1
|
Qin L, Pan Y, Xue S, Yan Z, Xiao C, Liu X, Yuan D, Hou J, Huang M. Multi-Omics Analysis Reveals Impacts of LincRNA Deletion on Yeast Protein Synthesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2406873. [PMID: 39951012 PMCID: PMC11967807 DOI: 10.1002/advs.202406873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 01/05/2025] [Indexed: 04/05/2025]
Abstract
Non-coding RNAs (ncRNAs) are widespread across various genomic regions and play a crucial role in modulating gene expression and cellular functions, thereby increasing biological complexity. However, the relationship between ncRNAs and the production of heterologous recombinant proteins (HRPs) remains elusive. Here, a yeast library is constructed by deleting long intergenic ncRNAs (lincRNAs), and 21 lincRNAs that affect α-amylase secretion are identified. Targeted deletions of SUT067, SUT433, and CUT782 are found to be particularly effective. Transcriptomic and metabolomic analyses of the top three strains indicate improvements in energy metabolism and cytoplasmic translation, which enhances ATP supply and protein synthesis. Moreover, a yeast strain, derived from the SUT433 deletion, that can secrete ≈4.1 g L⁻1 of α-amylase in fed-batch cultivation through the modification of multiple targets, is engineered. This study highlights the significant potential of lincRNAs in modulating cellular metabolism, providing deep insights and strategies for the development of more efficient protein-producing cell factories.
Collapse
Affiliation(s)
- Ling Qin
- School of Food Science and EngineeringSouth China University of TechnologyGuangzhou510641China
| | - Yuyang Pan
- School of Food Science and EngineeringSouth China University of TechnologyGuangzhou510641China
| | - Songlyu Xue
- School of Food Science and EngineeringSouth China University of TechnologyGuangzhou510641China
| | - Zhibo Yan
- School of Food Science and EngineeringSouth China University of TechnologyGuangzhou510641China
| | - Chufan Xiao
- School of Food Science and EngineeringSouth China University of TechnologyGuangzhou510641China
| | - Xiufang Liu
- School of Food Science and EngineeringSouth China University of TechnologyGuangzhou510641China
| | - Dan Yuan
- School of Food Science and EngineeringSouth China University of TechnologyGuangzhou510641China
| | - Jin Hou
- State Key Laboratory of Microbial TechnologyShandong UniversityQingdao266237China
| | - Mingtao Huang
- School of Food Science and EngineeringSouth China University of TechnologyGuangzhou510641China
| |
Collapse
|
2
|
Fan X, He H, Wang T, Xu P, Zhang F, Hu S, Yun Y, Mei M, Zhang G, Yi L. Characterizing interactions of endoplasmic reticulum resident proteins in situ through the YST-PPI method. Biotechnol J 2024; 19:e2400346. [PMID: 39212204 DOI: 10.1002/biot.202400346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
The mutual interactions of endoplasmic reticulum (ER) resident proteins in the ER maintain its functions, prompting the protein folding, modification, and transportation. Here, a new method, named YST-PPI (YESS-based Split fast TEV protease system for Protein-Protein Interaction) was developed, targeting the characterization of protein interactions in ER. YST-PPI method integrated the YESS system, split-TEV technology, and endoplasmic reticulum retention signal peptide (ERS) to provide an effective strategy for studying ER in situ PPIs in a fast and quantitative manner. The interactions among 15 ER-resident proteins, most being identified molecular chaperones, of S. cerevisiae were explored using the YST-PPI system, and their interaction network map was constructed, in which more than 74 interacting resident protein pairs were identified. Our studies also showed that Lhs1p plays a critical role in regulating the interactions of most of the ER-resident proteins, except the Sil1p, indicating its potential role in controlling the ER molecular chaperones. Moreover, the mutual interaction revealed by our studies further confirmed that the ER-resident proteins perform their functions in a cooperative way and a multimer complex might be formed during the process.
Collapse
Affiliation(s)
- Xian Fan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative, Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Huahua He
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative, Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Ting Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative, Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Pan Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative, Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Faying Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative, Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Shantong Hu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Yueli Yun
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative, Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Meng Mei
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative, Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Guimin Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative, Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Li Yi
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative, Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
3
|
Hendershot LM, Buck TM, Brodsky JL. The Essential Functions of Molecular Chaperones and Folding Enzymes in Maintaining Endoplasmic Reticulum Homeostasis. J Mol Biol 2024; 436:168418. [PMID: 38143019 PMCID: PMC12015986 DOI: 10.1016/j.jmb.2023.168418] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
It has been estimated that up to one-third of the proteins encoded by the human genome enter the endoplasmic reticulum (ER) as extended polypeptide chains where they undergo covalent modifications, fold into their native structures, and assemble into oligomeric protein complexes. The fidelity of these processes is critical to support organellar, cellular, and organismal health, and is perhaps best underscored by the growing number of disease-causing mutations that reduce the fidelity of protein biogenesis in the ER. To meet demands encountered by the diverse protein clientele that mature in the ER, this organelle is populated with a cadre of molecular chaperones that prevent protein aggregation, facilitate protein disulfide isomerization, and lower the activation energy barrier of cis-trans prolyl isomerization. Components of the lectin (glycan-binding) chaperone system also reside within the ER and play numerous roles during protein biogenesis. In addition, the ER houses multiple homologs of select chaperones that can recognize and act upon diverse peptide signatures. Moreover, redundancy helps ensure that folding-compromised substrates are unable to overwhelm essential ER-resident chaperones and enzymes. In contrast, the ER in higher eukaryotic cells possesses a single member of the Hsp70, Hsp90, and Hsp110 chaperone families, even though several homologs of these molecules reside in the cytoplasm. In this review, we discuss specific functions of the many factors that maintain ER quality control, highlight some of their interactions, and describe the vulnerabilities that arise from the absence of multiple members of some chaperone families.
Collapse
Affiliation(s)
- Linda M Hendershot
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, United States.
| | - Teresa M Buck
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States
| |
Collapse
|
4
|
Mann MJ, Melendez-Suchi C, Vorndran HE, Sukhoplyasova M, Flory AR, Irvine MC, Iyer AR, Guerriero CJ, Brodsky JL, Hendershot LM, Buck TM. Loss of Grp170 results in catastrophic disruption of endoplasmic reticulum function. Mol Biol Cell 2024; 35:ar59. [PMID: 38446639 PMCID: PMC11064666 DOI: 10.1091/mbc.e24-01-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/20/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024] Open
Abstract
GRP170 (Hyou1) is required for mouse embryonic development, and its ablation in kidney nephrons leads to renal failure. Unlike most chaperones, GRP170 is the lone member of its chaperone family in the ER lumen. However, the cellular requirement for GRP170, which both binds nonnative proteins and acts as nucleotide exchange factor for BiP, is poorly understood. Here, we report on the isolation of mouse embryonic fibroblasts obtained from mice in which LoxP sites were engineered in the Hyou1 loci (Hyou1LoxP/LoxP). A doxycycline-regulated Cre recombinase was stably introduced into these cells. Induction of Cre resulted in depletion of Grp170 protein which culminated in cell death. As Grp170 levels fell we observed a portion of BiP fractionating with insoluble material, increased binding of BiP to a client with a concomitant reduction in its turnover, and reduced solubility of an aggregation-prone BiP substrate. Consistent with disrupted BiP functions, we observed reactivation of BiP and induction of the unfolded protein response (UPR) in futile attempts to provide compensatory increases in ER chaperones and folding enzymes. Together, these results provide insights into the cellular consequences of controlled Grp170 loss and provide hypotheses as to why mutations in the Hyou1 locus are linked to human disease.
Collapse
Affiliation(s)
- Melissa J. Mann
- Department of Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, TN 30105
| | - Chris Melendez-Suchi
- Department of Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, TN 30105
| | - Hannah E. Vorndran
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| | - Maria Sukhoplyasova
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| | - Ashley R. Flory
- Department of Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, TN 30105
| | - Mary Carson Irvine
- Department of Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, TN 30105
| | - Anuradha R. Iyer
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| | | | - Jeffrey L. Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| | - Linda M. Hendershot
- Department of Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, TN 30105
| | - Teresa M. Buck
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| |
Collapse
|
5
|
Strawn G, Wong RWK, Young BP, Davey M, Nislow C, Conibear E, Loewen CJR, Mayor T. Genome-wide screen identifies new set of genes for improved heterologous laccase expression in Saccharomyces cerevisiae. Microb Cell Fact 2024; 23:36. [PMID: 38287338 PMCID: PMC10823697 DOI: 10.1186/s12934-024-02298-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 01/04/2024] [Indexed: 01/31/2024] Open
Abstract
The yeast Saccharomyces cerevisiae is widely used as a host cell for recombinant protein production due to its fast growth, cost-effective culturing, and ability to secrete large and complex proteins. However, one major drawback is the relatively low yield of produced proteins compared to other host systems. To address this issue, we developed an overlay assay to screen the yeast knockout collection and identify mutants that enhance recombinant protein production, specifically focusing on the secretion of the Trametes trogii fungal laccase enzyme. Gene ontology analysis of these mutants revealed an enrichment of processes including vacuolar targeting, vesicle trafficking, proteolysis, and glycolipid metabolism. We confirmed that a significant portion of these mutants also showed increased activity of the secreted laccase when grown in liquid culture. Notably, we found that the combination of deletions of OCA6, a tyrosine phosphatase gene, along with PMT1 or PMT2, two genes encoding ER membrane protein-O-mannosyltransferases involved in ER quality control, and SKI3, which encode for a component of the SKI complex responsible for mRNA degradation, further increased secreted laccase activity. Conversely, we also identified over 200 gene deletions that resulted in decreased secreted laccase activity, including many genes that encode for mitochondrial proteins and components of the ER-associated degradation pathway. Intriguingly, the deletion of the ER DNAJ co-chaperone gene SCJ1 led to almost no secreted laccase activity. When we expressed SCJ1 from a low-copy plasmid, laccase secretion was restored. However, overexpression of SCJ1 had a detrimental effect, indicating that precise dosing of key chaperone proteins is crucial for optimal recombinant protein expression. This study offers potential strategies for enhancing the overall yield of recombinant proteins and provides new avenues for further research in optimizing protein production systems.
Collapse
Affiliation(s)
- Garrett Strawn
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Ryan W K Wong
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Barry P Young
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Michael Davey
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Corey Nislow
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Elizabeth Conibear
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Christopher J R Loewen
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Thibault Mayor
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
6
|
Mann MJ, Melendez-Suchi C, Sukhoplyasova M, Flory AR, Carson Irvine M, Iyer AR, Vorndran H, Guerriero CJ, Brodsky JL, Hendershot LM, Buck TM. Loss of Grp170 results in catastrophic disruption of endoplasmic reticulum functions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.19.563191. [PMID: 37905119 PMCID: PMC10614942 DOI: 10.1101/2023.10.19.563191] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
GRP170, a product of the Hyou1 gene, is required for mouse embryonic development, and its ablation in kidney nephrons leads to renal failure. Unlike most chaperones, GRP170 is the lone member of its chaperone family in the ER lumen. However, the cellular requirement for GRP170, which both binds non-native proteins and acts as nucleotide exchange factor for BiP, is poorly understood. Here, we report on the isolation of embryonic fibroblasts from mice in which LoxP sites were engineered in the Hyou1 loci ( Hyou1 LoxP/LoxP ). A doxycycline-regulated Cre recombinase was also stably introduced into these cells. Induction of Cre resulted in excision of Hyou1 and depletion of Grp170 protein, culminating in apoptotic cell death. As Grp170 levels fell we observed increased steady-state binding of BiP to a client, slowed degradation of a misfolded BiP substrate, and BiP accumulation in NP40-insoluble fractions. Consistent with disrupted BiP functions, we observed reactivation of BiP storage pools and induction of the unfolded protein response (UPR) in futile attempts to provide compensatory increases in ER chaperones and folding enzymes. Together, these results provide insights into the cellular consequences of controlled Grp170 loss and insights into mutations in the Hyou1 locus and human disease.
