1
|
Wang X, Sun Y, Han S, Wu C, Ma Y, Zhao Y, Shao Y, Chen Y, Kong L, Li W, Zhang F, Xue L. Amyloid precursor like protein-1 promotes JNK-mediated cell migration in Drosophila. Oncotarget 2018; 8:49725-49734. [PMID: 28537903 PMCID: PMC5564802 DOI: 10.18632/oncotarget.17681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 04/20/2017] [Indexed: 11/25/2022] Open
Abstract
The amyloid precursor like protein-1 (APLP1) is a member of the amyloid precursor protein (APP) family in mammals. While many studies have been focused on the pathologic role of APP in Alzheimer's disease, the physiological functions of APLP1 have remained largely elusive. Here we report that ectopic expression of APLP1 in Drosophila induces cell migration, which is suppressed by the loss of JNK signaling and enhanced by the gain of JNK signaling. APLP1 activates JNK signaling through phosphorylation of JNK, which up-regulates the expression of matrix metalloproteinase MMP1 required for basement membranes degradation and promotes actin remodeling essential for cell migration. Our data thus provide the first in vivo evidence for a cell-autonomous role of APLP1 protein in migration.
Collapse
Affiliation(s)
- Xingjun Wang
- Department of Interventional Radiology, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Ying Sun
- Department of Interventional Radiology, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Shilong Han
- Department of Interventional Radiology, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Chenxi Wu
- College of Chinese Medicine, North China University of Science and Technology, Tangshan 063210, China
| | - Yeqing Ma
- Department of Interventional Radiology, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Yu Zhao
- Department of Interventional Radiology, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Yingyao Shao
- Department of Interventional Radiology, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Yujun Chen
- Department of Interventional Radiology, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Lingzhi Kong
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Wenzhe Li
- Department of Interventional Radiology, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Fan Zhang
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Lei Xue
- Department of Interventional Radiology, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| |
Collapse
|
2
|
Visualizing APP and BACE-1 approximation in neurons yields insight into the amyloidogenic pathway. Nat Neurosci 2015; 19:55-64. [PMID: 26642089 PMCID: PMC4782935 DOI: 10.1038/nn.4188] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Accepted: 11/04/2015] [Indexed: 11/24/2022]
Abstract
Cleavage of APP (amyloid precursor protein) by BACE-1 (β-site APP cleaving enzyme-1) is the rate-limiting step in amyloid-beta (Aβ) production and a neuropathologic hallmark of Alzheimer's disease (AD); thus physical approximation of this substrate-enzyme pair is a critical event with broad biological and therapeutic implications. Despite much research, neuronal locales of APP/BACE-1 convergence and APP-cleavage remain unclear. Here we report an optical assay – based on fluorescence complementation – to visualize in-cellulo APP/BACE-1 interactions as a simple on/off signal. Combined with other assays tracking the fate of internalized APP in hippocampal neurons, we found that APP/BACE-1 interact in both biosynthetic and endocytic compartments; particularly along recycling-microdomains such as dendritic spines and presynaptic boutons. In axons, APP and BACE-1 are co-transported, and also interact during transit. Finally, our assay reveals that the AD-protective “Icelandic” mutation greatly attenuates APP/BACE-1 interactions, suggesting a mechanistic basis for protection. Collectively, the data challenge canonical models and provide concrete insights into long-standing controversies in the field.
Collapse
|
3
|
Soluble amyloid precursor protein (APP) regulates transthyretin and Klotho gene expression without rescuing the essential function of APP. Proc Natl Acad Sci U S A 2010; 107:17362-7. [PMID: 20855613 DOI: 10.1073/pnas.1012568107] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Amyloidogenic processing of the amyloid precursor protein (APP) generates a large secreted ectodomain fragment (APPsβ), β-amyloid (Aβ) peptides, and an APP intracellular domain (AICD). Whereas Aβ is viewed as critical for Alzheimer's disease pathogenesis, the role of other APP processing products remains enigmatic. Of interest, the AICD has been implicated in transcriptional regulation, and N-terminal cleavage of APPsβ has been suggested to produce an active fragment that may mediate axonal pruning and neuronal cell death. We previously reported that mice deficient in APP and APP-like protein 2 (APLP2) exhibit early postnatal lethality and neuromuscular synapse defects, whereas mice with neuronal conditional deletion of APP and APLP2 are viable. Using transcriptional profiling, we now identify transthyretin (TTR) and Klotho as APP/APLP2-dependent genes whose expression is decreased in loss-of-function states but increased in gain-of-function states. Significantly, by creating an APP knockin allele that expresses only APPsβ protein, we demonstrate that APPsβ is not normally cleaved in vivo and is fully capable of mediating the APP-dependent regulation of TTR and Klotho gene expression. Despite being an active regulator of gene expression, APPsβ did not rescue the lethality and neuromuscular synapse defects of APP and APLP2 double-KO animals. Our studies identify TTR and Klotho as physiological targets of APP that are regulated by soluble APPsβ independent of developmental APP functions. This unexpected APP-mediated signaling pathway may play an important role in maintaining TTR and Klotho levels and their respective functions in Aβ sequestration and aging.
