1
|
Billmyre RB, Craig CJ, Lyon JW, Reichardt C, Kuhn AM, Eickbush MT, Zanders SE. Landscape of essential growth and fluconazole-resistance genes in the human fungal pathogen Cryptococcus neoformans. PLoS Biol 2025; 23:e3003184. [PMID: 40402997 DOI: 10.1371/journal.pbio.3003184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 04/29/2025] [Indexed: 05/24/2025] Open
Abstract
Fungi can cause devastating invasive infections, typically in immunocompromised patients. Treatment is complicated both by the evolutionary similarity between humans and fungi and by the frequent emergence of drug resistance. Studies in fungal pathogens have long been slowed by a lack of high-throughput tools and community resources that are common in model organisms. Here we demonstrate a high-throughput transposon mutagenesis and sequencing (TN-seq) system in Cryptococcus neoformans that enables genome-wide determination of gene essentiality. We employed a random forest machine learning approach to classify the C. neoformans genome as essential or nonessential, predicting 1,465 essential genes, including 302 that lack human orthologs. These genes are ideal targets for new antifungal drug development. TN-seq also enables genome-wide measurement of the fitness contribution of genes to phenotypes of interest. As proof of principle, we demonstrate the genome-wide contribution of genes to growth in fluconazole, a clinically used antifungal. We show a novel role for the well-studied RIM101 pathway in fluconazole susceptibility. We also show that insertions of transposons into the 5' upstream region can drive sensitization of essential genes, enabling screenlike assays of both essential and nonessential components of the genome. Using this approach, we demonstrate a role for mitochondrial function in fluconazole sensitivity, such that tuning down many essential mitochondrial genes via 5' insertions can drive resistance to fluconazole. Our assay system will be valuable in future studies of C. neoformans, particularly in examining the consequences of genotypic diversity.
Collapse
Affiliation(s)
- R Blake Billmyre
- Department of Genetics, Franklin College of Arts and Sciences, University of Georgia, GeorgiaUnited States of America
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GeorgiaUnited States of America
- Department of Microbiology, Franklin College of Arts and Sciences, University of Georgia, Athens, GeorgiaUnited States of America
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Caroline J Craig
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Joshua W Lyon
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GeorgiaUnited States of America
- Department of Pharmaceutical and Biological Sciences, College of Pharmacy, University of Georgia, Athens, GeorgiaUnited States of America
| | - Claire Reichardt
- Department of Genetics, Franklin College of Arts and Sciences, University of Georgia, GeorgiaUnited States of America
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GeorgiaUnited States of America
- Department of Microbiology, Franklin College of Arts and Sciences, University of Georgia, Athens, GeorgiaUnited States of America
| | - Amy M Kuhn
- Department of Genetics, Franklin College of Arts and Sciences, University of Georgia, GeorgiaUnited States of America
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GeorgiaUnited States of America
| | - Michael T Eickbush
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Sarah E Zanders
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| |
Collapse
|
2
|
Stormo BM, McLaughlin GA, Jalihal AP, Frederick LK, Cole SJ, Seim I, Dietrich FS, Chilkoti A, Gladfelter AS. Intrinsically disordered sequences can tune fungal growth and the cell cycle for specific temperatures. Curr Biol 2024; 34:3722-3734.e7. [PMID: 39089255 PMCID: PMC11372857 DOI: 10.1016/j.cub.2024.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 05/16/2024] [Accepted: 07/02/2024] [Indexed: 08/03/2024]
Abstract
Temperature can impact every reaction essential to a cell. For organisms that cannot regulate their own temperature, adapting to temperatures that fluctuate unpredictably and on variable timescales is a major challenge. Extremes in the magnitude and frequency of temperature changes are increasing across the planet, raising questions as to how the biosphere will respond. To examine mechanisms of adaptation to temperature, we collected wild isolates from different climates of the fungus Ashbya gossypii, which has a compact genome of only ∼4,600 genes. We found control of the nuclear division cycle and polarized morphogenesis, both critical processes for fungal growth, were temperature sensitive and varied among the isolates. The phenotypes were associated with naturally varying sequences within the glutamine-rich region (QRR) IDR of an RNA-binding protein called Whi3. This protein regulates both nuclear division and polarized growth via its ability to form biomolecular condensates. In cells and in cell-free reconstitution assays, we found that temperature tunes the properties of Whi3-based condensates. Exchanging Whi3 sequences between isolates was sufficient to rescue temperature-sensitive phenotypes, and specifically, a heptad repeat sequence within the QRR confers temperature-sensitive behavior. Together, these data demonstrate that sequence variation in the size and composition of an IDR can promote cell adaptation to growth at specific temperature ranges. These data demonstrate the power of IDRs as tuning knobs for rapid adaptation to environmental fluctuations.
