1
|
Djakbarova U, Madraki Y, Chan ET, Kural C. Dynamic interplay between cell membrane tension and clathrin-mediated endocytosis. Biol Cell 2021; 113:344-373. [PMID: 33788963 PMCID: PMC8898183 DOI: 10.1111/boc.202000110] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 03/08/2021] [Accepted: 03/19/2021] [Indexed: 12/26/2022]
Abstract
Deformability of the plasma membrane, the outermost surface of metazoan cells, allows cells to be dynamic, mobile and flexible. Factors that affect this deformability, such as tension on the membrane, can regulate a myriad of cellular functions, including membrane resealing, cell motility, polarisation, shape maintenance, membrane area control and endocytic vesicle trafficking. This review focuses on mechanoregulation of clathrin-mediated endocytosis (CME). We first delineate the origins of cell membrane tension and the factors that yield to its spatial and temporal fluctuations within cells. We then review the recent literature demonstrating that tension on the membrane is a fast-acting and reversible regulator of CME. Finally, we discuss tension-based regulation of endocytic clathrin coat formation during physiological processes.
Collapse
Affiliation(s)
| | - Yasaman Madraki
- Department of Physics, The Ohio State University, Columbus, OH 43210, USA
| | - Emily T. Chan
- Interdiscipiinary Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
- Molecular Biophysics Training Program, The Ohio State University, Columbus, OH 43210, USA
| | - Comert Kural
- Department of Physics, The Ohio State University, Columbus, OH 43210, USA
- Interdiscipiinary Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
2
|
Baba K, Kuwada S, Nakao A, Li X, Okuda N, Nishida A, Mitsuda S, Fukuoka N, Kakeya H, Kataoka T. Different localization of lysosomal-associated membrane protein 1 (LAMP1) in mammalian cultured cell lines. Histochem Cell Biol 2020; 153:199-213. [PMID: 31907597 DOI: 10.1007/s00418-019-01842-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2019] [Indexed: 11/29/2022]
Abstract
Lysosomal-associated membrane protein 1 (LAMP1) mainly localizes to lysosomes and late endosomes. We herein investigated the intracellular localization of lysosomal membrane proteins in five mammalian cultured cell lines. Rat LAMP1 fused to enhanced green fluorescent protein (EGFP) mostly accumulated at a particular cytoplasmic area and barely co-localized with LysoTracker® Red DND-99 in golden hamster kidney BHK-21 cells and Chinese hamster ovary CHO-K1 cells. Golden hamster, Chinese hamster, and human LAMP1-EGFP showed a similar intracellular distribution to rat LAMP1-EGFP in BHK-21 cells. Endogenous LAMP1 was also detected in a perinuclear area in BHK-21 cells and CHO-K1 cells, and co-localized with rat CD63-EGFP in BHK-21 cells. Moreover, rat LAMP1-DsRed-Monomer co-localized well with the human trans-Golgi network protein 2-EGFP in BHK-21 cells. These results reveal that LAMP1 predominantly localizes to the trans-Golgi network in BHK-21 cells.
Collapse
Affiliation(s)
- Kosuke Baba
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Sara Kuwada
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Ayaka Nakao
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Xuebing Li
- Department of System Chemotherapy and Molecular Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Naoaki Okuda
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Ai Nishida
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Satoshi Mitsuda
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Natsuki Fukuoka
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Hideaki Kakeya
- Department of System Chemotherapy and Molecular Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Takao Kataoka
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan.
- The Center for Advanced Insect Research Promotion (CAIRP), Kyoto Institute of Technology, Kyoto, Japan.
| |
Collapse
|
3
|
Robinson MS. Forty Years of Clathrin-coated Vesicles. Traffic 2015; 16:1210-38. [PMID: 26403691 DOI: 10.1111/tra.12335] [Citation(s) in RCA: 246] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 09/16/2015] [Accepted: 09/16/2015] [Indexed: 12/11/2022]
Abstract
The purification of coated vesicles and the discovery of clathrin by Barbara Pearse in 1975 was a landmark in cell biology. Over the past 40 years, work from many labs has uncovered the molecular details of clathrin and its associated proteins, including how they assemble into a coated vesicle and how they select cargo. Unexpected connections have been found with signalling, development, neuronal transmission, infection, immunity and genetic disorders. But there are still a number of unanswered questions, including how clathrin-mediated trafficking is regulated and how the machinery evolved.
Collapse
Affiliation(s)
- Margaret S Robinson
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| |
Collapse
|
4
|
Abstract
A key function of coat proteins is the sorting of protein cargoes into intracellular transport pathways. For many years, however, it has been unclear whether this role of coat proteins would apply to pathways of endocytic recycling. This issue has been clarified in recent years through the identification of multiple coat complexes acting in the recycling pathways. Leading this charge have been studies on a coat complex defined by ACAP1 (adenosine diphosphate ribosylation factor GTPase-activating proteins with Coiled-coil, Ankryin repeat and PH domains 1), which acts in the sorting of cargoes at the recycling endosome for their return to the plasma membrane. This chapter describes the methods used to characterize this role of ACAP1.
Collapse
Affiliation(s)
- Jian Li
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Victor W Hsu
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
SDF-1 chemokine signalling modulates the apoptotic responses to iron deprivation of clathrin-depleted DT40 cells. PLoS One 2014; 9:e106278. [PMID: 25162584 PMCID: PMC4146602 DOI: 10.1371/journal.pone.0106278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 08/05/2014] [Indexed: 11/29/2022] Open
Abstract
We have previously deleted both endogenous copies of the clathrin heavy-chain gene in the chicken pre B-cell-line DT40 and replaced them with clathrin under the control of a tetracycline-regulatable promoter (Tet-Off). The originally derived cell-line DKO-S underwent apoptosis when clathrin expression was repressed. We have also described a cell-line DKO-R derived from DKO-S cells that was less sensitive to clathrin-depletion. Here we show that the restriction of transferrin uptake, resulting in iron deprivation, is responsible for the lethal consequence of clathrin-depletion. We further show that the DKO-R cells have up-regulated an anti-apoptotic survival pathway based on the chemokine SDF-1 and its receptor CXCR4. Our work clarifies several puzzling features of clathrin-depleted DT40 cells and reveals an example of how SDF-1/CXCR4 signalling can abrogate pro-apoptotic pathways and increase cell survival. We propose that the phenomenon described here has implications for the therapeutic approach to a variety of cancers.
Collapse
|
6
|
Abstract
Clathrin, a protein best known for its role in membrane trafficking, has been recognised for many years as localising to the spindle apparatus during mitosis, but its function at the spindle remained unclear. Recent work has better defined the role of clathrin in the function of the mitotic spindle and proposed that clathrin crosslinks the microtubules (MTs) comprising the kinetochore fibres (K-fibres) in the mitotic spindle. This mitotic function is unrelated to the role of clathrin in membrane trafficking and occurs in partnership with two other spindle proteins: transforming acidic coiled-coil protein 3 (TACC3) and colonic hepatic tumour overexpressed gene (ch-TOG; also known as cytoskeleton-associated protein 5, CKAP5). This review summarises the role of clathrin in mitotic spindle organisation with an emphasis on the recent discovery of the TACC3-ch-TOG-clathrin complex.
Collapse
Affiliation(s)
- Stephen J Royle
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK.
| |
Collapse
|
7
|
Agarwal S, Rastogi R, Gupta D, Patel N, Raje M, Mukhopadhyay A. Clathrin-mediated hemoglobin endocytosis is essential for survival of Leishmania. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:1065-77. [DOI: 10.1016/j.bbamcr.2013.01.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Revised: 12/21/2012] [Accepted: 01/08/2013] [Indexed: 11/27/2022]
|
8
|
Hsu VW, Bai M, Li J. Getting active: protein sorting in endocytic recycling. Nat Rev Mol Cell Biol 2012; 13:323-8. [PMID: 22498832 DOI: 10.1038/nrm3332] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Endocytic recycling returns proteins to the plasma membrane in many physiological contexts. Studies of these events have helped to elucidate fundamental mechanisms that underlie recycling. Recycling was for some time considered to be the exception to a general mechanism of active cargo sorting in multiple intracellular pathways. In recent years, studies have begun to reconcile this seeming disparity and also suggest explanations for why early recycling studies did not detect active sorting. Further articulation of this emerging trend has far-reaching implications for a deeper understanding of many physiological and pathological events that require recycling.
