/22/2024] Open
Abstract
During pulmonary mucormycosis, inhaled sporangiospores adhere to, germinate, and invade airway epithelial cells to establish infection. We provide evidence that HIF1α plays dual roles in airway epithelial cells during Mucorales infection. We observed an increase in HIF1α protein accumulation and increased expression of many known HIF1α-responsive genes during in vitro infection, indicating that HIF1α signaling is activated by Mucorales infection. Inhibition of HIF1α signaling led to a substantial decrease in the ability of R. delemar to invade cultured airway epithelial cells. Transcriptome analysis revealed that R. delemar infection induces the expression of many pro-inflammatory genes whose expression was significantly reduced by HIF1α inhibition. Importantly, pharmacological inhibition of HIF1α increased survival in a mouse model of pulmonary mucormycosis without reducing fungal burden. These results suggest that HIF1α plays two opposing roles during mucormycosis: one that facilitates the ability of Mucorales to invade the host cells and one that facilitates the ability of the host to mount an innate immune response.
Collapse
Affiliation(s)
- Povilas Kavaliauskas
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Yiyou Gu
- Division of Infectious Diseases, The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical Center, Torrance, CA, 90502, USA
| | - Naushaba Hasin
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Millipore Sigma, 9900 Blackwell Road, Rockville, MD, 20850, USA
| | - Karen T Graf
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Abdullah Alqarihi
- Division of Infectious Diseases, The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical Center, Torrance, CA, 90502, USA
| | - Amol C Shetty
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Carrie McCracken
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Thomas J Walsh
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Center for Innovative Therapeutics and Diagnostics, 6641 West Broad St., Room 100, Richmond, VA, 23220, USA
| | - Ashraf S Ibrahim
- Division of Infectious Diseases, The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical Center, Torrance, CA, 90502, USA
- David Geffen School of Medicine at UCLA, Los Angeles, CA, 90502, USA
| | - Vincent M Bruno
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
48
|
Slawski J, Jaśkiewicz M, Barton A, Kozioł S, Collawn JF, Bartoszewski R. Regulation of the HIF switch in human endothelial and cancer cells. Eur J Cell Biol 2024; 103:151386. [PMID: 38262137 DOI: 10.1016/j.ejcb.2024.151386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 01/25/2024] Open
Abstract
Hypoxia-inducible factors (HIFs) are transcription factors that reprogram the transcriptome for cells to survive hypoxic insults and oxidative stress. They are important during embryonic development and reprogram the cells to utilize glycolysis when the oxygen levels are extremely low. This metabolic change facilitates normal cell survival as well as cancer cell survival. The key feature in survival is the transition between acute hypoxia and chronic hypoxia, and this is regulated by the transition between HIF-1 expression and HIF-2/HIF-3 expression. This transition is observed in many human cancers and endothelial cells and referred to as the HIF Switch. Here we discuss the mechanisms involved in the HIF Switch in human endothelial and cancer cells which include mRNA and protein levels of the alpha chains of the HIFs. A major continuing effort in this field is directed towards determining the differences between normal and tumor cell utilization of this important pathway, and how this could lead to potential therapeutic approaches.
Collapse
Affiliation(s)
- Jakub Slawski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Maciej Jaśkiewicz
- International Research Agenda 3P, Medicine Laboratory, Medical University of Gdansk, Gdansk, Poland
| | - Anna Barton
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Sylwia Kozioł
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - James F Collawn
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, USA
| | - Rafał Bartoszewski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland.
| |
Collapse
|
49
|
Sekine H, Takeda H, Takeda N, Kishino A, Anzawa H, Isagawa T, Ohta N, Murakami S, Iwaki H, Kato N, Kimura S, Liu Z, Kato K, Katsuoka F, Yamamoto M, Miura F, Ito T, Takahashi M, Izumi Y, Fujita H, Yamagata H, Bamba T, Akaike T, Suzuki N, Kinoshita K, Motohashi H. PNPO-PLP axis senses prolonged hypoxia in macrophages by regulating lysosomal activity. Nat Metab 2024; 6:1108-1127. [PMID: 38822028 PMCID: PMC11599045 DOI: 10.1038/s42255-024-01053-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/18/2024] [Indexed: 06/02/2024]
Abstract
Oxygen is critical for all metazoan organisms on the earth and impacts various biological processes in physiological and pathological conditions. While oxygen-sensing systems inducing acute hypoxic responses, including the hypoxia-inducible factor pathway, have been identified, those operating in prolonged hypoxia remain to be elucidated. Here we show that pyridoxine 5'-phosphate oxidase (PNPO), which catalyses bioactivation of vitamin B6, serves as an oxygen sensor and regulates lysosomal activity in macrophages. Decreased PNPO activity under prolonged hypoxia reduced an active form of vitamin B6, pyridoxal 5'-phosphate (PLP), and inhibited lysosomal acidification, which in macrophages led to iron dysregulation, TET2 protein loss and delayed resolution of the inflammatory response. Among PLP-dependent metabolism, supersulfide synthesis was suppressed in prolonged hypoxia, resulting in the lysosomal inhibition and consequent proinflammatory phenotypes of macrophages. The PNPO-PLP axis creates a distinct layer of oxygen sensing that gradually shuts down PLP-dependent metabolism in response to prolonged oxygen deprivation.