Collapse
|
4
|
Copanaki E, Chang S, Vlachos A, Tschäpe JA, Müller UC, Kögel D, Deller T. sAPPalpha antagonizes dendritic degeneration and neuron death triggered by proteasomal stress. Mol Cell Neurosci 2010; 44:386-93. [PMID: 20472066 DOI: 10.1016/j.mcn.2010.04.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 04/09/2010] [Accepted: 04/29/2010] [Indexed: 01/01/2023] Open
Abstract
Impaired proteasomal function is a major hallmark in the pathophysiology of neurodegenerative diseases, including Alzheimer's disease (AD). Here we investigated the biological properties of the secreted cleavage product of APP (sAPPalpha) in antagonizing stress signalling, dendritic degeneration and neuronal cell death induced by the proteasome inhibitor epoxomicin. Analysis of executioner caspase activation demonstrated that sAPPalpha was able to protect PC12 cells from apoptosis triggered by epoxomicin, as well as by genotoxic stress (UV irradiation). This anti-apoptotic effect of sAPPalpha was associated with inhibition of the stress-triggered c-Jun N-terminal kinase (JNK)-signalling pathway. The anti-apoptotic effect of sAPPalpha could also be confirmed in organotypic slice cultures of Thy1-GFP mouse hippocampi. Confocal time-lapse imaging of CA1 pyramidal neurons revealed that preincubation with sAPPalpha preserves the structural integrity of neurons after epoxomicin treatment. Taken together, our data demonstrate that sAPPalpha is neuroprotective under conditions of proteasomal stress.
Collapse
Affiliation(s)
- Ekaterini Copanaki
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe-University, D-60590 Frankfurt, Germany
| | | | | | | | | | | | | |
Collapse
|
5
|
Affiliation(s)
- Henry W Querfurth
- Department of Neurology, Caritas St. Elizabeth's Medical Center, Brighton, MA, USA.
| | | |
Collapse
|
6
|
Muresan V, Muresan Z. Is abnormal axonal transport a cause, a contributing factor or a consequence of the neuronal pathology in Alzheimer's disease? FUTURE NEUROLOGY 2009; 4:761-773. [PMID: 20076770 DOI: 10.2217/fnl.09.54] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Axonal transport, the process by which membrane-bound organelles and soluble protein complexes are transported into and out of axons, ensures proper function of the neuron, including that of the synapse. As such, abnormalities in axonal transport could lead to neuronal pathology and disease. Similar to many neurodegenerative diseases, axonal transport is deficient in Alzheimer's disease (AD), a neurodegenerative brain disorder that affects old-age humans and is characterized by the deterioration of cognitive function and progressive memory loss. It was proposed that the synaptic pathology and neuronal degeneration that develops in AD could be caused by an abnormal axonal transport, and that the mutated proteins that cause early-onset AD, as well as the genetic variants that confer predisposition to late-onset AD might somehow impede axonal transport. This paper analyzes the data that support or contradict this hypothesis. Together, they indicate that, although abnormalities in axonal transport are part of the disease, additional studies are required to clearly establish to what extent deficient axonal transport is the cause or the effect of the neuronal pathology in AD, and to identify mechanisms that lead to its perturbation.