Collapse
|
7
|
Sukhoplyasova M, Keith AM, Perrault EM, Vorndran HE, Jordahl AS, Yates ME, Pastor A, Li Z, Freaney ML, Deshpande RA, Adams DB, Guerriero CJ, Shi S, Kleyman TR, Kashlan OB, Brodsky JL, Buck TM. Lhs1 dependent ERAD is determined by transmembrane domain context. Biochem J 2023; 480:1459-1473. [PMID: 37702403 PMCID: PMC11040695 DOI: 10.1042/bcj20230075] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/14/2023]
Abstract
Transmembrane proteins have unique requirements to fold and integrate into the endoplasmic reticulum (ER) membrane. Most notably, transmembrane proteins must fold in three separate environments: extracellular domains fold in the oxidizing environment of the ER lumen, transmembrane domains (TMDs) fold within the lipid bilayer, and cytosolic domains fold in the reducing environment of the cytosol. Moreover, each region is acted upon by a unique set of chaperones and monitored by components of the ER associated quality control machinery that identify misfolded domains in each compartment. One factor is the ER lumenal Hsp70-like chaperone, Lhs1. Our previous work established that Lhs1 is required for the degradation of the unassembled α-subunit of the epithelial sodium channel (αENaC), but not the homologous β- and γENaC subunits. However, assembly of the ENaC heterotrimer blocked the Lhs1-dependent ER associated degradation (ERAD) of the α-subunit, yet the characteristics that dictate the specificity of Lhs1-dependent ERAD substrates remained unclear. We now report that Lhs1-dependent substrates share a unique set of features. First, all Lhs1 substrates appear to be unglycosylated, and second they contain two TMDs. Each substrate also contains orphaned or unassembled TMDs. Additionally, interfering with inter-subunit assembly of the ENaC trimer results in Lhs1-dependent degradation of the entire complex. Finally, our work suggests that Lhs1 is required for a subset of ERAD substrates that also require the Hrd1 ubiquitin ligase. Together, these data provide hints as to the identities of as-yet unconfirmed substrates of Lhs1 and potentially of the Lhs1 homolog in mammals, GRP170.
Collapse
Affiliation(s)
- Maria Sukhoplyasova
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Abigail M. Keith
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Emma M. Perrault
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Hannah E. Vorndran
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Alexa S. Jordahl
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Megan E. Yates
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Ashutosh Pastor
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Zachary Li
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Michael L. Freaney
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Riddhi A. Deshpande
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - David B. Adams
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | | | - Shujie Shi
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Thomas R. Kleyman
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, U.S.A
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, U.S.A
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Ossama B. Kashlan
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Jeffrey L. Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Teresa M. Buck
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, U.S.A
| |
Collapse
|
8
|
Bracher A, Verghese J. Nucleotide Exchange Factors for Hsp70 Molecular Chaperones: GrpE, Hsp110/Grp170, HspBP1/Sil1, and BAG Domain Proteins. Subcell Biochem 2023; 101:1-39. [PMID: 36520302 DOI: 10.1007/978-3-031-14740-1_1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Molecular chaperones of the Hsp70 family are key components of the cellular protein-folding machinery. Substrate folding is accomplished by iterative cycles of ATP binding, hydrolysis, and release. The ATPase activity of Hsp70 is regulated by two main classes of cochaperones: J-domain proteins stimulate ATPase hydrolysis by Hsp70, while nucleotide exchange factors (NEFs) facilitate the conversion from the ADP-bound to the ATP-bound state, thus closing the chaperone folding cycle. NEF function can additionally be antagonized by ADP dissociation inhibitors. Beginning with the discovery of the prototypical bacterial NEF, GrpE, a large diversity of nucleotide exchange factors for Hsp70 have been identified, connecting it to a multitude of cellular processes in the eukaryotic cell. Here we review recent advances toward structure and function of nucleotide exchange factors from the Hsp110/Grp170, HspBP1/Sil1, and BAG domain protein families and discuss how these cochaperones connect protein folding with cellular quality control and degradation pathways.
Collapse
Affiliation(s)
- Andreas Bracher
- Department of Cellular Biochemistry, Max-Planck-Institute of Biochemistry, Martinsried, Germany.
| | - Jacob Verghese
- Department of Cellular Biochemistry, Max-Planck-Institute of Biochemistry, Martinsried, Germany
- Trophic Communications GmbH, Munich, Germany
| |
Collapse
|
9
|
Melnyk A, Lang S, Sicking M, Zimmermann R, Jung M. Co-chaperones of the Human Endoplasmic Reticulum: An Update. Subcell Biochem 2023; 101:247-291. [PMID: 36520310 DOI: 10.1007/978-3-031-14740-1_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In mammalian cells, the rough endoplasmic reticulum (ER) plays central roles in the biogenesis of extracellular plus organellar proteins and in various signal transduction pathways. For these reasons, the ER comprises molecular chaperones, which are involved in import, folding, assembly, export, plus degradation of polypeptides, and signal transduction components, such as calcium channels, calcium pumps, and UPR transducers plus adenine nucleotide carriers/exchangers in the ER membrane. The calcium- and ATP-dependent ER lumenal Hsp70, termed immunoglobulin heavy-chain-binding protein or BiP, is the central player in all these activities and involves up to nine different Hsp40-type co-chaperones, i.e., ER membrane integrated as well as ER lumenal J-domain proteins, termed ERj or ERdj proteins, two nucleotide exchange factors or NEFs (Grp170 and Sil1), and NEF-antagonists, such as MANF. Here we summarize the current knowledge on the ER-resident BiP/ERj chaperone network and focus on the interaction of BiP with the polypeptide-conducting and calcium-permeable Sec61 channel of the ER membrane as an example for BiP action and how its functional cycle is linked to ER protein import and various calcium-dependent signal transduction pathways.
Collapse
Affiliation(s)
- Armin Melnyk
- Medical Biochemistry & Molecular Biology, Saarland University, Homburg, Germany
| | - Sven Lang
- Medical Biochemistry & Molecular Biology, Saarland University, Homburg, Germany
| | - Mark Sicking
- Medical Biochemistry & Molecular Biology, Saarland University, Homburg, Germany
| | - Richard Zimmermann
- Medical Biochemistry & Molecular Biology, Saarland University, Homburg, Germany.
| | - Martin Jung
- Medical Biochemistry & Molecular Biology, Saarland University, Homburg, Germany
| |
Collapse
|
10
|
Masroor S, Aalam MT, Khan O, Tanuj GN, Gandham RK, Dhara SK, Gupta PK, Mishra BP, Dutt T, Singh G, Sajjanar BK. Effect of acute heat shock on stress gene expression and DNA methylation in zebu (Bos indicus) and crossbred (Bos indicus × Bos taurus) dairy cattle. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2022; 66:1797-1809. [PMID: 35796826 DOI: 10.1007/s00484-022-02320-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/15/2022] [Accepted: 06/21/2022] [Indexed: 05/19/2023]
Abstract
Environmental temperature is one of the major factors to affect health and productivity of dairy cattle. Gene expression networks within the cells and tissues coordinate stress response, metabolism, and milk production in dairy cattle. Epigenetic DNA methylations were found to mediate the effect of environment by regulating gene expression patterns. In the present study, we compared three Indian native zebu cattle, Bos indicus (Sahiwal, Tharparkar, and Hariana) and one crossbred Bos indicus × Bos taurus (Vrindavani) for stress gene expression and differences in the DNA methylation patterns. The results indicated acute heat shock to cultured PBMC affected their proliferation, stress gene expression, and DNA methylation. Interestingly, expressions of HSP70, HSP90, and STIP1 were found more pronounced in zebu cattle than the crossbred cattle. However, no significant changes were observed in global DNA methylation due to acute heat shock, even though variations were observed in the expression patterns of DNA methyltransferases (DNMT1, DNMT3a) and demethylases (TET1, TET2, and TET3) genes. The treatment 5-AzaC (5-azacitidine) that inhibit DNA methylation in proliferating PBMC caused significant increase in heat shock-induced HSP70 and STIP1 expression indicating that hypomethylation facilitated stress gene expression. Further targeted analysis DNA methylation in the promoter regions revealed no significant differences for HSP70, HSP90, and STIP1. However, there was a significant hypomethylation for BDNF in both zebu and crossbred cattle. Similarly, NR3C1 promoter region showed hypomethylation alone in crossbred cattle. Overall, the results indicated that tropically adapted zebu cattle had comparatively higher expression of stress genes than the crossbred cattle. Furthermore, DNA methylation may play a role in regulating expression of certain genes involved in stress response pathways.
Collapse
Affiliation(s)
- Sana Masroor
- Veterinary Biotechnology Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly-243122, Uttar Pradesh, India
| | - Mohd Tanzeel Aalam
- Veterinary Biotechnology Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly-243122, Uttar Pradesh, India
| | - Owais Khan
- Veterinary Biotechnology Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly-243122, Uttar Pradesh, India
| | - Gunturu Narasimha Tanuj
- Veterinary Biotechnology Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly-243122, Uttar Pradesh, India
| | - Ravi Kumar Gandham
- Veterinary Biotechnology Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly-243122, Uttar Pradesh, India
| | - Sujoy K Dhara
- Veterinary Biotechnology Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly-243122, Uttar Pradesh, India
| | - Praveen K Gupta
- Veterinary Biotechnology Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly-243122, Uttar Pradesh, India
| | - Bishnu Prasad Mishra
- ICAR-National Bureau of Animal Genetic Resources, Haryana, Karnal, 132001, India
| | - Triveni Dutt
- Veterinary Biotechnology Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly-243122, Uttar Pradesh, India
| | - Gynendra Singh
- Physiology and Climatology Division, ICAR-Indian Veterinary Research Institute, Izatnagar Bareilly, 243122, Uttar Pradesh, India
| | - Basavaraj K Sajjanar
- Veterinary Biotechnology Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly-243122, Uttar Pradesh, India.
| |
Collapse
|
11
|
Yang J, Yang B, Wang Y, Zhang T, Hao Y, Cui H, Zhao D, Yuan X, Chen X, Shen C, Yan W, Zheng H, Zhang K, Liu X. Profiling and functional analysis of differentially expressed circular RNAs identified in foot-and-mouth disease virus infected PK-15 cells. Vet Res 2022; 53:24. [PMID: 35313983 PMCID: PMC8935690 DOI: 10.1186/s13567-022-01037-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/18/2021] [Indexed: 12/13/2022] Open
Abstract
Circular RNAs (circRNAs) are a new type of endogenous noncoding RNA that exhibit a variety of biological functions. However, it is not clear whether they are involved in foot-and-mouth disease virus (FMDV) infection and host response. In this study, we established circRNA expression profiles in FMDV-infected PK-15 cells using RNA-seq (RNA-sequencing) technology analysis. The biological function of the differentially expressed circRNAs was determined by protein interaction network, Gene Ontology (GO), and Kyoto Encyclopedia of Gene and Genome (KEGG) pathway enrichment. We found 1100 differentially expressed circRNAs (675 downregulated and 425 upregulated) which were involved in various biological processes such as protein ubiquitination modification, cell cycle regulation, RNA transport, and autophagy. We also found that circRNAs identified after FMDV infection may be involved in the host cell immune response. RNA-Seq results were validated by circRNAs qRT-PCR. In this study, we analyzed for the first time circRNAs expression profile and the biological function of these genes after FMDV infection of host cells. The results provide new insights into the interactions between FMDV and host cells.
