1
|
Jalan M, Brambati A, Shah H, McDermott N, Patel J, Zhu Y, Doymaz A, Wu J, Anderson KS, Gazzo A, Pareja F, Yamaguchi TN, Vougiouklakis T, Ahmed-Seghir S, Steinberg P, Neiman-Golden A, Azeroglu B, Gomez-Aguilar J, da Silva EM, Hussain S, Higginson D, Boutros PC, Riaz N, Reis-Filho JS, Powell SN, Sfeir A. RNA transcripts serve as a template for double-strand break repair in human cells. Nat Commun 2025; 16:4349. [PMID: 40348775 PMCID: PMC12065846 DOI: 10.1038/s41467-025-59510-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Accepted: 04/24/2025] [Indexed: 05/14/2025] Open
Abstract
Double-strand breaks (DSBs) are toxic lesions that lead to genome instability. While canonical DSB repair pathways typically operate independently of RNA, growing evidence suggests that RNA:DNA hybrids and nearby transcripts can influence repair outcomes. However, whether transcript RNA can directly serve as a template for DSB repair in human cells remains unclear. In this study, we develop fluorescence and sequencing-based assays to show that RNA-containing oligonucleotides and messenger RNA can serve as templates during DSB repair. We conduct a CRISPR/Cas9-based genetic screen to identify factors that promote RNA-templated DSB repair (RT-DSBR). Of the candidate polymerases, we identify DNA polymerase zeta (Polζ) as a potential reverse transcriptase that facilitates RT-DSBR. Furthermore, analysis of cancer genome sequencing data reveals whole intron deletions - a distinct genomic signature of RT-DSBR that occurs when spliced mRNA guides repair. Altogether, our findings highlight RT-DSBR as an alternative pathway for repairing DSBs in transcribed genes, with potential mutagenic consequences.
Collapse
Affiliation(s)
- Manisha Jalan
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alessandra Brambati
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hina Shah
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Niamh McDermott
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Juber Patel
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yingjie Zhu
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ahmet Doymaz
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Julius Wu
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- SUNY Downstate Health Sciences University, New York, NY, USA
| | - Kyrie S Anderson
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andrea Gazzo
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Fresia Pareja
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Takafumi N Yamaguchi
- Department of Human Genetics, University of California, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, CA, USA
- Institute for Precision Health, University of California, Los Angeles, CA, USA
| | - Theodore Vougiouklakis
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sana Ahmed-Seghir
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Philippa Steinberg
- Department of Human Genetics, University of California, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, CA, USA
| | - Anna Neiman-Golden
- Department of Human Genetics, University of California, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, CA, USA
| | - Benura Azeroglu
- Laboratory of Genome Integrity, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Joan Gomez-Aguilar
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Edaise M da Silva
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Suleman Hussain
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Daniel Higginson
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Paul C Boutros
- Department of Human Genetics, University of California, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, CA, USA
- Institute for Precision Health, University of California, Los Angeles, CA, USA
- Department of Urology, University of California, Los Angeles, CA, USA
- Broad Stem Cell Research Center, University of California, Los Angeles, CA, USA
| | - Nadeem Riaz
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jorge S Reis-Filho
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- AstraZeneca, Gaithersburg, MD, USA
| | - Simon N Powell
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Agnel Sfeir
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
2
|
Jalan M, Brambati A, Shah H, McDermott N, Patel J, Zhu Y, Doymaz A, Wu J, Anderson KS, Gazzo A, Pareja F, Yamaguchi TN, Vougiouklakis T, Ahmed-Seghir S, Steinberg P, Neiman-Golden A, Azeroglu B, Gomez-Aguilar J, da Silva EM, Hussain S, Higginson D, Boutros PC, Riaz N, Reis-Filho JS, Powell SN, Sfeir A. RNA Transcripts Serve as a Template for Double-Strand Break Repair in Human Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.23.639725. [PMID: 40060534 PMCID: PMC11888373 DOI: 10.1101/2025.02.23.639725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
Double-strand breaks (DSBs) are toxic lesions that lead to genome instability. While canonical DSB repair pathways typically operate independently of RNA, emerging evidence suggests that RNA:DNA hybrids and transcripts near damaged sites can influence repair outcomes. However, a direct role for transcript RNA as a template during DSB repair in human cells is yet to be established. In this study, we designed fluorescent- and sequencing-based assays, which demonstrated that RNA-containing oligonucleotides and messenger RNA serve as templates to promote DSB repair. We conducted a CRISPR/Cas9-based genetic screen to identify factors that promote RNA-templated DSB repair (RT-DSBR), and of the candidate polymerases, we identified DNA polymerase-zeta (Polζ) as the potential reverse transcriptase that facilitates RT-DSBR. Furthermore, by analyzing sequencing data from cancer genomes, we identified the presence of whole intron deletions, a unique genomic scar reflective of RT-DSBR activity generated when spliced mRNA serves as the repair template. These findings highlight RT-DSBR as an alternative pathway for repairing DSBs in transcribed genes, with potential mutagenic consequences.
Collapse
|
3
|
Zeng Y, Jiang R, Deng J, Cheng D, Wang W, Ye J, He C, Zhang C, Zhang H, Zheng H. Characterization of MKK family genes and their responses to temperature stress and Vibrio parahaemolyticus infection in noble scallop Chlamys nobilis. MARINE ENVIRONMENTAL RESEARCH 2024; 201:106695. [PMID: 39205359 DOI: 10.1016/j.marenvres.2024.106695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/21/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Mitogen-activated protein kinase kinase (MKK), the key element of the Mitogen-activated protein kinase (MAPK) signaling pathway, is crucial for the immune response to adverse environments in aquatic animals. Nevertheless, there is limited information regarding the role of the MKK gene family in mollusks. In our study, genome data and transcriptome were used to identify four MKK genes (CnMKK4, CnMKK5, CnMKK6, and CnMKK7) in the noble scallop. The result of the gene structure, motif analysis, and phylogenetic tree revealed that MKK genes are relatively conserved in bivalves. Moreover, four CnMKK genes were significantly highly expressed in immune-related tissues, suggesting that CnMKKs may related to bivalve immunity. Furthermore, CnMKK6 and CgMKK4 were significantly differentially expressed (P < 0.05) under 24 h of temperature stress, and all CnMKKs were significantly differentially expressed (P < 0.05) under 24 h of Vibrio parahaemolyticus infection. These results showed that the CnMKKs may have a significant impact under biotic and abiotic stresses. In conclusion, the result of the CnMKKs provides valuable insights into comprehending the function of MKK genes in mollusks.
Collapse
Affiliation(s)
- Yetao Zeng
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Marine Sciences Institute, Shantou University, Shantou, 515063, China; Research Center of Engineering Technology for Subtropical Mariculture of Guangdong Province, Shantou, 515063, China
| | - Ruolin Jiang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Marine Sciences Institute, Shantou University, Shantou, 515063, China; Research Center of Engineering Technology for Subtropical Mariculture of Guangdong Province, Shantou, 515063, China
| | - Jingwen Deng
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Marine Sciences Institute, Shantou University, Shantou, 515063, China; Research Center of Engineering Technology for Subtropical Mariculture of Guangdong Province, Shantou, 515063, China
| | - Dewei Cheng
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources of the People's Republic of China, Beihai, 536009, China
| | - Weili Wang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Marine Sciences Institute, Shantou University, Shantou, 515063, China; Research Center of Engineering Technology for Subtropical Mariculture of Guangdong Province, Shantou, 515063, China
| | - Jianming Ye
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Marine Sciences Institute, Shantou University, Shantou, 515063, China; Research Center of Engineering Technology for Subtropical Mariculture of Guangdong Province, Shantou, 515063, China
| | - Cheng He
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Marine Sciences Institute, Shantou University, Shantou, 515063, China; Research Center of Engineering Technology for Subtropical Mariculture of Guangdong Province, Shantou, 515063, China
| | - Chuanxu Zhang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Marine Sciences Institute, Shantou University, Shantou, 515063, China; Research Center of Engineering Technology for Subtropical Mariculture of Guangdong Province, Shantou, 515063, China
| | - Hongkuan Zhang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Marine Sciences Institute, Shantou University, Shantou, 515063, China; Research Center of Engineering Technology for Subtropical Mariculture of Guangdong Province, Shantou, 515063, China.
| | - Huaiping Zheng
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Marine Sciences Institute, Shantou University, Shantou, 515063, China; Research Center of Engineering Technology for Subtropical Mariculture of Guangdong Province, Shantou, 515063, China.
| |
Collapse
|
4
|
Larue GE, Roy SW. Where the minor things are: a pan-eukaryotic survey suggests neutral processes may explain much of minor intron evolution. Nucleic Acids Res 2023; 51:10884-10908. [PMID: 37819006 PMCID: PMC10639083 DOI: 10.1093/nar/gkad797] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 09/12/2023] [Accepted: 09/19/2023] [Indexed: 10/13/2023] Open
Abstract
Spliceosomal introns are gene segments removed from RNA transcripts by ribonucleoprotein machineries called spliceosomes. In some eukaryotes a second 'minor' spliceosome is responsible for processing a tiny minority of introns. Despite its seemingly modest role, minor splicing has persisted for roughly 1.5 billion years of eukaryotic evolution. Identifying minor introns in over 3000 eukaryotic genomes, we report diverse evolutionary histories including surprisingly high numbers in some fungi and green algae, repeated loss, as well as general biases in their positional and genic distributions. We estimate that ancestral minor intron densities were comparable to those of vertebrates, suggesting a trend of long-term stasis. Finally, three findings suggest a major role for neutral processes in minor intron evolution. First, highly similar patterns of minor and major intron evolution contrast with both functionalist and deleterious model predictions. Second, observed functional biases among minor intron-containing genes are largely explained by these genes' greater ages. Third, no association of intron splicing with cell proliferation in a minor intron-rich fungus suggests that regulatory roles are lineage-specific and thus cannot offer a general explanation for minor splicing's persistence. These data constitute the most comprehensive view of minor introns and their evolutionary history to date, and provide a foundation for future studies of these remarkable genetic elements.
Collapse
Affiliation(s)
- Graham E Larue
- Quantitative and Systems Biology Graduate Program, University of California Merced, Merced, CA 95343, USA
| | - Scott W Roy
- Department of Molecular and Cell Biology, University of California Merced, Merced, CA 95343, USA
- Department of Biology, San Francisco State University, San Francisco, CA 94132, USA
| |
Collapse
|
5
|
Tian J, Zhang J, Francis F. Large-Scale Identification and Characterization Analysis of VQ Family Genes in Plants, Especially Gymnosperms. Int J Mol Sci 2023; 24:14968. [PMID: 37834416 PMCID: PMC10573558 DOI: 10.3390/ijms241914968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/24/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023] Open
Abstract
VQ motif-containing (VQ) proteins are a class of transcription regulatory cofactors widely present in plants, playing crucial roles in growth and development, stress response, and defense. Although there have been some reports on the member identification and functional research of VQ genes in some plants, there is still a lack of large-scale identification and clear graphical presentation of their basic characterization information to help us to better understand this family. Especially in gymnosperms, the VQ family genes and their evolutionary relationships have not yet been reported. In this study, we systematically identified 2469 VQ genes from 56 plant species, including bryophytes, gymnosperms, and angiosperms, and analyzed their molecular and evolutionary features. We found that amino acids are only highly conserved in the VQ domain, while other positions are relatively variable; most VQ genes encode relatively small proteins and do not have introns. The GC content in Poaceae plants is the highest (up to 70%); these VQ proteins can be divided into nine subgroups. In particular, we analyzed the molecular characteristics, chromosome distribution, duplication events, and expression levels of VQ genes in three gymnosperms: Ginkgo biloba, Taxus chinensis, and Pinus tabuliformis. In gymnosperms, VQ genes are classified into 11 groups, with highly similar motifs in each group; most VQ proteins have less than 300 amino acids and are predicted to be located in nucleus. Tandem duplication is an important driving force for the expansion of the VQ gene family, and the evolutionary processes of most VQ genes and duplication events are relatively independent; some candidate VQ genes are preliminarily screened, and they are likely to be involved in plant growth and stress and defense responses. These results provide detailed information and powerful references for further understanding and utilizing the VQ family genes in various plants.
