1
|
Ji T, Li L, Zhu X, Wang G. Foliar spray double-stranded RNA targeting HvIAP1 induces high larval and adult mortality in Henosepilachna vigintioctopunctata. PEST MANAGEMENT SCIENCE 2025; 81:2981-2989. [PMID: 39865494 DOI: 10.1002/ps.8667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/30/2024] [Accepted: 01/06/2025] [Indexed: 01/28/2025]
Abstract
BACKGROUND Exogenous double-stranded RNA (dsRNA) has the potential to serve as an effective alternative to conventional chemical pesticides for the control of insect pests, because it can specifically inhibit essential gene expression in these organisms. However, identifying suitable gene targets remains a crucial step in the development of RNA interference (RNAi)-based pest control strategies. RESULTS In this study, three apoptosis-related genes were selected to evaluate their potential for RNAi-induced lethality in Henosepilachna vigintioctopunctata via foliar spray dsRNAs. Our results revealed that silencing of HvIAP1 (inhibitor of apoptosis protein 1) had a significant lethal effect on larvae, whereas silencing of HvAIF1 and HvASPP1 did not, correlating with distinct expression patterns. Larvae ingested leaves sprayed with bacterially expressed dsHvIAP1 at a concentration of 100 ng/cm2 resulting in the impairment of cuticle tanning, cessation of feeding, and ultimately, 100% mortality within 7 days. In addition, the potential of dsHvIAP1 to mediate for adult control was also investigated and showed that administration of 200 ng/cm2 dsHvIAP1 resulted in 100% adult mortality within 9 days, accompanied by a significant reduction in leaf consumption and suppression of HvIAP1 expression compared with the dsGFP group. CONCLUSIONS Our findings demonstrate that HvIAP1 is a highly lethal molecular target with a notable difference in the concentration required for larval and adult mortality. These findings provide a foundation for the future development of RNAi pesticides for environmentally friendly control of H. vigintioctopunctata. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Tianliang Ji
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Langcheng Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- College of Plant Protection, Shanxi Agricultural University, Taigu, China
| | - Xin Zhu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- School of Life Sciences, Henan University, Kaifeng, China
- Shenzhen Research Institute of Henan university, Shenzhen, China
| | - Guirong Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
2
|
Lai P, Liu L, Bancaro N, Troiani M, Calì B, Li Y, Chen J, Singh PK, Arzola RA, Attanasio G, Pernigoni N, Pasquini E, Mosole S, Rinaldi A, Sgrignani J, Qiu S, Song P, Li Y, Desbats MA, Ángel AR, Mestre RP, Cavalli A, Barile L, de Bono J, Alimonti A. Mitochondrial DNA released by senescent tumor cells enhances PMN-MDSC-driven immunosuppression through the cGAS-STING pathway. Immunity 2025; 58:811-825.e7. [PMID: 40203808 DOI: 10.1016/j.immuni.2025.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 09/27/2024] [Accepted: 03/05/2025] [Indexed: 04/11/2025]
Abstract
Mitochondrial dysfunction is a hallmark of cellular senescence. Here, we investigated whether senescent cells release mitochondrial (mt)DNA into the extracellular space and its impact on innate immunity. We found that both primary senescent cells and tumor cells undergoing therapy-induced senescence actively released mtDNA into the extracellular environment. mtDNA released by senescent cells was packaged within extracellular vesicles and selectively transferred to polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) in the tumor microenvironment. Upon uptake, extracellular mtDNA enhanced the immunosuppressive activity of PMN-MDSCs via cGAS-STING-NF-κB signaling, thereby promoting tumor progression. While STING activation directly induced NF-κB signaling, it also activated PKR-like endoplasmic reticulum kinase (PERK), which further amplified NF-κB activity, in PMN-MDSCs. mtDNA release from senescent cells was mediated by voltage-dependent anion channels (VDACs), and pharmacological inhibition of VDAC reduced extracellular mtDNA levels, reversed PMN-MDSC-driven immunosuppression, and enhanced chemotherapy efficacy in prostate cancer mouse models. These findings suggest that targeting mtDNA release could reprogram the immunosuppressive tumor microenvironment, improving therapeutic outcomes for chemotherapy-treated patients.
Collapse
Affiliation(s)
- Ping Lai
- Institute of Oncology Research (IOR), Bellinzona 6500, Switzerland; Faculty of Biology and Medicine, University of Lausanne (UNIL), Lausanne 1011, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano 6962, Switzerland
| | - Lei Liu
- Institute of Oncology Research (IOR), Bellinzona 6500, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano 6962, Switzerland
| | - Nicolò Bancaro
- Institute of Oncology Research (IOR), Bellinzona 6500, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano 6962, Switzerland
| | - Martina Troiani
- Institute of Oncology Research (IOR), Bellinzona 6500, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano 6962, Switzerland
| | - Bianca Calì
- Institute of Oncology Research (IOR), Bellinzona 6500, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano 6962, Switzerland
| | - Yuxin Li
- Institute of Oncology Research (IOR), Bellinzona 6500, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano 6962, Switzerland
| | - Jingjing Chen
- Institute of Oncology Research (IOR), Bellinzona 6500, Switzerland; Faculty of Biology and Medicine, University of Lausanne (UNIL), Lausanne 1011, Switzerland
| | - Prafull Kumar Singh
- Institute of Oncology Research (IOR), Bellinzona 6500, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano 6962, Switzerland
| | - Rydell Alvarez Arzola
- Institute of Oncology Research (IOR), Bellinzona 6500, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano 6962, Switzerland
| | - Giuseppe Attanasio
- Institute of Oncology Research (IOR), Bellinzona 6500, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano 6962, Switzerland
| | - Nicolò Pernigoni
- Institute of Oncology Research (IOR), Bellinzona 6500, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano 6962, Switzerland
| | - Emiliano Pasquini
- Institute of Oncology Research (IOR), Bellinzona 6500, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano 6962, Switzerland
| | - Simone Mosole
- Institute of Oncology Research (IOR), Bellinzona 6500, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano 6962, Switzerland
| | - Andrea Rinaldi
- Institute of Oncology Research (IOR), Bellinzona 6500, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano 6962, Switzerland
| | - Jacopo Sgrignani
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano 6962, Switzerland; Institute for Research in Biomedicine (IRB), Bellinzona 6500, Switzerland
| | - Shi Qiu
- Institute of Oncology Research (IOR), Bellinzona 6500, Switzerland; Department of Urology, Institute of Urology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Pan Song
- Institute of Oncology Research (IOR), Bellinzona 6500, Switzerland; Department of Urology, Institute of Urology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yingrui Li
- Institute of Oncology Research (IOR), Bellinzona 6500, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano 6962, Switzerland
| | - Maria Andrea Desbats
- Veneto Institute of Molecular Medicine (VIMM), Padova 35129, Italy; Department of Medicine, Università degli Studi di Padova, Padova 35129, Italy
| | - Azucena Rendón Ángel
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano 6962, Switzerland; Laboratory of Cellular and Molecular Cardiology and Laboratory for Cardiovascular Theranostics, Cardiocentro Ticino Foundation, Lugano 6900, Switzerland
| | - Ricardo Pereira Mestre
- Oncology Institute of Southern Switzerland (IOSI) Ente Ospedaliero Cantonale (EOC), Bellinzona 6500, Switzerland
| | - Andrea Cavalli
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano 6962, Switzerland; Institute for Research in Biomedicine (IRB), Bellinzona 6500, Switzerland
| | - Lucio Barile
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano 6962, Switzerland; Laboratory of Cellular and Molecular Cardiology and Laboratory for Cardiovascular Theranostics, Cardiocentro Ticino Foundation, Lugano 6900, Switzerland
| | - Johann de Bono
- Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK
| | - Andrea Alimonti
- Institute of Oncology Research (IOR), Bellinzona 6500, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano 6962, Switzerland; Veneto Institute of Molecular Medicine (VIMM), Padova 35129, Italy; Department of Medicine, Università degli Studi di Padova, Padova 35129, Italy; Oncology Institute of Southern Switzerland (IOSI) Ente Ospedaliero Cantonale (EOC), Bellinzona 6500, Switzerland; Department of Health Sciences and Technology (D-HEST), Eidgenössische Technische Hochschule (ETH) Zurich, Zurich 8092, Switzerland.
| |
Collapse
|
3
|
Guttman LC, Yang L, Liu M, Dawson VL, Dawson TM. Targeting PAAN/MIF nuclease activity in parthanatos-associated brain diseases. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2025; 102:1-26. [PMID: 39929577 DOI: 10.1016/bs.apha.2024.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Current FDA-approved drugs for neurodegenerative diseases primarily aim to reduce pathological protein aggregation or alleviate symptoms by enhancing neurotransmitter signaling. However, outcomes remain suboptimal and often fail to modify the course of neurodegenerative diseases. Acute neurologic injury that occurs in stroke and traumatic brain injury (TBI) also suffer from inadequate therapies to prevent neuronal cell death, resulting from both the acute insult and the subsequent reperfusion injury following recanalization of the occlusion in stroke. Approaches to prevent neuronal loss in neurodegenerative disease and acute neurologic injury hold significant therapeutic promise. Parthanatos is a cell death pathway that is activated and plays an integral role in these neurologic disorders. Parthanatos-associated apoptosis-inducing factor nuclease (PAAN), also known as macrophage migration inhibitory factor (MIF) nuclease, is the final executioner in the parthanatic cell death cascade. We posit that inhibiting parthanatos by blocking MIF nuclease activity offers a promising and precise strategy to prevent neuronal cell death in both chronic neurodegenerative disease and acute neurologic injury. In this chapter, we discuss the role of MIF's nuclease activity - distinct from its other enzymatic activities - in driving cell death that occurs in various neurological diseases. We also delve into the discovery, screening, structure, and function of MIF nuclease inhibitors, which have demonstrated neuroprotection in Parkinson's disease (PD) cell and mouse models. This analysis includes essential future research directions and queries that need to be considered to advance the clinical development of MIF nuclease inhibitors. Ultimately, our discussion aims to inspire drug development centered around inhibiting MIF's nuclease activity, potentially resulting in transformative, disease-modifying therapeutics.
Collapse
Affiliation(s)
- Lauren C Guttman
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Liu Yang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Meilian Liu
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Valina L Dawson
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
4
|
Rather N, Williams M, Elkhalil A, Sharmin R, Juanez K, Clark G, Shaham S, Ghose P. EOR-1/PLZF-regulated WAH-1/AIF sequentially promotes early and late stages of non-apoptotic corpse removal. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.04.626465. [PMID: 39677785 PMCID: PMC11642882 DOI: 10.1101/2024.12.04.626465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Programmed cell death (PCD) is a crucial, genetically-encoded, and evolutionarily-conserved process required for development and homeostasis. We previously identified a genetically non-apoptotic, highly ordered, and stereotyped killing program called Compartmentalized Cell Elimination (CCE) in the C. elegans tail-spike epithelial cell (TSC). Here we identify the transcription factor EOR-1/PLZF as an important coordinator of CCE. Loss of EOR-1 results in a large, persisting, un-engulfed soma with enlarged nuclei. We find that EOR-1 and its partners positively regulate the transcription of the Apoptosis Inducing Factor AIF homolog, WAH-1/AIF. We report stereotyped and sequential spatiotemporal dynamics of WAH-1/AIF1 during phagocytosis, with defined roles acting early and late, within the dying cells. Mitochondria to plasma membrane translocation within the TSC soma is required its internalization by its phagocyte, and plasma membrane to nuclear translocation is required for DNA degradation and ultimately, corpse resolution. Our study suggests that EOR-1 serves as a master regulator for the transcriptional control of DNA degradation is essential for changes in nuclear morphology required for cellular dismantling and infers that tight spatiotemporal regulation of WAH-1/AIF is required for this function.
Collapse
|
5
|
Horowitz LB, Shaham S. Apoptotic and Nonapoptotic Cell Death in Caenorhabditis elegans Development. Annu Rev Genet 2024; 58:113-134. [PMID: 38955209 DOI: 10.1146/annurev-genet-111523-102051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Programmed cell death (PCD) is an essential component of animal development, and aberrant cell death underlies many disorders. Understanding mechanisms that govern PCD during development can provide insight into cell death programs that are disrupted in disease. Key steps mediating apoptosis, a highly conserved cell death program employing caspase proteases, were first uncovered in the nematode Caenorhabditis elegans, a powerful model system for PCD research. Recent studies in C. elegans also unearthed conserved nonapoptotic caspase-independent cell death programs that function during development. Here, we discuss recent advances in understanding cell death during C. elegans development. We review insights expanding the molecular palette behind the execution of apoptotic and nonapoptotic cell death, as well as new discoveries revealing the mechanistic underpinnings of dying cell engulfment and clearance. A number of open questions are also discussed that will continue to propel the field over the coming years.
Collapse
Affiliation(s)
- Lauren Bayer Horowitz
- Laboratory of Developmental Genetics, The Rockefeller University, New York, NY, USA; ,
| | - Shai Shaham
- Laboratory of Developmental Genetics, The Rockefeller University, New York, NY, USA; ,
| |
Collapse
|
6
|
Li S, Redweik G, Lin JLJ, Chen YN, Yuan HS, Xue D. Probing the importance of AIF interaction with endonuclease G in mitochondrial inheritance and neurodegeneration. Cell Discov 2024; 10:107. [PMID: 39438436 PMCID: PMC11496498 DOI: 10.1038/s41421-024-00736-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 09/16/2024] [Indexed: 10/25/2024] Open
Affiliation(s)
- Shanshan Li
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Graham Redweik
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Jason L J Lin
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, China
| | - Yi-Ning Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, China
| | - Hanna S Yuan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, China
| | - Ding Xue
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, USA.
| |
Collapse
|
7
|
Wang K, Jia C, Zhang B, Chen J, Zhao J. Outer membrane vesicles from commensal microbes contribute to the sponge Tedania sp. development by regulating the expression level of apoptosis-inducing factor (AIF). Commun Biol 2024; 7:952. [PMID: 39107427 PMCID: PMC11303789 DOI: 10.1038/s42003-024-06622-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 07/23/2024] [Indexed: 08/10/2024] Open
Abstract
The transition from the swimming larval stage to the settlement stage represents a significant node in the marine sponge developmental process. Previous research has shown that the outer membrane vesicles (OMVs) from the bacterial species Tenacibaculum mesophilum associated with the sponge Tedania sp. influence larval settlement: low concentrations of OMVs increase the attachment rate, whereas high concentrations decrease the attachment rate. Here, by comparing the transcriptomes of sponge larvae in filtered seawater (FSW group) and in FSW supplemented with OMVs (FSW-OMV group), the results indicated that bacterial OMVs affected larval settlement by modulating the expression levels of apoptosis-inducing factor (AIF) in the host. Subsequently, quantitative real-time PCR revealed a decrease in aif expression near the time of settlement (SE) compared to that in the control group. RNA interference (RNAi) was used to target the aif gene, and the rate of larval settlement was significantly reduced, confirming the inhibitory effect of high concentrations of OMVs. Moreover, small RNA (sRNA) sequencing of OMVs revealed the existence of abundant AIF-sRNAs of 30 nt, further suggesting that one pathway for the involvement of sponge-associated bacteria in host development is the transport of OMVs and the direct function of cargo loading.