Collapse
|
12
|
Schneider MM, Gautam S, Herling TW, Andrzejewska E, Krainer G, Miller AM, Trinkaus VA, Peter QAE, Ruggeri FS, Vendruscolo M, Bracher A, Dobson CM, Hartl FU, Knowles TPJ. The Hsc70 disaggregation machinery removes monomer units directly from α-synuclein fibril ends. Nat Commun 2021; 12:5999. [PMID: 34650037 PMCID: PMC8516981 DOI: 10.1038/s41467-021-25966-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 08/25/2021] [Indexed: 02/02/2023] Open
Abstract
Molecular chaperones contribute to the maintenance of cellular protein homoeostasis through assisting de novo protein folding and preventing amyloid formation. Chaperones of the Hsp70 family can further disaggregate otherwise irreversible aggregate species such as α-synuclein fibrils, which accumulate in Parkinson's disease. However, the mechanisms and kinetics of this key functionality are only partially understood. Here, we combine microfluidic measurements with chemical kinetics to study α-synuclein disaggregation. We show that Hsc70 together with its co-chaperones DnaJB1 and Apg2 can completely reverse α-synuclein aggregation back to its soluble monomeric state. This reaction proceeds through first-order kinetics where monomer units are removed directly from the fibril ends with little contribution from intermediate fibril fragmentation steps. These findings extend our mechanistic understanding of the role of chaperones in the suppression of amyloid proliferation and in aggregate clearance, and inform on possibilities and limitations of this strategy in the development of therapeutics against synucleinopathies.
Collapse
Affiliation(s)
- Matthias M. Schneider
- grid.5335.00000000121885934Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW UK
| | - Saurabh Gautam
- grid.418615.f0000 0004 0491 845XDepartment of Cellular Biochemistry, Max-Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany ,Present Address: ViraTherapeutics GmbH, 6063 Rum, Austria
| | - Therese W. Herling
- grid.5335.00000000121885934Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW UK
| | - Ewa Andrzejewska
- grid.5335.00000000121885934Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW UK
| | - Georg Krainer
- grid.5335.00000000121885934Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW UK
| | - Alyssa M. Miller
- grid.5335.00000000121885934Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW UK
| | - Victoria A. Trinkaus
- grid.418615.f0000 0004 0491 845XDepartment of Cellular Biochemistry, Max-Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany ,grid.452617.3Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Quentin A. E. Peter
- grid.5335.00000000121885934Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW UK
| | - Francesco Simone Ruggeri
- grid.5335.00000000121885934Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW UK
| | - Michele Vendruscolo
- grid.5335.00000000121885934Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW UK
| | - Andreas Bracher
- grid.418615.f0000 0004 0491 845XDepartment of Cellular Biochemistry, Max-Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Christopher M. Dobson
- grid.5335.00000000121885934Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW UK
| | - F. Ulrich Hartl
- grid.418615.f0000 0004 0491 845XDepartment of Cellular Biochemistry, Max-Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany ,grid.452617.3Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Tuomas P. J. Knowles
- grid.5335.00000000121885934Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW UK ,grid.5335.00000000121885934Department of Physics, Cavendish Laboratory, University of Cambridge, JJ Thomson Road, Cambridge, CB3 0HE UK
| |
Collapse
|
13
|
Lim J, Lee K, Im H. Reinforcement of the Unfolded Protein Response Mitigates Cytotoxicity Induced by Human Z‐Type α
1
‐Antitrypsin. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jaeyeon Lim
- Department of Integrative Bioscience and Biotechnology Sejong University Seoul 05006 South Korea
| | - Kyunghee Lee
- Department of Chemistry Sejong University Seoul 05006 South Korea
| | - Hana Im
- Department of Integrative Bioscience and Biotechnology Sejong University Seoul 05006 South Korea
| |
Collapse
|
14
|
Iberahim NA, Sood N, Pradhan PK, van den Boom J, van West P, Trusch F. The chaperone Lhs1 contributes to the virulence of the fish-pathogenic oomycete Aphanomyces invadans. Fungal Biol 2020; 124:1024-1031. [PMID: 33213782 DOI: 10.1016/j.funbio.2020.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/30/2020] [Accepted: 09/07/2020] [Indexed: 11/17/2022]
Abstract
Oomycetes are fungal-like eukaryotes and many of them are pathogens that threaten natural ecosystems and cause huge financial losses for the aqua- and agriculture industry. Amongst them, Aphanomyces invadans causes Epizootic Ulcerative Syndrome (EUS) in fish which can be responsible for up to 100% mortality in aquaculture. As other eukaryotic pathogens, in order to establish and promote an infection, A. invadans secretes proteins, which are predicted to overcome host defence mechanisms and interfere with other processes inside the host. We investigated the role of Lhs1 which is part of an ER-resident complex that generally promotes the translocation of proteins from the cytoplasm into the ER for further processing and secretion. Interestingly, proteomic studies reveal that only a subset of virulence factors are affected by the silencing of AiLhs1 in A. invadans indicating various secretion pathways for different proteins. Importantly, changes in the secretome upon silencing of AiLhs1 significantly reduces the virulence of A. invadans in the infection model Galleriamellonella. Furthermore, we show that AiLhs1 is important for the production of zoospores and their cluster formation. This renders proteins required for protein ER translocation as interesting targets for the potential development of alternative disease control strategies in agri- and aquaculture.
Collapse
Affiliation(s)
- Nurul Aqilah Iberahim
- Aberdeen Oomycete Laboratory, Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, United Kingdom; International Centre for Aquaculture Research and Development (ICARD), University of Aberdeen, Scotland, United Kingdom; Faculty of Fisheries and Food Sciences, Universiti Malaysia Terengganu, 21030, Malaysia
| | - Neeraj Sood
- Fish Health Management Division, National Bureau of Fish Genetic Resources, 226002, Lucknow, India
| | - Pravata Kumar Pradhan
- Fish Health Management Division, National Bureau of Fish Genetic Resources, 226002, Lucknow, India
| | - Johannes van den Boom
- Molecular Biology I, Centre for Medical Biotechnology, University of Duisburg-Essen, 45141, Essen, Germany
| | - Pieter van West
- Aberdeen Oomycete Laboratory, Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, United Kingdom; International Centre for Aquaculture Research and Development (ICARD), University of Aberdeen, Scotland, United Kingdom.
| | - Franziska Trusch
- Aberdeen Oomycete Laboratory, Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, United Kingdom; International Centre for Aquaculture Research and Development (ICARD), University of Aberdeen, Scotland, United Kingdom.
| |
Collapse
|
15
|
Lopreiato V, Vailati-Riboni M, Parys C, Fernandez C, Minuti A, Loor JJ. Methyl donor supply to heat stress-challenged polymorphonuclear leukocytes from lactating Holstein cows enhances 1-carbon metabolism, immune response, and cytoprotective gene network abundance. J Dairy Sci 2020; 103:10477-10493. [PMID: 32952025 DOI: 10.3168/jds.2020-18638] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/10/2020] [Indexed: 12/22/2022]
Abstract
Mechanisms controlling immune function of dairy cows are dysregulated during heat stress (HS). Methyl donor supply-methionine (Met) and choline (Chol)-positively modulates innate immune function, particularly antioxidant systems of polymorphonuclear leukocytes (PMN). The objective of this study was to investigate the effect of Met and Chol supply in vitro on mRNA abundance of genes related to 1-carbon metabolism, inflammation, and immune function in short-term cultures of PMN isolated from mid-lactating Holstein cows in response to heat challenge. Blood PMN were isolated from 5 Holstein cows (153 ± 5 d postpartum, 34.63 ± 2.73 kg/d of milk production; mean ± SD). The PMN were incubated for 2 h at thermal-neutral (37°C; TN) or heat stress (42°C; HS) temperatures with 3 levels of Chol (0, 400, or 800 μg/mL) or 3 ratios of Lys:Met (Met; 3.6:1, 2.9:1, or 2.4:1). Supernatant concentrations of IL-1β, IL-6, and tumor necrosis factor-α were measured via bovine-specific ELISA. Fold-changes in mRNA abundance were calculated separately for Chol and Met treatments to obtain the fold-change response at 42°C (HS) relative to 37°C (TN). Data were subjected to ANOVA using PROC MIXED in SAS (SAS Institute Inc., Cary, NC). Orthogonal contrasts were used to determine the linear or quadratic effect of Met and Chol for mRNA fold-change and supernatant cytokine concentrations. Compared with PMN receiving 0 μg of Chol/mL, heat-stressed PMN supplemented with Chol at 400 or 800 μg/mL had greater fold-change in abundance of CBS, CSAD, GSS, GSR, and GPX1. Among genes associated with inflammation and immune function, fold-change in abundance of TLR2, TLR4, IRAK1, IL1B, and IL10 increased with 400 and 800 μg of Chol/mL compared with PMN receiving 0 μg of Chol/mL. Fold-change in abundance of SAHH decreased linearly at increasing levels of Met supply. A linear effect was detected for MPO, NFKB1, and SOD1 due to greater fold-change in abundance when Met was increased to reach Lys:Met ratios of 2.9:1 and 2.4:1. Although increasing Chol supply upregulated BAX, BCL2, and HSP70, increased Met supply only upregulated BAX. Under HS conditions, enhancing PMN supply of Chol to 400 μg/mL effectively increased fold-change in abundance of genes involved in antioxidant production (conferring cellular processes protection from free radicals and reactive oxygen species), inflammatory signaling, and innate immunity. Although similar outcomes were obtained with Met supply at Lys:Met ratios of 2.9:1 and 2.4:1, the response was less pronounced. Both Chol and Met supply enhanced the cytoprotective characteristics of PMN through upregulation of heat shock proteins. Overall, the modulatory effects detected in the present experiment highlight an opportunity to use Met and particularly Chol supplementation during thermal stress.
Collapse
Affiliation(s)
- V Lopreiato
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - M Vailati-Riboni
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - C Parys
- Evonik Nutrition & Care GmbH, Hanau-Wolfgang 63457, Germany
| | - C Fernandez
- Animal Science Department, Universitàt Politècnica de Valencia, 46022 Valencia, Spain
| | - A Minuti
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - J J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801.
| |
Collapse
|
16
|
Srivastava S, Vishwanathan V, Birje A, Sinha D, D'Silva P. Evolving paradigms on the interplay of mitochondrial Hsp70 chaperone system in cell survival and senescence. Crit Rev Biochem Mol Biol 2020; 54:517-536. [PMID: 31997665 DOI: 10.1080/10409238.2020.1718062] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The role of mitochondria within a cell has grown beyond being the prime source of cellular energy to one of the major signaling platforms. Recent evidence provides several insights into the crucial roles of mitochondrial chaperones in regulating the organellar response to external triggers. The mitochondrial Hsp70 (mtHsp70/Mortalin/Grp75) chaperone system plays a critical role in the maintenance of proteostasis balance in the organelle. Defects in mtHsp70 network result in attenuated protein transport and misfolding of polypeptides leading to mitochondrial dysfunction. The functions of Hsp70 are primarily governed by J-protein cochaperones. Although human mitochondria possess a single Hsp70, its multifunctionality is characterized by the presence of multiple specific J-proteins. Several studies have shown a potential association of Hsp70 and J-proteins with diverse pathological states that are not limited to their canonical role as chaperones. The role of mitochondrial Hsp70 and its co-chaperones in disease pathogenesis has not been critically reviewed in recent years. We evaluated some of the cellular interfaces where Hsp70 machinery associated with pathophysiological conditions, particularly in context of tumorigenesis and neurodegeneration. The mitochondrial Hsp70 machinery shows a variable localization and integrates multiple components of the cellular processes with varied phenotypic consequences. Although Hsp70 and J-proteins function synergistically in proteins folding, their precise involvement in pathological conditions is mainly idiosyncratic. This machinery is associated with a heterogeneous set of molecules during the progression of a disorder. However, the precise binding to the substrate for a specific physiological response under a disease subtype is still an undocumented area of analysis.
Collapse
Affiliation(s)
- Shubhi Srivastava
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | | | - Abhijit Birje
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Devanjan Sinha
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Patrick D'Silva
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| |
Collapse
|
17
|
Needham PG, Guerriero CJ, Brodsky JL. Chaperoning Endoplasmic Reticulum-Associated Degradation (ERAD) and Protein Conformational Diseases. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a033928. [PMID: 30670468 DOI: 10.1101/cshperspect.a033928] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Misfolded proteins compromise cellular homeostasis. This is especially problematic in the endoplasmic reticulum (ER), which is a high-capacity protein-folding compartment and whose function requires stringent protein quality-control systems. Multiprotein complexes in the ER are able to identify, remove, ubiquitinate, and deliver misfolded proteins to the 26S proteasome for degradation in the cytosol, and these events are collectively termed ER-associated degradation, or ERAD. Several steps in the ERAD pathway are facilitated by molecular chaperone networks, and the importance of ERAD is highlighted by the fact that this pathway is linked to numerous protein conformational diseases. In this review, we discuss the factors that constitute the ERAD machinery and detail how each step in the pathway occurs. We then highlight the underlying pathophysiology of protein conformational diseases associated with ERAD.