Collapse
Affiliation(s)
- Benjamin M Stormo
- Duke University, Department of Cell Biology, 308 Research Drive, Durham, NC 27705, USA
| | - Grace A McLaughlin
- Duke University, Department of Cell Biology, 308 Research Drive, Durham, NC 27705, USA; University of North Carolina-Chapel Hill, Department of Biology, 120 South Road, Chapel Hill, NC 27599, USA
| | - Ameya P Jalihal
- Duke University, Department of Cell Biology, 308 Research Drive, Durham, NC 27705, USA
| | - Logan K Frederick
- University of North Carolina-Chapel Hill, Department of Biology, 120 South Road, Chapel Hill, NC 27599, USA
| | - Sierra J Cole
- Duke University, Department of Cell Biology, 308 Research Drive, Durham, NC 27705, USA; University of North Carolina-Chapel Hill, Department of Biochemistry and Biophysics, 120 Mason Farm Road, Chapel Hill, NC 27599, USA
| | - Ian Seim
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Fred S Dietrich
- Duke University, Department of Molecular Genetics and Microbiology, 213 Research Drive, Durham, NC 27710, USA
| | - Ashutosh Chilkoti
- Duke University, Department of Biomedical Engineering, 101 Science Drive, Durham, NC 27705, USA
| | - Amy S Gladfelter
- Duke University, Department of Cell Biology, 308 Research Drive, Durham, NC 27705, USA.
| |
Collapse
|
3
|
Billmyre RB, Craig CJ, Lyon J, Reichardt C, Eickbush MT, Zanders SE. Saturation transposon mutagenesis enables genome-wide identification of genes required for growth and fluconazole resistance in the human fungal pathogen Cryptococcus neoformans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.28.605507. [PMID: 39131341 PMCID: PMC11312461 DOI: 10.1101/2024.07.28.605507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Fungi can cause devastating invasive infections, typically in immunocompromised patients. Treatment is complicated both by the evolutionary similarity between humans and fungi and by the frequent emergence of drug resistance. Studies in fungal pathogens have long been slowed by a lack of high-throughput tools and community resources that are common in model organisms. Here we demonstrate a high-throughput transposon mutagenesis and sequencing (TN-seq) system in Cryptococcus neoformans that enables genome-wide determination of gene essentiality. We employed a random forest machine learning approach to classify the Cryptococcus neoformans genome as essential or nonessential, predicting 1,465 essential genes, including 302 that lack human orthologs. These genes are ideal targets for new antifungal drug development. TN-seq also enables genome-wide measurement of the fitness contribution of genes to phenotypes of interest. As proof of principle, we demonstrate the genome-wide contribution of genes to growth in fluconazole, a clinically used antifungal. We show a novel role for the well-studied RIM101 pathway in fluconazole susceptibility. We also show that 5' insertions of transposons can drive sensitization of essential genes, enabling screenlike assays of both essential and nonessential components of the genome. Using this approach, we demonstrate a role for mitochondrial function in fluconazole sensitivity, such that tuning down many essential mitochondrial genes via 5' insertions can drive resistance to fluconazole. Our assay system will be valuable in future studies of C. neoformans, particularly in examining the consequences of genotypic diversity.
Collapse
Affiliation(s)
- R. Blake Billmyre
- Department of Pharmaceutical and Biological Sciences, College of Pharmacy, University of Georgia, GA, United States
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, GA, United States
- Department of Microbiology, Franklin College of Arts and Sciences, University of Georgia, GA, United States
- Department of Genetics, Franklin College of Arts and Sciences, University of Georgia, GA, United States
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | | | - Joshua Lyon
- Department of Pharmaceutical and Biological Sciences, College of Pharmacy, University of Georgia, GA, United States
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, GA, United States
| | - Claire Reichardt
- Department of Pharmaceutical and Biological Sciences, College of Pharmacy, University of Georgia, GA, United States
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, GA, United States
- Department of Microbiology, Franklin College of Arts and Sciences, University of Georgia, GA, United States
| | | | - Sarah E. Zanders
- Stowers Institute for Medical Research, Kansas City, MO, USA
- Department of Cell Biology and Physiology, University of Kansas Medical Center, KS, United States
| |
Collapse
|
4
|
Das S, Manna A, Majumdar O, Dhara L. M- O-M mediated denaturation resistant P2 tetramer on the infected erythrocyte surface of malaria parasite imports serum fatty acids. iScience 2024; 27:109760. [PMID: 38726364 PMCID: PMC11079477 DOI: 10.1016/j.isci.2024.109760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 04/01/2024] [Accepted: 04/15/2024] [Indexed: 05/12/2024] Open
Abstract
In Plasmodium falciparum, DNA replication, and asynchronous nuclear divisions precede cytokinesis during intraerythrocytic schizogony. Regulation of nuclear division through the import of serum components was largely unknown. At the trophozoite stage, P. falciparum ribosomal protein P2 (PfP2) is exported to the infected erythrocyte (IE) cytosol and the surface as a denaturation-resistant tetramer. The inaccessibility of the IE surface exposed PfP2 to its bona fide ligand led to the arrest of nuclear division. Here, we show that at the onset of schizogony, denaturation-resistant PfP2 tetramer on the IE surface imports fatty acids (FAs). Blockage of import reversibly arrested parasite schizogony. In 11Met-O-Met11 mediated denaturation resistant PfP2 tetramer, the 12/53Cys-Cys12/53 redox switch regulates the binding and release of FAs based on oxidized/reduced state of disulfide linkages. This mechanistic insight of FAs import through PfP2 tetramer reveals a unique regulation of nuclear division at the onset of schizogony.
