1
|
Price R, Ramirez-Moreno M, Cooper A, Singh R, Ming Khaw Y, Mudiwa Mhaka A, Sivanantharajah L, Mudher A. Are we missing a trick by not exploiting fruit flies in inflammation-led drug discovery for neurodegeneration? Expert Opin Drug Discov 2025; 20:721-734. [PMID: 40372417 DOI: 10.1080/17460441.2025.2498675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/16/2025] [Accepted: 04/23/2025] [Indexed: 05/16/2025]
Abstract
INTRODUCTION Alzheimer's disease (AD) remains a formidable challenge in neurodegeneration research, with limited therapeutic options despite decades of study. While Drosophila melanogaster has been instrumental in in modeling AD related Tau and amyloid beta toxicity, inflammation, a key driver of AD pathology, remains unexplored in fly models. Given the evolutionary conservation of innate immune pathways between flies and mammals, drosophila presents a powerful yet underutilized tool for inflammation led drug discovery in AD. AREAS COVERED This perspective highlights the relevance of Drosophila in studying neuroinflammatory processes, including microglial-like glial activation, systemic inflammation and gut-brain axis interactions. It further explores how fly models can be leveraged to screen anti-inflammatory compounds and dissect immune related genetic factors implicated in AD. EXPERT OPINION By integrating immune modulation in Drosophila-based drug discovery pipeline we can accelerate the identification of novel therapeutic strategies. Fully exploiting the potential of Drosophila in inflammation led drug screening may usher in a new era of AD therapeutics, bridging gaps between fundamental research and translational medicine.
Collapse
Affiliation(s)
- Ray Price
- Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, UK
| | - Miguel Ramirez-Moreno
- Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, UK
| | - Amber Cooper
- Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, UK
| | - Rachita Singh
- Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, UK
| | | | | | | | - Amrit Mudher
- Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
2
|
Dhuppar S, Poller WC, Murugaiyan G. MicroRNAs in the biology and hallmarks of neurodegenerative diseases. Trends Mol Med 2025:S1471-4914(25)00057-7. [PMID: 40199696 DOI: 10.1016/j.molmed.2025.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/24/2025] [Accepted: 03/14/2025] [Indexed: 04/10/2025]
Abstract
A combination of intracellular and extracellular abnormalities of the nervous system, coupled with inflammation and intestinal dysbiosis, form the hallmarks of neurodegenerative diseases (NDDs). While it is difficult to identify the precise order in which these hallmarks manifest in NDDs because of their mutualistic nature, they cumulatively result in nervous or neuronal damage that characterizes neurodegeneration. In this review we discuss the roles of microRNAs (miRNAs) in the maintenance of nervous system homeostasis and their implication for NDDs. We further highlight recent advances in, and limitations of, miRNA therapeutics in NDDs and their future potential.
Collapse
Affiliation(s)
- Shivnarayan Dhuppar
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA; Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA.
| | - Wolfram C Poller
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA.
| | - Gopal Murugaiyan
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
3
|
Xu R, Kang Q, Yang X, Yi P, Zhang R. Unraveling Molecular Targets for Neurodegenerative Diseases Through Caenorhabditis elegans Models. Int J Mol Sci 2025; 26:3030. [PMID: 40243699 PMCID: PMC11988803 DOI: 10.3390/ijms26073030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 03/17/2025] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
Neurodegenerative diseases (NDDs), including Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), and prion disease, represent a group of age-related disorders that pose a growing and formidable challenge to global health. Despite decades of extensive research that has uncovered key genetic factors and biochemical pathways, the precise molecular mechanisms underlying these diseases and effective therapeutic strategies remain elusive. Caenorhabditis elegans (C. elegans) has emerged as a powerful model organism for studying NDDs due to its unique biological features such as genetic tractability, conserved molecular pathways, and ease of high-throughput screening. This model provides an exceptional platform for identifying molecular targets associated with NDDs and developing novel therapeutic interventions. This review highlights the critical role of C. elegans in elucidating the complex molecular mechanisms of human NDDs, with a particular focus on recent advancements and its indispensable contributions to the discovery of molecular targets and therapeutic strategies for these NDDs.
Collapse
Affiliation(s)
- Rongmei Xu
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230002, China; (R.X.); (X.Y.)
| | - Qiaoju Kang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (Q.K.); (P.Y.)
| | - Xuefei Yang
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230002, China; (R.X.); (X.Y.)
| | - Ping Yi
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (Q.K.); (P.Y.)
| | - Rongying Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (Q.K.); (P.Y.)
| |
Collapse
|
4
|
Moore J, Wu T, Dhindsa J, El Fadel O, Le A, Perez A, Amoh B, Tarkunde A, Zhu KF, Avalos M, Dammer EB, Duong DM, Seyfried NT, Shulman JM, Al-Ramahi I, Botas J. Longitudinal multi-omics in alpha-synuclein Drosophila model discriminates disease- from age-associated pathologies in Parkinson's disease. NPJ Parkinsons Dis 2025; 11:46. [PMID: 40069190 PMCID: PMC11897226 DOI: 10.1038/s41531-025-00899-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 02/17/2025] [Indexed: 03/15/2025] Open
Abstract
Parkinson's disease (PD) starts decades before symptoms appear, usually in the later decades of life, when age-related changes are occurring. To identify molecular changes early in the disease course and distinguish PD pathologies from aging, we generated Drosophila expressing alpha-synuclein (αSyn) in neurons and performed longitudinal bulk transcriptomics and proteomics on brains at six time points across the lifespan and compared the data to healthy control flies as well as human post-mortem brain datasets. We found that translational and energy metabolism pathways were downregulated in αSyn flies at the earliest timepoints; comparison with the aged control flies suggests that elevated αSyn accelerates changes associated with normal aging. Unexpectedly, single-cell analysis at a mid-disease stage revealed that neurons upregulate protein synthesis and nonsense-mediated decay, while glia drive their overall downregulation. Longitudinal multi-omics approaches in animal models can thus help elucidate the molecular cascades underlying neurodegeneration vs. aging and co-pathologies.
Collapse
Affiliation(s)
- Justin Moore
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Quantitative and Computational Bioscience Graduate Program, Baylor College of Medicine, Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
| | - Timothy Wu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Justin Dhindsa
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Omar El Fadel
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
| | - Anh Le
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
| | - Alma Perez
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
| | - Bismark Amoh
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
| | - Akash Tarkunde
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
| | - Katy F Zhu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
| | - Matthew Avalos
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
| | - Eric B Dammer
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Duc M Duong
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Nicholas T Seyfried
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Joshua M Shulman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
- Deparment of Neurology, Baylor College of Medicine, Houston, TX, 77030, USA
- Center for Alzheimer's and Neurodegenerative Diseases, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ismael Al-Ramahi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
- Center for Alzheimer's and Neurodegenerative Diseases, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Juan Botas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
- Quantitative and Computational Bioscience Graduate Program, Baylor College of Medicine, Houston, TX, 77030, USA.
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA.
- Center for Alzheimer's and Neurodegenerative Diseases, Baylor College of Medicine, Houston, TX, 77030, USA.
- Genetics and Genomics Graduate Program, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
5
|
Shapiro O, Woods C, Gleixner AM, Sannino S, Ngo M, McDaniels MD, Wipf P, Hukriede NA, Donnelly CJ, Brodsky JL. Assays to measure small molecule Hsp70 agonist activity in vitro and in vivo. Anal Biochem 2025; 697:115712. [PMID: 39522672 PMCID: PMC11952136 DOI: 10.1016/j.ab.2024.115712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/29/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Hsp70 prevents protein aggregation and is cytoprotective, but sustained Hsp70 overexpression is problematic. Therefore, we characterized small molecule agonists that augment Hsp70 activity. Because cumbersome assays were required to assay agonists, we developed cell-based and in vivo assays in which disease-associated consequences of Hsp70 activation can be quantified. One assay uses an optogenetic system in which the formation of TDP-43 inclusions can be controlled, and the second assay employs a zebrafish model for acute kidney injury (AKI). These complementary assays will facilitate future work to identify new Hsp70 agonists as well as optimized agonist derivatives.
Collapse
Affiliation(s)
- Olivia Shapiro
- Department of Neurobiology, LiveLikeLou Center for ALS Research, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Clara Woods
- Department of Cell Biology, Center for Integrative Organ Systems, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Amanda M Gleixner
- Department of Neurobiology, LiveLikeLou Center for ALS Research, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Sara Sannino
- Department of Biological Science, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Marilyn Ngo
- Department of Neurobiology, LiveLikeLou Center for ALS Research, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Department of Human Genetics, University of Pittsburgh School of Public Health, Pittsburgh, PA, 15213, USA
| | - Michael D McDaniels
- Department of Cell Biology, Center for Integrative Organ Systems, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Neil A Hukriede
- Department of Cell Biology, Center for Integrative Organ Systems, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Christopher J Donnelly
- Department of Neurobiology, LiveLikeLou Center for ALS Research, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Jeffrey L Brodsky
- Department of Biological Science, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| |
Collapse
|
6
|
Chakraborty P, Zweckstetter M. Interplay of p23 with FKBP51 and their chaperone complex in regulating tau aggregation. Nat Commun 2025; 16:669. [PMID: 39809798 PMCID: PMC11733250 DOI: 10.1038/s41467-025-56028-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 01/06/2025] [Indexed: 01/30/2025] Open
Abstract
The pathological deposition of tau and amyloid-beta into insoluble amyloid fibrils are pathological hallmarks of Alzheimer's disease. Molecular chaperones are important cellular factors contributing to the regulation of tau misfolding and aggregation. Here we reveal an Hsp90-independent mechanism by which the co-chaperone p23 as well as a molecular complex formed by two co-chaperones, p23 and FKBP51, modulates tau aggregation. Integrating NMR spectroscopy, SAXS, molecular docking, and site-directed mutagenesis we reveal the structural basis of the p23-FKBP51 complex. We show that p23 specifically recognizes the TPR domain of FKBP51 and interacts with tau through its C-terminal disordered tail. We further show that the p23-FKBP51 complex binds tau to form a dynamic p23-FKBP51-tau trimeric complex that delays tau aggregation and thus may counteract Hsp90-FKBP51 mediated toxicity. Taken together, our findings reveal a co-chaperone mediated Hsp90-independent chaperoning of tau protein.
Collapse
Affiliation(s)
- Pijush Chakraborty
- Department for NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Markus Zweckstetter
- Department for NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany.
| |
Collapse
|
7
|
Huang J, Wang J. Selective protein degradation through chaperone‑mediated autophagy: Implications for cellular homeostasis and disease (Review). Mol Med Rep 2025; 31:13. [PMID: 39513615 PMCID: PMC11542157 DOI: 10.3892/mmr.2024.13378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/03/2024] [Indexed: 11/15/2024] Open
Abstract
Cells rely on autophagy for the degradation and recycling of damaged proteins and organelles. Chaperone-mediated autophagy (CMA) is a selective process targeting proteins for degradation through the coordinated function of molecular chaperones and the lysosome‑associated membrane protein‑2A receptor (LAMP2A), pivotal in various cellular processes from signal transduction to the modulation of cellular responses under stress. In the present review, the intricate regulatory mechanisms of CMA were elucidated through multiple signaling pathways such as retinoic acid receptor (RAR)α, AMP‑activated protein kinase (AMPK), p38‑TEEB‑NLRP3, calcium signaling‑NFAT and PI3K/AKT, thereby expanding the current understanding of CMA regulation. A comprehensive exploration of CMA's versatile roles in cellular physiology were further provided, including its involvement in maintaining protein homeostasis, regulating ferroptosis, modulating metabolic diversity and influencing cell cycle and proliferation. Additionally, the impact of CMA on disease progression and therapeutic outcomes were highlighted, encompassing neurodegenerative disorders, cancer and various organ‑specific diseases. Therapeutic strategies targeting CMA, such as drug development and gene therapy were also proposed, providing valuable directions for future clinical research. By integrating recent research findings, the present review aimed to enhance the current understanding of cellular homeostasis processes and emphasize the potential of targeting CMA in therapeutic strategies for diseases marked by CMA dysfunction.
Collapse
Affiliation(s)
- Jiahui Huang
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province and Education Ministry of People's Republic of China, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, P.R. China
- College of Traditional Chinese Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan 450046, P.R. China
| | - Jiazhen Wang
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province and Education Ministry of People's Republic of China, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, P.R. China
- Academy of Chinese Medicine Science, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, P.R. China
| |
Collapse
|
8
|
Zeng X, Sheng Z, Zhang Y, Xiao J, Li Y, Zhang J, Xu G, Jia J, Wang M, Li L. The therapeutic potential of glycyrrhizic acid and its metabolites in neurodegenerative diseases: Evidence from animal models. Eur J Pharmacol 2024; 985:177098. [PMID: 39510337 DOI: 10.1016/j.ejphar.2024.177098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/23/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Neurodegenerative diseases, mostly occurring in the elderly population, are the significant cause of disability and death worldwide. The pathogenesis of neurodegenerative diseases is still largely unknown yet, although they have been continuously explored. Thus, there is still a lack of safe, effective, and low side effect drugs in clinical practice for the treatment of neurodegenerative diseases. Pieces of accumulating evidence have demonstrated that licorice played neuroprotective roles in various neurodegenerative diseases. In the past two decades, increasing studies have indicated that glycyrrhizic acid (GL), the main active ingredient from traditional Chinese medicine licorice (widely used in the food industry) and a triterpenoid saponin with multiple pharmacological effects (such as anti-oxidant, anti-inflammatory, and immune regulation), and its metabolites (glycyrrhetinic acid and carbenoxolone) play a neuroprotective role in a range of neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease and epilepsy. This review will elaborate on the multiple neuroprotective mechanisms of GL and its metabolites in this series of diseases, aiming to provide a basis for further research on these protective drugs for neurodegenerative diseases and their clinical application. In summary, GL may be a promising candidate drug for the therapy of neurodegenerative diseases.
