1
|
Rokonuzzman M, Bhuia MS, Al-Qaaneh AM, El-Nashar HAS, Islam T, Chowdhury R, Hasan Shanto H, Al Hasan MS, El-Shazly M, Torequl Islam M. Biomedical Perspectives of Citronellal: Biological Activities, Toxicological Profile and Molecular Mechanisms. Chem Biodivers 2025; 22:e202401973. [PMID: 39252577 DOI: 10.1002/cbdv.202401973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/11/2024]
Abstract
Citronellal, known as rhodinal, is a naturally occurring monoterpenoid aldehyde distinctly found in the distilled oils of Cymbopogon species including C. marginatus, C. citratus, C. validus and C. winterianus family Gramineae. It is also obtained from eucalyptus, mentha, melissa, cinnamomum and allium. It is traditionally used in air freshener, cleaner, floor polishing, deodorants, moisturizing hand/body lotion, perfumes, and adhesives due to its lemon characteristic fragrance and therapeutic benefits. This study aimed to summarize the pharmacological activities and underlying mechanisms of citronellal against different diseases, as well as its toxicological profile. The data was collected from various reliable and authentic literatures by searching different academic search engines, including PubMed, Springer Link, Scopus, Wiley Online, Web of Science, ScienceDirect, and Google Scholar. The findings imply that citronellal demonstrated several pharmacological effects in various preclinical and pharmacological experimental systems. The results indicated that citronellal demonstrated antioxidant, anti-inflammatory, antibacterial, antifungal, anthelminthic, and anticancer effects with beneficial effects in neurological and cardiovascular diseases. Our findings also indicated the toxic level of the phytochemical. In conclusion, it has been proposed that citronellal has the capability to serve as a hopeful therapeutic agent, so further extensive clinical research is necessary to develop it as a reliable drug.
Collapse
Affiliation(s)
- Md Rokonuzzman
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
- Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj Dhaka, 8100, Bangladesh
| | - Md Shimul Bhuia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
- Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj Dhaka, 8100, Bangladesh
| | - Ayman M Al-Qaaneh
- Department of Allied Health Sciences, Al-Balqa Applied University (BAU), Al-Salt, 19117, Jordan
| | - Heba A S El-Nashar
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, 11566, Egypt E-mai
| | - Tawhida Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Raihan Chowdhury
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Hasibul Hasan Shanto
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Md Sakib Al Hasan
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, 11566, Egypt E-mai
| | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
- Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj Dhaka, 8100, Bangladesh
- Pharmacy Discipline, Khulna University, Khulna, 9208, Bangladesh
| |
Collapse
|
2
|
Verkouteren BJ, Roemen GM, Schuurs-Hoeijmakers JH, Abdul Hamid M, van Geel M, Speel EJM, Mosterd K. Molecular mechanism of extracutaneous tumours in patients with basal cell nevus syndrome. J Clin Pathol 2022; 76:345-348. [PMID: 36002246 DOI: 10.1136/jcp-2022-208391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/27/2022] [Indexed: 11/03/2022]
Abstract
Basal cell nevus syndrome (BCNS) is a rare genetic disorder accompanied by a broad variety of tumours, of which basal cell carcinomas and odontogenic keratocysts are the most common. BCNS is caused by a germline or postzygotic mutation in either PTCH1 or SUFU As BCNS is a rare disease, it is difficult to establish whether less frequently occurring tumours are actually part of the syndrome. In this study, the molecular mechanism behind four extracutaneous tumours in patients with BCNS was elucidated. A leiomyoma of the testis and meningioma were confirmed to be associated with BCNS in two patients by presence of a second mutation or loss of heterozygosity in PTCH1 In a meningioma of a patient with a mosaic postzygotic PTCH1 mutation an association could not be conclusively confirmed. SUFU was probably not involved in the development of a thyroid carcinoma in a patient with a germline SUFU mutation. Hence, we have proven that meningioma and leiomyoma of the testis are rare extracutaneous tumours that are part of BCNS.
Collapse
Affiliation(s)
- Babette Ja Verkouteren
- Department of Dermatology, Maastricht University Medical Center+, Maastricht, The Netherlands .,GROW School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | - Guido Mjm Roemen
- GROW School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands.,Department of Pathology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | | | - Myrurgia Abdul Hamid
- Department of Pathology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Michel van Geel
- Department of Dermatology, Maastricht University Medical Center+, Maastricht, The Netherlands.,GROW School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands.,Department of Clinical Genetics, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Ernst-Jan M Speel
- GROW School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands.,Department of Pathology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Klara Mosterd
- Department of Dermatology, Maastricht University Medical Center+, Maastricht, The Netherlands.,GROW School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
3
|
Flap endonuclease 1 (FEN1) as a novel diagnostic and prognostic biomarker for gastric cancer. Clin Res Hepatol Gastroenterol 2021; 45:101455. [PMID: 32505732 DOI: 10.1016/j.clinre.2020.04.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 04/16/2020] [Accepted: 04/20/2020] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Flap endonuclease 1 (FEN1) overexpression has been reported to be closely associated with cancer prognosis. However, its diagnostic and prognostic significance in gastric cancer (GC) has not yet been explored. METHODS FEN1 expression, its correlation with clinical parameters, and prognostic significance were investigated by data mining of The Cancer Genome Atlas (TCGA) datasets. Patients were divided into low- and high-expression groups using the median value of FEN1 expression as the cut-off. The diagnostic value of FEN1 expression in GC tissues was determined via receiver operating characteristic (ROC) curve analysis. Univariate and multivariate Cox regression analyses were used to identify the prognostic indicators. Gene set enrichment analysis (GSEA) was used to explore FEN1-related signalling pathways in GC. Furthermore, the Human Protein Atlas (HPA) database and GSE62254 dataset were used for further external validation. RESULTS FEN1 was expressed at a higher level in GC tissues than in normal gastric tissues with high diagnostic accuracy (area under the ROC=0.909). Higher FEN1 expression was also validated at the protein level using the HPA database. High FEN1 expression in GC was correlated with older age (P<0.05). Patients with high FEN1 expression had a favourable prognosis compared to patients with low FEN1 expression (P=0.0048). Univariate and multivariate analyses revealed that FEN1 was an independent predictive factor associated with overall survival in both the TCGA cohort and the GSE62254 dataset (P=0.0004 and P=0.011, respectively). GSEA identified that the FEN1 expression was related to DNA replication, cell cycle, cytosolic and sensing pathways, oocyte meiosis, and the P53 signalling pathway. CONCLUSION The results revealed high expression of FEN1 in GC; thus, it could be a promising early diagnostic and independent prognostic biomarker for GC.
Collapse
|
4
|
Inherited Variants in BLM and the Risk and Clinical Characteristics of Breast Cancer. Cancers (Basel) 2019; 11:cancers11101548. [PMID: 31614901 PMCID: PMC6826355 DOI: 10.3390/cancers11101548] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/02/2019] [Accepted: 10/10/2019] [Indexed: 01/24/2023] Open
Abstract
Bloom Syndrome is a rare recessive disease which includes a susceptibility to various cancers. It is caused by homozygous mutations of the BLM gene. To investigate whether heterozygous carriers of a BLM mutation are predisposed to breast cancer, we sequenced BLM in 617 patients from Polish families with a strong family history of breast cancer. We detected a founder mutation (c.1642C>T, p.Gln548Ter) in 3 of the 617 breast cancer patients (0.49%) who were sequenced. Then, we genotyped 14,804 unselected breast cancer cases and 4698 cancer-free women for the founder mutation. It was identified in 82 of 14,804 (0.55%) unselected cases and in 26 of 4698 (0.55%) controls (OR = 1.0; 95%CI 0.6–1.6). Clinical characteristics of breast cancers in the BLM mutation carriers and non-carriers were similar. Loss of the wild-type BLM allele was not detected in cancers from the BLM mutation carriers. No cancer type was more common in the relatives of mutation carriers compared to relatives of non-carriers. The BLM founder mutation p.Gln548Ter, which in a homozygous state is a cause of Bloom syndrome, does not appear to predispose to breast cancer in a heterozygous state. The finding casts doubt on the designation of BLM as an autosomal dominant breast cancer susceptibility gene.
Collapse
|
5
|
Oben KZ, Gachuki BW, Alhakeem SS, McKenna MK, Liang Y, St. Clair DK, Rangnekar VM, Bondada S. Radiation Induced Apoptosis of Murine Bone Marrow Cells Is Independent of Early Growth Response 1 (EGR1). PLoS One 2017; 12:e0169767. [PMID: 28081176 PMCID: PMC5230770 DOI: 10.1371/journal.pone.0169767] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 11/14/2016] [Indexed: 12/03/2022] Open
Abstract
An understanding of how each individual 5q chromosome critical deleted region (CDR) gene contributes to malignant transformation would foster the development of much needed targeted therapies for the treatment of therapy related myeloid neoplasms (t-MNs). Early Growth Response 1 (EGR1) is a key transcriptional regulator of myeloid differentiation located within the 5q chromosome CDR that has been shown to regulate HSC (hematopoietic stem cell) quiescence as well as the master regulator of apoptosis—p53. Since resistance to apoptosis is a hallmark of malignant transformation, we investigated the role of EGR1 in apoptosis of bone marrow cells; a cell population from which myeloid malignancies arise. We evaluated radiation induced apoptosis of Egr1+/+ and Egr1-/- bone marrow cells in vitro and in vivo. EGR1 is not required for radiation induced apoptosis of murine bone marrow cells. Neither p53 mRNA (messenger RNA) nor protein expression is regulated by EGR1 in these cells. Radiation induced apoptosis of bone marrow cells by double strand DNA breaks induced p53 activation. These results suggest EGR1 dependent signaling mechanisms do not contribute to aberrant apoptosis of malignant cells in myeloid malignancies.