Collapse
Affiliation(s)
- Virgil Muresan
- University of Medicine & Dentistry of New Jersey, New Jersey Medical School, Department of Pharmacology & Physiology, 185 South Orange Avenue, MSB, I-683 Newark, NJ 07103, USA, Tel.: +1 973 972 2392, ,
| | | |
Collapse
|
7
|
Liu Y, Zhang YW, Wang X, Zhang H, You X, Liao FF, Xu H. Intracellular trafficking of presenilin 1 is regulated by beta-amyloid precursor protein and phospholipase D1. J Biol Chem 2009; 284:12145-52. [PMID: 19276086 DOI: 10.1074/jbc.m808497200] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Excessive accumulation of beta-amyloid peptides in the brain is a major cause for the pathogenesis of Alzheimer disease. beta-Amyloid is derived from beta-amyloid precursor protein (APP) through sequential cleavages by beta- and gamma-secretases, whose enzymatic activities are tightly controlled by subcellular localization. Delineation of how intracellular trafficking of these secretases and APP is regulated is important for understanding Alzheimer disease pathogenesis. Although APP trafficking is regulated by multiple factors including presenilin 1 (PS1), a major component of the gamma-secretase complex, and phospholipase D1 (PLD1), a phospholipid-modifying enzyme, regulation of intracellular trafficking of PS1/gamma-secretase and beta-secretase is less clear. Here we demonstrate that APP can reciprocally regulate PS1 trafficking; APP deficiency results in faster transport of PS1 from the trans-Golgi network to the cell surface and increased steady state levels of PS1 at the cell surface, which can be reversed by restoring APP levels. Restoration of APP in APP-deficient cells also reduces steady state levels of other gamma-secretase components (nicastrin, APH-1, and PEN-2) and the cleavage of Notch by PS1/gamma-secretase that is more highly correlated with cell surface levels of PS1 than with APP overexpression levels, supporting the notion that Notch is mainly cleaved at the cell surface. In contrast, intracellular trafficking of beta-secretase (BACE1) is not regulated by APP. Moreover, we find that PLD1 also regulates PS1 trafficking and that PLD1 overexpression promotes cell surface accumulation of PS1 in an APP-independent manner. Our results clearly elucidate a physiological function of APP in regulating protein trafficking and suggest that intracellular trafficking of PS1/gamma-secretase is regulated by multiple factors, including APP and PLD1.
Collapse
Affiliation(s)
- Yun Liu
- Burnham Institute for Medical Research, La Jolla, California 92037, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Traina G, Federighi G, Brunelli M. Up-regulation of kinesin light-chain 1 gene expression by acetyl-L-carnitine: therapeutic possibility in Alzheimer's disease. Neurochem Int 2008; 53:244-7. [PMID: 18761385 DOI: 10.1016/j.neuint.2008.08.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Revised: 07/30/2008] [Accepted: 08/04/2008] [Indexed: 11/15/2022]
Abstract
We investigated the effects of acetyl-l-carnitine on gene expression by means of the suppression subtractive hybridization method. The approach gives the generation of subtracted cDNA libraries and the subsequent identification of differentially expressed transcripts after treatment of rats with acetyl-l-carnitine for 21 days. We observed that acetyl-l-carnitine increases the light-chain subunit of kinesin-1 gene expression. Recent evidences reported a link between kinesin-1 light-chain and Alzheimer's disease. Pathological hallmarks of Alzheimer's disease are potentially linked to alterations of the axonal compartments. Amyloid-beta peptide is a principal component of senile plaques and is considered to be central in the pathogenesis of the disease. The fast anterograde axonal transport of amyloid-beta peptide is mediated by direct binding to the light-chain subunit of kinesin-1. In this scenario, our results are of relevant importance for possible therapeutic intervention, suggesting a pathway for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Giovanna Traina
- Department of Internal Medicine, University of Perugia, Via S. Costanzo, Perugia 06126, Italy.