Collapse
Affiliation(s)
- Kai Wang
- College of Ocean and Earth Science of Xiamen University, Xiamen, 361005, China.
| | - Chenzheng Jia
- College of Ocean and Earth Science of Xiamen University, Xiamen, 361005, China.
| | - Beibei Zhang
- College of Ocean and Earth Science of Xiamen University, Xiamen, 361005, China.
| | - Jun Chen
- College of Ocean and Earth Science of Xiamen University, Xiamen, 361005, China.
| | - Jing Zhao
- College of Ocean and Earth Science of Xiamen University, Xiamen, 361005, China.
- Xiamen City Key Laboratory of Urban Sea Ecological Conservation and Restoration (USER), Xiamen University, Xiamen, 361005, China.
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
8
|
Wu Z, Cardona EA, Pierce JT. Non-apoptotic role of EGL-1 in exopher production and neuronal health in Caenorhabditis elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.19.590348. [PMID: 38712027 PMCID: PMC11071422 DOI: 10.1101/2024.04.19.590348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
While traditionally studied for their pro-apoptotic functions, recent research suggests BH3-only proteins also have non-apoptotic roles. Here, we find that EGL-1, the BH3-only protein in Caenorhabditis elegans, promotes the cell-autonomous production of exophers in adult neurons. Exophers are large, micron-scale vesicles that are ejected from the cell and contain cellular components such as mitochondria. EGL-1 facilitates exopher production potentially through regulation of mitochondrial dynamics. Moreover, an endogenous, low level of EGL-1 expression appears to benefit dendritic health. Our findings provide insights into the mechanistic role of BH3-only protein in mitochondrial dynamics, downstream exopher production, and ultimately neuronal health.
Collapse
Affiliation(s)
- Zheng Wu
- Department of Neuroscience, Center for Learning and Memory, Waggoner Center for Alcohol & Addiction Research, University of Texas at Austin, Austin, TX
| | - Eric A. Cardona
- Department of Neuroscience, Center for Learning and Memory, Waggoner Center for Alcohol & Addiction Research, University of Texas at Austin, Austin, TX
| | - Jonathan T. Pierce
- Department of Neuroscience, Center for Learning and Memory, Waggoner Center for Alcohol & Addiction Research, University of Texas at Austin, Austin, TX
| |
Collapse
|
9
|
Bi YW, Li LS, Ru N, Zhang B, Lei X. Nicotinamide adenine dinucleotide phosphate oxidase in pancreatic diseases: Mechanisms and future perspectives. World J Gastroenterol 2024; 30:429-439. [PMID: 38414585 PMCID: PMC10895600 DOI: 10.3748/wjg.v30.i5.429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/17/2023] [Accepted: 01/12/2024] [Indexed: 01/31/2024] Open
Abstract
Pancreatitis and pancreatic cancer (PC) stand as the most worrisome ailments affecting the pancreas. Researchers have dedicated efforts to unraveling the mechanisms underlying these diseases, yet their true nature continues to elude their grasp. Within this realm, oxidative stress is often believed to play a causal and contributory role in the development of pancreatitis and PC. Excessive accumulation of reactive oxygen species (ROS) can cause oxidative stress, and the key enzyme responsible for inducing ROS production in cells is nicotinamide adenine dinucleotide phosphate hydrogen oxides (NOX). NOX contribute to pancreatic fibrosis and inflammation by generating ROS that injure acinar cells, activate pancreatic stellate cells, and mediate macrophage polarization. Excessive ROS production occurs during malignant transformation and pancreatic carcinogenesis, creating an oxidative microenvironment that can cause abnormal apoptosis, epithelial to mesenchymal transition and genomic instability. Therefore, understanding the role of NOX in pancreatic diseases contributes to a more in-depth exploration of the exact pathogenesis of these diseases. In this review, we aim to summarize the potential roles of NOX and its mechanism in pancreatic disorders, aiming to provide novel insights into understanding the mechanisms underlying these diseases.
Collapse
Affiliation(s)
- Ya-Wei Bi
- Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Long-Song Li
- Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Nan Ru
- Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Bo Zhang
- Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Xiao Lei
- Department of Radiation Oncology, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
10
|
Dehghan S, Kheshtchin N, Hassannezhad S, Soleimani M. Cell death classification: A new insight based on molecular mechanisms. Exp Cell Res 2023; 433:113860. [PMID: 38013091 DOI: 10.1016/j.yexcr.2023.113860] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 11/29/2023]
Abstract
Cells tend to disintegrate themselves or are forced to undergo such destructive processes in critical circumstances. This complex cellular function necessitates various mechanisms and molecular pathways in order to be executed. The very nature of cell death is essentially important and vital for maintaining homeostasis, thus any type of disturbing occurrence might lead to different sorts of diseases and dysfunctions. Cell death has various modalities and yet, every now and then, a new type of this elegant procedure gets to be discovered. The diversity of cell death compels the need for a universal organizing system in order to facilitate further studies, therapeutic strategies and the invention of new methods of research. Considering all that, we attempted to review most of the known cell death mechanisms and sort them all into one arranging system that operates under a simple but subtle decision-making (If \ Else) order as a sorting algorithm, in which it decides to place and sort an input data (a type of cell death) into its proper set, then a subset and finally a group of cell death. By proposing this algorithm, the authors hope it may solve the problems regarding newer and/or undiscovered types of cell death and facilitate research and therapeutic applications of cell death.
Collapse
Affiliation(s)
- Sepehr Dehghan
- Department of Medical Basic Sciences, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Nasim Kheshtchin
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Maryam Soleimani
- Department of Medical Basic Sciences, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.
| |
Collapse
|
11
|
González-Arzola K, Díaz-Quintana A. Mitochondrial Factors in the Cell Nucleus. Int J Mol Sci 2023; 24:13656. [PMID: 37686461 PMCID: PMC10563088 DOI: 10.3390/ijms241713656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
The origin of eukaryotic organisms involved the integration of mitochondria into the ancestor cell, with a massive gene transfer from the original proteobacterium to the host nucleus. Thus, mitochondrial performance relies on a mosaic of nuclear gene products from a variety of genomes. The concerted regulation of their synthesis is necessary for metabolic housekeeping and stress response. This governance involves crosstalk between mitochondrial, cytoplasmic, and nuclear factors. While anterograde and retrograde regulation preserve mitochondrial homeostasis, the mitochondria can modulate a wide set of nuclear genes in response to an extensive variety of conditions, whose response mechanisms often merge. In this review, we summarise how mitochondrial metabolites and proteins-encoded either in the nucleus or in the organelle-target the cell nucleus and exert different actions modulating gene expression and the chromatin state, or even causing DNA fragmentation in response to common stress conditions, such as hypoxia, oxidative stress, unfolded protein stress, and DNA damage.
Collapse
Affiliation(s)
- Katiuska González-Arzola
- Centro Andaluz de Biología Molecular y Medicina Regenerativa—CABIMER, Consejo Superior de Investigaciones Científicas—Universidad de Sevilla—Universidad Pablo de Olavide, 41092 Seville, Spain
- Departamento de Bioquímica Vegetal y Biología Molecular, Universidad de Sevilla, 41012 Seville, Spain
| | - Antonio Díaz-Quintana
- Departamento de Bioquímica Vegetal y Biología Molecular, Universidad de Sevilla, 41012 Seville, Spain
- Instituto de Investigaciones Químicas—cicCartuja, Universidad de Sevilla—C.S.I.C, 41092 Seville, Spain
| |
Collapse
|
12
|
Mondal A, Roberge J, Gilleran J, Peng Y, Jia D, Akel M, Patel Y, Zoltowski H, Doraiswamy A, Langenfeld J. Bone morphogenetic protein inhibitors and mitochondria targeting agents synergistically induce apoptosis-inducing factor (AIF) caspase-independent cell death in lung cancer cells. Cell Commun Signal 2022; 20:99. [PMID: 35761398 PMCID: PMC9238106 DOI: 10.1186/s12964-022-00905-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/18/2022] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Bone morphogenetic proteins (BMP) are evolutionarily conserved morphogens that are reactivated in lung carcinomas. In lung cancer cells, BMP signaling suppresses AMP activated kinase (AMPK) by inhibiting LKB1. AMPK is activated by mitochondrial stress that inhibits ATP production, which is enhanced 100-fold when phosphorylated by LKB1. Activated AMPK can promote survival of cancer cells but its "hyperactivation" induces cell death. The studies here reveal novel cell death mechanisms induced by BMP inhibitors, together with agents targeting the mitochondria, which involves the "hyperactivation" of AMPK. METHODS This study examines the synergistic effects of two BMP inhibitors together with mitochondrial targeting agents phenformin and Ym155, on cell death of lung cancer cells expressing LKB1 (H1299), LKB1 null (A549), and A549 cells transfected with LKB1 (A549-LKB1). Cell death mechanisms evaluated were the activation of caspases and the nuclear localization of apoptosis inducing factor (AIF). A769662 was used to allosterically activate AMPK. Knockdown of BMPR2 and LKB1 using siRNA was used to examine their effects on nuclear localization of AMPK. Validation studies were performed on five passage zero primary NSCLC. RESULTS Both BMP inhibitors synergistically suppressed growth when combined with Ym155 or phenformin in cells expressing LKB1. The combination of BMP inhibitors with mitochondrial targeting agents enhanced the activation of AMPK in lung cancer cells expressing LKB1. Allosteric activation of AMPK with A769662 induced cell death in both H1299 and A549 cells. Cell death induced by the combination of BMP inhibitors and mitochondrial-targeting agents did not activate caspases. The combination of drugs induced nuclear localization of AIF in cells expressing LKB1, which was attenuated by knockdown of LKB1. Knockdown of BMPR2 together with Ym155 increased nuclear localization of AIF. Combination therapy also enhanced cell death and AIF nuclear localization in primary NSCLC. CONCLUSIONS These studies demonstrate that inhibition of BMP signaling together with mitochondrial targeting agents induce AIF caspase-independent cell death, which involves the "hyperactivation" of AMPK. AIF caspase-independent cell death is an evolutionarily conserved cell death pathway that is infrequently studied in cancer. These studies provide novel insight into mechanisms inducing AIF caspase-independent cell death in cancer cells using BMP inhibitors. Video Abstract.
Collapse
Affiliation(s)
- Arindam Mondal
- Department of Surgery, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, 1 Robert Wood Johnson Place, New Brunswick, NJ, 08903, USA
| | - Jacques Roberge
- Molecular Design and Synthesis, RUBRIC, Office for Research, Rutgers Translational Science, Rutgers University, Piscataway, NJ, 08854, USA
| | - John Gilleran
- Molecular Design and Synthesis, RUBRIC, Office for Research, Rutgers Translational Science, Rutgers University, Piscataway, NJ, 08854, USA
| | - Youyi Peng
- Biomedical Informatics Shared Resources, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08903, USA.,Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Dongxuan Jia
- Department of Surgery, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, 1 Robert Wood Johnson Place, New Brunswick, NJ, 08903, USA
| | - Moumen Akel
- Rutgers University, Piscataway, NJ, 08854, USA
| | - Yash Patel
- Rutgers University, Piscataway, NJ, 08854, USA
| | | | | | - John Langenfeld
- Department of Surgery, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, 1 Robert Wood Johnson Place, New Brunswick, NJ, 08903, USA.
| |
Collapse
|
13
|
Liu L, Li J, Ke Y, Zeng X, Gao J, Ba X, Wang R. The key players of parthanatos: opportunities for targeting multiple levels in the therapy of parthanatos-based pathogenesis. Cell Mol Life Sci 2022; 79:60. [PMID: 35000037 PMCID: PMC11073082 DOI: 10.1007/s00018-021-04109-w] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/08/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022]
Abstract
Parthanatos is a form of regulated cell death involved in the pathogenesis of many diseases, particularly neurodegenerative disorders, such as Parkinson's disease, Alzheimer's disease, Huntington's disease, and amyotrophic lateral sclerosis. Parthanatos is a multistep cell death pathway cascade that involves poly (ADP-ribose) polymerase 1 (PARP-1) overactivation, PAR accumulation, PAR binding to apoptosis-inducing factor (AIF), AIF release from the mitochondria, nuclear translocation of the AIF/macrophage migration inhibitory factor (MIF) complex, and MIF-mediated large-scale DNA fragmentation. All the key players in the parthanatos pathway are pleiotropic proteins with diverse functions. An in-depth understanding of the structure-based activity of the key factors, and the biochemical mechanisms of parthanatos, is crucial for the development of drugs and therapeutic strategies. In this review, we delve into the key players of the parthanatos pathway and reveal the multiple levels of therapeutic opportunities for treating parthanatos-based pathogenesis.
Collapse
Affiliation(s)
- Libo Liu
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Provenice, Shandong Normal University, Jinan, 250014, Shandong, China
| | - Jiaxiang Li
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Provenice, Shandong Normal University, Jinan, 250014, Shandong, China
| | - Yueshuang Ke
- The Key Laboratory of Molecular Epigenetics of Education, School of Life Science, Northeast Normal University, Changchun, 130024, Jilin, China
| | - Xianlu Zeng
- The Key Laboratory of Molecular Epigenetics of Education, School of Life Science, Northeast Normal University, Changchun, 130024, Jilin, China
| | - Jinmin Gao
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Provenice, Shandong Normal University, Jinan, 250014, Shandong, China
| | - Xueqing Ba
- The Key Laboratory of Molecular Epigenetics of Education, School of Life Science, Northeast Normal University, Changchun, 130024, Jilin, China.
| | - Ruoxi Wang
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Provenice, Shandong Normal University, Jinan, 250014, Shandong, China.
| |
Collapse
|
14
|
Qiao X, Hou L, Wang J, Jin Y, Kong N, Li J, Wang S, Wang L, Song L. Identification and characterization of an apoptosis-inducing factor 1 involved in apoptosis and immune defense of oyster, Crassostrea gigas. FISH & SHELLFISH IMMUNOLOGY 2021; 119:173-181. [PMID: 34610453 DOI: 10.1016/j.fsi.2021.09.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
The apoptosis-inducing factor (AIF) is a phylogenetically old protein with classic function of inducing caspase-independent apoptosis, which extensively present in all primary kingdoms. In the present study, an AIF homologue (designated as CgAIF1) was identified from oyster Crassostrea gigas. The open reading frame of CgAIF1 cDNA was of 1836 bp encoding a peptide of 611 amino acid residues. There are a Pyr_redox_2 domain and an AIF_C domain in the predicted CgAIF1 protein. The deduced amino acid sequence of CgAIF1 shared 35.44%-79.22% similarity with AIF1s from other species. In the phylogenetic tree, CgAIF1 firstly clustered with mollusc AIF1s, and then with insect AIF1s, displaying separation from vertebrate AIF1s. The mRNA transcripts of CgAIF1 were constitutively distributed in all the tested oyster tissues, with the highest level in gills (12.98-fold of that in haemocytes, p < 0.05). After LPS and Poly (I:C) stimulation, the mRNA transcripts of CgAIF1 in gills were significantly increased at 6 h and 24 h (5.79-fold, p < 0.001, and 21.96-fold compared to the control group, p < 0.05), respectively. In immunocytochemical assay, the CgAIF1 positive signals were mainly distributed in the cytoplasm of haemocytes, while after Poly (I:C) stimulation, the increased CgAIF1 positive signals were observed in the nucleus. Moreover, in the HEK293T cells transfected with pcDNA3.1-CgAIF1 recombinant plasmid, green signal of CgAIF1 were observed in both the cytoplasm and nucleus. The cell mortality rate, cell shrinking and the phosphatidylserine (PS) ectropion (Annexin V+/PI- cells and Annexin V+/PI+ cells) of CgAIF1 transfected HEK293T cells were significantly increased, compared to the groups with or without pcDNA3.1 transfection. These results collectively suggested that CgAIF1 was a conserved AIF1 member in oysters, and participated in immune response by inducing cell apoptosis.