Collapse
Affiliation(s)
- Victor W Hsu
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, and Department of Medicine, Harvard Medical School, Boston, Massachsuetts 02115, USA.
| | | | | |
Collapse
|
9
|
McMahon HT, Boucrot E. Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat Rev Mol Cell Biol 2011; 12:517-33. [PMID: 21779028 DOI: 10.1038/nrm3151] [Citation(s) in RCA: 1615] [Impact Index Per Article: 115.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
10
|
Zhang C, Jackson AP, Zhang ZR, Han Y, Yu S, He RQ, Perrett S. Amyloid-like aggregates of the yeast prion protein ure2 enter vertebrate cells by specific endocytotic pathways and induce apoptosis. PLoS One 2010; 5. [PMID: 20824085 PMCID: PMC2932714 DOI: 10.1371/journal.pone.0012529] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Accepted: 07/08/2010] [Indexed: 11/23/2022] Open
Abstract
Background A number of amyloid diseases involve deposition of extracellular protein aggregates, which are implicated in mechanisms of cell damage and death. However, the mechanisms involved remain poorly understood. Methodology/Principal Findings Here we use the yeast prion protein Ure2 as a generic model to investigate how amyloid-like protein aggregates can enter mammalian cells and convey cytotoxicity. The effect of three different states of Ure2 protein (native dimer, protofibrils and mature fibrils) was tested on four mammalian cell lines (SH-SY5Y, MES23.5, HEK-293 and HeLa) when added extracellularly to the medium. Immunofluorescence using a polyclonal antibody against Ure2 showed that all three protein states could enter the four cell lines. In each case, protofibrils significantly inhibited the growth of the cells in a dose-dependent manner, fibrils showed less toxicity than protofibrils, while the native state had no effect on cell growth. This suggests that the structural differences between the three protein states lead to their different effects upon cells. Protofibrils of Ure2 increased membrane conductivity, altered calcium homeostasis, and ultimately induced apoptosis. The use of standard inhibitors suggested uptake into mammalian cells might occur via receptor-mediated endocytosis. In order to investigate this further, we used the chicken DT40 B cell line DKOR, which allows conditional expression of clathrin. Uptake into the DKOR cell-line was reduced when clathrin expression was repressed suggesting similarities between the mechanism of PrP uptake and the mechanism observed here for Ure2. Conclusions/Significance The results provide insight into the mechanisms by which amyloid aggregates may cause pathological effects in prion and amyloid diseases.
Collapse
Affiliation(s)
- Chen Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Graduate University of the Chinese Academy of Sciences, Beijing, China
| | - Antony P. Jackson
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Zai-Rong Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Graduate University of the Chinese Academy of Sciences, Beijing, China
| | - Yan Han
- Department of Neurobiology and the Sino-Japan Joint Laboratory of Neurodegenerative Diseases, Beijing Institute of Geriatrics, Xuanwu Hospital of the Capital University of Medical Sciences, Beijing, China
| | - Shun Yu
- Department of Neurobiology and the Sino-Japan Joint Laboratory of Neurodegenerative Diseases, Beijing Institute of Geriatrics, Xuanwu Hospital of the Capital University of Medical Sciences, Beijing, China
| | - Rong-Qiao He
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Sarah Perrett
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
11
|
Neumann-Staubitz P, Hall SL, Kuo J, Jackson AP. Characterization of a temperature-sensitive vertebrate clathrin heavy chain mutant as a tool to study clathrin-dependent events in vivo. PLoS One 2010; 5:e12017. [PMID: 20700507 PMCID: PMC2917355 DOI: 10.1371/journal.pone.0012017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2008] [Accepted: 07/15/2010] [Indexed: 01/27/2023] Open
Abstract
Clathrin and clathrin-dependent events are evolutionary conserved although it is believed that there are differences in the requirement for clathrin in yeast and higher vertebrates. Clathrin is a long-lived protein and thus, with clathrin knockdowns only long-term consequences of clathrin depletion can be studied. Here, we characterize the first vertebrate temperature-sensitive clathrin heavy chain mutant as a tool to investigate responses to rapid clathrin inactivation in higher eukaryotes. Although we created this mutant using a clathrin cryo-electron microscopy model and a yeast temperature-sensitive mutant as a guide, the resulting temperature-sensitive clathrin showed an altered phenotype compared to the corresponding yeast temperature-sensitive clathrin. First, it seemed to form stable triskelions at the non-permissive temperature although endocytosis was impaired under these conditions. Secondly, as a likely consequence of the stable triskelions at the non-permissive temperature, clathrin also localized correctly to its target membranes. Thirdly, we did not observe missorting of the lysosomal enzyme beta-glucuronidase which could indicate that the temperature-sensitive clathrin is still operating at the non-permissive temperature at the Golgi or, that, like in yeast, more than one TGN trafficking pathway exists. Fourthly, in contrast to yeast, actin does not appear to actively compensate in general endocytosis. Thus, there seem to be differences between vertebrates and yeast which can be studied in further detail with this newly created tool.
Collapse
|
12
|
Hsu VW, Prekeris R. Transport at the recycling endosome. Curr Opin Cell Biol 2010; 22:528-34. [PMID: 20541925 PMCID: PMC2910225 DOI: 10.1016/j.ceb.2010.05.008] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 05/11/2010] [Accepted: 05/13/2010] [Indexed: 12/11/2022]
Abstract
The recycling endosome (RE) has long been considered as a sub-compartment of the early endosome that recycles internalized cargoes to the plasma membrane. The RE is now appreciated to participate in a more complex set of intracellular itineraries. Key cargo molecules and transport factors that act in these pathways are being identified. These advancements are beginning to reveal complexities in pathways involving the RE, and also suggest ways of further delineating functional domains of this compartment.
Collapse
Affiliation(s)
- Victor W Hsu
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | | |
Collapse
|
13
|
Hölzenspies JJ, Roelen BAJ, Colenbrander B, Romijn RAP, Hemrika W, Stoorvogel W, van Haeften T. Clathrin is essential for meiotic spindle function in oocytes. Reproduction 2010; 140:223-33. [PMID: 20522479 DOI: 10.1530/rep-10-0045] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In the mammalian ovary, oocytes are arrested at prophase of meiosis I until a hormonal stimulus triggers resumption of meiosis. During the subsequent meiotic maturation process, which includes completion of the first meiotic division and formation of the second metaphase spindle, oocytes acquire competence for fertilization. Recently, it was shown that clathrin, a cytosolic protein complex originally defined for its role in intracellular membrane traffic, is also involved in the stabilization of kinetochore fibers in mitotic spindles of dividing somatic cells. However, whether clathrin has a similar function in meiotic spindles in oocytes has not been investigated previously. Our results show that endogenous clathrin associates with the meiotic spindles in oocytes. To study the function of clathrin during meiotic maturation, we microinjected green fluorescent protein-tagged C-terminal and N-terminal dominant-negative clathrin protein constructs into isolated porcine oocytes prior to in vitro maturation. Both protein constructs associated with meiotic spindles similar to endogenous clathrin, but induced misalignment and clumping of chromosomes, occurrence of cytoplasmic chromatin and failure of polar body extrusion. These data demonstrate that clathrin plays a crucial role in meiotic spindle function in maturing oocytes, possibly through spindle stabilization.
Collapse
Affiliation(s)
- Jurriaan J Hölzenspies
- Departments of Farm Animal Health Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
14
|
Ohata H, Ota N, Shirouzu M, Yokoyama S, Yokota J, Taya Y, Enari M. Identification of a function-specific mutation of clathrin heavy chain (CHC) required for p53 transactivation. J Mol Biol 2009; 394:460-71. [PMID: 19766654 DOI: 10.1016/j.jmb.2009.09.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 09/14/2009] [Accepted: 09/14/2009] [Indexed: 01/02/2023]
Abstract
The p53 pathway is activated in response to various cellular stresses to protect cells from malignant transformation. We have previously shown that clathrin heavy chain (CHC), which is a cytosolic protein regulating endocytosis, is present in nuclei and binds to p53 to promote p53-mediated transcription. However, details of the binding interface between p53 and CHC remain unclear. Here, we report on the binding mode between p53 and CHC using mutation analyses and a structural model of the interaction generated by molecular dynamics. Structural modeling analyses predict that an Asn1288 residue in CHC is crucial for binding to p53. In fact, substitution of this Asn to Ala of CHC diminished its ability to interact with p53, leading to reduced activity to transactivate p53. Surprisingly, this mutation had little effect on receptor-mediated endocytosis. Thus, the function-specific mutation of CHC will clarify physiological roles of CHC in the regulation of the p53 pathway.
Collapse
Affiliation(s)
- Hirokazu Ohata
- Radiobiology Division, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
15
|
Ryu SD, Lee HS, Suk HY, Park CS, Choi OH. Cross-linking of FcepsilonRI causes Ca2+ mobilization via a sphingosine kinase pathway in a clathrin-dependent manner. Cell Calcium 2009; 45:99-108. [PMID: 18675457 PMCID: PMC2663414 DOI: 10.1016/j.ceca.2008.07.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Revised: 07/03/2008] [Accepted: 07/04/2008] [Indexed: 10/21/2022]
Abstract
Clathrin-coated pits are now recognized to be involved in cell signaling in addition to receptor down-regulation. Here we tried to identify signaling pathways that might be dependent on clathrin. Our initial data with pharmacological inhibitors of formation of clathrin-coated pits or lipid-rafts indicated that Ca(2+) response evoked by cross-linking of the high affinity receptors for IgE (FcepsilonRI) was dependent on clathrin. To confirm this finding, we created clathrin-knockdown cells by transfecting the mast cell line RBL-2H3 with a shRNA-clathrin heavy chain construct. In these cells, the FcepsilonRI-mediated Ca(2+) response was almost completely abolished, which was accompanied by the inhibition of sphingosine 1-phosphate (S1P) production with no changes in inositol 1,4,5-trisphosphate (IP(3)) production. This suggests that the Ca(2+) signaling pathway via a sphingosine kinase (SK) is dependent on clathrin. Furthermore, antigen-induced tyrosine phosphorylation of p85 and p110 subunits of PI3K was almost completely inhibited in clathrin-knockdown cells. In contrast, antigen-induced tyrosine phosphorylation of phospholipase Cgamma was not affected by clathrin-knockdown and tyrosine phosphorylation of Syk and degranulation were partially inhibited in clathrin-knockdown cells. The present study identifies the SK/Ca(2+) pathway to be dependent on clathrin.