Collapse
Affiliation(s)
- Patrick G Needham
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | | | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| |
Collapse
|
18
|
Chen L, Geng X, Ma Y, Zhao J, Chen W, Xing X, Shi Y, Sun B, Li H. The ER Lumenal Hsp70 Protein FpLhs1 Is Important for Conidiation and Plant Infection in Fusarium pseudograminearum. Front Microbiol 2019; 10:1401. [PMID: 31316483 PMCID: PMC6611370 DOI: 10.3389/fmicb.2019.01401] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 06/04/2019] [Indexed: 11/19/2022] Open
Abstract
Heat shock protein 70s (Hsp70s) are a class of molecular chaperones that are highly conserved and ubiquitous in organisms ranging from microorganisms to plants and humans. Hsp70s play key roles in cellular development and protecting living organisms from environmental stresses such as heat, drought, salinity, acidity, and cold. However, their functions in pathogenic fungi are largely unknown. Here, a total of 14 FpHsp70 genes were identified in Fusarium pseudograminearum, including 3 in the mitochondria, 7 in the cytoplasm, 2 in the endoplasmic reticulum (ER), 1 in the nucleus, and 1 in the plastid. However, the exon–intron boundaries and protein motifs of the FpHsp70 have no consistency in the same subfamily. Expression analysis revealed that most FpHsp70 genes were up-regulated during infection, implying that FpHsp70 genes may play important roles in F. pseudograminearum pathogenicity. Furthermore, knockout of an ER lumenal Hsp70 homolog FpLhs1 gene reduced growth, conidiation, and pathogenicity in F. pseudograminearum. These mutants also showed a defect in secretion of some proteins. Together, FpHsp70s might play essential roles in F. pseudograminearum and FpLhs1 is likely to act on the development and virulence by regulating protein secretion.
Collapse
Affiliation(s)
- Linlin Chen
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China.,National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, China
| | - Xuejing Geng
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Yuming Ma
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Jingya Zhao
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Wenbo Chen
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Xiaoping Xing
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Yan Shi
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Bingjian Sun
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Honglian Li
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China.,National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, China
| |
Collapse
|
19
|
Li H, Ericsson M, Rabasha B, Budnik B, Chan SH, Freinkman E, Lewis CA, Doench JG, Wagner BK, Garraway LA, Schreiber SL. 6-Phosphogluconate Dehydrogenase Links Cytosolic Carbohydrate Metabolism to Protein Secretion via Modulation of Glutathione Levels. Cell Chem Biol 2019; 26:1306-1314.e5. [PMID: 31204288 DOI: 10.1016/j.chembiol.2019.05.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/26/2019] [Accepted: 05/13/2019] [Indexed: 12/15/2022]
Abstract
The proteinaceous extracellular matrix (ECM) is vital for the survival, proliferation, migration, and differentiation of many types of cancer. However, little is known regarding metabolic pathways required for ECM secretion. By using an unbiased computational approach, we searched for enzymes whose suppression may lead to disruptions in protein secretion. Here, we show that 6-phosphogluconate dehydrogenase (PGD), a cytosolic enzyme involved in carbohydrate metabolism, is required for ER structural integrity and protein secretion. Chemical inhibition or genetic suppression of PGD activity led to cell stress accompanied by significantly expanded ER volume and was rescued by compensating endogenous glutathione supplies. Our results also suggest that this characteristic ER-dilation phenotype may be a general marker indicating increased ECM protein congestion inside cells and decreased secretion. Thus, PGD serves as a link between cytosolic carbohydrate metabolism and protein secretion.
Collapse
Affiliation(s)
- Haoxin Li
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| | - Maria Ericsson
- Electron Microscope Facility, Harvard Medical School, Boston, MA 02115, USA
| | - Bokang Rabasha
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Bogdan Budnik
- Mass Spectrometry and Proteomics Laboratory, Harvard University, Cambridge, MA 02138, USA
| | - Sze Ham Chan
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | | | - Caroline A Lewis
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - John G Doench
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | | | - Levi A Garraway
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Stuart L Schreiber
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
20
|
Abstract
The site of protein folding and maturation for the majority of proteins that are secreted, localized to the plasma membrane or targeted to endomembrane compartments is the endoplasmic reticulum (ER). It is essential that proteins targeted to the ER are properly folded in order to carry out their function, as well as maintain protein homeostasis, as accumulation of misfolded proteins could lead to the formation of cytotoxic aggregates. Because protein folding is an error-prone process, the ER contains protein quality control networks that act to optimize proper folding and trafficking of client proteins. If a protein is unable to reach its native state, it is targeted for ER retention and subsequent degradation. The protein quality control networks of the ER that oversee this evaluation or interrogation process that decides the fate of maturing nascent chains is comprised of three general types of families: the classical chaperones, the carbohydrate-dependent system, and the thiol-dependent system. The cooperative action of these families promotes protein quality control and protein homeostasis in the ER. This review will describe the families of the ER protein quality control network and discuss the functions of individual members.
Collapse
Affiliation(s)
- Benjamin M Adams
- Department of Biochemistry and Molecular Biology, University of Massachusetts, 240 Thatcher Road, Amherst, MA, 01003, USA
- Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA, 01003, USA
| | - Michela E Oster
- Department of Biochemistry and Molecular Biology, University of Massachusetts, 240 Thatcher Road, Amherst, MA, 01003, USA
| | - Daniel N Hebert
- Department of Biochemistry and Molecular Biology, University of Massachusetts, 240 Thatcher Road, Amherst, MA, 01003, USA.
- Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA, 01003, USA.
| |
Collapse
|
21
|
Yakubu UM, Morano KA. Roles of the nucleotide exchange factor and chaperone Hsp110 in cellular proteostasis and diseases of protein misfolding. Biol Chem 2019; 399:1215-1221. [PMID: 29908125 DOI: 10.1515/hsz-2018-0209] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 05/30/2018] [Indexed: 01/15/2023]
Abstract
Cellular protein homeostasis (proteostasis) is maintained by a broad network of proteins involved in synthesis, folding, triage, repair and degradation. Chief among these are molecular chaperones and their cofactors that act as powerful protein remodelers. The growing realization that many human pathologies are fundamentally diseases of protein misfolding (proteopathies) has generated interest in understanding how the proteostasis network impacts onset and progression of these diseases. In this minireview, we highlight recent progress in understanding the enigmatic Hsp110 class of heat shock protein that acts as both a potent nucleotide exchange factor to regulate activity of the foldase Hsp70, and as a passive chaperone capable of recognizing and binding cellular substrates on its own, and its integration into the proteostasis network.
Collapse
Affiliation(s)
- Unekwu M Yakubu
- Department of Microbiology and Molecular Genetics, University of Texas McGovern Medical School at Houston, Houston, TX 77030, USA.,MD Anderson UT Health Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Kevin A Morano
- Department of Microbiology and Molecular Genetics, University of Texas McGovern Medical School at Houston, Houston, TX 77030, USA
| |
Collapse
|
22
|
Fernández-Higuero JÁ, Betancor-Fernández I, Mesa-Torres N, Muga A, Salido E, Pey AL. Structural and functional insights on the roles of molecular chaperones in the mistargeting and aggregation phenotypes associated with primary hyperoxaluria type I. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2018; 114:119-152. [PMID: 30635080 DOI: 10.1016/bs.apcsb.2018.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
To carry out their biological function in cells, proteins must be folded and targeted to the appropriate subcellular location. These processes are controlled by a vast collection of interacting proteins collectively known as the protein homeostasis network, in which molecular chaperones play a prominent role. Protein homeostasis can be impaired by inherited mutations leading to genetic diseases. In this chapter, we focus on a particular disease, primary hyperoxaluria type 1 (PH1), in which disease-associated mutations exacerbate protein aggregation in the cell and mistarget the peroxisomal alanine:glyoxylate aminotransferase (AGT) protein to mitochondria, in part due to native state destabilization and enhanced interaction with Hsp60, 70 and 90 chaperone systems. After a general introduction of molecular chaperones and PH1, we review our current knowledge on the structural and energetic features of PH1-causing mutants that lead to these particular pathogenic mechanisms. From this perspective, and in the context of the key role of molecular chaperones in PH1 pathogenesis, we present and discuss current and future perspectives for pharmacological treatments for this disease.
Collapse
Affiliation(s)
- José Ángel Fernández-Higuero
- Biofisika Institute (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Isabel Betancor-Fernández
- Centre for Biomedical Research on Rare Diseases (CIBERER), Hospital Universitario de Canarias, ITB, University of La Laguna, Tenerife, Spain
| | - Noel Mesa-Torres
- Department of Physical Chemistry, University of Granada, Granada, Spain
| | - Arturo Muga
- Biofisika Institute (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Eduardo Salido
- Centre for Biomedical Research on Rare Diseases (CIBERER), Hospital Universitario de Canarias, ITB, University of La Laguna, Tenerife, Spain
| | - Angel L Pey
- Department of Physical Chemistry, University of Granada, Granada, Spain.
| |
Collapse
|
23
|
Celińska E, Nicaud JM. Filamentous fungi-like secretory pathway strayed in a yeast system: peculiarities of Yarrowia lipolytica secretory pathway underlying its extraordinary performance. Appl Microbiol Biotechnol 2018; 103:39-52. [PMID: 30353423 PMCID: PMC6311201 DOI: 10.1007/s00253-018-9450-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/09/2018] [Accepted: 10/10/2018] [Indexed: 12/22/2022]
Abstract
Microbial production of secretory proteins constitutes one of the key branches of current industrial biotechnology, earning billion dollar (USD) revenues each year. That industrial branch strongly relies on fluent operation of the secretory machinery within a microbial cell. The secretory machinery, directing the nascent polypeptide to its final destination, constitutes a highly complex system located across the eukaryotic cell. Numerous molecular identities of diverse structure and function not only build the advanced network assisting folding, maturation and secretion of polypeptides but also serve as sensors and effectors of quality control points. All these events must be harmoniously orchestrated to enable fluent processing of the protein traffic. Availability of these elements is considered to be the limiting factor determining capacity of protein traffic, which is of crucial importance upon biotechnological production of secretory proteins. The main purpose of this work is to review and discuss findings concerning secretory machinery operating in a non-conventional yeast species, Yarrowia lipolytica, and to highlight peculiarities of this system prompting its use as the production host. The reviewed literature supports the thesis that secretory machinery in Y. lipolytica is characterized by significantly higher complexity than a canonical yeast protein secretion pathway, making it more similar to filamentous fungi-like systems in this regard.
Collapse
Affiliation(s)
- Ewelina Celińska
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, ul. Wojska Polskiego 48, 60-627, Poznań, Poland.
| | - Jean-Marc Nicaud
- INRA-AgroParisTech, UMR1319, Team BIMLip: Integrative Metabolism of Microbial Lipids, Micalis Institute, Domaine de Vilvert, 78352, Jouy-en-Josas, France
| |
Collapse
|
24
|
Epithelial sodium channel biogenesis and quality control in the early secretory pathway. Curr Opin Nephrol Hypertens 2018; 27:364-372. [DOI: 10.1097/mnh.0000000000000438] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
25
|
Abstract
The ATPase cycle of Hsp70 chaperones controls their transient association with substrates and thus governs their function in protein folding. Nucleotide exchange factors (NEFs) accelerate ADP release from Hsp70, which results in rebinding of ATP and release of the substrate, thereby regulating the lifetime of the Hsp70-substrate complex. This chapter describes several methods suitable to study NEFs of Hsp70 chaperones. On the one hand, steady-state ATPase assays provide information on how the NEF influences progression of the Hsp70 through the entire ATPase cycle. On the other hand, nucleotide release can be measured directly using labeled nucleotides, which enables identification and further characterization of NEFs.