Collapse
Affiliation(s)
- Xue Qiao
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Lilin Hou
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Jihan Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Yuhao Jin
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Ning Kong
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Jialuo Li
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Sicong Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| |
Collapse
|
15
|
Liu S, Luo W, Wang Y. Emerging role of PARP-1 and PARthanatos in ischemic stroke. J Neurochem 2021; 160:74-87. [PMID: 34241907 DOI: 10.1111/jnc.15464] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/10/2021] [Accepted: 07/06/2021] [Indexed: 01/01/2023]
Abstract
Cell death is a key feature of neurological diseases, including stroke and neurodegenerative disorders. Studies in a variety of ischemic/hypoxic mouse models demonstrate that poly(ADP-ribose) polymerase 1 (PARP-1)-dependent cell death, also named PARthanatos, plays a pivotal role in ischemic neuronal cell death and disease progress. PARthanatos has its unique triggers, processors, and executors that convey a highly orchestrated and programmed signaling cascade. In addition to its role in gene transcription, DNA damage repair, and energy homeostasis through PARylation of its various targets, PARP-1 activation in neuron and glia attributes to brain damage following ischemia/reperfusion. Pharmacological inhibition or genetic deletion of PARP-1 reduces infarct volume, eliminates inflammation, and improves recovery of neurological functions in stroke. Here, we reviewed the role of PARP-1 and PARthanatos in stroke and their therapeutic potential.
Collapse
Affiliation(s)
- Shuiqiao Liu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Weibo Luo
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Yingfei Wang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Neurology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
16
|
Shen L, Gan Q, Yang Y, Reis C, Zhang Z, Xu S, Zhang T, Sun C. Mitophagy in Cerebral Ischemia and Ischemia/Reperfusion Injury. Front Aging Neurosci 2021; 13:687246. [PMID: 34168551 PMCID: PMC8217453 DOI: 10.3389/fnagi.2021.687246] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/10/2021] [Indexed: 02/03/2023] Open
Abstract
Ischemic stroke is a severe cerebrovascular disease with high mortality and morbidity. In recent years, reperfusion treatments based on thrombolytic and thrombectomy are major managements for ischemic stroke patients, and the recanalization time window has been extended to over 24 h. However, with the extension of the time window, the risk of ischemia/reperfusion (I/R) injury following reperfusion therapy becomes a big challenge for patient outcomes. I/R injury leads to neuronal death due to the imbalance in metabolic supply and demand, which is usually related to mitochondrial dysfunction. Mitophagy is a type of selective autophagy referring to the process of specific autophagic elimination of damaged or dysfunctional mitochondria to prevent the generation of excessive reactive oxygen species (ROS) and the subsequent cell death. Recent advances have implicated the protective role of mitophagy in cerebral ischemia is mainly associated with its neuroprotective effects in I/R injury. This review discusses the involvement of mitochondria dynamics and mitophagy in the pathophysiology of ischemic stroke and I/R injury in particular, focusing on the therapeutic potential of mitophagy regulation and the possibility of using mitophagy-related interventions as an adjunctive approach for neuroprotective time window extension after ischemic stroke.
Collapse
Affiliation(s)
- Luoan Shen
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Haining, China
| | - Qinyi Gan
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Haining, China
| | - Youcheng Yang
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Haining, China
| | - Cesar Reis
- VA Loma Linda Healthcare System, Loma Linda University, Loma Linda, CA, United States
| | - Zheng Zhang
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Haining, China
| | - Shanshan Xu
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Tongyu Zhang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Chengmei Sun
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Haining, China.,Institute for Advanced Study, Shenzhen University, Shenzhen, China
| |
Collapse
|
17
|
DNase II mediates a parthanatos-like developmental cell death pathway in Drosophila primordial germ cells. Nat Commun 2021; 12:2285. [PMID: 33863891 PMCID: PMC8052343 DOI: 10.1038/s41467-021-22622-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 03/23/2021] [Indexed: 02/02/2023] Open
Abstract
During Drosophila embryonic development, cell death eliminates 30% of the primordial germ cells (PGCs). Inhibiting apoptosis does not prevent PGC death, suggesting a divergence from the conventional apoptotic program. Here, we demonstrate that PGCs normally activate an intrinsic alternative cell death (ACD) pathway mediated by DNase II release from lysosomes, leading to nuclear translocation and subsequent DNA double-strand breaks (DSBs). DSBs activate the DNA damage-sensing enzyme, Poly(ADP-ribose) (PAR) polymerase-1 (PARP-1) and the ATR/Chk1 branch of the DNA damage response. PARP-1 and DNase II engage in a positive feedback amplification loop mediated by the release of PAR polymers from the nucleus and the nuclear accumulation of DNase II in an AIF- and CypA-dependent manner, ultimately resulting in PGC death. Given the anatomical and molecular similarities with an ACD pathway called parthanatos, these findings reveal a parthanatos-like cell death pathway active during Drosophila development.
Collapse
|
18
|
Zhang X, Wang Y, Chen M, Zeng M. Hexavalent chromium-induced apoptosis in Hep3B cells is accompanied by calcium overload, mitochondrial damage, and AIF translocation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111391. [PMID: 33039869 DOI: 10.1016/j.ecoenv.2020.111391] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 06/11/2023]
Abstract
Hexavalent chromium [Cr(VI)] is a pervasive environmental pollutant that can enter the body through a variety of routes and cause organ toxicity, genetic damage, and cancer. Cr(VI)-induced apoptosis is a toxicant mechanism of Cr(VI). Studies have shown that Cr(VI) can induce p53-independent apoptosis, but the mechanisms are not fully understood. The intracellular calcium concentration affects cellular life. Apoptosis-inducing factor (AIF), a caspase-independent apoptotic effector, can induce DNA degradation. Using p53-null Hep3B cells, we investigated the effects of cytoplasmic calcium homeostasis and AIF on Cr(VI)-induced apoptosis. We found that 20 µM of Cr(VI) induced DNA damage and mitochondrial permeability transition pore (MPTP) openings, causing calcium overload that was accompanied by decreased Ca2+-Mg2+-ATPase and Na+-K+-ATP activities, downregulation of calmodulin (CaM) and Ca2+/CaM-dependent protein kinase II (CAMKII) mRNA, and increased expression of p-CaMKII/CaMKII protein. After treatment with calcium chelating agent BAPTA-AM, Cr(VI)-induced DNA damage, calcium overload, and apoptosis were reduced. AIF was released from the mitochondria and translocated into the nuclei. As the Cr(VI) treatment time progressed, the mRNA and protein expression of B cell lymphoma 2 (Bcl-2) and heat-shock protein 70 (HSP70) decreased, whereas the mRNA and protein expression of Bcl-2-associated X (Bax), cyclophilin A (CypA), and endonuclease G (EndoG) were upregulated. These results indicated that Cr(VI)-induced apoptosis of Hep3B cells (p53-null) was closely associated with calcium overload, and was accompanied by the activation of Ca2+/CaM/CaMKII signaling pathway. Besides, Cr(VI) triggered AIF nuclear translocation in Hep3B cells, accompanied by the changes in the levels of apoptosis-associated factors. These results provide additional experimental evidence of the molecular mechanisms involved in Cr(VI)-induced p53-independent apoptosis.
Collapse
Affiliation(s)
- XiangFei Zhang
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha 410078, PR China.
| | - YuTing Wang
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha 410078, PR China.
| | - Ming Chen
- Hunan Provincial Center for Disease Control and Prevention, Changsha 410005, PR China.
| | - Ming Zeng
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha 410078, PR China.
| |
Collapse
|
19
|
Wu CC, Lin JL, Yuan HS. Structures, Mechanisms, and Functions of His-Me Finger Nucleases. Trends Biochem Sci 2020; 45:935-946. [DOI: 10.1016/j.tibs.2020.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/30/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023]
|
20
|
Liu Y, Jia Y, Yang K, Wang Z. Heterogeneous Strategies to Eliminate Intracellular Bacterial Pathogens. Front Microbiol 2020; 11:563. [PMID: 32390959 PMCID: PMC7192003 DOI: 10.3389/fmicb.2020.00563] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 03/16/2020] [Indexed: 12/21/2022] Open
Abstract
Antibiotic tolerance in bacterial pathogens that are genetically susceptible, but phenotypically tolerant to treatment, represents a growing crisis for public health. In particular, the intracellular bacteria-mediated antibiotic tolerance by acting as “Trojan horses” play a critical and underappreciated role in the disease burden of bacterial infections. Thus, more intense efforts are required to tackle this problem. In this review, we firstly provide a brief overview of modes of action of bacteria invasion and survival in macrophage or non-professional phagocytic cells. Furthermore, we summarize our current knowledge about promising strategies to eliminate these intracellular bacterial pathogens, including direct bactericidal agents, antibiotic delivery to infection sites by various carriers, and activation of host immune functions. Finally, we succinctly discuss the challenges faced by bringing them into clinical trials and our constructive perspectives.
Collapse
Affiliation(s)
- Yuan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
| | - Yuqian Jia
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Kangni Yang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Zhiqiang Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|
21
|
Kadam A, Mehta D, Jubin T, Mansuri MS, Begum R. Apoptosis inducing factor: Cellular protective function in Dictyostelium discoideum. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148158. [PMID: 31991113 DOI: 10.1016/j.bbabio.2020.148158] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 01/16/2020] [Accepted: 01/24/2020] [Indexed: 01/31/2023]
Abstract
Apoptosis Inducing Factor (AIF), a nuclear encoded mitochondrial inter-membrane space flavoprotein with intrinsic NADH oxidase activity, plays an important role in inducing cell death mechanisms. In response to cell death signals, it undergoes mitochondrio-nuclear translocation leading to DNA fragmentation. In addition to its role in cell death, AIF has a pro-survival role, wherein it contributes to the maintenance of mitochondrial structure and function in a coordinated manner. However, its exact mechanism of controlling mitochondrial homeostasis is unclear. The current study aims to explore the protective functions of AIF by its downregulation and overexpression in Dictyostelium discoideum. Constitutive AIF downregulated (dR) cells exhibited compromised oxidative phosphorylation along with elevated levels of cellular ROS. Interestingly, constitutive AIF dR cells showed amelioration in the activity of the ETC complexes upon antioxidant treatment, strengthening AIF's role as an ROS regulator, by virtue of its oxidoreductase property. Also, constitutive AIF dR cells showed lower transcript levels of the various subunits of ETC. Moreover, loss of AIF affected mtDNA content and mitochondrial fusion-fission mechanism, which subsequently caused morphometric mitochondrial alterations. Constitutive AIF overexpressed (OE) cells also showed higher cellular ROS and mitochondrial fission genes transcript levels along with reduced mitochondrial fusion genes transcript levels and mtDNA content. Thus, the results of the current study provide a paradigm where AIF is implicated in cell survival by maintaining mitochondrial bioenergetics, morphology and fusion-fission mechanism in D. discoideum, an evolutionarily significant model organism for mitochondrial diseases.
Collapse
Affiliation(s)
- Ashlesha Kadam
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390002, Gujarat, India
| | - Darshan Mehta
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390002, Gujarat, India
| | - Tina Jubin
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390002, Gujarat, India
| | - Mohmmad Shoab Mansuri
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390002, Gujarat, India
| | - Rasheedunnisa Begum
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390002, Gujarat, India.
| |
Collapse
|
22
|
Chen C, Zhang J, Guo Z, Shi X, Zhang Y, Zhang L, Yu Q, Han L. Effect of oxidative stress on AIF-mediated apoptosis and bovine muscle tenderness during postmortem aging. J Food Sci 2019; 85:77-85. [PMID: 31816098 DOI: 10.1111/1750-3841.14969] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 09/28/2019] [Accepted: 10/25/2019] [Indexed: 01/12/2023]
Abstract
This study aimed to explore the effect exerted by oxidative stress on apoptosis-inducing factors (AIF)-mediated apoptosis and bovine muscle tenderness during postmortem aging. We investigated the reactive oxygen species (ROS) content, mitochondrial membrane permeability, AIF expression level, nucleus apoptosis, shear force, myofibril fragmentation index, pH, and energy level. According to the results, a rise in ROS content was accompanied by the rise in mitochondrial membrane permeability from 6 to 72 hr. In the meantime, the AIF expression in mitochondria was downregulated significantly within 72 hr. However, samples treated with N-acetylcysteine had significantly lower ROS content (6 to 72 hr) and mitochondrial membrane permeability (12 to 72 hr) than the control group. Moreover, during postmortem aging, the variations in AIF levels in mitochondria were closely associated with meat tenderization and nucleus apoptosis. These findings demonstrated that oxidative stress induced by ROS significantly promoted AIF release from mitochondria by enhancing the mitochondrial membrane permeability, and the released AIF mediated nucleus apoptosis that further enhanced bovine muscle tenderness. Besides, results suggest that in the early stage, the environmental factors (ATP content and pH) significantly decreased (0 to 72 hr), whereas ROS-induced oxidative stress had no significant effect on environmental factors. These observations further suggested that during postmortem aging, the decrease of pH and ATP consumption are required by AIF release. We conclude that ROS-induced oxidative stress and internal environment are vital for meat tenderization through the regulation of AIF-mediated apoptosis pathway. PRACTICAL APPLICATION: ROS-induced oxidative stress contributes to bovine muscle tenderization by promoting cell apoptosis. It is likely to lay a theoretical foundation for developing innovative tenderization techniques by altering the internal oxidation environment of postmortem muscles.