Collapse
Affiliation(s)
- Seung-Duk Ryu
- Department of Medicine, Division of Allergy and Clinical Immunology, the Johns Hopkins, University School of Medicine, Johns Hopkins Asthma and Allergy Center, 5501 Hopkins Bayview Circle, Baltimore MD 21224, USA
| | - Hyun Sil Lee
- Department of Medicine, Division of Allergy and Clinical Immunology, the Johns Hopkins, University School of Medicine, Johns Hopkins Asthma and Allergy Center, 5501 Hopkins Bayview Circle, Baltimore MD 21224, USA
| | - Ho Young Suk
- Department of Medicine, Division of Allergy and Clinical Immunology, the Johns Hopkins, University School of Medicine, Johns Hopkins Asthma and Allergy Center, 5501 Hopkins Bayview Circle, Baltimore MD 21224, USA
| | - Chang Shin Park
- Department of Pharmacology and Toxicology, College of Medicine, Inha University, Incheon 402-752, Republic of Korea
| | - Oksoon Hong Choi
- Department of Medicine, Division of Allergy and Clinical Immunology, the Johns Hopkins, University School of Medicine, Johns Hopkins Asthma and Allergy Center, 5501 Hopkins Bayview Circle, Baltimore MD 21224, USA
| |
Collapse
|
16
|
Hall SL, Hester S, Griffin JL, Lilley KS, Jackson AP. The organelle proteome of the DT40 lymphocyte cell line. Mol Cell Proteomics 2009; 8:1295-305. [PMID: 19181659 DOI: 10.1074/mcp.m800394-mcp200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A major challenge in eukaryotic cell biology is to understand the roles of individual proteins and the subcellular compartments in which they reside. Here, we use the localization of organelle proteins by isotope tagging technique to complete the first proteomic analysis of the major organelles of the DT40 lymphocyte cell line. This cell line is emerging as an important research tool because of the ease with which gene knockouts can be generated. We identify 1090 proteins through the analysis of preparations enriched for integral membrane or soluble and peripherally associated proteins and localize 223 proteins to the endoplasmic reticulum, Golgi, lysosome, mitochondrion, or plasma membrane by matching their density gradient distributions to those of known organelle residents. A striking finding is that within the secretory and endocytic pathway a high proportion of proteins are not uniquely localized to a single organelle, emphasizing the dynamic steady-state nature of intracellular compartments in eukaryotic cells.
Collapse
Affiliation(s)
- Stephanie L Hall
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB21QW, United Kingdom
| | | | | | | | | |
Collapse
|
17
|
Borlido J, Veltri G, Jackson AP, Mills IG. Clathrin is spindle-associated but not essential for mitosis. PLoS One 2008; 3:e3115. [PMID: 18769625 PMCID: PMC2518958 DOI: 10.1371/journal.pone.0003115] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Accepted: 08/13/2008] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Clathrin is a multimeric protein involved in vesicle coat assembly. Recently clathrin distribution was reported to change during the cell cycle and was found to associate with the mitotic spindle. Here we test whether the recruitment of clathrin to the spindle is indicative of a critical functional contribution to mitosis. METHODOLOGY/PRINCIPAL FINDINGS Previously a chicken pre-B lymphoma cell line (DKO-R) was developed in which the endogenous clathrin heavy chain alleles were replaced with the human clathrin heavy chain under the control of a tetracycline-regulatable promoter. Receptor-mediated and fluid-phase endocytosis were significantly inhibited in this line following clathrin knockout, and we used this to explore the significance of clathrin heavy chain expression for cell cycle progression. We confirmed using confocal microscopy that clathrin colocalised with tubulin at mitotic spindles. Using a propidium iodide flow cytometric assay we found no statistical difference in the cell cycle distribution of the knockout cells versus the wild-type. Additionally, we showed that the ploidy and the recovery kinetics following cell cycle arrest with nocodazole were unchanged by repressing clathrin heavy chain expression. CONCLUSIONS/SIGNIFICANCE We conclude that the association of clathrin with the mitotic spindle and the contribution of clathrin to endocytosis are evolutionarily conserved. However we find that the contribution of clathrin to mitosis is less robust and dependent on cellular context. In other cell-lines silencing RNA has been used by others to knockdown clathrin expression resulting in an increase in the mitotic index of the cells. We show an effect on the G2/M phase population of clathrin knockdown in HEK293 cells but show that repressing clathrin expression in the DKO-R cell-line has no effect on the size of this population. Consequently this work highlights the need for a more detailed molecular understanding of the recruitment and function of clathrin at the spindle, since the localisation but not the impact of clathrin on mitosis appears to be robust in plants, mammalian and chicken B-cells.
Collapse
Affiliation(s)
- Joana Borlido
- Uro-Oncology Research Group, CRUK Cambridge Research Institute, Li Ka Shing Cancer Research Centre, Cambridge, United Kingdom
| | - Greg Veltri
- Flow Cytometry Core, CRUK Cambridge Research Institute, Li Ka Shing Cancer Research Centre, Cambridge, United Kingdom
| | - Antony P. Jackson
- Department of Biochemistry, University of Cambridge, Cambridge, United Kindom
| | - Ian G. Mills
- Uro-Oncology Research Group, CRUK Cambridge Research Institute, Li Ka Shing Cancer Research Centre, Cambridge, United Kingdom
| |
Collapse
|
18
|
Kim JH, Rutan JA, Vilen BJ. The transmembrane tyrosine of micro-heavy chain is required for BCR destabilization and entry of antigen into clathrin-coated vesicles. Int Immunol 2007; 19:1403-12. [PMID: 17981794 PMCID: PMC3716379 DOI: 10.1093/intimm/dxm110] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The B cell antigen receptor (BCR) delivers antigen to the endocytic compartment and transduces signals that regulate the stability of the receptor complex. Previous studies showed that BCR-mediated signal transduction dissociates micro-heavy chain (microm) from Ig-alpha/Ig-beta, facilitating the delivery of antigen to clathrin-coated vesicles (CCVs). Herein, we demonstrate that the dissociation of Ig-alpha/Ig-beta from microm requires tyrosine-587 of the microm transmembrane domain. Receptors expressing a mutation at tyrosine-587 (Y587F) transduced signals that were comparable to wild type, yet they failed to dissociate microm from Ig-alpha/Ig-beta. Further, receptors harboring the Y587F mutation failed to associate with CCVs, resulting in diminished antigen in the lysosome-associated membrane protein-1 (LAMP-1(+)) compartment and severely impaired antigen presentation, indicating that endocytosis through CCVs is required for antigen presentation. Thus, the transmembrane tyrosine of mum mediates destabilization of the BCR complex, facilitating antigen processing by promoting the association of antigen with CCVs.
Collapse
Affiliation(s)
- Jin Hyang Kim
- Department of Microbiology and Immunology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
19
|
Martín-Acebes MA, González-Magaldi M, Sandvig K, Sobrino F, Armas-Portela R. Productive entry of type C foot-and-mouth disease virus into susceptible cultured cells requires clathrin and is dependent on the presence of plasma membrane cholesterol. Virology 2007; 369:105-18. [PMID: 17714753 DOI: 10.1016/j.virol.2007.07.021] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Revised: 05/24/2007] [Accepted: 07/14/2007] [Indexed: 01/29/2023]
Abstract
We have characterized the entry leading to productive infection of a type C FMDV in two cell lines widely used for virus growth, BHK-21 and IBRS-2. Inhibition of clathrin-mediated endocytosis by sucrose treatment decreased both cell entry and virus multiplication. Evidence of a direct requirement of clathrin for productive viral entry was obtained using BHK21-tTA/anti-CHC cells, which showed a significant reduction of viral entry and infection when the synthesis and functionality of clathrin heavy chain was inhibited (Tet- cells). This was also observed for vesicular stomatitis virus (VSV) productive entry. The effect of NH(4)Cl and concanamycin A on FMDV entry and infection was consistent with the requirement of acidic compartments for decapsidation and virus replication. As expected from its higher stability at acidic pH, this requirement was higher for VSV. Since BHK-21 and IBRS-2 cells expressed caveolin-1, we explored the effect on productive virus entry of drugs that interfere with caveolae-mediated endocytosis. Treatment with nystatin did not reduce entry and infection of FMDV or VSV, while cholesterol depletion with MbetaCD significantly inhibited both steps of the FMDV cycle, indicating that plasma membrane cholesterol is required for virus productive entry.