Collapse
Affiliation(s)
- Karine Z. Oben
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, Kentucky, United States of America
| | - Beth W. Gachuki
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, Kentucky, United States of America
| | - Sara S. Alhakeem
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, Kentucky, United States of America
| | - Mary K. McKenna
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, Kentucky, United States of America
| | - Ying Liang
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, United States of America
- Department of Internal Medicine, University of Kentucky, Lexington, Kentucky, United States of America
| | - Daret K. St. Clair
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Vivek M. Rangnekar
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, Kentucky, United States of America
- Department of Radiation Medicine, University of Kentucky, Lexington, Kentucky, United States of America
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, United States of America
| | - Subbarao Bondada
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, Kentucky, United States of America
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
6
|
Ozretić P, Bisio A, Musani V, Trnski D, Sabol M, Levanat S, Inga A. Regulation of human PTCH1b expression by different 5' untranslated region cis-regulatory elements. RNA Biol 2015; 12:290-304. [PMID: 25826662 PMCID: PMC4615190 DOI: 10.1080/15476286.2015.1008929] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 01/09/2015] [Accepted: 01/09/2015] [Indexed: 02/08/2023] Open
Abstract
PTCH1 gene codes for a 12-pass transmembrane receptor with a negative regulatory role in the Hedgehog-Gli signaling pathway. PTCH1 germline mutations cause Gorlin syndrome, a disorder characterized by developmental abnormalities and tumor susceptibility. The autosomal dominant inheritance, and the evidence for PTCH1 haploinsufficiency, suggests that fine-tuning systems of protein patched homolog 1 (PTC1) levels exist to properly regulate the pathway. Given the role of 5' untranslated region (5'UTR) in protein expression, our aim was to thoroughly explore cis-regulatory elements in the 5'UTR of PTCH1 transcript 1b. The (CGG)n polymorphism was the main potential regulatory element studied so far but with inconsistent results and no clear association between repeat number and disease risk. Using luciferase reporter constructs in human cell lines here we show that the number of CGG repeats has no strong impact on gene expression, both at mRNA and protein levels. We observed variability in the length of 5'UTR and changes in abundance of the associated transcripts after pathway activation. We show that upstream AUG codons (uAUGs) present only in longer 5'UTRs could negatively regulate the amount of PTC1 isoform L (PTC1-L). The existence of an internal ribosome entry site (IRES) observed using different approaches and mapped in the region comprising the CGG repeats, would counteract the effect of the uAUGs and enable synthesis of PTC1-L under stressful conditions, such as during hypoxia. Higher relative translation efficiency of PTCH1b mRNA in HEK 293T cultured hypoxia was observed by polysomal profiling and Western blot analyses. All our results point to an exceptionally complex and so far unexplored role of 5'UTR PTCH1b cis-element features in the regulation of the Hedgehog-Gli signaling pathway.
Collapse
Key Words
- 5'UTR
- 5′UTR, 5′ untranslated region
- CGG repeats
- Fluc, Firefly luciferase
- Hedgehog-Gli
- Hh-Gli, Hedgehog-Gli
- IRES
- IRES, internal ribosome entry site
- POL, polysome-associated
- PTC1-L, protein patched homolog 1
- PTCH1
- Rluc, Renilla luciferase
- SUB, subpolysomal
- isoform L PTCH1b, Patched 1 gene, transcript variant 1b
- uAUG
- uAUG, upstream AUG codon
- uORF
- uORF, upstream open reading frame
Collapse
Affiliation(s)
- Petar Ozretić
- Laboratory for Hereditary Cancer; Division of Molecular Medicine; Ruđer Bošković Institute; Zagreb, Croatia
| | - Alessandra Bisio
- Laboratory of Transcriptional Networks; Center for Integrative Biology; University of Trento; Mattarello, Trento, Italy
| | - Vesna Musani
- Laboratory for Hereditary Cancer; Division of Molecular Medicine; Ruđer Bošković Institute; Zagreb, Croatia
| | - Diana Trnski
- Laboratory for Hereditary Cancer; Division of Molecular Medicine; Ruđer Bošković Institute; Zagreb, Croatia
| | - Maja Sabol
- Laboratory for Hereditary Cancer; Division of Molecular Medicine; Ruđer Bošković Institute; Zagreb, Croatia
| | - Sonja Levanat
- Laboratory for Hereditary Cancer; Division of Molecular Medicine; Ruđer Bošković Institute; Zagreb, Croatia
| | - Alberto Inga
- Laboratory of Transcriptional Networks; Center for Integrative Biology; University of Trento; Mattarello, Trento, Italy
| |
Collapse
|
7
|
Resistance to irinotecan (CPT-11) activates epidermal growth factor receptor/nuclear factor kappa B and increases cellular metastasis and autophagy in LoVo colon cancer cells. Cancer Lett 2014; 349:51-60. [DOI: 10.1016/j.canlet.2014.03.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 03/13/2014] [Accepted: 03/23/2014] [Indexed: 01/02/2023]
|
8
|
Heise C, Carter T, Schafer P, Chopra R. Pleiotropic mechanisms of action of lenalidomide efficacy in del(5q) myelodysplastic syndromes. Expert Rev Anticancer Ther 2014; 10:1663-72. [DOI: 10.1586/era.10.135] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
9
|
Shimada Y, Katsube KI, Kabasawa Y, Morita KI, Omura K, Yamaguchi A, Sakamoto K. Integrated genotypic analysis of hedgehog-related genes identifies subgroups of keratocystic odontogenic tumor with distinct clinicopathological features. PLoS One 2013; 8:e70995. [PMID: 23951062 PMCID: PMC3737235 DOI: 10.1371/journal.pone.0070995] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Accepted: 06/25/2013] [Indexed: 01/01/2023] Open
Abstract
Keratocystic odontogenic tumor (KCOT) arises as part of Gorlin syndrome (GS) or as a sporadic lesion. Gene mutations and loss of heterozygosity (LOH) of the hedgehog receptor PTCH1 plays an essential role in the pathogenesis of KCOT. However, some KCOT cases lack evidence for gene alteration of PTCH1, suggesting that other genes in the hedgehog pathway may be affected. PTCH2 and SUFU participate in the occurrence of GS-associated tumors, but their roles in KCOT development are unknown. To elucidate the roles of these genes, we enrolled 36 KCOT patients in a study to sequence their entire coding regions of PTCH1, PTCH2 and SUFU. LOH and immunohistochemical expression of these genes, as well as the downstream targets of hedgehog signaling, were examined using surgically-excised KCOT tissues. PTCH1 mutations, including four novel ones, were found in 9 hereditary KCOT patients, but not in sporadic KCOT patients. A pathogenic mutation of PTCH2 or SUFU was not found in any patients. LOH at PTCH1 and SUFU loci correlated with the presence of epithelial budding. KCOT harboring a germline mutation (Type 1) showed nuclear localization of GLI2 and frequent histological findings such as budding and epithelial islands, as well as the highest recurrence rate. KCOT with LOH but without a germline mutation (Type 2) less frequently showed these histological features, and the recurrence rate was lower. KCOT with neither germline mutation nor LOH (Type 3) consisted of two subgroups, Type 3A and 3B, which were characterized by nuclear and cytoplasmic GLI2 localization, respectively. Type 3B rarely exhibited budding and recurrence, behaving as the most amicable entity. The expression patterns of CCND1 and BCL2 tended to correlate with these subgroups. Our data indicates a significant role of PTCH1 and SUFU in the pathogenesis of KCOT, and the genotype-oriented subgroups constitute entities with different potential aggressiveness.
Collapse
Affiliation(s)
- Yasuyuki Shimada
- Section of Oral and Maxillofacial Surgery, Department of Oral Restitution, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Oral Pathology, Department of Oral Restitution, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Global Center of Excellence Program, International Research Center for Molecular Science in Tooth and Bone Diseases, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ken-ichi Katsube
- Oral Pathology, Department of Oral Restitution, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yuji Kabasawa
- Section of Oral and Maxillofacial Surgery, Department of Oral Restitution, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kei-ichi Morita
- Department of Advanced Molecular Diagnosis and Maxillofacial Surgery, Hard Tissue Genome Research Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ken Omura
- Section of Oral and Maxillofacial Surgery, Department of Oral Restitution, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Global Center of Excellence Program, International Research Center for Molecular Science in Tooth and Bone Diseases, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Advanced Molecular Diagnosis and Maxillofacial Surgery, Hard Tissue Genome Research Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Akira Yamaguchi
- Oral Pathology, Department of Oral Restitution, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Global Center of Excellence Program, International Research Center for Molecular Science in Tooth and Bone Diseases, Tokyo Medical and Dental University, Tokyo, Japan
- * E-mail: (AY); (KS)
| | - Kei Sakamoto
- Oral Pathology, Department of Oral Restitution, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- * E-mail: (AY); (KS)
| |
Collapse
|
10
|
BRCA1--conductor of the breast stem cell orchestra: the role of BRCA1 in mammary gland development and identification of cell of origin of BRCA1 mutant breast cancer. Stem Cell Rev Rep 2012; 8:982-93. [PMID: 22426855 DOI: 10.1007/s12015-012-9354-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Breast cancer treatment has been increasingly successful over the last 20 years due in large part to targeted therapies directed against different subtypes. However, basal-like breast cancers still represent a considerable challenge to clinicians and scientists alike since the pathogenesis underlying the disease and the target cell for transformation of this subtype is still undetermined. The considerable similarities between basal-like and BRCA1 mutant breast cancers led to the hypothesis that these cancers arise from transformation of a basal cell within the normal breast epithelium through BRCA1 dysfunction. Recently, however, a number of studies have called this hypothesis into question. This review summarises the initial findings which implicated the basal cell as the cell of origin of BRCA1 related basal-like breast cancers, as well as the more recent data which identifies the luminal progenitor cells as the likely target of transformation. We compare a number of key studies in this area and identify the differences that could explain some of the contradictory findings. In addition, we highlight the role of BRCA1 in breast cell differentiation and lineage determination by reviewing recent findings in the field and our own observations suggesting a role for BRCA1 in stem cell regulation through activation of the p63 and Notch pathways. We hope that through an increased understanding of the BRCA1 role in breast differentiation and the identification of the cell(s) of origin we can improve treatment options for both BRCA1 mutant and basal-like breast cancer subgroups.
Collapse
|
11
|
Abstract
Basal cell carcinoma (BCC) is the most common tumor of the skin and can result in significant morbidity as well as costs. The discovery of aberrant Hedgehog (HH) signaling in patients with genetic propensity to develop BCCs has resulted in a better understanding of the genetic abnormalities leading to the development of BCC. The current state of knowledge with regard to the genetics of BCC is discussed. Existing therapies are reviewed, in particular new targeted therapies to the HH signaling pathway that have resulted in a landmark breakthrough for patients with refractory BCC. Data from recent and ongoing trials are presented.