Collapse
Affiliation(s)
- Cheng Chen
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Jiaying Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Zhaobin Guo
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Xixiong Shi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Yubin Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Li Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Qunli Yu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Ling Han
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
23
|
Zhu J, Wu F, Yue S, Chen C, Song S, Wang H, Zhao M. Functions of reactive oxygen species in apoptosis and ganoderic acid biosynthesis in Ganoderma lucidum. FEMS Microbiol Lett 2019; 366:5714084. [PMID: 31967638 DOI: 10.1093/femsle/fnaa015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 01/21/2020] [Indexed: 12/26/2022] Open
Abstract
Ganoderma lucidum is a medicinal fungus that is widely used in traditional medicine. Fungal PacC is recognized as an important transcription factor that functions during adaptation to environmental pH, fungal development and secondary metabolism. Previous studies have revealed that GlPacC plays important roles in mycelial growth, fruiting body development and ganoderic acid (GA) biosynthesis. In this study, using a terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling (TUNEL) assay, we found that the apoptosis level was increased when PacC was silenced. The transcript and activity levels of caspase-like proteins were significantly increased in the PacC-silenced (PacCi) strains compared with the control strains. Silencing PacC also resulted in an increased reactive oxygen species (ROS) levels (∼2-fold) and decreased activity levels of enzymes involved in the antioxidant system. Further, we found that the intracellular ROS levels contributed to apoptosis and GA biosynthesis. Adding N-acetyl-cysteine and vitamin C decreased intracellular ROS and resulted in the inhibition of apoptosis in the PacCi strains. Additionally, the GA biosynthesis was different between the control strains and the PacCi strains after intracellular ROS was eliminated. Taken together, the findings showed that silencing PacC can result in an intracellular ROS burst, which increases cell apoptosis and GA biosynthesis levels. Our study provides novel insight into the functions of PacC in filamentous fungi.
Collapse
Affiliation(s)
- Jing Zhu
- Key Laboratory of Edible Mushroom Processing, Ministry of Agriculture; Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P.R. China
| | - Fengli Wu
- Key Laboratory of Edible Mushroom Processing, Ministry of Agriculture; Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P.R. China
| | - Sining Yue
- Key Laboratory of Edible Mushroom Processing, Ministry of Agriculture; Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P.R. China
| | - Chen Chen
- Key Laboratory of Edible Mushroom Processing, Ministry of Agriculture; Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P.R. China
| | - Shuqi Song
- Key Laboratory of Edible Mushroom Processing, Ministry of Agriculture; Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P.R. China
| | - Hui Wang
- Key Laboratory of Edible Mushroom Processing, Ministry of Agriculture; Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P.R. China
| | - Mingwen Zhao
- Key Laboratory of Edible Mushroom Processing, Ministry of Agriculture; Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P.R. China
| |
Collapse
|
24
|
TRPM2 ion channel is involved in the aggravation of cognitive impairment and down regulation of epilepsy threshold in pentylenetetrazole-induced kindling mice. Brain Res Bull 2019; 155:48-60. [PMID: 31794795 DOI: 10.1016/j.brainresbull.2019.11.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 12/20/2022]
Abstract
Epilepsy is one of the most common neurological conditions. Recent findings suggest that one of the mechanisms promoting its existence is calcium influx. The transient receptor potential melastatin type 2 channel (TRPM2) is a Ca2+-permeable cation channel that contributes to cell apoptosis; its possible signaling pathway is the PARP1/BNIP3/AIF/Endo G pathway that may be related to epilepsy. The aim of this study was to investigate the TRPM2 channel's involvement in epilepsy and how it works. We also explored the possible role of the TRPM2 channel on cognitive ability and emotion in epilepsy. To accomplish our goals, we used different animal epilepsy models to study the effect of the TRPM2 channel on epilepsy. The results showed that the knockout (KO) of the TRPM2 gene might play a protective role in epilepsy. Considering the advantages attributed to pentylenetetrazole (PTZ)-induced kindling mouse model, we used the model for the following assessments: 1. to observe changes in cognition and anxiety between wild type (WT) mice and TRPM2-KO mice with the recognition of new things trial and elevated plus-maze; 2. to determine the expression of apoptosis-associated proteins (PARP1, BNIP3, AIF, and Endo G) using Reverse transcription-polymerase chain reaction (RT-PCR) and Western blot; 3. to observe neurons pathologic damages and astrocyte activation in each group. The main findings of our study were: (a) TRPM2-KO had a protective effect on epilepsy; (b) TRPM2-KO improved spatial memory deficits overtime during epilepsy, but it did not improve anxiety; (c) the protective effect probably occurred via the PARP1 downstream signaling pathway; (d) TRPM2-KO could ameliorate epilepsy-induced hippocampal pathological damages and weaken astrocyte activation. These findings may provide a new approach for the treatment of epilepsy and early intervention.
Collapse
|
25
|
Sinha S, Renganathan A, Nagendra PB, Bhat V, Mathew BS, Rao MRS. AEBP1 down regulation induced cell death pathway depends on PTEN status of glioma cells. Sci Rep 2019; 9:14577. [PMID: 31601918 PMCID: PMC6787275 DOI: 10.1038/s41598-019-51068-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 09/20/2019] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma (GBM) is the most common aggressive form of brain cancer with overall dismal prognosis (10–12 months) despite all current multimodal treatments. Previously we identified adipocyte enhancer binding protein 1 (AEBP1) as a differentially regulated gene in GBM. On probing the role of AEBP1 over expression in glioblastoma, we found that both cellular proliferation and survival were affected upon AEBP1 silencing in glioma cells, resulting in cell death. In the present study we report that the classical caspase pathway components are not activated in cell death induced by AEBP1 down regulation in PTEN-deficient (U87MG and U138MG) cells. PARP-1 was not cleaved but over-activated under AEBP1 down regulation which leads to the synthesis of PAR in the nucleus triggering the release of AIF from the mitochondria. Subsequently, AIF translocates to the nucleus along with MIF causing chromatinolysis. AEBP1 positively regulates PI3KinaseCβ by the binding to AE-1 binding element in the PI3KinaseCβ promoter. Loss of PI3KinaseCβ expression under AEBP1 depleted condition leads to excessive DNA damage and activation of PARP-1. Furthermore, over expression of PIK3CB (in trans) in U138MG cells prevents DNA damage in these AEBP1 depleted cells. On the contrary, AEBP1 down regulation induces caspase-dependent cell death in PTEN-proficient (LN18 and LN229) cells. Ectopic expression of wild-type PTEN in PTEN-deficient U138MG cells results in the activation of canonical caspase and Akt dependent cell death. Collectively, our findings define AEBP1 as a potential oncogenic driver in glioma, with potential implications for therapeutic intervention.
Collapse
Affiliation(s)
- Swati Sinha
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advance Scientific Research, Bangalore, Karnataka, 560064, India
| | - Arun Renganathan
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advance Scientific Research, Bangalore, Karnataka, 560064, India.,Department of Surgery, Washington University in St. Louis, St. Louis, MO, USA
| | - Prathima B Nagendra
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advance Scientific Research, Bangalore, Karnataka, 560064, India.,Gynaecology Oncology Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
| | - Vasudeva Bhat
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advance Scientific Research, Bangalore, Karnataka, 560064, India.,Department of Immunology, Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Brian Steve Mathew
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advance Scientific Research, Bangalore, Karnataka, 560064, India
| | | |
Collapse
|
26
|
Zhu T, Zhao Y, Hu H, Zheng Q, Luo X, Ling Y, Ying Y, Shen Z, Jiang P, Shu Q. TRPM2 channel regulates cytokines production in astrocytes and aggravates brain disorder during lipopolysaccharide-induced endotoxin sepsis. Int Immunopharmacol 2019; 75:105836. [PMID: 31450153 DOI: 10.1016/j.intimp.2019.105836] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/01/2019] [Accepted: 08/17/2019] [Indexed: 01/02/2023]
Abstract
Sepsis is one of the most significant challenges in intensive care units, which is associated with increased morbidity and mortality. Sepsis-associated encephalopathy (SAE) is a severe complication which can cause death and serious disabilities. Calcium signaling in astrocyte is essential for cellular activation and the potential resolution of infection or inflammation in SAE patients. The transient receptor potential melastatin 2 (TRPM2) channel has been identified as a unique fusion of a Ca2+-permeable nonselective cation channel, which plays an important role in inflammation and immune response. Because of its role as an oxidative stress sensor in astrocytes, we investigated the function of TRPM2 in inflammation mediators (interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α) release, Bcl-2/E1B-19 K-interacting protein 3 (BNIP3), apoptosis inducing factor (AIF) and Endonuclease G (Endo G) expression. We showed that TRPM2-KO mice, when intraperitoneally (i.p) injected with LPS, exhibited better neurologic assessment scores and decreased inflammatory injury in hippocampal neurons compared with wild-type (WT) mice. The absence of TRPM2 triggered less production of inflammatory mediators (IL-1β, IL-6, TNF-α) and decreased apoptosis related proteins (BNIP3, AIF, Endo G) expressions in response to LPS induced sepsis. Furthermore, TRPM2-deficient astrocytes (transfected with TRPM2 siRNA) upon LPS stimulation also induced decreased IL-1β, IL-6 and TNF-α level. Our data suggested that decreased production of inflammatory cytokines and apoptosis related proteins with TRPM2 deletion could regulate inflammatory stress and decrease inflammatory injury in hippocampal neurons, and consequently, ameliorate brain disorder.
Collapse
Affiliation(s)
- Tao Zhu
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yisha Zhao
- Department of Neurology, Zhejiang Key Laboratory for Diagnosis and Treatment of Neonatal Diseases, Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Department of Pediatrics, Wenling Maternal and Child Health Care Hospital, Wenling, Zhejiang, China
| | - Hui Hu
- Department of Neurology, Zhejiang Key Laboratory for Diagnosis and Treatment of Neonatal Diseases, Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Department of Pediatrics, Lishui Maternal and Child Health Care Hospital, Lishui, Zhejiang, China
| | - Qianqian Zheng
- Department of Neurology, Zhejiang Key Laboratory for Diagnosis and Treatment of Neonatal Diseases, Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Department of Peditrica, Sanmen People's Hospital, Sanmen, Zhejiang, China
| | - Xiaoying Luo
- Department of Neurology, Zhejiang Key Laboratory for Diagnosis and Treatment of Neonatal Diseases, Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yinjie Ling
- Department of Neurology, Zhejiang Key Laboratory for Diagnosis and Treatment of Neonatal Diseases, Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Department of Peditrica, first people's hospital of Huzhou, Huzhou, Zhejiang, China
| | - Yingchao Ying
- Department of Neurology, Zhejiang Key Laboratory for Diagnosis and Treatment of Neonatal Diseases, Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zheng Shen
- Department of Neurology, Zhejiang Key Laboratory for Diagnosis and Treatment of Neonatal Diseases, Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Peifang Jiang
- Department of Neurology, Zhejiang Key Laboratory for Diagnosis and Treatment of Neonatal Diseases, Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Qiang Shu
- Department of Neurology, Zhejiang Key Laboratory for Diagnosis and Treatment of Neonatal Diseases, Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
27
|
Organochlorinated pesticides expedite the enzymatic degradation of DNA. Commun Biol 2019; 2:81. [PMID: 30820476 PMCID: PMC6391446 DOI: 10.1038/s42003-019-0326-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 01/24/2019] [Indexed: 01/31/2023] Open
Abstract
Extracellular DNA in the environment may play important roles in genetic diversity and biological evolution. However, the influence of environmental persistent organic contaminants such as organochlorinated pesticides (e.g., hexachlorocyclohexanes [HCHs]) on the enzymatic degradation of extracellular DNA has not been elucidated. In this study, we observed expedited enzymatic degradation of extracellular DNA in the presence of α-HCH, β-HCH and γ-HCH. The HCH-expedited DNA degradation was not due to increased deoxyribonuclease I (DNase I) activity. Our spectroscopic and computational results indicate that HCHs bound to DNA bases (most likely guanine) via Van der Waals forces and halogen bonds. This binding increased the helicity and accumulation of DNA base pairs, leading to a more compact DNA structure that exposed more sites susceptible to DNase I and thus expedited DNA degradation. This study provided insight into the genotoxicity and ecotoxicity of pesticides and improved our understanding of DNA persistence in contaminated environments.
Collapse
|
28
|
DING L, LI J, LI W, FANG Z, LI N, WU S, LI J, HONG M. p53- and ROS-mediated AIF pathway involved in TGEV-induced apoptosis. J Vet Med Sci 2018; 80:1775-1781. [PMID: 30249935 PMCID: PMC6261820 DOI: 10.1292/jvms.18-0104] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We previously demonstrated that transmissible gastroenteritis virus (TGEV) could induce apoptosis through caspase signaling. However, apoptosis was not completely prevented by caspases inhibitors, suggesting that there may be a caspase-independent pathway involved in TGEV-induced cell apoptosis. In this study, we investigated the regulation of apoptosis-inducing factor (AIF) on TGEV-induced apoptotic pathway. Results indicated that AIF translocated from the mitochondria to nucleus during TGEV infection, and the AIF inhibitor, N-phenylmaleimide (NP), significantly attenuated the apoptosis. In addition, the translocation of AIF was inhibited by Veliparib (ABT-888), an inhibitor of poly (ADP-ribose) polymerase (PARP). And the reactive oxygen species (ROS) scavenger, pyrrolidinedithiocarbamic (PDTC), redistributed AIF in the mitochondria and nucleus in TGEV-infected cells. Moreover, the protein levels in nucleus and the mRNA levels of AIF were inhibited in the presence of the p53 inhibitor, pifithrin-α (PFT-α) or in TGEV-infected p53-/-cells. Furthermore, TGEV-induced apoptosis was blocked by combination of three or more inhibitors, such as pan caspase inhibitor Z-VAD-FMK, NP, ABT-888, PDTC, PFT-α, to treat PK-15 cells. Taken together, these results suggest that the p53- and ROS-mediated AIF pathway and caspase-dependent pathway were involved in TGEV-induced apoptosis.
Collapse
Affiliation(s)
- Li DING
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Jiawei LI
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Weihao LI
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Zhenhua FANG
- School of Tropical Agricultural Technology, Hainan College of Vocation and Technique, Haikou, Hainan 570216, China
| | - Na LI
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Shannan WU
- Hainan Entry-Exit Inspection and Quarantine Bureau, Haikou, Hainan 570311, China
| | - Jiangyue LI
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Meiling HONG
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou 571158, China
- Correspondence to: Hong, M.:
| |
Collapse
|
29
|
Study on the apoptosis mediated by apoptosis-inducing-factor and influencing factors of bovine muscle during postmortem aging. Food Chem 2018; 266:359-367. [PMID: 30381198 DOI: 10.1016/j.foodchem.2018.06.032] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 04/02/2018] [Accepted: 06/07/2018] [Indexed: 01/13/2023]
Abstract
This study investigated the apoptosis pathway mediated by apoptosis-inducing factors (AIF) and internal factors that influence the release of AIF. The results indicated that the AIF expression was decreased in mitochondria and increased in nucleus (P < 0.05). However, no significant differences were observed in the AIF expression in mitochondria with caspase inhibitor treatment. The optical density of nucleus and mitochondrial swelling was significant increased (P < 0.05). Reactive oxygen species (ROS) fell gradually within the first 6 h and increased in the next 24 h. Calpain I activity was decreased, Ca2+ concentration, cathepsin B and D activities was increased (P < 0.05). The results demonstrated that AIF-mediated caspase-dependent pathway was a new mitochondrial apoptosis pathway and that mitochondrial swelling, ROS content, Ca2+ concentration, calpain I, cathepsin B and cathepsin D activities are the key influencing factors in apoptosis in postmortem bovine muscle.