Collapse
Affiliation(s)
- Miguel A Martín-Acebes
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Cantoblanco 28049, Madrid, Spain
| | | | | | | | | |
Collapse
|
20
|
Mardones GA, Burgos PV, Brooks DA, Parkinson-Lawrence E, Mattera R, Bonifacino JS. The trans-Golgi network accessory protein p56 promotes long-range movement of GGA/clathrin-containing transport carriers and lysosomal enzyme sorting. Mol Biol Cell 2007; 18:3486-501. [PMID: 17596511 PMCID: PMC1951763 DOI: 10.1091/mbc.e07-02-0190] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The sorting of acid hydrolase precursors at the trans-Golgi network (TGN) is mediated by binding to mannose 6-phosphate receptors (MPRs) and subsequent capture of the hydrolase-MPR complexes into clathrin-coated vesicles or transport carriers (TCs) destined for delivery to endosomes. This capture depends on the function of three monomeric clathrin adaptors named GGAs. The GGAs comprise a C-terminal "ear" domain that binds a specific set of accessory proteins. Herein we show that one of these accessory proteins, p56, colocalizes and physically interacts with the three GGAs at the TGN. Moreover, overexpression of the GGAs enhances the association of p56 with the TGN, and RNA interference (RNAi)-mediated depletion of the GGAs decreases the TGN association and total levels of p56. RNAi-mediated depletion of p56 or the GGAs causes various degrees of missorting of the precursor of the acid hydrolase, cathepsin D. In the case of p56 depletion, this missorting correlates with decreased mobility of GGA-containing TCs. Transfection with an RNAi-resistant p56 construct, but not with a p56 construct lacking the GGA-ear-interacting motif, restores the mobility of the TCs. We conclude that p56 tightly cooperates with the GGAs in the sorting of cathepsin D to lysosomes, probably by enabling the movement of GGA-containing TCs.
Collapse
Affiliation(s)
- Gonzalo A. Mardones
- *Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Patricia V. Burgos
- *Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Doug A. Brooks
- Sansom Institute, University of South Australia, Adelaide, SA 5001, Australia; and
- Lysosomal Diseases Research Unit, Department of Genetic Medicine, Children Youth and Women's Health Service, North Adelaide, SA 5006, Australia
| | - Emma Parkinson-Lawrence
- Sansom Institute, University of South Australia, Adelaide, SA 5001, Australia; and
- Lysosomal Diseases Research Unit, Department of Genetic Medicine, Children Youth and Women's Health Service, North Adelaide, SA 5006, Australia
| | - Rafael Mattera
- *Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Juan S. Bonifacino
- *Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
21
|
Henderson DM, Conner SD. A novel AAK1 splice variant functions at multiple steps of the endocytic pathway. Mol Biol Cell 2007; 18:2698-706. [PMID: 17494869 PMCID: PMC1924820 DOI: 10.1091/mbc.e06-09-0831] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Phosphorylation is a critical step in regulating receptor transport through the endocytic pathway. AAK1 is a serine/threonine kinase that is thought to coordinate the recruitment of AP-2 to receptors containing tyrosine-based internalization motifs by phosphorylating the micro2 subunit. Here we have identified a long form of AAK1 (AAK1L) that contains an extended C-terminus that encodes an additional clathrin-binding domain (CBD2) consisting of multiple low-affinity interaction motifs. Protein interaction studies demonstrate that AAK1L CBD2 directly binds clathrin. However, in vitro kinase assays reveal little difference between AAK1 isoforms in their basal or clathrin-stimulated kinase activity toward the AP-2 micro2 subunit. However, overexpression of AAK1L CBD2 impairs transferrin endocytosis, confirming an endocytic role for AAK1. Surprisingly, CBD2 overexpression or AAK1 depletion by RNA interference significantly impairs transferrin recycling from the early/sorting endosome. These observations suggest that AAK1 functions at multiple steps of the endosomal pathway by regulating transferrin internalization and its rapid recycling back to the plasma membrane from early/sorting endosome.
Collapse
Affiliation(s)
- Davin M. Henderson
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| | - Sean D. Conner
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
22
|
Inoue T, Hayashi T, Takechi K, Agata K. Clathrin-mediated endocytic signals are required for the regeneration of,as well as homeostasis in, the planarian CNS. Development 2007; 134:1679-89. [PMID: 17376807 DOI: 10.1242/dev.02835] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Planarians have a well-organized central nervous system (CNS), including a brain, and can regenerate the CNS from almost any portion of the body using pluripotent stem cells. In this study, to identify genes required for CNS regeneration, genes expressed in the regenerating CNS were systematically cloned and subjected to functional analysis. RNA interference (RNAi) of the planarian clathrin heavy chain (DjCHC) gene prevented CNS regeneration in the intermediate stage of regeneration prior to neural circuit formation. To analyze DjCHC gene function at the cellular level, we developed a functional analysis method using primary cultures of planarian neurons purified by fluorescence-activated cell sorting (FACS) after RNAi treatment. Using this method, we showed that the DjCHC gene was not essential for neural differentiation, but was required for neurite extension and maintenance, and that DjCHC-RNAi-treated neurons entered a TUNEL-positive apoptotic state. DjCHC-RNAi-treated uncut planarians showed brain atrophy, and the DjCHC-RNAi planarian phenotype was mimicked by RNAi-treated planarians of the mu-2 (μ2)gene, which is involved in endocytosis, but not the mu-1(μ1) gene, which is involved in exocytosis. Thus,clathrin-mediated endocytic signals may be required for not only maintenance of neurons after synaptic formation, but also axonal extension at the early stage of neural differentiation.
Collapse
Affiliation(s)
- Takeshi Inoue
- Group for Evolutionary Regeneration Biology, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Kobe, Japan
| | | | | | | |
Collapse
|
23
|
Vanden Broeck D, De Wolf MJS. Selective blocking of clathrin-mediated endocytosis by RNA interference: epsin as target protein. Biotechniques 2006; 41:475-84. [PMID: 17068964 DOI: 10.2144/000112265] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Epsin is an essential accessory protein exclusively implicated in clathrin-mediated endocytosis and therefore an ideal target to study involvement of this entry route in the uptake of bioligands. The technique of RNA interference (RNAi) was exploited to generate a cell line constitutively silencing epsin expression in a sequence-specific manner In these Caco-2(eps-) cells, quantitative reverse transcription PCR (RT-PCR) revealed a severe depletion of the epsin messenger RNA (mRNA) level in cells, reaching a factor > 10(6). The reduction at the mRNA level in the Caco-2(eps-) cells was paralleled by a decrease of 75% at the protein level. In order to evaluate transfection effects at the functional level, uptake of transferrin and epidermal growth factor (EGF) in transfected Caco-2(eps-) and control cells was evaluated. In control cells, respectively, approximately 72% of transferrin and approximately 66% of EGF were internalized, whereas in Caco-2(eps-) cells only approximately 25% of transferrin and approximately 34% of EGF was taken up, confirming that in the transfected cells, endocytosis via coated pits was prominently compromised. The reduced uptake was not the result of an inhibition of transferrin recycling. The effects of direct treatment with chlorpromazine on Caco-2 cells, also monitored from the degree of transferrin internalization, were compared with those elicited by RNAi.
Collapse
|
24
|
Mangmool S, Haga T, Kobayashi H, Kim KM, Nakata H, Nishida M, Kurose H. Clathrin Required for Phosphorylation and Internalization of β2-Adrenergic Receptor by G Protein-coupled Receptor Kinase 2 (GRK2). J Biol Chem 2006. [DOI: 10.1016/s0021-9258(19)84108-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
25
|
Mangmool S, Haga T, Kobayashi H, Kim KM, Nakata H, Nishida M, Kurose H. Clathrin required for phosphorylation and internalization of beta2-adrenergic receptor by G protein-coupled receptor kinase 2 (GRK2). J Biol Chem 2006; 281:31940-9. [PMID: 16920721 DOI: 10.1074/jbc.m602832200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Clathrin is a major component of clathrin-coated pits and serves as a binding scaffold for endocytic machinery through the binding of a specific sequence known as the clathrin-binding motif. This motif is also found in cellular signaling proteins other than endocytic components, including G protein-coupled receptor kinase 2 (GRK2), which phosphorylates G protein-coupled receptors and promotes uncoupling of receptor-G protein interaction. However, the functions of clathrin in the regulation of GRK2 are unknown. Here we demonstrated that overexpression of GRK2 mutated at the clathrin-binding motif with alanine (GRK2-5A) results in inhibition of phosphorylation and internalization of the beta2-adrenergic receptor (beta2AR). However, the interaction of beta2AR with GRK2-5A is the same as that of wild type GRK2 as determined by bioluminescence resonance energy transfer. Furthermore, GRK2-5A phosphorylates rhodopsin essentially to the same extent as wild type GRK2 in vitro. Depletion of the clathrin heavy chain using small interference RNA inhibits agonist-induced phosphorylation and internalization of beta2AR. Thus, clathrin works as a regulator of GRK2 in cells. These results indicate that clathrin is a novel player in cellular functions in addition to being a component of endocytosis.