Collapse
|
12
|
Rare copy number variants observed in hereditary breast cancer cases disrupt genes in estrogen signaling and TP53 tumor suppression network. PLoS Genet 2012; 8:e1002734. [PMID: 22737080 PMCID: PMC3380845 DOI: 10.1371/journal.pgen.1002734] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 04/06/2012] [Indexed: 12/29/2022] Open
Abstract
Breast cancer is the most common cancer in women in developed countries, and the contribution of genetic susceptibility to breast cancer development has been well-recognized. However, a great proportion of these hereditary predisposing factors still remain unidentified. To examine the contribution of rare copy number variants (CNVs) in breast cancer predisposition, high-resolution genome-wide scans were performed on genomic DNA of 103 BRCA1, BRCA2, and PALB2 mutation negative familial breast cancer cases and 128 geographically matched healthy female controls; for replication an independent cohort of 75 similarly mutation negative young breast cancer patients was used. All observed rare variants were confirmed by independent methods. The studied breast cancer cases showed a consistent increase in the frequency of rare CNVs when compared to controls. Furthermore, the biological networks of the disrupted genes differed between the two groups. In familial cases the observed mutations disrupted genes, which were significantly overrepresented in cellular functions related to maintenance of genomic integrity, including DNA double-strand break repair (P = 0.0211). Biological network analysis in the two independent breast cancer cohorts showed that the disrupted genes were closely related to estrogen signaling and TP53 centered tumor suppressor network. These results suggest that rare CNVs represent an alternative source of genetic variation influencing hereditary risk for breast cancer.
Collapse
|
13
|
Sokolenko AP, Iyevleva AG, Preobrazhenskaya EV, Mitiushkina NV, Abysheva SN, Suspitsin EN, Kuligina ES, Gorodnova TV, Pfeifer W, Togo AV, Turkevich EA, Ivantsov AO, Voskresenskiy DV, Dolmatov GD, Bit-Sava EM, Matsko DE, Semiglazov VF, Fichtner I, Larionov AA, Kuznetsov SG, Antoniou AC, Imyanitov EN. High prevalence and breast cancer predisposing role of the BLM c.1642 C>T (Q548X) mutation in Russia. Int J Cancer 2011; 130:2867-73. [PMID: 21815139 DOI: 10.1002/ijc.26342] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 07/21/2011] [Indexed: 11/11/2022]
Abstract
The BLM gene belongs to the RecQ helicase family and has been implicated in the maintenance of genomic stability. Its homozygous germline inactivation causes Bloom syndrome, a severe genetic disorder characterized by growth retardation, impaired fertility and highly elevated cancer risk. We hypothesized that BLM is a candidate gene for breast cancer (BC) predisposition. Sequencing of its entire coding region in 95 genetically enriched Russian BC patients identified two heterozygous carriers of the c.1642 C>T (Q548X) mutation. The extended study revealed this allele in 17/1,498 (1.1%) BC cases vs. 2/1,093 (0.2%) healthy women (p = 0.004). There was a suggestion that BLM mutations were more common in patients reporting first-degree family history of BC (6/251 (2.4%) vs. 11/1,247 (0.9%), p = 0.05), early-onset cases (12/762 (1.6%) vs. 5/736 (0.7%), p = 0.14) and women with bilateral appearance of the disease (2/122 (1.6%) vs. 15/1376 (1.1%), p = 0.64). None of the BLM-associated BC exhibited somatic loss of heterozygosity at the BLM gene locus. This study demonstrates that BLM Q548X allele is recurrent in Slavic subjects and may be associated with BC risk.
Collapse
Affiliation(s)
- Anna P Sokolenko
- N.N. Petrov Institute of Oncology, St.-Petersburg 197758, Russia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
This year, 2011, marks the forty-year anniversary of the statistical analysis of retinoblastoma that provided the first evidence that tumorigenesis can be initiated by as few as two mutations. This work provided the foundation for the two-hit hypothesis that explained the role of recessive tumour suppressor genes (TSGs) in dominantly inherited cancer susceptibility syndromes. However, four decades later, it is now known that even partial inactivation of tumour suppressors can critically contribute to tumorigenesis. Here we analyse this evidence and propose a continuum model of TSG function to explain the full range of TSG mutations found in cancer.
Collapse
|
15
|
CASZ1, a candidate tumor-suppressor gene, suppresses neuroblastoma tumor growth through reprogramming gene expression. Cell Death Differ 2011; 18:1174-83. [PMID: 21252912 DOI: 10.1038/cdd.2010.187] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Neuroblastoma (NB) is a common childhood malignant tumor of the neural crest-derived sympathetic nervous system. In NB the frequent loss of heterozygosity (LOH) on chromosome 1p raises the possibility that this region contains tumor-suppressor genes whose inactivation contributes to tumorigenesis. The human homolog of the Drosophila neural fate determination gene CASZ1, a zinc-finger transcription factor, maps to chromosome 1p36.22, a region implicated in NB tumorigenesis. Quantitative real-time PCR analysis showed that low-CASZ1 expression is significantly correlated with increased age (≥18 months), Children's Oncology Group high-risk classification, 1p LOH and MYCN amplification (all P<0.0002) and decreased survival probability (P=0.0009). CASZ1 was more highly expressed in NB with a differentiated histopathology (P<0.0001). Retinoids and epigenetic modification agents associated with regulation of differentiation induced CASZ1 expression. Expression profiling analysis revealed that CASZ1 regulates the expression of genes involved in regulation of cell growth and developmental processes. Specific restoration of CASZ1 in NB cells induced cell differentiation, enhanced cell adhesion, inhibited migration and suppressed tumorigenicity. These data are consistent with CASZ1 being a critical modulator of neural cell development, and that somatically acquired disruption of normal CASZ1 expression contributes to the malignant phenotype of human NB.
Collapse
|
16
|
Bhattacharya T, Ghosh TC. Protein connectivity and protein complexity promotes human gene duplicability in a mutually exclusive manner. DNA Res 2010; 17:261-70. [PMID: 20829394 PMCID: PMC2955712 DOI: 10.1093/dnares/dsq019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
It has previously been reported that protein complexity (i.e. number of subunits in a protein complex) is negatively correlated to gene duplicability in yeast as well as in humans. However, unlike in yeast, protein connectivity in a protein–protein interaction network has a positive correlation with gene duplicability in human genes. In the present study, we have analyzed 1732 human and 1269 yeast proteins that are present both in a protein–protein interaction network as well as in a protein complex network. In the human case, we observed that both protein connectivity and protein complexity complement each other in a mutually exclusive manner over gene duplicability in a positive direction. Analysis of human haploinsufficient proteins and large protein complexes (complex size >10) shows that when protein connectivity does not have any direct association with gene duplicability, there exists a positive correlation between gene duplicability and protein complexity. The same trend, however, is not found in case of yeast, where both protein connectivity and protein complexity independently guide gene duplicability in the negative direction. We conclude that the higher rate of duplication of human genes may be attributed to organismal complexity either by increasing connectivity in the protein–protein interaction network or by increasing protein complexity.
Collapse
Affiliation(s)
- Tanusree Bhattacharya
- Bioinformatics Centre, Bose Institute, P 1/12, C.I.T. Scheme VII M, Kolkata 700 054, India
| | | |
Collapse
|
17
|
Pan S, Dong Q, Sun LS, Li TJ. Mechanisms of inactivation of PTCH1 gene in nevoid basal cell carcinoma syndrome: modification of the two-hit hypothesis. Clin Cancer Res 2010; 16:442-50. [PMID: 20068110 DOI: 10.1158/1078-0432.ccr-09-2574] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE PTCH1 has been identified as the gene responsible for nevoid basal cell carcinoma syndrome (NBCCS). Keratocystic odontogenic tumors (KCOT) are aggressive jaw lesions that may occur in isolation or in association with NBCCS. The aim of this study was to investigate the genetic and/or epigenetic mechanisms of inactivation of the PTCH1 gene in patients with NBCCS and related sporadic KCOTs. EXPERIMENTAL DESIGN Loss of heterozygosity was analyzed in 44 patients (15 NBCCS-related and 29 sporadic KCOTs), all of whom were previously analyzed for PTCH1 mutations. Allelic location was established in tumors carrying two coincident mutations. PTCH1 mRNA expression and promoter methylation status were analyzed in a panel of KCOTs to define the possible role of epigenetic effects on PTCH1 inactivation. RESULTS Although mutations and loss of heterozygosity of PTCH1 were frequently detected in both syndromic and nonsyndromic cases, hypermethylation of the PTCH1 promoter was not identified in the present series. Of all the 44 cases examined, 13 were identified to fit the two-hit model, 14 to conform to a one-hit model, and the remaining 17 cases showing no alteration in PTCH1. The distribution of two-hit, one-hit, and non-hit cases was significantly different between syndrome and nonsyndrome patients (P < 0.02). CONCLUSIONS This study indicates that PTCH1 gene alternation may play a significant role in the pathogenesis of NBCCS and the related sporadic tumors. Not only the standard two-hit model, but also haploinsufficiency or dominant-negative isoforms may be implicated in the inactivation of the PTCH1 gene.