Collapse
|
30
|
Verma DK, Gupta S, Biswas J, Joshi N, Singh A, Gupta P, Tiwari S, Sivarama Raju K, Chaturvedi S, Wahajuddin M, Singh S. New therapeutic activity of metabolic enhancer piracetam in treatment of neurodegenerative disease: Participation of caspase independent death factors, oxidative stress, inflammatory responses and apoptosis. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2078-2096. [DOI: 10.1016/j.bbadis.2018.03.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 02/26/2018] [Accepted: 03/13/2018] [Indexed: 12/12/2022]
|
31
|
Scholtes C, Bellemin S, Martin E, Carre-Pierrat M, Mollereau B, Gieseler K, Walter L. DRP-1-mediated apoptosis induces muscle degeneration in dystrophin mutants. Sci Rep 2018; 8:7354. [PMID: 29743663 PMCID: PMC5943356 DOI: 10.1038/s41598-018-25727-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 04/03/2018] [Indexed: 02/08/2023] Open
Abstract
Mitochondria are double-membrane subcellular organelles with highly conserved metabolic functions including ATP production. Mitochondria shapes change continually through the combined actions of fission and fusion events rendering mitochondrial network very dynamic. Mitochondria are largely implicated in pathologies and mitochondrial dynamics is often disrupted upon muscle degeneration in various models. Currently, the exact roles of mitochondria in the molecular mechanisms that lead to muscle degeneration remain poorly understood. Here we report a role for DRP-1 in regulating apoptosis induced by dystrophin-dependent muscle degeneration. We found that: (i) dystrophin-dependent muscle degeneration was accompanied by a drastic increase in mitochondrial fragmentation that can be rescued by genetic manipulations of mitochondrial dynamics (ii) the loss of function of the fission gene drp-1 or the overexpression of the fusion genes eat-3 and fzo-1 provoked a reduction of muscle degeneration and an improved mobility of dystrophin mutant worms (iii) the functions of DRP-1 in apoptosis and of others apoptosis executors are important for dystrophin-dependent muscle cell death (iv) DRP-1-mediated apoptosis is also likely to induce age-dependent loss of muscle cell. Collectively, our findings point toward a mechanism involving mitochondrial dynamics to respond to trigger(s) of muscle degeneration via apoptosis in Caenorhabditis elegans.
Collapse
Affiliation(s)
- Charlotte Scholtes
- Laboratory of Biology and Modelling of the Cell, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, UMS 3444 Biosciences Lyon Gerland, Universite de Lyon, Lyon, 69007, France.,NeuroMyoGene Institute (INMG), Universite Lyon 1, CNRS UMR 5310, INSERM U1217, Lyon 69008, France
| | - Stéphanie Bellemin
- NeuroMyoGene Institute (INMG), Universite Lyon 1, CNRS UMR 5310, INSERM U1217, Lyon 69008, France
| | - Edwige Martin
- NeuroMyoGene Institute (INMG), Universite Lyon 1, CNRS UMR 5310, INSERM U1217, Lyon 69008, France
| | - Maïté Carre-Pierrat
- Biology of Caenorhabditis elegans facility, Universite Lyon 1, UMS3421, Lyon 69008, France
| | - Bertrand Mollereau
- Laboratory of Biology and Modelling of the Cell, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, UMS 3444 Biosciences Lyon Gerland, Universite de Lyon, Lyon, 69007, France
| | - Kathrin Gieseler
- NeuroMyoGene Institute (INMG), Universite Lyon 1, CNRS UMR 5310, INSERM U1217, Lyon 69008, France.
| | - Ludivine Walter
- Laboratory of Biology and Modelling of the Cell, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, UMS 3444 Biosciences Lyon Gerland, Universite de Lyon, Lyon, 69007, France.
| |
Collapse
|
32
|
Bano D, Prehn JHM. Apoptosis-Inducing Factor (AIF) in Physiology and Disease: The Tale of a Repented Natural Born Killer. EBioMedicine 2018; 30:29-37. [PMID: 29605508 PMCID: PMC5952348 DOI: 10.1016/j.ebiom.2018.03.016] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/05/2018] [Accepted: 03/13/2018] [Indexed: 12/12/2022] Open
Abstract
Apoptosis-inducing factor (AIF) is a mitochondrial oxidoreductase that contributes to cell death programmes and participates in the assembly of the respiratory chain. Importantly, AIF deficiency leads to severe mitochondrial dysfunction, causing muscle atrophy and neurodegeneration in model organisms as well as in humans. The purpose of this review is to describe functions of AIF and AIF-interacting proteins as regulators of cell death and mitochondrial bioenergetics. We describe how AIF deficiency induces pathogenic processes that alter metabolism and ultimately compromise cellular homeostasis. We report the currently known AIFM1 mutations identified in humans and discuss the variability of AIFM1-related disorders in terms of onset, organ involvement and symptoms. Finally, we summarize how the study of AIFM1-linked pathologies may help to further expand our understanding of rare inherited forms of mitochondrial diseases. AIF is a mitochondrial NADH-dependent oxidoreductase. Nuclear translocation of AIF occurs during cell death and has been associated with human disorders. Under physiological settings, AIF participates to the biogenesis of the respiratory complexes. AIFM1 mutations have been identified in patients with impaired mitochondrial bioenergetics. Inherited AIFM1 mutations lead to a variety of clinical manifestations, including severe childhood-onset mitochondrial diseases.
Collapse
Affiliation(s)
- Daniele Bano
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
| | - Jochen H M Prehn
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland; FutureNeuro Research Centre, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| |
Collapse
|
33
|
Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, Alnemri ES, Altucci L, Amelio I, Andrews DW, Annicchiarico-Petruzzelli M, Antonov AV, Arama E, Baehrecke EH, Barlev NA, Bazan NG, Bernassola F, Bertrand MJM, Bianchi K, Blagosklonny MV, Blomgren K, Borner C, Boya P, Brenner C, Campanella M, Candi E, Carmona-Gutierrez D, Cecconi F, Chan FKM, Chandel NS, Cheng EH, Chipuk JE, Cidlowski JA, Ciechanover A, Cohen GM, Conrad M, Cubillos-Ruiz JR, Czabotar PE, D'Angiolella V, Dawson TM, Dawson VL, De Laurenzi V, De Maria R, Debatin KM, DeBerardinis RJ, Deshmukh M, Di Daniele N, Di Virgilio F, Dixit VM, Dixon SJ, Duckett CS, Dynlacht BD, El-Deiry WS, Elrod JW, Fimia GM, Fulda S, García-Sáez AJ, Garg AD, Garrido C, Gavathiotis E, Golstein P, Gottlieb E, Green DR, Greene LA, Gronemeyer H, Gross A, Hajnoczky G, Hardwick JM, Harris IS, Hengartner MO, Hetz C, Ichijo H, Jäättelä M, Joseph B, Jost PJ, Juin PP, Kaiser WJ, Karin M, Kaufmann T, Kepp O, Kimchi A, Kitsis RN, Klionsky DJ, Knight RA, Kumar S, Lee SW, Lemasters JJ, Levine B, Linkermann A, Lipton SA, Lockshin RA, López-Otín C, Lowe SW, Luedde T, Lugli E, MacFarlane M, Madeo F, Malewicz M, Malorni W, Manic G, et alGalluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, Alnemri ES, Altucci L, Amelio I, Andrews DW, Annicchiarico-Petruzzelli M, Antonov AV, Arama E, Baehrecke EH, Barlev NA, Bazan NG, Bernassola F, Bertrand MJM, Bianchi K, Blagosklonny MV, Blomgren K, Borner C, Boya P, Brenner C, Campanella M, Candi E, Carmona-Gutierrez D, Cecconi F, Chan FKM, Chandel NS, Cheng EH, Chipuk JE, Cidlowski JA, Ciechanover A, Cohen GM, Conrad M, Cubillos-Ruiz JR, Czabotar PE, D'Angiolella V, Dawson TM, Dawson VL, De Laurenzi V, De Maria R, Debatin KM, DeBerardinis RJ, Deshmukh M, Di Daniele N, Di Virgilio F, Dixit VM, Dixon SJ, Duckett CS, Dynlacht BD, El-Deiry WS, Elrod JW, Fimia GM, Fulda S, García-Sáez AJ, Garg AD, Garrido C, Gavathiotis E, Golstein P, Gottlieb E, Green DR, Greene LA, Gronemeyer H, Gross A, Hajnoczky G, Hardwick JM, Harris IS, Hengartner MO, Hetz C, Ichijo H, Jäättelä M, Joseph B, Jost PJ, Juin PP, Kaiser WJ, Karin M, Kaufmann T, Kepp O, Kimchi A, Kitsis RN, Klionsky DJ, Knight RA, Kumar S, Lee SW, Lemasters JJ, Levine B, Linkermann A, Lipton SA, Lockshin RA, López-Otín C, Lowe SW, Luedde T, Lugli E, MacFarlane M, Madeo F, Malewicz M, Malorni W, Manic G, Marine JC, Martin SJ, Martinou JC, Medema JP, Mehlen P, Meier P, Melino S, Miao EA, Molkentin JD, Moll UM, Muñoz-Pinedo C, Nagata S, Nuñez G, Oberst A, Oren M, Overholtzer M, Pagano M, Panaretakis T, Pasparakis M, Penninger JM, Pereira DM, Pervaiz S, Peter ME, Piacentini M, Pinton P, Prehn JHM, Puthalakath H, Rabinovich GA, Rehm M, Rizzuto R, Rodrigues CMP, Rubinsztein DC, Rudel T, Ryan KM, Sayan E, Scorrano L, Shao F, Shi Y, Silke J, Simon HU, Sistigu A, Stockwell BR, Strasser A, Szabadkai G, Tait SWG, Tang D, Tavernarakis N, Thorburn A, Tsujimoto Y, Turk B, Vanden Berghe T, Vandenabeele P, Vander Heiden MG, Villunger A, Virgin HW, Vousden KH, Vucic D, Wagner EF, Walczak H, Wallach D, Wang Y, Wells JA, Wood W, Yuan J, Zakeri Z, Zhivotovsky B, Zitvogel L, Melino G, Kroemer G. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ 2018; 25:486-541. [PMID: 29362479 PMCID: PMC5864239 DOI: 10.1038/s41418-017-0012-4] [Show More Authors] [Citation(s) in RCA: 4419] [Impact Index Per Article: 631.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 10/13/2017] [Indexed: 02/06/2023] Open
Abstract
Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field.
Collapse
Affiliation(s)
- Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, New York, NY, USA.
- Paris Descartes/Paris V University, Paris, France.
| | - Ilio Vitale
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
- Unit of Cellular Networks and Molecular Therapeutic Targets, Department of Research, Advanced Diagnostics and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy
| | - Stuart A Aaronson
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John M Abrams
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Dieter Adam
- Institute of Immunology, Kiel University, Kiel, Germany
| | - Patrizia Agostinis
- Cell Death Research & Therapy (CDRT) Lab, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Emad S Alnemri
- Department of Biochemistry and Molecular Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Lucia Altucci
- Department of Biochemistry, Biophysics and General Pathology, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Ivano Amelio
- Medical Research Council (MRC) Toxicology Unit, Leicester University, Leicester, UK
| | - David W Andrews
- Biological Sciences, Sunnybrook Research Institute, Toronto, Canada
- Department of Biochemistry, University of Toronto, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | | | - Alexey V Antonov
- Medical Research Council (MRC) Toxicology Unit, Leicester University, Leicester, UK
| | - Eli Arama
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Eric H Baehrecke
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Nickolai A Barlev
- Institute of Cytology, Russian Academy of Sciences, Saint-Petersburg, Russia
| | - Nicolas G Bazan
- Neuroscience Center of Excellence, Louisiana State University School of Medicine, New Orleans, LA, USA
| | - Francesca Bernassola
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | - Mathieu J M Bertrand
- VIB Center for Inflammation Research (IRC), Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Katiuscia Bianchi
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | | | - Klas Blomgren
- Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden
- Department of Pediatric Oncology, Karolinska University Hospital, Stockholm, Sweden
| | - Christoph Borner
- Institute of Molecular Medicine and Cell Research, Albert Ludwigs University, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), Faculty of Medicine, Albert Ludwigs University, Freiburg, Germany
| | - Patricia Boya
- Department of Cellular and Molecular Biology, Center for Biological Investigation (CIB), Spanish National Research Council (CSIC), Madrid, Spain
| | - Catherine Brenner
- INSERM U1180, Châtenay Malabry, France
- University of Paris Sud/Paris Saclay, Orsay, France
| | - Michelangelo Campanella
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
- Unit of Cellular Networks and Molecular Therapeutic Targets, Department of Research, Advanced Diagnostics and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, London, UK
- University College London Consortium for Mitochondrial Research, London, UK
| | - Eleonora Candi
- Biochemistry Laboratory, Dermopatic Institute of Immaculate (IDI) IRCCS, Rome, Italy
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | | | - Francesco Cecconi
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
- Unit of Cell Stress and Survival, Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Francis K-M Chan
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Navdeep S Chandel
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Emily H Cheng
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jerry E Chipuk
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John A Cidlowski
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Aaron Ciechanover
- Technion Integrated Cancer Center (TICC), The Ruth and Bruce Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Gerald M Cohen
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Marcus Conrad
- Institute of Developmental Genetics, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Munich, Germany
| | - Juan R Cubillos-Ruiz
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
- Department of Obstetrics and Gynecology, Weill Cornell Medical College, New York, NY, USA
| | - Peter E Czabotar
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Vincenzo D'Angiolella
- Cancer Research UK and Medical Research Council Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Vincenzo De Laurenzi
- Department of Medical, Oral and Biotechnological Sciences, CeSI-MetUniversity of Chieti-Pescara "G. d'Annunzio", Chieti, Italy
| | - Ruggero De Maria
- Institute of General Pathology, Catholic University "Sacro Cuore", Rome, Italy
| | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Ralph J DeBerardinis
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mohanish Deshmukh
- Department of Cell Biology and Physiology, Neuroscience Center, University of North Carolina, Chapel Hill, NC, USA
| | - Nicola Di Daniele
- Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Francesco Di Virgilio
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Vishva M Dixit
- Department of Physiological Chemistry, Genentech, South San Francisco, CA, USA
| | - Scott J Dixon
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Colin S Duckett
- Baylor Scott & White Research Institute, Baylor College of Medicine, Dallas, TX, USA
| | - Brian D Dynlacht
- Department of Pathology, New York University School of Medicine, New York, NY, USA
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Wafik S El-Deiry
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Department of Hematology/Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - John W Elrod
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine at Temple University School of Medicine, Philadelphia, PA, USA
| | - Gian Maria Fimia
- National Institute for Infectious Diseases IRCCS "Lazzaro Spallanzani", Rome, Italy
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| | - Simone Fulda
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site, Frankfurt, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ana J García-Sáez
- Interfaculty Institute of Biochemistry, Tübingen University, Tübingen, Germany
| | - Abhishek D Garg
- Cell Death Research & Therapy (CDRT) Lab, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Carmen Garrido
- INSERM U1231 "Lipides Nutrition Cancer", Dijon, France
- Faculty of Medicine, University of Burgundy France Comté, Dijon, France
- Cancer Centre Georges François Leclerc, Dijon, France
| | - Evripidis Gavathiotis
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Pierre Golstein
- Immunology Center of Marseille-Luminy, Aix Marseille University, Marseille, France
| | - Eyal Gottlieb
- Technion Integrated Cancer Center (TICC), The Ruth and Bruce Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Douglas R Green
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Lloyd A Greene
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Hinrich Gronemeyer
- Team labeled "Ligue Contre le Cancer", Department of Functional Genomics and Cancer, Institute of Genetics and Molecular and Cellular Biology (IGBMC), Illkirch, France
- CNRS UMR 7104, Illkirch, France
- INSERM U964, Illkirch, France
- University of Strasbourg, Illkirch, France
| | - Atan Gross
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Gyorgy Hajnoczky
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - J Marie Hardwick
- Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Isaac S Harris
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | | | - Claudio Hetz
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
- Cellular and Molecular Biology Program, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Hidenori Ichijo
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Marja Jäättelä
- Cell Death and Metabolism Unit, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Bertrand Joseph
- Toxicology Unit, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Philipp J Jost
- III Medical Department for Hematology and Oncology, Technical University Munich, Munich, Germany
| | - Philippe P Juin
- Team 8 "Stress adaptation and tumor escape", CRCINA-INSERM U1232, Nantes, France
- University of Nantes, Nantes, France
- University of Angers, Angers, France
- Institute of Cancer Research in Western France, Saint-Herblain, France
| | - William J Kaiser
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center, San Antonio, TX, USA
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, University of California San Diego, La Jolla, CA, USA
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Thomas Kaufmann
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Oliver Kepp
- Paris Descartes/Paris V University, Paris, France
- Faculty of Medicine, Paris Sud/Paris XI University, Kremlin-Bicêtre, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Campus, Villejuif, France
