1
|
Bhole RP, Chikhale RV, Rathi KM. Current biomarkers and treatment strategies in Alzheimer disease: An overview and future perspectives. IBRO Neurosci Rep 2024; 16:8-42. [PMID: 38169888 PMCID: PMC10758887 DOI: 10.1016/j.ibneur.2023.11.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 01/05/2024] Open
Abstract
Alzheimer's disease (AD), a progressive degenerative disorder first identified by Alois Alzheimer in 1907, poses a significant public health challenge. Despite its prevalence and impact, there is currently no definitive ante mortem diagnosis for AD pathogenesis. By 2050, the United States may face a staggering 13.8 million AD patients. This review provides a concise summary of current AD biomarkers, available treatments, and potential future therapeutic approaches. The review begins by outlining existing drug targets and mechanisms in AD, along with a discussion of current treatment options. We explore various approaches targeting Amyloid β (Aβ), Tau Protein aggregation, Tau Kinases, Glycogen Synthase kinase-3β, CDK-5 inhibitors, Heat Shock Proteins (HSP), oxidative stress, inflammation, metals, Apolipoprotein E (ApoE) modulators, and Notch signaling. Additionally, we examine the historical use of Estradiol (E2) as an AD therapy, as well as the outcomes of Randomized Controlled Trials (RCTs) that evaluated antioxidants (e.g., vitamin E) and omega-3 polyunsaturated fatty acids as alternative treatment options. Notably, positive effects of docosahexaenoic acid nutriment in older adults with cognitive impairment or AD are highlighted. Furthermore, this review offers insights into ongoing clinical trials and potential therapies, shedding light on the dynamic research landscape in AD treatment.
Collapse
Affiliation(s)
- Ritesh P. Bhole
- Department of Pharmaceutical Chemistry, Dr. D. Y. Patil institute of Pharmaceutical Sciences & Research, Pimpri, Pune, India
- Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune 411018, India
| | | | - Karishma M. Rathi
- Department of Pharmacy Practice, Dr. D. Y. Patil institute of Pharmaceutical Sciences & Research, Pimpri, Pune, India
| |
Collapse
|
2
|
Probing the Structure and Function Relationships of Presenilin by Substituted-Cysteine Accessibility Method. Methods Enzymol 2017; 584:185-205. [DOI: 10.1016/bs.mie.2016.10.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
3
|
The lipidome associated with the γ-secretase complex is required for its integrity and activity. Biochem J 2016; 473:321-34. [PMID: 26811537 DOI: 10.1042/bj20150448] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
γ-Secretase is a multi-subunit membrane protease complex that catalyses the final intramembrane cleavage of the β-amyloid precursor protein (APP) during the neuronal production of amyloid-β peptides (Aβ), which are implicated as the causative agents of Alzheimer's disease (AD). In the present study, we report the reconstitution of a highly purified, active γ-secretase complex into proteoliposomes without exogenous lipids and provide the first direct evidence for the existence of a microenvironment of 53 molecular species from 11 major lipid classes specifically associated with the γ-secretase complex, including phosphatidylcholine and cholesterol. Importantly, we demonstrate that the pharmacological modulation of certain phospholipids abolishes both the integrity and the enzymatic activity of the intramembrane protease. Together, our findings highlight the importance of a specific lipid microenvironment for the structure and function of γ-secretase.
Collapse
|
4
|
MacLeod R, Hillert EK, Cameron RT, Baillie GS. The role and therapeutic targeting of α-, β- and γ-secretase in Alzheimer's disease. Future Sci OA 2015; 1:FSO11. [PMID: 28031886 PMCID: PMC5137966 DOI: 10.4155/fso.15.9] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia in the elderly and its prevalence is set to increase rapidly in coming decades. However, there are as yet no available drugs that can halt or even stabilize disease progression. One of the main pathological features of AD is the presence in the brain of senile plaques mainly composed of aggregated β amyloid (Aβ), a derivative of the longer amyloid precursor protein (APP). The amyloid hypothesis proposes that the accumulation of Aβ within neural tissue is the initial event that triggers the disease. Here we review research efforts that have attempted to inhibit the generation of the Aβ peptide through modulation of the activity of the proteolytic secretases that act on APP and discuss whether this is a viable therapeutic strategy for treating AD.
Collapse
Affiliation(s)
- Ruth MacLeod
- Institute of Cardiovascular & Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Ellin-Kristina Hillert
- Institute of Cardiovascular & Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Ryan T Cameron
- Institute of Cardiovascular & Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - George S Baillie
- Institute of Cardiovascular & Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
5
|
Nelfinavir and nelfinavir analogs block site-2 protease cleavage to inhibit castration-resistant prostate cancer. Sci Rep 2015; 5:9698. [PMID: 25880275 PMCID: PMC4816264 DOI: 10.1038/srep09698] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 03/13/2015] [Indexed: 02/07/2023] Open
Abstract
Nelfinavir and its analogs inhibit proliferation and induce apoptosis of castration-resistant prostate cancer through inhibition of site-2 protease (S2P) activity, which leads to suppression of regulated intramembrane proteolysis. Western blotting in nelfinavir and its analog treated cells confirms accumulation of precursor SREBP-1 and ATF6. Nelfinavir and its analogs inhibit human homolog M. jannaschii S2P cleavage of an artificial protein substrate CED-9 in an in vitro proteolysis assay in a dose-dependent manner. Nelfinavir and its analogs are more potent inhibitors of S2P cleavage activity than 1,10-phenanthroline, a metalloprotease-specific inhibitor. Further, cluster analysis of gene expression from treated DU145 and PC3 cell lines demonstrate a close similarity of nelfinavir, its analogs, and 1,10-phenanthroline. These results show nelfinavir and its analogs inhibit castration-resistant prostate cancer proliferation by blocking regulated intramembrane proteolysis through suppression of S2P cleavage activity. This leads to accumulation of precursor SREBP-1 and ATF6, and development of insufficient reserves of their transcriptionally-active forms. The present results validate S2P and regulated intramembrane proteolysis as novel therapeutic targets for castration-resistant prostate cancer therapeutics. A clinical trial of nelfinavir or its analogs should be developed for castration-resistant prostate cancer.
Collapse
|
6
|
Alattia JR, Matasci M, Dimitrov M, Aeschbach L, Balasubramanian S, Hacker DL, Wurm FM, Fraering PC. Highly efficient production of the Alzheimer's γ-secretase integral membrane protease complex by a multi-gene stable integration approach. Biotechnol Bioeng 2013; 110:1995-2005. [PMID: 23359429 DOI: 10.1002/bit.24851] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 12/14/2012] [Accepted: 01/15/2013] [Indexed: 12/18/2022]
Abstract
Inefficient production of membrane-embedded multi-protein complexes by conventional methods has largely prevented the generation of high-resolution structural information and the performance of high-throughput drug discovery screens for this class of proteins. Not exempt from this rule is γ-secretase, an intramembrane-cleaving protease complex regulating a multitude of signaling pathways and biological processes by influencing gene transcription. γ-Secretase is also implicated in the pathogenesis of Alzheimer's disease and several types of cancer. As an additional challenge, the reconstitution of the protease complex in its active form requires an intricate assembly and maturation process, including a highly regulated endoproteolytic processing of its catalytic component. In this article we report the application of a transposon-mediated multigene stable integration technology to produce active γ-secretase in mammalian cells in amounts adequate for crystallization studies and drug screening. Our strategy is expected to help elucidate the molecular mechanisms of intramembrane proteolysis. It is further expected to be widely used for the production of other multi-protein complexes for applications in structural biology and drug development.
Collapse
Affiliation(s)
- Jean-René Alattia
- Laboratory of Molecular & Cellular Biology of Alzheimer's Disease, Brain Mind Institute and School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH1015 Lausanne, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Alattia JR, Schweizer C, Cacquevel M, Dimitrov M, Aeschbach L, Oulad-Abdelghani M, Fraering PC. Generation of monoclonal antibody fragments binding the native γ-secretase complex for use in structural studies. Biochemistry 2012; 51:8779-90. [PMID: 23066899 DOI: 10.1021/bi300997e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A detailed understanding of γ-secretase structure is crucially needed to elucidate its unique properties of intramembrane protein cleavage and to design therapeutic compounds for the safe treatment of Alzheimer's disease. γ-Secretase is an enzyme complex composed of four membrane proteins, and the scarcity of its supply associated with the challenges of crystallizing membrane proteins is a major hurdle for the determination of its high-resolution structure. This study addresses some of these issues, first by adapting CHO cells overexpressing γ-secretase to growth in suspension, thus yielding multiliter cultures and milligram quantities of highly purified, active γ-secretase. Next, the amounts of γ-secretase were sufficient for immunization of mice and allowed generation of Nicastrin- and Aph-1-specific monoclonal antibodies, from which Fab fragments were proteolytically prepared and subsequently purified. The amounts of γ-secretase produced are compatible with robot-assisted crystallogenesis using nanoliter technologies. In addition, our Fab fragments bind exposed regions of native γ-secretase in a dose-dependent manner without interfering with its catalytic properties and can therefore be used as specific tools to facilitate crystal formation.