Collapse
Affiliation(s)
- Supachoke Mangmool
- Department of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Membranes and proteins are moved around the cell in small vesicles. A protein coat aids the budding of such vesicles from donor membranes. The major type of coat used by the cell is composed of clathrin, a three-legged protein that can form lattice-like coats on membranes destined for trafficking. In this review, I outline what we know about clathrin and discuss some recent advances in understanding the basic biology of this fascinating molecule, which include building a molecular model of a clathrin lattice and discovery of a new function for clathrin that occurs during mitosis.
Collapse
Affiliation(s)
- S J Royle
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 2QH, United Kingdom.
| |
Collapse
|
27
|
Fattakhova G, Masilamani M, Borrego F, Gilfillan AM, Metcalfe DD, Coligan JE. The high-affinity immunoglobulin-E receptor (FcepsilonRI) is endocytosed by an AP-2/clathrin-independent, dynamin-dependent mechanism. Traffic 2006; 7:673-85. [PMID: 16637889 DOI: 10.1111/j.1600-0854.2006.00423.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Aggregation of the high-affinity immunoglobulin E (IgE) receptor (FcepsilonRI), expressed on mast cells and basophils, initiates the immediate hypersensitivity reaction. Aggregated FcepsilonRI has been reported to rapidly migrate to lipid rafts in RBL-2H3 cells. We confirmed that aggregated FcepsilonRI is found in the lipid raft fractions of cellular lysates. Furthermore, we show that the cross-linked FcepsilonRI remains associated with detergent-resistant structures upon internalization. Previous morphological studies have reported that aggregated FepsiloncRI is endocytosed via clathrin-coated pits, which in general are not lipid raft associated. To address this apparent discrepancy, we employed siRNA to suppress expression of components of the clathrin-mediated internalization machinery, namely, clathrin heavy chain, and the AP-2 (alpha-adaptin or mu2-subunit). Transferrin receptor (TfR) is endocytosed by a clathrin-mediated process and, as expected, each transfected siRNA caused a two to threefold elevation of TfR surface expression and almost completely inhibited its endocytosis. In contrast, there was no effect on surface expression levels of FcepsilonRI nor on the endocytosis of the dinitrophenyl-human serum albumin (DNP-HSA)/IgE/FcepsilonRI complex. On the contrary, internalization of DNP-HSA/IgE/FcepsilonRI was inhibited by overexpression of a dominant-negative dynamin mutant. We conclude that internalization of cross-linked FcRI does not require the AP-2/clathrin complex but is dynamin-dependent and may be lipid raft mediated.
Collapse
Affiliation(s)
- Gul'nar Fattakhova
- Receptor Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | | | | | | | | | | |
Collapse
|
28
|
Ohno H. Physiological Roles of Clathrin Adaptor AP Complexes: Lessons from Mutant Animals. ACTA ACUST UNITED AC 2006; 139:943-8. [PMID: 16788044 DOI: 10.1093/jb/mvj120] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Clathrin-associated adaptor protein (AP) complexes play a key role in the transport of proteins, by regulating the formation of transport vesicles as well as cargo selection, between organelles of the post-Golgi network, namely, the trans-Golgi network (TGN), endosomes, lysosomes and the plasma membrane. Evidence has been accumulating for the physiological importance of AP complexes. Deficiency in AP-1A or AP-2 results in embryonic lethality in mice, indicating that these AP complexes are essential for normal development of embryos in mammals. In contrast, mutations in the genes encoding subunits of AP-3A cause an autosomal recessive disorder, Hermansky-Pudlak syndrome in human and its disease models in mice. Knockout mice for the neuron-specific AP-3B suffer from epileptic seizure. Further studies on the physiological and pathological aspects of AP complexes will not only be beneficial for better understanding of developmental biology and medical sciences, but also deepen our insight into the molecular mechanisms of vesicular traffic.
Collapse
Affiliation(s)
- Hiroshi Ohno
- Laboratory for Epithelial Immunobiology, Research Center for Allergy and Immunology (RCAI), RIKEN, Yokohama.
| |
Collapse
|
29
|
Shinozaki F, Minami M, Chiba T, Suzuki M, Yoshimatsu K, Ichikawa Y, Terasawa K, Emori Y, Matsumoto K, Kurosaki T, Nakai A, Tanaka K, Minami Y. Depletion of hsp90beta induces multiple defects in B cell receptor signaling. J Biol Chem 2006; 281:16361-9. [PMID: 16617057 DOI: 10.1074/jbc.m600891200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hsp90 participates in many distinct aspects of cellular functions and accomplishes these roles by interacting with multiple client proteins. To gain insight into the interactions between Hsp90 and its clients, here we have reduced the protein level of Hsp90 in avian cells by gene targeting in an attempt to elicit the otherwise undetectable (because of the vast amount of cellular Hsp90) Hsp90-interacting proteins. Hsp90beta-deficient cells can grow, albeit more slowly than wild-type cells. B cell antigen receptor signaling is multiply impaired in these mutant cells; in particular, the amount of immunoglobulin M heavy chain protein is markedly reduced. Furthermore, serum activation does not promote ERK phosphorylation in Hsp90beta-deficient cells. These multifaceted depressive effects seem to be provoked independently of each other and possibly recapitulate the proteome-wide in vivo functions of Hsp90. Reintroduction of the Hsp90beta gene efficiently restores all of the defects. Unexpectedly, however, introducing the Hsp90alpha gene is also effective in restoration; thus, these defects might be caused by a reduction in the total expression of Hsp90 rather than by loss of Hsp90beta-specific function.
Collapse
Affiliation(s)
- Fumika Shinozaki
- Department of Biophysics and Biochemistry, and Undergraduate Program for Bioinformatics and Systems Biology, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Mitsunari T, Nakatsu F, Shioda N, Love PE, Grinberg A, Bonifacino JS, Ohno H. Clathrin adaptor AP-2 is essential for early embryonal development. Mol Cell Biol 2005; 25:9318-23. [PMID: 16227583 PMCID: PMC1265839 DOI: 10.1128/mcb.25.21.9318-9323.2005] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The heterotetrameric adaptor protein (AP) complexes AP-1, AP-2, AP-3, and AP-4 play key roles in transport vesicle formation and cargo sorting in post-Golgi trafficking pathways. Studies on cultured mammalian cells have shown that AP-2 mediates rapid endocytosis of a subset of plasma membrane receptors. To determine whether this function is essential in the context of a whole mammalian organism, we carried out targeted disruption of the gene encoding the mu2 subunit of AP-2 in the mouse. We found that mu2 heterozygous mutant mice were viable and had an apparently normal phenotype. In contrast, no mu2 homozygous mutant embryos were identified among blastocysts from intercrossed heterozygotes, indicating that mu2-deficient embryos die before day 3.5 postcoitus (E3.5). These results indicate that AP-2 is indispensable for early embryonic development, which might be due to its requirement for cell viability.
Collapse
Affiliation(s)
- Takashi Mitsunari
- Laboratory for Epithelial Immunobiology, Research Center for Allergy and Immunology, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | | | | | | | | | | | | |
Collapse
|
31
|
Wang B, David MD, Schrader JW. Absence of caprin-1 results in defects in cellular proliferation. THE JOURNAL OF IMMUNOLOGY 2005; 175:4274-82. [PMID: 16177067 DOI: 10.4049/jimmunol.175.7.4274] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Cytoplasmic activation/proliferation-associated protein-1 (Caprin-1) is a cytoplasmic phosphoprotein that is the prototype of a novel family of highly conserved proteins. Its levels, except in the brain, are tightly correlated with cellular proliferation. We disrupted caprin-1 alleles in the chicken B lymphocyte line DT40 using homologous recombination. We readily obtained clones with one disrupted allele (31% of transfectants), but upon transfection of heterozygous cells we obtained a 10-fold lower frequency of clones with disruption of the remaining allele. Clones of caprin-1-null DT40 cells exhibited marked reductions in their proliferation rate. To obviate the problem that we had selected for caprin-1-null clones with characteristics that partially compensated for the lack of Caprin-1, we generated clones of DT40 cells heterozygous for the caprin-1 gene in which, during disruption of the remaining wild-type allele of the chicken caprin-1 gene, the absence of endogenous Caprin-1 would be complemented by conditional expression of human Caprin-1. Suppression of expression of human Caprin-1 resulted in slowing of the proliferation rate, due to prolongation of the G1 phase of the cell cycle, formally demonstrating that Caprin-1 was essential for normal cellular proliferation.