Collapse
|
26
|
Zirpel B, Degenhardt F, Zammarelli C, Wibberg D, Kalinowski J, Stehle F, Kayser O. Optimization of Δ 9-tetrahydrocannabinolic acid synthase production in Komagataella phaffii via post-translational bottleneck identification. J Biotechnol 2018; 272-273:40-47. [PMID: 29549004 DOI: 10.1016/j.jbiotec.2018.03.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 02/05/2018] [Accepted: 03/12/2018] [Indexed: 12/22/2022]
Abstract
Δ9-Tetrahydrocannabinolic acid (THCA) is a secondary natural product from the plant Cannabis sativa L. with therapeutic indications like analgesics for cancer pain or reducing spasticity associated with multiple sclerosis. Here, we investigated the influence of the co-expression of 12 helper protein genes from Komagataella phaffii (formerly Pichia pastoris) on the functional expression of the Δ9-tetrahydrocannabinolic acid synthase (THCAS) heterologously expressed in K. phaffii by screening 21 clones of each transformation. Our findings substantiate the necessity of a suitable screening system when interfering with the secretory network of K. phaffii. We found that co-production of the chaperones CNE1p and Kar2p, the foldase PDI1p, the UPR-activator Hac1p as well as the FAD synthetase FAD1p enhanced THCAS activity levels within the K. phaffii cells. The strongest influence showed co-expression of Hac1s - increasing the volumetric THCAS activities 4.1-fold on average. We also combined co-production of Hac1p with the other beneficial helper proteins to further enhance THCAS activity levels. An optimized strain overexpressing Hac1s, FAD1 and CNE1 was isolated that showed 20-fold increased volumetric, intracellular THCAS activity compared to the starting strain. We used this strain for a whole cell bioconversion of cannabigerolic acid (CBGA) to THCA. After 8 h of incubation at 37 °C, the cells produced 3.05 g L-1 THCA corresponding to 12.5% gTHCA gCDW-1.
Collapse
Affiliation(s)
- Bastian Zirpel
- Department of Technical Biochemistry, TU Dortmund University, Emil-Figge Str. 66, 44227 Dortmund, Germany
| | - Friederike Degenhardt
- Department of Technical Biochemistry, TU Dortmund University, Emil-Figge Str. 66, 44227 Dortmund, Germany
| | - Chantale Zammarelli
- Department of Technical Biochemistry, TU Dortmund University, Emil-Figge Str. 66, 44227 Dortmund, Germany
| | - Daniel Wibberg
- Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstr. 27, 33615, Bielefeld, Germany
| | - Jörn Kalinowski
- Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstr. 27, 33615, Bielefeld, Germany
| | - Felix Stehle
- Department of Technical Biochemistry, TU Dortmund University, Emil-Figge Str. 66, 44227 Dortmund, Germany
| | - Oliver Kayser
- Department of Technical Biochemistry, TU Dortmund University, Emil-Figge Str. 66, 44227 Dortmund, Germany.
| |
Collapse
|
27
|
Diminished Ost3-dependent N-glycosylation of the BiP nucleotide exchange factor Sil1 is an adaptive response to reductive ER stress. Proc Natl Acad Sci U S A 2017; 114:12489-12494. [PMID: 29109265 DOI: 10.1073/pnas.1705641114] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
BiP (Kar2 in yeast) is an essential Hsp70 chaperone and master regulator of endoplasmic reticulum (ER) function. BiP's activity is regulated by its intrinsic ATPase activity that can be stimulated by two different nucleotide exchange factors, Sil1 and Lhs1. Both Sil1 and Lhs1 are glycoproteins, but how N-glycosylation regulates their function is not known. Here, we show that N-glycosylation of Sil1, but not of Lhs1, is diminished upon reductive stress. N-glycosylation of Sil1 is predominantly Ost3-dependent and requires a functional Ost3 CxxC thioredoxin motif. N-glycosylation of Lhs1 is largely Ost3-independent and independent of the CxxC motif. Unglycosylated Sil1 is not only functional but is more effective at rescuing loss of Lhs1 activity than N-glycosylated Sil1. Furthermore, substitution of the redox active cysteine pair C52 and C57 in the N terminus of Sil1 results in the Doa10-dependent ERAD of this mutant protein. We propose that reductive stress in the ER inhibits the Ost3-dependent N-glycosylation of Sil1, which regulates specific BiP functions appropriate to the needs of the ER under reductive stress.
Collapse
|
28
|
Siegenthaler KD, Pareja KA, Wang J, Sevier CS. An unexpected role for the yeast nucleotide exchange factor Sil1 as a reductant acting on the molecular chaperone BiP. eLife 2017; 6. [PMID: 28257000 PMCID: PMC5358974 DOI: 10.7554/elife.24141] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 03/02/2017] [Indexed: 12/18/2022] Open
Abstract
Unfavorable redox conditions in the endoplasmic reticulum (ER) can decrease the capacity for protein secretion, altering vital cell functions. While systems to manage reductive stress are well-established, how cells cope with an overly oxidizing ER remains largely undefined. In previous work (Wang et al., 2014), we demonstrated that the chaperone BiP is a sensor of overly oxidizing ER conditions. We showed that modification of a conserved BiP cysteine during stress beneficially alters BiP chaperone activity to cope with suboptimal folding conditions. How this cysteine is reduced to reestablish 'normal' BiP activity post-oxidative stress has remained unknown. Here we demonstrate that BiP's nucleotide exchange factor - Sil1 - can reverse BiP cysteine oxidation. This previously unexpected reductant capacity for yeast Sil1 has potential implications for the human ataxia Marinesco-Sjögren syndrome, where it is interesting to speculate that a disruption in ER redox-signaling (due to genetic defects in SIL1) may influence disease pathology.
Collapse
Affiliation(s)
| | - Kristeen A Pareja
- Department of Molecular Medicine, Cornell University, Ithaca, United States
| | - Jie Wang
- Department of Molecular Medicine, Cornell University, Ithaca, United States
| | - Carolyn S Sevier
- Department of Molecular Medicine, Cornell University, Ithaca, United States
| |
Collapse
|
29
|
Buck TM, Jordahl AS, Yates ME, Preston GM, Cook E, Kleyman TR, Brodsky JL. Interactions between intersubunit transmembrane domains regulate the chaperone-dependent degradation of an oligomeric membrane protein. Biochem J 2017; 474:357-376. [PMID: 27903760 PMCID: PMC5423784 DOI: 10.1042/bcj20160760] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 11/28/2016] [Accepted: 11/30/2016] [Indexed: 12/22/2022]
Abstract
In the kidney, the epithelial sodium channel (ENaC) regulates blood pressure through control of sodium and volume homeostasis, and in the lung, ENaC regulates the volume of airway and alveolar fluids. ENaC is a heterotrimer of homologous α-, β- and γ-subunits, and assembles in the endoplasmic reticulum (ER) before it traffics to and functions at the plasma membrane. Improperly folded or orphaned ENaC subunits are subject to ER quality control and targeted for ER-associated degradation (ERAD). We previously established that a conserved, ER lumenal, molecular chaperone, Lhs1/GRP170, selects αENaC, but not β- or γ-ENaC, for degradation when the ENaC subunits were individually expressed. We now find that when all three subunits are co-expressed, Lhs1-facilitated ERAD was blocked. To determine which domain-domain interactions between the ENaC subunits are critical for chaperone-dependent quality control, we employed a yeast model and expressed chimeric α/βENaC constructs in the context of the ENaC heterotrimer. We discovered that the βENaC transmembrane domain was sufficient to prevent the Lhs1-dependent degradation of the α-subunit in the context of the ENaC heterotrimer. Our work also found that Lhs1 delivers αENaC for proteasome-mediated degradation after the protein has become polyubiquitinated. These data indicate that the Lhs1 chaperone selectively recognizes an immature form of αENaC, one which has failed to correctly assemble with the other channel subunits via its transmembrane domain.
Collapse
Affiliation(s)
- Teresa M Buck
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Alexa S Jordahl
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Megan E Yates
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - G Michael Preston
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Emily Cook
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Thomas R Kleyman
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, U.S.A
| |
Collapse
|
30
|
Bhadra AK, Das E, Roy I. Protein aggregation activates erratic stress response in dietary restricted yeast cells. Sci Rep 2016; 6:33433. [PMID: 27633120 PMCID: PMC5025734 DOI: 10.1038/srep33433] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 08/02/2016] [Indexed: 12/14/2022] Open
Abstract
Chronic stress and prolonged activation of defence pathways have deleterious consequences for the cell. Dietary restriction is believed to be beneficial as it induces the cellular stress response machinery. We report here that although the phenomenon is beneficial in a wild-type cell, dietary restriction leads to an inconsistent response in a cell that is already under proteotoxicity-induced stress. Using a yeast model of Huntington's disease, we show that contrary to expectation, aggregation of mutant huntingtin is exacerbated and activation of the unfolded protein response pathway is dampened under dietary restriction. Global proteomic analysis shows that when exposed to a single stress, either protein aggregation or dietary restriction, the expression of foldases like peptidyl-prolyl isomerase, is strongly upregulated. However, under combinatorial stress, this lead is lost, which results in enhanced protein aggregation and reduced cell survival. Successful designing of aggregation-targeted therapeutics will need to take additional stressors into account.
Collapse
Affiliation(s)
- Ankan Kumar Bhadra
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160 062, India
| | - Eshita Das
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160 062, India
| | - Ipsita Roy
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160 062, India
| |
Collapse
|
31
|
Drini S, Criscuolo A, Lechat P, Imamura H, Skalický T, Rachidi N, Lukeš J, Dujardin JC, Späth GF. Species- and Strain-Specific Adaptation of the HSP70 Super Family in Pathogenic Trypanosomatids. Genome Biol Evol 2016; 8:1980-95. [PMID: 27371955 PMCID: PMC4943205 DOI: 10.1093/gbe/evw140] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
All eukaryotic genomes encode multiple members of the heat shock protein 70 (HSP70) family, which evolved distinctive structural and functional features in response to specific environmental constraints. Phylogenetic analysis of this protein family thus can inform on genetic and molecular mechanisms that drive species-specific environmental adaptation. Here we use the eukaryotic pathogen Leishmania spp. as a model system to investigate the evolution of the HSP70 protein family in an early-branching eukaryote that is prone to gene amplification and adapts to cytotoxic host environments by stress-induced and chaperone-dependent stage differentiation. Combining phylogenetic and comparative analyses of trypanosomatid genomes, draft genome of Paratrypanosoma and recently published genome sequences of 204 L. donovani field isolates, we gained unique insight into the evolutionary dynamics of the Leishmania HSP70 protein family. We provide evidence for (i) significant evolutionary expansion of this protein family in Leishmania through gene amplification and functional specialization of highly conserved canonical HSP70 members, (ii) evolution of trypanosomatid-specific, non-canonical family members that likely gained ATPase-independent functions, and (iii) loss of one atypical HSP70 member in the Trypanosoma genus. Finally, we reveal considerable copy number variation of canonical cytoplasmic HSP70 in highly related L. donovani field isolates, thus identifying this locus as a potential hot spot of environment–genotype interaction. Our data draw a complex picture of the genetic history of HSP70 in trypanosomatids that is driven by the remarkable plasticity of the Leishmania genome to undergo massive intra-chromosomal gene amplification to compensate for the absence of regulated transcriptional control in these parasites.