Collapse
Affiliation(s)
- Xiansi Zeng
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, 314001, China; Department of Biochemistry and Molecular Biology, Jiaxing University Medical College, Jiaxing, 314001, China; Institute of Forensic Science, Jiaxing University, Jiaxing, 314001, China
| | - Zixuan Sheng
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, 314001, China
| | - Yuqian Zhang
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, 314001, China
| | - Jing Xiao
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, 314001, China
| | - Yang Li
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, 314001, China
| | - Jiaping Zhang
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, 314001, China
| | - Guangtao Xu
- Institute of Forensic Science, Jiaxing University, Jiaxing, 314001, China
| | - Jinjing Jia
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, 314001, China; Department of Physiology, Jiaxing University Medical College, Jiaxing, 314001, China.
| | - Min Wang
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, 314001, China; Department of Physiology, Jiaxing University Medical College, Jiaxing, 314001, China.
| | - Li Li
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, 314001, China; Department of Physiology, Jiaxing University Medical College, Jiaxing, 314001, China.
| |
Collapse
|
9
|
Alasady MJ, Mendillo ML. The heat shock factor code: Specifying a diversity of transcriptional regulatory programs broadly promoting stress resilience. Cell Stress Chaperones 2024; 29:735-749. [PMID: 39454718 PMCID: PMC11570959 DOI: 10.1016/j.cstres.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/19/2024] [Accepted: 10/19/2024] [Indexed: 10/28/2024] Open
Abstract
The heat shock factor (HSF) family of transcription factors drives gene expression programs that maintain cytosolic protein homeostasis (proteostasis) in response to a vast array of physiological and exogenous stressors. The importance of HSF function has been demonstrated in numerous physiological and pathological contexts. Evidence accumulating over the last two decades has revealed that the regulatory programs driven by the HSF family can vary dramatically depending on the context in which it is activated. To broadly maintain proteostasis across these contexts, HSFs must bind and appropriately regulate the correct target genes at the correct time. Here, we discuss "the heat shock factor code"-our current understanding of how human cells use HSF paralog diversification and interplay, local concentration, post-translational modifications, and interactions with other proteins to enable the functional plasticity required for cellular resilience across a multitude of environments.
Collapse
Affiliation(s)
- Milad J Alasady
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Marc L Mendillo
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
10
|
Lee S, Silverman N, Gao FB. Emerging roles of antimicrobial peptides in innate immunity, neuronal function, and neurodegeneration. Trends Neurosci 2024; 47:949-961. [PMID: 39389804 PMCID: PMC11563872 DOI: 10.1016/j.tins.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/31/2024] [Accepted: 09/11/2024] [Indexed: 10/12/2024]
Abstract
Antimicrobial peptides (AMPs), a collection of small proteins with important roles in classical innate immunity, have been extensively studied in multiple organisms, particularly in Drosophila melanogaster. Advances in CRISPR/Cas9 genome editing have allowed individual AMP functions to be dissected, revealing specific and selective roles in host defense. Recent findings have also revealed many unexpected contributions of endogenous AMPs to neuronal functions and neurodegenerative diseases, and have shed light on the intersections between innate immunity and neurobiology. We explore the intricate relationships between AMPs and sleep regulation, memory formation, as well as traumatic brain injury and several neurodegenerative diseases such as Alzheimer's disease (AD), frontotemporal dementia (FTD), and Parkinson's disease (PD). Understanding the diverse functions of AMPs opens new avenues for neuroinflammation and neurodegenerative disease research and potential therapeutic development.
Collapse
Affiliation(s)
- Soojin Lee
- Frontotemporal Dementia Research Center, RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Neal Silverman
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| | - Fen-Biao Gao
- Frontotemporal Dementia Research Center, RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
11
|
Singh SB, Rajput SS, Sharma A, Kataria S, Dutta P, Ananthanarayanan V, Nandi A, Patil S, Majumdar A, Subramanyam D. Pathogenic Huntingtin aggregates alter actin organization and cellular stiffness resulting in stalled clathrin-mediated endocytosis. eLife 2024; 13:e98363. [PMID: 39382268 PMCID: PMC11643626 DOI: 10.7554/elife.98363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/01/2024] [Indexed: 10/10/2024] Open
Abstract
Aggregation of mutant forms of Huntingtin is the underlying feature of neurodegeneration observed in Huntington's disorder. In addition to neurons, cellular processes in non-neuronal cell types are also shown to be affected. Cells expressing neurodegeneration-associated mutant proteins show altered uptake of ligands, suggestive of impaired endocytosis, in a manner as yet unknown. Using live cell imaging, we show that clathrin-mediated endocytosis (CME) is affected in Drosophila hemocytes and mammalian cells containing Huntingtin aggregates. This is also accompanied by alterations in the organization of the actin cytoskeleton resulting in increased cellular stiffness. Further, we find that Huntingtin aggregates sequester actin and actin-modifying proteins. Overexpression of Hip1 or Arp3 (actin-interacting proteins) could restore CME and cellular stiffness in cells containing Huntingtin aggregates. Neurodegeneration driven by pathogenic Huntingtin was also rescued upon overexpression of either Hip1 or Arp3 in Drosophila. Examination of other pathogenic aggregates revealed that TDP-43 also displayed defective CME, altered actin organization and increased stiffness, similar to pathogenic Huntingtin. Together, our results point to an intimate connection between dysfunctional CME, actin misorganization and increased cellular stiffness caused by alteration in the local intracellular environment by pathogenic aggregates.
Collapse
Affiliation(s)
- Surya Bansi Singh
- National Centre for Cell Science, SP Pune University CampusPuneIndia
- SP Pune UniversityPuneIndia
| | - Shatruhan Singh Rajput
- Indian Institute of Science Education and ResearchPuneIndia
- Department of Biochemistry, University of Cambridge, 80 Tennis Court RoadCambridgeUnited Kingdom
| | - Aditya Sharma
- Department of Computer Science and Engineering, Indian Institute of Technology Bombay, PowaiMumbaiIndia
| | - Sujal Kataria
- Indian Institute of Science Education and ResearchPuneIndia
| | - Priyanka Dutta
- National Centre for Cell Science, SP Pune University CampusPuneIndia
| | - Vaishnavi Ananthanarayanan
- EMBL Australia Node in Single Molecule Science, School of Biomedical Sciences, University of New South WalesSydneyAustralia
| | - Amitabha Nandi
- Department of Physics, Indian Institute of Technology, Bombay PowaiMumbaiIndia
| | | | - Amitabha Majumdar
- National Centre for Cell Science, SP Pune University CampusPuneIndia
| | - Deepa Subramanyam
- National Centre for Cell Science, SP Pune University CampusPuneIndia
| |
Collapse
|
12
|
Tan S, Chi H, Wang P, Zhao R, Zhang Q, Gao Z, Xue H, Tang Q, Li G. Protein tyrosine phosphatase receptor type O serves as a key regulator of insulin resistance-induced α-synuclein aggregation in Parkinson's disease. Cell Mol Life Sci 2024; 81:403. [PMID: 39276174 PMCID: PMC11401831 DOI: 10.1007/s00018-024-05436-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/05/2024] [Accepted: 09/02/2024] [Indexed: 09/16/2024]
Abstract
Insulin resistance (IR) was found to be a critical element in the pathogenesis of Parkinson's disease (PD), facilitating abnormal α-synuclein (α-Syn) aggregation in neurons and thus promoting PD development. However, how IR contributes to abnormal α-Syn aggregation remains ill-defined. Here, we analyzed six PD postmortem brain transcriptome datasets to reveal module genes implicated in IR-mediated α-Syn aggregation. In addition, we induced IR in cultured dopaminergic (DA) neurons overexpressing α-Syn to identify IR-modulated differentially expressed genes (DEGs). Integrated analysis of data from PD patients and cultured neurons revealed 226 genes involved in α-Syn aggregation under IR conditions, of which 53 exhibited differential expression between PD patients and controls. Subsequently, we conducted an integrated analysis of the 53 IR-modulated genes employing transcriptome data from PD patients with different Braak stages and DA neuron subclasses with varying α-Syn aggregation scores. Protein tyrosine phosphatase receptor type O (PTPRO) was identified to be closely associated with PD progression and α-Syn aggregation. Experimental validation in a cultured PD cell model confirmed that both mRNA and protein of PTPRO were reduced under IR conditions, and the downregulation of PTPRO significantly facilitated α-Syn aggregation and cell death. Collectively, our findings identified PTPRO as a key regulator in IR-mediated α-Syn aggregation and uncovered its prospective utility as a therapeutic target in PD patients with IR.
Collapse
Affiliation(s)
- Shichuan Tan
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Brain Health and Function Remodeling, Jinan, 250012, China
- Department of Emergency Neurosurgical Intensive Care Unit, Qilu Hospital, Shandong University, Jinan, 250012, Shandong, China
| | - Huizhong Chi
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Brain Health and Function Remodeling, Jinan, 250012, China
| | - Pin Wang
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, National Health Commission (NHC) Key Laboratory of Otorhinolaryngology, Shandong University, Jinan, 250012, Shandong, China
| | - Rongrong Zhao
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Brain Health and Function Remodeling, Jinan, 250012, China
| | - Qinran Zhang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, China
- Department of Epidemiology and Health Statistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zijie Gao
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Brain Health and Function Remodeling, Jinan, 250012, China
| | - Hao Xue
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Brain Health and Function Remodeling, Jinan, 250012, China
| | - Qilin Tang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, China.
- Shandong Key Laboratory of Brain Health and Function Remodeling, Jinan, 250012, China.
| | - Gang Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, China.
- Shandong Key Laboratory of Brain Health and Function Remodeling, Jinan, 250012, China.
| |
Collapse
|
13
|
Chen YR, Harel I, Singh PP, Ziv I, Moses E, Goshtchevsky U, Machado BE, Brunet A, Jarosz DF. Tissue-specific landscape of protein aggregation and quality control in an aging vertebrate. Dev Cell 2024; 59:1892-1911.e13. [PMID: 38810654 PMCID: PMC11265985 DOI: 10.1016/j.devcel.2024.04.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/13/2024] [Accepted: 04/15/2024] [Indexed: 05/31/2024]
Abstract
Protein aggregation is a hallmark of age-related neurodegeneration. Yet, aggregation during normal aging and in tissues other than the brain is poorly understood. Here, we leverage the African turquoise killifish to systematically profile protein aggregates in seven tissues of an aging vertebrate. Age-dependent aggregation is strikingly tissue specific and not simply driven by protein expression differences. Experimental interrogation in killifish and yeast, combined with machine learning, indicates that this specificity is linked to protein-autonomous biophysical features and tissue-selective alterations in protein quality control. Co-aggregation of protein quality control machinery during aging may further reduce proteostasis capacity, exacerbating aggregate burden. A segmental progeria model with accelerated aging in specific tissues exhibits selectively increased aggregation in these same tissues. Intriguingly, many age-related protein aggregates arise in wild-type proteins that, when mutated, drive human diseases. Our data chart a comprehensive landscape of protein aggregation during vertebrate aging and identify strong, tissue-specific associations with dysfunction and disease.
Collapse
Affiliation(s)
- Yiwen R Chen
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Itamar Harel
- The Silberman Institute, the Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Param Priya Singh
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Inbal Ziv
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Eitan Moses
- The Silberman Institute, the Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| | - Uri Goshtchevsky
- The Silberman Institute, the Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| | - Ben E Machado
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Anne Brunet
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; Glenn Center for the Biology of Aging, Stanford University, Stanford, CA 94305, USA.
| | - Daniel F Jarosz
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
14
|
Hipp MS, Hartl FU. Interplay of Proteostasis Capacity and Protein Aggregation: Implications for Cellular Function and Disease. J Mol Biol 2024; 436:168615. [PMID: 38759929 DOI: 10.1016/j.jmb.2024.168615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
Eukaryotic cells are equipped with an intricate proteostasis network (PN), comprising nearly 3,000 components dedicated to preserving proteome integrity and sustaining protein homeostasis. This protective system is particularly important under conditions of external and intrinsic cell stress, where inherently dynamic proteins may unfold and lose functionality. A decline in proteostasis capacity is associated with the aging process, resulting in a reduced folding efficiency of newly synthesized proteins and a deficit in the cellular capacity to degrade misfolded proteins. A critical consequence of PN insufficiency is the accumulation of cytotoxic protein aggregates that underlie various age-related neurodegenerative conditions and other pathologies. By interfering with specific proteostasis components, toxic aggregates place an excessive burden on the PN's ability to maintain proteome integrity. This initiates a feed-forward loop, wherein the generation of misfolded and aggregated proteins ultimately leads to proteostasis collapse and cellular demise.