Collapse
Affiliation(s)
- Jean-René Alattia
- Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology, Lausanne, Switzerland
| | | | | | | | | | | | | |
Collapse
|
8
|
Fraering PC. Structural and Functional Determinants of gamma-Secretase, an Intramembrane Protease Implicated in Alzheimer's Disease. Curr Genomics 2011; 8:531-49. [PMID: 19415127 PMCID: PMC2647162 DOI: 10.2174/138920207783769521] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Revised: 12/27/2007] [Accepted: 12/27/2007] [Indexed: 12/28/2022] Open
Abstract
Alzheimer’s disease is the most common form of neurodegenerative diseases in humans, characterized by the progressive accumulation and aggregation of amyloid-β peptides (Aβ) in brain regions subserving memory and cognition. These 39-43 amino acids long peptides are generated by the sequential proteolytic cleavages of the amyloid-β precursor protein (APP) by β- and γ-secretases, with the latter being the founding member of a new class of intramembrane-cleaving proteases (I-CliPs) characterized by their intramembranous catalytic residues hydrolyzing the peptide bonds within the transmembrane regions of their respective substrates. These proteases include the S2P family of metalloproteases, the Rhomboid family of serine proteases, and two aspartyl proteases: the signal peptide peptidase (SPP) and γ-secretase. In sharp contrast to Rhomboid and SPP that function as a single component, γ-secretase is a multi-component protease with complex assembly, maturation and activation processes. Recently, two low-resolution three-dimensional structures of γ-secretase and three high-resolution structures of the GlpG rhomboid protease have been obtained almost simultaneously by different laboratories. Although these proteases are unrelated by sequence or evolution, they seem to share common functional and structural mechanisms explaining how they catalyze intramembrane proteolysis. Indeed, a water-containing chamber in the catalytic cores of both γ-secretase and GlpG rhomboid provides the hydrophilic environment required for proteolysis and a lateral gating mechanism controls substrate access to the active site. The studies that have identified and characterized the structural determinants critical for the assembly and activity of the γ-secretase complex are reviewed here.
Collapse
Affiliation(s)
- Patrick C Fraering
- Brain Mind Institute and School of Life Sciences, Swiss Federal Institute of Technology (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
9
|
Woo HN, Baik SH, Park JS, Gwon AR, Yang S, Yun YK, Jo DG. Secretases as therapeutic targets for Alzheimer's disease. Biochem Biophys Res Commun 2010; 404:10-5. [PMID: 21130746 DOI: 10.1016/j.bbrc.2010.11.132] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Accepted: 11/24/2010] [Indexed: 12/24/2022]
Abstract
Accumulation of amyloid-β (Aβ) is widely accepted as the key instigator of Alzheimer's disease (AD). The proposed mechanism is that accumulation of Aβ results in inflammatory responses, oxidative damages, neurofibrillary tangles and, subsequently, neuronal/synaptic dysfunction and neuronal loss. Given the critical role of Aβ in the disease process, the proteases that produce this peptide are obvious targets. The goal would be to develop drugs that can inhibit the activity of these targets. Protease inhibitors have proved very effective for treating other disorders such as AIDS and hypertension. Mutations in APP (amyloid-β precursor protein), which flanks the Aβ sequence, cause early-onset familial AD, and evidence has pointed to the APP-to-Aβ conversion as a possible therapeutic target. Therapies aimed at modifying Aβ-related processes aim higher up the cascade and are therefore more likely to be able to alter the progression of the disease. However, it is not yet fully known whether the increases in Aβ levels are merely a result of earlier events that were already causing the disease.
Collapse
Affiliation(s)
- Ha-Na Woo
- School of Pharmacy, Sungkyunkwan University, Suwon 440-467, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
10
|
Harnasch M, Grau S, Behrends C, Dove SL, Hochschild A, Iskandar MK, Xia W, Ehrmann M. Characterization of presenilin-amyloid precursor interaction using bacterial expression and two-hybrid systems for human membrane proteins. Mol Membr Biol 2009; 21:373-83. [PMID: 15764367 DOI: 10.1080/09687860400008429] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
An Escherichia coli system was used to produce the human membrane proteins presenilin 1 and amyloid precursor protein and to analyse their interaction. Our data indicate that the main binding site for amyloid precursor protein is located in the N-terminal three-transmembrane segments of presenilin and not in the proposed active site containing the two conserved aspartate residues. The data also suggest the presence of an additional segment of sufficient hydrophobicity at the C-terminus of PS1 to act potentially as a transmembrane segment. The implications of these findings for the function of gamma-secretase are discussed.
Collapse
Affiliation(s)
- Mona Harnasch
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3US, UK
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Golde TE, Wolfe MS, Greenbaum DC. Signal peptide peptidases: a family of intramembrane-cleaving proteases that cleave type 2 transmembrane proteins. Semin Cell Dev Biol 2009; 20:225-30. [PMID: 19429495 DOI: 10.1016/j.semcdb.2009.02.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Revised: 02/05/2009] [Accepted: 02/05/2009] [Indexed: 01/09/2023]
Abstract
Five genes encode the five human signal peptide peptidases (SPPs), which are intramembrane-cleaving aspartyl proteases (aspartyl I-CLiPs). SPPs have been conserved through evolution with family members found in higher eukaryotes, fungi, protozoa, arachea, and plants. SPPs are related to the presenilin family of aspartyl I-CLiPs but differ in several key aspects. Presenilins (PSENs) and SPPs both cleave the transmembrane region of membrane proteins; however, PSENs cleave type 1 membrane proteins whereas SPPs cleave type 2 membrane proteins. Though the overall homology between SPPs and PSENs is minimal, they are multipass membrane proteins that contain two conserved active site motifs YD and GxGD in adjacent membrane-spanning domains and a conserved PAL motif of unknown function near their COOH-termini. They differ in that the active site YD and GxGD containing transmembrane domains of SPPs are inverted relative to PSENs, thus, orienting the active site in a consistent topology relative to the substrate. At least two of the human SPPs (SPP and SPPL3) appear to function without additional cofactors, but PSENs function as a protease, called gamma-secretase, only when complexed with Nicastrin, APH-1 and Pen-2. The biological roles of SPP are largely unknown, and only a few endogenous substrates for SPPs have been identified. Nevertheless there is emerging evidence that SPP family members are highly druggable and may regulate both essential physiologic and pathophysiologic processes. Further study of the SPP family is needed in order to understand their biological roles and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Todd E Golde
- Department of Neuroscience, Mayo Clinic, College of Medicine, 4500 San Pablo Road, Jacksonville, FL 32224, United States.
| | | | | |
Collapse
|
12
|
Gamerdinger M, Clement AB, Behl C. Effects of sulindac sulfide on the membrane architecture and the activity of gamma-secretase. Neuropharmacology 2008; 54:998-1005. [PMID: 18359496 DOI: 10.1016/j.neuropharm.2008.02.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2007] [Revised: 01/22/2008] [Accepted: 02/08/2008] [Indexed: 11/28/2022]
Abstract
gamma-Secretase is a membrane-embedded multi-protein complex that catalyzes the final cut of the Alzheimer's disease-related amyloid precursor protein (APP) to amyloid-beta peptides of variable length (37-43 amino acids) via an unusual intramembrane cleavage. Recent findings propose that some commonly used non-steroidal anti-inflammatory drugs (NSAIDs) have the ability to modulate specifically gamma-secretase activity without inhibiting the enzyme as a whole. These drugs may shift the processing of APP from the longer amyloid-beta 42 peptide towards shorter, less fibrillogenic and less toxic amyloid-beta species. We hypothesize that gamma-secretase activity, as an enzyme that is strictly associated with cellular membranes, is sensitive to alterations of the hydrophobic membrane environment. Here, we show that the gamma-secretase modulator and amyloid-beta 42-lowering drug sulindac sulfide alters the physical state of the membrane and strongly decreases fluidity of cellular membranes. Furthermore, sulindac sulfide changed the protein composition of membrane microdomains, the so-called lipid rafts. Most significantly, APP C-terminal fragments (CTFs) were redistributed from rafts towards non-raft membrane domains. This could be demonstrated also in cell-free assays, where in addition presenilin-1, the catalytic subunit of the gamma-secretase complex, was shifted out of lipid rafts. Together, these findings suggest that sulindac sulfide directly alters the membrane architecture and shifts the gamma-secretase-mediated cleavage of APP towards a hydrophobic environment where the enzyme-substrate complex is in a conformation for processing preferentially shorter amyloid-beta peptides.