- Team 11 labeled "Ligue Nationale contre le Cancer", Cordeliers Research Center, Paris, France
- INSERM U1138, Paris, France
- Pierre et Marie Curie/Paris VI University, Paris, France
| | - Adi Kimchi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Richard N Kitsis
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Daniel J Klionsky
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Richard A Knight
- Medical Research Council (MRC) Toxicology Unit, Leicester University, Leicester, UK
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia
| | - Sam W Lee
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - John J Lemasters
- Center for Cell Death, Injury and Regeneration, Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC, USA
- Center for Cell Death, Injury and Regeneration, Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Beth Levine
- Center for Autophagy Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Andreas Linkermann
- Division of Nephrology, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
| | - Stuart A Lipton
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
- Neuroscience Translational Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Richard A Lockshin
- Department of Biology, St. John's University, Queens, NY, USA
- Queens College of the City University of New York, Queens, NY, USA
| | - Carlos López-Otín
- Departament of Biochemistry and Molecular Biology, Faculty of Medicine, University Institute of Oncology of Asturias (IUOPA), University of Oviedo, Oviedo, Spain
| | - Scott W Lowe
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tom Luedde
- Division of Gastroenterology, Hepatology and Hepatobiliary Oncology, University Hospital RWTH Aachen, Aachen, Germany
| | - Enrico Lugli
- Laboratory of Translational Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
- Humanitas Flow Cytometry Core, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Marion MacFarlane
- Medical Research Council (MRC) Toxicology Unit, Leicester University, Leicester, UK
| | - Frank Madeo
- Department Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Michal Malewicz
- Medical Research Council (MRC) Toxicology Unit, Leicester University, Leicester, UK
| | - Walter Malorni
- National Centre for Gender Medicine, Italian National Institute of Health (ISS), Rome, Italy
| | - Gwenola Manic
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
- Unit of Cellular Networks and Molecular Therapeutic Targets, Department of Research, Advanced Diagnostics and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy
| | - Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, Leuven, Belgium
- Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Seamus J Martin
- Departments of Genetics, Trinity College, University of Dublin, Dublin 2, Ireland
| | - Jean-Claude Martinou
- Department of Cell Biology, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Jan Paul Medema
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental Molecular Medicine (CEMM), Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
- Cancer Genomics Center, Amsterdam, The Netherlands
| | - Patrick Mehlen
- Apoptosis, Cancer and Development laboratory, CRCL, Lyon, France
- Team labeled "La Ligue contre le Cancer", Lyon, France
- LabEx DEVweCAN, Lyon, France
- INSERM U1052, Lyon, France
- CNRS UMR5286, Lyon, France
- Department of Translational Research and Innovation, Léon Bérard Cancer Center, Lyon, France
| | - Pascal Meier
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, Mary-Jean Mitchell Green Building, Chester Beatty Laboratories, London, UK
| | - Sonia Melino
- Department of Chemical Sciences and Technologies, University of Rome, Tor Vergata, Rome, Italy
| | - Edward A Miao
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Center for Gastrointestinal Biology and Disease, University of North Carolina, Chapel Hill, NC, USA
| | - Jeffery D Molkentin
- Howard Hughes Medical Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Ute M Moll
- Department of Pathology, Stony Brook University, Stony Brook, NY, USA
| | - Cristina Muñoz-Pinedo
- Cell Death Regulation Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
| | - Shigekazu Nagata
- Laboratory of Biochemistry and Immunology, World Premier International (WPI) Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Gabriel Nuñez
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
- Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Andrew Oberst
- Department of Immunology, University of Washington, Seattle, WA, USA
- Center for Innate Immunity and Immune Disease, Seattle, WA, USA
| | - Moshe Oren
- Department of Molecular Cell Biology, Weizmann Institute, Rehovot, Israel
| | - Michael Overholtzer
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michele Pagano
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
- Howard Hughes Medical Institute, New York University School of Medicine, New York, NY, USA
| | - Theocharis Panaretakis
- Department of Genitourinary Medical Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| | - Manolis Pasparakis
- Institute for Genetics, Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Campus Vienna BioCentre, Vienna, Austria
| | - David M Pereira
- REQUIMTE/LAQV, Laboratory of Pharmacognosy, Department of Chemistry, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Shazib Pervaiz
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
- National University Cancer Institute, National University Health System (NUHS), Singapore, Singapore
| | - Marcus E Peter
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Mauro Piacentini
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
- National Institute for Infectious Diseases IRCCS "Lazzaro Spallanzani", Rome, Italy
| | - Paolo Pinton
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
- LTTA center, University of Ferrara, Ferrara, Italy
- Maria Cecilia Hospital, GVM Care & Research, Health Science Foundation, Cotignola, Italy
| | - Jochen H M Prehn
- Department of Physiology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Hamsa Puthalakath
- Department of Biochemistry, La Trobe University, Victoria, Australia
| | - Gabriel A Rabinovich
- Laboratory of Immunopathology, Institute of Biology and Experimental Medicine (IBYME), National Council of Scientific and Technical Research (CONICET), Buenos Aires, Argentina
- Department of Biological Chemistry, Faculty of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina
| | - Markus Rehm
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
- Stuttgart Research Center Systems Biology, Stuttgart, Germany
| | - Rosario Rizzuto
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Cecilia M P Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - David C Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK
| | - Thomas Rudel
- Department of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Kevin M Ryan
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Emre Sayan
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Luca Scorrano
- Department of Biology, University of Padua, Padua, Italy
- Venetian Institute of Molecular Medicine, Padua, Italy
| | - Feng Shao
- National Institute of Biological Sciences, Beijing, China
| | - Yufang Shi
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Chinese Academy of Sciences, Shanghai, China
- Jiangsu Key Laboratory of Stem Cells and Medicinal Biomaterials, Institutes for Translational Medicine, Soochow University, Suzhou, China
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, China
| | - John Silke
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
- Division of Inflammation, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Antonella Sistigu
- Institute of General Pathology, Catholic University "Sacro Cuore", Rome, Italy
- Unit of Tumor Immunology and Immunotherapy, Department of Research, Advanced Diagnostics and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy
| | - Brent R Stockwell
- Department of Biological Sciences, Columbia University, New York, NY, USA
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Gyorgy Szabadkai
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- Department of Cell and Developmental Biology, University College London Consortium for Mitochondrial Research, London, UK
- Francis Crick Institute, London, UK
| | | | - Daolin Tang
- The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
- Center for DAMP Biology, Guangzhou Medical University, Guangzhou, Guangdong, China
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou Medical University, Guangzhou, Guangdong, China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou Medical University, Guangzhou, Guangdong, China
- Key Laboratory for Protein Modification and Degradation of Guangdong Province, Guangzhou Medical University, Guangzhou, Guangdong, China
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas Medical School, University of Crete, Heraklion, Greece
| | - Andrew Thorburn
- Department of Pharmacology, University of Colorado, Aurora, CO, USA
| | | | - Boris Turk
- Department Biochemistry and Molecular Biology, "Jozef Stefan" Institute, Ljubljana, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Tom Vanden Berghe
- VIB Center for Inflammation Research (IRC), Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Peter Vandenabeele
- VIB Center for Inflammation Research (IRC), Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Andreas Villunger
- Division of Developmental Immunology, Innsbruck Medical University, Innsbruck, Austria
| | - Herbert W Virgin
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Domagoj Vucic
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, CA, USA
| | - Erwin F Wagner
- Genes, Development and Disease Group, Cancer Cell Biology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Henning Walczak
- Centre for Cell Death, Cancer and Inflammation, UCL Cancer Institute, University College London, London, UK
| | - David Wallach
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Ying Wang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - James A Wells
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Will Wood
- School of Cellular and Molecular Medicine, Faculty of Biomedical Sciences, University of Bristol, Bristol, UK
| | - Junying Yuan
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Zahra Zakeri
- Department of Biology, Queens College of the City University of New York, Queens, NY, USA
| | - Boris Zhivotovsky
- Toxicology Unit, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Laurence Zitvogel
- Faculty of Medicine, Paris Sud/Paris XI University, Kremlin-Bicêtre, France
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM U1015, Villejuif, France
- Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
| | - Gerry Melino
- Medical Research Council (MRC) Toxicology Unit, Leicester University, Leicester, UK
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | - Guido Kroemer
- Paris Descartes/Paris V University, Paris, France.
- Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden.
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Campus, Villejuif, France.
- Team 11 labeled "Ligue Nationale contre le Cancer", Cordeliers Research Center, Paris, France.
- INSERM U1138, Paris, France.
- Pierre et Marie Curie/Paris VI University, Paris, France.
- Biology Pole, European Hospital George Pompidou, AP-HP, Paris, France.
| |
Collapse
|
34
|
Abstract
Impaired mitochondrial energy metabolism contributes to a wide range of pathologic conditions, including neurodegenerative diseases. Mitochondrial apoptosis-inducing factor (AIF) is required for the correct maintenance of mitochondrial electron transport chain. An emerging body of clinical evidence indicates that several mutations in the AIFM1 gene are causally linked to severe forms of mitochondrial disorders. Here we investigate the consequence of WAH-1/AIF deficiency in the survival of the nematode Caenorhabditis elegans. Moreover, we assess the survival of C. elegans strains expressing a disease-associated WAH-1/AIF variant. We demonstrate that wah-1 downregulation compromises the function of the oxidative phosphorylation system and reduces C. elegans lifespan. Notably, the loss of respiratory subunits induces a nuclear-encoded mitochondrial stress response independently of an evident increase of oxidative stress. Overall, our data pinpoint an evolutionarily conserved role of WAH-1/AIF in the maintenance of proper mitochondrial activity.
Collapse
|
35
|
Xu P, Liu X, Xiong X, Zhang W, Cai X, Qiu P, Hao M, Wang L, Lu D, Zhang X, Yang W. Flavonoids of Rosa roxburghii Tratt Exhibit Anti-Apoptosis Properties by Regulating PARP-1/AIF. J Cell Biochem 2017; 118:3943-3952. [PMID: 28398610 DOI: 10.1002/jcb.26049] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 04/10/2017] [Indexed: 12/12/2022]
Abstract
Radioprotection is an important approach to reduce the side-effects of radiotherapy. The radioprotective effect of the flavonoids of Rosa roxburghii Tratt (FRT) has been confirmed, and the mechanism has been identified as theBcl-2/caspase-3/PARP-1 signaling pathway. In this study, we investigated the effects of FRT on the intercellular adhesion molecule (ICAM), and vascular cell adhesion protein (VCAM) in addition to apoptosis-related proteins such as Bax/Bcl-2, p-ERK/ERK, p-p53/p53, and p-p38/p38. In the present study, we focused on the effect of FRT on PARP-1/AIF. Ionizing radiation triggered the activation of PARP-1 and AIF translocation from the mitochondrion to the nucleus. The inhibition of PARP-1/AIF signaling pathway by FRT was investigated. Our results showed that the expressions of Bax/Bcl-2, p-ERK/ ERK, p-p53/p53, and p-p38/p38 were decreased after FRT treatment compared with the radiation-treated group. FRT inhibited PARP-1 activation to inhibit AIF translocation from mitochondrion to nucleus. Pretreatment with FRT diminished the comet's tail and reduced fragments in six Gy-irradiated thymocytes compared with the irradiated cells without FRT treatment. We conclude that FRT enhanced radioprotection at least partially by regulating PARP-1/AIF to reduce apoptosis. J. Cell. Biochem. 118: 3943-3952, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ping Xu
- Departmentof Pharmacy, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Xingxia Liu
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Xiwen Xiong
- Department of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Wenbo Zhang
- Synthetic Biology Remaking Engineering and Application Laboratory, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Xinhua Cai
- Departmentof Pharmacy, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Peiyong Qiu
- Departmentof Pharmacy, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Minghua Hao
- Departmentof Pharmacy, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Lijuan Wang
- Departmentof Pharmacy, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Dandan Lu
- Academy of Military Medical Sciences, Institute of Radiation Medicine, Beijing, 100850, China
| | - Xiuhua Zhang
- Synthetic Biology Remaking Engineering and Application Laboratory, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Wancai Yang
- Departmentof Pharmacy, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| |
Collapse
|
36
|
Du J, Zhang X, Han J, Man K, Zhang Y, Chu ESH, Nan Y, Yu J. Pro-Inflammatory CXCR3 Impairs Mitochondrial Function in Experimental Non-Alcoholic Steatohepatitis. Theranostics 2017; 7:4192-4203. [PMID: 29158819 PMCID: PMC5695006 DOI: 10.7150/thno.21400] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 08/14/2017] [Indexed: 01/29/2023] Open
Abstract
Mitochondrial dysfunction plays a crucial role in the development of non-alcoholic steatohepatitis (NASH). However, the regulator of mitochondrial dysfunction in the pathogenesis of NASH is still largely unclear. CXCR3 is an essential pro-inflammatory factor in chronic liver diseases. We explored the significance of CXCR3 in regulating mitochondrial function during NASH development in animal models and cultured hepatocytes. METHODS The effects of CXCR3 on mitochondrial function were evaluated by genetic knockout or pharmacological inhibition in mouse models and in vitro. The ultrastructural changes of mitochondria were assessed by transmission electron microscopy (TEM). Hepatic levels of mitochondrial reactive oxygen species (ROS), DNA damage, membrane potential and ATP were examined. RESULTS CXCR3 ablation by genetic knockout or pharmacological inhibition in mice protected against NASH development by influencing mitochondrial function. Similarly, depletion of CXCR3 reduced steatohepatitis injury in cultured hepatocytes. TEM analysis revealed that liver mitochondrial integrity was much improved in CXCR3 knockout (CXCR3-/-) compared to wildtype (WT) mice. In agreement with this, impaired mitochondrial function was pronounced in WT mice compared to CXCR3-/- mice, evidenced by increased protein expression of dynamic-related protein-1 (DRP1) and fission-1 (FIS1) and decreased protein expression of mitofusin-1 (MFN1). Mitochondrial dysfunction was induced in AML-12 hepatocytes by methionine and choline deficient medium and in HepG2 cells by palmitic acid. The impaired mitochondrial function in both cell lines was evidenced by reduced membrane potential and ATP content, and by increased mitochondrial ROS accumulation and DNA damage. However, CXCR3 knockdown by siCXCR3 significantly diminished the mitochondrial dysfunction in both AML-12 and HepG2 hepatocytes. In addition, inhibition of CXCR3 by CXCR3 specific antagonists SCH546738 and AMG487 restored mitochondrial function and inhibited mitochondrial-dependent apoptosis in the liver of WT mice fed with methionine and choline deficient diet. CONCLUSION CXCR3 induces mitochondrial dysfunction, which contributes to the pathogenesis of steatohepatitis. Pharmacologic blockade of CXCR3 prevents mitochondrial dysfunction and restores the severity of steatohepatitis, indicating a potential clinical impact for controlling the disease.