Collapse
Affiliation(s)
- Shuang Pan
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, Beijing, China
| | | | | | | |
Collapse
|
18
|
Fröjmark AS, Badhai J, Klar J, Thuveson M, Schuster J, Dahl N. Cooperative effect of ribosomal protein s19 and Pim-1 kinase on murine c-Myc expression and myeloid/erythroid cellularity. J Mol Med (Berl) 2009; 88:39-46. [DOI: 10.1007/s00109-009-0558-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Revised: 10/01/2009] [Accepted: 10/22/2009] [Indexed: 12/11/2022]
|
19
|
Silva FPG, Almeida I, Morolli B, Brouwer-Mandema G, Wessels H, Vossen R, Vrieling H, Marijt EWA, Valk PJM, Kluin-Nelemans HC, Sperr WR, Ludwig WD, Giphart-Gassler M. Genome wide molecular analysis of minimally differentiated acute myeloid leukemia. Haematologica 2009; 94:1546-54. [PMID: 19773259 DOI: 10.3324/haematol.2009.009324] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Minimally differentiated acute myeloid leukemia is heterogeneous in karyotype and is defined by immature morphological and molecular characteristics. This originally French-American-British classification is still used in the new World Health Organization classification when other criteria are not met. Apart from RUNX1 mutation, no characteristic molecular aberrations are recognized. DESIGN AND METHODS We performed whole genome single nucleotide polymorphism analysis and extensive molecular analysis in a cohort of 52 patients with minimally differentiated acute myeloid leukemia. RESULTS Many recurring and potentially relevant regions of loss of heterozygosity were revealed. These point towards a variety of candidate genes that could contribute to the pathogenesis of minimally differentiated acute myeloid leukemia, including the tumor suppressor genes TP53 and NF1, and reinforced the importance of RUNX1 in this leukemia. Furthermore, for the first time in this minimally differentiated form of leukemia we detected mutations in the transactivation domain of RUNX1. Mutations in other acute myeloid leukemia associated transcriptions factors were infrequent. In contrast, FLT3, RAS, PTPN11 and JAK2 were often mutated. Irrespective of the RUNX1 mutation status, our results show that RAS signaling is the most important pathway for proliferation in minimally differentiated acute myeloid leukemia. Importantly, we found that high terminal deoxynucleotidyl transferase expression is closely associated with RUNX1 mutation, which could allow an easier diagnosis of RUNX1 mutation in this hematologic malignancy. CONCLUSIONS Our results suggest that in patients without RUNX1 mutation, several other molecular aberrations, separately or in combination, contribute to a common minimally differentiated phenotype.
Collapse
Affiliation(s)
- Fernando P G Silva
- Department of Toxicogenetics, Leiden University Medical Center, PO box 9600, Postzone S4-P, 2300 RC Leiden, the Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Cheung KJ, Ebert BL. Therapeutic potential of targeting haploinsufficient genes in cancer. Pediatr Blood Cancer 2009; 53:131-2. [PMID: 19343773 DOI: 10.1002/pbc.22019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kevin J Cheung
- Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
21
|
Podstawka E, Niaura G. Potential-Dependent Characterization of Bombesin Adsorbed States on Roughened Ag, Au, and Cu Electrode Surfaces at Physiological pH. J Phys Chem B 2009; 113:10974-83. [DOI: 10.1021/jp903847c] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Edyta Podstawka
- Regional Laboratory of Physicochemical Analysis and Structural Research, Faculty of Chemistry, Jagiellonian University, ul. Ingardena 3, 30-060 Krakow, Poland, Department of Bioelectrochemistry and Biospectroscopy, Institute of Biochemistry, Mokslininku̧ 12, LT-08662 Vilnius, Lithuania
| | - Gediminas Niaura
- Regional Laboratory of Physicochemical Analysis and Structural Research, Faculty of Chemistry, Jagiellonian University, ul. Ingardena 3, 30-060 Krakow, Poland, Department of Bioelectrochemistry and Biospectroscopy, Institute of Biochemistry, Mokslininku̧ 12, LT-08662 Vilnius, Lithuania
| |
Collapse
|
22
|
Desjardins S, Beauparlant JC, Labrie Y, Ouellette G, Durocher F. Variations in the NBN/NBS1 gene and the risk of breast cancer in non-BRCA1/2 French Canadian families with high risk of breast cancer. BMC Cancer 2009; 9:181. [PMID: 19523210 PMCID: PMC2702391 DOI: 10.1186/1471-2407-9-181] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Accepted: 06/12/2009] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND The Nijmegen Breakage Syndrome is a chromosomal instability disorder characterized by microcephaly, growth retardation, immunodeficiency, and increased frequency of cancers. Familial studies on relatives of these patients indicated that they also appear to be at increased risk of cancer. METHODS In a candidate gene study aiming at identifying genetic determinants of breast cancer susceptibility, we undertook the full sequencing of the NBN gene in our cohort of 97 high-risk non-BRCA1 and -BRCA2 breast cancer families, along with 74 healthy unrelated controls, also from the French Canadian population. In silico programs (ESEfinder, NNSplice, Splice Site Finder and MatInspector) were used to assess the putative impact of the variants identified. The effect of the promoter variant was further studied by luciferase gene reporter assay in MCF-7, HEK293, HeLa and LNCaP cell lines. RESULTS Twenty-four variants were identified in our case series and their frequency was further evaluated in healthy controls. The potentially deleterious p.Ile171Val variant was observed in one case only. The p.Arg215Trp variant, suggested to impair NBN binding to histone gamma-H2AX, was observed in one breast cancer case and one healthy control. A promoter variant c.-242-110delAGTA displayed a significant variation in frequency between both sample sets. Luciferase reporter gene assay of the promoter construct bearing this variant did not suggest a variation of expression in the MCF-7 breast cancer cell line, but indicated a reduction of luciferase expression in both the HEK293 and LNCaP cell lines. CONCLUSION Our analysis of NBN sequence variations indicated that potential NBN alterations are present, albeit at a low frequency, in our cohort of high-risk breast cancer cases. Further analyses will be needed to fully ascertain the exact impact of those variants on breast cancer susceptibility, in particular for variants located in NBN promoter region.
Collapse
Affiliation(s)
- Sylvie Desjardins
- Cancer Genomics Laboratory, Oncology and Molecular Endocrinology Research Centre, Centre Hospitalier Universitaire de Québec and Laval University, Québec, Canada.
| | | | | | | | | | | |
Collapse
|
23
|
Cavallari I, Silic-Benussi M, Rende F, Martines A, Fogar P, Basso D, Vella MD, Pedrazzoli S, Herman JG, Chieco-Bianchi L, Esposito G, Ciminale V, D'Agostino DM. Decreased expression and promoter methylation of the menin tumor suppressor in pancreatic ductal adenocarcinoma. Genes Chromosomes Cancer 2009; 48:383-96. [DOI: 10.1002/gcc.20650] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
24
|
Miclea RL, Karperien M, Bosch CA, van der Horst G, van der Valk MA, Kobayashi T, Kronenberg HM, Rawadi G, Akçakaya P, Löwik CW, Fodde R, Wit JM, Robanus-Maandag EC. Adenomatous polyposis coli-mediated control of beta-catenin is essential for both chondrogenic and osteogenic differentiation of skeletal precursors. BMC DEVELOPMENTAL BIOLOGY 2009; 9:26. [PMID: 19356224 PMCID: PMC2678105 DOI: 10.1186/1471-213x-9-26] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Accepted: 04/08/2009] [Indexed: 12/31/2022]
Abstract
Background During skeletogenesis, protein levels of β-catenin in the canonical Wnt signaling pathway determine lineage commitment of skeletal precursor cells to osteoblasts and chondrocytes. Adenomatous polyposis coli (Apc) is a key controller of β-catenin turnover by down-regulating intracellular levels of β-catenin. Results To investigate whether Apc is involved in lineage commitment of skeletal precursor cells, we generated conditional knockout mice lacking functional Apc in Col2a1-expressing cells. In contrast to other models in which an oncogenic variant of β-catenin was used, our approach resulted in the accumulation of wild type β-catenin protein due to functional loss of Apc. Conditional homozygous Apc mutant mice died perinatally showing greatly impaired skeletogenesis. All endochondral bones were misshaped and lacked structural integrity. Lack of functional Apc resulted in a pleiotropic skeletal cell phenotype. The majority of the precursor cells lacking Apc failed to differentiate into chondrocytes or osteoblasts. However, skeletal precursor cells in the proximal ribs were able to escape the noxious effect of functional loss of Apc resulting in formation of highly active osteoblasts. Inactivation of Apc in chondrocytes was associated with dedifferentiation of these cells. Conclusion Our data indicate that a tight Apc-mediated control of β-catenin levels is essential for differentiation of skeletal precursors as well as for the maintenance of a chondrocytic phenotype in a spatio-temporal regulated manner.
Collapse
Affiliation(s)
- Razvan L Miclea
- Department of Tissue Regeneration, Institute for Biomedical Technology, University of Twente, Enschede, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Ebert BL. Deletion 5q in myelodysplastic syndrome: a paradigm for the study of hemizygous deletions in cancer. Leukemia 2009; 23:1252-6. [PMID: 19322210 DOI: 10.1038/leu.2009.53] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Hemizygous deletions are common molecular abnormalities in cancer. In some cases, these deletions highlight chromosomal loci containing tumor suppressor genes that undergo homozygous inactivation. In other cases, hemizygous deletions cause disease by allelic insufficiency for one or more genes. As the intact allele has no identifiable lesions, functional approaches are critical for the identification of pathogenic genes within large deletions. Hemizygous, interstitial deletion of chromosome 5q is the most common cytogenetic abnormality in myelodysplastic syndrome (MDS) and has been the focus of functional analysis. Some patients with this molecular lesion have the 5q- syndrome, a disorder with a highly consistent clinical phenotype. A systematic RNA interference screen to interrogate the function of each gene in the common deleted region (CDR) for the 5q- syndrome identified RPS14 as a critical haploinsufficiency disease gene for the erythroid failure, which is a characteristic of this syndrome. Genes located in an adjacent deleted region have also been implicated in MDS. The full clinical phenotype is likely caused by the integration of effects from allelic insufficiency for multiple genes. With the identification and characterization of these genes, the 5q deletion is becoming a model for understanding hemizygous chromosomal deletions in cancer.