Collapse
Affiliation(s)
- Martin Gamerdinger
- Department of Pathobiochemistry, Institute for Physiological Chemistry and Pathobiochemistry, Medical School, Johannes Gutenberg University Mainz, Duesbergweg 6, 55099 Mainz, Germany
| | | | | |
Collapse
|
13
|
Cacquevel M, Aeschbach L, Osenkowski P, Li D, Ye W, Wolfe MS, Li H, Selkoe DJ, Fraering PC. Rapid purification of active gamma-secretase, an intramembrane protease implicated in Alzheimer's disease. J Neurochem 2007; 104:210-20. [PMID: 17986218 DOI: 10.1111/j.1471-4159.2007.05041.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Gamma-secretase is an unconventional aspartyl protease that processes many type 1 membrane proteins within the lipid bilayer. Because its cleavage of amyloid-beta precursor protein generates the amyloid-beta protein (Abeta) of Alzheimer's disease, partially inhibiting gamma-secretase is an attractive therapeutic strategy, but the structure of the protease remains poorly understood. We recently used electron microscopy and single particle image analysis on the purified enzyme to generate the first 3D reconstruction of gamma-secretase, but at low resolution (15 A). The limited amount of purified gamma-secretase that can be produced using currently available cell lines and procedures has prevented the achievement of a high resolution crystal structure by X-ray crystallography or 2D crystallization. We report here the generation and characterization of a new mammalian cell line (S-20) that overexpresses strikingly high levels of all four gamma-secretase components (presenilin, nicastrin, Aph-1 and Pen-2). We then used these cells to develop a rapid protocol for the high-grade purification of proteolytically active gamma-secretase. The cells and purification methods detailed here provide a key step towards crystallographic studies of this ubiquitous enzyme.
Collapse
Affiliation(s)
- Matthias Cacquevel
- Brain Mind Institute and School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Venezia V, Nizzari M, Carlo P, Corsaro A, Florio T, Russo C. Amyloid precursor protein and presenilin involvement in cell signaling. NEURODEGENER DIS 2007; 4:101-11. [PMID: 17596704 DOI: 10.1159/000101834] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
To date the most relevant role for the amyloid precursor protein (APP) and for the presenilins (PSs) on Alzheimer's disease (AD) genesis is linked to the 'amyloid hypothesis', which considers an aberrant formation of amyloid-beta peptides the cause of neurodegeneration. In this view, APP is merely a substrate, cleaved by the gamma-secretase complex to form toxic amyloid peptides, PSs are key players in gamma-secretase complex, and corollary or secondary events are Tau-linked pathology and gliosis. A second theory, complementary to the amyloid hypothesis, proposes that APP and PSs may modulate a yet unclear cell signal, the disruption of which may induce cell-cycle abnormalities, neuronal death, eventually amyloid formation and finally dementia. This hypothesis is supported by the presence of a complex network of proteins, with a clear relevance for signal transduction mechanisms, which interact with APP or PSs. In this scenario, the C-terminal domain of APP has a pivotal role due to the presence of the 682YENPTY687 motif that represents the docking site for multiple interacting proteins involved in cell signaling. In this review we discuss the significance of novel findings related to cell signaling events modulated by APP and PSs for AD development.
Collapse
Affiliation(s)
- Valentina Venezia
- Department of Oncology, Biology and Genetics, University of Genova, Genova, Italy
| | | | | | | | | | | |
Collapse
|
15
|
Jeppesen B, Costello L, Fung A, Stanley E, McDonald J, Lambert A, Johnson B, Gentile L. Structure nor stability of the transmembrane spanning 6/7 domain of presenilin I correlates with pathogenicity. Biochem Biophys Res Commun 2007; 355:820-4. [PMID: 17320044 PMCID: PMC1855212 DOI: 10.1016/j.bbrc.2007.02.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2007] [Accepted: 02/08/2007] [Indexed: 11/30/2022]
Abstract
Since its cloning in 1995, missense point mutations in presenilin I (PS-I) have been shown to be responsible for greater than 70% of the cases of early onset familial Alzheimer's disease (EOFAD), which can affect individuals as early as age 18. PS-I is known to be a component of gamma-secretase, the enzyme responsible for cleavage of the amyloid precursor protein (APP) into 42 amino acid peptides that aggregate to form the plaques surrounding neurons of Alzheimer's patients. It has recently been hypothesized that wild-type (wt) PS-I contains an autoinhibitory module that prevents gamma-secretase cleavage of the APP, while pathogenic PS-I point mutants lack a structure necessary for this inhibition. In this work, spectroscopic data is presented that does not correlate structure or stability of the proposed PS-I autoinhibitory module with pathogenicity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Lisa Gentile
- *Corresponding author: Lisa Gentile, Department of Chemistry, University of Richmond, 28 Westhampton Way, Richmond, VA 23173; tel: 804-484-1578; FAX: 804-287-1897;
| |
Collapse
|
16
|
Kornilova AY, Kim J, Laudon H, Wolfe MS. Deducing the transmembrane domain organization of presenilin-1 in gamma-secretase by cysteine disulfide cross-linking. Biochemistry 2006; 45:7598-604. [PMID: 16768455 PMCID: PMC2597485 DOI: 10.1021/bi060107k] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Gamma-secretase is a founding member of membrane-embedded aspartyl proteases that cleave substrates within transmembrane domains, and this enzyme is an important target for the development of therapeutics for Alzheimer's disease. The structure of gamma-secretase and its precise catalytic mechanism still remain largely unknown. Gamma-secretase is a complex of four integral membrane proteins, with presenilin (PS) as the catalytic component. To gain structural and functional information about the nine-transmembrane domain (TMD) presenilin, we employed a cysteine mutagenesis/disulfide cross-linking approach. Here we report that native Cys92 is close to both Cys410 and Cys419, strongly implying that TMD1 and TMD8 are adjacent to each other. This structural arrangement also suggests that TMD8 is distorted from an ideal helix. Importantly, binding of an active site directed inhibitor, but not a docking site directed inhibitor, reduces the ability of the native cysteine pairs of PS1 to cross-link upon oxidation. These findings suggest that the conserved cysteines of TMD1 and TMD8 contribute to or allosterically interact with the active site of gamma-secretase.
Collapse
Affiliation(s)
- Anna Y. Kornilova
- Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, Boston, 02115, USA
| | - Jennifer Kim
- Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, Boston, 02115, USA
| | - Hanna Laudon
- Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, Boston, 02115, USA
| | - Michael S. Wolfe
- Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, Boston, 02115, USA
| |
Collapse
|
17
|
Szabó Z, Albers SV, Driessen AJM. Active-site residues in the type IV prepilin peptidase homologue PibD from the archaeon Sulfolobus solfataricus. J Bacteriol 2006; 188:1437-43. [PMID: 16452426 PMCID: PMC1367262 DOI: 10.1128/jb.188.4.1437-1443.2006] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2005] [Accepted: 11/30/2005] [Indexed: 11/20/2022] Open
Abstract
Archaeal preflagellin peptidases and bacterial type IV prepilin peptidases belong to a family of aspartic acid proteases that cleave the leader peptides of precursor proteins with type IV prepilin signal sequences. The substrate repertoire of PibD from the crenarchaeon Sulfolobus solfataricus is unusually diverse. In addition to flagellin, PibD cleaves three sugar-binding proteins unique to this species and a number of proteins with unknown function. Here we demonstrate that PibD contains two aspartic acid residues that are essential for cleavage activity. An additional pair of aspartic acids in a large cytoplasmic loop is also important for function and is possibly involved in leader peptide recognition. Combining the results of transmembrane segment predictions and cysteine-labeling experiments, we suggest a membrane topology model for PibD with the active-site aspartic acid residues exposed to the cytosol.