| | | | | |
Collapse
|
9
|
Zhang C, Khandelwal PJ, Chakraborty R, Cuellar TL, Sarangi S, Patel SA, Cosentino CP, O'Connor M, Lee JC, Tanzi RE, Saunders AJ. An AICD-based functional screen to identify APP metabolism regulators. Mol Neurodegener 2007; 2:15. [PMID: 17718916 PMCID: PMC2071909 DOI: 10.1186/1750-1326-2-15] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Accepted: 08/24/2007] [Indexed: 12/23/2022] Open
Abstract
Background A central event in Alzheimer's disease (AD) is the regulated intramembraneous proteolysis of the β-amyloid precursor protein (APP), to generate the β-amyloid (Aβ) peptide and the APP intracellular domain (AICD). Aβ is the major component of amyloid plaques and AICD displays transcriptional activation properties. We have taken advantage of AICD transactivation properties to develop a genetic screen to identify regulators of APP metabolism. This screen relies on an APP-Gal4 fusion protein, which upon normal proteolysis, produces AICD-Gal4. Production of AICD-Gal4 induces Gal4-UAS driven luciferase expression. Therefore, when regulators of APP metabolism are modulated, luciferase expression is altered. Results To validate this experimental approach we modulated α-, β-, and γ-secretase levels and activities. Changes in AICD-Gal4 levels as measured by Western blot analysis were strongly and significantly correlated to the observed changes in AICD-Gal4 mediated luciferase activity. To determine if a known regulator of APP trafficking/maturation and Presenilin1 endoproteolysis could be detected using the AICD-Gal4 mediated luciferase assay, we knocked-down Ubiquilin 1 and observed decreased luciferase activity. We confirmed that Ubiquilin 1 modulated AICD-Gal4 levels by Western blot analysis and also observed that Ubiquilin 1 modulated total APP levels, the ratio of mature to immature APP, as well as PS1 endoproteolysis. Conclusion Taken together, we have shown that this screen can identify known APP metabolism regulators that control proteolysis, intracellular trafficking, maturation and levels of APP and its proteolytic products. We demonstrate for the first time that Ubiquilin 1 regulates APP metabolism in the human neuroblastoma cell line, SH-SY5Y.
Collapse
Affiliation(s)
- Can Zhang
- Department of Bioscience & Biotechnology, Drexel University, Philadelphia, PA, USA
| | - Preeti J Khandelwal
- Department of Bioscience & Biotechnology, Drexel University, Philadelphia, PA, USA
| | - Ranjita Chakraborty
- Department of Bioscience & Biotechnology, Drexel University, Philadelphia, PA, USA
| | - Trinna L Cuellar
- Department of Bioscience & Biotechnology, Drexel University, Philadelphia, PA, USA
| | - Srikant Sarangi
- Department of Bioscience & Biotechnology, Drexel University, Philadelphia, PA, USA
| | - Shyam A Patel
- Department of Bioscience & Biotechnology, Drexel University, Philadelphia, PA, USA
| | | | - Michael O'Connor
- Department of Bioscience & Biotechnology, Drexel University, Philadelphia, PA, USA
| | - Jeremy C Lee
- Department of Bioscience & Biotechnology, Drexel University, Philadelphia, PA, USA
| | - Rudolph E Tanzi
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Diseases (MIND), Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Aleister J Saunders
- Department of Bioscience & Biotechnology, Drexel University, Philadelphia, PA, USA
- Department of Biochemistry & Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
10
|
Zheng H, Koo EH. The amyloid precursor protein: beyond amyloid. Mol Neurodegener 2006; 1:5. [PMID: 16930452 PMCID: PMC1538601 DOI: 10.1186/1750-1326-1-5] [Citation(s) in RCA: 276] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Accepted: 07/03/2006] [Indexed: 12/28/2022] Open
Abstract
The amyloid precursor protein (APP) takes a central position in Alzheimer's disease (AD) pathogenesis: APP processing generates the beta-amyloid (Abeta) peptides, which are deposited as the amyloid plaques in brains of AD individuals; Point mutations and duplications of APP are causal for a subset of early onset of familial Alzheimer's disease (FAD). Not surprisingly, the production and pathogenic effect of Abeta has been the central focus in AD field. Nevertheless, the biological properties of APP have also been the subject of intense investigation since its identification nearly 20 years ago as it demonstrates a number of interesting putative physiological roles. Several attractive models of APP function have been put forward recently based on in vitro biochemical studies. Genetic analyses of gain- and loss-of-function mutants in Drosophila and mouse have also revealed important insights into its biological activities in vivo. This article will review the current understanding of APP physiological functions.