Collapse
Affiliation(s)
- Jinfu Tian
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium; (J.T.)
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Jiahui Zhang
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium; (J.T.)
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Frédéric Francis
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium; (J.T.)
| |
Collapse
|
6
|
Feng Y, Neme R, Beh LY, Chen X, Braun J, Lu MW, Landweber LF. Comparative genomics reveals insight into the evolutionary origin of massively scrambled genomes. eLife 2022; 11:e82979. [PMID: 36421078 PMCID: PMC9797194 DOI: 10.7554/elife.82979] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/03/2022] [Indexed: 11/25/2022] Open
Abstract
Ciliates are microbial eukaryotes that undergo extensive programmed genome rearrangement, a natural genome editing process that converts long germline chromosomes into smaller gene-rich somatic chromosomes. Three well-studied ciliates include Oxytricha trifallax, Tetrahymena thermophila, and Paramecium tetraurelia, but only the Oxytricha lineage has a massively scrambled genome, whose assembly during development requires hundreds of thousands of precisely programmed DNA joining events, representing the most complex genome dynamics of any known organism. Here we study the emergence of such complex genomes by examining the origin and evolution of discontinuous and scrambled genes in the Oxytricha lineage. This study compares six genomes from three species, the germline and somatic genomes for Euplotes woodruffi, Tetmemena sp., and the model ciliate O. trifallax. We sequenced, assembled, and annotated the germline and somatic genomes of E. woodruffi, which provides an outgroup, and the germline genome of Tetmemena sp. We find that the germline genome of Tetmemena is as massively scrambled and interrupted as Oxytricha's: 13.6% of its gene loci require programmed translocations and/or inversions, with some genes requiring hundreds of precise gene editing events during development. This study revealed that the earlier diverged spirotrich, E. woodruffi, also has a scrambled genome, but only roughly half as many loci (7.3%) are scrambled. Furthermore, its scrambled genes are less complex, together supporting the position of Euplotes as a possible evolutionary intermediate in this lineage, in the process of accumulating complex evolutionary genome rearrangements, all of which require extensive repair to assemble functional coding regions. Comparative analysis also reveals that scrambled loci are often associated with local duplications, supporting a gradual model for the origin of complex, scrambled genomes via many small events of DNA duplication and decay.
Collapse
Affiliation(s)
- Yi Feng
- Departments of Biochemistry and Molecular Biophysics and Biological Sciences, Columbia UniversityNew YorkUnited States
| | - Rafik Neme
- Departments of Biochemistry and Molecular Biophysics and Biological Sciences, Columbia UniversityNew YorkUnited States
- Department of Chemistry and Biology, Universidad del NorteBarranquillaColombia
| | - Leslie Y Beh
- Departments of Biochemistry and Molecular Biophysics and Biological Sciences, Columbia UniversityNew YorkUnited States
| | - Xiao Chen
- Pacific BiosciencesMenlo ParkUnited States
| | - Jasper Braun
- Department of Mathematics and Statistics, University of South FloridaTampaUnited States
| | - Michael W Lu
- Departments of Biochemistry and Molecular Biophysics and Biological Sciences, Columbia UniversityNew YorkUnited States
| | - Laura F Landweber
- Departments of Biochemistry and Molecular Biophysics and Biological Sciences, Columbia UniversityNew YorkUnited States
| |
Collapse
|
7
|
Tian G, Xiao G, Wu T, Zhou J, Xu W, Wang Y, Xia G, Wang M. Alteration of synonymous codon usage bias accompanies polyploidization in wheat. Front Genet 2022; 13:979902. [PMID: 36313462 PMCID: PMC9614214 DOI: 10.3389/fgene.2022.979902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
The diploidization of polyploid genomes is accompanied by genomic variation, including synonymous nucleotide substitutions that may lead to synonymous codon usage bias (SCUB). SCUB can mirror the evolutionary specialization of plants, but its effect on the formation of polyploidies is not well documented. We explored this issue here with hexaploid wheat and its progenitors. Synonymous codons (SCs) ending in either cytosine (NNC) or guanidine (NNG) were more frequent than those ending in either adenosine (NNA) or thymine (NNT), and the preference for NNC/G codons followed the increase in genome ploidy. The ratios between NNC/G and NNA/T codons gradually decreased in genes with more introns, and the difference in these ratios between wheat and its progenitors diminished with increasing ploidy. SCUB frequencies were heterogeneous among exons, and the bias preferred to NNA/T in more internal exons, especially for genes with more exons; while the preference did not appear to associate with ploidy. The SCUB alteration of the progenitors was different during the formation of hexaploid wheat, so that SCUB was the homogeneous among A, B and D subgenomes. DNA methylation-mediated conversion from cytosine to thymine weakened following the increase of genome ploidy, coinciding with the stronger bias for NNC/G SCs in the genome as a function of ploidy, suggesting that SCUB contribute to the epigenetic variation in hexaploid wheat. The patterns in SCUB mirrored the formation of hexaploid wheat, which provides new insight into genome shock-induced genetic variation during polyploidization. SCs representing non-neutral synonymous mutations can be used for genetic dissection and improvement of agricultural traits of wheat and other polyploidies.
Collapse
Affiliation(s)
- Geng Tian
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, China
| | - Guilian Xiao
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, China
| | - Tong Wu
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, China
| | - Junzhi Zhou
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, China
| | - Wenjing Xu
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, China
| | - Yanxia Wang
- Shijiazhuang Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Guangmin Xia
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, China
| | - Mengcheng Wang
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, China
- *Correspondence: Mengcheng Wang,
| |
Collapse
|
8
|
Huang Y, Liu J, Li J, Sun M, Duan Y. The heat shock protein 20 gene editing suppresses mycelial growth of Botryosphaeria dothidea and decreases its pathogenicity to postharvest apple fruits. Front Microbiol 2022; 13:930012. [PMID: 35966691 PMCID: PMC9363843 DOI: 10.3389/fmicb.2022.930012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/04/2022] [Indexed: 11/25/2022] Open
Abstract
Apple ring rot caused by Botryosphaeria dothidea is an essential and prevalent disease in the apple orchard in China. Our previous study demonstrated that dimethyl trisulfide (DT) from Chinese leek (Allium tuberosum) significantly suppressed the mycelial growth of B. dothidea and inhibited the incidence of apple ring rot postharvest. However, the mechanism underlying the inhibitory role of DT against B. dothidea is not fully understood. Comparing the control and the DT-treated B. dothidea mycelial transcriptomes revealed that heat shock protein 20 (Hsp20) strongly responded to DT treatment. This study identified four Hsp20 genes throughout the B. dothidea genome (BdHsp20_1-4). Each BdHsp20 gene had a conserved ACD with a variable N-terminal region and a short C-terminal extension. The segmental duplication event has contributed to the expansion of the BdHsp20 gene family. Compared to the wild-type strain, the CRISPR/Cas9 gene-edited BdHsp20 mutant (ΔBdHsp20) decreased the mycelial growth by 55.95% and reduced the disease symptom in postharvest apple fruit by 96.34%. However, the BdHsp20 complemented strain (ΔBdHsp20_C) significantly restored the growth and pathogenicity, which suggested that the BdHsp20 gene was closely involved in the growth and pathogenicity of B. dothidea. This study would accelerate the exploration of the molecular mechanism of the inhibitory effect of DT against B. dothidea and also provide new insights for the management of apple ring rot disease.
Collapse
Affiliation(s)
- Yonghong Huang
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Laboratory of Quality and Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao, China
- National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao), Qingdao, China
- Qingdao Key Laboratory of Modern Agriculture Quality and Safety Engineering, Qingdao, China
- *Correspondence: Yonghong Huang
| | - Junping Liu
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Laboratory of Quality and Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao, China
- National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao), Qingdao, China
- Qingdao Key Laboratory of Modern Agriculture Quality and Safety Engineering, Qingdao, China
| | - Jinghui Li
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Laboratory of Quality and Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao, China
- National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao), Qingdao, China
- Qingdao Key Laboratory of Modern Agriculture Quality and Safety Engineering, Qingdao, China
| | - Meng Sun
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Laboratory of Quality and Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao, China
- National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao), Qingdao, China
- Qingdao Key Laboratory of Modern Agriculture Quality and Safety Engineering, Qingdao, China
| | - Yanxin Duan
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Laboratory of Quality and Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao, China
- National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao), Qingdao, China
- Qingdao Key Laboratory of Modern Agriculture Quality and Safety Engineering, Qingdao, China
- Yanxin Duan
| |
Collapse
|
9
|
Abstract
BACKGROUND The evolution of spliceosomal introns has been widely studied among various eukaryotic groups. Researchers nearly reached the consensuses on the pattern and the mechanisms of intron losses and gains across eukaryotes. However, according to previous studies that analyzed a few genes or genomes, Nematoda seems to be an eccentric group. RESULTS Taking advantage of the recent accumulation of sequenced genomes, we extensively analyzed the intron losses and gains using 104 nematode genomes across all the five Clades of the phylum. Nematodes have a wide range of intron density, from less than one to more than nine per kbp coding sequence. The rates of intron losses and gains exhibit significant heterogeneity both across different nematode lineages and across different evolutionary stages of the same lineage. The frequency of intron losses far exceeds that of intron gains. Five pieces of evidence supporting the model of cDNA-mediated intron loss have been observed in ten Caenorhabditis species, the dominance of the precise intron losses, frequent loss of adjacent introns, high-level expression of the intron-lost genes, preferential losses of short introns, and the preferential losses of introns close to 3'-ends of genes. Like studies in most eukaryotic groups, we cannot find the source sequences for the limited number of intron gains detected in the Caenorhabditis genomes. CONCLUSIONS These results indicate that nematodes are a typical eukaryotic group rather than an outlier in intron evolution.
Collapse
Affiliation(s)
- Ming-Yue Ma
- Chongqing Key Laboratory of Big Data for Bio Intelligence, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China
| | - Ji Xia
- Chongqing Key Laboratory of Big Data for Bio Intelligence, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China
| | - Kun-Xian Shu
- Chongqing Key Laboratory of Big Data for Bio Intelligence, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China.
| | - Deng-Ke Niu
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering and Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
10
|
Cui X, Ma X, Prather K, Zhou K. Controlling protein expression by using intron-aided promoters in Saccharomyces cerevisiae. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Costly circRNAs, Effective Population Size, and the Origins of Molecular Complexity. J Mol Evol 2021; 89:598-600. [PMID: 34698879 DOI: 10.1007/s00239-021-10033-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/16/2021] [Indexed: 10/20/2022]
Abstract
While much excitement has attended the discovery and study of circular RNAs, a new study in Cell Reports suggests that most mammalian circRNAs are not only functionless, but in fact costly. Comparison across three species is also consistent with the influential but rarely tested Drift-Barrier Hypothesis of molecular complexity. According to this hypothesis, nonessential genomic elements are slightly deleterious elements that fix by genetic drift and, thus, are generally more abundant in species with small effective population sizes. I discuss the implications of these new results for the Drift-Barrier hypothesis. In particular, I note the distinction between two classes of genomic elements, based on whether they are created by 'standard' small-scale mutations (basepair substitutions, indels, etc.) or larger, more idiosyncratic mutations (segmental duplications, transposable element propagation, etc.) I suggest that the Drift-Barrier Hypothesis is likely to apply to the former class, but perhaps not the latter class.