Collapse
Affiliation(s)
- Mark S Hipp
- Department of Biomedical Sciences, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan, 1, 9713 AV Groningen, the Netherlands; Research School of Behavioural and Cognitive Neurosciences, University of Groningen, Groningen, the Netherlands; School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany.
| | - F Ulrich Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| |
Collapse
|
15
|
Sharma A, Shah OP, Sharma L, Gulati M, Behl T, Khalid A, Mohan S, Najmi A, Zoghebi K. Molecular Chaperones as Therapeutic Target: Hallmark of Neurodegenerative Disorders. Mol Neurobiol 2024; 61:4750-4767. [PMID: 38127187 DOI: 10.1007/s12035-023-03846-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023]
Abstract
Misfolded and aggregated proteins build up in neurodegenerative illnesses, which causes neuronal dysfunction and ultimately neuronal death. In the last few years, there has been a significant upsurge in the level of interest towards the function of molecular chaperones in the control of misfolding and aggregation. The crucial molecular chaperones implicated in neurodegenerative illnesses are covered in this review article, along with a variety of their different methods of action. By aiding in protein folding, avoiding misfolding, and enabling protein breakdown, molecular chaperones serve critical roles in preserving protein homeostasis. By aiding in protein folding, avoiding misfolding, and enabling protein breakdown, molecular chaperones have integral roles in preserving regulation of protein balance. It has been demonstrated that aging, a significant risk factor for neurological disorders, affects how molecular chaperones function. The aggregation of misfolded proteins and the development of neurodegeneration may be facilitated by the aging-related reduction in chaperone activity. Molecular chaperones have also been linked to the pathophysiology of several instances of neuron withering illnesses, enumerating as Parkinson's disease, Huntington's disease, and Alzheimer's disease. Molecular chaperones have become potential therapy targets concerning with the prevention and therapeutic approach for brain disorders due to their crucial function in protein homeostasis and their connection to neurodegenerative illnesses. Protein homeostasis can be restored, and illness progression can be slowed down by methods that increase chaperone function or modify their expression. This review emphasizes the importance of molecular chaperones in the context of neuron withering disorders and their potential as therapeutic targets for brain disorders.
Collapse
Affiliation(s)
- Aditi Sharma
- School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, India
| | - Om Prakash Shah
- School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, India
| | - Lalit Sharma
- School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 1444411, India
- ARCCIM, Faculty of Health, University of Technology Sydney, Ultimo, NSW, 20227, Australia
| | - Tapan Behl
- Amity School of Pharmaceutical Sciences, Amity University, Mohali, Punjab, India, Amity University, Mohali, India.
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, 45142, Saudi Arabia
- Medicinal and Aromatic Plants Research Institute, National Center for Research, P.O. Box 2424, 11111, Khartoum, Sudan
| | - Syam Mohan
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, 45142, Saudi Arabia.
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India.
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - Asim Najmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, P.O. Box 114, Jazan, Saudi Arabia
| | - Khalid Zoghebi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, P.O. Box 114, Jazan, Saudi Arabia
| |
Collapse
|
16
|
Fishman-Jacob T, Youdim MBH. A sporadic Parkinson's disease model via silencing of the ubiquitin-proteasome/E3 ligase component, SKP1A. J Neural Transm (Vienna) 2024; 131:675-707. [PMID: 37644186 PMCID: PMC11192832 DOI: 10.1007/s00702-023-02687-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/15/2023] [Indexed: 08/31/2023]
Abstract
Our and other's laboratory microarray-derived transcriptomic studies in human PD substantia nigra pars compacta (SNpc) samples have opened an avenue to concentrate on potential gene intersections or cross-talks along the dopaminergic (DAergic) neurodegenerative cascade in sporadic PD (SPD). One emerging gene candidate identified was SKP1A (p19, S-phase kinase-associated protein 1A), found significantly decreased in the SNpc as confirmed later at the protein level. SKP1 is part of the Skp1, Cullin 1, F-box protein (SCF) complex, the largest known class of sophisticated ubiquitin-proteasome/E3-ligases and was found to directly interact with FBXO7, a gene defective in PARK15-linked PD. This finding has led us to the hypothesis that a targeted site-specific reduction of Skp1 levels in DAergic neuronal cell culture and animal systems may result in a progressive loss of DAergic neurons and hopefully recreate motor disabilities in animals. The second premise considers the possibility that both intrinsic and extrinsic factors (e.g., manipulation of selected genes and mitochondria impairing toxins), alleged to play central roles in DAergic neurodegeneration in PD, may act in concert as modifiers of Skp1 deficiency-induced phenotype alterations ('dual-hit' hypothesis of neurodegeneration). To examine a possible role of Skp1 in DAergic phenotype, we have initially knocked down the expression of SKP1A gene in an embryonic mouse SN-derived cell line (SN4741) with short hairpin RNA (shRNA) lentiviruses (LVs). The deficiency of SKP1A closely recapitulated cardinal features of the DAergic pathology of human PD, such as decreased expression of DAergic phenotypic markers and cell cycle aberrations. Furthermore, the knocked down cells displayed a lethal phenotype when induced to differentiate exhibiting proteinaceous round inclusion structures, which were almost identical in composition to human Lewy bodies, a hallmark of PD. These findings support a role for Skp1 in neuronal phenotype, survival, and differentiation. The identification of Skp1 as a key player in DAergic neuron function suggested that a targeted site-specific reduction of Skp1 levels in mice SNpc may result in a progressive loss of DAergic neurons and terminal projections in the striatum. The injected LV SKP1shRNA to mouse SN resulted in decreased expression of Skp1 protein levels within DAergic neurons and loss of tyrosine hydroxylase immunoreactivity (TH-IR) in both SNpc and striatum that was accompanied by time-dependent motor disabilities. The reduction of the vertical movements, that is rearing, may be reminiscent of the early occurrence of hypokinesia and axial, postural instability in PD. According to the 'dual-hit' hypothesis of neurodegenerative diseases, it is predicted that gene-gene and/or gene-environmental factors would act in concert or sequentially to propagate the pathological process of PD. Our findings are compatible with this conjecture showing that the genetic vulnerability caused by knock down of SKP1A renders DAergic SN4741 cells especially sensitive to genetic reduction of Aldh1 and exposure to the external stressors MPP+ and DA, which have been implicated in PD pathology. Future consideration should be given in manipulation SKP1A expression as therapeutic window, via its induction genetically or pharmacological, to prevent degeneration of the nigra striatal dopamine neurons, since UPS is defective.
Collapse
Affiliation(s)
- Tali Fishman-Jacob
- Youdim Pharmaceutical Ltd, New Northern Industrial Park, 1 Ha- Tsmikha St, Stern Building, Fl-3, P. O. Box 72, 2069207, Yokneam, Israel
| | - Moussa B H Youdim
- Youdim Pharmaceutical Ltd, New Northern Industrial Park, 1 Ha- Tsmikha St, Stern Building, Fl-3, P. O. Box 72, 2069207, Yokneam, Israel.
| |
Collapse
|
17
|
Kinger S, Jagtap YA, Kumar P, Choudhary A, Prasad A, Prajapati VK, Kumar A, Mehta G, Mishra A. Proteostasis in neurodegenerative diseases. Adv Clin Chem 2024; 121:270-333. [PMID: 38797543 DOI: 10.1016/bs.acc.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Proteostasis is essential for normal function of proteins and vital for cellular health and survival. Proteostasis encompasses all stages in the "life" of a protein, that is, from translation to functional performance and, ultimately, to degradation. Proteins need native conformations for function and in the presence of multiple types of stress, their misfolding and aggregation can occur. A coordinated network of proteins is at the core of proteostasis in cells. Among these, chaperones are required for maintaining the integrity of protein conformations by preventing misfolding and aggregation and guide those with abnormal conformation to degradation. The ubiquitin-proteasome system (UPS) and autophagy are major cellular pathways for degrading proteins. Although failure or decreased functioning of components of this network can lead to proteotoxicity and disease, like neuron degenerative diseases, underlying factors are not completely understood. Accumulating misfolded and aggregated proteins are considered major pathomechanisms of neurodegeneration. In this chapter, we have described the components of three major branches required for proteostasis-chaperones, UPS and autophagy, the mechanistic basis of their function, and their potential for protection against various neurodegenerative conditions, like Alzheimer's, Parkinson's, and Huntington's disease. The modulation of various proteostasis network proteins, like chaperones, E3 ubiquitin ligases, proteasome, and autophagy-associated proteins as therapeutic targets by small molecules as well as new and unconventional approaches, shows promise.
Collapse
Affiliation(s)
- Sumit Kinger
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, India
| | - Yuvraj Anandrao Jagtap
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, India
| | - Prashant Kumar
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, India
| | - Akash Choudhary
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, India
| | - Amit Prasad
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, University of Delhi South Campus, Dhaula Kuan, New Delhi, India
| | - Amit Kumar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, India
| | - Gunjan Mehta
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Telangana, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, India.
| |
Collapse
|
18
|
Kinnart I, Manders L, Heyninck T, Imberechts D, Praschberger R, Schoovaerts N, Verfaillie C, Verstreken P, Vandenberghe W. Elevated α-synuclein levels inhibit mitophagic flux. NPJ Parkinsons Dis 2024; 10:80. [PMID: 38594264 PMCID: PMC11004019 DOI: 10.1038/s41531-024-00696-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 03/26/2024] [Indexed: 04/11/2024] Open
Abstract
The pathogenic effect of SNCA gene multiplications indicates that elevation of wild-type α-synuclein levels is sufficient to cause Parkinson's disease (PD). Mitochondria have been proposed to be a major target of α-synuclein-induced damage. PINK1/parkin/DJ-1-mediated mitophagy is a defense strategy that allows cells to selectively eliminate severely damaged mitochondria. Here, we quantified mitophagic flux and non-mitochondrial autophagic flux in three models of increased α-synuclein expression: 1/Drosophila melanogaster that transgenically express human wild-type and mutant α-synuclein in flight muscle; 2/human skin fibroblasts transfected with α-synuclein or β-synuclein; and 3/human induced pluripotent stem cell (iPSC)-derived neurons carrying an extra copy of wild-type SNCA under control of a doxycycline-inducible promoter, allowing titratable α-synuclein upregulation. In each model, elevated α-synuclein levels potently suppressed mitophagic flux, while non-mitochondrial autophagy was preserved. In human neurons, a twofold increase in wild-type α-synuclein was already sufficient to induce this effect. PINK1 and parkin activation and mitochondrial translocation of DJ-1 after mitochondrial depolarization were not affected by α-synuclein upregulation. Overexpression of the actin-severing protein cofilin or treatment with CK666, an inhibitor of the actin-related protein 2/3 (Arp2/3) complex, rescued mitophagy in neurons with increased α-synuclein, suggesting that excessive actin network stabilization mediated the mitophagy defect. In conclusion, elevated α-synuclein levels inhibit mitophagic flux. Disruption of actin dynamics may play a key role in this effect.
Collapse
Affiliation(s)
- Inge Kinnart
- Department of Neurosciences, Laboratory for Parkinson Research, KU Leuven, Leuven, Belgium
| | - Liselot Manders
- Department of Neurosciences, Laboratory for Parkinson Research, KU Leuven, Leuven, Belgium
| | - Thibaut Heyninck
- Department of Neurosciences, Laboratory for Parkinson Research, KU Leuven, Leuven, Belgium
| | - Dorien Imberechts
- Department of Neurosciences, Laboratory for Parkinson Research, KU Leuven, Leuven, Belgium
| | - Roman Praschberger
- Department of Neurosciences, Laboratory for Neuronal Communication, KU Leuven, Leuven, Belgium
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
| | - Nils Schoovaerts
- Department of Neurosciences, Laboratory for Neuronal Communication, KU Leuven, Leuven, Belgium
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
| | | | - Patrik Verstreken
- Department of Neurosciences, Laboratory for Neuronal Communication, KU Leuven, Leuven, Belgium
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
| | - Wim Vandenberghe
- Department of Neurosciences, Laboratory for Parkinson Research, KU Leuven, Leuven, Belgium.
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium.
| |
Collapse
|
19
|
Imomnazarov K, Lopez-Scarim J, Bagheri I, Joers V, Tansey MG, Martín-Peña A. Biochemical Fractionation of Human α-Synuclein in a Drosophila Model of Synucleinopathies. Int J Mol Sci 2024; 25:3643. [PMID: 38612454 PMCID: PMC11011978 DOI: 10.3390/ijms25073643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
Synucleinopathies are a group of central nervous system pathologies that are characterized by the intracellular accumulation of misfolded and aggregated α-synuclein in proteinaceous depositions known as Lewy Bodies (LBs). The transition of α-synuclein from its physiological to pathological form has been associated with several post-translational modifications such as phosphorylation and an increasing degree of insolubility, which also correlate with disease progression in post-mortem specimens from human patients. Neuronal expression of α-synuclein in model organisms, including Drosophila melanogaster, has been a typical approach employed to study its physiological effects. Biochemical analysis of α-synuclein solubility via high-speed ultracentrifugation with buffers of increasing detergent strength offers a potent method for identification of α-synuclein biochemical properties and the associated pathology stage. Unfortunately, the development of a robust and reproducible method for the evaluation of human α-synuclein solubility isolated from Drosophila tissues has remained elusive. Here, we tested different detergents for their ability to solubilize human α-synuclein carrying the pathological mutation A53T from the brains of aged flies. We also assessed the effect of sonication on the solubility of human α-synuclein and optimized a protocol to discriminate the relative amounts of soluble/insoluble human α-synuclein from dopaminergic neurons of the Drosophila brain. Our data established that, using a 5% SDS buffer, the three-step protocol separates cytosolic soluble, detergent-soluble and insoluble proteins in three sequential fractions according to their chemical properties. This protocol shows that sonication breaks down α-synuclein insoluble complexes from the fly brain, making them soluble in the SDS buffer and thus enriching the detergent-soluble fraction of the protocol.