Collapse
Affiliation(s)
- Zalán Szabó
- Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands
| | | | | |
Collapse
|
18
|
El Mouedden M, Haseldonckx M, Mackie C, Meert T, Mercken M. Method for the determination of the levels of β-amyloid peptide in the CSF sampled from freely moving rats. J Pharmacol Toxicol Methods 2005; 52:229-33. [PMID: 16125620 DOI: 10.1016/j.vascn.2005.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Accepted: 02/11/2005] [Indexed: 11/19/2022]
Abstract
INTRODUCTION In the present study, a model was developed to determine the effect of secretase inhibition on beta-amyloid peptide (Abeta) levels in the cerebrospinal fluid (CSF) of freely moving adult rats. METHODS Rats were chronically implanted with a cannula into the cisterna magna and CSF samples were collected at different time points from the same animal without anaesthesia. The levels of CSF Abeta were measured by a sandwich ELISA assay. RESULTS Administration of DAPT, a functional gamma-secretase inhibitor, resulted in a substantial reduction of Abeta40 and Abeta42, confirming the in vivo functionality of the CSF as a biomarker source for endogenous APP processing modulation by secretase inhibitors. DISCUSSION Thus, the present work provides clear evidence for the usefulness of CSF sampling from the freely moving rat model for testing the effectiveness of small molecule inhibitors of Abeta production.
Collapse
Affiliation(s)
- Mohammed El Mouedden
- Johnson & Johnson Pharmaceutical Research & Development, a Division of Janssen Pharmaceutica, Turnhoutseweg 30, B-2340 Beerse, Belgium.
| | | | | | | | | |
Collapse
|
19
|
Esler WP, Das C, Wolfe MS. Probing pockets S2-S4' of the gamma-secretase active site with (hydroxyethyl)urea peptidomimetics. Bioorg Med Chem Lett 2004; 14:1935-8. [PMID: 15050631 DOI: 10.1016/j.bmcl.2004.01.077] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2003] [Accepted: 01/26/2004] [Indexed: 10/26/2022]
Abstract
(Hydroxyethyl)urea peptidomimetics are potent inhibitors of gamma-secretase that are accessible in a few synthetic steps. Systematic alteration of P2-P4' revealed that the corresponding S2-S4' active site pockets accommodate a variety of substituents, consistent with the fact that this protease cleaves a variety of single-pass membrane proteins; however, phenylalanine is not well tolerated at P2'. A compound spanning P2-P3' was identified as a low nM inhibitor of gamma-secretase activity both in cells and under cell-free conditions.
Collapse
Affiliation(s)
- William P Esler
- Center for Neurologic Diseases, Harvard Medical School and Brigham and Womens Hospital, Boston, MA 02115, USA
| | | | | |
Collapse
|
20
|
Bergman A, Laudon H, Winblad B, Lundkvist J, Näslund J. The Extreme C Terminus of Presenilin 1 Is Essential for γ-Secretase Complex Assembly and Activity. J Biol Chem 2004; 279:45564-72. [PMID: 15322123 DOI: 10.1074/jbc.m407717200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The gamma-secretase complex catalyzes the cleavage of the amyloid precursor protein in its transmembrane domain resulting in the formation of the amyloid beta-peptide and the cytoplasmic APP intracellular domain. The active gamma-secretase complex is composed of at least four subunits: presenilin (PS), nicastrin, Aph-1, and Pen-2, where the presence of all components is critically required for gamma-cleavage to occur. The PS proteins are themselves subjected to endoproteolytic cleavage resulting in the generation of an N-terminal and a C-terminal fragment that remain stably associated as a heterodimer. Here we investigated the effects of modifications on the C terminus of PS1 on PS1 endoproteolysis, gamma-secretase complex assembly, and activity in cells devoid of endogenous PS. We report that certain mutations and, in particular, deletions of the PS1 C terminus decrease gamma-secretase activity, PS1 endoproteolysis, and gamma-secretase complex formation. We demonstrate that the N- and C-terminal PS1 fragments can associate with each other in mutants having C-terminal truncations that cause loss of interaction with nicastrin and Aph-1. In addition, we show that the C-terminal fragment of PS1 alone can mediate interaction with nicastrin and Aph-1 in PS null cells expressing only the C-terminal fragment of PS1. Taken together, these data suggest that the PS1 N- and C-terminal fragment intermolecular interactions are independent of an association with nicastrin and Aph-1, and that nicastrin and Aph-1 interact with the C-terminal part of PS1 in the absence of an association with full-length PS1 or the N-terminal fragment.
Collapse
Affiliation(s)
- Anna Bergman
- Karolinska Institutet, Department of Neurotec, Section for Experimental Geriatrics, SE-141 86 Huddinge and Karolinska Institutet, Department of Cell and Molecular Biology, Medical Nobel Institute, SE-171 77 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
21
|
Wolozin B, Brown J, Theisler C, Silberman S. The cellular biochemistry of cholesterol and statins: insights into the pathophysiology and therapy of Alzheimer's disease. CNS DRUG REVIEWS 2004; 10:127-46. [PMID: 15179443 PMCID: PMC6741763 DOI: 10.1111/j.1527-3458.2004.tb00009.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The causes of late onset Alzheimer disease (AD) are poorly understood. Although beta-amyloid (Abeta) is thought to play a critical role in the pathophysiology of AD, no genetic evidence directly ties Abeta to late onset AD. This suggests that the accumulation of Abeta and neurodegeneration associated with AD might result from an abnormality that indirectly affects Abeta production or accumulation. Increasing evidence suggests that abnormalities in the metabolism of cholesterol and related molecules, such as cholseterol esters and 24(S) hydroxycholesterol might contribute to the pathophysiology of late onset AD by increasing production of Abeta. 24(S) Hydroxycholesterol is a member of a family of oxidized cholesterol catabolites, termed oxysterols, which function to regulate export of cholesterol from the cell and transcription of genes related to cholesterol metabolism. Cholesterol esters are cholesterol derivatives used for cholesterol storage. Levels of 24(S) hydroxycholesterol increase with AD. Polymorphisms in several different genes important for cholesterol physiology are associated with an increased load or level of Abeta in AD. These genes include apolipoprotein E, cholesterol 24 hydroxylase (Cyp46), acyl-CoA:cholesterol acetyltransferase (ACAT), and the cholesterol transporter ABCA1. Other studies show that levels of cholesterol, or its precursors, are elevated in subjects early in the course of AD. Finally, studies of the processing of amyloid precursor protein show that cholesterol and its catabolites modulate amyloid precursor protein processing and Abeta production. These lines of evidence raise the possibility that genetic abnormalities in cholesterol metabolism might contribute to the pathophysiology of AD.
Collapse
Affiliation(s)
- Benjamin Wolozin
- Department of Pharmacology, Loyola University Medical Center, Bldg. 102, Rm. 3634, 2160 South First Ave., Maywood, IL 60153, USA.
| | | | | | | |
Collapse
|
22
|
Cervantes S, Saura CA, Pomares E, Gonzàlez-Duarte R, Marfany G. Functional Implications of the Presenilin Dimerization. J Biol Chem 2004; 279:36519-29. [PMID: 15220354 DOI: 10.1074/jbc.m404832200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Presenilins are the catalytic components of gamma-secretase, an intramembrane-cleaving protease whose substrates include beta-amyloid precursor protein (betaAPP) and the Notch receptors. These type I transmembrane proteins undergo two distinct presenilin-dependent cleavages within the transmembrane region, which result in the production of Abeta and APP intracellular domain (from betaAPP) and the Notch intracellular domain signaling peptide. Most cases of familial Alzheimer's disease are caused by presenilin mutations, which are scattered throughout the coding sequence. Although the underlying molecular mechanism is not yet known, the familial Alzheimer's disease mutations produce a shift in the ratio of the long and short forms of the Abeta peptide generated by the gamma-secretase. We and others have previously shown that presenilin homodimerizes and suggested that a presenilin dimer is at the catalytic core of gamma-secretase. Here, we demonstrate that presenilin transmembrane domains contribute to the formation of the dimer. In-frame substitution of the hydrophilic loop 1, located between transmembranes I and II, which modulates the interactions within the N-terminal fragment/N-terminal fragment dimer, abolishes both presenilinase and gamma-secretase activities. In addition, by reconstituting gamma-secretase activity from two catalytically inactive presenilin aspartic mutants, we provide evidence of an active diaspartyl group assembled at the interface between two presenilin monomers. Under our conditions, this catalytic group mediates the generation of APP intracellular domain and Abeta but not Notch intracellular domain, therefore suggesting that specific diaspartyl groups within the presenilin catalytic core of gamma-secretase mediate the cleavage of different substrates.