Collapse
Affiliation(s)
- Sudipta Das
- Division of infectious Disease and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C Mullick Road, Jadavpur, Kolkata 700032, India
| | - Anwesa Manna
- Division of infectious Disease and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C Mullick Road, Jadavpur, Kolkata 700032, India
| | - Oindrila Majumdar
- Division of infectious Disease and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C Mullick Road, Jadavpur, Kolkata 700032, India
| | - Lena Dhara
- Division of infectious Disease and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
5
|
Gwon Y, So KK, Chun J, Kim DH. Metabolic engineering of Saccharomyces cerevisiae for the biosynthesis of a fungal pigment from the phytopathogenic fungus Cladosporium phlei. J Biol Eng 2024; 18:33. [PMID: 38741106 DOI: 10.1186/s13036-024-00429-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 05/03/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Cladosporium phlei is a phytopathogenic fungus that produces a pigment called phleichrome. This fungal perylenequinone plays an important role in the production of a photosensitizer that is a necessary component of photodynamic therapy. We applied synthetic biology to produce phleichrome using Saccharomyces cerevisiae. RESULTS The gene Cppks1, which encodes a non-reducing polyketide synthase (NR-PKS) responsible for the biosynthesis of phleichrome in C. phlei, was cloned into a yeast episomal vector and used to transform S. cerevisiae. In addition, a gene encoding a phosphopantetheinyl transferase (PPTase) of Aspergillus nidulans was cloned into a yeast integrative vector and also introduced into S. cerevisiae for the enzymatic activation of the protein product of Cppks1. Co-transformed yeasts were screened on a leucine/uracil-deficient selective medium and the presence of both integrative as well as episomal recombinant plasmids in the yeast were confirmed by colony PCR. The episomal vector for Cppks1 expression was so dramatically unstable during cultivation that most cells lost their episomal vector rapidly in nonselective media. This loss was also observed to a less degree in selective media. This data strongly suggests that the presence of the Cppks1 gene exerts a significant detrimental effect on the growth of transformed yeast cells and that selection pressure is required to maintain the Cppks1-expressing vector. The co-transformants on the selective medium showed the distinctive changes in pigmentation after a period of prolonged cultivation at 20 °C and 25 °C, but not at 30 °C. Furthermore, thin layer chromatography (TLC) revealed the presence of a spot corresponding with the purified phleichrome in the extract from the cells of the co-transformants. Liquid chromatography (LC/MS/MS) verified that the newly expressed pigment was indeed phleichrome. CONCLUSION Our results indicate that metabolic engineering by multiple gene expression is possible and capable of producing fungal pigment phleichrome in S. cerevisiae. This result adds to our understanding of the characteristics of fungal PKS genes, which exhibit complex structures and diverse biological activities.
Collapse
Affiliation(s)
- Yeji Gwon
- Department of Bioactive Material Sciences, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Kum-Kang So
- Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, 54896, Republic of Korea
- Department of Molecular Biology, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Jeesun Chun
- Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, 54896, Republic of Korea
- Department of Molecular Biology, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Dae-Hyuk Kim
- Department of Bioactive Material Sciences, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
- Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
- Department of Molecular Biology, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| |
Collapse
|
6
|
Opulente DA, LaBella AL, Harrison MC, Wolters JF, Liu C, Li Y, Kominek J, Steenwyk JL, Stoneman HR, VanDenAvond J, Miller CR, Langdon QK, Silva M, Gonçalves C, Ubbelohde EJ, Li Y, Buh KV, Jarzyna M, Haase MAB, Rosa CA, Čadež N, Libkind D, DeVirgilio JH, Hulfachor AB, Kurtzman CP, Sampaio JP, Gonçalves P, Zhou X, Shen XX, Groenewald M, Rokas A, Hittinger CT. Genomic factors shape carbon and nitrogen metabolic niche breadth across Saccharomycotina yeasts. Science 2024; 384:eadj4503. [PMID: 38662846 PMCID: PMC11298794 DOI: 10.1126/science.adj4503] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 03/22/2024] [Indexed: 05/03/2024]
Abstract
Organisms exhibit extensive variation in ecological niche breadth, from very narrow (specialists) to very broad (generalists). Two general paradigms have been proposed to explain this variation: (i) trade-offs between performance efficiency and breadth and (ii) the joint influence of extrinsic (environmental) and intrinsic (genomic) factors. We assembled genomic, metabolic, and ecological data from nearly all known species of the ancient fungal subphylum Saccharomycotina (1154 yeast strains from 1051 species), grown in 24 different environmental conditions, to examine niche breadth evolution. We found that large differences in the breadth of carbon utilization traits between yeasts stem from intrinsic differences in genes encoding specific metabolic pathways, but we found limited evidence for trade-offs. These comprehensive data argue that intrinsic factors shape niche breadth variation in microbes.