Collapse
Affiliation(s)
- Khondamir Imomnazarov
- Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA; (K.I.); (J.L.-S.); (I.B.); (V.J.); (M.G.T.)
| | - Joshua Lopez-Scarim
- Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA; (K.I.); (J.L.-S.); (I.B.); (V.J.); (M.G.T.)
| | - Ila Bagheri
- Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA; (K.I.); (J.L.-S.); (I.B.); (V.J.); (M.G.T.)
| | - Valerie Joers
- Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA; (K.I.); (J.L.-S.); (I.B.); (V.J.); (M.G.T.)
| | - Malú Gámez Tansey
- Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA; (K.I.); (J.L.-S.); (I.B.); (V.J.); (M.G.T.)
- Fixel Institute for Neurological Diseases, Department of Neurology, University of Florida, Gainesville, FL 32610, USA
| | - Alfonso Martín-Peña
- Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA; (K.I.); (J.L.-S.); (I.B.); (V.J.); (M.G.T.)
| |
Collapse
|
20
|
Sakai T, Ogata A, Ikenuma H, Yamada T, Hattori S, Abe J, Imamura S, Ichise M, Tada M, Kakita A, Koyama H, Suzuki M, Kato T, Ito K, Kimura Y. A novel PET probe to selectively image heat shock protein 90α/β isoforms in the brain. EJNMMI Radiopharm Chem 2024; 9:19. [PMID: 38436869 PMCID: PMC10912062 DOI: 10.1186/s41181-024-00248-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/22/2024] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND Heat shock proteins (HSPs) are present throughout the brain. They function as molecular chaperones, meaning they help with the folding and unfolding of large protein complexes. These chaperones are vital in the development of neuropathological conditions such as Alzheimer's disease and Lewy body disease, with HSP90, a specific subtype of HSP, playing a key role. Many studies have shown that drugs that inhibit HSP90 activity have beneficial effects in the neurodegenerative diseases. Therefore, HSP90 PET imaging ligand can be used effectively to study HSP90 in neurodegenerative diseases. Among four HSP90 isoforms, two cytosolic isoforms (HSP90α and HSP90β) thought to be involved in the structural homeostasis of the proteins related to the neurodegenerative diseases. Currently, no useful PET imaging ligands selectively targeting the two cytosolic isoforms of HSP90 have been available yet. RESULTS In this study, we developed a novel positron emission tomography (PET) imaging ligand, [11C]BIIB021, by 11C-radiolabeling (a positron emitter with a half-life of 20.4 min) 6-Chloro-9-[(4-methoxy-3,5-dimethylpyridin-2-yl)methyl]-9H-purin-2-amine (BIIB021), an inhibitor with a high affinity for and selectivity to HSP90α and HSP90β. [11C]BIIB021 was synthesized with a high yield, molar activity and radiochemical purity. [11C]BIIB021 showed a high binding affinity for rat brain homogenate as well as human recombinant HSP90α and HSP90β proteins. Radioactivity was well detected in the rat brain (SUV 1.4). It showed clear specific binding in PET imaging of healthy rats and autoradiography of healthy rat and human brain sections. Radiometabolite was detected in the brain, however, total distribution volume was well quantified using dual-input graphical model. Inhibition of p-glycoprotein increased brain radioactivity concentrations. However, total distribution volume values with and without p-glycoprotein inhibition were nearly the same. CONCLUSIONS We have developed a new PET imaging agent, [11C]BIIB021, specifically targeting HSP90α/β. We have been successful in synthesizing [11C]BIIB021 and in vitro and in vivo imaging HSP90α/β. However, the quantification of HSP90α/β is complicated by the presence of radiometabolites in the brain and the potential to be a substrate for p-glycoprotein. Further efforts are needed to develop radioligand suitable for imaging of HSP90α/β.
Collapse
Affiliation(s)
- Takayuki Sakai
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, Research Institute, National Center for Geriatrics and Gerontology (NCGG), 7-430 Morioka-cho, Obu, Aichi, 474-8511, Japan
| | - Aya Ogata
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, Research Institute, National Center for Geriatrics and Gerontology (NCGG), 7-430 Morioka-cho, Obu, Aichi, 474-8511, Japan
- Department of Pharmacy, Faculty of Pharmacy, Gifu University of Medical Science (GUMS), Kani, Japan
| | - Hiroshi Ikenuma
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, Research Institute, National Center for Geriatrics and Gerontology (NCGG), 7-430 Morioka-cho, Obu, Aichi, 474-8511, Japan
| | - Takashi Yamada
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, Research Institute, National Center for Geriatrics and Gerontology (NCGG), 7-430 Morioka-cho, Obu, Aichi, 474-8511, Japan
| | - Saori Hattori
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, Research Institute, National Center for Geriatrics and Gerontology (NCGG), 7-430 Morioka-cho, Obu, Aichi, 474-8511, Japan
| | - Junichiro Abe
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, Research Institute, National Center for Geriatrics and Gerontology (NCGG), 7-430 Morioka-cho, Obu, Aichi, 474-8511, Japan
| | - Shinichi Imamura
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, Research Institute, National Center for Geriatrics and Gerontology (NCGG), 7-430 Morioka-cho, Obu, Aichi, 474-8511, Japan
| | - Masanori Ichise
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, Research Institute, National Center for Geriatrics and Gerontology (NCGG), 7-430 Morioka-cho, Obu, Aichi, 474-8511, Japan
| | - Mari Tada
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Hiroko Koyama
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu, Japan
| | - Masaaki Suzuki
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu, Japan
| | - Takashi Kato
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, Research Institute, National Center for Geriatrics and Gerontology (NCGG), 7-430 Morioka-cho, Obu, Aichi, 474-8511, Japan
| | - Kengo Ito
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, Research Institute, National Center for Geriatrics and Gerontology (NCGG), 7-430 Morioka-cho, Obu, Aichi, 474-8511, Japan
| | - Yasuyuki Kimura
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, Research Institute, National Center for Geriatrics and Gerontology (NCGG), 7-430 Morioka-cho, Obu, Aichi, 474-8511, Japan.
| |
Collapse
|
21
|
Imomnazarov K, Lopez-Scarim J, Bagheri I, Joers V, Tansey MG, Martín-Peña A. Biochemical fractionation of human α-Synuclein in a Drosophila model of synucleinopathies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.05.579034. [PMID: 38370694 PMCID: PMC10871193 DOI: 10.1101/2024.02.05.579034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Synucleinopathies are a group of central nervous system pathologies that are characterized by neuronal accumulation of misfolded and aggregated α-synuclein in proteinaceous depositions known as Lewy Bodies (LBs). The transition of α-synuclein from its physiological to pathological form has been associated with several post-translational modifications such as phosphorylation and an increasing degree of insolubility, which also correlate with disease progression in postmortem specimens from human patients. Neuronal expression of α-synuclein in model organisms, including Drosophila melanogaster, has been a typical approach employed to study its physiological effects. Biochemical analysis of α-synuclein solubility via high-speed ultracentrifugation with buffers of increasing detergent strength offers a potent method for identification of α-synuclein biochemical properties and the associated pathology stage. Unfortunately, the development of a robust and reproducible method for evaluation of human α-synuclein solubility isolated from Drosophila tissues has remained elusive. Here, we tested different detergents for their ability to solubilize human α-synuclein carrying the pathological mutation A53T from brains of aged flies. We also assessed the effect of sonication on solubility of human α-synuclein and optimized a protocol to discriminate relative amounts of soluble/insoluble human α-synuclein from dopaminergic neurons of the Drosophila brain. Our data established that, using a 5% SDS buffer, the 3-step protocol distinguishes between cytosolic soluble proteins in fraction 1, detergent-soluble proteins in fraction 2 and insoluble proteins in fraction 3. This protocol shows that sonication breaks down α-synuclein insoluble complexes from the fly brain, making them soluble in the SDS buffer and enriching fraction 2 of the protocol.
Collapse
Affiliation(s)
- Khondamir Imomnazarov
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute
| | - Joshua Lopez-Scarim
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute
| | - Ila Bagheri
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute
| | - Valerie Joers
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute
| | - Malú Gámez Tansey
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute
- Fixel Institute for Neurological Diseases, University of Florida
| | - Alfonso Martín-Peña
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute
| |
Collapse
|
22
|
Rao NR, Upadhyay A, Savas JN. Derailed protein turnover in the aging mammalian brain. Mol Syst Biol 2024; 20:120-139. [PMID: 38182797 PMCID: PMC10897147 DOI: 10.1038/s44320-023-00009-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 01/07/2024] Open
Abstract
Efficient protein turnover is essential for cellular homeostasis and organ function. Loss of proteostasis is a hallmark of aging culminating in severe dysfunction of protein turnover. To investigate protein turnover dynamics as a function of age, we performed continuous in vivo metabolic stable isotope labeling in mice along the aging continuum. First, we discovered that the brain proteome uniquely undergoes dynamic turnover fluctuations during aging compared to heart and liver tissue. Second, trends in protein turnover in the brain proteome during aging showed sex-specific differences that were tightly tied to cellular compartments. Next, parallel analyses of the insoluble proteome revealed that several cellular compartments experience hampered turnover, in part due to misfolding. Finally, we found that age-associated fluctuations in proteasome activity were associated with the turnover of core proteolytic subunits, which was recapitulated by pharmacological suppression of proteasome activity. Taken together, our study provides a proteome-wide atlas of protein turnover across the aging continuum and reveals a link between the turnover of individual proteasome subunits and the age-associated decline in proteasome activity.
Collapse
Affiliation(s)
- Nalini R Rao
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Arun Upadhyay
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Jeffrey N Savas
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
23
|
Perlegos AE, Durkin J, Belfer SJ, Rodriguez A, Shcherbakova O, Park K, Luong J, Bonini NM, Kayser MS. TDP-43 impairs sleep in Drosophila through Ataxin-2-dependent metabolic disturbance. SCIENCE ADVANCES 2024; 10:eadj4457. [PMID: 38198547 PMCID: PMC10780954 DOI: 10.1126/sciadv.adj4457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024]
Abstract
Neurodegenerative diseases such as amyotrophic lateral sclerosis and frontotemporal dementia are associated with substantial sleep disruption, which may accelerate cognitive decline and brain degeneration. Here, we define a role for trans-activation response element (TAR) DNA binding protein 43 (TDP-43), a protein associated with human neurodegenerative disease, in regulating sleep using Drosophila. Expression of TDP-43 severely disrupts sleep, and the sleep deficit is rescued by Atx2 knockdown. Brain RNA sequencing revealed that Atx2 RNA interference regulates transcripts enriched for small-molecule metabolic signaling in TDP-43 brains. Focusing on these Atx2-regulated genes, we identified suppressors of the TDP-43 sleep phenotype enriched for metabolism pathways. Knockdown of Atx2 or treatment with rapamycin attenuated the sleep phenotype and mitigated the disruption of small-molecule glycogen metabolism caused by TDP-43. Our findings provide a connection between toxicity of TDP-43 and sleep disturbances and highlight key aspects of metabolism that interplay with TDP-43 toxicity upon Atx2 rescue.
Collapse
Affiliation(s)
- Alexandra E. Perlegos
- Neuroscience Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jaclyn Durkin
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- National Institute of Neurological Disorders & Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Samuel J. Belfer
- Neuroscience Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anyara Rodriguez
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Oksana Shcherbakova
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kristen Park
- Neuroscience Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jenny Luong
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nancy M. Bonini
- Neuroscience Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew S. Kayser
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Chronobiology Sleep Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
24
|
Badaczewska-Dawid AE, Kuriata A, Pintado-Grima C, Garcia-Pardo J, Burdukiewicz M, Iglesias V, Kmiecik S, Ventura S. A3D Model Organism Database (A3D-MODB): a database for proteome aggregation predictions in model organisms. Nucleic Acids Res 2024; 52:D360-D367. [PMID: 37897355 PMCID: PMC10767922 DOI: 10.1093/nar/gkad942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/27/2023] [Accepted: 10/11/2023] [Indexed: 10/30/2023] Open
Abstract
Protein aggregation has been associated with aging and different pathologies and represents a bottleneck in the industrial production of biotherapeutics. Numerous past studies performed in Escherichia coli and other model organisms have allowed to dissect the biophysical principles underlying this process. This knowledge fuelled the development of computational tools, such as Aggrescan 3D (A3D) to forecast and re-design protein aggregation. Here, we present the A3D Model Organism Database (A3D-MODB) http://biocomp.chem.uw.edu.pl/A3D2/MODB, a comprehensive resource for the study of structural protein aggregation in the proteomes of 12 key model species spanning distant biological clades. In addition to A3D predictions, this resource incorporates information useful for contextualizing protein aggregation, including membrane protein topology and structural model confidence, as an indirect reporter of protein disorder. The database is openly accessible without any need for registration. We foresee A3D-MOBD evolving into a central hub for conducting comprehensive, multi-species analyses of protein aggregation, fostering the development of protein-based solutions for medical, biotechnological, agricultural and industrial applications.