Collapse
|
12
|
Lu YY, Krebber H. Nuclear mRNA Quality Control and Cytoplasmic NMD Are Linked by the Guard Proteins Gbp2 and Hrb1. Int J Mol Sci 2021; 22:ijms222011275. [PMID: 34681934 PMCID: PMC8541090 DOI: 10.3390/ijms222011275] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/13/2021] [Accepted: 10/17/2021] [Indexed: 12/23/2022] Open
Abstract
Pre-mRNA splicing is critical for cells, as defects in this process can lead to altered open reading frames and defective proteins, potentially causing neurodegenerative diseases and cancer. Introns are removed in the nucleus and splicing is documented by the addition of exon-junction-complexes (EJCs) at exon-exon boundaries. This “memory” of splicing events is important for the ribosome, which translates the RNAs in the cytoplasm. In case a stop codon was detected before an EJC, translation is blocked and the RNA is eliminated by the nonsense-mediated decay (NMD). In the model organism Saccharomyces cerevisiae, two guard proteins, Gbp2 and Hrb1, have been identified as nuclear quality control factors for splicing. In their absence, intron-containing mRNAs leak into the cytoplasm. Their presence retains transcripts until the process is completed and they release the mRNAs by recruitment of the export factor Mex67. On transcripts that experience splicing problems, these guard proteins recruit the nuclear RNA degradation machinery. Interestingly, they continue their quality control function on exported transcripts. They support NMD by inhibiting translation and recruiting the cytoplasmic degradation factors. In this way, they link the nuclear and cytoplasmic quality control systems. These discoveries are also intriguing for humans, as homologues of these guard proteins are present also in multicellular organisms. Here, we provide an overview of the quality control mechanisms of pre-mRNA splicing, and present Gbp2 and Hrb1, as well as their human counterparts, as important players in these pathways.
Collapse
|
13
|
Onishi R, Yamanaka S, Siomi MC. piRNA- and siRNA-mediated transcriptional repression in Drosophila, mice, and yeast: new insights and biodiversity. EMBO Rep 2021; 22:e53062. [PMID: 34347367 PMCID: PMC8490990 DOI: 10.15252/embr.202153062] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/10/2021] [Accepted: 07/19/2021] [Indexed: 12/26/2022] Open
Abstract
The PIWI‐interacting RNA (piRNA) pathway acts as a self‐defense mechanism against transposons to maintain germline genome integrity. Failures in the piRNA pathway cause DNA damage in the germline genome, disturbing inheritance of “correct” genetic information by the next generations and leading to infertility. piRNAs execute transposon repression in two ways: degrading their RNA transcripts and compacting the genomic loci via heterochromatinization. The former event is mechanistically similar to siRNA‐mediated RNA cleavage that occurs in the cytoplasm and has been investigated in many species including nematodes, fruit flies, and mammals. The latter event seems to be mechanistically parallel to siRNA‐centered kinetochore assembly and subsequent chromosome segregation, which has so far been studied particularly in fission yeast. Despite the interspecies conservations, the overall schemes of the nuclear events show clear biodiversity across species. In this review, we summarize the recent progress regarding piRNA‐mediated transcriptional silencing in Drosophila and discuss the biodiversity by comparing it with the equivalent piRNA‐mediated system in mice and the siRNA‐mediated system in fission yeast.
Collapse
Affiliation(s)
- Ryo Onishi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Soichiro Yamanaka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Mikiko C Siomi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
14
|
Lim CS, Weinstein BN, Roy SW, Brown CM. Analysis of fungal genomes reveals commonalities of intron gain or loss and functions in intron-poor species. Mol Biol Evol 2021; 38:4166-4186. [PMID: 33772558 PMCID: PMC8476143 DOI: 10.1093/molbev/msab094] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Previous evolutionary reconstructions have concluded that early eukaryotic ancestors including both the last common ancestor of eukaryotes and of all fungi had intron-rich genomes. By contrast, some extant eukaryotes have few introns, underscoring the complex histories of intron–exon structures, and raising the question as to why these few introns are retained. Here, we have used recently available fungal genomes to address a variety of questions related to intron evolution. Evolutionary reconstruction of intron presence and absence using 263 diverse fungal species supports the idea that massive intron reduction through intron loss has occurred in multiple clades. The intron densities estimated in various fungal ancestors differ from zero to 7.6 introns per 1 kb of protein-coding sequence. Massive intron loss has occurred not only in microsporidian parasites and saccharomycetous yeasts, but also in diverse smuts and allies. To investigate the roles of the remaining introns in highly-reduced species, we have searched for their special characteristics in eight intron-poor fungi. Notably, the introns of ribosome-associated genes RPL7 and NOG2 have conserved positions; both intron-containing genes encoding snoRNAs. Furthermore, both the proteins and snoRNAs are involved in ribosome biogenesis, suggesting that the expression of the protein-coding genes and noncoding snoRNAs may be functionally coordinated. Indeed, these introns are also conserved in three-quarters of fungi species. Our study shows that fungal introns have a complex evolutionary history and underappreciated roles in gene expression.
Collapse
Affiliation(s)
- Chun Shen Lim
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Brooke N Weinstein
- Quantitative & Systems Biology, School of Natural Sciences, University of California-Merced, Merced, CA, USA.,Department of Biology, San Francisco State University, San Francisco, CA, USA
| | - Scott W Roy
- Quantitative & Systems Biology, School of Natural Sciences, University of California-Merced, Merced, CA, USA.,Department of Biology, San Francisco State University, San Francisco, CA, USA
| | - Chris M Brown
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
15
|
Cai L, Arnold BJ, Xi Z, Khost DE, Patel N, Hartmann CB, Manickam S, Sasirat S, Nikolov LA, Mathews S, Sackton TB, Davis CC. Deeply Altered Genome Architecture in the Endoparasitic Flowering Plant Sapria himalayana Griff. (Rafflesiaceae). Curr Biol 2021; 31:1002-1011.e9. [DOI: 10.1016/j.cub.2020.12.045] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/11/2020] [Accepted: 12/23/2020] [Indexed: 12/18/2022]
|
16
|
Poverennaya IV, Roytberg MA. Spliceosomal Introns: Features, Functions, and Evolution. BIOCHEMISTRY (MOSCOW) 2021; 85:725-734. [PMID: 33040717 DOI: 10.1134/s0006297920070019] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Spliceosomal introns, which have been found in most eukaryotic genes, are non-coding sequences excised from pre-mRNAs by a special complex called spliceosome during mRNA splicing. Introns occur in both protein- and RNA-coding genes and can be found in coding and untranslated gene regions. Because intron sequences vary greatly due to a high rate of polymorphism, the functions of intron had been for a long time associated only with alternative splicing, while intron evolution had been viewed not as an evolution of an individual genomic element, but rather considered within a framework of the evolution of the gene intron-exon structure. Here, we review the theories of intron origin, evolutionary events in the exon-intron structure, such as intron gain, loss, and sliding, intron functions known to date, and mechanisms by which changes in the intron features (length and phase) can affect the regulation of gene-mediated processes.
Collapse
Affiliation(s)
- I V Poverennaya
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991, Moscow, Russia. .,Institute of Mathematical Problems in Biology, Keldysh Branch of Institute of Applied Mathematics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - M A Roytberg
- Institute of Mathematical Problems in Biology, Keldysh Branch of Institute of Applied Mathematics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.,Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia.,Higher School of Economics, Moscow, 101000, Russia
| |
Collapse
|
17
|
Liu B, Iwata-Otsubo A, Yang D, Baker RL, Liang C, Jackson SA, Liu S, Ma J, Zhao M. Analysis of CACTA transposase genes unveils the mechanism of intron loss and distinct small RNA silencing pathways underlying divergent evolution of Brassica genomes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:34-48. [PMID: 33098166 DOI: 10.1111/tpj.15037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/19/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
In comparison with retrotransposons, DNA transposons make up a smaller proportion of most plant genomes. However, these elements are often proximal to genes to affect gene expression depending on the activity of the transposons, which is largely reflected by the activity of the transposase genes. Here, we show that three AT-rich introns were retained in the TNP2-like transposase genes of the Bot1 (Brassica oleracea transposon 1) CACTA transposable elements in Brassica oleracea, but were lost in the majority of the Bot1 elements in Brassica rapa. A recent burst of transposition of Bot1 was observed in B. oleracea, but not in B. rapa. This burst of transposition is likely related to the activity of the TNP2-like transposase genes as the expression values of the transposase genes were higher in B. oleracea than in B. rapa. In addition, distinct populations of small RNAs (21, 22 and 24 nt) were detected from the Bot1 elements in B. oleracea, but the vast majority of the small RNAs from the Bot1 elements in B. rapa are 24 nt in length. We hypothesize that the different activity of the TNP2-like transposase genes is likely associated with the three introns, and intron loss is likely reverse transcriptase mediated. Furthermore, we propose that the Bot1 family is currently undergoing silencing in B. oleracea, but has already been silenced in B. rapa. Taken together, our data provide new insights into the differentiation of transposons and their role in the asymmetric evolution of these two closely related Brassica species.
Collapse
Affiliation(s)
- Beibei Liu
- Department of Biology, Miami University, Oxford, OH, 45056, USA
| | - Aiko Iwata-Otsubo
- Center for Applied Genetic Technologies, University of Georgia, 111 Riverbend Road, Athens, GA, 30602,, USA
| | - Diya Yang
- Department of Biology, Miami University, Oxford, OH, 45056, USA
| | - Robert L Baker
- Department of Biology, Miami University, Oxford, OH, 45056, USA
| | - Chun Liang
- Department of Biology, Miami University, Oxford, OH, 45056, USA
| | - Scott A Jackson
- Center for Applied Genetic Technologies, University of Georgia, 111 Riverbend Road, Athens, GA, 30602,, USA
| | - Shengyi Liu
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Jianxin Ma
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Meixia Zhao
- Department of Biology, Miami University, Oxford, OH, 45056, USA
| |
Collapse
|
18
|
Heckel DG. Does size really matter? eLife 2020; 9:64483. [PMID: 33289629 PMCID: PMC7723403 DOI: 10.7554/elife.64483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 12/04/2020] [Indexed: 11/16/2022] Open
Abstract
Analysis of the smallest known arthropod genome reveals a mechanism for genome reduction that appears to be driven by a specialized ecological interaction with plants.