Collapse
Affiliation(s)
- Dana A. Opulente
- Laboratory of Genetics, Wisconsin Energy Institute, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53726, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53726, USA
- Biology Department Villanova University, Villanova, PA 19085, USA
| | - Abigail Leavitt LaBella
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
- North Carolina Research Center (NCRC), Department of Bioinformatics and Genomics, The University of North Carolina at Charlotte, 150 Research Campus Drive, Kannapolis, NC 28081, USA
| | - Marie-Claire Harrison
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - John F. Wolters
- Laboratory of Genetics, Wisconsin Energy Institute, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53726, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Chao Liu
- College of Agriculture and Biotechnology and Centre for Evolutionary & Organismal Biology, Zhejiang University, Hangzhou 310058, China
| | - Yonglin Li
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Jacek Kominek
- Laboratory of Genetics, Wisconsin Energy Institute, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53726, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53726, USA
- LifeMine Therapeutics, Inc., Cambridge, MA 02140, USA
| | - Jacob L. Steenwyk
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
- Howards Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Hayley R. Stoneman
- Laboratory of Genetics, Wisconsin Energy Institute, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53726, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53726, USA
- University of Colorado - Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jenna VanDenAvond
- Laboratory of Genetics, Wisconsin Energy Institute, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53726, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Caroline R. Miller
- Laboratory of Genetics, Wisconsin Energy Institute, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53726, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Quinn K. Langdon
- Laboratory of Genetics, Wisconsin Energy Institute, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Margarida Silva
- UCIBIO, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- Associate Laboratory i4HB, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Carla Gonçalves
- Laboratory of Genetics, Wisconsin Energy Institute, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53726, USA
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
- UCIBIO, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- Associate Laboratory i4HB, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Emily J. Ubbelohde
- Laboratory of Genetics, Wisconsin Energy Institute, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53726, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Yuanning Li
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Kelly V. Buh
- Laboratory of Genetics, Wisconsin Energy Institute, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Martin Jarzyna
- Laboratory of Genetics, Wisconsin Energy Institute, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53726, USA
- Graduate Program in Neuroscience and Department of Biology, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Max A. B. Haase
- Laboratory of Genetics, Wisconsin Energy Institute, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53726, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53726, USA
- Vilcek Institute of Graduate Biomedical Sciences and Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Carlos A. Rosa
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Neža Čadež
- Food Science and Technology Department, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Diego Libkind
- Centro de Referencia en Levaduras y Tecnología Cervecera (CRELTEC), Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales (IPATEC), Universidad Nacional del Comahue, CONICET, CRUB, Quintral 1250, San Carlos de Bariloche, 8400, Río Negro, Argentina
| | - Jeremy H. DeVirgilio
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, U.S. Department of Agriculture, Peoria, IL 61604, USA
| | - Amanda Beth Hulfachor
- Laboratory of Genetics, Wisconsin Energy Institute, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53726, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Cletus P. Kurtzman
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, U.S. Department of Agriculture, Peoria, IL 61604, USA
| | - José Paulo Sampaio
- UCIBIO, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- Associate Laboratory i4HB, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Paula Gonçalves
- UCIBIO, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- Associate Laboratory i4HB, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Xiaofan Zhou
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Xing-Xing Shen
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
- College of Agriculture and Biotechnology and Centre for Evolutionary & Organismal Biology, Zhejiang University, Hangzhou 310058, China
| | | | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Chris Todd Hittinger
- Laboratory of Genetics, Wisconsin Energy Institute, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53726, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53726, USA
| |
Collapse
|
7
|
Stormo BM, McLaughlin GA, Frederick LK, Jalihal AP, Cole SJ, Seim I, Dietrich FS, Gladfelter AS. Biomolecular condensates in fungi are tuned to function at specific temperatures. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.27.568884. [PMID: 38076832 PMCID: PMC10705276 DOI: 10.1101/2023.11.27.568884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Temperature can impact every reaction and molecular interaction essential to a cell. For organisms that cannot regulate their own temperature, a major challenge is how to adapt to temperatures that fluctuate unpredictability and on variable timescales. Biomolecular condensation offers a possible mechanism for encoding temperature-responsiveness and robustness into cell biochemistry and organization. To explore this idea, we examined temperature adaptation in a filamentous-growing fungus called Ashbya gossypii that engages biomolecular condensates containing the RNA-binding protein Whi3 to regulate mitosis and morphogenesis. We collected wild isolates of Ashbya that originate in different climates and found that mitotic asynchrony and polarized growth, which are known to be controlled by the condensation of Whi3, are temperature sensitive. Sequence analysis in the wild strains revealed changes to specific domains within Whi3 known to be important in condensate formation. Using an in vitro condensate reconstitution assay we found that temperature impacts the relative abundance of protein to RNA within condensates and that this directly impacts the material properties of the droplets. Finally, we found that exchanging Whi3 genes between warm and cold isolates was sufficient to rescue some, but not all, condensate-related phenotypes. Together these data demonstrate that material properties of Whi3 condensates are temperature sensitive, that these properties are important for function, and that sequence optimizes properties for a given climate.