Collapse
Affiliation(s)
- Sara Cervantes
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Avda. Diagonal 645, E-08028 Barcelona, Spain
| | | | | | | | | |
Collapse
|
23
|
Xie Z, Romano DM, Kovacs DM, Tanzi RE. Effects of RNA Interference-mediated Silencing of γ-Secretase Complex Components on Cell Sensitivity to Caspase-3 Activation. J Biol Chem 2004; 279:34130-7. [PMID: 15184387 DOI: 10.1074/jbc.m401094200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Familial Alzheimer's disease mutations in the presenilin 1 gene (PSEN1) have been previously shown to potentiate caspase activation and apoptosis in transfected cells and transgenic mice. However, the mechanism underlying this effect is not known. We set out to determine whether cellular sensitivity to caspase activation could be affected by modulating presenilin 1 (PS1) processing. PS1 processing was altered using RNA interference (RNAi) aimed at silencing the expression of the genes encoding the four components of the gamma-secretase complex, PSEN1, APH-1, PEN-2, and nicastrin. RNAi for these genes was carried out in naive H4 human neuroglioma cells, as well as H4 cell lines overexpressing either wild-type PSEN1 or the Familial Alzheimer's disease mutant PSEN1-Delta9 (PS1-mutant), that were induced to undergo apoptosis. In wild-type PSEN1 cells, RNAi for PEN-2, as expected, increased levels of full-length PS1 (PS1-FL) and decreased PS1 endoproteolysis. This was accompanied by potentiated caspase-3 activation in response to an apoptotic stimulus. In contrast, nicastrin RNAi, which only decreased levels of PS1-amino-terminal fragment and did not affect PS1-FL levels, had no effect on caspase-3 activation during apoptosis. Surprisingly, in the PS1-mutant cells, RNAi for PEN-2 (and APH-1) did not increase but instead reduced the levels of PS1-FL deleted for exon 9. In turn, this was accompanied by attenuated caspase-3 activation in response to an apoptotic stimulus. Finally, in naive H4 cells, PSEN1 RNAi also attenuated caspase-3 activation in response to an apoptotic stimulus. Collectively, these findings indicate that cellular sensitivity to caspase activation correlates with overall PS1 protein levels, particularly with levels of FL-PS1.
Collapse
Affiliation(s)
- Zhongcong Xie
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 114 16th Street, Charlestown, MA 02129-2060, USA
| | | | | | | |
Collapse
|
24
|
Baki L, Shioi J, Wen P, Shao Z, Schwarzman A, Gama-Sosa M, Neve R, Robakis NK. PS1 activates PI3K thus inhibiting GSK-3 activity and tau overphosphorylation: effects of FAD mutations. EMBO J 2004; 23:2586-96. [PMID: 15192701 PMCID: PMC449766 DOI: 10.1038/sj.emboj.7600251] [Citation(s) in RCA: 217] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2004] [Accepted: 04/30/2004] [Indexed: 01/10/2023] Open
Abstract
Phosphatidylinositol 3-kinase (PI3K) promotes cell survival and communication by activating its downstream effector Akt kinase. Here we show that PS1, a protein involved in familial Alzheimer's disease (FAD), promotes cell survival by activating the PI3K/Akt cell survival signaling. This function of PS1 is unaffected by gamma-secretase inhibitors. Pharmacological and genetic evidence indicates that PS1 acts upstream of Akt, at or before PI3K kinase. PS1 forms complexes with the p85 subunit of PI3K and promotes cadherin/PI3K association. Furthermore, conditions that inhibit this association prevent the PS1-induced PI3K/Akt activation, indicating that PS1 stimulates PI3K/Akt signaling by promoting cadherin/PI3K association. By activating PI3K/Akt signaling, PS1 promotes phosphorylation/inactivation of glycogen synthase kinase-3 (GSK-3), suppresses GSK-3-dependent phosphorylation of tau at residues overphosphorylated in AD and prevents apoptosis of confluent cells. PS1 FAD mutations inhibit the PS1-dependent PI3K/Akt activation, thus promoting GSK-3 activity and tau overphosphorylation at AD-related residues. Our data raise the possibility that PS1 may prevent development of AD pathology by activating the PI3K/Akt signaling pathway. In contrast, FAD mutations may promote AD pathology by inhibiting this pathway.
Collapse
Affiliation(s)
- Lia Baki
- Department of Psychiatry and Fishberg Research Center for Neurobiology, Mount Sinai School of Medicine, New York, NY, USA
| | - Junichi Shioi
- Department of Psychiatry and Fishberg Research Center for Neurobiology, Mount Sinai School of Medicine, New York, NY, USA
| | - Paul Wen
- Department of Psychiatry and Fishberg Research Center for Neurobiology, Mount Sinai School of Medicine, New York, NY, USA
| | - Zhiping Shao
- Department of Psychiatry and Fishberg Research Center for Neurobiology, Mount Sinai School of Medicine, New York, NY, USA
| | - Alexander Schwarzman
- Department of Psychiatry and Behavioural Sciences, State University of New York at Stony Brook, Stony Brook, NY, USA
| | - Miguel Gama-Sosa
- Department of Psychiatry and Fishberg Research Center for Neurobiology, Mount Sinai School of Medicine, New York, NY, USA
| | - Rachael Neve
- Departments of Psychiatry and Genetics, McLean Hospital, Harvard University, Belmont, MA, USA
| | - Nikolaos K Robakis
- Department of Psychiatry and Fishberg Research Center for Neurobiology, Mount Sinai School of Medicine, New York, NY, USA
| |
Collapse
|
25
|
Bihel F, Das C, Bowman MJ, Wolfe MS. Discovery of a Subnanomolar Helicald-Tridecapeptide Inhibitor of γ-Secretase. J Med Chem 2004; 47:3931-3. [PMID: 15267231 DOI: 10.1021/jm049788c] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Gamma-secretase is the second of two proteolytic enzymes responsible for the release of the amyloid beta-peptide implicated in the etiology of Alzheimer's disease. Here, we used solid-phase synthesis to generate a new series of helical peptides as gamma-secretase inhibitors, one of which, 11, showed an IC(50) of 140 pM in a cell-free enzyme assay.
Collapse
Affiliation(s)
- Frédéric Bihel
- Center for Neurologic Diseases, Harvard Medical School and Brigham & Women's Hospital, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
26
|
Laudon H, Mathews PM, Karlström H, Bergman A, Farmery MR, Nixon RA, Winblad B, Gandy SE, Lendahl U, Lundkvist J, Näslund J. Co-expressed presenilin 1 NTF and CTF form functional gamma-secretase complexes in cells devoid of full-length protein. J Neurochem 2004; 89:44-53. [PMID: 15030388 DOI: 10.1046/j.1471-4159.2003.02298.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The enzyme gamma-secretase catalyzes the intramembrane proteolytic cleavage that generates the amyloid beta-peptide from the beta-amyloid precursor protein. The presenilin (PS) protein is one of the four integral membrane protein components of the mature gamma-secretase complex. The PS protein is itself subjected to endoproteolytic processing, generating stable N- and C-terminal fragment (NTF and CTF, respectively) heterodimers. Here we demonstrate that coexpression of PS1 NTF and CTF functionally mimics expression of the full-length PS1 protein and restores gamma-secretase activity in PS-deficient mammalian cells. The coexpressed fragments re-associate with each other inside the cell, where they also interact with nicastrin, another gamma-secretase complex component. Analysis of gamma-secretase activity following the expression of mutant forms of NTF and CTF, under conditions bypassing endoproteolysis, indicated that the putatively catalytic Asp257 and Asp385 residues have a direct effect on gamma-secretase activity. Moreover, we demonstrate that expression of the wild-type CTF rescues endoproteolytic cleavage of C-terminally truncated PS1 molecules that are otherwise uncleaved and inactive. Recovery of cleavage is critically dependent on the integrity of Asp385. Taken together, our findings indicate that ectopically expressed NTF and CTF restore functional gamma-secretase complexes and that the presence of full-length PS1 is not a requirement for proper complex assembly.
Collapse
Affiliation(s)
- Hanna Laudon
- Karolinska Institutet, Neurotec, Section for Experimental Geriatrics, Novum, Huddinge, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Pascall JC, Brown KD. Intramembrane cleavage of ephrinB3 by the human rhomboid family protease, RHBDL2. Biochem Biophys Res Commun 2004; 317:244-52. [PMID: 15047175 DOI: 10.1016/j.bbrc.2004.03.039] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2004] [Indexed: 11/25/2022]
Abstract
Rhomboid-1 is a serine protease that cleaves the membrane domain of the Drosophila EGF-family protein, Spitz, to release a soluble growth factor. Several vertebrate rhomboid-like proteins have been identified, although their substrates and functions remain unknown. The human rhomboid, RHBDL2, cleaves the membrane domain of Drosophila Spitz when the proteins are co-expressed in mammalian cells. However, the membrane domains of several mammalian EGF-family proteins were not cleaved by RHBDL2, suggesting that the endogenous targets of the human protease are not EGF-related factors. We demonstrate that the amino acid sequence at the luminal face of the membrane domain of a substrate protein determines whether it is cleaved by RHBDL2. Based on this finding, we predicted B-type ephrins as potential RHBDL2 substrates. We found that one of these, ephrinB3, was cleaved so efficiently by the protease that little ephrinB3 was detected on the surface of cells co-expressing RHBDL2. These results raise the possibility that RHBDL2-mediated proteolytic processing may regulate intercellular interactions between ephrinB3 and eph receptors.