Collapse
Affiliation(s)
- Sima Drini
- Unité de Parasitologie moléculaire et Signalisation, Department of Parasites and Insect Vectors, Institut Pasteur and INSERM U1201, Paris, France
| | - Alexis Criscuolo
- Institut Pasteur - Hub Bioinformatique et Biostatistique - C3BI, Department of Genomes & Genetics, USR 3756 IP CNRS - Paris, France
| | - Pierre Lechat
- Institut Pasteur - Hub Bioinformatique et Biostatistique - C3BI, Department of Genomes & Genetics, USR 3756 IP CNRS - Paris, France
| | - Hideo Imamura
- Molecular Parasitology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerpen, Belgium
| | - Tomáš Skalický
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, and Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Najma Rachidi
- Unité de Parasitologie moléculaire et Signalisation, Department of Parasites and Insect Vectors, Institut Pasteur and INSERM U1201, Paris, France
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, and Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic Canadian Institute for Advanced Research, Toronto, Canada
| | - Jean-Claude Dujardin
- Molecular Parasitology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerpen, Belgium Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Gerald F Späth
- Unité de Parasitologie moléculaire et Signalisation, Department of Parasites and Insect Vectors, Institut Pasteur and INSERM U1201, Paris, France
| |
Collapse
|
32
|
de Ruijter JC, Koskela EV, Frey AD. Enhancing antibody folding and secretion by tailoring the Saccharomyces cerevisiae endoplasmic reticulum. Microb Cell Fact 2016; 15:87. [PMID: 27216259 PMCID: PMC4878073 DOI: 10.1186/s12934-016-0488-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 05/11/2016] [Indexed: 01/20/2023] Open
Abstract
Background The yeast Saccharomyces cerevisiae provides intriguing possibilities for synthetic biology and bioprocess applications, but its use is still constrained by cellular characteristics that limit the product yields. Considering the production of advanced biopharmaceuticals, a major hindrance lies in the yeast endoplasmic reticulum (ER), as it is not equipped for efficient and large scale folding of complex proteins, such as human antibodies. Results Following the example of professional secretory cells, we show that inducing an ER expansion in yeast by deleting the lipid-regulator gene OPI1 can improve the secretion capacity of full-length antibodies up to fourfold. Based on wild-type and ER-enlarged yeast strains, we conducted a screening of a folding factor overexpression library to identify proteins and their expression levels that enhance the secretion of antibodies. Out of six genes tested, addition of the peptidyl-prolyl isomerase CPR5 provided the most beneficial effect on specific product yield while PDI1, ERO1, KAR2, LHS1 and SIL1 had a mild or even negative effect to antibody secretion efficiency. Combining genes for ER enhancement did not induce any significant additional effect compared to addition of just one element. By combining the Δopi1 strain, with the enlarged ER, with CPR5 overexpression, we were able to boost the specific antibody product yield by a factor of 10 relative to the non-engineered strain. Conclusions Engineering protein folding in vivo is a major task for biopharmaceuticals production in yeast and needs to be optimized at several levels. By rational strain design and high-throughput screening applications we were able to increase the specific secreted antibody yields of S. cerevisiae up to 10-fold, providing a promising strain for further process optimization and platform development for antibody production. Electronic supplementary material The online version of this article (doi:10.1186/s12934-016-0488-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jorg C de Ruijter
- Department of Biotechnology and Chemical Technology, Aalto University, Kemistintie 1, 02150, Espoo, Finland
| | - Essi V Koskela
- Department of Biotechnology and Chemical Technology, Aalto University, Kemistintie 1, 02150, Espoo, Finland
| | - Alexander D Frey
- Department of Biotechnology and Chemical Technology, Aalto University, Kemistintie 1, 02150, Espoo, Finland.
| |
Collapse
|
33
|
Inoue T, Tsai B. The Grp170 nucleotide exchange factor executes a key role during ERAD of cellular misfolded clients. Mol Biol Cell 2016; 27:1650-62. [PMID: 27030672 PMCID: PMC4865321 DOI: 10.1091/mbc.e16-01-0033] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/21/2016] [Accepted: 03/23/2016] [Indexed: 01/23/2023] Open
Abstract
When a protein misfolds in the endoplasmic reticulum (ER), it retrotranslocates to the cytosol and is degraded by the proteasome via a pathway called ER-associated degradation (ERAD). To initiate ERAD, ADP-BiP is often recruited to the misfolded client, rendering it soluble and translocation competent. How the misfolded client is subsequently released from BiP so that it undergoes retrotranslocation, however, remains enigmatic. Here we demonstrate that the ER-resident nucleotide exchange factor (NEF) Grp170 plays an important role during ERAD of the misfolded glycosylated client null Hong Kong (NHK). As a NEF, Grp170 triggers nucleotide exchange of BiP to generate ATP-BiP. ATP-BiP disengages from NHK, enabling it to retrotranslocate to the cytosol. We demonstrate that Grp170 binds to Sel1L, an adapter of the transmembrane Hrd1 E3 ubiquitin ligase postulated to be the retrotranslocon, and links this interaction to Grp170's function during ERAD. More broadly, Grp170 also promotes degradation of the nonglycosylated transthyretin (TTR) D18G misfolded client. Our findings thus establish a general function of Grp170 during ERAD and suggest that positioning this client-release factor at the retrotranslocation site may afford a mechanism to couple client release from BiP and retrotranslocation.
Collapse
Affiliation(s)
- Takamasa Inoue
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48103
| | - Billy Tsai
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48103
| |
Collapse
|
34
|
Mammalian SRP receptor switches the Sec61 translocase from Sec62 to SRP-dependent translocation. Nat Commun 2015; 6:10133. [PMID: 26634806 PMCID: PMC4686813 DOI: 10.1038/ncomms10133] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 11/05/2015] [Indexed: 02/07/2023] Open
Abstract
Two distinct pathways deliver secretory proteins to the Sec61 protein translocase in the endoplasmic reticulum membrane. The canonical pathway requires the signal recognition particle (SRP) and its cognate receptor (SR), and targets ribosome-associated proteins to the Sec translocase. The SRP-independent pathway requires the Sec translocase-associated ER membrane protein Sec62 and can be uncoupled from translation. Here we show that SR switches translocons to SRP-dependent translocation by displacing Sec62. This activity localizes to the charged linker region between the longin and GTPase domains of SRα. Using truncation variants, crosslinking and translocation assays reveals two elements with distinct functions as follows: one rearranges the translocon, displacing Sec62 from Sec61. A second promotes ribosome binding and is conserved between all eukaryotes. These specific regions in SRα reprogramme the Sec translocon and facilitate recruitment of ribosome-nascent chain complexes. Overall, our study identifies an important function of SR, which mechanistically links two seemingly independent modes of translocation.
Collapse
|
35
|
A Non-enveloped Virus Hijacks Host Disaggregation Machinery to Translocate across the Endoplasmic Reticulum Membrane. PLoS Pathog 2015; 11:e1005086. [PMID: 26244546 PMCID: PMC4526233 DOI: 10.1371/journal.ppat.1005086] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 07/15/2015] [Indexed: 02/02/2023] Open
Abstract
Mammalian cytosolic Hsp110 family, in concert with the Hsc70:J-protein complex, functions as a disaggregation machinery to rectify protein misfolding problems. Here we uncover a novel role of this machinery in driving membrane translocation during viral entry. The non-enveloped virus SV40 penetrates the endoplasmic reticulum (ER) membrane to reach the cytosol, a critical infection step. Combining biochemical, cell-based, and imaging approaches, we find that the Hsp110 family member Hsp105 associates with the ER membrane J-protein B14. Here Hsp105 cooperates with Hsc70 and extracts the membrane-penetrating SV40 into the cytosol, potentially by disassembling the membrane-embedded virus. Hence the energy provided by the Hsc70-dependent Hsp105 disaggregation machinery can be harnessed to catalyze a membrane translocation event. How non-enveloped viruses penetrate a host membrane to enter cells and cause disease remains an enigmatic step. To infect cells, the non-enveloped SV40 must transport across the ER membrane to reach the cytosol. In this study, we report that a cellular Hsp105-powered disaggregation machinery pulls SV40 into the cytosol, likely by uncoating the ER membrane-penetrating virus. Because this disaggregation machinery is thought to clarify cellular aggregated proteins, we propose that the force generated by this machinery can also be hijacked by a non-enveloped virus to propel its entry into the host.
Collapse
|
36
|
Bracher A, Verghese J. GrpE, Hsp110/Grp170, HspBP1/Sil1 and BAG domain proteins: nucleotide exchange factors for Hsp70 molecular chaperones. Subcell Biochem 2015; 78:1-33. [PMID: 25487014 DOI: 10.1007/978-3-319-11731-7_1] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Molecular chaperones of the Hsp70 family are key components of the cellular protein folding machinery. Substrate folding is accomplished by iterative cycles of ATP binding, hydrolysis and release. The ATPase activity of Hsp70 is regulated by two main classes of cochaperones: J-domain proteins stimulate ATPase hydrolysis by Hsp70, while nucleotide exchange factors (NEF) facilitate its conversion from the ADP-bound to the ATP-bound state, thus closing the chaperone folding cycle. Beginning with the discovery of the prototypical bacterial NEF GrpE, a large diversity of Hsp70 nucleotide exchange factors has been identified, connecting Hsp70 to a multitude of cellular processes in the eukaryotic cell. Here we review recent advances towards structure and function of nucleotide exchange factors from the Hsp110/Grp170, HspBP1/Sil1 and BAG domain protein families and discuss how these cochaperones connect protein folding with quality control and degradation pathways.
Collapse
Affiliation(s)
- Andreas Bracher
- Dept. of Cellular Biochemistry, Max-Planck-Institute of Biochemistry, 82152, Martinsried, Germany,
| | | |
Collapse
|
37
|
Blocking Hsp70 enhances the efficiency of amphotericin B treatment against resistant Aspergillus terreus strains. Antimicrob Agents Chemother 2015; 59:3778-88. [PMID: 25870060 DOI: 10.1128/aac.05164-14] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 04/04/2015] [Indexed: 12/24/2022] Open
Abstract
The polyene antifungal amphotericin B (AmB) is widely used to treat life-threatening fungal infections. Even though AmB resistance is exceptionally rare in fungi, most Aspergillus terreus isolates exhibit an intrinsic resistance against the drug in vivo and in vitro. Heat shock proteins perform a fundamental protective role against a multitude of stress responses, thereby maintaining protein homeostasis in the organism. In this study, we elucidated the role of heat shock protein 70 (Hsp70) family members and compared resistant and susceptible A. terreus clinical isolates. The upregulation of cytoplasmic Hsp70 members at the transcriptional as well as translational levels was significantly higher with AmB treatment than without AmB treatment, particularly in resistant A. terreus isolates, thereby indicating a role of Hsp70 proteins in the AmB response. We found that Hsp70 inhibitors considerably increased the susceptibility of resistant A. terreus isolates to AmB but exerted little impact on susceptible isolates. Also, in in vivo experiments, using the Galleria mellonella infection model, cotreatment of resistant A. terreus strains with AmB and the Hsp70 inhibitor pifithrin-μ resulted in significantly improved survival compared with that achieved with AmB alone. Our results point to an important mechanism of regulation of AmB resistance by Hsp70 family members in A. terreus and suggest novel drug targets for the treatment of infections caused by resistant fungal isolates.
Collapse
|
38
|
Bracher A, Verghese J. The nucleotide exchange factors of Hsp70 molecular chaperones. Front Mol Biosci 2015; 2:10. [PMID: 26913285 PMCID: PMC4753570 DOI: 10.3389/fmolb.2015.00010] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 03/18/2015] [Indexed: 11/13/2022] Open
Abstract
Molecular chaperones of the Hsp70 family form an important hub in the cellular protein folding networks in bacteria and eukaryotes, connecting translation with the downstream machineries of protein folding and degradation. The Hsp70 folding cycle is driven by two types of cochaperones: J-domain proteins stimulate ATP hydrolysis by Hsp70, while nucleotide exchange factors (NEFs) promote replacement of Hsp70-bound ADP with ATP. Bacteria and organelles of bacterial origin have only one known NEF type for Hsp70, GrpE. In contrast, a large diversity of Hsp70 NEFs has been discovered in the eukaryotic cell. These NEFs belong to the Hsp110/Grp170, HspBP1/Sil1, and BAG domain protein families. In this short review we compare the structures and molecular mechanisms of nucleotide exchange factors for Hsp70 and discuss how these cochaperones contribute to protein folding and quality control in the cell.