Collapse
Affiliation(s)
| | - Grace A. McLaughlin
- Duke University, Department of Cell Biology, Durham, NC
- University of North Carolina, Chapel Hill, Department of Biology
| | | | | | - Sierra J Cole
- Duke University, Department of Cell Biology, Durham, NC
- University of North Carolina, Chapel Hill, Department of Biochemistry and Biophysics
| | - Ian Seim
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Fred S. Dietrich
- Duke University, Department of Molecular Genetics and Microbiology, Durham, NC
| | | |
Collapse
|
8
|
Schindler D, Walker RSK, Jiang S, Brooks AN, Wang Y, Müller CA, Cockram C, Luo Y, García A, Schraivogel D, Mozziconacci J, Pena N, Assari M, Sánchez Olmos MDC, Zhao Y, Ballerini A, Blount BA, Cai J, Ogunlana L, Liu W, Jönsson K, Abramczyk D, Garcia-Ruiz E, Turowski TW, Swidah R, Ellis T, Pan T, Antequera F, Shen Y, Nieduszynski CA, Koszul R, Dai J, Steinmetz LM, Boeke JD, Cai Y. Design, construction, and functional characterization of a tRNA neochromosome in yeast. Cell 2023; 186:5237-5253.e22. [PMID: 37944512 DOI: 10.1016/j.cell.2023.10.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 09/22/2023] [Accepted: 10/12/2023] [Indexed: 11/12/2023]
Abstract
Here, we report the design, construction, and characterization of a tRNA neochromosome, a designer chromosome that functions as an additional, de novo counterpart to the native complement of Saccharomyces cerevisiae. Intending to address one of the central design principles of the Sc2.0 project, the ∼190-kb tRNA neochromosome houses all 275 relocated nuclear tRNA genes. To maximize stability, the design incorporates orthogonal genetic elements from non-S. cerevisiae yeast species. Furthermore, the presence of 283 rox recombination sites enables an orthogonal tRNA SCRaMbLE system. Following construction in yeast, we obtained evidence of a potent selective force, manifesting as a spontaneous doubling in cell ploidy. Furthermore, tRNA sequencing, transcriptomics, proteomics, nucleosome mapping, replication profiling, FISH, and Hi-C were undertaken to investigate questions of tRNA neochromosome behavior and function. Its construction demonstrates the remarkable tractability of the yeast model and opens up opportunities to directly test hypotheses surrounding these essential non-coding RNAs.
Collapse
Affiliation(s)
- Daniel Schindler
- Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, UK; Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany; Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, 35032 Marburg, Germany
| | - Roy S K Walker
- School of Engineering, Institute for Bioengineering, The University of Edinburgh, Edinburgh EH9 3BF, Scotland; School of Natural Sciences and ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW 2109, Australia
| | - Shuangying Jiang
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Aaron N Brooks
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
| | - Yun Wang
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen 518083, China; Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen 518120, China
| | - Carolin A Müller
- Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, UK; School of Biological Sciences, University of East Anglia, Norwich NR4 7TU, UK
| | - Charlotte Cockram
- Institut Pasteur, CNRS UMR 3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, 75015 Paris, France
| | - Yisha Luo
- Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, UK
| | - Alicia García
- Instituto de Biología Funcional y Genómica (IBFG), CSIC, Universidad de Salamanca, Salamanca, Spain
| | - Daniel Schraivogel
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
| | - Julien Mozziconacci
- Institut Pasteur, CNRS UMR 3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, 75015 Paris, France
| | - Noah Pena
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Mahdi Assari
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | | | - Yu Zhao
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Alba Ballerini
- Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, UK
| | - Benjamin A Blount
- Imperial College Centre for Synthetic Biology, Imperial College London, London, UK; Department of Bioengineering, Imperial College London, London, UK
| | - Jitong Cai
- Department of Biomedical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Lois Ogunlana
- School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, Scotland
| | - Wei Liu
- School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, Scotland
| | - Katarina Jönsson
- School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, Scotland
| | - Dariusz Abramczyk
- School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, Scotland
| | - Eva Garcia-Ruiz
- Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, UK
| | - Tomasz W Turowski
- Institute of Biochemistry and Biophysics PAS, Pawińskiego 5a, 02-106 Warszawa, Poland
| | - Reem Swidah
- Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, UK
| | - Tom Ellis
- Imperial College Centre for Synthetic Biology, Imperial College London, London, UK; Department of Bioengineering, Imperial College London, London, UK
| | - Tao Pan
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Francisco Antequera
- Instituto de Biología Funcional y Genómica (IBFG), CSIC, Universidad de Salamanca, Salamanca, Spain
| | - Yue Shen
- Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, UK; BGI-Shenzhen, Beishan Industrial Zone, Shenzhen 518083, China; Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen 518120, China
| | - Conrad A Nieduszynski
- Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, UK; School of Biological Sciences, University of East Anglia, Norwich NR4 7TU, UK
| | - Romain Koszul
- Institut Pasteur, CNRS UMR 3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, 75015 Paris, France
| | - Junbiao Dai
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Lars M Steinmetz
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany; Department of Genetics and Stanford Genome Technology Center, Stanford University, Palo Alto, CA 94304, USA
| | - Jef D Boeke
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA; Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201, USA
| | - Yizhi Cai
- Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, UK.