Collapse
Affiliation(s)
- David G Heckel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
19
|
Greenhalgh R, Dermauw W, Glas JJ, Rombauts S, Wybouw N, Thomas J, Alba JM, Pritham EJ, Legarrea S, Feyereisen R, Van de Peer Y, Van Leeuwen T, Clark RM, Kant MR. Genome streamlining in a minute herbivore that manipulates its host plant. eLife 2020; 9:56689. [PMID: 33095158 PMCID: PMC7738191 DOI: 10.7554/elife.56689] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022] Open
Abstract
The tomato russet mite, Aculops lycopersici, is among the smallest animals on earth. It is a worldwide pest on tomato and can potently suppress the host's natural resistance. We sequenced its genome, the first of an eriophyoid, and explored whether there are genomic features associated with the mite's minute size and lifestyle. At only 32.5 Mb, the genome is the smallest yet reported for any arthropod and, reminiscent of microbial eukaryotes, exceptionally streamlined. It has few transposable elements, tiny intergenic regions, and is remarkably intron-poor, as more than 80% of coding genes are intronless. Furthermore, in accordance with ecological specialization theory, this defense-suppressing herbivore has extremely reduced environmental response gene families such as those involved in chemoreception and detoxification. Other losses associate with this species' highly derived body plan. Our findings accelerate the understanding of evolutionary forces underpinning metazoan life at the limits of small physical and genome size.
Collapse
Affiliation(s)
- Robert Greenhalgh
- School of Biological Sciences, University of Utah, Salt Lake City, United States
| | - Wannes Dermauw
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Joris J Glas
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Stephane Rombauts
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Nicky Wybouw
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Jainy Thomas
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, United States
| | - Juan M Alba
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Ellen J Pritham
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, United States
| | - Saioa Legarrea
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - René Feyereisen
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.,Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,Center for Plant Systems Biology, VIB, Ghent, Belgium.,Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Thomas Van Leeuwen
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Richard M Clark
- School of Biological Sciences, University of Utah, Salt Lake City, United States.,Henry Eyring Center for Cell and Genome Science, University of Utah, Salt Lake City, United States
| | - Merijn R Kant
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
20
|
Liu S, Wang Z, Wang H, Su Y, Wang T. Patterns and Rates of Plastid rps12 Gene Evolution Inferred in a Phylogenetic Context using Plastomic Data of Ferns. Sci Rep 2020; 10:9394. [PMID: 32523061 PMCID: PMC7287138 DOI: 10.1038/s41598-020-66219-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 05/14/2020] [Indexed: 12/14/2022] Open
Abstract
The trans-splicing rps12 gene of fern plastomes (plastid genomes) exhibits a unique structure owing to its variations in intragenic exon location and intron content, and thus, it provides an excellent model system for examining the effect of plastid gene structure on rates and patterns of molecular evolution. In this study, 16 complete fern plastome sequences were newly generated via the Illumina HiSeq sequencing platform. We reconstructed the phylogeny of ferns and inferred the patterns and rates of plastid rps12 gene evolution in a phylogenetic context by combining these plastome data with those of previously published fern species. We uncovered the diversity of fern plastome evolution by characterizing the structures of these genomes and obtained a highly supported phylogenetic framework for ferns. Furthermore, our results revealed molecular evolutionary patterns that were completely different from the patterns revealed in previous studies. There were significant differences in the patterns and rates of nucleotide substitutions in both intron-containing and intron-less rps12 alleles. Rate heterogeneity between single-copy (SC) and inverted repeat (IR) exons was evident. Unexpectedly, however, IR exons exhibited significantly higher synonymous substitution rates (dS) than SC exons, a pattern that contrasts the regional effect responsible for decreased rates of nucleotide substitutions in IRs. Our results reveal that structural changes in plastid genes have important effects on evolutionary rates, and we propose possible mechanisms to explain the variations in the nucleotide substitution rates of this unusual gene.
Collapse
Affiliation(s)
- Shanshan Liu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zhen Wang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Hui Wang
- Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, 518004, China
| | - Yingjuan Su
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China. .,Research Institute of Sun Yat-sen University in Shenzhen, Shenzhen, 518057, China.
| | - Ting Wang
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
21
|
Kan SL, Shen TT, Gong P, Ran JH, Wang XQ. The complete mitochondrial genome of Taxus cuspidata (Taxaceae): eight protein-coding genes have transferred to the nuclear genome. BMC Evol Biol 2020; 20:10. [PMID: 31959109 PMCID: PMC6971862 DOI: 10.1186/s12862-020-1582-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/13/2020] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Gymnosperms represent five of the six lineages of seed plants. However, most sequenced plant mitochondrial genomes (mitogenomes) have been generated for angiosperms, whereas mitogenomic sequences have been generated for only six gymnosperms. In particular, complete mitogenomes are available for all major seed plant lineages except Conifer II (non-Pinaceae conifers or Cupressophyta), an important lineage including six families, which impedes a comprehensive understanding of the mitogenomic diversity and evolution in gymnosperms. RESULTS Here, we report the complete mitogenome of Taxus cuspidata in Conifer II. In comparison with previously released gymnosperm mitogenomes, we found that the mitogenomes of Taxus and Welwitschia have lost many genes individually, whereas all genes were identified in the mitogenomes of Cycas, Ginkgo and Pinaceae. Multiple tRNA genes and introns also have been lost in some lineages of gymnosperms, similar to the pattern observed in angiosperms. In general, gene clusters could be less conserved in gymnosperms than in angiosperms. Moreover, fewer RNA editing sites were identified in the Taxus and Welwitschia mitogenomes than in other mitogenomes, which could be correlated with fewer introns and frequent gene losses in these two species. CONCLUSIONS We have sequenced the Taxus cuspidata mitogenome, and compared it with mitogenomes from the other four gymnosperm lineages. The results revealed the diversity in size, structure, gene and intron contents, foreign sequences, and mutation rates of gymnosperm mitogenomes, which are different from angiosperm mitogenomes.
Collapse
Affiliation(s)
- Sheng-Long Kan
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ting-Ting Shen
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Ping Gong
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Jin-Hua Ran
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xiao-Quan Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
22
|
Parenteau J, Abou Elela S. Introns: Good Day Junk Is Bad Day Treasure. Trends Genet 2019; 35:923-934. [PMID: 31668856 DOI: 10.1016/j.tig.2019.09.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/28/2019] [Accepted: 09/19/2019] [Indexed: 02/01/2023]
Abstract
Introns are ubiquitous in eukaryotic transcripts. They are often viewed as junk RNA but the huge energetic burden of transcribing, removing, and degrading them suggests a significant evolutionary advantage. Ostensibly, an intron functions within the host pre-mRNA to regulate its splicing, transport, and degradation. However, recent studies have revealed an entirely new class of trans-acting functions where the presence of intronic RNA in the cell impacts the expression of other genes in trans. Here, we review possible new mechanisms of intron functions, with a focus on the role of yeast introns in regulating the cell growth response to starvation.
Collapse
Affiliation(s)
- Julie Parenteau
- Département de microbiologie et d'infectiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Sherif Abou Elela
- Département de microbiologie et d'infectiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada.
| |
Collapse
|
23
|
Lipka A, Paukszto L, Majewska M, Jastrzebski JP, Panasiewicz G, Szafranska B. De novo characterization of placental transcriptome in the Eurasian beaver (Castor fiber L.). Funct Integr Genomics 2019; 19:421-435. [PMID: 30778795 PMCID: PMC6456477 DOI: 10.1007/s10142-019-00663-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 04/17/2018] [Accepted: 02/04/2019] [Indexed: 12/11/2022]
Abstract
Our pioneering data provide the first comprehensive view of placental transcriptome of the beaver during single and multiple gestation. RNA-Seq and a de novo approach allowed global pattern identification of C. fiber placental transcriptome. Non-redundant beaver transcriptome comprised 211,802,336 nt of placental transcripts, grouped into 128,459 contigs and clustered into 83,951 unigenes. An Ensembl database search revealed 14,487, 14,994, 15,004, 15,267 and 15,892 non-redundant homologs for Ictidomys tridecemlineatus, Rattus norvegicus, Mus musculus, Homo sapiens and Castor canadensis, respectively. Due to expression levels, the identified transcripts were divided into two sets: non-redundant and highly expressed (FPKM > 2 in at least three examined samples), analysed simultaneously. Among 17,009 highly expressed transcripts, 12,147 had BLASTx hits. GO annotations (175,882) were found for 4301 transcripts that were assigned to biological process (16,386), cellular component (9149) and molecular function (8338) categories; 666 unigenes were also classified into 122 KEGG pathways. Comprehensive analyses were performed for 411 and 3078 highly expressed transcripts annotated with a list of processes linked to ‘placenta’ (31 GO terms) or ‘embryo’ (324 GO terms), respectively. Among transcripts with entire CDS annotation, 281 (placenta) and 34 (embryo) alternative splicing events were identified. A total of 8499 putative SNVs (~ 6.2 SNV/transcript and 1.7 SNV/1 kb) were predicted with 0.1 minimum frequency and maximum variant quality (p value 10e−9). Our results provide a broad-based characterization of the global expression pattern of the beaver placental transcriptome. Enhancement of transcriptomic resources for C. fiber should improve understanding of crucial pathways relevant to proper placenta development and successful reproduction.
Collapse
Affiliation(s)
- Aleksandra Lipka
- Department of Gynecology and Obstetrics, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Niepodległości Str 44, 10-045, Olsztyn, Poland.
| | - Lukasz Paukszto
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego Str 1A, 10-719, Olsztyn, Poland
| | - Marta Majewska
- Department of Human Physiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Warszawska Str 30, 10-082, Olsztyn, Poland
| | - Jan Pawel Jastrzebski
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego Str 1A, 10-719, Olsztyn, Poland
| | - Grzegorz Panasiewicz
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego Str 1A, 10-719 Olsztyn, Poland
| | - Bozena Szafranska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego Str 1A, 10-719 Olsztyn, Poland
| |
Collapse
|
24
|
Choudhury TP, Gupta L, Kumar S. Identification, characterization and expression analysis of Anopheles stephensi double peroxidase. Acta Trop 2019; 190:210-219. [PMID: 30352205 DOI: 10.1016/j.actatropica.2018.10.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 10/13/2018] [Accepted: 10/14/2018] [Indexed: 11/28/2022]
Abstract
Peroxidases catalyze the reduction of peroxides and that, in turn, oxidize various substrates. They have been widely reported to play an important role in mosquito innate immunity against various pathogens. Here, we have characterized double heme peroxidase (AsDBLOX) gene from the Indian malaria vector Anopheles stephensi. It is a true ortholog of An. gambiae DBLOX. This 4209 bp AsDBLOX gene encodes for a protein of 1402 amino acids that has two duplicated peroxidase domains, domain I (from amino acid 61 to 527) and domain II (from amino acid 714 to 1252). The first domain has only substrate binding sites and lacks all other motifs of a functional heme peroxidase (e.g. heme binding site, calcium binding site and homodimer interface). Instead, it has two integrin binding motifs-LDV (Leu-Asp-Val) and RGD (Arg-Gly-Asp). The second peroxidase domain, however, has all the features of a complete heme peroxidase along with an integrin binding motif LDI (Leu-Asp-Ile). Thus, AsDBLOX gene is a unique type of peroxinectin as these groups of proteins are characterized by integrin binding motifs along with a heme peroxidase domain. We also observed that the AsDBLOX gene is expressed in all the life cycle stages of mosquito and is highly induced in the pupal stage of development which indicates its possible role in development.