Collapse
Affiliation(s)
- Andreas Bracher
- Department of Cellular Biochemistry, Max-Planck-Institute of Biochemistry Martinsried, Germany
| | - Jacob Verghese
- Department of Cellular Biochemistry, Max-Planck-Institute of Biochemistry Martinsried, Germany
| |
Collapse
|
39
|
Behnke J, Feige MJ, Hendershot LM. BiP and its nucleotide exchange factors Grp170 and Sil1: mechanisms of action and biological functions. J Mol Biol 2015; 427:1589-608. [PMID: 25698114 DOI: 10.1016/j.jmb.2015.02.011] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 02/10/2015] [Accepted: 02/10/2015] [Indexed: 12/26/2022]
Abstract
BiP (immunoglobulin heavy-chain binding protein) is the endoplasmic reticulum (ER) orthologue of the Hsp70 family of molecular chaperones and is intricately involved in most functions of this organelle through its interactions with a variety of substrates and regulatory proteins. Like all Hsp70 family members, the ability of BiP to bind and release unfolded proteins is tightly regulated by a cycle of ATP binding, hydrolysis, and nucleotide exchange. As a characteristic of the Hsp70 family, multiple DnaJ-like co-factors can target substrates to BiP and stimulate its ATPase activity to stabilize the binding of BiP to substrates. However, only in the past decade have nucleotide exchange factors for BiP been identified, which has shed light not only on the mechanism of BiP-assisted folding in the ER but also on Hsp70 family members that reside throughout the cell. We will review the current understanding of the ATPase cycle of BiP in the unique environment of the ER and how it is regulated by the nucleotide exchange factors, Grp170 (glucose-regulated protein of 170kDa) and Sil1, both of which perform unanticipated roles in various biological functions and disease states.
Collapse
Affiliation(s)
- Julia Behnke
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Matthias J Feige
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Linda M Hendershot
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
40
|
A nucleotide exchange factor promotes endoplasmic reticulum-to-cytosol membrane penetration of the nonenveloped virus simian virus 40. J Virol 2015; 89:4069-79. [PMID: 25653441 DOI: 10.1128/jvi.03552-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The nonenveloped simian polyomavirus (PyV) simian virus 40 (SV40) hijacks the endoplasmic reticulum (ER) quality control machinery to penetrate the ER membrane and reach the cytosol, a critical infection step. During entry, SV40 traffics to the ER, where host-induced conformational changes render the virus hydrophobic. The hydrophobic virus binds and integrates into the ER lipid bilayer to initiate membrane penetration. However, prior to membrane transport, the hydrophobic SV40 recruits the ER-resident Hsp70 BiP, which holds the virus in a transport-competent state until it is ready to cross the ER membrane. Here we probed how BiP disengages from SV40 to enable the virus to penetrate the ER membrane. We found that nucleotide exchange factor (NEF) Grp170 induces nucleotide exchange of BiP and releases SV40 from BiP. Importantly, this reaction promotes SV40 ER-to-cytosol transport and infection. The human BK PyV also relies on Grp170 for successful infection. Interestingly, SV40 mobilizes a pool of Grp170 into discrete puncta in the ER called foci. These foci, postulated to represent the ER membrane penetration site, harbor ER components, including BiP, known to facilitate viral ER-to-cytosol transport. Our results thus identify a nucleotide exchange activity essential for catalyzing the most proximal event before ER membrane penetration of PyVs. IMPORTANCE PyVs are known to cause debilitating human diseases. During entry, this virus family, including monkey SV40 and human BK PyV, hijacks ER protein quality control machinery to breach the ER membrane and access the cytosol, a decisive infection step. In this study, we pinpointed an ER-resident factor that executes a crucial role in promoting ER-to-cytosol membrane penetration of PyVs. Identifying a host factor that facilitates entry of the PyV family thus provides additional therapeutic targets to combat PyV-induced diseases.
Collapse
|
41
|
Ichhaporia VP, Sanford T, Howes J, Marion TN, Hendershot LM. Sil1, a nucleotide exchange factor for BiP, is not required for antibody assembly or secretion. Mol Biol Cell 2014; 26:420-9. [PMID: 25473114 PMCID: PMC4310734 DOI: 10.1091/mbc.e14-09-1392] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Sil1 is a nucleotide exchange factor for the ER chaperone BiP, and mutations in this gene lead to Marinesco–Sjögren syndrome, a multisystem disorder. Effects of loss of Sil1 on biosynthesis and secretion of antibodies, a well-characterized BiP client, are determined in a mouse model for this disease and patient-derived lymphoblastoid cell lines. Sil1 is a nucleotide exchange factor for the endoplasmic reticulum chaperone BiP, and mutations in this gene lead to Marinesco–Sjögren syndrome (MSS), a debilitating autosomal recessive disease characterized by multisystem defects. A mouse model for MSS was previously produced by disrupting Sil1 using gene-trap methodology. The resulting Sil1Gt mouse phenocopies several pathologies associated with MSS, although its ability to assemble and secrete antibodies, the best-characterized substrate of BiP, has not been investigated. In vivo antigen-specific immunizations and ex vivo LPS stimulation of splenic B cells revealed that the Sil1Gt mouse was indistinguishable from wild-type age-matched controls in terms of both the kinetics and magnitude of antigen-specific antibody responses. There was no significant accumulation of BiP-associated Ig assembly intermediates or evidence that another molecular chaperone system was used for antibody production in the LPS-stimulated splenic B cells from Sil1Gt mice. ER chaperones were expressed at the same level in Sil1WT and Sil1Gt mice, indicating that there was no evident compensation for the disruption of Sil1. Finally, these results were confirmed and extended in three human EBV-transformed lymphoblastoid cell lines from individuals with MSS, leading us to conclude that the BiP cofactor Sil1 is dispensable for antibody production.
Collapse
Affiliation(s)
- Viraj P Ichhaporia
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN 38105; Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Sciences Center, Memphis, TN 38163
| | - Tyler Sanford
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN 38105; Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Sciences Center, Memphis, TN 38163
| | - Jenny Howes
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Tony N Marion
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Sciences Center, Memphis, TN 38163
| | - Linda M Hendershot
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN 38105;
| |
Collapse
|
42
|
Kominek J, Marszalek J, Neuvéglise C, Craig EA, Williams BL. The complex evolutionary dynamics of Hsp70s: a genomic and functional perspective. Genome Biol Evol 2014; 5:2460-77. [PMID: 24277689 PMCID: PMC3879978 DOI: 10.1093/gbe/evt192] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Hsp70 molecular chaperones are ubiquitous. By preventing aggregation, promoting folding, and regulating degradation, Hsp70s are major factors in the ability of cells to maintain proteostasis. Despite a wealth of functional information, little is understood about the evolutionary dynamics of Hsp70s. We undertook an analysis of Hsp70s in the fungal clade Ascomycota. Using the well-characterized 14 Hsp70s of Saccharomyces cerevisiae, we identified 491 orthologs from 53 genomes. Saccharomyces cerevisiae Hsp70s fall into seven subfamilies: four canonical-type Hsp70 chaperones (SSA, SSB, KAR, and SSC) and three atypical Hsp70s (SSE, SSZ, and LHS) that play regulatory roles, modulating the activity of canonical Hsp70 partners. Each of the 53 surveyed genomes harbored at least one member of each subfamily, and thus establishing these seven Hsp70s as units of function and evolution. Genomes of some species contained only one member of each subfamily that is only seven Hsp70s. Overall, members of each subfamily formed a monophyletic group, suggesting that each diversified from their corresponding ancestral gene present in the common ancestor of all surveyed species. However, the pattern of evolution varied across subfamilies. At one extreme, members of the SSB subfamily evolved under concerted evolution. At the other extreme, SSA and SSC subfamilies exhibited a high degree of copy number dynamics, consistent with a birth–death mode of evolution. KAR, SSE, SSZ, and LHS subfamilies evolved in a simple divergent mode with little copy number dynamics. Together, our data revealed that the evolutionary history of this highly conserved and ubiquitous protein family was surprising complex and dynamic.
Collapse
Affiliation(s)
- Jacek Kominek
- Laboratory of Evolutionary Biochemistry, Intercollegiate Faculty of Biotechnology, University of Gdansk, Kladki, Poland
| | | | | | | | | |
Collapse
|
43
|
Wang J, Pareja KA, Kaiser CA, Sevier CS. Redox signaling via the molecular chaperone BiP protects cells against endoplasmic reticulum-derived oxidative stress. eLife 2014; 3:e03496. [PMID: 25053742 PMCID: PMC4132286 DOI: 10.7554/elife.03496] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Oxidative protein folding in the endoplasmic reticulum (ER) has emerged as a potentially significant source of cellular reactive oxygen species (ROS). Recent studies suggest that levels of ROS generated as a byproduct of oxidative folding rival those produced by mitochondrial respiration. Mechanisms that protect cells against oxidant accumulation within the ER have begun to be elucidated yet many questions still remain regarding how cells prevent oxidant-induced damage from ER folding events. Here we report a new role for a central well-characterized player in ER homeostasis as a direct sensor of ER redox imbalance. Specifically we show that a conserved cysteine in the lumenal chaperone BiP is susceptible to oxidation by peroxide, and we demonstrate that oxidation of this conserved cysteine disrupts BiP's ATPase cycle. We propose that alteration of BiP activity upon oxidation helps cells cope with disruption to oxidative folding within the ER during oxidative stress. DOI:http://dx.doi.org/10.7554/eLife.03496.001 The endoplasmic reticulum is the cellular compartment where approximately one third of the cell's proteins are made. Inside, chaperone molecules bind to newly made protein chains and help them to fold into the three-dimensional structure required for the protein to work correctly. A chaperone called Ero1 helps to facilitate this folding process by catalyzing a reaction that forms strong chemical bonds, which help stabilize the final protein structures. However, this help from Ero1 comes at a cost: forming a stabilizing bond this way also produces a peroxide molecule as a byproduct. Peroxide is a ‘reactive oxygen species’: a chemical that can oxidize and damage proteins and DNA, which can potentially kill the cell. Three other enzymes in the endoplasmic reticulum can convert peroxide into water, to protect the cells from reactive oxygen species build-up. However, not all cells that use Ero1 have these other enzymes, suggesting that other pathways must exist to manage reactive oxygen species. Wang et al. took advantage of yeast cells containing a hyperactive mutant version of the Ero1 enzyme to look for alternative detoxifying mechanisms that occur when the cell is stressed by an excess of reactive oxygen species. In these cells, Wang et al. observed that the high levels of reactive oxygen species caused part of a chaperone molecule called BiP to oxidize. This modification of BiP acts like a switch that the reactive oxygen species flip on. When activated by the reactive oxygen species, BiP enhances its activity as a folding molecular chaperone, keeping proteins apart. This is thought to allow BiP to minimize the protein misfolding that may otherwise occur in the wake of the damage caused by the building levels of peroxide. Wang et al. created a mutant BiP chaperone that mimics the oxidized form, and found that it also protects cells from the damage inflicted by the excess of reactive oxygen species. Wang et al. propose that the BiP chaperone may be an important sensor of reactive oxygen species that changes its activity when these harmful chemicals are present and helps to protect the cell from damage. The success in mimicking the protective effects of oxidized BiP with a mutant BiP suggest that in the future one may be able to design small molecule drugs that bind to BiP to produce the activity of the modified form. DOI:http://dx.doi.org/10.7554/eLife.03496.002
Collapse
Affiliation(s)
- Jie Wang
- Department of Molecular Medicine, Cornell University, Ithaca, United States
| | - Kristeen A Pareja
- Department of Molecular Medicine, Cornell University, Ithaca, United States
| | - Chris A Kaiser
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | - Carolyn S Sevier
- Department of Molecular Medicine, Cornell University, Ithaca, United States
| |
Collapse
|
44
|
Dudek J, Pfeffer S, Lee PH, Jung M, Cavalié A, Helms V, Förster F, Zimmermann R. Protein transport into the human endoplasmic reticulum. J Mol Biol 2014; 427:1159-75. [PMID: 24968227 DOI: 10.1016/j.jmb.2014.06.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Accepted: 06/11/2014] [Indexed: 12/22/2022]
Abstract
Protein transport into the endoplasmic reticulum (ER) is essential for all eukaryotic cells and evolutionary related to protein transport into and across the cytoplasmic membrane of eubacteria and archaea. It is based on amino-terminal signal peptides in the precursor polypeptides plus various transport components in cytosol plus ER and can occur either cotranslationally or posttranslationally. The two mechanisms merge at the heterotrimeric Sec61 complex in the ER membrane, which forms an aqueous polypeptide-conducting channel. Since the mammalian ER is also the main intracellular calcium storage organelle, the Sec61 complex is tightly regulated in its dynamics between the open and closed conformations by various ligands, such as precursor polypeptides at the cytosolic face and the Hsp70-type molecular chaperone BiP at the ER lumenal face (Hsp, heat shock protein). Furthermore, BiP binding to the incoming precursor polypeptide contributes to unidirectionality and efficiency of transport. Recent insights into the structural dynamics of the Sec61 complex and related complexes in eubacteria and archaea have various mechanistic and functional implications.