| |
Collapse
|
9
|
Lin A, Chumala P, Du Y, Ma C, Wei T, Xu X, Luo Y, Katselis GS, Xiao W. Transcriptional activation of budding yeast DDI2/3 through chemical modifications of Fzf1. Cell Biol Toxicol 2023; 39:1531-1547. [PMID: 35809138 DOI: 10.1007/s10565-022-09745-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/05/2022] [Indexed: 11/02/2022]
Abstract
DDI2 and DDI3 (DDI2/3) are two identical genes in Saccharomyces cerevisiae encoding cyanamide (CY) hydratase. They are not only highly induced by CY, but also by a DNA-damaging agent methyl methanesulfonate (MMS), and the regulatory mechanism is unknown. In this study, we performed a modified genome-wide genetic synthetic array screen and identified Fzf1 as a zinc-finger transcriptional activator required for CY/MMS-induced DDI2/3 expression. Fzf1 binds to a DDI2/3 promoter consensus sequence CS2 in vivo and in vitro, and this interaction was enhanced in response to the CY treatment. Indeed, experimental over production of Fzf1 alone was sufficient to induce DDI2/3 expression; however, CY and MMS treatments did not cause the accumulation or apparent alteration in migration of cellular Fzf1. To test a hypothesis that Fzf1 is activated by covalent modification of CY and MMS, we performed mass spectrometry of CY/MMS-treated Fzf1 and detected a few modified lysine residues. Amino acid substitutions of these residues revealed that Fzf1-K70A completely abolished MMS-induced and reduced CY-induced DDI2/3 expression, indicating that the Fzf1-K70 methylation activates Fzf1. This study collectively reveals a novel regulatory mechanism by which Fzf1 is activated by chemical modifications and in turn induces the expression of its target genes for detoxification.
Collapse
Affiliation(s)
- Aiyang Lin
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Paulos Chumala
- Department of Medicine, Division of Canadian Centre for Health and Safety in Agriculture, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 2Z4, Canada
| | - Ying Du
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Chaoqun Ma
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Ting Wei
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China
| | - Xin Xu
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Yu Luo
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - George S Katselis
- Department of Medicine, Division of Canadian Centre for Health and Safety in Agriculture, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 2Z4, Canada
| | - Wei Xiao
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada.
- College of Life Sciences, Capital Normal University, Beijing, 100048, China.
| |
Collapse
|
10
|
Cannon KS, Vargas-Muniz JM, Billington N, Seim I, Ekena J, Sellers JR, Gladfelter AS. A gene duplication of a septin reveals a developmentally regulated filament length control mechanism. J Cell Biol 2023; 222:e202204063. [PMID: 36786832 PMCID: PMC9960279 DOI: 10.1083/jcb.202204063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 11/20/2022] [Accepted: 01/19/2023] [Indexed: 02/15/2023] Open
Abstract
Septins are a family of conserved filament-forming proteins that function in multiple cellular processes. The number of septin genes within an organism varies, and higher eukaryotes express many septin isoforms due to alternative splicing. It is unclear if different combinations of septin proteins in complex alter the polymers' biophysical properties. We report that a duplication event within the CDC11 locus in Ashbya gossypii gave rise to two similar but distinct Cdc11 proteins: Cdc11a and Cdc1b. CDC11b transcription is developmentally regulated, producing different amounts of Cdc11a- and Cdc11b-complexes in the lifecycle of Ashbya gossypii. Deletion of either gene results in distinct cell polarity defects, suggesting non-overlapping functions. Cdc11a and Cdc11b complexes have differences in filament length and membrane-binding ability. Thus, septin subunit composition has functional consequences on filament properties and cell morphogenesis. Small sequence differences elicit distinct biophysical properties and cell functions of septins, illuminating how gene duplication could be a driving force for septin gene expansions seen throughout the tree of life.