Collapse
Affiliation(s)
- Tania Pal Choudhury
- Molecular Parasitology and Vector Biology Laboratory, Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, Rajasthan, India
| | - Lalita Gupta
- Molecular Parasitology and Vector Biology Laboratory, Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, Rajasthan, India; Department of Zoology, Ch. Bansi Lal University, Bhiwani, Haryana, India
| | - Sanjeev Kumar
- Molecular Parasitology and Vector Biology Laboratory, Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, Rajasthan, India; Department of Biotechnology, Ch. Bansi Lal University, Bhiwani, Haryana, India.
| |
Collapse
|
25
|
Majewska M, Lipka A, Paukszto L, Jastrzebski JP, Gowkielewicz M, Jozwik M, Majewski MK. Preliminary RNA-Seq Analysis of Long Non-Coding RNAs Expressed in Human Term Placenta. Int J Mol Sci 2018; 19:ijms19071894. [PMID: 29954144 PMCID: PMC6073670 DOI: 10.3390/ijms19071894] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 06/24/2018] [Indexed: 12/20/2022] Open
Abstract
Development of particular structures and proper functioning of the placenta are under the influence of sophisticated pathways, controlled by the expression of substantial genes that are additionally regulated by long non-coding RNAs (lncRNAs). To date, the expression profile of lncRNA in human term placenta has not been fully established. This study was conducted to characterize the lncRNA expression profile in human term placenta and to verify whether there are differences in the transcriptomic profile between the sex of the fetus and pregnancy multiplicity. RNA-Seq data were used to profile, quantify, and classify lncRNAs in human term placenta. The applied methodology enabled detection of the expression of 4463 isoforms from 2899 annotated lncRNA loci, plus 990 putative lncRNA transcripts from 607 intergenic regions. Those placentally expressed lncRNAs displayed features such as shorter transcript length, longer exon length, fewer exons, and lower expression levels compared to messenger RNAs (mRNAs). Among all placental transcripts, 175,268 were classified as mRNAs and 15,819 as lncRNAs, and 56,727 variants were discovered within unannotated regions. Five differentially expressed lncRNAs (HAND2-AS1, XIST, RP1-97J1.2, AC010084.1, TTTY15) were identified by a sex-bias comparison. Splicing events were detected within 37 genes and 4 lncRNA loci. Functional analysis of cis-related potential targets for lncRNAs identified 2021 enriched genes. It is presumed that the obtained data will expand the current knowledge of lncRNAs in placenta and human non-coding catalogs, making them more contemporary and specific.
Collapse
Affiliation(s)
- Marta Majewska
- Department of Human Physiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland.
| | - Aleksandra Lipka
- Department of Gynecology and Obstetrics, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-045 Olsztyn, Poland.
| | - Lukasz Paukszto
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland.
| | - Jan Pawel Jastrzebski
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland.
| | - Marek Gowkielewicz
- Department of Gynecology and Obstetrics, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-045 Olsztyn, Poland.
| | - Marcin Jozwik
- Department of Gynecology and Obstetrics, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-045 Olsztyn, Poland.
| | - Mariusz Krzysztof Majewski
- Department of Human Physiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland.
| |
Collapse
|
26
|
Wu B, Macielog AI, Hao W. Origin and Spread of Spliceosomal Introns: Insights from the Fungal Clade Zymoseptoria. Genome Biol Evol 2018; 9:2658-2667. [PMID: 29048531 PMCID: PMC5647799 DOI: 10.1093/gbe/evx211] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2017] [Indexed: 12/16/2022] Open
Abstract
Spliceosomal introns are a key feature of eukaryote genome architecture and have been proposed to originate from selfish group II introns from an endosymbiotic bacterium, that is, the ancestor of mitochondria. However, the mechanisms underlying the wide spread of spliceosomal introns across eukaryotic genomes have been obscure. In this study, we characterize the dynamic evolution of spliceosomal introns in the fungal genus Zymoseptoria at different evolutionary scales, that is, within a genome, among conspecific strains within species, and between different species. Within the genome, spliceosomal introns can proliferate in unrelated genes and intergenic regions. Among conspecific strains, spliceosomal introns undergo rapid turnover (gains and losses) and frequent sequence exchange between geographically distinct strains. Furthermore, spliceosomal introns could undergo introgression between distinct species, which can further promote intron invasion and proliferation. The dynamic invasion and proliferation processes of spliceosomal introns resemble the life cycles of mobile selfish (group I/II) introns, and these intron movements, at least in part, account for the dramatic processes of intron gain and intron loss during eukaryotic evolution.
Collapse
Affiliation(s)
- Baojun Wu
- Department of Biology, Clark University, Worcester, MA, USA
| | | | - Weilong Hao
- Department of Biological Sciences, Wayne State University
| |
Collapse
|
27
|
Jeffares DC. The natural diversity and ecology of fission yeast. Yeast 2018; 35:253-260. [PMID: 29084364 DOI: 10.1002/yea.3293] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 10/12/2017] [Accepted: 10/13/2017] [Indexed: 12/17/2022] Open
Abstract
While the fission yeast is a powerful model of eukaryote biology, there have been few studies of quantitative genetics, phenotypic or genetic diversity. Here I survey the small collection of fission yeast diversity research. I discuss what we can infer about the ecology and origins of Schizosaccharomyces pombe from microbiology field studies and the few strains that have been collected.
Collapse
Affiliation(s)
- Daniel C Jeffares
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| |
Collapse
|
28
|
Comparative Analysis of Four Calypogeia Species Revealed Unexpected Change in Evolutionarily-Stable Liverwort Mitogenomes. Genes (Basel) 2017; 8:genes8120395. [PMID: 29257096 PMCID: PMC5748713 DOI: 10.3390/genes8120395] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 12/08/2017] [Accepted: 12/12/2017] [Indexed: 11/17/2022] Open
Abstract
Liverwort mitogenomes are considered to be evolutionarily stable. A comparative analysis of four Calypogeia species revealed differences compared to previously sequenced liverwort mitogenomes. Such differences involve unexpected structural changes in the two genes, cox1 and atp1, which have lost three and two introns, respectively. The group I introns in the cox1 gene are proposed to have been lost by two-step localized retroprocessing, whereas one-step retroprocessing could be responsible for the disappearance of the group II introns in the atp1 gene. These cases represent the first identified losses of introns in mitogenomes of leafy liverworts (Jungermanniopsida) contrasting the stability of mitochondrial gene order with certain changes in the gene content and intron set in liverworts.
Collapse
|
29
|
Feng L, Wang G, Hamilton EP, Xiong J, Yan G, Chen K, Chen X, Dui W, Plemens A, Khadr L, Dhanekula A, Juma M, Dang HQ, Kapler GM, Orias E, Miao W, Liu Y. A germline-limited piggyBac transposase gene is required for precise excision in Tetrahymena genome rearrangement. Nucleic Acids Res 2017; 45:9481-9502. [PMID: 28934495 PMCID: PMC5766162 DOI: 10.1093/nar/gkx652] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 07/15/2017] [Indexed: 12/20/2022] Open
Abstract
Developmentally programmed genome rearrangement accompanies differentiation of the silent germline micronucleus into the transcriptionally active somatic macronucleus in the ciliated protozoan Tetrahymena thermophila. Internal eliminated sequences (IES) are excised, followed by rejoining of MAC-destined sequences, while fragmentation occurs at conserved chromosome breakage sequences, generating macronuclear chromosomes. Some macronuclear chromosomes, referred to as non-maintained chromosomes (NMC), are lost soon after differentiation. Large NMC contain genes implicated in development-specific roles. One such gene encodes the domesticated piggyBac transposase TPB6, required for heterochromatin-dependent precise excision of IES residing within exons of functionally important genes. These conserved exonic IES determine alternative transcription products in the developing macronucleus; some even contain free-standing genes. Examples of precise loss of some exonic IES in the micronucleus and retention of others in the macronucleus of related species suggest an evolutionary analogy to introns. Our results reveal that germline-limited sequences can encode genes with specific expression patterns and development-related functions, which may be a recurring theme in eukaryotic organisms experiencing programmed genome rearrangement during germline to soma differentiation.
Collapse
Affiliation(s)
- Lifang Feng
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA.,Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.,School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Guangying Wang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Eileen P Hamilton
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | - Jie Xiong
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Guanxiong Yan
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Kai Chen
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiao Chen
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Wen Dui
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Amber Plemens
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lara Khadr
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Arjune Dhanekula
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mina Juma
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hung Quang Dang
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, College Station, TX 77843, USA
| | - Geoffrey M Kapler
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, College Station, TX 77843, USA
| | - Eduardo Orias
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | - Wei Miao
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yifan Liu
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
30
|
Chang N, Sun Q, Hu J, An C, Gao AH. Large Introns of 5 to 10 Kilo Base Pairs Can Be Spliced out in Arabidopsis. Genes (Basel) 2017; 8:genes8080200. [PMID: 28800125 PMCID: PMC5575664 DOI: 10.3390/genes8080200] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 08/04/2017] [Accepted: 08/07/2017] [Indexed: 11/22/2022] Open
Abstract
Most of the eukaryotic genes contain introns, which are removed from the pre-RNA during RNA processing. In contrast to the introns in animals, which are usually several kilo base pairs (kb), those in plants generally are very small, which are mostly from dozens of base pairs (bp) to a few hundred bp. According to annotation version 10.0 of the genome of Arabidopsis thaliana, there are 127,854 introns in the nuclear genes; 99.23% of them are less than 1 kb, and only 16 introns are annotated to be larger than 5 kb, which are extremely large introns (ELI) in Arabidopsis. To learn whether these introns are true introns or not and how large introns could be in Arabidopsis, RT-PCR analysis of genes containing these ELIs were carried out. The results indicated that some of these putative introns are indeed ELIs. These ELIs are mainly composed of transposons or transposable elements (TE), excepting one, whose counterparts are also very long in diverse plant species. Thus, this study confirms the existence of introns larger than 5 kb or even 10 kb in Arabidopsis.
Collapse
Affiliation(s)
- Ning Chang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Qingqing Sun
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Jinglei Hu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Chuanjing An
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - And Hongbo Gao
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
31
|
Catania F. From intronization to intron loss: How the interplay between mRNA-associated processes can shape the architecture and the expression of eukaryotic genes. Int J Biochem Cell Biol 2017; 91:136-144. [PMID: 28673893 DOI: 10.1016/j.biocel.2017.06.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 06/25/2017] [Accepted: 06/30/2017] [Indexed: 12/29/2022]
Abstract
Transcription-coupled processes such as capping, splicing, and cleavage/polyadenylation participate in the journey from genes to proteins. Although they are traditionally thought to serve only as steps in the generation of mature mRNAs, a synthesis of available data indicates that these processes could also act as a driving force for the evolution of eukaryotic genes. A theoretical framework for how mRNA-associated processes may shape gene structure and expression has recently been proposed. Factors that promote splicing and cleavage/polyadenylation in this framework compete for access to overlapping or neighboring signals throughout the transcription cycle. These antagonistic interactions allow mechanisms for intron gain and splice site recognition as well as common trends in eukaryotic gene structure and expression to be coherently integrated. Here, I extend this framework further. Observations that largely (but not exclusively) revolve around the formation of DNA-RNA hybrid structures, called R loops, and promoter directionality are integrated. Additionally, the interplay between splicing factors and cleavage/polyadenylation factors is theorized to also affect the formation of intragenic DNA double-stranded breaks thereby contributing to intron loss. The most notable prediction in this proposition is that RNA molecules can mediate intron loss by serving as a template to repair DNA double-stranded breaks. The framework presented here leverages a vast body of empirical observations, logically extending previous suggestions, and generating verifiable predictions to further substantiate the view that the intracellular environment plays an active role in shaping the structure and the expression of eukaryotic genes.