Collapse
Affiliation(s)
| | - Aleksander Kuriata
- Biological and Chemical Research Center, Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Carlos Pintado-Grima
- Institut de Biotecnologia i de Biomedicina (IBB) and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Javier Garcia-Pardo
- Institut de Biotecnologia i de Biomedicina (IBB) and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Michał Burdukiewicz
- Institut de Biotecnologia i de Biomedicina (IBB) and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
- Clinical Research Centre, Medical University of Białystok, Kilińskiego 1, 15-369, Białystok, Poland
| | - Valentín Iglesias
- Institut de Biotecnologia i de Biomedicina (IBB) and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Sebastian Kmiecik
- Biological and Chemical Research Center, Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Salvador Ventura
- Institut de Biotecnologia i de Biomedicina (IBB) and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
25
|
Singh A, Ansari VA, Mahmood T, Ahsan F, Maheshwari S. Repercussion of Primary Nucleation Pathway: Dementia and Cognitive Impairment. Curr Aging Sci 2024; 17:196-204. [PMID: 38083895 DOI: 10.2174/0118746098243327231117113748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 07/05/2023] [Accepted: 09/08/2023] [Indexed: 09/10/2024]
Abstract
Neurodegenerative diseases, such as Alzheimer's, Parkinson's, and prion disease, are characterized by the conversion of normally soluble proteins or peptides into aggregated amyloidal fibrils. These diseases result in the permanent loss of specific types of neurons, making them incurable and devastating. Research on animal models of memory problems mentioned in this article contributes to our knowledge of brain health and functionality. Neurodegenerative disorders, which often lead to cognitive impairment and dementia, are becoming more prevalent as global life expectancy increases. These diseases cause severe neurological impairment and neuronal death, making them highly debilitating. Exploring and understanding these complex diseases offer significant insights into the fundamental processes essential for maintaining brain health. Exploring the intricate mechanisms underlying neurodegenerative diseases not only holds promise for potential treatments but also enhances our understanding of fundamental brain health and functionality. By unraveling the complexities of these disorders, researchers can pave the way for advancements in diagnosis, treatment, and ultimately, improving the lives of individuals affected by neurodegenerative diseases.
Collapse
Affiliation(s)
- Aditya Singh
- Faculty of Pharmacy, Integral University, Lucknow, 226026, India
| | - Vaseem A Ansari
- Faculty of Pharmacy, Integral University, Lucknow, 226026, India
| | - Tarique Mahmood
- Faculty of Pharmacy, Integral University, Lucknow, 226026, India
| | - Farogh Ahsan
- Faculty of Pharmacy, Integral University, Lucknow, 226026, India
| | | |
Collapse
|
26
|
Jastrzębski MK, Wójcik P, Stępnicki P, Kaczor AA. Effects of small molecules on neurogenesis: Neuronal proliferation and differentiation. Acta Pharm Sin B 2024; 14:20-37. [PMID: 38239239 PMCID: PMC10793103 DOI: 10.1016/j.apsb.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/06/2023] [Accepted: 09/13/2023] [Indexed: 01/22/2024] Open
Abstract
Neurons are believed to be non-proliferating cells. However, neuronal stem cells are still present in certain areas of the adult brain, although their proliferation diminishes with age. Just as with other cells, their proliferation and differentiation are modulated by various mechanisms. These mechanisms are foundational to the strategies developed to induce neuronal proliferation and differentiation, with potential therapeutic applications for neurodegenerative diseases. The most common among these diseases are Parkinson's disease and Alzheimer's disease, associated with the formation of β -amyloid (Aβ ) aggregates which cause a reduction in the number of neurons. Compounds such as LiCl, 4-aminothiazoles, Pregnenolone, ACEA, harmine, D2AAK1, methyl 3,4-dihydroxybenzoate, and shikonin may induce neuronal proliferation/differentiation through the activation of pathways: MAPK ERK, PI3K/AKT, NFκ B, Wnt, BDNF, and NPAS3. Moreover, combinations of these compounds can potentially transform somatic cells into neurons. This transformation process involves the activation of neuron-specific transcription factors such as NEUROD1, NGN2, ASCL1, and SOX2, which subsequently leads to the transcription of downstream genes, culminating in the transformation of somatic cells into neurons. Neurodegenerative diseases are not the only conditions where inducing neuronal proliferation could be beneficial. Consequently, the impact of pro-proliferative compounds on neurons has also been researched in mouse models of Alzheimer's disease.
Collapse
Affiliation(s)
- Michał K. Jastrzębski
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Medical University of Lublin, Faculty of Pharmacy, Lublin PL-20093, Poland
| | - Piotr Wójcik
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Medical University of Lublin, Faculty of Pharmacy, Lublin PL-20093, Poland
| | - Piotr Stępnicki
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Medical University of Lublin, Faculty of Pharmacy, Lublin PL-20093, Poland
| | - Agnieszka A. Kaczor
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Medical University of Lublin, Faculty of Pharmacy, Lublin PL-20093, Poland
- School of Pharmacy, University of Eastern Finland, Kuopio FI-70211, Finland
| |
Collapse
|
27
|
Hu J, Guan X, Zhao M, Xie P, Guo J, Tan J. Genome-wide CRISPR-Cas9 Knockout Screening Reveals a TSPAN3-mediated Endo-lysosome Pathway Regulating the Degradation of α-Synuclein Oligomers. Mol Neurobiol 2023; 60:6731-6747. [PMID: 37477766 DOI: 10.1007/s12035-023-03495-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 07/09/2023] [Indexed: 07/22/2023]
Abstract
Misfolding and aggregation of α-Synuclein (α-Syn), which are hallmark pathological features of neurodegenerative diseases such as Parkinson's disease (PD) and dementia with Lewy Bodies, continue to be significant areas of research. Among the diverse forms of α-Syn - monomer, oligomer, and fibril, the oligomer is considered the most toxic. However, the mechanisms governing α-Syn oligomerization are not yet fully understood. In this study, we utilized genome-wide CRISPR/Cas9 loss-of-function screening in human HEK293 cells to identify negative regulators of α-Syn oligomerization. We found that tetraspanin 3 (TSPAN3), a presumptive four-pass transmembrane protein, but not its homolog TSPAN7, significantly modulates α-Syn oligomer levels. TSPAN3 was observed to interact with α-Syn oligomers, regulate the amount of α-Syn oligomers on the cell membrane, and promote their degradation via the clathrin-AP2 mediated endo-lysosome pathway. Our findings highlight TSPAN3 as a potential regulator of α-Syn oligomers, presenting a promising target for future PD prevention and treatment strategies.
Collapse
Affiliation(s)
- JunJian Hu
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Science, Central South University, Changsha, 410078, Hunan, China
- Department of Central Laboratory, SSL Central Hospital of Dongguan City, Affiliated Dongguan Shilong People's Hospital of Southern Medical University, Dongguan, China
| | - Xinjie Guan
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Science, Central South University, Changsha, 410078, Hunan, China
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, China
| | - Miao Zhao
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Science, Central South University, Changsha, 410078, Hunan, China
| | - Pengqing Xie
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Science, Central South University, Changsha, 410078, Hunan, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Jieqiong Tan
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Science, Central South University, Changsha, 410078, Hunan, China.
- Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, Hunan, China.
| |
Collapse
|
28
|
Swinter K, Salah D, Rathnayake R, Gunawardena S. PolyQ-Expansion Causes Mitochondria Fragmentation Independent of Huntingtin and Is Distinct from Traumatic Brain Injury (TBI)/Mechanical Stress-Mediated Fragmentation Which Results from Cell Death. Cells 2023; 12:2406. [PMID: 37830620 PMCID: PMC10572422 DOI: 10.3390/cells12192406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/14/2023] Open
Abstract
Mitochondrial dysfunction has been reported in many Huntington's disease (HD) models; however, it is unclear how these defects occur. Here, we test the hypothesis that excess pathogenic huntingtin (HTT) impairs mitochondrial homeostasis, using Drosophila genetics and pharmacological inhibitors in HD and polyQ-expansion disease models and in a mechanical stress-induced traumatic brain injury (TBI) model. Expression of pathogenic HTT caused fragmented mitochondria compared to normal HTT, but HTT did not co-localize with mitochondria under normal or pathogenic conditions. Expression of pathogenic polyQ (127Q) alone or in the context of Machado Joseph Disease (MJD) caused fragmented mitochondria. While mitochondrial fragmentation was not dependent on the cellular location of polyQ accumulations, the expression of a chaperone protein, excess of mitofusin (MFN), or depletion of dynamin-related protein 1 (DRP1) rescued fragmentation. Intriguingly, a higher concentration of nitric oxide (NO) was observed in polyQ-expressing larval brains and inhibiting NO production rescued polyQ-mediated fragmented mitochondria, postulating that DRP1 nitrosylation could contribute to excess fission. Furthermore, while excess PI3K, which suppresses polyQ-induced cell death, did not rescue polyQ-mediated fragmentation, it did rescue fragmentation caused by mechanical stress/TBI. Together, our observations suggest that pathogenic polyQ alone is sufficient to cause DRP1-dependent mitochondrial fragmentation upstream of cell death, uncovering distinct physiological mechanisms for mitochondrial dysfunction in polyQ disease and mechanical stress.
Collapse
Affiliation(s)
| | | | | | - Shermali Gunawardena
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY 14260, USA
| |
Collapse
|
29
|
Naskar A, Nayak A, Salaikumaran MR, Vishal SS, Gopal PP. Phase separation and pathologic transitions of RNP condensates in neurons: implications for amyotrophic lateral sclerosis, frontotemporal dementia and other neurodegenerative disorders. Front Mol Neurosci 2023; 16:1242925. [PMID: 37720552 PMCID: PMC10502346 DOI: 10.3389/fnmol.2023.1242925] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/21/2023] [Indexed: 09/19/2023] Open
Abstract
Liquid-liquid phase separation results in the formation of dynamic biomolecular condensates, also known as membrane-less organelles, that allow for the assembly of functional compartments and higher order structures within cells. Multivalent, reversible interactions between RNA-binding proteins (RBPs), including FUS, TDP-43, and hnRNPA1, and/or RNA (e.g., RBP-RBP, RBP-RNA, RNA-RNA), result in the formation of ribonucleoprotein (RNP) condensates, which are critical for RNA processing, mRNA transport, stability, stress granule assembly, and translation. Stress granules, neuronal transport granules, and processing bodies are examples of cytoplasmic RNP condensates, while the nucleolus and Cajal bodies are representative nuclear RNP condensates. In neurons, RNP condensates promote long-range mRNA transport and local translation in the dendrites and axon, and are essential for spatiotemporal regulation of gene expression, axonal integrity and synaptic function. Mutations of RBPs and/or pathologic mislocalization and aggregation of RBPs are hallmarks of several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and Alzheimer's disease. ALS/FTD-linked mutations of RBPs alter the strength and reversibility of multivalent interactions with other RBPs and RNAs, resulting in aberrant phase transitions. These aberrant RNP condensates have detrimental functional consequences on mRNA stability, localization, and translation, and ultimately lead to compromised axonal integrity and synaptic function in disease. Pathogenic protein aggregation is dependent on various factors, and aberrant dynamically arrested RNP condensates may serve as an initial nucleation step for pathologic aggregate formation. Recent studies have focused on identifying mechanisms by which neurons resolve phase transitioned condensates to prevent the formation of pathogenic inclusions/aggregates. The present review focuses on the phase separation of neurodegenerative disease-linked RBPs, physiological functions of RNP condensates, and the pathologic role of aberrant phase transitions in neurodegenerative disease, particularly ALS/FTD. We also examine cellular mechanisms that contribute to the resolution of aberrant condensates in neurons, and potential therapeutic approaches to resolve aberrantly phase transitioned condensates at a molecular level.
Collapse
Affiliation(s)
- Aditi Naskar
- Department of Pathology, Yale School of Medicine, New Haven, CT, United States
| | - Asima Nayak
- Department of Pathology, Yale School of Medicine, New Haven, CT, United States
| | | | - Sonali S. Vishal
- Department of Pathology, Yale School of Medicine, New Haven, CT, United States
| | - Pallavi P. Gopal
- Department of Pathology, Yale School of Medicine, New Haven, CT, United States
- Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
30
|
Dovonou A, Bolduc C, Soto Linan V, Gora C, Peralta Iii MR, Lévesque M. Animal models of Parkinson's disease: bridging the gap between disease hallmarks and research questions. Transl Neurodegener 2023; 12:36. [PMID: 37468944 PMCID: PMC10354932 DOI: 10.1186/s40035-023-00368-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/19/2023] [Indexed: 07/21/2023] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by motor and non-motor symptoms. More than 200 years after its first clinical description, PD remains a serious affliction that affects a growing proportion of the population. Prevailing treatments only alleviate symptoms; there is still neither a cure that targets the neurodegenerative processes nor therapies that modify the course of the disease. Over the past decades, several animal models have been developed to study PD. Although no model precisely recapitulates the pathology, they still provide valuable information that contributes to our understanding of the disease and the limitations of our treatment options. This review comprehensively summarizes the different animal models available for Parkinson's research, with a focus on those induced by drugs, neurotoxins, pesticides, genetic alterations, α-synuclein inoculation, and viral vector injections. We highlight their characteristics and ability to reproduce PD-like phenotypes. It is essential to realize that the strengths and weaknesses of each model and the induction technique at our disposal are determined by the research question being asked. Our review, therefore, seeks to better aid researchers by ensuring a concrete discernment of classical and novel animal models in PD research.