Collapse
Affiliation(s)
- Kevin S. Cannon
- Biology Department, University of North Carolina, Chapel Hill, NC, USA
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, USA
| | - Jose M. Vargas-Muniz
- Microbiology Program, School of Biological Sciences, Southern Illinois University, Carbondale, IL, USA
| | - Neil Billington
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ian Seim
- Biology Department, University of North Carolina, Chapel Hill, NC, USA
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, USA
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC, USA
| | - Joanne Ekena
- Biology Department, University of North Carolina, Chapel Hill, NC, USA
| | - James R. Sellers
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Amy. S. Gladfelter
- Biology Department, University of North Carolina, Chapel Hill, NC, USA
- Marine Biological Laboratory, Woods Hole, MA, USA
| |
Collapse
|
11
|
Dunn MJ, Shazib SUA, Simonton E, Slot JC, Anderson MZ. Architectural groups of a subtelomeric gene family evolve along distinct paths in Candida albicans. G3 (BETHESDA, MD.) 2022; 12:jkac283. [PMID: 36269198 PMCID: PMC9713401 DOI: 10.1093/g3journal/jkac283] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 10/09/2022] [Indexed: 12/08/2023]
Abstract
Subtelomeres are dynamic genomic regions shaped by elevated rates of recombination, mutation, and gene birth/death. These processes contribute to formation of lineage-specific gene family expansions that commonly occupy subtelomeres across eukaryotes. Investigating the evolution of subtelomeric gene families is complicated by the presence of repetitive DNA and high sequence similarity among gene family members that prevents accurate assembly from whole genome sequences. Here, we investigated the evolution of the telomere-associated (TLO) gene family in Candida albicans using 189 complete coding sequences retrieved from 23 genetically diverse strains across the species. Tlo genes conformed to the 3 major architectural groups (α/β/γ) previously defined in the genome reference strain but significantly differed in the degree of within-group diversity. One group, Tloβ, was always found at the same chromosome arm with strong sequence similarity among all strains. In contrast, diverse Tloα sequences have proliferated among chromosome arms. Tloγ genes formed 7 primary clades that included each of the previously identified Tloγ genes from the genome reference strain with 3 Tloγ genes always found on the same chromosome arm among strains. Architectural groups displayed regions of high conservation that resolved newly identified functional motifs, providing insight into potential regulatory mechanisms that distinguish groups. Thus, by resolving intraspecies subtelomeric gene variation, it is possible to identify previously unknown gene family complexity that may underpin adaptive functional variation.
Collapse
Affiliation(s)
- Matthew J Dunn
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | - Shahed U A Shazib
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | - Emily Simonton
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | - Jason C Slot
- Department of Plant Pathology, The Ohio State University, Columbus, OH 43210, USA
| | - Matthew Z Anderson
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
12
|
McRae L, Beric A, Conant GC. Hybridization order is not the driving factor behind biases in duplicate gene losses among the hexaploid Solanaceae. Proc Biol Sci 2022; 289:20221810. [PMID: 36285500 PMCID: PMC9597411 DOI: 10.1098/rspb.2022.1810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We model the post-hexaploidy evolution of four genomes from the Solanaceae, a group of flowering plants comprising tomatoes, potatoes and their relatives. The hexaploidy that these genomes descend from occurred through two sequential allopolyploidy events and was marked by the unequal losses of duplicated genes from the different progenitor subgenomes. In contrast with the hexaploid Brassiceae (broccoli and its relatives), where the subgenome with the most surviving genes arrived last in the hexaploidy, among the Solanaceae the most preserved subgenome descends from one of the original two tetraploid progenitors. In fact, the last-arriving subgenome in these plants actually has the fewest surviving genes in the modern genomes. We explore whether the distribution of repetitive elements (REs) in these genomes can explain the biases in gene losses, but while the signals we find are broadly consistent with a role for high RE density in driving gene losses, the REs turn over so quickly that little signal of the RE condition at the time of paleopolyploidy is extant in the modern genomes.
Collapse
Affiliation(s)
- Logan McRae
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Aleksandra Beric
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, St. Louis, MO 63110, USA
- NeuroGenomics and Informatics Center, Washington University in Saint Louis School of Medicine, St. Louis, MO 63108, USA
| | - Gavin C. Conant
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
- Program in Genetics, North Carolina State University, Raleigh, NC 27695, USA
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
13
|
Molecular basis of cycloheximide resistance in the Ophiostomatales revealed. Curr Genet 2022; 68:505-514. [PMID: 35314878 DOI: 10.1007/s00294-022-01235-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 11/03/2022]
Abstract
Resistance to the antibiotic Cycloheximide has been reported for a number of fungal taxa. In particular, some yeasts are known to be highly resistant to this antibiotic. Early research showed that this resulted from a transition mutation in one of the 60S ribosomal protein genes. In addition to the yeasts, most genera and species in the Ophiostomatales are highly resistant to this antibiotic, which is widely used to selectively isolate these fungi. Whole-genome sequences are now available for numerous members of the Ophiostomatales providing an opportunity to determine whether the mechanism of resistance in these fungi is the same as that reported for yeast genera such as Kluyveromyces. We examined all the available genomes for the Ophiostomatales and discovered that a transition mutation in the gene coding for ribosomal protein eL42, which results in the substitution of the amino acid Proline to Glutamine, likely confers resistance to this antibiotic. This change across all genera in the Ophiostomatales suggests that the mutation arose early in the evolution of these fungi.