Collapse
Affiliation(s)
- Francesco Catania
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstraße 1, 48149 Münster, Germany.
| |
Collapse
|
32
|
Casola C, Betrán E. The Genomic Impact of Gene Retrocopies: What Have We Learned from Comparative Genomics, Population Genomics, and Transcriptomic Analyses? Genome Biol Evol 2017; 9:1351-1373. [PMID: 28605529 PMCID: PMC5470649 DOI: 10.1093/gbe/evx081] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2017] [Indexed: 02/07/2023] Open
Abstract
Gene duplication is a major driver of organismal evolution. Gene retroposition is a mechanism of gene duplication whereby a gene's transcript is used as a template to generate retroposed gene copies, or retrocopies. Intriguingly, the formation of retrocopies depends upon the enzymatic machinery encoded by retrotransposable elements, genomic parasites occurring in the majority of eukaryotes. Most retrocopies are depleted of the regulatory regions found upstream of their parental genes; therefore, they were initially considered transcriptionally incompetent gene copies, or retropseudogenes. However, examples of functional retrocopies, or retrogenes, have accumulated since the 1980s. Here, we review what we have learned about retrocopies in animals, plants and other eukaryotic organisms, with a particular emphasis on comparative and population genomic analyses complemented with transcriptomic datasets. In addition, these data have provided information about the dynamics of the different "life cycle" stages of retrocopies (i.e., polymorphic retrocopy number variants, fixed retropseudogenes and retrogenes) and have provided key insights into the retroduplication mechanisms, the patterns and evolutionary forces at work during the fixation process and the biological function of retrogenes. Functional genomic and transcriptomic data have also revealed that many retropseudogenes are transcriptionally active and a biological role has been experimentally determined for many. Finally, we have learned that not only non-long terminal repeat retroelements but also long terminal repeat retroelements play a role in the emergence of retrocopies across eukaryotes. This body of work has shown that mRNA-mediated duplication represents a widespread phenomenon that produces an array of new genes that contribute to organismal diversity and adaptation.
Collapse
Affiliation(s)
- Claudio Casola
- Department of Ecosystem Science and Management, Texas A&M University, TX
| | - Esther Betrán
- Department of Biology, University of Texas at Arlington, Arlington, TX
| |
Collapse
|
33
|
Protein-Coding Genes' Retrocopies and Their Functions. Viruses 2017; 9:v9040080. [PMID: 28406439 PMCID: PMC5408686 DOI: 10.3390/v9040080] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 04/07/2017] [Accepted: 04/11/2017] [Indexed: 12/11/2022] Open
Abstract
Transposable elements, often considered to be not important for survival, significantly contribute to the evolution of transcriptomes, promoters, and proteomes. Reverse transcriptase, encoded by some transposable elements, can be used in trans to produce a DNA copy of any RNA molecule in the cell. The retrotransposition of protein-coding genes requires the presence of reverse transcriptase, which could be delivered by either non-long terminal repeat (non-LTR) or LTR transposons. The majority of these copies are in a state of “relaxed” selection and remain “dormant” because they are lacking regulatory regions; however, many become functional. In the course of evolution, they may undergo subfunctionalization, neofunctionalization, or replace their progenitors. Functional retrocopies (retrogenes) can encode proteins, novel or similar to those encoded by their progenitors, can be used as alternative exons or create chimeric transcripts, and can also be involved in transcriptional interference and participate in the epigenetic regulation of parental gene expression. They can also act in trans as natural antisense transcripts, microRNA (miRNA) sponges, or a source of various small RNAs. Moreover, many retrocopies of protein-coding genes are linked to human diseases, especially various types of cancer.
Collapse
|
34
|
Transcriptome profile of the human placenta. Funct Integr Genomics 2017; 17:551-563. [PMID: 28251419 PMCID: PMC5561170 DOI: 10.1007/s10142-017-0555-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 02/09/2017] [Accepted: 02/16/2017] [Indexed: 01/09/2023]
Abstract
The human placenta is a particular organ that inseparably binds the mother and the fetus. The proper development and survival of the conceptus relies on the essential interplay between maternal and fetal factors involved in cooperation within the placenta. In our study, high-throughput sequencing (RNA-seq) was applied to analyze the global transcriptome of the human placenta during uncomplicated pregnancies. The RNA-seq was utilized to identify the global pattern of the gene expression in placentas (N = 4) from women in single and twin pregnancies. During analyses, we obtained 228,044 transcripts. More than 91% of them were multi-exon, and among them 134 were potentially unknown protein coding genes. Expression levels (FPKM) were estimated for 38,948 transcriptional active regions, and more than 3000 of genes were expressed with FPKM >20 in each sample. Additionally, all unannotated transcripts with estimated FPKM values were localized on the human genome. Highly covered splice junctions unannotated in the human genome (6497) were identified, and among them 30 were novel. To gain a better understanding of the biological implications, the assembled transcripts were annotated with gene ontology (GO) terms. Single nucleotide variants were predicted for the transcripts assigned to each analyzed GO category. Our results may be useful for establishing a general pattern of the gene expression in the human placenta. Characterizing placental transcriptome, which is crucial for a pregnancy’s outcome, can serve as a basis for identifying the mechanisms underlying physiological pregnancy, as well as may be useful for an early detection of the genomic defects.
Collapse
|
35
|
Gibilisco L, Zhou Q, Mahajan S, Bachtrog D. Alternative Splicing within and between Drosophila Species, Sexes, Tissues, and Developmental Stages. PLoS Genet 2016; 12:e1006464. [PMID: 27935948 PMCID: PMC5147784 DOI: 10.1371/journal.pgen.1006464] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 11/04/2016] [Indexed: 11/19/2022] Open
Abstract
Alternative pre-mRNA splicing ("AS") greatly expands proteome diversity, but little is known about the evolutionary landscape of AS in Drosophila and how it differs between embryonic and adult stages or males and females. Here we study the transcriptomes from several tissues and developmental stages in males and females from four species across the Drosophila genus. We find that 20-37% of multi-exon genes are alternatively spliced. While males generally express a larger number of genes, AS is more prevalent in females, suggesting that the sexes adopt different expression strategies for their specialized function. While the number of total genes expressed increases during early embryonic development, the proportion of expressed genes that are alternatively spliced is highest in the very early embryo, before the onset of zygotic transcription. This indicates that females deposit a diversity of isoforms into the egg, consistent with abundant AS found in ovary. Cluster analysis by gene expression ("GE") levels shows mostly stage-specific clustering in embryonic samples, and tissue-specific clustering in adult tissues. Clustering embryonic stages and adult tissues based on AS profiles results in stronger species-specific clustering, suggesting that diversification of splicing contributes to lineage-specific evolution in Drosophila. Most sex-biased AS found in flies is due to AS in gonads, with little sex-specific splicing in somatic tissues.
Collapse
Affiliation(s)
- Lauren Gibilisco
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, United States of America
| | - Qi Zhou
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, United States of America
| | - Shivani Mahajan
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, United States of America
| | - Doris Bachtrog
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, United States of America
- * E-mail:
| |
Collapse
|
36
|
Li W, Lu J, Lu K, Yuan J, Huang J, Du H, Li J. Cloning and Phylogenetic Analysis of Brassica napus L. Caffeic Acid O-Methyltransferase 1 Gene Family and Its Expression Pattern under Drought Stress. PLoS One 2016; 11:e0165975. [PMID: 27832102 PMCID: PMC5104432 DOI: 10.1371/journal.pone.0165975] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 10/20/2016] [Indexed: 01/25/2023] Open
Abstract
For many plants, regulating lignin content and composition to improve lodging resistance is a crucial issue. Caffeic acid O-methyltransferase (COMT) is a lignin monomer-specific enzyme that controls S subunit synthesis in plant vascular cell walls. Here, we identified 12 BnCOMT1 gene homologues, namely BnCOMT1-1 to BnCOMT1-12. Ten of 12 genes were composed of four highly conserved exons and three weakly conserved introns. The length of intron I, in particular, showed enormous diversification. Intron I of homologous BnCOMT1 genes showed high identity with counterpart genes in Brassica rapa and Brassica oleracea, and intron I from positional close genes in the same chromosome were relatively highly conserved. A phylogenetic analysis suggested that COMT genes experience considerable diversification and conservation in Brassicaceae species, and some COMT1 genes are unique in the Brassica genus. Our expression studies indicated that BnCOMT1 genes were differentially expressed in different tissues, with BnCOMT1-4, BnCOMT1-5, BnCOMT1-8, and BnCOMT1-10 exhibiting stem specificity. These four BnCOMT1 genes were expressed at all developmental periods (the bud, early flowering, late flowering and mature stages) and their expression level peaked in the early flowering stage in the stem. Drought stress augmented and accelerated lignin accumulation in high-lignin plants but delayed it in low-lignin plants. The expression levels of BnCOMT1s were generally reduced in water deficit condition. The desynchrony of the accumulation processes of total lignin and BnCOMT1s transcripts in most growth stages indicated that BnCOMT1s could be responsible for the synthesis of a specific subunit of lignin or that they participate in other pathways such as the melatonin biosynthesis pathway.
Collapse
Affiliation(s)
- Wei Li
- Chongqing Engineering Research Centre for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, PR China
| | - Junxing Lu
- Chongqing Key Laboratory of Molecular Biology of Plants Environment Adaption, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, PR China
| | - Kun Lu
- Chongqing Engineering Research Centre for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, PR China
| | - Jianglian Yuan
- Chongqing Engineering Research Centre for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, PR China
| | - Jieheng Huang
- Chongqing Engineering Research Centre for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, PR China
| | - Hai Du
- Chongqing Engineering Research Centre for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, PR China
| | - Jiana Li
- Chongqing Engineering Research Centre for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, PR China
- * E-mail:
| |
Collapse
|
37
|
Bondarenko VS, Gelfand MS. Evolution of the Exon-Intron Structure in Ciliate Genomes. PLoS One 2016; 11:e0161476. [PMID: 27603699 PMCID: PMC5014332 DOI: 10.1371/journal.pone.0161476] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 08/06/2016] [Indexed: 12/27/2022] Open
Abstract
A typical eukaryotic gene is comprised of alternating stretches of regions, exons and introns, retained in and spliced out a mature mRNA, respectively. Although the length of introns may vary substantially among organisms, a large fraction of genes contains short introns in many species. Notably, some Ciliates (Paramecium and Nyctotherus) possess only ultra-short introns, around 25 bp long. In Paramecium, ultra-short introns with length divisible by three (3n) are under strong evolutionary pressure and have a high frequency of in-frame stop codons, which, in the case of intron retention, cause premature termination of mRNA translation and consequent degradation of the mis-spliced mRNA by the nonsense-mediated decay mechanism. Here, we analyzed introns in five genera of Ciliates, Paramecium, Tetrahymena, Ichthyophthirius, Oxytricha, and Stylonychia. Introns can be classified into two length classes in Tetrahymena and Ichthyophthirius (with means 48 bp, 69 bp, and 55 bp, 64 bp, respectively), but, surprisingly, comprise three distinct length classes in Oxytricha and Stylonychia (with means 33–35 bp, 47–51 bp, and 78–80 bp). In most ranges of the intron lengths, 3n introns are underrepresented and have a high frequency of in-frame stop codons in all studied species. Introns of Paramecium, Tetrahymena, and Ichthyophthirius are preferentially located at the 5' and 3' ends of genes, whereas introns of Oxytricha and Stylonychia are strongly skewed towards the 5' end. Analysis of evolutionary conservation shows that, in each studied genome, a significant fraction of intron positions is conserved between the orthologs, but intron lengths are not correlated between the species. In summary, our study provides a detailed characterization of introns in several genera of Ciliates and highlights some of their distinctive properties, which, together, indicate that splicing spellchecking is a universal and evolutionarily conserved process in the biogenesis of short introns in various representatives of Ciliates.