Collapse
Affiliation(s)
- Hui Zheng
- Huffington Center on Aging and Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Edward H Koo
- Huffington Center on Aging and Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
11
|
Goldsbury C, Mocanu MM, Thies E, Kaether C, Haass C, Keller P, Biernat J, Mandelkow E, Mandelkow EM. Inhibition of APP Trafficking by Tau Protein Does Not Increase the Generation of Amyloid-β Peptides. Traffic 2006; 7:873-88. [PMID: 16734669 DOI: 10.1111/j.1600-0854.2006.00434.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Amyloid-beta, a peptide derived from the precursor protein APP, accumulates in the brain and contributes to the neuropathology of Alzheimer's disease. Increased generation of amyloid-beta might be caused by axonal transport inhibition, via increased dwell time of APP vesicles and thereby higher probability of APP cleavage by secretase enzymes residing on the same vesicles. We tested this hypothesis using a neuronal cell culture model of inhibited axonal transport and by imaging vesicular transport of fluorescently tagged APP and beta-secretase (BACE1). Microtubule-associated tau protein blocks vesicle traffic by inhibiting the access of motor proteins to the microtubule tracks. In neurons co-transfected with CFP-tau, APP-YFP traffic into distal neurites was strongly reduced. However, this did not increase amyloid-beta levels. In singly transfected axons, APP-YFP was transported in large tubules and vesicles moving very fast (on average 3 microm/s) and with high fluxes in the anterograde direction (on average 8.4 vesicles/min). By contrast, BACE1-CFP movement was in smaller tubules and vesicles that were almost 2x slower (on average 1.6 microm/s) with approximately 18x lower fluxes (on average 0.5 vesicles/min). Two-colour microscopy of co-transfected axons confirmed that the two proteins were sorted into distinct carriers. The results do not support the above hypothesis. Instead, they indicate that APP is transported on vesicles distinct from the secretase components and that amyloid-beta is not generated in transit when transport is blocked by tau.
Collapse
Affiliation(s)
- Claire Goldsbury
- Max Planck Unit for Structural Molecular Biology, c/o DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Dhaenens CM, Van Brussel E, Schraen-Maschke S, Pasquier F, Delacourte A, Sablonnière B. Association study of three polymorphisms of kinesin light-chain 1 gene with Alzheimer's disease. Neurosci Lett 2004; 368:290-2. [PMID: 15364413 DOI: 10.1016/j.neulet.2004.07.040] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2004] [Revised: 06/28/2004] [Accepted: 07/11/2004] [Indexed: 11/18/2022]
Abstract
The transport of amyloid precursor protein is mediated through its interaction with kinesin light-chain 1 (KNS2). We hypothesized that kinesin light-chain dysfunction might be involved in the pathogenesis of Alzheimer's disease (AD). To assess the physiological relevance of an allelic variation in the KNS2 gene, the association analysis of three single nucleotide polymorphisms (SNPs) in the 5'UTR or in intronic sequences of KNS2 gene were performed in 100 AD brain patients and in 103 controls. For one of these polymorphisms (G58836C in intron 13), the association between AD and the C allele was found to be significant (odds ratio = 1.73, 95% CI: 1.12-2.67, P = 0.012). No synergistic effects were found between the APOE epsilon 4 allele and KNS2 gene polymorphisms.
Collapse
Affiliation(s)
- Claire-Marie Dhaenens
- Groupe Vieillissement Cérébral et Maladies Neurodégénératives, INSERM U422, Laboratoire G. Biserte et Faculté de Médecine, Université de Lille 2, Place de Verdun 59045, Lille Cedex, France
| | | | | | | | | | | |
Collapse
|
13
|
Taru H, Suzuki T. Facilitation of Stress-induced Phosphorylation of β-Amyloid Precursor Protein Family Members by X11-like/Mint2 Protein. J Biol Chem 2004; 279:21628-36. [PMID: 14970211 DOI: 10.1074/jbc.m312007200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Beta-amyloid precursor protein (APP) is the precursor of beta-amyloid (Abeta), which is implicated in Alzheimer's disease pathogenesis. APP complements amyloid precursor-like protein 2 (APLP2), and together they play essential physiological roles. Phosphorylation at the Thr(668) residue of APP (with respect to the numbering conversion for the APP 695 isoform) and the Thr(736) residue of APLP2 (with respect to the numbering conversion for the APLP2 763 isoform) in their cytoplasmic domains acts as a molecular switch for their protein-protein interaction and is implicated in neural function(s) and/or Alzheimer's disease pathogenesis. Here we demonstrate that both APP and APLP2 can be phosphorylated by JNK at the Thr(668) and Thr(736) residues, respectively, in response to cellular stress. X11-like (X11L, also referred to as X11beta and Mint2), which is a member of the mammalian LIN-10 protein family and a possible regulator of Abeta production, elevated APP and APLP2 phosphorylation probably by facilitating JNK-mediated phosphorylation, whereas other members of the family, X11 and X11L2, did not. These observations revealed an involvement of X11L in the phosphorylation of APP family proteins in cellular stress and suggest that X11L protein may be important in the physiology of APP family proteins as well as in the regulation of Abeta production.