Collapse
Affiliation(s)
- B L Ebert
- Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
26
|
Banerjee S, Bose I. Functional characteristics of a double positive feedback loop coupled with autorepression. Phys Biol 2008; 5:046008. [DOI: 10.1088/1478-3975/5/4/046008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
27
|
Korff S, Woerner SM, Yuan YP, Bork P, von Knebel Doeberitz M, Gebert J. Frameshift mutations in coding repeats of protein tyrosine phosphatase genes in colorectal tumors with microsatellite instability. BMC Cancer 2008; 8:329. [PMID: 19000305 PMCID: PMC2586028 DOI: 10.1186/1471-2407-8-329] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Accepted: 11/10/2008] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Protein tyrosine phosphatases (PTPs) like their antagonizing protein tyrosine kinases are key regulators of signal transduction thereby assuring normal control of cellular growth and differentiation. Increasing evidence suggests that mutations in PTP genes are associated with human malignancies. For example, mutational analysis of the tyrosine phosphatase (PTP) gene superfamily uncovered genetic alterations in about 26% of colorectal tumors. Since in these studies tumors have not been stratified according to genetic instability status we hypothesized that colorectal tumors characterized by high-level of microsatellite instability (MSI-H) might show an increased frequency of frameshift mutations in those PTP genes that harbor long mononucleotide repeats in their coding region (cMNR). RESULTS Using bioinformatic analysis we identified 16 PTP candidate genes with long cMNRs that were examined for genetic alterations in 19 MSI-H colon cell lines, 54 MSI-H colorectal cancers, and 17 MSI-H colorectal adenomas. Frameshift mutations were identified only in 6 PTP genes, of which PTPN21 show the highest mutation frequency at all in MSI-H tumors (17%). CONCLUSION Although about 32% of MSI-H tumors showed at least one affected PTP gene, and cMNR mutation rates in PTPN21, PTPRS, and PTPN5 are higher than the mean mutation frequency of MNRs of the same length, mutations within PTP genes do not seem to play a common role in MSI tumorigenesis, since no cMNR mutation frequency reached statistical significance and therefore, failed prediction as a Positive Selective Target Gene.
Collapse
Affiliation(s)
- Sebastian Korff
- Department of Applied Tumor Biology, Institute of Pathology, University of Heidelberg, Heidelberg, Germany.
| | | | | | | | | | | |
Collapse
|
28
|
Alberici P, Gaspar C, Franken P, Gorski MM, de Vries I, Scott RJ, Ristimäki A, Aaltonen LA, Fodde R. Smad4 haploinsufficiency: a matter of dosage. PATHOGENETICS 2008; 1:2. [PMID: 19014666 PMCID: PMC2580039 DOI: 10.1186/1755-8417-1-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Accepted: 11/03/2008] [Indexed: 01/16/2023]
Abstract
BACKGROUND The inactivation of tumor suppressor genes follows Alfred Knudson's 'two-hit' model: both alleles need to be inactivated by independent mutation events to trigger tumor formation. However, in a minority of tumor suppressor genes a single hit is sufficient to initiate tumorigenesis notwithstanding the presence of the wild-type allele, a condition known as haploinsufficiency. The SMAD4 gene is an intracellular mediator of the TGF-beta and BMP signal transduction pathways and a tumor suppressor involved in pancreatic and colorectal tumorigenesis. In Smad4-mutant mouse models, haploinsufficiency characterizes the development of gastrointestinal polyps with initial retention of the wild-type allele and protein expression within the nascent tumors and in their direct microenvironment. Similarly, germline SMAD4 mutations are responsible for a subset of patients affected by juvenile polyposis syndrome, an autosomal dominant intestinal cancer syndrome. To date, the molecular and cellular consequences of SMAD4 haploinsufficiency on TGF-beta and BMP signaling and on genome-wide gene expression have not been investigated. RESULTS Here we show that, similar to previous observations in Smad4-mutant mouse models, haploinsufficiency characterizes a substantial fraction of the juvenile polyps arising in patients with germline SMAD4 mutations. Also, mouse embryonic and intestinal cells heterozygous for a targeted Smad4 null mutation are characterized by a corresponding 50% reduction of the Smad4 protein levels. Reporter assays revealed that mouse Smad4+/- cells exert intermediate inhibitory effects on both TGF-beta and BMP signaling. Genome-wide expression profiling analysis of Smad4+/- and Smad4-/- cells pinpointed a subset of dosage-dependent transcriptional target genes encompassing, among others, members of the TGF-beta and Wnt signaling pathways. These SMAD4 dosage-dependent transcriptional changes were confirmed and validated in a subset of target genes in intestinal tissues from juvenile polyposis syndrome patients. CONCLUSION Smad4 haploinsufficiency is sufficient to significantly inhibit both TGF-beta and BMP signal transduction and results in the differential expression of a broad subset of target genes likely to underlie tumor formation both from the mesenchymal and epithelial compartments. The results of our study, performed in normal rather than tumor cells where additional (epi-) genetic alterations may confound the analysis, are relevant for our understanding and elucidation of the initial steps underlying SMAD4-driven intestinal tumorigenesis.
Collapse
Affiliation(s)
- Paola Alberici
- Department of Pathology, Josephine Nefkens Institute, Erasmus MC, Rotterdam, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Affiliation(s)
- Stefan Fröhling
- Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | | |
Collapse
|
30
|
Munirajan AK, Ando K, Mukai A, Takahashi M, Suenaga Y, Ohira M, Koda T, Hirota T, Ozaki T, Nakagawara A. KIF1Bbeta functions as a haploinsufficient tumor suppressor gene mapped to chromosome 1p36.2 by inducing apoptotic cell death. J Biol Chem 2008; 283:24426-34. [PMID: 18614535 DOI: 10.1074/jbc.m802316200] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Deletion of the distal region of chromosome 1 frequently occurs in a variety of human cancers, including aggressive neuroblastoma. Previously, we have identified a 500-kb homozygously deleted region at chromosome 1p36.2 harboring at least six genes in a neuroblastoma-derived cell line NB1/C201. Among them, only KIF1Bbeta, a member of the kinesin superfamily proteins, induced apoptotic cell death. These results prompted us to address whether KIF1Bbeta could be a tumor suppressor gene mapped to chromosome 1p36 in neuroblastoma. Hemizygous deletion of KIF1Bbeta in primary neuroblastomas was significantly correlated with advanced stages (p = 0.0013) and MYCN amplification (p < 0.001), whereas the mutation rate of the KIF1Bbeta gene was infrequent. Although KIF1Bbeta allelic loss was significantly associated with a decrease in KIF1Bbeta mRNA levels, its promoter region was not hypermethylated. Additionally, expression of KIF1Bbeta was markedly down-regulated in advanced stages of tumors (p < 0.001). Enforced expression of KIF1Bbeta resulted in an induction of apoptotic cell death in association with an increase in the number of cells entered into the G2/M phase of the cell cycle, whereas its knockdown by either short interfering RNA or by a genetic suppressor element led to an accelerated cell proliferation or enhanced tumor formation in nude mice, respectively. Furthermore, we demonstrated that the rod region unique to KIF1Bbeta is critical for the induction of apoptotic cell death in a p53-independent manner. Thus, KIF1Bbeta may act as a haploinsufficient tumor suppressor, and its allelic loss may be involved in the pathogenesis of neuroblastoma and other cancers.
Collapse
|
31
|
|
32
|
Larsen E, Kleppa L, Meza TJ, Meza-Zepeda LA, Rada C, Castellanos CG, Lien GF, Nesse GJ, Neuberger MS, Laerdahl JK, William Doughty R, Klungland A. Early-onset lymphoma and extensive embryonic apoptosis in two domain-specific Fen1 mice mutants. Cancer Res 2008; 68:4571-9. [PMID: 18559501 DOI: 10.1158/0008-5472.can-08-0168] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Flap endonuclease 1 (FEN1) processes Okazaki fragments in lagging strand DNA synthesis, and FEN1 is involved in several DNA repair pathways. The interaction of FEN1 with the proliferating cell nuclear antigen (PCNA) processivity factor is central to the function of FEN1 in both DNA replication and repair. Here we present two gene-targeted mice with mutations in FEN1. The first mutant mouse carries a single amino acid point mutation in the active site of the nuclease domain of FEN1 (Fen1(E160D/E160D)), and the second mutant mouse contains two amino acid substitutions in the highly conserved PCNA interaction domain of FEN1 (Fen1(DeltaPCNA/DeltaPCNA)). Fen1(E160D/E160D) mice develop a considerably elevated incidence of B-cell lymphomas beginning at 6 months of age, particularly in females. By 16 months of age, more than 90% of the Fen1(E160D/E160D) females have tumors, primarily lymphomas. By contrast, Fen1(DeltaPCNA/DeltaPCNA) mouse embryos show extensive apoptosis in the forebrain and vertebrae area and die around stage E9.5 to E11.5.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Apoptosis
- Cell Cycle/physiology
- Cell Proliferation
- Cells, Cultured
- Culture Media, Serum-Free
- DNA Repair
- DNA Replication
- Embryo, Mammalian/cytology
- Embryo, Mammalian/metabolism
- Embryo, Mammalian/pathology
- Female
- Flap Endonucleases/physiology
- Genes, Immunoglobulin/genetics
- Genes, Lethal
- Insulin Resistance
- Lymphoma/etiology
- Lymphoma/pathology
- Male
- Mice
- Mice, Mutant Strains
- Mutation/genetics
- Nucleic Acid Hybridization
- Obesity/etiology
- Proliferating Cell Nuclear Antigen/physiology
- Protein Structure, Tertiary
- Recombination, Genetic
Collapse
Affiliation(s)
- Elisabeth Larsen
- Centre for Molecular Biology and Neuroscience and Institute of Medical Microbiology, Rikshospitalet Medical Center and University of Oslo, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Di Pietro C, Ragusa M, Barbagallo D, Duro LR, Guglielmino MR, Majorana A, Giunta V, Rapisarda A, Tricarichi E, Miceli M, Angelica R, Grillo A, Banelli B, Defferari I, Forte S, Laganà A, Bosco C, Giugno R, Pulvirenti A, Ferro A, Grzeschik KH, Di Cataldo A, Tonini GP, Romani M, Purrello M. Involvement of GTA protein NC2beta in neuroblastoma pathogenesis suggests that it physiologically participates in the regulation of cell proliferation. Mol Cancer 2008; 7:52. [PMID: 18538002 PMCID: PMC2443168 DOI: 10.1186/1476-4598-7-52] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Accepted: 06/06/2008] [Indexed: 11/10/2022] Open
Abstract
Background The General Transcription Apparatus (GTA) comprises more than one hundred proteins, including RNA Polymerases, GTFs, TAFs, Mediator, and cofactors such as heterodimeric NC2. This complexity contrasts with the simple mechanical role that these proteins are believed to perform and suggests a still uncharacterized participation to important biological functions, such as the control of cell proliferation. Results To verify our hypothesis, we analyzed the involvement in Neuroblastoma (NB) pathogenesis of GTA genes localized at 1p, one of NB critical regions: through RT-PCR of fifty eight NB biopsies, we demonstrated the statistically significant reduction of the mRNA for NC2β (localized at 1p22.1) in 74% of samples (p = 0.0039). Transcripts from TAF13 and TAF12 (mapping at 1p13.3 and 1p35.3, respectively) were also reduced, whereas we didn't detect any quantitative alteration of the mRNAs from GTF2B and NC2α (localized at 1p22-p21 and 11q13.3, respectively). We confirmed these data by comparing tumour and constitutional DNA: most NB samples with diminished levels of NC2β mRNA had also genomic deletions at the corresponding locus. Conclusion Our data show that NC2β is specifically involved in NB pathogenesis and may be considered a new NB biomarker: accordingly, we suggest that NC2β, and possibly other GTA members, are physiologically involved in the control of cell proliferation. Finally, our studies unearth complex selective mechanisms within NB cells.