Collapse
Affiliation(s)
- Vladyslav S. Bondarenko
- Institute of Molecular Biology and Genetics, NASU, Zabolotnogo Str. 150, Kyiv, 03680, Ukraine
- * E-mail:
| | - Mikhail S. Gelfand
- A.A. Kharkevich Institute for Information Transmission Problems, RAS, Bolshoy Karetny per. 19, Moscow, 127994, Russia
- Skolkovo Institute of Science and Technology, Moscow, 143026, Russia
- Department of Bioengineering and Bioinformatics, M.V. Lomonosov Moscow State University, Vorobievy Gory 1–73, Moscow GSP-1, 119234, Russia
| |
Collapse
|
38
|
Reiner-Benaim A. Scan Statistic Tail Probability Assessment Based on Process Covariance and Window Size. Methodol Comput Appl Probab 2016. [DOI: 10.1007/s11009-015-9447-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
39
|
Cuenca A, Ross TG, Graham SW, Barrett CF, Davis JI, Seberg O, Petersen G. Localized Retroprocessing as a Model of Intron Loss in the Plant Mitochondrial Genome. Genome Biol Evol 2016; 8:2176-89. [PMID: 27435795 PMCID: PMC4987113 DOI: 10.1093/gbe/evw148] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2016] [Indexed: 12/23/2022] Open
Abstract
Loss of introns in plant mitochondrial genes is commonly explained by retroprocessing. Under this model, an mRNA is reverse transcribed and integrated back into the genome, simultaneously affecting the contents of introns and edited sites. To evaluate the extent to which retroprocessing explains intron loss, we analyzed patterns of intron content and predicted RNA editing for whole mitochondrial genomes of 30 species in the monocot order Alismatales. In this group, we found an unusually high degree of variation in the intron content, even expanding the hitherto known variation among angiosperms. Some species have lost some two-third of the cis-spliced introns. We found a strong correlation between intron content and editing frequency, and detected 27 events in which intron loss is consistent with the presence of nucleotides in an edited state, supporting retroprocessing. However, we also detected seven cases of intron loss not readily being explained by retroprocession. Our analyses are also not consistent with the entire length of a fully processed cDNA copy being integrated into the genome, but instead indicate that retroprocessing usually occurs for only part of the gene. In some cases, several rounds of retroprocessing may explain intron loss in genes completely devoid of introns. A number of taxa retroprocessing seem to be very common and a possibly ongoing process. It affects the entire mitochondrial genome.
Collapse
Affiliation(s)
- Argelia Cuenca
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - T Gregory Ross
- Department of Botany, 6270 University Boulevard, University of British Columbia, Vancouver, British Columbia, Canada UBC Botanical Garden & Centre for Plant Research, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sean W Graham
- Department of Botany, 6270 University Boulevard, University of British Columbia, Vancouver, British Columbia, Canada UBC Botanical Garden & Centre for Plant Research, University of British Columbia, Vancouver, British Columbia, Canada
| | - Craig F Barrett
- Department of Biological Sciences, California State University, Los Angeles, California
| | - Jerrold I Davis
- L.H. Bailey Hortorium and Plant Biology Section, Cornell University, Ithaca, New York
| | - Ole Seberg
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Gitte Petersen
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
40
|
Abstract
The presence of intervening sequences, termed introns, is a defining characteristic of eukaryotic nuclear genomes. Once transcribed into pre-mRNA, these introns must be removed within the spliceosome before export of the processed mRNA to the cytoplasm, where it is translated into protein. Although intron loss has been demonstrated experimentally, several mysteries remain regarding the origin and propagation of introns. Indeed, documented evidence of gain of an intron has only been suggested by phylogenetic analyses. We report the use of a strategy that detects selected intron gain and loss events. We have experimentally verified, to our knowledge, the first demonstrations of intron transposition in any organism. From our screen, we detected two separate intron gain events characterized by the perfect transposition of a reporter intron into the yeast genes RPL8B and ADH2, respectively. We show that the newly acquired introns are able to be removed from their respective pre-mRNAs by the spliceosome. Additionally, the novel allele, RPL8Bint, is functional when overexpressed within the genome in a strain lacking the Rpl8 paralogue RPL8A, demonstrating that the gene targeted for intronogenesis is functional.
Collapse
|
41
|
Karakostis K, Ponnuswamy A, Fusée LTS, Bailly X, Laguerre L, Worall E, Vojtesek B, Nylander K, Fåhraeus R. p53 mRNA and p53 Protein Structures Have Evolved Independently to Interact with MDM2. Mol Biol Evol 2016; 33:1280-92. [PMID: 26823446 DOI: 10.1093/molbev/msw012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The p53 tumor suppressor and its key regulator MDM2 play essential roles in development, ageing, cancer, and cellular stress responses in mammals. Following DNA damage, MDM2 interacts with p53 mRNA in an ATM kinase-dependent fashion and stimulates p53 synthesis, whereas under normal conditions, MDM2 targets the p53 protein for degradation. The peptide- and RNA motifs that interact with MDM2 are encoded by the same conserved BOX-I sequence, but how these interactions have evolved is unknown. Here, we show that a temperature-sensitive structure in the invertebrate Ciona intestinalis (Ci) p53 mRNA controls its interaction with MDM2. We also show that a nonconserved flanking region of Ci-BOX-I domain prevents the p53-MDM2 protein-protein interaction. These results indicate that the temperature-regulated p53 mRNA-MDM2 interaction evolved to become kinase regulated in the mammalian DNA damage response. The data also suggest that the negative regulation of p53 by MDM2 via protein-protein interaction evolved in vertebrates following changes in the BOX-I flanking sequence.
Collapse
Affiliation(s)
- Konstantinos Karakostis
- Équipe Labellisée Ligue Contre le Cancer, Université Paris 7, INSERM UMR 1162, Paris, France
| | - Anand Ponnuswamy
- Équipe Labellisée Ligue Contre le Cancer, Université Paris 7, INSERM UMR 1162, Paris, France
| | - Leïla T S Fusée
- Équipe Labellisée Ligue Contre le Cancer, Université Paris 7, INSERM UMR 1162, Paris, France
| | - Xavier Bailly
- UPMC-CNRS, FR2424, Station Biologique de Roscoff, Roscoff, France
| | - Laurent Laguerre
- UPMC-CNRS, FR2424, Station Biologique de Roscoff, Roscoff, France
| | - Erin Worall
- Edinburgh Cancer Research UK Centre, the University of Edinburgh, Edinburgh, United Kingdom
| | - Borek Vojtesek
- Regional Centre for Applied Molecular Oncology, RECAMO and Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Karin Nylander
- Department of Medical Biosciences, Umeå University, Umeå, Sweden
| | - Robin Fåhraeus
- Équipe Labellisée Ligue Contre le Cancer, Université Paris 7, INSERM UMR 1162, Paris, France Regional Centre for Applied Molecular Oncology, RECAMO and Masaryk Memorial Cancer Institute, Brno, Czech Republic Department of Medical Biosciences, Umeå University, Umeå, Sweden
| |
Collapse
|
42
|
Jo BS, Choi SS. Introns: The Functional Benefits of Introns in Genomes. Genomics Inform 2015; 13:112-8. [PMID: 26865841 PMCID: PMC4742320 DOI: 10.5808/gi.2015.13.4.112] [Citation(s) in RCA: 206] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/14/2015] [Accepted: 12/21/2015] [Indexed: 01/12/2023] Open
Abstract
The intron has been a big biological mystery since it was first discovered in several aspects. First, all of the completely sequenced eukaryotes harbor introns in the genomic structure, whereas no prokaryotes identified so far carry introns. Second, the amount of total introns varies in different species. Third, the length and number of introns vary in different genes, even within the same species genome. Fourth, all introns are copied into RNAs by transcription and DNAs by replication processes, but intron sequences do not participate in protein-coding sequences. The existence of introns in the genome should be a burden to some cells, because cells have to consume a great deal of energy to copy and excise them exactly at the correct positions with the help of complicated spliceosomal machineries. The existence throughout the long evolutionary history is explained, only if selective advantages of carrying introns are assumed to be given to cells to overcome the negative effect of introns. In that regard, we summarize previous research about the functional roles or benefits of introns. Additionally, several other studies strongly suggesting that introns should not be junk will be introduced.
Collapse
Affiliation(s)
- Bong-Seok Jo
- Department of Medical Biotechnology, College of Biomedical Science, and Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon 24341, Korea
| | - Sun Shim Choi
- Department of Medical Biotechnology, College of Biomedical Science, and Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
43
|
Ma MY, Che XR, Porceddu A, Niu DK. Evaluation of the mechanisms of intron loss and gain in the social amoebae Dictyostelium. BMC Evol Biol 2015; 15:286. [PMID: 26678305 PMCID: PMC4683709 DOI: 10.1186/s12862-015-0567-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 12/13/2015] [Indexed: 11/18/2022] Open
Abstract
Background Spliceosomal introns are a common feature of eukaryotic genomes. To approach a comprehensive understanding of intron evolution on Earth, studies should look beyond repeatedly studied groups such as animals, plants, and fungi. The slime mold Dictyostelium belongs to a supergroup of eukaryotes not covered in previous studies. Results We found 441 precise intron losses in Dictyostelium discoideum and 202 precise intron losses in Dictyostelium purpureum. Consistent with these observations, Dictyostelium discoideum was found to have significantly more copies of reverse transcriptase genes than Dictyostelium purpureum. We also found that the lost introns are significantly further from the 5′ end of genes than the conserved introns. Adjacent introns were prone to be lost simultaneously in Dictyostelium discoideum. In both Dictyostelium species, the exonic sequences flanking lost introns were found to have a significantly higher GC content than those flanking conserved introns. Together, these observations support a reverse-transcription model of intron loss in which intron losses were caused by gene conversion between genomic DNA and cDNA reverse transcribed from mature mRNA. We also identified two imprecise intron losses in Dictyostelium discoideum that may have resulted from genomic deletions. Ninety-eight putative intron gains were also observed. Consistent with previous studies of other lineages, the source sequences were found in only a small number of cases, with only two instances of intron gain identified in Dictyostelium discoideum. Conclusions Although they diverged very early from animals and fungi, Dictyostelium species have similar mechanisms of intron loss. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0567-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ming-Yue Ma
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China. .,Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Xun-Ru Che
- The High School Affiliated to Renmin University of China, Beijing, 100080, China.
| | - Andrea Porceddu
- Department of Agricultural Sciences, University of Sassari, Viale Italia, 39, 07100, Sassari, Italy.
| | - Deng-Ke Niu
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China. .,Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
44
|
Pu XJ, Lv X, Lin HH. Unraveling the evolution and regulation of the alternative oxidase gene family in plants. Dev Genes Evol 2015; 225:331-9. [PMID: 26438244 DOI: 10.1007/s00427-015-0515-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 08/20/2015] [Indexed: 12/19/2022]
Abstract
Alternative oxidase (AOX) is a diiron carboxylate protein present in all plants examined to date that couples the oxidation of ubiquinol with the reduction of oxygen to water. The predominant structure of AOX genes is four exons interrupted by three introns. In this study, by analyzing the genomic sequences of genes from different plant species, we deduced that intron/exon loss/gain and deletion of fragments are the major mechanisms responsible for the generation and evolution of AOX paralogous genes. Integrating gene duplication and structural information with expression profiles for various AOXs revealed that tandem duplication/block duplication contributed greatly to the generation and maintenance of the AOX gene family. Notably, the expression profiles based on public microarray database showed highly diverse expression patterns among AOX members in different developmental stages and tissues and that both orthologous and paralogous genes did not have the same expression profiles due to their divergence in regulatory regions. Comparative analysis of genes in six plant species under various perturbations indicated a large number of protein kinases, transcription factors and antioxidant enzymes are co-expressed with AOX. Of these, four sets of transcription factors--WRKY, NAC, bZIP and MYB--are likely involved in the regulating the differential responses of AOX1 genes to specific stresses. Furthermore, divergence of AOX1 and AOX2 subfamilies in regulation might be the main reason for their differential stress responses.