Collapse
Affiliation(s)
- John C Pascall
- Signalling Programme, Babraham Institute, Babraham Hall, Cambridge CB2 4AT, UK
| | | |
Collapse
|
28
|
Osenkowski P, Toth M, Fridman R. Processing, shedding, and endocytosis of membrane type 1‐matrix metalloproteinase (MT1‐MMP). J Cell Physiol 2004; 200:2-10. [PMID: 15137052 DOI: 10.1002/jcp.20064] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Matrix metalloproteinases (MMPs) are multidomain zinc-dependent proteolytic enzymes that play pivotal roles in many normal and pathological processes. Some members of the MMP family are anchored to the plasma membrane via specialized domains and thus are perfectly suited for pericellular proteolysis. Membrane-anchoring also confers the membrane type-MMPs (MT-MMPs) a unique and complex array of regulatory processes that endow cells with the ability to control MT-MMP-dependent proteolytic activity independently of the levels of endogenous protease inhibitors. Emerging evidence indicates that mechanisms as diverse as autocatalytic processing, ectodomain shedding, homodimerization and internalization can all contribute to the modulation of MT-MMP activity on the cell surface. How these distinct processes interact to attain the optimal level of enzyme activity in a particular setting and the molecular signals that trigger them constitute a new paradigm in MMP regulation. This review will discuss the recent findings concerning these diverse regulatory mechanisms in the context of MT1-MMP (MMP-14).
Collapse
Affiliation(s)
- Pamela Osenkowski
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | |
Collapse
|
29
|
Kaser M, Kambacheld M, Kisters-Woike B, Langer T. Oma1, a novel membrane-bound metallopeptidase in mitochondria with activities overlapping with the m-AAA protease. J Biol Chem 2003; 278:46414-23. [PMID: 12963738 DOI: 10.1074/jbc.m305584200] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The integrity of the inner membrane of mitochondria is maintained by a membrane-embedded quality control system that ensures the removal of misfolded membrane proteins. Two ATP-dependent AAA proteases with catalytic sites at opposite membrane surfaces are key components of this proteolytic system. Here we describe the identification of a novel conserved metallopeptidase that exerts activities overlapping with the m-AAA protease and was therefore termed Oma1. Both peptidases are integral parts of the inner membrane and mediate the proteolytic breakdown of a misfolded derivative of the polytopic inner membrane protein Oxa1. The m-AAA protease cleaves off the matrix-exposed C-terminal domain of Oxa1 and processively degrades its transmembrane domain. In the absence of the m-AAA protease, proteolysis of Oxa1 is mediated in an ATP-independent manner by Oma1 and a yet unknown peptidase resulting in the accumulation of N- and C-terminal proteolytic fragments. Oma1 exposes its proteolytic center to the matrix side; however, mapping of Oma1 cleavage sites reveals clipping of Oxa1 in loop regions at both membrane surfaces. These results identify Oma1 as a novel component of the quality control system in the inner membrane of mitochondria. Proteins homologous to Oma1 are present in higher eukaryotic cells, eubacteria and archaebacteria, suggesting that Oma1 is the founding member of a conserved family of membrane-embedded metallopeptidases.
Collapse
Affiliation(s)
- Michael Kaser
- Institut für Genetik, Universität zu Köln, Zülpicher Strasse 47, 50674 Köln, Germany
| | | | | | | |
Collapse
|
30
|
Selkoe D, Kopan R. Notch and Presenilin: regulated intramembrane proteolysis links development and degeneration. Annu Rev Neurosci 2003; 26:565-97. [PMID: 12730322 DOI: 10.1146/annurev.neuro.26.041002.131334] [Citation(s) in RCA: 489] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Intensive studies of three proteins--Presenilin, Notch, and the amyloid precursor protein (APP)--have led to the recognition of a direct intersection between early development and late-life neurodegeneration. Notch signaling mediates many different intercellular communication events that are essential for determining the fates of neural and nonneural cells during development and in the adult. The Notch receptor acts in a core pathway as a membrane-bound transcription factor that is released to the nucleus by a two-step cleavage mechanism called regulated intramembrane proteolysis (RIP). The second cleavage is effected by Presenilin, an unusual polytopic aspartyl protease that apparently cleaves Notch and numerous other single-transmembrane substrates within the lipid bilayer. Another Presenilin substrate, APP, releases the amyloid ss-protein that can accumulate over time in limbic and association cortices and help initiate Alzheimer's disease. Elucidating the detailed mechanism of Presenilin processing of membrane proteins is important for understanding diverse signal transduction pathways and potentially for treating and preventing Alzheimer's disease.
Collapse
Affiliation(s)
- Dennis Selkoe
- Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA.
| | | |
Collapse
|
31
|
Wilson CA, Doms RW, Lee VMY. Distinct presenilin-dependent and presenilin-independent ?-secretases are responsible for total cellular A? production. J Neurosci Res 2003; 74:361-9. [PMID: 14598312 DOI: 10.1002/jnr.10776] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
gamma-Secretase is the second of two proteolytic enzymes involved in the liberation of the beta-amyloid peptide (Abeta) from the amyloid precursor protein (APP). gamma-Secretase cleavage occurs at several intracellular sites, including the Golgi network and the endoplasmic reticulum/intermediate compartment (ER/IC) to produce multiple forms of the Abeta peptide that can be either secreted from the cell or remain intracellular. To date, most evidence has suggested that members of the presenilin protein family are required for gamma-secretase activity. Although it seems that presenilins are indeed necessary for the production of most secreted and intracellular Abeta particularly that generated in downstream organelles, it was shown recently that a presenilin-independent gamma-secretase is active in the ER/IC and is responsible for the production of a portion of intracellular Abeta42. We discuss the implications of this finding for the understanding of presenilin biology and speculate on the putative identity of the presenilin-independent cleavage activity.
Collapse
Affiliation(s)
- Christina A Wilson
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
32
|
LaVoie MJ, Fraering PC, Ostaszewski BL, Ye W, Kimberly WT, Wolfe MS, Selkoe DJ. Assembly of the gamma-secretase complex involves early formation of an intermediate subcomplex of Aph-1 and nicastrin. J Biol Chem 2003; 278:37213-22. [PMID: 12857757 DOI: 10.1074/jbc.m303941200] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The gamma-secretase complex is an unusual multimeric protease responsible for the intramembrane cleavage of a variety of type 1 transmembrane proteins, including the beta-amyloid precursor protein and Notch. Genetic and biochemical data have revealed that this protease consists of the presenilin heterodimer, a highly glycosylated form of nicastrin, and the recently identified gene products, Aph-1 and Pen-2. Whereas current evidence supports the notion that presenilin comprises the active site of the protease and that the other three components are members of the active complex required for proteolytic activity, the individual roles of the three co-factors remain unclear. Here, we demonstrate that endogenous Aph-1 interacts with an immature species of nicastrin, forming a stable intermediate early in the assembly of the gamma-secretase complex, prior to the addition of presenilin and Pen-2. Our data suggest 1) that Aph-1 is involved in the early stages of gamma-secretase assembly through the stabilization and perhaps glycosylation of nicastrin and by scaffolding nicastrin to the immature gamma-secretase complex, and 2) that presenilin, and later Pen-2, bind to this intermediate during the formation of the mature protease.
Collapse
Affiliation(s)
- Matthew J LaVoie
- Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Kim SH, Ikeuchi T, Yu C, Sisodia SS. Regulated hyperaccumulation of presenilin-1 and the "gamma-secretase" complex. Evidence for differential intramembranous processing of transmembrane subatrates. J Biol Chem 2003; 278:33992-4002. [PMID: 12821663 DOI: 10.1074/jbc.m305834200] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Intramembranous "gamma-secretase" processing of beta-amyloid precursor protein (APP) and other transmembrane proteins, including Notch, is mediated by a macromolecular complex consisting of presenilins (PSs), nicastrin (NCT), APH-1, and PEN-2. We now demonstrate that in cells coexpressing PS1, APH-1, and NCT, full-length PS1 accumulates to high levels and is fairly stable. Upon expression of PEN-2, the levels of PS1 holoprotein are significantly reduced, commensurate with an elevation in levels of PS1 fragments. These findings suggest that APH-1 and NCT are necessary for stabilization of full-length PS1 and that PEN-2 is critical for the proteolysis of stabilized PS1. In N2a and 293 cell lines that stably overexpress PS1, APH-1, NCT, and PEN-2, PS1 fragment levels are elevated by up to 10-fold over endogenous levels. In these cells, we find a marked accumulation of the APP-CTF gamma (AICD) fragment and a concomitant reduction in levels of both APP-CTF beta and CTF alpha. Moreover, the production of the gamma-secretase-generated Notch S3/NICD derivative is modestly elevated. However, we failed to observe a corresponding increase in levels of secreted A beta peptides in the medium of these cells. These results lead us to conclude that, although the PS1, APH-1, NCT, and PEN-2 are essential for gamma-secretase activity, the proteolysis of APP-CTF and Notch S2/NEXT are differentially regulated and require the activity of additional cofactors that promote production of AICD, NICD, and A beta.