Collapse
Affiliation(s)
- Cinzia Di Pietro
- Dipartimento di Scienze Biomediche, Sezione di Biologia Generale, Biologia Cellulare, Genetica Molecolare G Sichel, Unità di Biologia Genomica e dei Sistemi Complessi, Genetica, Bioinformatica, Università di Catania, 95123 Catania, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Copy number alterations of the H2AFX gene in sporadic breast cancer patients. ACTA ACUST UNITED AC 2008; 180:121-8. [PMID: 18206537 DOI: 10.1016/j.cancergencyto.2007.09.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Revised: 10/01/2007] [Accepted: 10/09/2007] [Indexed: 12/13/2022]
Abstract
In addition to being a structural component of chromatin, histone H2AX also has an important role in preserving genetic integrity. The histone H2AFX gene maps to the chromosome region 11q23.2 approximately 11q23.3 that is deleted in most human cancers. Mouse model studies also have clearly shown its involvement in tumorigenesis in a dosage-dependent manner. Therefore, in this study, DNA from 65 paired sporadic breast cancer tissues was systematically screened for gene mutations and changes in gene copy numbers. Although whole H2AFX gene scans showed an absence of mutation in the studied samples, the H2AFX gene copy number was altered in 37% of tumor samples. Furthermore, a twofold reduction in gene copy number in the MCF7 cell line strongly suggests the involvement of H2AFX alteration in breast carcinogenesis. Analysis of clinicopathologic association revealed a convincing correlation with positive estrogen/progesterone receptor status. To our knowledge, this is the first report of a change in H2AFX gene copy number in human cancer.
Collapse
|
35
|
|
36
|
Ousingsawat J, Spitzner M, Schreiber R, Kunzelmann K. Upregulation of colonic ion channels in APC ( Min/+ ) mice. Pflugers Arch 2008; 456:847-55. [PMID: 18247045 DOI: 10.1007/s00424-008-0451-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2007] [Revised: 11/21/2007] [Accepted: 01/09/2008] [Indexed: 12/16/2022]
Abstract
The adenomatous polyposis coli (APC) tumor suppressor gene is mutated in almost all human colonic cancers. Disturbances in Na(+) absorption have been observed in colonic cancer, and ion channels such as ether a go-go (Eag) or Ca(2+)-sensitive BK channels have been recognized for their oncogenic potential. APC ( Min/+ ) mice have reduced APC expression and develop multiple intestinal neoplasias (Min). Ion channels in the colonic epithelium were examined using electrophysiology and molecular techniques. APC ( Min/+ ) mice developed intestinal neoplasia and experienced a significant weight loss. Due to intestinal bleedings, the hematocrit was largely reduced and plasma aldosterone levels were enhanced. Rectal potential measurements in vivo indicated an increase in amiloride-sensitive Na(+) absorption in APC ( Min/+ ) mice. Quantitative Ussing chamber studies demonstrated enhanced Na(+) absorption via epithelial Na(+) channels (ENaC) and suggested enhanced activity of oncogenic BK and Eag-1 channels. Patch clamp and fluorescence measurements on isolated crypts suggested enhanced K(+) channel activity in the surface epithelium. ENaC-mRNA and membrane protein expression was enhanced in colonic surface epithelial cells. The data suggest that reduced expression of the APC gene with upregulation of the downstream proteins Akt and mTOR and subsequent hyperaldosteronism is paralleled by upregulation of oncogenic potassium channels and enhanced colonic Na(+) absorption.
Collapse
Affiliation(s)
- Jiraporn Ousingsawat
- Institut für Physiologie, Universität Regensburg, Universitätsstrasse 31, 93053, Regensburg, Germany
| | | | | | | |
Collapse
|
37
|
Tubiana M. Généralités sur la cancérogenèse. C R Biol 2008; 331:114-25. [DOI: 10.1016/j.crvi.2007.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2007] [Accepted: 03/15/2007] [Indexed: 01/22/2023]
|
38
|
Ebert BL, Pretz J, Bosco J, Chang CY, Tamayo P, Galili N, Raza A, Root DE, Attar E, Ellis SR, Golub TR. Identification of RPS14 as a 5q- syndrome gene by RNA interference screen. Nature 2008; 451:335-9. [PMID: 18202658 PMCID: PMC3771855 DOI: 10.1038/nature06494] [Citation(s) in RCA: 673] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Accepted: 11/16/2007] [Indexed: 01/16/2023]
Abstract
Somatic chromosomal deletions in cancer are thought to indicate the location of tumour suppressor genes, by which a complete loss of gene function occurs through biallelic deletion, point mutation or epigenetic silencing, thus fulfilling Knudson's two-hit hypothesis. In many recurrent deletions, however, such biallelic inactivation has not been found. One prominent example is the 5q- syndrome, a subtype of myelodysplastic syndrome characterized by a defect in erythroid differentiation. Here we describe an RNA-mediated interference (RNAi)-based approach to discovery of the 5q- disease gene. We found that partial loss of function of the ribosomal subunit protein RPS14 phenocopies the disease in normal haematopoietic progenitor cells, and also that forced expression of RPS14 rescues the disease phenotype in patient-derived bone marrow cells. In addition, we identified a block in the processing of pre-ribosomal RNA in RPS14-deficient cells that is functionally equivalent to the defect in Diamond-Blackfan anaemia, linking the molecular pathophysiology of the 5q- syndrome to a congenital syndrome causing bone marrow failure. These results indicate that the 5q- syndrome is caused by a defect in ribosomal protein function and suggest that RNAi screening is an effective strategy for identifying causal haploinsufficiency disease genes.
Collapse
Affiliation(s)
- Benjamin L Ebert
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Takeyama K, Monti S, Manis JP, Dal Cin P, Getz G, Beroukhim R, Dutt S, Aster JC, Alt FW, Golub TR, Shipp MA. Integrative analysis reveals 53BP1 copy loss and decreased expression in a subset of human diffuse large B-cell lymphomas. Oncogene 2008; 27:318-22. [PMID: 17637749 DOI: 10.1038/sj.onc.1210650] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Revised: 05/31/2007] [Accepted: 06/05/2007] [Indexed: 12/20/2022]
Abstract
p53-Binding protein 1 (53BP1) encodes a critical checkpoint protein that localizes to sites of DNA double-strand breaks (DSBs) and participates in DSB repair. Mice that are 53bp1 deficient or hemizygous have an increased incidence of lymphoid malignancies. However, 53BP1 abnormalities in primary human tumors have not been described. By combining high-density single nucleotide polymorphism (HD SNP) array data and gene expression profiles, we found 9 of 63 newly diagnosed human diffuse large B-cell lymphomas (DLBCLs) with single copy loss of the chromosome 15q15 region including the 53BP1 locus; these nine tumors also had significantly lower levels of 53BP1 transcripts. 53BP1 single copy loss found with the HD SNP array platform was subsequently confirmed by fluorescence in situ hybridization. These studies highlight the role of 53BP1 copy loss in primary human DLBCLs and the value of integrative analyses in detecting this genetic lesion in human tumors.
Collapse
Affiliation(s)
- K Takeyama
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Ziv E, Nemenman I, Wiggins CH. Optimal signal processing in small stochastic biochemical networks. PLoS One 2007; 2:e1077. [PMID: 17957259 PMCID: PMC2034356 DOI: 10.1371/journal.pone.0001077] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Accepted: 09/14/2007] [Indexed: 11/18/2022] Open
Abstract
We quantify the influence of the topology of a transcriptional regulatory network on its ability to process environmental signals. By posing the problem in terms of information theory, we do this without specifying the function performed by the network. Specifically, we study the maximum mutual information between the input (chemical) signal and the output (genetic) response attainable by the network in the context of an analytic model of particle number fluctuations. We perform this analysis for all biochemical circuits, including various feedback loops, that can be built out of 3 chemical species, each under the control of one regulator. We find that a generic network, constrained to low molecule numbers and reasonable response times, can transduce more information than a simple binary switch and, in fact, manages to achieve close to the optimal information transmission fidelity. These high-information solutions are robust to tenfold changes in most of the networks' biochemical parameters; moreover they are easier to achieve in networks containing cycles with an odd number of negative regulators (overall negative feedback) due to their decreased molecular noise (a result which we derive analytically). Finally, we demonstrate that a single circuit can support multiple high-information solutions. These findings suggest a potential resolution of the "cross-talk" phenomenon as well as the previously unexplained observation that transcription factors that undergo proteolysis are more likely to be auto-repressive.
Collapse
Affiliation(s)
- Etay Ziv
- College of Physicians and Surgeons, Columbia University, New York, New York, United States of America.
| | | | | |
Collapse
|
41
|
Mrkonjic M, Raptis S, Green RC, Monga N, Daftary D, Dicks E, Younghusband HB, Parfrey PS, Gallinger SS, McLaughlin JR, Knight JA, Bapat B. MSH2 118T>C and MSH6 159C>T promoter polymorphisms and the risk of colorectal cancer. Carcinogenesis 2007; 28:2575-80. [PMID: 17942459 DOI: 10.1093/carcin/bgm229] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The most important indicator of colorectal cancer (CRC) risk is the presence of family history of the disease. Inherited genetic changes, such as single nucleotide polymorphisms, in key candidate genes may contribute to CRC risk. We investigated whether promoter polymorphisms in DNA mismatch repair (MMR) genes MSH2 and MSH6 are associated with the risk of CRC. We genotyped 929 CRC patients and 1098 control subjects from Ontario, and 467 patients and 344 controls from Newfoundland and Labrador, for two promoter polymorphisms in the MMR genes MSH2 and MSH6 using the fluorogenic 5' nuclease assay. We used unconditional logistic regression to evaluate the association between each polymorphism and CRC after adjusting for age and sex. The associations between polymorphisms and tumor clinicopathological features were evaluated with a Pearson's chi-squared test or Fisher's exact test. All statistical tests were two sided. We observed strong associations between the MSH2 -118T>C polymorphism and family history of CRC based on the Amsterdam criteria I (P = 0.005) and Amsterdam criteria I and II (P = 0.036) among cases from Ontario. This association was especially evident among female CRC patients in Ontario (for Amsterdam criteria I, and I and II combined, P = 0.003 and P = 0.0001, respectively). The MSH2 -118T>C polymorphism was associated with strong family history of CRC in Ontario patients.