Collapse
Affiliation(s)
- Bin Wang
- The Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | |
Collapse
|
32
|
Diaz-Griffero F, Jackson AP, Brojatsch J. Cellular uptake of avian leukosis virus subgroup B is mediated by clathrin. Virology 2005; 337:45-54. [PMID: 15914219 DOI: 10.1016/j.virol.2005.02.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2005] [Revised: 02/16/2005] [Accepted: 02/26/2005] [Indexed: 11/19/2022]
Abstract
Avian leukosis virus (ALV) requires endocytosis and a low pH step for successful viral entry. Here we report that transient treatment with lysosomotropic agents was not sufficient to block ALV subgroup B (ALV-B) entry, while it completely inhibited uptake of the pH-dependent Semliki Forest virus. Extended incubations with lysosomotropic agents were required to block ALV-B entry, suggesting that ALV particles are stable in endosomal compartments. We analyzed endocytic pathways involved in the uptake of ALV-B into target cells. The ALV-B receptor TVB(S3) was not associated with detergent-resistant membranes (DRMs) in the presence or absence of ALV-B particles. This result suggested that DRM-associated endocytic pathways were not required for ALV-B entry. Using several approaches, we found that clathrin mediates endocytosis of ALV-B particles into target cells. By means of confocal microscopy, we established that the ALV-B receptor TVB(S3) colocalized with clathrin in TVB(S3)-expressing quail QT-6 cells. In addition, chlorpromazine, an inhibitor of clathrin-mediated endocytosis, blocked uptake of soluble ALV-B Env into chicken embryo fibroblasts. To examine ALV-B uptake into clathrin-negative cells, we used a chicken DT40 B cell line containing a tetracycline-regulatable clathrin gene. Clathrin depletion significantly reduced ALV-B entry into the chicken DT40 cell line. Taken together, our results suggest that clathrin is involved in uptake of ALV-B particles into target cells.
Collapse
Affiliation(s)
- Felipe Diaz-Griffero
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, NY 10003, USA
| | | | | |
Collapse
|
33
|
Janvier K, Bonifacino JS. Role of the endocytic machinery in the sorting of lysosome-associated membrane proteins. Mol Biol Cell 2005; 16:4231-42. [PMID: 15987739 PMCID: PMC1196333 DOI: 10.1091/mbc.e05-03-0213] [Citation(s) in RCA: 176] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2005] [Accepted: 06/20/2005] [Indexed: 01/05/2023] Open
Abstract
The limiting membrane of the lysosome contains a group of transmembrane glycoproteins named lysosome-associated membrane proteins (Lamps). These proteins are targeted to lysosomes by virtue of tyrosine-based sorting signals in their cytosolic tails. Four adaptor protein (AP) complexes, AP-1, AP-2, AP-3, and AP-4, interact with such signals and are therefore candidates for mediating sorting of the Lamps to lysosomes. However, the role of these complexes and of the coat protein, clathrin, in sorting of the Lamps in vivo has either not been addressed or remains controversial. We have used RNA interference to show that AP-2 and clathrin-and to a lesser extent the other AP complexes-are required for efficient delivery of the Lamps to lysosomes. Because AP-2 is exclusively associated with plasma membrane clathrin coats, our observations imply that a significant population of Lamps traffic via the plasma membrane en route to lysosomes.
Collapse
Affiliation(s)
- Katy Janvier
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
34
|
Kim JH, Cramer L, Mueller H, Wilson B, Vilen BJ. Independent trafficking of Ig-alpha/Ig-beta and mu-heavy chain is facilitated by dissociation of the B cell antigen receptor complex. THE JOURNAL OF IMMUNOLOGY 2005; 175:147-54. [PMID: 15972641 PMCID: PMC3895480 DOI: 10.4049/jimmunol.175.1.147] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The BCR relays extracellular signals and internalizes Ag for processing and presentation. We have previously demonstrated that ligation of the BCR destabilizes Ig-alpha/Ig-beta (Ig-alphabeta) from mu-H chain (mum). In this study we report that receptor destabilization represents a physical separation of mum from Ig-alphabeta. Sucrose gradient fractionation localized Ig-alphabeta to G(M1)-containing lipid microdomains in the absence of mum. Confocal and electron microscopy studies revealed the colocalization of unsheathed mum with clathrin-coated vesicles. Furthermore, mum failed to associate with clathrin-coated vesicles when receptor destabilization was inhibited, suggesting that unsheathing of mum is required for clathrin-mediated endocytosis. In summary, we found that Ag stimulation physically separates Ig-alphabeta from mum, facilitating concomitant signal transduction and Ag delivery to the endocytic compartment.
Collapse
Affiliation(s)
- Jin-Hyang Kim
- Department of Microbiology/Immunology and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599
| | - Lorraine Cramer
- Department of Microbiology/Immunology and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599
| | - Heather Mueller
- Department of Microbiology/Immunology and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599
| | - Bridget Wilson
- Department of Pathology and the Cancer Research and Treatment Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131
| | - Barbara J. Vilen
- Department of Microbiology/Immunology and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599
- Address correspondence and reprint requests to Dr. Barbara Vilen, University of North Carolina, CB No. 7290, Chapel Hill, NC 27599.
| |
Collapse
|
35
|
Johnson J, Jirikowic J, Bertram M, van Beers D, Gordon RB, Henderson K, Klee RJ, Lanzano T, Lifset R, Oetjen L, Graedel TE. Contemporary anthropogenic silver cycle: a multilevel analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2005; 39:4655-65. [PMID: 16047806 DOI: 10.1021/es048319x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Anthropogenic cycling of silver in 1997 is presented using three discrete governmental units: 64 countries encompassing what we believe to be over 90% of global silver flows, 9 world regions, and the entire planet. Using material flow analysis (MFA) techniques, the country level cycles are aggregated to produce the regional cycles, which are used to form a "best estimate" global cycle. Interesting findings include the following: (1) several silver-mining countries export ore and concentrate but also import silver-containing semiproducts and products; (2) the level of development for a country, as indicated by the gross domestic product, is a fair indicator of silver use, but several significant outliers exist; (3) the countries with the greatest mine production include Mexico, the United States, Peru, and China, whereas the United States, Japan, India, Germany, and Italy lead in the fabrication and manufacture of products; (4) North America and Europe's use of silver products exceed that of other regions on a per capita basis; (5) global silver discards, including tailings and separation waste, totaled approximately 57% of the silver mined; (6) approximately 57% of the silver entering waste management globally is recycled; and (7) the amount of silver entering landfills globally is comparable to the amount found in tailings. The results of this MFA lay the basis for further analysis, which in turn can offer insight into natural resource policy, the characterization of environmental impact, and better resource management.
Collapse
Affiliation(s)
- Jeremiah Johnson
- Center for Industrial Ecology, Environmental Engineering Program, and Department of Geology and Geophysics, Yale University, New Haven, Connecticut 06511, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Styers ML, Kowalczyk AP, Faundez V. Intermediate Filaments and Vesicular Membrane Traffic: The Odd Couple's First Dance? Traffic 2005; 6:359-65. [PMID: 15813746 DOI: 10.1111/j.1600-0854.2005.00286.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
During the last two decades, much attention has been focused on the regulation of membrane traffic by the actin and microtubule cytoskeletal networks. Their dynamic and polarized behavior and associated motors provide a logical framework from which architectural and movement cues can be communicated to organelles. The study of these cytoskeletal systems has been greatly aided by pharmacological agents. In contrast, intermediate filaments (IFs) have largely been neglected as a potential player in membrane traffic, both because a comprehensive pharmacology to perturb them does not exist and because they lack the intrinsic polarity and specific motors that make the other cytoskeletal systems attractive. In this review, we will discuss evidence suggesting that IFs may play roles in controlling organelle positioning and in membrane protein targeting. Furthermore, we will discuss potential mechanisms by which IFs may regulate the localization and function of organelles.
Collapse
|
37
|
Stoddart A, Jackson AP, Brodsky FM. Plasticity of B cell receptor internalization upon conditional depletion of clathrin. Mol Biol Cell 2005; 16:2339-48. [PMID: 15716350 PMCID: PMC1087239 DOI: 10.1091/mbc.e05-01-0025] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
B cell antigen receptor (BCR) association with lipid rafts, the actin cytoskeleton, and clathrin-coated pits influences B cell signaling and antigen presentation. Although all three cellular structures have been separately implicated in BCR internalization, the relationship between them has not been clearly defined. In this study, internalization pathways were characterized by specifically blocking each potential mechanism of internalization. BCR uptake was reduced by approximately 70% in B cells conditionally deficient in clathrin heavy chain expression. Actin or raft antagonists were both able to block the residual, clathrin-independent BCR internalization. These agents also affected clathrin-dependent internalization, indicating that clathrin-coated pits, in concert with mechanisms dependent on rafts and actin, mediate the majority of BCR internalization. Clustering G(M1) gangliosides enhanced clathrin-independent BCR internalization, and this required actin. Thus, although rafts or actin independently did not mediate BCR internalization, they apparently cooperate to promote some internalization even in the absence of clathrin. Simultaneous inhibition of all BCR uptake pathways resulted in sustained tyrosine phosphorylation and activation of the extracellular signal-regulated kinase (ERK), strongly suggesting that downstream BCR signaling can occur without receptor translocation to endosomes and that internalization leads to signal attenuation.