Collapse
Affiliation(s)
- Axelle Dovonou
- CERVO Brain Research Centre, 2601, Chemin de la Canardière, Québec, QC, G1J 2G3, Canada
| | - Cyril Bolduc
- CERVO Brain Research Centre, 2601, Chemin de la Canardière, Québec, QC, G1J 2G3, Canada
| | - Victoria Soto Linan
- CERVO Brain Research Centre, 2601, Chemin de la Canardière, Québec, QC, G1J 2G3, Canada
| | - Charles Gora
- CERVO Brain Research Centre, 2601, Chemin de la Canardière, Québec, QC, G1J 2G3, Canada
| | - Modesto R Peralta Iii
- CERVO Brain Research Centre, 2601, Chemin de la Canardière, Québec, QC, G1J 2G3, Canada
| | - Martin Lévesque
- CERVO Brain Research Centre, 2601, Chemin de la Canardière, Québec, QC, G1J 2G3, Canada.
- Department of Psychiatry and Neurosciences, Faculty of Medicine, Université Laval, Québec, QC, Canada.
| |
Collapse
|
31
|
Ayajuddin M, Chaurasia R, Das A, Modi P, Phom L, Koza Z, Yenisetti SC. Fluorescence microscopy-based sensitive method to quantify dopaminergic neurodegeneration in a Drosophila model of Parkinson's disease. Front Neurosci 2023; 17:1158858. [PMID: 37434762 PMCID: PMC10332464 DOI: 10.3389/fnins.2023.1158858] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 05/03/2023] [Indexed: 07/13/2023] Open
Abstract
Death of dopaminergic (DAergic) neurons in the substantia nigra pars compacta of the human brain is the characteristic pathological feature of Parkinson's disease (PD). On exposure to neurotoxicants, Drosophila too exhibits mobility defects and diminished levels of brain dopamine. In the fly model of sporadic PD, our laboratory has demonstrated that there is no loss of DAergic neuronal number, however, a significant reduction in fluorescence intensity (FI) of secondary antibodies that target the primary antibody-anti-tyrosine hydroxylase (TH). Here, we present a sensitive, economical, and repeatable assay to characterize neurodegeneration based on the quantification of FI of the secondary antibody. As the intensity of fluorescence correlates with the amount of TH synthesis, its reduction under PD conditions denotes the depletion in the TH synthesis, suggesting DAergic neuronal dysfunction. Reduction in TH protein synthesis is further confirmed through Bio-Rad Stain-Free Western Blotting. Quantification of brain DA and its metabolites (DOPAC and HVA) using HPLC-ECD further demonstrated the depleted DA level and altered DA metabolism as evident from enhanced DA turnover rate. Together all these PD marker studies suggest that FI quantification is a refined and sensitive method to understand the early stages of DAergic neurodegeneration. FI quantification is performed using ZEN 2012 SP2, a licensed software from Carl Zeiss, Germany. This method will be of good use to biologists, as it with few modifications, can also be implemented to characterize the extent of degeneration of different cell types. Unlike the expensive and cumbersome confocal microscopy, the present method using fluorescence microscopy will be a feasible option for fund-constrained neurobiology laboratories in developing countries.
Collapse
Affiliation(s)
- Mohamad Ayajuddin
- Drosophila Neurobiology Laboratory, Department of Zoology, Nagaland University (Central), Lumami, Nagaland, India
| | - Rahul Chaurasia
- Drosophila Neurobiology Laboratory, Department of Zoology, Nagaland University (Central), Lumami, Nagaland, India
| | - Abhik Das
- Drosophila Neurobiology Laboratory, Department of Zoology, Nagaland University (Central), Lumami, Nagaland, India
| | - Priyanka Modi
- Drosophila Neurobiology Laboratory, Department of Zoology, Nagaland University (Central), Lumami, Nagaland, India
| | - Limamanen Phom
- Drosophila Neurobiology Laboratory, Department of Zoology, Nagaland University (Central), Lumami, Nagaland, India
- Sao Chang Government College, Tuensang, Nagaland, India
| | - Zevelou Koza
- Drosophila Neurobiology Laboratory, Department of Zoology, Nagaland University (Central), Lumami, Nagaland, India
- Patkai Christian College (Autonomous), Dimapur, Nagaland, India
| | - Sarat Chandra Yenisetti
- Drosophila Neurobiology Laboratory, Department of Zoology, Nagaland University (Central), Lumami, Nagaland, India
| |
Collapse
|
32
|
Maor G, Dubreuil RR, Feany MB. α-synuclein promotes neuronal dysfunction and death by disrupting the binding of ankyrin to ß-spectrin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.02.543481. [PMID: 37333277 PMCID: PMC10274672 DOI: 10.1101/2023.06.02.543481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
α-synuclein plays a key role in the pathogenesis of Parkinson's disease and related disorders, but critical interacting partners and molecular mechanisms mediating neurotoxicity are incompletely understood. We show that α-synuclein binds directly to ß-spectrin. Using males and females in a Drosophila model of α-synuclein-related disorders we demonstrate that ß-spectrin is critical for α-synuclein neurotoxicity. Further, the ankyrin binding domain of ß-spectrin is required for α-synuclein binding and neurotoxicity. A key plasma membrane target of ankyrin, Na+/K+ ATPase, is mislocalized when human α-synuclein is expressed in Drosophila. Accordingly, membrane potential is depolarized in α-synuclein transgenic fly brains. We examine the same pathway in human neurons and find that Parkinson's disease patient-derived neurons with a triplication of the α-synuclein locus show disruption of the spectrin cytoskeleton, mislocalization of ankyrin and Na+/K+ ATPase, and membrane potential depolarization. Our findings define a specific molecular mechanism by which elevated levels of α-synuclein in Parkinson's disease and related α-synucleinopathies leads to neuronal dysfunction and death.
Collapse
Affiliation(s)
- Gali Maor
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Ronald R. Dubreuil
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois 60607
| | - Mel B. Feany
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
| |
Collapse
|
33
|
Sharma K, Sarkar J, Trisal A, Ghosh R, Dixit A, Singh AK. Targeting mitochondrial dysfunction to salvage cellular senescence for managing neurodegeneration. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 136:309-337. [PMID: 37437982 DOI: 10.1016/bs.apcsb.2023.02.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Aging is an inevitable phenomenon that causes a decline in bodily functions over time. One of the most important processes that play a role in aging is senescence. Senescence is characterized by accumulation of cells that are no longer functional but elude the apoptotic pathway. These cells secrete inflammatory molecules that comprise the senescence associated secretory phenotype (SASP). Several essential molecules such as p53, Rb, and p16INK4a regulate the senescence process. Mitochondrial regulation has been found to play an important role in senescence. Reactive oxygen species (ROS) generated from mitochondria can affect cellular senescence by inducing the persistent DNA damage response, thus stabilizing the senescence. Evidently, senescence plays a major contributory role to the development of age-related neurological disorders. In this chapter, we discuss the role of senescence in the progression and onset of several neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. Moreover, we also discuss the efficacy of certain molecules like MitoQ, SkQ1, and Latrepirdine that could be proven therapeutics with respect to these disorders by regulating mitochondrial activity.
Collapse
Affiliation(s)
- Komal Sharma
- Amity Institute of Neuropsychology and Neurosciences, Amity University Uttar Pradesh, Noida, India
| | - Joyobrata Sarkar
- Amity Institute of Neuropsychology and Neurosciences, Amity University Uttar Pradesh, Noida, India
| | - Anchal Trisal
- Amity Institute of Neuropsychology and Neurosciences, Amity University Uttar Pradesh, Noida, India
| | - Rishika Ghosh
- Amity Institute of Neuropsychology and Neurosciences, Amity University Uttar Pradesh, Noida, India
| | - Anubhuti Dixit
- Amity Institute of Neuropsychology and Neurosciences, Amity University Uttar Pradesh, Noida, India.
| | - Abhishek Kumar Singh
- Amity Institute of Neuropsychology and Neurosciences, Amity University Uttar Pradesh, Noida, India.
| |
Collapse
|
34
|
Singh A, Ansari VA, Ansari TM, Hasan SM, Ahsan F, Singh K, Wasim R, Maheshwari S, Ahmad A. Consequence of Dementia and Cognitive Impairment by Primary Nucleation Pathway. Horm Metab Res 2023; 55:304-314. [PMID: 37130536 DOI: 10.1055/a-2052-8462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
An acquired loss of cognition in several cognitive domains that is severe enough to interfere with social or professional functioning is called dementia. As well as a moderately in-depth mental status examination by a clinician to identify impairments in memory, language, attention, visuospatial cognition, such as spatial orientation, executive function, and mood, the diagnosis of dementia requires a history evaluating for cognitive decline and impairment in daily activities, with confirmation from a close friend or family member. The start and organization of the cognitive assessment can be helped by short screening tests for cognitive impairment. Clinical presentations show that neurodegenerative diseases are often incurable because patients permanently lose some types of neurons. It has been determined through an assessment that, at best, our understanding of the underlying processes is still rudimentary, which presents exciting new targets for further study as well as the development of diagnostics and drugs. A growing body of research suggests that they also advance our knowledge of the processes that are probably crucial for maintaining the health and functionality of the brain. We concentrate on a number of the animal models of memory problems that have been mentioned in this review article because dementia has numerous etiologies. Serious neurological impairment and neuronal death are the main features of neurodegenerative illnesses, which are also extremely crippling ailments. The most prevalent neurodegenerative disorders are followed by those primary nucleation pathways responsible for cognitive impairment and dementia.
Collapse
Affiliation(s)
- Aditya Singh
- Faculty of Pharmacy, Integral University, Lucknow, India
| | | | | | | | - Farogh Ahsan
- Faculty of Pharmacy, Integral University, Lucknow, India
| | - Kuldeep Singh
- Faculty of Pharmacy, Integral University, Lucknow, India
| | - Rufaida Wasim
- Faculty of Pharmacy, Integral University, Lucknow, India
| | | | - Asad Ahmad
- Faculty of Pharmacy, Integral University, Lucknow, India
| |
Collapse
|
35
|
Bujdoso R, Smith A, Fleck O, Spiropoulos J, Andréoletti O, Thackray AM. Prion disease modelled in Drosophila. Cell Tissue Res 2023; 392:47-62. [PMID: 35092497 PMCID: PMC10113284 DOI: 10.1007/s00441-022-03586-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 01/17/2022] [Indexed: 11/02/2022]
Abstract
Prion diseases are fatal neurodegenerative conditions of humans and various vertebrate species that are transmissible between individuals of the same or different species. A novel infectious moiety referred to as a prion is considered responsible for transmission of these conditions. Prion replication is believed to be the cause of the neurotoxicity that arises during prion disease pathogenesis. The prion hypothesis predicts that the transmissible prion agent consists of PrPSc, which is comprised of aggregated misfolded conformers of the normal host protein PrPC. It is important to understand the biology of transmissible prions and to identify genetic modifiers of prion-induced neurotoxicity. This information will underpin the development of therapeutic and control strategies for human and animal prion diseases. The most reliable method to detect prion infectivity is by in vivo transmission in a suitable experimental host, which to date have been mammalian species. Current prion bioassays are slow, cumbersome and relatively insensitive to low titres of prion infectivity, and do not lend themselves to rapid genetic analysis of prion disease. Here, we provide an overview of our novel studies that have led to the establishment of Drosophila melanogaster, a genetically well-defined invertebrate host, as a sensitive, versatile and economically viable animal model for the detection of mammalian prion infectivity and genetic modifiers of prion-induced toxicity.
Collapse
Affiliation(s)
- Raymond Bujdoso
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 OES, UK.
| | - Andrew Smith
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 OES, UK
| | - Oliver Fleck
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 OES, UK
| | - John Spiropoulos
- Pathology Department, Animal and Plant Health Agency (APHA), Weybridge, Woodham Lane, New Haw, Surrey, KT15 3NB, Addlestone, UK
| | - Olivier Andréoletti
- UMR INRA ENVT 1225-Hôtes-Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, 31076, Toulouse, France
| | - Alana M Thackray
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 OES, UK.
| |
Collapse
|
36
|
Zheng W, Xu X, Chen Y, Wang J, Zhang T, E Z, Chen S, Liu Y. Genome-Wide Identification, Molecular Characterization, and Involvement in Response to Abiotic and Biotic Stresses of the HSP70 Gene Family in Turbot ( Scophthalmus maximus). Int J Mol Sci 2023; 24:ijms24076025. [PMID: 37046999 PMCID: PMC10094059 DOI: 10.3390/ijms24076025] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 04/14/2023] Open
Abstract
Heat shock proteins 70 (HSP70s) are known to play essential roles in organisms' response mechanisms to various environmental stresses. However, no systematic identification and functional analysis has been conducted for HSP70s in the turbot (Scophthalmus maximus), a commercially important worldwide flatfish. Herein, 16 HSP70 genes unevenly distributed on nine chromosomes were identified in the turbot at the genome-wide level. Analyses of gene structure, motif composition, and phylogenetic relationships provided valuable data on the HSP70s regarding their evolution, classification, and functional diversity. Expression profiles of the HSP70 genes under five different stresses were investigated by examining multiple RNA-seq datasets. Results showed that 10, 6, 8, 10, and 9 HSP70 genes showed significantly up- or downregulated expression after heat-induced, salinity-induced, and Enteromyxum scophthalmi, Vibrio anguillarum, and Megalocytivirus infection-induced stress, respectively. Among them, hsp70 (hspa1a), hspa1b, and hspa5 showed significant responses to each kind of induced stress, and qPCR analyses further validated their involvement in comprehensive anti-stress, indicating their involvement in organisms' anti-stress mechanisms. These findings not only provide new insights into the biological function of HSP70s in turbot adapting to various environmental stresses, but also contribute to the development of molecular-based selective breeding programs for the production of stress-resistant turbot strains in the aquaculture industry.