Collapse
Affiliation(s)
- Miralem Mrkonjic
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario M5T 3L9, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
The p53 protein is well-known for its tumour suppressor function. The p53-MDM2 negative feedback loop constitutes the core module of a network of regulatory interactions activated under cellular stress. In normal cells, the level of p53 proteins is kept low by MDM2, i.e. MDM2 negatively regulates the activity of p53. In the case of DNA damage, the p53-mediated pathways are activated leading to cell cycle arrest and repair of the DNA. If repair is not possible due to excessive damage, the p53-mediated apoptotic pathway is activated bringing about cell death. In this paper, we give an overview of our studies on the p53-MDM2 module and the associated pathways from a systems biology perspective. We discuss a number of key predictions, related to some specific aspects of cell cycle arrest and cell death, which could be tested in experiments.
Collapse
Affiliation(s)
- Indrani Bose
- Department of Physics, Bose Institute,93/1, APC Road, Kolkata 700 009, India.
| | | |
Collapse
|
43
|
Pellagatti A, Jädersten M, Forsblom AM, Cattan H, Christensson B, Emanuelsson EK, Merup M, Nilsson L, Samuelsson J, Sander B, Wainscoat JS, Boultwood J, Hellström-Lindberg E. Lenalidomide inhibits the malignant clone and up-regulates the SPARC gene mapping to the commonly deleted region in 5q- syndrome patients. Proc Natl Acad Sci U S A 2007; 104:11406-11. [PMID: 17576924 PMCID: PMC1892786 DOI: 10.1073/pnas.0610477104] [Citation(s) in RCA: 180] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Myelodysplastic syndromes (MDSs) are a group of hematopoietic stem cell disorders characterized by ineffective hematopoiesis and peripheral blood cytopenias. Lenalidomide has dramatic therapeutic effects in patients with low-risk MDS and a chromosome 5q31 deletion, resulting in complete cytogenetic remission in >60% of patients. The molecular basis of this remarkable drug response is unknown. To gain insight into the molecular targets of lenalidomide we investigated its in vitro effects on growth, maturation, and global gene expression in isolated erythroblast cultures from MDS patients with del(5)(q31). Lenalidomide inhibited growth of differentiating del(5q) erythroblasts but did not affect cytogenetically normal cells. Moreover, lenalidomide significantly influenced the pattern of gene expression in del(5q) intermediate erythroblasts, with the VSIG4, PPIC, TPBG, activin A, and SPARC genes up-regulated by >2-fold in all samples and many genes involved in erythropoiesis, including HBA2, GYPA, and KLF1, down-regulated in most samples. Activin A, one of the most significant differentially expressed genes between lenalidomide-treated cells from MDS patients and healthy controls, has pleiotropic functions, including apoptosis of hematopoietic cells. Up-regulation and increased protein expression of the tumor suppressor gene SPARC is of particular interest because it is antiproliferative, antiadhesive, and antiangiogenic and is located at 5q31-q32, within the commonly deleted region in MDS 5q- syndrome. We conclude that lenalidomide inhibits growth of del(5q) erythroid progenitors and that the up-regulation of SPARC and activin A may underlie the potent effects of lenalidomide in MDS with del(5)(q31). SPARC may play a role in the pathogenesis of the 5q- syndrome.
Collapse
Affiliation(s)
- Andrea Pellagatti
- *Leukaemia Research Fund Molecular Haematology Unit, Nuffield Department of Clinical Laboratory Sciences, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom
| | - Martin Jädersten
- Division of Hematology, Department of Medicine, Karolinska Institutet, SE-141 86 Stockholm, Sweden
| | - Ann-Mari Forsblom
- Division of Hematology, Department of Medicine, Karolinska Institutet, SE-141 86 Stockholm, Sweden
| | - Helen Cattan
- *Leukaemia Research Fund Molecular Haematology Unit, Nuffield Department of Clinical Laboratory Sciences, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom
| | - Birger Christensson
- Department of Pathology, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden
| | - Emma K. Emanuelsson
- Division of Hematology, Department of Medicine, Karolinska Institutet, SE-141 86 Stockholm, Sweden
| | - Mats Merup
- Division of Hematology, Department of Medicine, Karolinska Institutet, SE-141 86 Stockholm, Sweden
| | - Lars Nilsson
- Hematopoietic Stem Cell Laboratory, Lund Strategic Research Center for Stem Cell Biology and Cell Therapy, Lund University, SE-221 84 Lund, Sweden
- Department of Hematology, Lund University Hospital, SE-221 00 Lund, Sweden; and
| | - Jan Samuelsson
- Department of Medicine, South Hospital, SE-118 83 Stockholm, Sweden
| | - Birgitta Sander
- Department of Pathology, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden
| | - James S. Wainscoat
- *Leukaemia Research Fund Molecular Haematology Unit, Nuffield Department of Clinical Laboratory Sciences, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom
| | - Jacqueline Boultwood
- *Leukaemia Research Fund Molecular Haematology Unit, Nuffield Department of Clinical Laboratory Sciences, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom
| | - Eva Hellström-Lindberg
- Division of Hematology, Department of Medicine, Karolinska Institutet, SE-141 86 Stockholm, Sweden
- **To whom correspondence should be addressed: E-mail:
| |
Collapse
|
44
|
Henry IM, Dilkes BP, Comai L. Genetic basis for dosage sensitivity in Arabidopsis thaliana. PLoS Genet 2007; 3:e70. [PMID: 17465685 PMCID: PMC1857734 DOI: 10.1371/journal.pgen.0030070] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Accepted: 03/16/2007] [Indexed: 11/19/2022] Open
Abstract
Aneuploidy, the relative excess or deficiency of specific chromosome types, results in gene dosage imbalance. Plants can produce viable and fertile aneuploid individuals, while most animal aneuploids are inviable or developmentally abnormal. The swarms of aneuploid progeny produced by Arabidopsis triploids constitute an excellent model to investigate the mechanisms governing dosage sensitivity and aneuploid syndromes. Indeed, genotype alters the frequency of aneuploid types within these swarms. Recombinant inbred lines that were derived from a triploid hybrid segregated into diploid and tetraploid individuals. In these recombinant inbred lines, a single locus, which we call SENSITIVE TO DOSAGE IMBALANCE (SDI), exhibited segregation distortion in the tetraploid subpopulation only. Recent progress in quantitative genotyping now allows molecular karyotyping and genetic analysis of aneuploid populations. In this study, we investigated the causes of the ploidy-specific distortion at SDI. Allele frequency was distorted in the aneuploid swarms produced by the triploid hybrid. We developed a simple quantitative measure for aneuploidy lethality and using this measure demonstrated that distortion was greatest in the aneuploids facing the strongest viability selection. When triploids were crossed to euploids, the progeny, which lack severe aneuploids, exhibited no distortion at SDI. Genetic characterization of SDI in the aneuploid swarm identified a mechanism governing aneuploid survival, perhaps by buffering the effects of dosage imbalance. As such, SDI could increase the likelihood of retaining genomic rearrangements such as segmental duplications. Additionally, in species where triploids are fertile, aneuploid survival would facilitate gene flow between diploid and tetraploid populations via a triploid bridge and prevent polyploid speciation. Our results demonstrate that positional cloning of loci affecting traits in populations containing ploidy and chromosome number variants is now feasible using quantitative genotyping approaches.
Collapse
Affiliation(s)
- Isabelle M Henry
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| | - Brian P Dilkes
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| | - Luca Comai
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
45
|
Raptis S, Mrkonjic M, Green RC, Pethe VV, Monga N, Chan YM, Daftary D, Dicks E, Younghusband BH, Parfrey PS, Gallinger SS, McLaughlin JR, Knight JA, Bapat B. MLH1 -93G>A promoter polymorphism and the risk of microsatellite-unstable colorectal cancer. J Natl Cancer Inst 2007; 99:463-74. [PMID: 17374836 DOI: 10.1093/jnci/djk095] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Although up to 30% of patients with colorectal cancer have a positive family history of colorectal neoplasia, few colorectal cancers can be explained by mutations in high-penetrance genes. We investigated whether polymorphisms in DNA mismatch repair genes are associated with the risk of colorectal cancer. METHODS We genotyped 929 case patients and 1098 control subjects from Ontario and 430 case patients and 275 control subjects from Newfoundland and Labrador for five polymorphisms in the mismatch repair genes MLH1 and MSH2 with the fluorogenic 5' nuclease assay. Tumor microsatellite instability (MSI) was determined with a polymerase chain reaction-based method; MSI status was assigned as high (MSI-H, > or = 30% unstable markers among all markers tested), low (MSI-L, <30% markers unstable), or stable (MSS, no unstable markers). We used unconditional logistic regression to evaluate the association between each polymorphism and colorectal cancer after adjusting for age and sex. The associations between polymorphisms and tumor clinicopathologic features were evaluated with a Pearson's chi-square or Fisher's exact test. All statistical tests were two-sided. RESULTS We observed strong associations between the MLH1 -93G>A polymorphism and MSI-H tumors among case patients from Ontario (P = .001) and Newfoundland (P = .003). When compared with the control populations, homozygosity for the MLH1 -93G>A variant allele was associated with MSI-H tumors among case patients in Ontario (adjusted odds ratio [OR] = 3.23, 95% confidence interval [CI] = 1.65 to 6.30) and in Newfoundland (OR = 8.88, 95% CI = 2.33 to 33.9), as was heterozygosity among case patients in Ontario (OR = 1.84, 95% CI = 1.20 to 2.83) and in Newfoundland (OR = 2.56, 95% CI = 1.14 to 5.75). Genotype frequencies were similar among case patients with MSS and MSI-L tumors and control subjects, and the majority of homozygous variant carriers had MSS tumors. Among case patients from Ontario, an association between the MLH1 -93G>A polymorphism and a strong family history of colorectal cancer (for Amsterdam criteria I and II, P = .004 and P = .02, respectively) was observed. CONCLUSION In two patient populations, the MLH1 -93G>A polymorphism was associated with an increased risk of MSI-H colorectal cancer.