Collapse
Affiliation(s)
- Hiroki Sekine
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Haruna Takeda
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Norihiko Takeda
- Division of Cardiology and Metabolism, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Japan
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Akihiro Kishino
- Department of Gene Expression Regulation, IDAC, Tohoku University, Sendai, Japan
| | - Hayato Anzawa
- Department of System Bioinformatics, Graduate School of Information Sciences, Tohoku University, Sendai, Japan
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Takayuki Isagawa
- Division of Cardiology and Metabolism, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Japan
- Data Science Center, Jichi Medical University, Shimotsuke, Japan
| | - Nao Ohta
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shohei Murakami
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hideya Iwaki
- Department of Gene Expression Regulation, IDAC, Tohoku University, Sendai, Japan
| | - Nobufumi Kato
- Department of Gene Expression Regulation, IDAC, Tohoku University, Sendai, Japan
| | - Shu Kimura
- Department of Gene Expression Regulation, IDAC, Tohoku University, Sendai, Japan
| | - Zun Liu
- Department of Gene Expression Regulation, IDAC, Tohoku University, Sendai, Japan
| | - Koichiro Kato
- Division of Oxygen Biology, United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Fumiki Katsuoka
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Masayuki Yamamoto
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Department of Biochemistry and Molecular Biology, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Fumihito Miura
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Takashi Ito
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Masatomo Takahashi
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yoshihiro Izumi
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Hiroyuki Fujita
- Advanced Research Laboratory, Canon Medical Systems Corporation, Otawara, Japan
| | - Hitoshi Yamagata
- Advanced Research Laboratory, Canon Medical Systems Corporation, Otawara, Japan
| | - Takeshi Bamba
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Takaaki Akaike
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Norio Suzuki
- Division of Oxygen Biology, United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kengo Kinoshita
- Department of System Bioinformatics, Graduate School of Information Sciences, Tohoku University, Sendai, Japan
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Advanced Research Laboratory, Canon Medical Systems Corporation, Otawara, Japan
| | - Hozumi Motohashi
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan.
- Department of Gene Expression Regulation, IDAC, Tohoku University, Sendai, Japan.
| |
Collapse
|
50
|
Suzuki J. Effects of exercise training with intermittent hyperoxic intervention on endurance performance and muscle metabolic properties in male mice. Physiol Rep 2024; 12:e16117. [PMID: 38898524 PMCID: PMC11186743 DOI: 10.14814/phy2.16117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/28/2024] [Accepted: 06/09/2024] [Indexed: 06/21/2024] Open
Abstract
This study aimed to investigate how intermittent hyperoxic exposure (three cycles of 21% O2 [10 min] and 30% O2 [15 min]) affects exercise performance in mice. Three hours after the acute exposure, there was an observed increase in mRNA levels of phosphofructokinase (Bayes factor [BF] ≥ 10), mitochondrial transcription factor-A (BF ≥10), PPAR-α (BF ≥3), and PPAR-γ (BF ≥3) in the red gastrocnemius muscle (Gr). Four weeks of exercise training under intermittent (INT), but not continuous (HYP), hyperoxia significantly (BF ≥30) increased maximal exercise capacity compared to normoxic exercise-trained (ET) group. INT group exhibited significantly higher activity levels of 3-hydroxyacyl-CoA-dehydrogenase (HAD) in Gr (BF = 7.9) compared to ET group. Pyruvate dehydrogenase complex activity levels were significantly higher in INT group compared to ET group in white gastrocnemius, diaphragm, and left ventricle (BF ≥3). NT-PGC1α protein levels in Gr (BF = 7.7) and HAD activity levels in Gr (BF = 6.9) and soleus muscles (BF = 3.3) showed a significant positive correlation with maximal work values. These findings suggest that exercise training under intermittent hyperoxia is a beneficial strategy for enhancing endurance performance by improving fatty acid and pyruvic acid utilization.
Collapse
Affiliation(s)
- Junichi Suzuki
- Laboratory of Exercise Physiology, Health and Sports Sciences, Course of Sports Education, Department of EducationHokkaido University of EducationIwamizawaHokkaidoJapan
| |
Collapse
|