Collapse
|
37
|
Fernández-Cárdenas LP, Villanueva-Chimal E, Salinas LS, José-Nuñez C, Tuena de Gómez Puyou M, Navarro RE. Caenorhabditis elegans ATPase inhibitor factor 1 (IF1) MAI-2 preserves the mitochondrial membrane potential (Δψm) and is important to induce germ cell apoptosis. PLoS One 2017; 12:e0181984. [PMID: 28829773 PMCID: PMC5568743 DOI: 10.1371/journal.pone.0181984] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/10/2017] [Indexed: 01/08/2023] Open
Abstract
When the electrochemical proton gradient is disrupted in the mitochondria, IF1 (Inhibitor Factor-1) inhibits the reverse hydrolytic activity of the F1Fo-ATP synthase, thereby allowing cells to conserve ATP at the expense of losing the mitochondrial membrane potential (Δψm). The function of IF1 has been studied mainly in different cell lines, but these studies have generated contrasting results, which have not been helpful to understand the real role of this protein in a whole organism. In this work, we studied IF1 function in Caenorhabditis elegans to understand IF1´s role in vivo. C. elegans has two inhibitor proteins of the F1Fo-ATPase, MAI-1 and MAI-2. To determine their protein localization in C. elegans, we generated translational reporters and found that MAI-2 is expressed ubiquitously in the mitochondria; conversely, MAI-1 was found in the cytoplasm and nuclei of certain tissues. By CRISPR/Cas9 genome editing, we generated mai-2 mutant alleles. Here, we showed that mai-2 mutant animals have normal progeny, embryonic development and lifespan. Contrasting with the results previously obtained in cell lines, we found no evident defects in the mitochondrial network, dimer/monomer ATP synthase ratio, ATP concentration or respiration. Our results suggest that some of the roles previously attributed to IF1 in cell lines could not reflect the function of this protein in a whole organism and could be attributed to specific cell lines or methods used to silence, knockout or overexpress this protein. However, we did observe that animals lacking IF1 had an enhanced Δψm and lower physiological germ cell apoptosis. Importantly, we found that mai-2 mutant animals must be under stress to observe the role of IF1. Accordingly, we observed that mai-2 mutant animals were more sensitive to heat shock, oxidative stress and electron transport chain blockade. Furthermore, we observed that IF1 is important to induce germ cell apoptosis under certain types of stress. Here, we propose that MAI-2 might play a role in apoptosis by regulating Δψm. Additionally, we suggest that IF1 function is mainly observed under stress and that, under physiological conditions, this protein does not play an essential role.
Collapse
Affiliation(s)
- L. P. Fernández-Cárdenas
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - E. Villanueva-Chimal
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - L. S. Salinas
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - C. José-Nuñez
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - M. Tuena de Gómez Puyou
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - R. E. Navarro
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
38
|
Programmed Cell Death During Caenorhabditis elegans Development. Genetics 2017; 203:1533-62. [PMID: 27516615 DOI: 10.1534/genetics.115.186247] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 04/22/2016] [Indexed: 12/21/2022] Open
Abstract
Programmed cell death is an integral component of Caenorhabditis elegans development. Genetic and reverse genetic studies in C. elegans have led to the identification of many genes and conserved cell death pathways that are important for the specification of which cells should live or die, the activation of the suicide program, and the dismantling and removal of dying cells. Molecular, cell biological, and biochemical studies have revealed the underlying mechanisms that control these three phases of programmed cell death. In particular, the interplay of transcriptional regulatory cascades and networks involving multiple transcriptional regulators is crucial in activating the expression of the key death-inducing gene egl-1 and, in some cases, the ced-3 gene in cells destined to die. A protein interaction cascade involving EGL-1, CED-9, CED-4, and CED-3 results in the activation of the key cell death protease CED-3, which is tightly controlled by multiple positive and negative regulators. The activation of the CED-3 caspase then initiates the cell disassembly process by cleaving and activating or inactivating crucial CED-3 substrates; leading to activation of multiple cell death execution events, including nuclear DNA fragmentation, mitochondrial elimination, phosphatidylserine externalization, inactivation of survival signals, and clearance of apoptotic cells. Further studies of programmed cell death in C. elegans will continue to advance our understanding of how programmed cell death is regulated, activated, and executed in general.
Collapse
|
39
|
Yin J, Huang Y, Guo P, Hu S, Yoshina S, Xuan N, Gan Q, Mitani S, Yang C, Wang X. GOP-1 promotes apoptotic cell degradation by activating the small GTPase Rab2 in C. elegans. J Cell Biol 2017; 216:1775-1794. [PMID: 28424218 PMCID: PMC5461019 DOI: 10.1083/jcb.201610001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 02/10/2017] [Accepted: 03/03/2017] [Indexed: 12/17/2022] Open
Abstract
Rab2 regulates multiple membrane traffic processes, but how it is recruited to and activated on the target membrane remains unclear. Here, Yin et al. identify a conserved protein, GOP-1, that activates UNC-108/Rab2 to promote phagosome, endosome, and DCV maturation. Apoptotic cells generated by programmed cell death are engulfed by phagocytes and enclosed within plasma membrane–derived phagosomes. Maturation of phagosomes involves a series of membrane-remodeling events that are governed by the sequential actions of Rab GTPases and lead to formation of phagolysosomes, where cell corpses are degraded. Here we identified gop-1 as a novel regulator of apoptotic cell clearance in Caenorhabditis elegans. Loss of gop-1 affects phagosome maturation through the RAB-5–positive stage, causing defects in phagosome acidification and phagolysosome formation, phenotypes identical to and unaffected by loss of unc-108, the C. elegans Rab2. GOP-1 transiently associates with cell corpse–containing phagosomes, and loss of its function abrogates phagosomal association of UNC-108. GOP-1 interacts with GDP-bound and nucleotide-free UNC-108/Rab2, disrupts GDI-UNC-108 complexes, and promotes activation and membrane recruitment of UNC-108/Rab2 in vitro. Loss of gop-1 also abolishes association of UNC-108 with endosomes, causing defects in endosome and dense core vesicle maturation. Thus, GOP-1 is an activator of UNC-108/Rab2 in multiple processes.
Collapse
Affiliation(s)
- Jianhua Yin
- National Institute of Biological Sciences, Beijing 102206, China.,Graduate Program in Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.,National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yaling Huang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Pengfei Guo
- National Institute of Biological Sciences, Beijing 102206, China
| | - Siqi Hu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Sawako Yoshina
- Deparment of Physiology, School of Medicine and Institute for Integrated Medical Sciences, Tokyo Women's Medical University, Tokyo 162-8666, Japan
| | - Nan Xuan
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qiwen Gan
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shohei Mitani
- Deparment of Physiology, School of Medicine and Institute for Integrated Medical Sciences, Tokyo Women's Medical University, Tokyo 162-8666, Japan
| | - Chonglin Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaochen Wang
- National Institute of Biological Sciences, Beijing 102206, China .,Graduate Program in Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.,National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
40
|
Sun Y, Gao W, Zhao Y, Cao W, Liu Z, Cui G, Tong L, Lei F, Tang B. Visualization and Inhibition of Mitochondria-Nuclear Translocation of Apoptosis Inducing Factor by a Graphene Oxide-DNA Nanosensor. Anal Chem 2017; 89:4642-4647. [PMID: 28359155 DOI: 10.1021/acs.analchem.7b00221] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
High concentrations of oxidized low density lipoprotein (oxLDL) induce aberrant apoptosis of vascular smooth muscle cells (VSMCs) in atherosclerotic plaques. This apoptosis cannot be blocked completely by the inhibition of caspase, and it eventually potentiates plaque disruption and risk for cardiovascular disease. Given the important role of apoptosis inducing factor (AIF) in caspase-independent apoptosis, here we develop an AIF-targeting nanosensor by the assembly of graphene oxide (GO) nanosheets and dye-labeled DNA hybrid structures. This nanosensor selectively localizes in the cytosol of VSMCs, where it exhibits a "turn-off" fluorescence signal. Under oxLDL stimuli, the release of AIF from mitochondria into cytosol liberates the DNA hybrid structures from the surface of GO and results in a "turn-on" fluorescence signal. This nanosensor is shown to possess rapid response, high sensitivity, and selectivity for AIF that enables real-time imaging of AIF translocation in VSMCs. Using this novel nanosensor, a better assessment of the apoptotic level of VSMCs and a more accurate evaluation of the extent of atherosclerotic lesions can be obtained. More importantly, the abundant binding between DNA hybrid structures and AIF inhibits the translocation of AIF into the nucleus and subsequent apoptosis in VSMCs. This inhibition may help stabilize plaque and reduce the risk of heart attack and stroke.
Collapse
Affiliation(s)
- Yuhui Sun
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University , Jinan, Shandong 250014, P.R. China
| | - Wen Gao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University , Jinan, Shandong 250014, P.R. China
| | - Yujie Zhao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University , Jinan, Shandong 250014, P.R. China
| | - Wenhua Cao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University , Jinan, Shandong 250014, P.R. China
| | - Zhenhua Liu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University , Jinan, Shandong 250014, P.R. China
| | - Guanwei Cui
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University , Jinan, Shandong 250014, P.R. China
| | - Lili Tong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University , Jinan, Shandong 250014, P.R. China
| | - Fengcai Lei
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University , Jinan, Shandong 250014, P.R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University , Jinan, Shandong 250014, P.R. China
| |
Collapse
|
41
|
Lanatoside C, a cardiac glycoside, acts through protein kinase Cδ to cause apoptosis of human hepatocellular carcinoma cells. Sci Rep 2017; 7:46134. [PMID: 28387249 PMCID: PMC5384006 DOI: 10.1038/srep46134] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 03/13/2017] [Indexed: 01/21/2023] Open
Abstract
Recent studies have revealed that cardiac glycosides, such as digitalis and digoxin, have anticancer activity and may serve as lead compounds for the development of cancer treatments. The poor prognosis of hepatocellular carcinoma (HCC) patients reflects the development of resistance to current chemotherapeutic agents, highlighting the need for discovering new small-molecule therapeutics. Here, we found that lanatoside C, an anti-arrhythmic agent extracted from Digitalis lanata, inhibited the growth of HCC cells and dramatically decreased tumor volume as well as delayed tumor growth without obvious body weight loss. Moreover, lanatoside C triggered mitochondrial membrane potential (MMP) loss, activation of caspases and translocation of apoptosis-inducing factor (AIF) into the nucleus, which suggests that lanatoside C induced apoptosis through both caspase-dependent and -independent pathways. Furthermore, we discovered that lanatoside C activated protein kinase delta (PKCδ) via Thr505 phosphorylation and subsequent membrane translocation. Inhibition of PKCδ reversed lanatoside C-induced MMP loss and apoptosis, confirming that lanatoside C caused apoptosis through PKCδ activation. We also found that the AKT/mTOR pathway was negatively regulated by lanatoside C through PKCδ activation. In conclusion, we provide the first demonstration that the anticancer effects of lanatoside C are mainly attributable to PKCδ activation.
Collapse
|
42
|
Wang Y, An R, Umanah GK, Park H, Nambiar K, Eacker SM, Kim B, Bao L, Harraz MM, Chang C, Chen R, Wang JE, Kam TI, Jeong JS, Xie Z, Neifert S, Qian J, Andrabi SA, Blackshaw S, Zhu H, Song H, Ming GL, Dawson VL, Dawson TM. A nuclease that mediates cell death induced by DNA damage and poly(ADP-ribose) polymerase-1. Science 2017; 354:354/6308/aad6872. [PMID: 27846469 PMCID: PMC5134926 DOI: 10.1126/science.aad6872] [Citation(s) in RCA: 278] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 08/22/2016] [Indexed: 12/26/2022]
Abstract
Inhibition or genetic deletion of poly(ADP-ribose) (PAR) polymerase-1 (PARP-1) is protective against toxic insults in many organ systems. The molecular mechanisms underlying PARP-1-dependent cell death involve release of mitochondrial apoptosis-inducing factor (AIF) and its translocation to the nucleus, which results in chromatinolysis. We identified macrophage migration inhibitory factor (MIF) as a PARP-1-dependent AIF-associated nuclease (PAAN). AIF was required for recruitment of MIF to the nucleus, where MIF cleaves genomic DNA into large fragments. Depletion of MIF, disruption of the AIF-MIF interaction, or mutation of glutamic acid at position 22 in the catalytic nuclease domain blocked MIF nuclease activity and inhibited chromatinolysis, cell death induced by glutamate excitotoxicity, and focal stroke. Inhibition of MIF's nuclease activity is a potential therapeutic target for diseases caused by excessive PARP-1 activation.