Collapse
Affiliation(s)
- Stavroula Raptis
- Department of Pathology, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, ON, Canada M5T 3L9
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Borsics T, Webb D, Andeme-Ondzighi C, Staehelin LA, Christopher DA. The cyclic nucleotide-gated calmodulin-binding channel AtCNGC10 localizes to the plasma membrane and influences numerous growth responses and starch accumulation in Arabidopsis thaliana. PLANTA 2007; 225:563-73. [PMID: 16944199 DOI: 10.1007/s00425-006-0372-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Accepted: 08/03/2006] [Indexed: 05/11/2023]
Abstract
Cyclic nucleotide gated channels (CNGCs) that are regulated by calmodulin (CaM) have been shown to play essential roles in signal transduction, metabolism, and growth in animals. By contrast, very little is known about the subcellular location and the function of these channels in plants. Here we report on the effects of antisense suppression of the expression of AtCNGC10, a putative K+ channel, and the immunolocalization of the protein using an AtCNGC10-specific antiserum. In Arabidopsis thaliana leaves, AtCNGC10 was localized to the plasma membrane of mesophyll and parenchyma cells. Antisense AtCNGC10 plants had 40% of the AtCNGC10 mRNA levels and virtually undetectable protein levels relative to wild type plants. Antisense expression of AtCNGC10 did not affect the mRNA levels of AtCNGC13, the most closely related CNGC family member in the genome. Relative to wild type Columbia, antisense AtCNGC10 plants flowered 10 days earlier, and had a 25% reduction in leaf surface area, thickness and palisade parenchyma cell length. Their roots responded more slowly to gravitropic changes and the chloroplasts accumulated more starch. We propose that AtCNGC10, through interactions with CaM and cGMP, modulates cellular K+ balance across the plasma membrane, and that perturbations of this K+ gradient affect numerous growth and developmental processes.
Collapse
Affiliation(s)
- Tamás Borsics
- Department of Molecular Biosciences and Bioengineering, University of Hawaii, 1955 East-West Road, Agsciences 218, Honolulu, HI 96822, USA
| | | | | | | | | |
Collapse
|
47
|
Urban C, Weinhäusel A, Fritsch P, Sovinz P, Weinhandl G, Lackner H, Moritz A, Haas OA. Primary pigmented nodular adrenocortical disease (PPNAD) and pituitary adenoma in a boy with sporadic Carney complex due to a novel, de novo paternal PRKAR1A mutation (R96X). J Pediatr Endocrinol Metab 2007; 20:247-52. [PMID: 17396442 DOI: 10.1515/jpem.2007.20.2.247] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We report the sporadic case of a 9 year-old boy with Carney syndrome, who presented with precocious puberty due to the endocrinological effects of primary pigmented nodular adrenocortical disease (PPNAD) and a synchronous pituitary adenoma. The adrenal tumor was removed surgically. Following unsuccessful treatment with bromocriptine the pituitary adenoma was also resected and a residual tumor irradiated. Thirty months after diagnosis the boy is free of symptoms. Mutation screening of the entire coding region of the PRKAR1A gene identified five single nucleotide exchanges, four of which were either heterozygous or homozygous polymorphic variants that were also present in his parents. However, the hitherto unreported disease-relevant mutation R96X in exon 3 had occurred de novo on the paternal allele.
Collapse
Affiliation(s)
- Christian Urban
- Department of Pediatrics, Division of Hematology and Oncology, Graz, Austria
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
We consider a stochastic model of transcription factor (TF)-regulated gene expression. The model describes two genes, gene A and gene B, which synthesize the TFs and the target gene proteins, respectively. We show through analytic calculations that the TF fluctuations have a significant effect on the distribution of the target gene protein levels when the mean TF level falls in the highest sensitive region of the dose-response curve. We further study the effect of reducing the copy number of gene A from two to one. The enhanced TF fluctuations yield results different from those in the deterministic case. The probability that the target gene protein level exceeds a threshold value is calculated with the knowledge of the probability density functions associated with the TF and target gene protein levels. Numerical simulation results for a more detailed stochastic model are shown to be in agreement with those obtained through analytic calculations. The relevance of these results in the context of the genetic disorder haploinsufficiency is pointed out. Some experimental observations on the haploinsufficiency of the tumour suppressor gene, Nkx 3.1, are explained with the help of the stochastic model of TF-regulated gene expression.
Collapse
|
49
|
Heikkinen K, Rapakko K, Karppinen SM, Erkko H, Knuutila S, Lundán T, Mannermaa A, Børresen-Dale AL, Borg Å, Barkardottir RB, Petrini J, Winqvist R. RAD50 and NBS1 are breast cancer susceptibility genes associated with genomic instability. Carcinogenesis 2006; 27:1593-9. [PMID: 16474176 PMCID: PMC3006189 DOI: 10.1093/carcin/bgi360] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The Mre11 complex, composed of RAD50, NBS1 and MRE11, has an essential role in the maintenance of genomic integrity and preventing cells from malignancy. Here we report the association of three Mre11 complex mutations with hereditary breast cancer susceptibility, studied by using a case-control design with 317 consecutive, newly diagnosed Northern Finnish breast cancer patients and 1000 geographically matched healthy controls (P = 0.0004). RAD50 687delT displayed significantly elevated frequency in the studied patients (8 out of 317, OR 4.3, 95% CI 1.5-12.5, P= 0.008), which indicates that it is a relatively common low-penetrance risk allele in this cohort. Haplotype analysis and the screening of altogether 512 additional breast cancer cases from Sweden, Norway and Iceland suggest that RAD50 687delT is a Finnish founder mutation, not present in the other Nordic cohorts. The RAD50 IVS3-1G>A splicing mutation leading to translational frameshift was observed in one patient, and the NBS1 Leu150Phe missense mutation affecting a conserved residue in the functionally important BRCA1 carboxy-terminal (BRCT) domain in two patients, both being absent from 1000 controls. Microsatellite marker analysis showed that loss of the wild-type allele was not involved in the tumorigenesis in any of the studied mutation carriers, but they all showed increased genomic instability assessed by cytogenetic analysis of peripheral blood T-lymphocytes (P = 0.006). In particular, the total number of chromosomal rearrangements was significantly increased (P = 0.002). These findings suggest an effect for RAD50 and NBS1 haploinsufficiency on genomic integrity and susceptibility to cancer.
Collapse
Affiliation(s)
- Katri Heikkinen
- Department of Clinical Genetics, University of Oulu/Oulu University Hospital, Oulu, Finland
| | - Katrin Rapakko
- Department of Clinical Genetics, University of Oulu/Oulu University Hospital, Oulu, Finland
| | - Sanna-Maria Karppinen
- Department of Clinical Genetics, University of Oulu/Oulu University Hospital, Oulu, Finland
| | - Hannele Erkko
- Department of Clinical Genetics, University of Oulu/Oulu University Hospital, Oulu, Finland
| | - Sakari Knuutila
- Department of Pathology, Haartman Institute, University of Helsinki and HUSLAB Helsinki University Central Hospital, Finland
| | - Tuija Lundán
- Department of Clinical Genetics, University of Oulu/Oulu University Hospital, Oulu, Finland
- Department of Pathology, Haartman Institute, University of Helsinki and HUSLAB Helsinki University Central Hospital, Finland
| | - Arto Mannermaa
- Department of Clinical Genetics, University of Oulu/Oulu University Hospital, Oulu, Finland
| | | | - Åke Borg
- Department of Oncology, Lund University Hospital, Lund, Sweden
| | | | - John Petrini
- Department of Molecular Biology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Robert Winqvist
- Department of Clinical Genetics, University of Oulu/Oulu University Hospital, Oulu, Finland
| |
Collapse
|
50
|
Li X, Guan B, Maghami S, Bieberich CJ. NKX3.1 is regulated by protein kinase CK2 in prostate tumor cells. Mol Cell Biol 2006; 26:3008-17. [PMID: 16581776 PMCID: PMC1446956 DOI: 10.1128/mcb.26.8.3008-3017.2006] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2005] [Revised: 03/03/2005] [Accepted: 01/19/2006] [Indexed: 01/02/2023] Open
Abstract
Diminished expression of NKX3.1 is associated with prostate cancer progression in humans, and in mice, loss of nkx3.1 leads to epithelial cell proliferation and altered gene expression patterns. The NKX3.1 amino acid sequence includes multiple potential phosphoacceptor sites for protein kinase CK2. To investigate posttranslational regulation of NKX3.1, phosphorylation of NKX3.1 by CK2 was studied. In vitro kinase assays followed by mass spectrometric analyses demonstrated that CK2 phosphorylated recombinant NKX3.1 on Thr89 and Thr93. Blocking CK2 activity in LNCaP cells with apigenin or 5,6-dichlorobenzimidazole riboside led to a rapid decrease in NKX3.1 accumulation that was rescued by proteasome inhibition. Replacing Thr89 and Thr93 with alanines decreased NKX3.1 stability in vivo. Small interfering RNA knockdown of CK2alpha' but not CK2alpha also led to a decrease in NKX3.1 steady-state level. In-gel kinase assays and Western blot analyses using fractionated extracts of LNCaP cells demonstrated that free CK2alpha' could phosphorylate recombinant human and mouse NKX3.1, whereas CK2alpha' liberated from the holoenzyme could not. These data establish CK2 as a regulator of NKX3.1 in prostate tumor cells and provide evidence for functionally distinct pools of CK2alpha' in LNCaP cells.
Collapse
Affiliation(s)
- Xiang Li
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | | | | | | |
Collapse
|