Collapse
Affiliation(s)
- Hidenori Taru
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-ku Kita-12 Nishi-6, Sapporo 060-0812, Japan
| | | |
Collapse
|
14
|
Araki Y, Tomita S, Yamaguchi H, Miyagi N, Sumioka A, Kirino Y, Suzuki T. Novel cadherin-related membrane proteins, Alcadeins, enhance the X11-like protein-mediated stabilization of amyloid beta-protein precursor metabolism. J Biol Chem 2003; 278:49448-58. [PMID: 12972431 DOI: 10.1074/jbc.m306024200] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Previously we found that X11-like protein (X11L) associates with amyloid beta-protein precursor (APP). X11L stabilizes APP metabolism and suppresses the secretion of the amyloid beta-protein (Abeta) that are the pathogenic agents of Alzheimer's disease (AD). Here we found that Alcadein (Alc), a novel membrane protein family that contains cadherin motifs and originally reported as calsyntenins, also interacted with X11L. Alc was abundant in the brain and occurred in the same areas of the brain as X11L. X11L could simultaneously associate with APP and Alc, resulting in the formation of a tripartite complex in brain. The tripartite complex stabilized intracellular APP metabolism and enhanced the X11L-mediated suppression of Abeta secretion that is due to the retardation of intracellular APP maturation. X11L and Alc also formed another complex with C99, a carboxyl-terminal fragment of APP cleaved at the beta-site (CTFbeta). The formation of the Alc.X11L.C99 complex inhibited the interaction of C99 with presenilin, which strongly suppressed the gamma-cleavage of C99. In AD patient brains, Alc and APP were particularly colocalized in dystrophic neurites in senile plaques. Deficiencies in the X11L-mediated interaction between Alc and APP and/or CTFbeta enhanced the production of Abeta, which may be related to the development or progression of AD.
Collapse
Affiliation(s)
- Yoichi Araki
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-ku Kita-12 Nishi-6, Sapporo 060-0812, Japan
| | | | | | | | | | | | | |
Collapse
|
15
|
Matsuda S, Matsuda Y, D'Adamio L. Amyloid beta protein precursor (AbetaPP), but not AbetaPP-like protein 2, is bridged to the kinesin light chain by the scaffold protein JNK-interacting protein 1. J Biol Chem 2003; 278:38601-6. [PMID: 12893827 DOI: 10.1074/jbc.m304379200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proteolytic processing of amyloid beta protein precursor (AbetaPP) generates peptides that regulate normal cell signaling and are implicated in Alzheimer's disease pathogenesis. AbetaPP processing also occurs in nerve processes where AbetaPP is transported from the cell body by kinesin-I, a microtubule motor composed of two kinesin heavy chain and two kinesin light chain (Klc) subunits. AbetaPP transport is supposedly mediated by the direct AbetaPP-Klc1 interaction. Here we demonstrate that the AbetaPP-Klc1 interaction is not direct but is mediated by JNK-interacting protein 1 (JIP1). The phosphotyrosine binding domain of JIP1 binds the cytoplasmic tail of AbetaPP, whereas the JIP1 C-terminal region interacts with the tetratrico-peptide repeats of Klc1. We also show that JIP1 does not bridge the AbetaPP gene family member AbetaPP-like protein 2, APLP2, to Klc1. These results support a model where JIP1 mediates the interaction of AbetaPP to the motor protein kinesin-I and that this JIP1 function is unique for AbetaPP relative to its family member APLP2. Our data suggest that kinesin-I-dependent neuronal AbetaPP transport, which controls AbetaPP processing, may be regulated by JIP1.