Collapse
Affiliation(s)
- Angela Stoddart
- G. W. Hooper Foundation, University of California San Francisco, San Francisco, CA 94143, USA
| | | | | |
Collapse
|
38
|
Abstract
Clathrin assembles into a dynamic two-dimensional lattice on the plasma membrane where it plays a critical role in endocytosis. To probe the regulation of this process, we used siRNA against clathrin, in combination with single cell assays for transferrin uptake as well as total internal reflection microscopy, to examine how endocytic rates and membrane dynamics depend upon cellular clathrin concentration ([Clathrin]). We find that endocytosis is tightly controlled by [Clathrin] over a very narrow dynamic range such that small changes in [Clathrin] can lead to large changes in endocytic rates, indicative of a highly cooperative process (apparent Hill coefficient, n > 6). The number of clathrin assemblies at the cell surface was invariant over a wide range of [Clathrin]; however, both the amount of clathrin in each assembly and the subsequent membrane dynamics were steeply dependent on [Clathrin]. Thus clathrin controls the structural dynamics of membrane internalization via a strongly cooperative process. We used this analysis to show that one important regulator of endocytosis, the actin cytoskeleton, acts noncompetitively as a modulator of clathrin function.
Collapse
Affiliation(s)
- Howard S Moskowitz
- Department of Biochemistry, Weill Medical College of Cornell University, New York, NY 10021, USA
| | | | | |
Collapse
|
39
|
Pagano A, Crottet P, Prescianotto-Baschong C, Spiess M. In vitro formation of recycling vesicles from endosomes requires adaptor protein-1/clathrin and is regulated by rab4 and the connector rabaptin-5. Mol Biol Cell 2004; 15:4990-5000. [PMID: 15331762 PMCID: PMC524758 DOI: 10.1091/mbc.e04-04-0355] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2004] [Revised: 08/16/2004] [Accepted: 08/17/2004] [Indexed: 11/11/2022] Open
Abstract
The involvement of clathrin and associated adaptor proteins in receptor recycling from endosomes back to the plasma membrane is controversial. We have used an in vitro assay to identify the molecular requirements for the formation of recycling vesicles. Cells expressing the asialoglycoprotein receptor H1, a typical recycling receptor, were surface biotinylated and then allowed to endocytose for 10 min. After stripping away surface-biotin, the cells were permeabilized and the cytosol washed away. In a temperature-, cytosol-, and nucleotide-dependent manner, the formation of sealed vesicles containing biotinylated H1 could be reconstituted. Vesicle formation was strongly inhibited upon immunodepletion of adaptor protein (AP)-1, but not of AP-2 or AP-3, from the cytosol, and was restored by readdition of purified AP-1. Vesicle formation was stimulated by supplemented clathrin, but inhibited by brefeldin A, consistent with the involvement of ARF1 and a brefeldin-sensitive guanine nucleotide exchange factor. The GTPase rab4, but not rab5, was required to generate endosome-derived vesicles. Depletion of rabaptin-5/rabex-5, a known interactor of both rab4 and gamma-adaptin, stimulated and addition of the purified protein strongly inhibited vesicle production. The results indicate that recycling is mediated by AP-1/clathrin-coated vesicles and regulated by rab4 and rabaptin-5/rabex-5.
Collapse
Affiliation(s)
- Adriana Pagano
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | | | | | | |
Collapse
|
40
|
Smythe E. Cell biology: light on pits. Nature 2004; 431:641-2. [PMID: 15470414 DOI: 10.1038/431641a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
41
|
Nakatsu F, Ohno H. Adaptor protein complexes as the key regulators of protein sorting in the post-Golgi network. Cell Struct Funct 2004; 28:419-29. [PMID: 14745134 DOI: 10.1247/csf.28.419] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Adaptor protein (AP) complexes are cytosolic heterotetramers that mediate the sorting of membrane proteins in the secretory and endocytic pathways. AP complexes are involved in the formation of clathrin-coated vesicles (CCVs) by recruiting the scaffold protein, clathrin. AP complexes also play a pivotal role in the cargo selection by recognizing the sorting signals within the cytoplasmic tail of integral membrane proteins. Six distinct AP complexes have been identified. AP-2 mediates endocytosis from the plasma membrane, while AP-1, AP-3 and AP-4 play a role in the endosomal/lysosomal sorting pathways. Moreover, tissue-specific sorting events such as the basolateral sorting in polarized epithelial cells and the biogenesis of specialized organelles including melanosomes and synaptic vesicles are also regulated by members of AP complexes. The application of a variety of methodologies have gradually revealed the physiological role of AP complexes.
Collapse
Affiliation(s)
- Fubito Nakatsu
- Division of Molecular Membrane Biology, Cancer Research Institute, Kanazawa University, 13-1 Takara-machi, Kanazawa 920-0934, Japan.
| | | |
Collapse
|
42
|
Hariton-Gazal E, Rosenbluh J, Graessmann A, Gilon C, Loyter A. Direct translocation of histone molecules across cell membranes. J Cell Sci 2004; 116:4577-86. [PMID: 14576351 DOI: 10.1242/jcs.00757] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The present work shows that histones are able to directly cross cell plasma membranes and mediate penetration of macromolecules covalently attached to them. Adding a mixture containing the five nucleosomal histones, H1, H2A, H2B, H3 and H4, as well as each of the last four individual histones to intact HeLa and Colo-205 cultured cells resulted in cell penetration and nuclear import of these externally added histones. This was observed by fluorescent and confocal microscopy using fixed and unfixed cells, showing that penetration was not due to the fixation process. Accumulation was also estimated by a quantitative assay that did not require cell fixation and allowed neutralization of surface-bound histones. Translocation into the HeLa and Colo-205 cells occurred at 4 degrees C, in ATP-depleted cells and in cells incubated with sucrose (0.5 M) - conditions that block the endocytic pathway. Furthermore, various endocytosis inhibitors such as colchicine, nocodazole, cytochalasin D, brefeldin A, chloroquine and nystatin did not have any effect on the penetration process. Thus, cellular uptake was mostly due to direct translocation of the histones through the cell plasma membrane and not to endocytosis. The histones were also able to mediate penetration of covalently attached bovine serum albumin (BSA) molecules, indicating their potential as carriers for the delivery of macromolecules into living mammalian cells.
Collapse
Affiliation(s)
- Elana Hariton-Gazal
- Department of Organic Chemistry, Institute of Chemistry, Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | | | | | | | | |
Collapse
|
43
|
Gerdts CJ, Sharoyan DE, Ismagilov RF. A Synthetic Reaction Network: Chemical Amplification Using Nonequilibrium Autocatalytic Reactions Coupled in Time. J Am Chem Soc 2004; 126:6327-31. [PMID: 15149230 DOI: 10.1021/ja031689l] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This article reports a functional chemical reaction network synthesized in a microfluidic device. This chemical network performs chemical 5000-fold amplification and shows a threshold response. It operates in a feedforward manner in two stages: the output of the first stage becomes the input of the second stage. Each stage of amplification is performed by a reaction autocatalytic in Co(2+). The microfluidic network is used to maintain the two chemical reactions away from equilibrium and control the interactions between them in time. Time control is achieved as described previously (Angew. Chem., Int. Ed. 2003, 42, 768) by compartmentalizing the reaction mixture inside plugs which are aqueous droplets carried through a microchannel by an immiscible fluorinated fluid. Autocatalytic reaction displayed sensitivity to mixing; more rapid mixing corresponded to slower reaction rates. Synthetic chemical reaction networks may help understand the function of biochemical reaction networks, the goal of systems biology. They may also find practical applications. For example, the system described here may be used to detect visually, in a simple format, picoliter volumes of nanomolar concentrations of Co(2+), an environmental pollutant.
Collapse
Affiliation(s)
- Cory J Gerdts
- Department of Chemistry, The University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637, USA
| | | | | |
Collapse
|
44
|
Abstract
After endocytosis, most membrane proteins and lipids return to the cell surface, but some membrane components are delivered to late endosomes or the Golgi. We now understand that the pathways taken by internalized molecules that eventually recycle to the cell surface can be surprisingly complex and can involve a series of sorting events that occur in several organelles. The molecular basis for many of these sorting processes is only partly understood.