Collapse
Affiliation(s)
- Weiwei Zheng
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Xiwen Xu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Qingdao 266071, China
| | - Yadong Chen
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
- Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Qingdao 266071, China
| | - Jing Wang
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Tingting Zhang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Zechen E
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Songlin Chen
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
- Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Qingdao 266071, China
| | - Yingjie Liu
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
- Chinese Academy of Fishery Sciences (CAFS), Beijing 100141, China
| |
Collapse
|
37
|
Forloni G. Alpha Synuclein: Neurodegeneration and Inflammation. Int J Mol Sci 2023; 24:ijms24065914. [PMID: 36982988 PMCID: PMC10059798 DOI: 10.3390/ijms24065914] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Alpha-Synuclein (α-Syn) is one of the most important molecules involved in the pathogenesis of Parkinson's disease and related disorders, synucleinopathies, but also in several other neurodegenerative disorders with a more elusive role. This review analyzes the activities of α-Syn, in different conformational states, monomeric, oligomeric and fibrils, in relation to neuronal dysfunction. The neuronal damage induced by α-Syn in various conformers will be analyzed in relation to its capacity to spread the intracellular aggregation seeds with a prion-like mechanism. In view of the prominent role of inflammation in virtually all neurodegenerative disorders, the activity of α-Syn will also be illustrated considering its influence on glial reactivity. We and others have described the interaction between general inflammation and cerebral dysfunctional activity of α-Syn. Differences in microglia and astrocyte activation have also been observed when in vivo the presence of α-Syn oligomers has been combined with a lasting peripheral inflammatory effect. The reactivity of microglia was amplified, while astrocytes were damaged by the double stimulus, opening new perspectives for the control of inflammation in synucleinopathies. Starting from our studies in experimental models, we extended the perspective to find useful pointers to orient future research and potential therapeutic strategies in neurodegenerative disorders.
Collapse
Affiliation(s)
- Gianluigi Forloni
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy
| |
Collapse
|
38
|
Yusuff T, Chang YC, Sang TK, Jackson GR, Chatterjee S. Codon-optimized TDP-43 mediates neurodegeneration in a Drosophila model of ALS/FTLD. Front Genet 2023; 14:881638. [PMID: 36968586 PMCID: PMC10034021 DOI: 10.3389/fgene.2023.881638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 02/13/2023] [Indexed: 03/11/2023] Open
Abstract
Transactive response DNA binding protein-43 (TDP-43) is known to mediate neurodegeneration associated with amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). The exact mechanism by which TDP-43 exerts toxicity in the brains, spinal cord, and lower motor neurons of affected patients remains unclear. In a novel Drosophila melanogaster model, we report gain-of-function phenotypes due to misexpression of insect codon-optimized version of human wild-type TDP-43 (CO-TDP-43) using both the binary GAL4/UAS system and direct promoter fusion constructs. The CO-TDP-43 model showed robust tissue specific phenotypes in the adult eye, wing, and bristles in the notum. Compared to non-codon optimized transgenic flies, the CO-TDP-43 flies produced increased amount of high molecular weight protein, exhibited pathogenic phenotypes, and showed cytoplasmic aggregation with both nuclear and cytoplasmic expression of TDP-43. Further characterization of the adult retina showed a disruption in the morphology and function of the photoreceptor neurons with the presence of acidic vacuoles that are characteristic of autophagy. Based on our observations, we propose that TDP-43 has the propensity to form toxic protein aggregates via a gain-of-function mechanism, and such toxic overload leads to activation of protein degradation pathways such as autophagy. The novel codon optimized TDP-43 model is an excellent resource that could be used in genetic screens to identify and better understand the exact disease mechanism of TDP-43 proteinopathies and find potential therapeutic targets.
Collapse
Affiliation(s)
- Tanzeen Yusuff
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch at Galveston, Galveston, TX, United States
- *Correspondence: Tanzeen Yusuff, ; Shreyasi Chatterjee,
| | - Ya-Chu Chang
- Department of Life Science, Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
- Brain Research Center, National Tsing Hua University, Hsinchu, Taiwan
| | - Tzu-Kang Sang
- Department of Life Science, Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
- Brain Research Center, National Tsing Hua University, Hsinchu, Taiwan
| | - George R. Jackson
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch at Galveston, Galveston, TX, United States
- Department of Neurology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
- Department of Neurology, Baylor College of Medicine, Houston, TX, United States
- National Parkinson’s Disease Research Education and Clinical Center, Michael E. DeBakey VA Medical Center, Houston, TX, United States
| | - Shreyasi Chatterjee
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch at Galveston, Galveston, TX, United States
- Department of Neurology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
- Department of Biochemistry, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
- *Correspondence: Tanzeen Yusuff, ; Shreyasi Chatterjee,
| |
Collapse
|
39
|
Lee RMQ, Koh TW. Genetic modifiers of synucleinopathies-lessons from experimental models. OXFORD OPEN NEUROSCIENCE 2023; 2:kvad001. [PMID: 38596238 PMCID: PMC10913850 DOI: 10.1093/oons/kvad001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/04/2023] [Accepted: 03/07/2023] [Indexed: 04/11/2024]
Abstract
α-Synuclein is a pleiotropic protein underlying a group of progressive neurodegenerative diseases, including Parkinson's disease and dementia with Lewy bodies. Together, these are known as synucleinopathies. Like all neurological diseases, understanding of disease mechanisms is hampered by the lack of access to biopsy tissues, precluding a real-time view of disease progression in the human body. This has driven researchers to devise various experimental models ranging from yeast to flies to human brain organoids, aiming to recapitulate aspects of synucleinopathies. Studies of these models have uncovered numerous genetic modifiers of α-synuclein, most of which are evolutionarily conserved. This review discusses what we have learned about disease mechanisms from these modifiers, and ways in which the study of modifiers have supported ongoing efforts to engineer disease-modifying interventions for synucleinopathies.
Collapse
Affiliation(s)
- Rachel Min Qi Lee
- Temasek Life Sciences Laboratory, 1 Research Link, Singapore, 117604, Singapore
| | - Tong-Wey Koh
- Temasek Life Sciences Laboratory, 1 Research Link, Singapore, 117604, Singapore
- Department of Biological Sciences, National University of Singapore, Block S3 #05-01, 16 Science Drive 4, Singapore, 117558, Singapore
| |
Collapse
|
40
|
Maor G, Dubreuil RR, Feany MB. α-Synuclein Promotes Neuronal Dysfunction and Death by Disrupting the Binding of Ankyrin to β-Spectrin. J Neurosci 2023; 43:1614-1626. [PMID: 36653193 PMCID: PMC10008058 DOI: 10.1523/jneurosci.1922-22.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/30/2022] [Accepted: 12/08/2022] [Indexed: 01/20/2023] Open
Abstract
α-Synuclein plays a key role in the pathogenesis of Parkinson's disease and related disorders, but critical interacting partners and molecular mechanisms mediating neurotoxicity are incompletely understood. We show that α-synuclein binds directly to β-spectrin. Using males and females in a Drosophila model of α-synuclein-related disorders, we demonstrate that β-spectrin is critical for α-synuclein neurotoxicity. Further, the ankyrin binding domain of β-spectrin is required for α-synuclein binding and neurotoxicity. A key plasma membrane target of ankyrin, Na+/K+ ATPase, is mislocalized when human α-synuclein is expressed in Drosophila Accordingly, membrane potential is depolarized in α-synuclein transgenic fly brains. We examine the same pathway in human neurons and find that Parkinson's disease patient-derived neurons with a triplication of the α-synuclein locus show disruption of the spectrin cytoskeleton, mislocalization of ankyrin and Na+/K+ ATPase, and membrane potential depolarization. Our findings define a specific molecular mechanism by which elevated levels of α-synuclein in Parkinson's disease and related α-synucleinopathies lead to neuronal dysfunction and death.SIGNIFICANCE STATEMENT The small synaptic vesicle associate protein α-synuclein plays a critical role in the pathogenesis of Parkinson's disease and related disorders, but the disease-relevant binding partners of α-synuclein and proximate pathways critical for neurotoxicity require further definition. We show that α-synuclein binds directly to β-spectrin, a key cytoskeletal protein required for localization of plasma membrane proteins and maintenance of neuronal viability. Binding of α-synuclein to β-spectrin alters the organization of the spectrin-ankyrin complex, which is critical for localization and function of integral membrane proteins, including Na+/K+ ATPase. These finding outline a previously undescribed mechanism of α-synuclein neurotoxicity and thus suggest potential new therapeutic approaches in Parkinson's disease and related disorders.
Collapse
Affiliation(s)
- Gali Maor
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Ronald R Dubreuil
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois 60607
| | - Mel B Feany
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
41
|
Lv QK, Tao KX, Wang XB, Yao XY, Pang MZ, Liu JY, Wang F, Liu CF. Role of α-synuclein in microglia: autophagy and phagocytosis balance neuroinflammation in Parkinson's disease. Inflamm Res 2023; 72:443-462. [PMID: 36598534 DOI: 10.1007/s00011-022-01676-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/27/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Parkinson's disease (PD) is the second most common neurodegenerative disease, and is characterized by accumulation of α-synuclein (α-syn). Neuroinflammation driven by microglia is an important pathological manifestation of PD. α-Syn is a crucial marker of PD, and its accumulation leads to microglia M1-like phenotype polarization, activation of NLRP3 inflammasomes, and impaired autophagy and phagocytosis in microglia. Autophagy of microglia is related to degradation of α-syn and NLRP3 inflammasome blockage to relieve neuroinflammation. Microglial autophagy and phagocytosis of released α-syn or fragments from apoptotic neurons maintain homeostasis in the brain. A variety of PD-related genes such as LRRK2, GBA and DJ-1 also contribute to this stability process. OBJECTIVES Further studies are needed to determine how α-syn works in microglia. METHODS A keyword-based search was performed using the PubMed database for published articles. CONCLUSION In this review, we discuss the interaction between microglia and α-syn in PD pathogenesis and the possible mechanism of microglial autophagy and phagocytosis in α-syn clearance and inhibition of neuroinflammation. This may provide a novel insight into treatment of PD.
Collapse
Affiliation(s)
- Qian-Kun Lv
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Kang-Xin Tao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Xiao-Bo Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Xiao-Yu Yao
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Meng-Zhu Pang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Jun-Yi Liu
- Department of Neurology, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, China
| | - Fen Wang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China.
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China.
| | - Chun-Feng Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China.
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
42
|
Park SS, Do HA, Park HB, Choi HS, Baek KH. Deubiquitinating enzyme YOD1 deubiquitinates and destabilizes α-synuclein. Biochem Biophys Res Commun 2023; 645:124-131. [PMID: 36682332 DOI: 10.1016/j.bbrc.2023.01.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/02/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
α-synuclein is one of the proteins involved in degenerative neuronal diseases such as Parkinson's disease (PD) or Lewy body dementia (LBD). The pathogenesis is imparted by the abnormal accumulation of α-synuclein resulting in the formation of a Lewy body (LB) and exerting neurotoxicity via an unknown mechanism. Regulation of α-synuclein is achieved by the ubiquitin-proteasome system (UPS), which influences protein homeostasis via inducing proteasome-dependent degradation by attaching a small molecule (ubiquitin) to the substrate. Deubiquitinating enzymes (DUBs) control the UPS by cleaving the peptide or isopeptide bond between ubiquitin and its substrate proteins. In a previous study, we found that YOD1 deubiquitinates and regulates the cellular function of neural precursor cell expressed developmentally down-regulated protein 4 (NEDD4), an E3 ligase that induces α-synuclein degradation. We hypothesized that YOD1 acts as a DUB involved in a modulated pathway of α-synuclein. In the current study, we found that YOD1 directly interacts with α-synuclein and deubiquitinates K6-, K11-, K29-, K33-, and K63-linked polyubiquitin chains on α-synuclein. Furthermore, YOD1 destabilizes α-synuclein protein stability by upregulating NEDD4. Collectively, this suggests the possibility that YOD1 is potentially a new regulator in the NEDD4-α-synuclein pathway.
Collapse
Affiliation(s)
- Sang-Soo Park
- Department of Biomedical Science, CHA University, Gyeonggi-Do, 13488, Republic of Korea
| | - Hyeon-Ah Do
- Department of Biomedical Science, CHA University, Gyeonggi-Do, 13488, Republic of Korea
| | - Hong-Beom Park
- Department of Biomedical Science, CHA University, Gyeonggi-Do, 13488, Republic of Korea
| | - Hae-Seul Choi
- Department of Biomedical Science, CHA University, Gyeonggi-Do, 13488, Republic of Korea
| | - Kwang-Hyun Baek
- Department of Biomedical Science, CHA University, Gyeonggi-Do, 13488, Republic of Korea.
| |
Collapse
|
43
|
Pan X, Dutta D, Lu S, Bellen HJ. Sphingolipids in neurodegenerative diseases. Front Neurosci 2023; 17:1137893. [PMID: 36875645 PMCID: PMC9978793 DOI: 10.3389/fnins.2023.1137893] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 01/27/2023] [Indexed: 02/18/2023] Open
Abstract
Neurodegenerative Diseases (NDDs) are a group of disorders that cause progressive deficits of neuronal function. Recent evidence argues that sphingolipid metabolism is affected in a surprisingly broad set of NDDs. These include some lysosomal storage diseases (LSDs), hereditary sensory and autonomous neuropathy (HSAN), hereditary spastic paraplegia (HSP), infantile neuroaxonal dystrophy (INAD), Friedreich's ataxia (FRDA), as well as some forms of amyotrophic lateral sclerosis (ALS) and Parkinson's disease (PD). Many of these diseases have been modeled in Drosophila melanogaster and are associated with elevated levels of ceramides. Similar changes have also been reported in vertebrate cells and mouse models. Here, we summarize studies using fly models and/or patient samples which demonstrate the nature of the defects in sphingolipid metabolism, the organelles that are implicated, the cell types that are initially affected, and potential therapeutics for these diseases.