Collapse
Affiliation(s)
- Shuji Matsuda
- Albert Einstein College of Medicine, Department of Microbiology and Immunology, Bronx, New York 10461, USA
| | | | | |
Collapse
|
16
|
Sumioka A, Imoto S, Martins RN, Kirino Y, Suzuki T. XB51 isoforms mediate Alzheimer's beta-amyloid peptide production by X11L (X11-like protein)-dependent and -independent mechanisms. Biochem J 2003; 374:261-8. [PMID: 12780348 PMCID: PMC1223589 DOI: 10.1042/bj20030489] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2003] [Revised: 05/22/2003] [Accepted: 06/03/2003] [Indexed: 12/31/2022]
Abstract
XB51 (derived from X11-like binding protein of clone number 51) was isolated by yeast two-hybrid cDNA screening using the N-terminal domain of X11L (X11-like protein) as a bait. X11L is a neuron-specific adaptor protein that is known to down-regulate APP (beta-amyloid precursor protein) metabolism by associating with the cytoplasmic domain of APP, but the detailed mechanisms are still unknown. Thus the X11L-associated protein XB51 is believed to regulate APP metabolism by modifying X11L function through its interaction with X11L. Here we report that the hXB51 (human XB51 ) gene can yield two transcripts, one with exon 9 spliced out (resulting in the hXB51beta isoform) and the other containing exon 9 (yielding the hXB51alpha isoform). hXB51alpha binds to X11L to form a tripartite complex composed of hXB51alpha, X11L and APP. Complex-formation results in blocking X11L's suppression of Abeta (beta-amyloid) generation from APP. hXB51beta associates with X11L and inhibits its interaction with APP. However, hXB51beta suppresses Abeta generation and secretion in an X11L-independent manner. Thus the hXB51 isoforms regulate Abeta generation differently, either enhancing it by modifying the association of X11L with APP or suppressing it in an X11L-independent manner. These observations advance our understanding of the molecular mechanisms regulating intracellular Abeta production and the pathogenesis of Alzheimer's disease.
Collapse
Affiliation(s)
- Akio Sumioka
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | |
Collapse
|
17
|
Takahashi RH, Milner TA, Li F, Nam EE, Edgar MA, Yamaguchi H, Beal MF, Xu H, Greengard P, Gouras GK. Intraneuronal Alzheimer abeta42 accumulates in multivesicular bodies and is associated with synaptic pathology. THE AMERICAN JOURNAL OF PATHOLOGY 2002; 161:1869-79. [PMID: 12414533 PMCID: PMC1850783 DOI: 10.1016/s0002-9440(10)64463-x] [Citation(s) in RCA: 555] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A central question in Alzheimer's disease concerns the mechanism by which beta-amyloid contributes to neuropathology, and in particular whether intracellular versus extracellular beta-amyloid plays a critical role. Alzheimer transgenic mouse studies demonstrate brain dysfunction, as beta-amyloid levels rise, months before the appearance of beta-amyloid plaques. We have now used immunoelectron microscopy to determine the subcellular site of neuronal beta-amyloid in normal and Alzheimer brains, and in brains from Alzheimer transgenic mice. We report that beta-amyloid 42 localized predominantly to multivesicular bodies of neurons in normal mouse, rat, and human brain. In transgenic mice and human Alzheimer brain, intraneuronal beta-amyloid 42 increased with aging and beta-amyloid 42 accumulated in multivesicular bodies within presynaptic and especially postsynaptic compartments. This accumulation was associated with abnormal synaptic morphology, before beta-amyloid plaque pathology, suggesting that intracellular accumulation of beta-amyloid plays a crucial role in Alzheimer's disease.
Collapse
Affiliation(s)
- Reisuke H Takahashi
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, New York 10021, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Lahiri DK, Farlow MR, Greig NH, Sambamurti K. Current drug targets for Alzheimer's disease treatment. Drug Dev Res 2002. [DOI: 10.1002/ddr.10081] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
19
|
Wilson CA, Doms RW, Zheng H, Lee VMY. Presenilins are not required for A beta 42 production in the early secretory pathway. Nat Neurosci 2002; 5:849-55. [PMID: 12145638 DOI: 10.1038/nn898] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Presenilins 1 and 2 (PS1/PS2) have been suggested to be gamma-secretases responsible for the proteolytic cleavage of amyloid precursor protein (APP) to form amyloid-beta (A beta), a protein implicated in the development of Alzheimer's disease. Here we examined whether these presenilins are required for the generation of multiple A beta species by analyzing the production of several forms of secreted and intracellular A beta in mouse cells lacking PS1, PS2 or both proteins. Although most A beta species were abolished in PS1/PS2(-/-) cells, the production of intracellular A beta 42 generated in the endoplasmic reticulum/intermediate compartment was unaffected by the absence of these proteins, either singly or in combination. These results indicate that production of this pool of A beta occurs independently of PS1/PS2, and therefore, another gamma-secretase activity must be responsible for cleavage of APP within the early secretory compartments.
Collapse
Affiliation(s)
- Christina A Wilson
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|