Collapse
Affiliation(s)
- Yingfei Wang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. .,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ran An
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Neurology of Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China
| | - George K Umanah
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hyejin Park
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130-2685, USA
| | - Kalyani Nambiar
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Stephen M Eacker
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130-2685, USA
| | - BongWoo Kim
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lei Bao
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Maged M Harraz
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Calvin Chang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Rong Chen
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jennifer E Wang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tae-In Kam
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130-2685, USA
| | - Jun Seop Jeong
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Center for High-Throughput Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Zhi Xie
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Stewart Neifert
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130-2685, USA
| | - Jiang Qian
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shaida A Andrabi
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Seth Blackshaw
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Center for High-Throughput Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Heng Zhu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Center for High-Throughput Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hongjun Song
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Guo-Li Ming
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. .,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130-2685, USA.,Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. .,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130-2685, USA.,Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
43
|
Multi-parametric imaging of cell heterogeneity in apoptosis analysis. Methods 2017; 112:105-123. [DOI: 10.1016/j.ymeth.2016.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 06/14/2016] [Accepted: 07/05/2016] [Indexed: 12/13/2022] Open
|
44
|
Yang S, Huang J, Liu P, Li J, Zhao S. Apoptosis-inducing factor (AIF) nuclear translocation mediated caspase-independent mechanism involves in X-ray-induced MCF-7 cell death. Int J Radiat Biol 2016; 93:270-278. [PMID: 27809636 DOI: 10.1080/09553002.2016.1254833] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE Breast cancer is the most common cancer among women and radiotherapy is a conventional therapy following surgery. Previous studies have demonstrated that except the caspase-dependent pathway, caspase-independent pathway is also involved in the cell death responding to irradiation, despite the unclear mechanism. The purpose of the present study was to observe the role of apoptosis-inducing factor (AIF), the first identified caspase-independent molecule, in X-ray-induced breast cancer cell (MCF-7) cell death. MATERIALS AND METHODS In this study, WST-1 assay, DAPI nuclear staining and clonogenic survival assay were used to test the cell response to different treatments; Western blot was used to detect the protein expression; RT-PCR and plasmid transfection were used to observe the role of AIF. RESULTS X-ray-induced AIF transferred from the mitochondrion to the nucleus. Inhibition of AIF expression reduced X-ray-induced MCF-7 cell death. Further, AIF nuclear translocation is in a caspase-independent manner in this process, but not caspase-dependent manner. CONCLUSIONS The present study revealed that AIF nuclear translocation proceeded in X-ray-induced MCF-7 cell death in a caspase-independent manner.
Collapse
Affiliation(s)
- Shana Yang
- a Department of Physiology , Guangzhou Medical University , Guangzhou , Guangdong , China
| | - Jianrong Huang
- b Department of Orthopaedics , The Sun Yat-sen Memory Hospital, Sun Yat-sen Memory Hospital University , Guangzhou , Guangdong , China
| | - Pan Liu
- a Department of Physiology , Guangzhou Medical University , Guangzhou , Guangdong , China
| | - Jianhua Li
- a Department of Physiology , Guangzhou Medical University , Guangzhou , Guangdong , China
| | - Shenting Zhao
- a Department of Physiology , Guangzhou Medical University , Guangzhou , Guangdong , China
| |
Collapse
|
45
|
Liu G, Zou H, Luo T, Long M, Bian J, Liu X, Gu J, Yuan Y, Song R, Wang Y, Zhu J, Liu Z. Caspase-Dependent and Caspase-Independent Pathways Are Involved in Cadmium-Induced Apoptosis in Primary Rat Proximal Tubular Cell Culture. PLoS One 2016; 11:e0166823. [PMID: 27861627 PMCID: PMC5115828 DOI: 10.1371/journal.pone.0166823] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 11/05/2016] [Indexed: 12/28/2022] Open
Abstract
We designed this study to investigate whether cadmium induces caspase-independent apoptosis and to investigate the relationship between the caspase-dependent and caspase-independent apoptotic pathways. Cadmium (1.25-2.5 μM) induced oxidative stress in rat proximal tubular (rPT) cells, as seen in the reactive oxygen species levels; N-acetylcysteine prevented this. Cyclosporin A (CsA) prevented mitochondrial permeability transition pore opening and apoptosis; there was mitochondrial ultrastructural disruption, mitochondrial cytochrome c (cyt c) translocation to the cytoplasm, and subsequent caspase-9 and caspase-3 activation. Z-VAD-FMK prevented caspase-3 activation and apoptosis and decreased BNIP-3 (Bcl-2/adenovirus E1B 19-kDa interacting protein 3) expression levels and apoptosis-inducing factor/endonuclease G (AIF/Endo G) translocation. Simultaneously, cadmium induced prominent BNIP-3 expression in the mitochondria and cytoplasmic AIF/Endo G translocation to the nucleus. BNIP-3 silencing significantly prevented AIF and Endo G translocation and decreased the apoptosis rate, cyt c release, and caspase-9 and caspase-3 activation. These results suggest that BNIP-3 is involved in the caspase-independent apoptotic pathway and is located upstream of AIF/Endo G; both the caspase-dependent and caspase-independent pathways are involved in cadmium-induced rPT cell apoptosis and act synergistically.
Collapse
Affiliation(s)
- Gang Liu
- College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, and Jiangsu Key Laboratory of Zoonosis, Yangzhou, Jiangsu, PR China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, and Jiangsu Key Laboratory of Zoonosis, Yangzhou, Jiangsu, PR China
| | - Tongwang Luo
- College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, and Jiangsu Key Laboratory of Zoonosis, Yangzhou, Jiangsu, PR China
| | - Mengfei Long
- College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, and Jiangsu Key Laboratory of Zoonosis, Yangzhou, Jiangsu, PR China
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, and Jiangsu Key Laboratory of Zoonosis, Yangzhou, Jiangsu, PR China
| | - Xuezhong Liu
- College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, and Jiangsu Key Laboratory of Zoonosis, Yangzhou, Jiangsu, PR China
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, and Jiangsu Key Laboratory of Zoonosis, Yangzhou, Jiangsu, PR China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, and Jiangsu Key Laboratory of Zoonosis, Yangzhou, Jiangsu, PR China
| | - Ruilong Song
- College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, and Jiangsu Key Laboratory of Zoonosis, Yangzhou, Jiangsu, PR China
| | - Yi Wang
- College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, and Jiangsu Key Laboratory of Zoonosis, Yangzhou, Jiangsu, PR China
| | - Jiaqiao Zhu
- College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, and Jiangsu Key Laboratory of Zoonosis, Yangzhou, Jiangsu, PR China
- * E-mail: (ZPL); (JQZ)
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, and Jiangsu Key Laboratory of Zoonosis, Yangzhou, Jiangsu, PR China
- * E-mail: (ZPL); (JQZ)
| |
Collapse
|
46
|
Lin JLJ, Wu CC, Yang WZ, Yuan HS. Crystal structure of endonuclease G in complex with DNA reveals how it nonspecifically degrades DNA as a homodimer. Nucleic Acids Res 2016; 44:10480-10490. [PMID: 27738134 PMCID: PMC5137453 DOI: 10.1093/nar/gkw931] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 10/05/2016] [Accepted: 10/07/2016] [Indexed: 01/20/2023] Open
Abstract
Endonuclease G (EndoG) is an evolutionarily conserved mitochondrial protein in eukaryotes that digests nucleus chromosomal DNA during apoptosis and paternal mitochondrial DNA during embryogenesis. Under oxidative stress, homodimeric EndoG becomes oxidized and converts to monomers with diminished nuclease activity. However, it remains unclear why EndoG has to function as a homodimer in DNA degradation. Here, we report the crystal structure of the Caenorhabditis elegans EndoG homologue, CPS-6, in complex with single-stranded DNA at a resolution of 2.3 Å. Two separate DNA strands are bound at the ββα-metal motifs in the homodimer with their nucleobases pointing away from the enzyme, explaining why CPS-6 degrades DNA without sequence specificity. Two obligatory monomeric CPS-6 mutants (P207E and K131D/F132N) were constructed, and they degrade DNA with diminished activity due to poorer DNA-binding affinity as compared to wild-type CPS-6. Moreover, the P207E mutant exhibits predominantly 3′-to-5′ exonuclease activity, indicating a possible endonuclease to exonuclease activity change. Thus, the dimer conformation of CPS-6 is essential for maintaining its optimal DNA-binding and endonuclease activity. Compared to other non-specific endonucleases, which are usually monomeric enzymes, EndoG is a unique dimeric endonuclease, whose activity hence can be modulated by oxidation to induce conformational changes.
Collapse
Affiliation(s)
- Jason L J Lin
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 11529, ROC
| | - Chyuan-Chuan Wu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 11529, ROC
| | - Wei-Zen Yang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 11529, ROC
| | - Hanna S Yuan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 11529, ROC .,Graduate Institute of Biochemistry and Molecular Biology, National Taiwan University, Taiwan 10048, ROC
| |
Collapse
|
47
|
Kinetics and specificity of paternal mitochondrial elimination in Caenorhabditis elegans. Nat Commun 2016; 7:12569. [PMID: 27581092 PMCID: PMC5025750 DOI: 10.1038/ncomms12569] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/13/2016] [Indexed: 12/22/2022] Open
Abstract
In most eukaryotes, mitochondria are inherited maternally. The autophagy process is critical for paternal mitochondrial elimination (PME) in Caenorhabditis elegans, but how paternal mitochondria, but not maternal mitochondria, are selectively targeted for degradation is poorly understood. Here we report that mitochondrial dynamics have a profound effect on PME. A defect in fission of paternal mitochondria delays PME, whereas a defect in fusion of paternal mitochondria accelerates PME. Surprisingly, a defect in maternal mitochondrial fusion delays PME, which is reversed by a fission defect in maternal mitochondria or by increasing maternal mitochondrial membrane potential using oligomycin. Electron microscopy and tomography analyses reveal that a proportion of maternal mitochondria are compromised when they fail to fuse normally, leading to their competition for the autophagy machinery with damaged paternal mitochondria and delayed PME. Our study indicates that mitochondrial dynamics play a critical role in regulating both the kinetics and the specificity of PME. Autophagy mediates the degradation of paternal mitochondria after fertilization in C. elegans to ensure that mitochondria are inherited maternally. Here the authors show that mitochondrial dynamics is critical for the selectivity and kinetics of paternal mitochondrial elimination.
Collapse
|
48
|
Zhou Q, Li H, Li H, Nakagawa A, Lin JLJ, Lee ES, Harry BL, Skeen-Gaar RR, Suehiro Y, William D, Mitani S, Yuan HS, Kang BH, Xue D. Mitochondrial endonuclease G mediates breakdown of paternal mitochondria upon fertilization. Science 2016; 353:394-9. [PMID: 27338704 DOI: 10.1126/science.aaf4777] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 06/15/2016] [Indexed: 12/26/2022]
Abstract
Mitochondria are inherited maternally in most animals, but the mechanisms of selective paternal mitochondrial elimination (PME) are unknown. While examining fertilization in Caenorhabditis elegans, we observed that paternal mitochondria rapidly lose their inner membrane integrity. CPS-6, a mitochondrial endonuclease G, serves as a paternal mitochondrial factor that is critical for PME. We found that CPS-6 relocates from the intermembrane space of paternal mitochondria to the matrix after fertilization to degrade mitochondrial DNA. It acts with maternal autophagy and proteasome machineries to promote PME. Loss of cps-6 delays breakdown of mitochondrial inner membranes, autophagosome enclosure of paternal mitochondria, and PME. Delayed removal of paternal mitochondria causes increased embryonic lethality, demonstrating that PME is important for normal animal development. Thus, CPS-6 functions as a paternal mitochondrial degradation factor during animal development.
Collapse
Affiliation(s)
- Qinghua Zhou
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Haimin Li
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Hanzeng Li
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA. Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA
| | - Akihisa Nakagawa
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Jason L J Lin
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Eui-Seung Lee
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Brian L Harry
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA. Medical Scientist Training Program, University of Colorado, Aurora, CO 80045, USA
| | - Riley Robert Skeen-Gaar
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Yuji Suehiro
- Department of Physiology, Tokyo Women's Medical University, School of Medicine and CREST, Japan Science and Technology Agency, Tokyo 162-8666, Japan
| | - Donna William
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | - Shohei Mitani
- Department of Physiology, Tokyo Women's Medical University, School of Medicine and CREST, Japan Science and Technology Agency, Tokyo 162-8666, Japan
| | - Hanna S Yuan
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Byung-Ho Kang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, Chinese University of Hong Kong, Hong Kong, China.
| | - Ding Xue
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA.
| |
Collapse
|
49
|
Lin JLJ, Nakagawa A, Skeen-Gaar R, Yang WZ, Zhao P, Zhang Z, Ge X, Mitani S, Xue D, Yuan HS. Oxidative Stress Impairs Cell Death by Repressing the Nuclease Activity of Mitochondrial Endonuclease G. Cell Rep 2016; 16:279-287. [PMID: 27346342 DOI: 10.1016/j.celrep.2016.05.090] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 04/28/2016] [Accepted: 05/22/2016] [Indexed: 01/22/2023] Open
Abstract
Endonuclease G (EndoG) is a mitochondrial protein that is released from mitochondria and relocated into the nucleus to promote chromosomal DNA fragmentation during apoptosis. Here, we show that oxidative stress causes cell-death defects in C. elegans through an EndoG-mediated cell-death pathway. In response to high reactive oxygen species (ROS) levels, homodimeric CPS-6-the C. elegans homolog of EndoG-is dissociated into monomers with diminished nuclease activity. Conversely, the nuclease activity of CPS-6 is enhanced, and its dimeric structure is stabilized by its interaction with the worm AIF homolog, WAH-1, which shifts to disulfide cross-linked dimers under high ROS levels. CPS-6 thus acts as a ROS sensor to regulate the life and death of cells. Modulation of the EndoG dimer conformation could present an avenue for prevention and treatment of diseases resulting from oxidative stress.
Collapse
Affiliation(s)
- Jason L J Lin
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 11529, ROC
| | - Akihisa Nakagawa
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Riley Skeen-Gaar
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Wei-Zen Yang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 11529, ROC
| | - Pei Zhao
- School of Life Sciences and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing 100084, China
| | - Zhe Zhang
- School of Life Sciences and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing 100084, China
| | - Xiao Ge
- School of Life Sciences and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing 100084, China
| | - Shohei Mitani
- Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo 162-8666, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Tokyo 162-8666, Japan
| | - Ding Xue
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA; School of Life Sciences and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing 100084, China.
| | - Hanna S Yuan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 11529, ROC; Graduate Institute of Biochemistry and Molecular Biology, National Taiwan University, Taiwan 10048, ROC.
| |
Collapse
|
50
|
Wang X, Yang C. Programmed cell death and clearance of cell corpses in Caenorhabditis elegans. Cell Mol Life Sci 2016; 73:2221-36. [PMID: 27048817 PMCID: PMC11108496 DOI: 10.1007/s00018-016-2196-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 03/18/2016] [Indexed: 01/01/2023]
Abstract
Programmed cell death is critical to the development of diverse animal species from C. elegans to humans. In C. elegans, the cell death program has three genetically distinguishable phases. During the cell suicide phase, the core cell death machinery is activated through a protein interaction cascade. This activates the caspase CED-3, which promotes numerous pro-apoptotic activities including DNA degradation and exposure of the phosphatidylserine "eat me" signal on the cell corpse surface. Specification of the cell death fate involves transcriptional activation of the cell death initiator EGL-1 or the caspase CED-3 by coordinated actions of specific transcription factors in distinct cell types. In the cell corpse clearance stage, recognition of cell corpses by phagocytes triggers several signaling pathways to induce phagocytosis of apoptotic cell corpses. Cell corpse-enclosing phagosomes ultimately fuse with lysosomes for digestion of phagosomal contents. This article summarizes our current knowledge about programmed cell death and clearance of cell corpses in C. elegans.
Collapse
Affiliation(s)
- Xiaochen Wang
- National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing, 102206, China.
| | - Chonglin Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing, 100101, China.
| |
Collapse
|