Collapse
Affiliation(s)
- Frederick R Maxfield
- Department of Biochemistry, Weill Medical College of Cornell University, 1300 York Avenue, New York, New York 10021, USA.
| | | |
Collapse
|
45
|
Saint-Pol A, Yélamos B, Amessou M, Mills IG, Dugast M, Tenza D, Schu P, Antony C, McMahon HT, Lamaze C, Johannes L. Clathrin Adaptor epsinR Is Required for Retrograde Sorting on Early Endosomal Membranes. Dev Cell 2004; 6:525-38. [PMID: 15068792 DOI: 10.1016/s1534-5807(04)00100-5] [Citation(s) in RCA: 172] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2003] [Revised: 02/19/2004] [Accepted: 02/20/2004] [Indexed: 10/26/2022]
Abstract
Retrograde transport links early/recycling endosomes to the trans-Golgi network (TGN), thereby connecting the endocytic and the biosynthetic/secretory pathways. To determine how internalized molecules are targeted to the retrograde route, we have interfered with the function of clathrin and that of two proteins that interact with it, AP1 and epsinR. We found that the glycosphingolipid binding bacterial Shiga toxin entered cells efficiently when clathrin expression was inhibited. However, retrograde transport of Shiga toxin to the TGN was strongly inhibited. This allowed us to show that for Shiga toxin, retrograde sorting on early/recycling endosomes depends on clathrin and epsinR, but not AP1. EpsinR was also involved in retrograde transport of two endogenous proteins, TGN38/46 and mannose 6-phosphate receptor. In conclusion, our work reveals the existence of clathrin-independent and -dependent transport steps in the retrograde route, and establishes a function for clathrin and epsinR at the endosome-TGN interface.
Collapse
Affiliation(s)
- Agnès Saint-Pol
- Laboratoire Trafic et Signalisation, 75248 Paris Cedex 05, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Peden AA, Oorschot V, Hesser BA, Austin CD, Scheller RH, Klumperman J. Localization of the AP-3 adaptor complex defines a novel endosomal exit site for lysosomal membrane proteins. J Cell Biol 2004; 164:1065-76. [PMID: 15051738 PMCID: PMC2172074 DOI: 10.1083/jcb.200311064] [Citation(s) in RCA: 275] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2003] [Accepted: 02/13/2004] [Indexed: 01/12/2023] Open
Abstract
The adaptor protein (AP) 3 adaptor complex has been implicated in the transport of lysosomal membrane proteins, but its precise site of action has remained controversial. Here, we show by immuno-electron microscopy that AP-3 is associated with budding profiles evolving from a tubular endosomal compartment that also exhibits budding profiles positive for AP-1. AP-3 colocalizes with clathrin, but to a lesser extent than does AP-1. The AP-3- and AP-1-bearing tubular compartments contain endocytosed transferrin, transferrin receptor, asialoglycoprotein receptor, and low amounts of the cation-independent mannose 6-phosphate receptor and the lysosome-associated membrane proteins (LAMPs) 1 and 2. Quantitative analysis revealed that of these distinct cargo proteins, only LAMP-1 and LAMP-2 are concentrated in the AP-3-positive membrane domains. Moreover, recycling of endocytosed LAMP-1 and CD63 back to the cell surface is greatly increased in AP-3-deficient cells. Based on these data, we propose that AP-3 defines a novel pathway by which lysosomal membrane proteins are transported from tubular sorting endosomes to lysosomes.
Collapse
|
47
|
Jackson AP, Flett A, Smythe C, Hufton L, Wettey FR, Smythe E. Clathrin promotes incorporation of cargo into coated pits by activation of the AP2 adaptor micro2 kinase. ACTA ACUST UNITED AC 2003; 163:231-6. [PMID: 14581451 PMCID: PMC2173513 DOI: 10.1083/jcb.200304079] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Endocytic cargo such as the transferrin receptor is incorporated into clathrin-coated pits by associating, via tyrosine-based motifs, with the AP2 complex. Cargo–AP2 interactions occur via the μ2 subunit of AP2, which needs to be phosphorylated for endocytosis to occur. The most likely role for μ2 phosphorylation is in cargo recruitment because μ2 phosphorylation enhances its binding to internalization motifs. Here, we investigate the control of μ2 phosphorylation. We identify clathrin as a specific activator of the μ2 kinase and, in permeabilized cells, we show that ligand sequestration, driven by exogenous clathrin, results in elevated levels of μ2 phosphorylation. Furthermore, we show that AP2 containing phospho-μ2 is mainly associated with assembled clathrin in vivo, and that the level of phospho-μ2 is strongly reduced in a chicken B cell line depleted of clathrin heavy chain. Our results imply a central role for clathrin in the regulation of cargo selection via the modulation of phospho-μ2 levels.
Collapse
Affiliation(s)
- Antony P Jackson
- Department of Biomedical, University of Cambridge, Cambridge CB2 1TN, USA.
| | | | | | | | | | | |
Collapse
|
48
|
Hinrichsen L, Harborth J, Andrees L, Weber K, Ungewickell EJ. Effect of clathrin heavy chain- and alpha-adaptin-specific small inhibitory RNAs on endocytic accessory proteins and receptor trafficking in HeLa cells. J Biol Chem 2003; 278:45160-70. [PMID: 12960147 DOI: 10.1074/jbc.m307290200] [Citation(s) in RCA: 216] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
To assess the contribution of individual endocytic proteins to the assembly of clathrin coated pits, we depleted the clathrin heavy chain and the alpha-adaptin subunit of AP-2 in HeLa-cells using RNA interference. 48 h after transfection with clathrin heavy chain-specific short interfering RNA both, the heavy and light chains were depleted by more than 80%. Residual clathrin was mainly membrane-associated, and an increase in shallow pits was noted. The membrane-association of adaptors, clathrin assembly lymphoid myeloid leukemia protein (CALM), epsin, dynamin, and Eps15 was only moderately affected by the knockdown and all proteins still displayed a punctate staining distribution. Clathrin depletion inhibited the uptake of transferrin but not that of the epidermal growth factor. However, efficient sorting of the epidermal growth factor into hepatocyte growth factor-regulated tyrosine kinase substrate-positive endosomes was impaired. Depletion of alpha-adaptin abolished almost completely the plasma membrane association of clathrin. Binding of Eps15 to membranes was strongly and that of CALM moderately reduced. Whereas the uptake of transferrin was efficiently blocked in alpha-adaptin knockdown cells, the internalization and sorting of the epidermal growth factor was not significantly impaired. Since neither clathrin nor AP-2 is essential for the internalization of EGF, we conclude that it is taken up by an alternative mechanism.
Collapse
Affiliation(s)
- Lars Hinrichsen
- Department of Cell Biology in the Center of Anatomy, Hannover Medical School, D-30623 Hannover, Germany
| | | | | | | | | |
Collapse
|
49
|
Allen CL, Goulding D, Field MC. Clathrin-mediated endocytosis is essential in Trypanosoma brucei. EMBO J 2003; 22:4991-5002. [PMID: 14517238 PMCID: PMC204465 DOI: 10.1093/emboj/cdg481] [Citation(s) in RCA: 191] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2003] [Revised: 05/09/2003] [Accepted: 08/04/2003] [Indexed: 12/15/2022] Open
Abstract
In Trypanosoma brucei, the plasma membrane is dominated by glycosylphosphatidylinositol (GPI)-anchored proteins. Endocytic activity correlates with expression levels of the clathrin heavy chain TbCLH, and additional evidence suggests that rapid endocytosis may play a role in evasion of the immune response. TbCLH is present on both endocytic vesicles and post-Golgi elements, suggesting a similar range of functions in trypanosomes to higher eukaryotes. We have assessed the role of TbCLH using RNA interference (RNAi). Suppression of TbCLH expression results in rapid lethality in the bloodstream stage, the form most active for endocytosis. The flagellar pocket, the site of both endocytosis and exocytosis, becomes massively enlarged, suggesting that membrane delivery is unaffected but removal is blocked. Endocytosis in TbCLHRNAi cells is essentially undetectable, suggesting that clathrin-mediated mechanisms are the major route for endocytosis in T.brucei and hence that GPI-anchored proteins are endocytosed by clathrin-dependent pathways in trypanosomes. In contrast, a massive internal accumulation of vesicles and significant alterations to trafficking of a lysosomal protein were observed in the procyclic stage, indicating developmental variation in clathrin function in trypanosomes.
Collapse
Affiliation(s)
- Clare L Allen
- Wellcome Trust Laboratories for Molecular Parasitology, Department of Biological Sciences, Imperial College, Exhibition Road, London SW7 2AY, UK
| | | | | |
Collapse
|
50
|
Abstract
We have used RNA interference to knock down the AP-2 mu2 subunit and clathrin heavy chain to undetectable levels in HeLaM cells. Clathrin-coated pits associated with the plasma membrane were still present in the AP-2-depleted cells, but they were 12-fold less abundant than in control cells. No clathrin-coated pits or vesicles could be detected in the clathrin-depleted cells, and post-Golgi membrane compartments were swollen. Receptor-mediated endocytosis of transferrin was severely inhibited in both clathrin- and AP-2-depleted cells. Endocytosis of EGF, and of an LDL receptor chimera, were also inhibited in the clathrin-depleted cells; however, both were internalized as efficiently in the AP-2-depleted cells as in control cells. These results indicate that AP-2 is not essential for clathrin-coated vesicle formation at the plasma membrane, but that it is one of several endocytic adaptors required for the uptake of certain cargo proteins including the transferrin receptor. Uptake of the EGF and LDL receptors may be facilitated by alternative adaptors.
Collapse
Affiliation(s)
- Alison Motley
- University of Cambridge, Department of Clinical Biochemistry, Cambridge Institute for Medical Research, Cambridge CB2 2XY, UK
| | | | | | | |
Collapse
|