Collapse
Affiliation(s)
- Xiao-jun Pu
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, State Key Laboratory of Hydraulics and Mountain River Engineering, College of Life Science, Sichuan University, Chengdu, 610064, China
| | - Xin Lv
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, State Key Laboratory of Hydraulics and Mountain River Engineering, College of Life Science, Sichuan University, Chengdu, 610064, China
| | - Hong-hui Lin
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, State Key Laboratory of Hydraulics and Mountain River Engineering, College of Life Science, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
45
|
Abstract
Introns in protein-coding genes are very rare in hemiascomycetous yeast genomes. It has been suggested that these species have experienced extensive intron loss during their evolution from the postulated intron-rich fungal ancestor. However, no intron-devoid yeast species have been identified and some of the introns remaining within the genomes of intron-poor species, such as Saccharomyces cerevisiae, appear to be beneficial during growth under stress conditions. In order to reveal the pattern of intron retention within intron-poor yeast species and better understand the mechanisms of intron evolution, we generated a comprehensive set of 250 orthologous introns in the 20 species that comprise the Saccharomycetaceae, by analyzing RNA deep-sequencing data and alignments of intron-containing genes. Analysis of these intron sets shows that intron loss is at least two orders of magnitude more frequent than intron gain. Fine mapping of intron positions shows that intron sliding is rare, and that introns are almost always removed without changing the primary sequence of the encoded protein. The latter finding is consistent with the prevailing view that homologous recombination between reverse-transcribed mature mRNAs and the corresponding genomic locus is the primary mechanism of intron loss. However, we also find evidence that loss of a small number of introns is mediated by micro-homology, and that the number of intron losses is diminished in yeast species that have lost the microhomology end joining and nonhomologous end joining machinery.
Collapse
Affiliation(s)
- Katarzyna B. Hooks
- Faculty of Life Sciences, University of Manchester, United Kingdom
- U1053 INSERM, Université de Bordeaux, France
| | - Daniela Delneri
- Faculty of Life Sciences, University of Manchester, United Kingdom
| | - Sam Griffiths-Jones
- Faculty of Life Sciences, University of Manchester, United Kingdom
- *Corresponding author: E-mail:
| |
Collapse
|
46
|
Milia G, Camiolo S, Avesani L, Porceddu A. The dynamic loss and gain of introns during the evolution of the Brassicaceae. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 82:915-924. [PMID: 25899207 DOI: 10.1111/tpj.12860] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 04/02/2015] [Accepted: 04/09/2015] [Indexed: 06/04/2023]
Abstract
Sequence comparison allows the detailed analysis of evolution at the nucleotide and amino acid levels, but much less information is known about the structural evolution of genes, i.e. how the number, length and distribution of introns change over time. We constructed a parsimonious model for the evolutionary rate of intron loss (IL) and intron gain (IG) within the Brassicaceae and found that IL/IG has been highly dynamic, with substantial differences between and even within lineages. The divergence of the Brassicaceae lineages I and II marked a dramatic change in the IL rate, with the common ancestor of lineage I losing introns three times more rapidly than the common ancestor of lineage II. Our data also indicate a subsequent declining trend in the rate of IL, although in Arabidopsis thaliana introns continue to be lost at approximately the ancestral rate. Variations in the rate of IL/IG within lineage II have been even more remarkable. Brassica rapa appears to have lost introns approximately 15 times more rapidly than the common ancestor of B. rapa and Schenkiella parvula, and approximately 25 times more rapidly than its sister species Eutrema salsugineum. Microhomology was detected at the splice sites of several dynamic introns suggesting that the non-homologous end-joining and double-strand break repair is a common pathway underlying IL/IG in these species. We also detected molecular signatures typical of mRNA-mediated IL, but only in B. rapa.
Collapse
Affiliation(s)
- Giampiera Milia
- Department of Agricultural Sciences, University of Sassari, Viale Italia, 39, 07100, Sassari, Italy
| | - Salvatore Camiolo
- Department of Agricultural Sciences, University of Sassari, Viale Italia, 39, 07100, Sassari, Italy
| | - Linda Avesani
- Department of Biotechnology, University of Verona, Strada Le Grazie, 15, 37134, Verona, Italy
| | - Andrea Porceddu
- Department of Agricultural Sciences, University of Sassari, Viale Italia, 39, 07100, Sassari, Italy
| |
Collapse
|
47
|
Martinho RG, Guilgur LG, Prudêncio P. How gene expression in fast-proliferating cells keeps pace. Bioessays 2015; 37:514-24. [PMID: 25823409 DOI: 10.1002/bies.201400195] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The development of living organisms requires a precise coordination of all basic cellular processes, in space and time. Early embryogenesis of most species with externally deposited eggs starts with a series of extremely fast cleavage cycles. These divisions have a strong influence on gene expression as mitosis represses transcription and pre-mRNA processing. In this review, we will describe the distinct adaptations for efficient gene expression and discuss the emerging role of the multifunctional NineTeen Complex (NTC) in gene expression and genomic stability during fast proliferation.
Collapse
Affiliation(s)
- Rui G Martinho
- Departamento de Ciências Biomédicas e Medicina, Regenerative Medicine Program, Universidade do Algarve, Campus de Gambelas, Faro, Portugal; Center for Biomedical Research, Universidade do Algarve, Campus de Gambelas, Faro, Portugal; Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | | |
Collapse
|
48
|
Abstract
We used comparative and population genomics to study intron evolutionary dynamics in the fungal model genus Neurospora. For our investigation, we used well-annotated genomes of N. crassa, N. discreta, and N. tetrasperma, and 92 resequenced genomes of N. tetrasperma from natural populations. By analyzing the four well-annotated genomes, we identified 9495 intron sites in 7619 orthologous genes. Our data supports nonhomologous end joining (NHEJ) and tandem duplication as mechanisms for intron gains in the genus and the RT-mRNA process as a mechanism for intron loss. We found a moderate intron gain rate (5.78–6.89 × 10−13 intron gains per nucleotide site per year) and a high intron loss rate (7.53–13.76 × 10−10 intron losses per intron sites per year) as compared to other eukaryotes. The derived intron gains and losses are skewed to high frequencies, relative to neutral SNPs, in natural populations of N. tetrasperma, suggesting that selection is involved in maintaining a high intron turnover. Furthermore, our analyses of the association between intron population-level frequency and genomic features suggest that selection is involved in shaping a 5′ intron position bias and a low intron GC content. However, intron sequence analyses suggest that the gained introns were not exposed to recent selective sweeps. Taken together, this work contributes to our understanding of the importance of mutational bias and selection in shaping the intron distribution in eukaryotic genomes.
Collapse
|
49
|
Buchmann JP, Löytynoja A, Wicker T, Schulman AH. Analysis of CACTA transposases reveals intron loss as major factor influencing their exon/intron structure in monocotyledonous and eudicotyledonous hosts. Mob DNA 2014; 5:24. [PMID: 25206928 PMCID: PMC4158355 DOI: 10.1186/1759-8753-5-24] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 08/18/2014] [Indexed: 01/20/2023] Open
Abstract
Background CACTA elements are DNA transposons and are found in numerous organisms. Despite their low activity, several thousand copies can be identified in many genomes. CACTA elements transpose using a ‘cut-and-paste’ mechanism, which is facilitated by a DDE transposase. DDE transposases from CACTA elements contain, despite their conserved function, different exon numbers among various CACTA families. While earlier studies analyzed the ancestral history of the DDE transposases, no studies have examined exon loss and gain with a view of mechanisms that could drive the changes. Results We analyzed 64 transposases from different CACTA families among monocotyledonous and eudicotyledonous host species. The annotation of the exon/intron boundaries showed a range from one to six exons. A robust multiple sequence alignment of the 64 transposases based on their protein sequences was created and used for phylogenetic analysis, which revealed eight different clades. We observed that the exon numbers in CACTA transposases are not specific for a host genome. We found that ancient CACTA lineages diverged before the divergence of monocotyledons and eudicotyledons. Most exon/intron boundaries were found in three distinct regions among all the transposases, grouping 63 conserved intron/exon boundaries. Conclusions We propose a model for the ancestral CACTA transposase gene, which consists of four exons, that predates the divergence of the monocotyledons and eudicotyledons. Based on this model, we propose pathways of intron loss or gain to explain the observed variation in exon numbers. While intron loss appears to have prevailed, a putative case of intron gain was nevertheless observed.
Collapse
Affiliation(s)
- Jan P Buchmann
- Institute of Biotechnology, Viikki Biocenter, University of Helsinki, PO Box 65, FIN-00014 Helsinki, Finland ; Present address: Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Center, University of Sydney, Sydney NSW 2006, Australia
| | - Ari Löytynoja
- Institute of Biotechnology, Viikki Biocenter, University of Helsinki, PO Box 65, FIN-00014 Helsinki, Finland
| | - Thomas Wicker
- Institute of Plant Biology, University of Zurich, Zollikerstrasse 107, Zurich, Switzerland
| | - Alan H Schulman
- Institute of Biotechnology, Viikki Biocenter, University of Helsinki, PO Box 65, FIN-00014 Helsinki, Finland ; Biotechnology and Food Research, MTT Agrifood Research Finland, Myllytie 1, FIN-31600 Jokioinen, Finland
| |
Collapse
|
50
|
Artieri CG, Fraser HB. Transcript length mediates developmental timing of gene expression across Drosophila. Mol Biol Evol 2014; 31:2879-89. [PMID: 25069653 PMCID: PMC4209130 DOI: 10.1093/molbev/msu226] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The time required to transcribe genes with long primary transcripts may limit their ability to be expressed in cells with short mitotic cycles, a phenomenon termed intron delay. As such short cycles are a hallmark of the earliest stages of insect development, we tested the impact of intron delay on the Drosophila developmental transcriptome. We find that long zygotically expressed genes show substantial delay in expression relative to their shorter counterparts, which is not observed for maternally deposited transcripts. Patterns of RNA-seq coverage along transcripts show that this delay is consistent with their inability to completely transcribe long transcripts, but not with transcriptional initiation-based regulatory control. We further show that highly expressed zygotic genes maintain compact transcribed regions across the Drosophila phylogeny, allowing conservation of embryonic expression patterns. We propose that the physical constraints of intron delay affect patterns of expression and the evolution of gene structure of a substantial portion of the Drosophila transcriptome.
Collapse
|