Collapse
Affiliation(s)
- Seong-Hun Kim
- Department of Neurobiology, Pharmacology and Physiology, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | |
Collapse
|
34
|
Allain H, Bentué-Ferrer D, Tribut O, Gauthier S, Michel BF, Drieu-La Rochelle C. Alzheimer's disease: the pharmacological pathway. Fundam Clin Pharmacol 2003; 17:419-28. [PMID: 12914543 DOI: 10.1046/j.1472-8206.2003.00153.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The current pharmacological treatment of Alzheimer's disease (AD) comes down to four marketed drugs (tacrine, donepezil, rivastigmine and galantamine) all of which are cholinesterase inhibitors, conforming to the cholinergic hypothesis. The future is clearly directed at new biological targets closely linked to the pathophysiology of the disease and more precisely, the pathological hallmark of AD which includes widespread neuronal degeneration, neuritic plaques containing beta-amyloid and tau-rich neurofibrillary tangles. For clinicians, this means that new curative drugs will have to be prescribed early in the course of the disease. This review describes the main entry pathways for drug discovery in AD: (1) supplementation therapy, (2) anti-apoptotic compounds, (3) substances with a mitochondrial impact, (4) anti-amyloid substances, (5) anti-protein aggregation and (6) lipid-lowering drugs. The rapidity at which these compounds will be at our disposal is highly dependent on the policy of the pharmaceutical companies.
Collapse
Affiliation(s)
- Hervé Allain
- Laboratoire de Pharmacologie Expérimentale et Clinique, Faculté de Médecine, Université de Rennes I, CS 34317, 35043 Rennes cedex, France.
| | | | | | | | | | | |
Collapse
|
35
|
Mason DL, Mallampalli MP, Huyer G, Michaelis S. A region within a lumenal loop of Saccharomyces cerevisiae Ycf1p directs proteolytic processing and substrate specificity. EUKARYOTIC CELL 2003; 2:588-98. [PMID: 12796304 PMCID: PMC161439 DOI: 10.1128/ec.2.3.588-598.2003] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2003] [Accepted: 02/14/2003] [Indexed: 11/20/2022]
Abstract
Ycf1p, a member of the yeast multidrug resistance-associated protein (MRP) subfamily of ATP-binding cassette proteins, is a vacuolar membrane transporter that confers resistance to a variety of toxic substances such as cadmium and arsenite. Ycf1p undergoes a PEP4-dependent processing event to yield N- and C-terminal cleavage products that remain associated with one another. In the present study, we sought to determine whether proteolytic cleavage is required for Ycf1p activity. We have identified a unique region within lumenal loop 6 of Ycf1p, designated the loop 6 insertion (L6(ins)), which appears to be necessary and sufficient for proteolytic cleavage, since L6(ins) can promote processing when moved to new locations in Ycf1p or into a related transporter, Bpt1p. Surprisingly, mutational results indicate that proteolytic processing is not essential for Ycf1p transport activity. Instead, the L6(ins) appears to regulate substrate specificity of Ycf1p, since certain mutations in this region lower cellular cadmium resistance with a concomitant gain in arsenite resistance. Although some of these L6(ins) mutations block processing, there is no correlation between processing and substrate specificity. The activity profiles of the Ycf1p L6(ins) mutants are dramatically affected by the strain background in which they are expressed, raising the possibility that another cellular component may functionally impact Ycf1p activity. A candidate component may be a new full-length MRP-type transporter (NFT1), reported in the Saccharomyces Genome Database as two adjacent open reading frames, YKR103w and YKR104w, but which we show here is present in most Saccharomyces strains as a single open reading frame.
Collapse
Affiliation(s)
- Deborah L Mason
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|
36
|
Kimberly WT, LaVoie MJ, Ostaszewski BL, Ye W, Wolfe MS, Selkoe DJ. Gamma-secretase is a membrane protein complex comprised of presenilin, nicastrin, Aph-1, and Pen-2. Proc Natl Acad Sci U S A 2003; 100:6382-7. [PMID: 12740439 PMCID: PMC164455 DOI: 10.1073/pnas.1037392100] [Citation(s) in RCA: 594] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
gamma-Secretase catalyzes the intramembrane proteolysis of Notch, beta-amyloid precursor protein, and other substrates as part of a new signaling paradigm and as a key step in the pathogenesis of Alzheimer's disease. This unusual protease has eluded identification, though evidence suggests that the presenilin heterodimer comprises the catalytic site and that a highly glycosylated form of nicastrin associates with it. The formation of presenilin heterodimers from the holoprotein is tightly gated by unknown limiting cellular factors. Here we show that Aph-1 and Pen-2, two recently identified membrane proteins genetically linked to gamma-secretase, associate directly with presenilin and nicastrin in the active protease complex. Coexpression of all four proteins leads to marked increases in presenilin heterodimers, full glycosylation of nicastrin, and enhanced gamma-secretase activity. These findings suggest that the four membrane proteins comprise the limiting components of gamma-secretase and coassemble to form the active enzyme in mammalian cells.
Collapse
Affiliation(s)
- W Taylor Kimberly
- Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
37
|
Kornilova AY, Das C, Wolfe MS. Differential effects of inhibitors on the gamma-secretase complex. Mechanistic implications. J Biol Chem 2003; 278:16470-3. [PMID: 12644463 DOI: 10.1074/jbc.c300019200] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gamma-secretase is a protease complex of four integral membrane proteins, with presenilin (PS) as the apparent catalytic component, and this enzyme processes the transmembrane domains of a variety of substrates, including the amyloid beta-protein precursor and the Notch receptor. Here we explore the mechanisms of structurally diverse gamma-secretase inhibitors by examining their ability to displace an active site-directed photoprobe from PS heterodimers. Most gamma-secretase inhibitors, including a potent inhibitor of the PS-like signal peptide peptidase, blocked the photoprobe from binding to PS1, indicating that these compounds either bind directly to the active site or alter it through an allosteric interaction. Conversely, some reported inhibitors failed to displace this interaction, demonstrating that these compounds do not interfere with the protease by affecting its active site. Differential effects of the inhibitors with respect to photoprobe displacement and in cell-based and cell-free assays suggest that these compounds are important mechanistic tools for deciphering the workings of this intramembrane-cleaving protease complex and its similarity to other polytopic aspartyl proteases.
Collapse
Affiliation(s)
- Anna Y Kornilova
- Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
38
|
Weihofen A, Lemberg MK, Friedmann E, Rueeger H, Schmitz A, Paganetti P, Rovelli G, Martoglio B. Targeting presenilin-type aspartic protease signal peptide peptidase with gamma-secretase inhibitors. J Biol Chem 2003; 278:16528-33. [PMID: 12621027 DOI: 10.1074/jbc.m301372200] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Presenilin is implicated in the pathogenesis of Alzheimer's disease. It is thought to constitute the catalytic subunit of the gamma-secretase complex that catalyzes intramembrane cleavage of beta-amyloid precursor protein, the last step in the generation of amyloidogenic Abeta peptides. The latter are major constituents of amyloid plaques in the brain of Alzheimer's disease patients. Inhibitors of gamma-secretase are considered potential therapeutics for the treatment of this disease because they prevent production of Abeta peptides. Recently, we discovered a family of presenilin-type aspartic proteases. The founding member, signal peptide peptidase, catalyzes intramembrane cleavage of distinct signal peptides in the endoplasmic reticulum membrane of animals. In humans, the protease plays a crucial role in the immune system. Moreover, it is exploited by the hepatitis C virus for the processing of the structural components of the virion and hence is an attractive target for anti-infective intervention. Signal peptide peptidase and presenilin share identical active site motifs and both catalyze intramembrane proteolysis. These common features let us speculate that gamma-secretase inhibitors directed against presenilin may also inhibit signal peptide peptidase. Here we demonstrate that some of the most potent known gamma-secretase inhibitors efficiently inhibit signal peptide peptidase. However, we found compounds that showed higher specificity for one or the other protease. Our findings highlight the possibility of developing selective inhibitors aimed at reducing Abeta generation without affecting other intramembrane-cleaving aspartic proteases.