Collapse
Affiliation(s)
- Xueyang Pan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
| | - Debdeep Dutta
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
| | - Shenzhao Lu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
| | - Hugo J. Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
44
|
Wilson DM, Cookson MR, Van Den Bosch L, Zetterberg H, Holtzman DM, Dewachter I. Hallmarks of neurodegenerative diseases. Cell 2023; 186:693-714. [PMID: 36803602 DOI: 10.1016/j.cell.2022.12.032] [Citation(s) in RCA: 653] [Impact Index Per Article: 326.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 11/23/2022] [Accepted: 12/19/2022] [Indexed: 02/18/2023]
Abstract
Decades of research have identified genetic factors and biochemical pathways involved in neurodegenerative diseases (NDDs). We present evidence for the following eight hallmarks of NDD: pathological protein aggregation, synaptic and neuronal network dysfunction, aberrant proteostasis, cytoskeletal abnormalities, altered energy homeostasis, DNA and RNA defects, inflammation, and neuronal cell death. We describe the hallmarks, their biomarkers, and their interactions as a framework to study NDDs using a holistic approach. The framework can serve as a basis for defining pathogenic mechanisms, categorizing different NDDs based on their primary hallmarks, stratifying patients within a specific NDD, and designing multi-targeted, personalized therapies to effectively halt NDDs.
Collapse
Affiliation(s)
- David M Wilson
- Hasselt University, Biomedical Research Institute, BIOMED, 3500 Hasselt, Belgium.
| | - Mark R Cookson
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ludo Van Den Bosch
- KU Leuven, University of Leuven, Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), 3000 Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, 3000 Leuven, Belgium
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK; UK Dementia Research Institute at UCL, London, UK; Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China; UW Department of Medicine, School of Medicine and Public Health, Madison, WI, USA
| | - David M Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Ilse Dewachter
- Hasselt University, Biomedical Research Institute, BIOMED, 3500 Hasselt, Belgium.
| |
Collapse
|
45
|
Kolacheva A, Pavlova E, Bannikova A, Bogdanov V, Troshev D, Ugrumov M. The Gene Expression of Proteins Involved in Intercellular Signaling and Neurodegeneration in the Substantia Nigra in a Mouse Subchronic Model of Parkinson's Disease. Int J Mol Sci 2023; 24:ijms24033027. [PMID: 36769355 PMCID: PMC9917821 DOI: 10.3390/ijms24033027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/27/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Given the limited access to clinical material for studying the pathogenesis of Parkinson's disease (PD), these studies should be carried out on experimental models. We have recently developed a subchronic model of the progressive development of PD with a gradual transition from the preclinical (asymptomatic) stage to the clinical (symptomatic) one. The aim of this study was to evaluate changes in the expression of a wide range of genes in the substantia nigra (SN), the central link in the regulation of motor function, in mice in our subchronic model of PD. We have found changes in the expression of a number of genes encoding enzymes involved in the synthesis and degradation of dopamine as well as proteins involved in the vesicular cycle, axonal transport, protein degradation in the proteasome system, neuroinflammation, and cell death in the SN of our mouse model of the clinical stage of PD. Similar changes in gene expression were previously demonstrated in patients (postmortem), indicating good reproducibility of PD in our model. Further analysis of the gene expression in the SN of mice has shown that the expression of some genes also changes in the model of the preclinical stage, when dopaminergic neurons have not yet died. Thus, this study opens up broad prospects for further evaluation of the molecular mechanisms of PD pathogenesis and the development of a test system for drug screening.
Collapse
|
46
|
Abstract
Parkinson's disease (PD) is clinically, pathologically, and genetically heterogeneous, resisting distillation to a single, cohesive disorder. Instead, each affected individual develops a virtually unique form of Parkinson's syndrome. Clinical manifestations consist of variable motor and nonmotor features, and myriad overlaps are recognized with other neurodegenerative conditions. Although most commonly characterized by alpha-synuclein protein pathology throughout the central and peripheral nervous systems, the distribution varies and other pathologies commonly modify PD or trigger similar manifestations. Nearly all PD is genetically influenced. More than 100 genes or genetic loci have been identified, and most cases likely arise from interactions among many common and rare genetic variants. Despite its complex architecture, insights from experimental genetic dissection coalesce to reveal unifying biological themes, including synaptic, lysosomal, mitochondrial, andimmune-mediated mechanisms of pathogenesis. This emerging understanding of Parkinson's syndrome, coupled with advances in biomarkers and targeted therapies, presages successful precision medicine strategies.
Collapse
Affiliation(s)
- Hui Ye
- Department of Neurology, Baylor College of Medicine, Houston, Texas, USA; ,
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, USA
| | - Laurie A Robak
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA;
| | - Meigen Yu
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA;
| | - Matthew Cykowski
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA;
- Department of Neurology, Houston Methodist Hospital, Houston, Texas, USA
| | - Joshua M Shulman
- Department of Neurology, Baylor College of Medicine, Houston, Texas, USA; ,
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA;
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA;
- Center for Alzheimer's and Neurodegenerative Diseases, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
47
|
Guo H, Yi J, Wang F, Lei T, Du H. Potential application of heat shock proteins as therapeutic targets in Parkinson's disease. Neurochem Int 2023; 162:105453. [PMID: 36402293 DOI: 10.1016/j.neuint.2022.105453] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/08/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022]
Abstract
Parkinson's disease (PD) is a common chronic neurodegenerative disease, and the heat shock proteins (HSPs) are proved to be of great value for PD. In addition, HSPs can maintain protein homeostasis, degrade and inhibit protein aggregation by properly folding and activating intracellular proteins in PD. This study mainly summarizes the important roles of HSPs in PD and explores their feasibility as targets. We introduced the structural and functional characteristics of HSPs and the physiological functions of HSPs in PD. HSPs can protect neurons from damage by degrading aggregates with three mechanisms, including the aggregation and removing α-Synuclein (α-Syn) aggregates, promotion the autophagy of abnormal proteins, and inhibition the apoptosis of degenerated neurons. This study underscores the importance of HSPs as targets in PD and helps to expand new mechanisms in PD treatment strategies.
Collapse
Affiliation(s)
- Haodong Guo
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jingsong Yi
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Fan Wang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Tong Lei
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Daxing Research Institute, University of Science and Technology Beijing, Beijing, 100083, China
| | - Hongwu Du
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Daxing Research Institute, University of Science and Technology Beijing, Beijing, 100083, China.
| |
Collapse
|
48
|
Koza Z, Ayajuddin M, Das A, Chaurasia R, Phom L, Yenisetti SC. Sexual dysfunction precedes motor defects, dopaminergic neuronal degeneration, and impaired dopamine metabolism: Insights from Drosophila model of Parkinson's disease. Front Neurosci 2023; 17:1143793. [PMID: 37025374 PMCID: PMC10072259 DOI: 10.3389/fnins.2023.1143793] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/06/2023] [Indexed: 04/08/2023] Open
Abstract
Sexual dysfunction (SD) is one of the most common non-motor symptoms of Parkinson's disease (PD) and remains the most neglected, under-reported, and under-recognized aspect of PD. Studies have shown that Dopamine (DA) in the hypothalamus plays a role in regulating sexual behavior. But the detailed mechanism of SD in PD is not known. Drosophila melanogaster shares several genes and signaling pathways with humans which makes it an ideal model for the study of a neurodegenerative disorder such as PD. Courtship behavior of Drosophila is one such behavior that is closely related to human sexual behavior and so plays an important role in understanding sexual behavior in diseased conditions as well. In the present study, a sporadic SD model of PD using Drosophila was developed and SD phenotype was observed based on abnormalities in courtship behavior markers. The Drosophila SD model was developed in such a way that at the window of neurotoxin paraquat (PQ) treatment [PQ is considered a crucial risk factor for PD due to its structural similarity with 1-methyl-4-phenyl pyridinium (MPP+), the active form of PD-inducing agent, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)], it does not exhibit mobility defects but shows SD. The whole brain tyrosine hydroxylase immunostaining showed no observable dopaminergic (DAergic) degeneration (number of DA neurons and fluorescence intensity of fluorescently labeled secondary antibodies that target anti-TH primary antibody) of the SD model. Similarly, there was no significant depletion of brain DA and its metabolite levels (HVA and DOPAC) as determined using HPLC-ECD (High-Performance Liquid Chromatography using Electrochemical Detector). The present study illustrates that the traits associated with courtship and sexual activity provide sensitive markers at the earlier stage of PD onset. This PQ-induced SD fly model throws an opportunity to decipher the molecular basis of SD under PD conditions and to screen nutraceuticals/potential therapeutic molecules to rescue SD phenotype and further to DAergic neuroprotection.
Collapse
|
49
|
Brady EB, McQuillan M, Medeiros AT, Bubacco L, Sousa R, Lafer EM, Morgan JR. Hsc70 rescues the synaptic vesicle trafficking defects caused by α-synuclein dimers. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000737. [PMID: 36938331 PMCID: PMC10018313 DOI: 10.17912/micropub.biology.000737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/17/2023] [Accepted: 02/23/2023] [Indexed: 03/21/2023]
Abstract
Aberrant buildup of α-synuclein is associated with Parkinson's disease (PD) and other neurodegenerative disorders. At synapses, α-synuclein accumulation leads to severe synaptic vesicle trafficking defects. We previously demonstrated that different molecular species of α-synuclein produce distinct effects on synaptic vesicle recycling, and that the synaptic phenotypes caused by monomeric α-synuclein were ameliorated by Hsc70. Here, we tested whether Hsc70 could also correct synaptic deficits induced by α-synuclein dimers. Indeed, co-injection of Hsc70 with α-synuclein dimers completely reversed the synaptic deficits, resulting in synapses with normal appearance. This work lends additional support for pursuing chaperone-based strategies to treat PD and other synucleinopathies.
Collapse
Affiliation(s)
- Emily B. Brady
- The Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, Massachusetts, United States
- Department of Biology, Duke University, Durham, North Carolina, United States
| | - Molly McQuillan
- The Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, Massachusetts, United States
- Neuroscience Graduate Program, Brown University, Providence, Rhode Island, United States
| | - Audrey T. Medeiros
- The Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, Massachusetts, United States
- Neuroscience Graduate Program, Brown University, Providence, Rhode Island, United States
| | - Luigi Bubacco
- Department of Biology, University of Padua, Padua, Veneto, Italy
| | - Rui Sousa
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States
| | - Eileen M. Lafer
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States
| | - Jennifer R. Morgan
- The Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, Massachusetts, United States
- Correspondence to: Jennifer R. Morgan (
)
| |
Collapse
|
50
|
Kim H, Gomez-Pastor R. HSF1 and Its Role in Huntington's Disease Pathology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1410:35-95. [PMID: 36396925 PMCID: PMC12001818 DOI: 10.1007/5584_2022_742] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
PURPOSE OF REVIEW Heat shock factor 1 (HSF1) is the master transcriptional regulator of the heat shock response (HSR) in mammalian cells and is a critical element in maintaining protein homeostasis. HSF1 functions at the center of many physiological processes like embryogenesis, metabolism, immune response, aging, cancer, and neurodegeneration. However, the mechanisms that allow HSF1 to control these different biological and pathophysiological processes are not fully understood. This review focuses on Huntington's disease (HD), a neurodegenerative disease characterized by severe protein aggregation of the huntingtin (HTT) protein. The aggregation of HTT, in turn, leads to a halt in the function of HSF1. Understanding the pathways that regulate HSF1 in different contexts like HD may hold the key to understanding the pathomechanisms underlying other proteinopathies. We provide the most current information on HSF1 structure, function, and regulation, emphasizing HD, and discussing its potential as a biological target for therapy. DATA SOURCES We performed PubMed search to find established and recent reports in HSF1, heat shock proteins (Hsp), HD, Hsp inhibitors, HSF1 activators, and HSF1 in aging, inflammation, cancer, brain development, mitochondria, synaptic plasticity, polyglutamine (polyQ) diseases, and HD. STUDY SELECTIONS Research and review articles that described the mechanisms of action of HSF1 were selected based on terms used in PubMed search. RESULTS HSF1 plays a crucial role in the progression of HD and other protein-misfolding related neurodegenerative diseases. Different animal models of HD, as well as postmortem brains of patients with HD, reveal a connection between the levels of HSF1 and HSF1 dysfunction to mutant HTT (mHTT)-induced toxicity and protein aggregation, dysregulation of the ubiquitin-proteasome system (UPS), oxidative stress, mitochondrial dysfunction, and disruption of the structural and functional integrity of synaptic connections, which eventually leads to neuronal loss. These features are shared with other neurodegenerative diseases (NDs). Currently, several inhibitors against negative regulators of HSF1, as well as HSF1 activators, are developed and hold promise to prevent neurodegeneration in HD and other NDs. CONCLUSION Understanding the role of HSF1 during protein aggregation and neurodegeneration in HD may help to develop therapeutic strategies that could be effective across different NDs.
Collapse
Affiliation(s)
- Hyuck Kim
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Rocio Gomez-Pastor
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|