Collapse
Affiliation(s)
- Johanna Dudek
- Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany
| | - Stefan Pfeffer
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Po-Hsien Lee
- Computational Biology, Saarland University, 66041 Saarbrücken, Germany
| | - Martin Jung
- Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany
| | - Adolfo Cavalié
- Experimental and Clinical Pharmacology and Toxicology, Saarland University, 66421 Homburg, Germany
| | - Volkhard Helms
- Computational Biology, Saarland University, 66041 Saarbrücken, Germany
| | - Friedrich Förster
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Richard Zimmermann
- Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany.
| |
Collapse
|
45
|
Zacchi LF, Wu HC, Bell SL, Millen L, Paton AW, Paton JC, Thomas PJ, Zolkiewski M, Brodsky JL. The BiP molecular chaperone plays multiple roles during the biogenesis of torsinA, an AAA+ ATPase associated with the neurological disease early-onset torsion dystonia. J Biol Chem 2014; 289:12727-47. [PMID: 24627482 PMCID: PMC4007462 DOI: 10.1074/jbc.m113.529123] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 03/09/2014] [Indexed: 01/02/2023] Open
Abstract
Early-onset torsion dystonia (EOTD) is a neurological disorder characterized by involuntary and sustained muscle contractions that can lead to paralysis and abnormal posture. EOTD is associated with the deletion of a glutamate (ΔE) in torsinA, an endoplasmic reticulum (ER) resident AAA(+) ATPase. To date, the effect of ΔE on torsinA and the reason that this mutation results in EOTD are unclear. Moreover, there are no specific therapeutic options to treat EOTD. To define the underlying biochemical defects associated with torsinAΔE and to uncover factors that might be targeted to offset defects associated with torsinAΔE, we developed a yeast torsinA expression system and tested the roles of ER chaperones in mediating the folding and stability of torsinA and torsinAΔE. We discovered that the ER lumenal Hsp70, BiP, an associated Hsp40, Scj1, and a nucleotide exchange factor, Lhs1, stabilize torsinA and torsinAΔE. BiP also maintained torsinA and torsinAΔE solubility. Mutations predicted to compromise specific torsinA functional motifs showed a synthetic interaction with the ΔE mutation and destabilized torsinAΔE, suggesting that the ΔE mutation predisposes torsinA to defects in the presence of secondary insults. In this case, BiP was required for torsinAΔE degradation, consistent with data that specific chaperones exhibit either pro-degradative or pro-folding activities. Finally, using two independent approaches, we established that BiP stabilizes torsinA and torsinAΔE in mammalian cells. Together, these data define BiP as the first identified torsinA chaperone, and treatments that modulate BiP might improve symptoms associated with EOTD.
Collapse
Affiliation(s)
- Lucía F. Zacchi
- From the Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Hui-Chuan Wu
- the Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506
| | - Samantha L. Bell
- From the Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Linda Millen
- the Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, and
| | - Adrienne W. Paton
- the Research Centre for Infectious Diseases, School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - James C. Paton
- the Research Centre for Infectious Diseases, School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Philip J. Thomas
- the Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, and
| | - Michal Zolkiewski
- the Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506
| | - Jeffrey L. Brodsky
- From the Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| |
Collapse
|
46
|
Kubicek CP, Starr TL, Glass NL. Plant cell wall-degrading enzymes and their secretion in plant-pathogenic fungi. ANNUAL REVIEW OF PHYTOPATHOLOGY 2014; 52:427-51. [PMID: 25001456 DOI: 10.1146/annurev-phyto-102313-045831] [Citation(s) in RCA: 485] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Approximately a tenth of all described fungal species can cause diseases in plants. A common feature of this process is the necessity to pass through the plant cell wall, an important barrier against pathogen attack. To this end, fungi possess a diverse array of secreted enzymes to depolymerize the main structural polysaccharide components of the plant cell wall, i.e., cellulose, hemicellulose, and pectin. Recent advances in genomic and systems-level studies have begun to unravel this diversity and have pinpointed cell wall-degrading enzyme (CWDE) families that are specifically present or enhanced in plant-pathogenic fungi. In this review, we discuss differences between the CWDE arsenal of plant-pathogenic and non-plant-pathogenic fungi, highlight the importance of individual enzyme families for pathogenesis, illustrate the secretory pathway that transports CWDEs out of the fungal cell, and report the transcriptional regulation of expression of CWDE genes in both saprophytic and phytopathogenic fungi.
Collapse
|
47
|
Behnke J, Hendershot LM. The large Hsp70 Grp170 binds to unfolded protein substrates in vivo with a regulation distinct from conventional Hsp70s. J Biol Chem 2013; 289:2899-907. [PMID: 24327659 DOI: 10.1074/jbc.m113.507491] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The Hsp70 superfamily is a ubiquitous chaperone class that includes conventional and large Hsp70s. BiP is the only conventional Hsp70 in the endoplasmic reticulum (ER) whose functions include: assisting protein folding, targeting misfolded proteins for degradation, and regulating the transducers of the unfolded protein response. The ER also possesses a single large Hsp70, the glucose-regulated protein of 170 kDa (Grp170). Like BiP it is an essential protein, but its cellular functions are not well understood. Here we show that Grp170 can bind directly to a variety of incompletely folded protein substrates in the ER, and as expected for a bona fide chaperone, it does not interact with folded secretory proteins. Our data demonstrate that Grp170 and BiP associate with similar molecular forms of two substrate proteins, but while BiP is released from unfolded substrates in the presence of ATP, Grp170 remains bound. In comparison to conventional Hsp70s, the large Hsp70s possess two unique structural features: an extended C-terminal α-helical domain and an unstructured loop in the putative substrate binding domain with an unknown function. We find that in the absence of the α-helical domain the interaction of Grp170 with substrates is reduced. In striking contrast, deletion of the unstructured loop results in increased binding to substrates, suggesting the presence of unique intramolecular mechanisms of control for the chaperone functions of large Hsp70s.
Collapse
Affiliation(s)
- Julia Behnke
- From the Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | | |
Collapse
|
48
|
Kim YE, Hipp MS, Bracher A, Hayer-Hartl M, Hartl FU. Molecular chaperone functions in protein folding and proteostasis. Annu Rev Biochem 2013; 82:323-55. [PMID: 23746257 DOI: 10.1146/annurev-biochem-060208-092442] [Citation(s) in RCA: 1060] [Impact Index Per Article: 88.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The biological functions of proteins are governed by their three-dimensional fold. Protein folding, maintenance of proteome integrity, and protein homeostasis (proteostasis) critically depend on a complex network of molecular chaperones. Disruption of proteostasis is implicated in aging and the pathogenesis of numerous degenerative diseases. In the cytosol, different classes of molecular chaperones cooperate in evolutionarily conserved folding pathways. Nascent polypeptides interact cotranslationally with a first set of chaperones, including trigger factor and the Hsp70 system, which prevent premature (mis)folding. Folding occurs upon controlled release of newly synthesized proteins from these factors or after transfer to downstream chaperones such as the chaperonins. Chaperonins are large, cylindrical complexes that provide a central compartment for a single protein chain to fold unimpaired by aggregation. This review focuses on recent advances in understanding the mechanisms of chaperone action in promoting and regulating protein folding and on the pathological consequences of protein misfolding and aggregation.
Collapse
Affiliation(s)
- Yujin E Kim
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | | | | | | | | |
Collapse
|
49
|
Gidalevitz T, Stevens F, Argon Y. Orchestration of secretory protein folding by ER chaperones. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1833:2410-24. [PMID: 23507200 PMCID: PMC3729627 DOI: 10.1016/j.bbamcr.2013.03.007] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 02/27/2013] [Accepted: 03/01/2013] [Indexed: 02/06/2023]
Abstract
The endoplasmic reticulum is a major compartment of protein biogenesis in the cell, dedicated to production of secretory, membrane and organelle proteins. The secretome has distinct structural and post-translational characteristics, since folding in the ER occurs in an environment that is distinct in terms of its ionic composition, dynamics and requirements for quality control. The folding machinery in the ER therefore includes chaperones and folding enzymes that introduce, monitor and react to disulfide bonds, glycans, and fluctuations of luminal calcium. We describe the major chaperone networks in the lumen and discuss how they have distinct modes of operation that enable cells to accomplish highly efficient production of the secretome. This article is part of a Special Issue entitled: Functional and structural diversity of endoplasmic reticulum.
Collapse
Affiliation(s)
- Tali Gidalevitz
- Department of Biology, Drexel University, Drexel University, 418 Papadakis Integrated Science Bldg, 3245 Chestnut Street, Philadelphia, PA 19104
| | | | - Yair Argon
- Division of Cell Pathology, Department of Pathology and Lab Medicine, The Children's Hospital of Philadelphia and the University of Pennsylvania, 3615 Civic Center Blvd., Philadelphia, PA 19104, USA, , Phone: 267-426-5131, Fax: 267-426-5165)
| |
Collapse
|
50
|
Wolfe KJ, Ren HY, Trepte P, Cyr DM. The Hsp70/90 cochaperone, Sti1, suppresses proteotoxicity by regulating spatial quality control of amyloid-like proteins. Mol Biol Cell 2013; 24:3588-602. [PMID: 24109600 PMCID: PMC3842988 DOI: 10.1091/mbc.e13-06-0315] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Escape of aberrant proteins from protein quality control leads to accumulation of toxic protein species. Sti1 interacts with Hsp70 to mediate spatial PQC of amyloid-like proteins by regulating their distribution in different intracellular protein-handling depots. Sti1 suppresses proteotoxicity by targeting amyloid-like proteins to perinuclear foci. Conformational diseases are associated with the conversion of normal proteins into aggregation-prone toxic conformers with structures similar to that of β-amyloid. Spatial distribution of amyloid-like proteins into intracellular quality control centers can be beneficial, but cellular mechanisms for protective aggregation remain unclear. We used a high-copy suppressor screen in yeast to identify roles for the Hsp70 system in spatial organization of toxic polyglutamine-expanded Huntingtin (Huntingtin with 103Q glutamine stretch [Htt103Q]) into benign assemblies. Under toxic conditions, Htt103Q accumulates in unassembled states and speckled cytosolic foci. Subtle modulation of Sti1 activity reciprocally affects Htt toxicity and the packaging of Htt103Q into foci. Loss of Sti1 exacerbates Htt toxicity and hinders foci formation, whereas elevation of Sti1 suppresses Htt toxicity while organizing small Htt103Q foci into larger assemblies. Sti1 also suppresses cytotoxicity of the glutamine-rich yeast prion [RNQ+] while reorganizing speckled Rnq1–monomeric red fluorescent protein into distinct foci. Sti1-inducible foci are perinuclear and contain proteins that are bound by the amyloid indicator dye thioflavin-T. Sti1 is an Hsp70 cochaperone that regulates the spatial organization of amyloid-like proteins in the cytosol and thereby buffers proteotoxicity caused by amyloid-like proteins.
Collapse
Affiliation(s)
- Katie J Wolfe
- Department of Cellular Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599 Neuroproteomics, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | | | | | | |
Collapse
|