Collapse
Affiliation(s)
- Andreas Weihofen
- Institute of Biochemistry, Swiss Federal Institute of Technology (ETH), ETH-Hoenggerberg, 8093 Zurich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Bland CE, Kimberly P, Rand MD. Notch-induced proteolysis and nuclear localization of the Delta ligand. J Biol Chem 2003; 278:13607-10. [PMID: 12591935 DOI: 10.1074/jbc.c300016200] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Delta protein is a single-pass transmembrane ligand for the Notch family of receptors. Delta binding to Notch invokes regulated intramembrane proteolysis and nuclear translocation of the Notch intracellular domain. Delta is proteolytically processed at two sites, Ala(581) and Ala(593) in the juxtamembrane and transmembrane domains, respectively (Mishra-Gorur, K., Rand, M. D., Perez-Villamil, B., and Artavanis-Tsakonas, S. (2002) J. Cell Biol. 159, 313-324). Controversy over the role of Delta processing in propagating Notch signals has stemmed from conflicting reports on the activity or inactivity of soluble extracellular domain products of Delta. We have examined Delta proteolysis in greater detail and report that Delta undergoes three proteolytic cleavages in the region of the juxtamembrane and transmembrane domains. Only one of these cleavages, analogous to cleavage at Ala(581), is dependent on the Kuzbanian ADAM metalloprotease. The two additional cleavages correspond to the previously described cleavage at Ala(593) and a novel unidentified site within or close to the transmembrane domain. Delta processing is up-regulated in co-cultures with Notch-expressing cells and is similarly induced by p-aminophenylmercuric acetate, a well documented activator of metalloproteases. Furthermore, expression of a truncated intracellular isoform of Delta shows prominent nuclear localization. Altogether, these data demonstrate a role for Notch in inducing Delta proteolysis and implicate a nuclear function for Delta, consistent with a model of bi-directional signaling through Notch-Delta interactions.
Collapse
Affiliation(s)
- Christin E Bland
- Department of Anatomy and Neurobiology, College of Medicine, University of Vermont, Burlington 05405, USA
| | | | | |
Collapse
|
40
|
Wolfe MS. Gamma-secretase--intramembrane protease with a complex. SCIENCE OF AGING KNOWLEDGE ENVIRONMENT : SAGE KE 2003; 2003:PE7. [PMID: 12844518 DOI: 10.1126/sageke.2003.11.pe7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Gamma-secretase catalyzes intramembrane proteolysis of the amyloid beta protein precursor, a process closely linked to the development of Alzheimer's disease. This protease also cleaves the transmembrane domain of the Notch receptor as part of a signaling pathway that is essential for proper embryonic development. Recent findings suggest that gamma-secretase is a complex of at least four integral membrane proteins: presenilin, nicastrin, Aph-1, and Pen-2. Assembly of these four components apparently leads to autocleavage of presenilin into two subunits that together compose the intramembranous active site of gamma-secretase. Understanding the mechanism of this unusual enzyme is important, as it is both a key therapeutic target and a founding member of a newly discovered class of intramembrane-cleaving proteases.
Collapse
Affiliation(s)
- Michael S Wolfe
- Center for Neurologic Diseases at Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
41
|
Ikeuchi T, Dolios G, Kim SH, Wang R, Sisodia SS. Familial Alzheimer disease-linked presenilin 1 variants enhance production of both Abeta 1-40 and Abeta 1-42 peptides that are only partially sensitive to a potent aspartyl protease transition state inhibitor of "gamma-secretase". J Biol Chem 2003; 278:7010-8. [PMID: 12493731 DOI: 10.1074/jbc.m209252200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Presenilin 1 (PS1) plays an essential role in intramembranous "gamma-secretase" processing of several type I membrane proteins, including the beta-amyloid precursor proteins (APP) and Notch1. In this report, we examine the activity of two familial Alzheimer's disease-linked PS1 variants on the production of secreted Abeta peptides and the effects of L-685,458, a potent gamma-secretase inhibitor, on inhibition of Abeta peptides from cells expressing these PS1 variants. We now report that PS1 variants enhance the production and secretion of both Abeta1-42 and Abeta1-40 peptides. More surprisingly, whereas the IC(50) for inhibition of Abeta1-40 peptide production from cells expressing wild-type PS1 is approximately 1.5 microm, cells expressing the PS1deltaE9 mutant PS1 exhibit an IC(50) of approximately 4 microm. Immunoprecipitation and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry reveal that the levels of Abeta1-43 peptides are elevated in medium of PS1deltaE9 cells treated with higher concentrations of inhibitor. The differential effects of wild-type and mutant PS1 on gamma-secretase production of Abeta peptides and the disparity in sensitivity of these peptides to a potent gamma-secretase suggest that PS may be necessary, but not sufficient, to catalyze hydrolysis at the scissile bonds that generate the termini of Abeta1-40 and Abeta1-42 peptides.
Collapse
Affiliation(s)
- Takeshi Ikeuchi
- Department of Neurobiology, Pharmacology and Physiology, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | |
Collapse
|
42
|
Chapter 5. Secretase inhibitors for Alzheimer's disease. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2003. [DOI: 10.1016/s0065-7743(03)38006-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
|
43
|
Abstract
Deposition of the amyloid-beta protein (Abeta) in the form of cerebral plaques is a defining pathological feature of Alzheimer's disease (AD), and all AD-causing genes identified to date affect Abeta production or deposition. For these reasons, the two proteases, beta- and gamma-secretases, that cut out Abeta from the amyloid-beta precursor protein (APP) are considered important targets for the development of therapeutics for AD. AD-causing mutations in the presenilin genes alter y-secretase activity, increasing production of the more deleterious 42-residue form of Abeta. Pharmacological profiling, site-directed mutagenesis, knockout studies, affinity labeling, and activity-dependent chromatography all strongly support the hypothesis that presenilin is an integral component of gamma-secretase, a founding member of an emerging class of polytopic membrane proteases. Gamma-Secretase/ presenilin also cleaves other proteins that are important for critical signaling events (the Notch family of receptors), raising concerns about mechanism-based toxicities that might arise as a consequence of inhibiting this protease. In light of these findings, the potential of gamma-secretase vis-à-vis beta-secretase as therapeutic targets for the prevention or treatment of AD will be discussed.
Collapse
Affiliation(s)
- Michael S Wolfe
- Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, H.I.M. 626, Boston, MA 02115, USA.
| |
Collapse
|
44
|
LaFerla FM. Calcium dyshomeostasis and intracellular signalling in Alzheimer's disease. Nat Rev Neurosci 2002; 3:862-72. [PMID: 12415294 DOI: 10.1038/nrn960] [Citation(s) in RCA: 768] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Frank M LaFerla
- Laboratory of Molecular Neuropathogenesis, Department of Neurobiology and Behavior, University of California, Irvine, 1109 Gillespie Neuroscience Building, Irvine, California 92697, USA.
| |
Collapse
|
45
|
Abstract
Signal sequences, once considered degenerate hydrophobic elements whose sole task is to target proteins to the secretory pathway, are increasingly being recognized as playing roles beyond targeting. Recent work is beginning to shed light on some of the ways the cell decodes and exploits additional functions encoded within signal sequences.
Collapse
Affiliation(s)
- Ramanujan S Hegde
- Cell Biology and Metabolism Branch, NICHD, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
46
|
Abstract
The presenilin-type aspartic protease signal peptide peptidase (SPP) can cleave signal peptides within their transmembrane region. SPP is essential for generation of signal peptide-derived HLA-E epitopes in humans and is exploited by Hepatitis C virus for processing of the viral polyprotein. Here we analyzed requirements of substrates for intramembrane cleavage by SPP. Comparing signal peptides that are substrates with those that are not revealed that helix-breaking residues within the transmembrane region are required for cleavage, and flanking regions can affect processing. Furthermore, signal peptides have to be liberated from the precursor protein by cleavage with signal peptidase in order to become substrates for SPP. We propose that signal peptides require flexibility in the lipid bilayer to exhibit an accessible peptide bond for intramembrane proteolysis.
Collapse
Affiliation(s)
- Marius K Lemberg
- Institute of Biochemistry, Swiss Federal Institute of Technology, ETH-Hoenggerberg, 8093, Zürich, Switzerland
| | | |
Collapse
|
47
|
|