Collapse
|
14
|
Scaling laws in enzyme function reveal a new kind of biochemical universality. Proc Natl Acad Sci U S A 2022; 119:2106655119. [PMID: 35217602 PMCID: PMC8892295 DOI: 10.1073/pnas.2106655119] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2021] [Indexed: 11/21/2022] Open
Abstract
Known examples of life all share the same core biochemistry going back to the last universal common ancestor (LUCA), but whether this feature is universal to other examples, including at the origin of life or alien life, is unknown. We show how a physics-inspired statistical approach identifies universal scaling laws across biochemical reactions that are not defined by common chemical components but instead, as macroscale patterns in the reaction functions used by life. The identified scaling relations can be used to predict statistical features of LUCA, and network analyses reveal some of the functional principles that underlie them. They are, therefore, prime candidates for developing new theory on the “laws of life” that might apply to all possible biochemistries. All life on Earth is unified by its use of a shared set of component chemical compounds and reactions, providing a detailed model for universal biochemistry. However, this notion of universality is specific to known biochemistry and does not allow quantitative predictions about examples not yet observed. Here, we introduce a more generalizable concept of biochemical universality that is more akin to the kind of universality found in physics. Using annotated genomic datasets including an ensemble of 11,955 metagenomes, 1,282 archaea, 11,759 bacteria, and 200 eukaryotic taxa, we show how enzyme functions form universality classes with common scaling behavior in their relative abundances across the datasets. We verify that these scaling laws are not explained by the presence of compounds, reactions, and enzyme functions shared across known examples of life. We demonstrate how these scaling laws can be used as a tool for inferring properties of ancient life by comparing their predictions with a consensus model for the last universal common ancestor (LUCA). We also illustrate how network analyses shed light on the functional principles underlying the observed scaling behaviors. Together, our results establish the existence of a new kind of biochemical universality, independent of the details of life on Earth’s component chemistry, with implications for guiding our search for missing biochemical diversity on Earth or for biochemistries that might deviate from the exact chemical makeup of life as we know it, such as at the origins of life, in alien environments, or in the design of synthetic life.
Collapse
|
15
|
Oliver SG. From Petri Plates to Petri Nets, a revolution in yeast biology. FEMS Yeast Res 2022; 22:foac008. [PMID: 35142857 PMCID: PMC8862034 DOI: 10.1093/femsyr/foac008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 01/26/2022] [Accepted: 02/07/2022] [Indexed: 11/22/2022] Open
Affiliation(s)
- Stephen G Oliver
- Department of Biochemistry, University of Cambridge, Sanger Building, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom
| |
Collapse
|
16
|
Naeem M, Manzoor S, Abid MUH, Tareen MBK, Asad M, Mushtaq S, Ehsan N, Amna D, Xu B, Hazafa A. Fungal Proteases as Emerging Biocatalysts to Meet the Current Challenges and Recent Developments in Biomedical Therapies: An Updated Review. J Fungi (Basel) 2022; 8:109. [PMID: 35205863 PMCID: PMC8875690 DOI: 10.3390/jof8020109] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/31/2021] [Accepted: 01/05/2022] [Indexed: 02/07/2023] Open
Abstract
With the increasing world population, demand for industrialization has also increased to fulfill humans' living standards. Fungi are considered a source of essential constituents to produce the biocatalytic enzymes, including amylases, proteases, lipases, and cellulases that contain broad-spectrum industrial and emerging applications. The present review discussed the origin, nature, mechanism of action, emerging aspects of genetic engineering for designing novel proteases, genome editing of fungal strains through CRISPR technology, present challenges and future recommendations of fungal proteases. The emerging evidence revealed that fungal proteases show a protective role to many environmental exposures and discovered that an imbalance of protease inhibitors and proteases in the epithelial barriers leads to the protection of chronic eosinophilic airway inflammation. Moreover, mitoproteases recently were found to execute intense proteolytic processes that are crucial for mitochondrial integrity and homeostasis function, including mitochondrial biogenesis, protein synthesis, and apoptosis. The emerging evidence revealed that CRISPR/Cas9 technology had been successfully developed in various filamentous fungi and higher fungi for editing of specific genes. In addition to medical importance, fungal proteases are extensively used in different industries such as foods to prepare butter, fruits, juices, and cheese, and to increase their shelf life. It is concluded that hydrolysis of proteins in industries is one of the most significant applications of fungal enzymes that led to massive usage of proteomics.
Collapse
Affiliation(s)
- Muhammad Naeem
- College of Life Science, Hebei Normal University, Shijiazhuang 050025, China;
| | - Saba Manzoor
- Department of Zoology, University of Sialkot, Sialkot 51310, Pakistan;
| | | | | | - Mirza Asad
- Department of Biochemistry, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan;
| | - Sajida Mushtaq
- Department of Zoology, Government College Women University, Sialkot 51040, Pakistan;
| | - Nazia Ehsan
- Department of Zoology, Wildlife and Fisheries, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan;
| | - Dua Amna
- Institute of Food Science & Nutrition, Bahauddin Zakariya University, Multan 60800, Pakistan;
| | - Baojun Xu
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University (BNU-HKBU) United International College, Zhuhai 519087, China
| | - Abu Hazafa
- Department of Biochemistry, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan;
| |
Collapse
|
17
|
Kumar S, Mashkoor M, Grove A. Yeast Crf1p: An activator in need is an activator indeed. Comput Struct Biotechnol J 2022; 20:107-116. [PMID: 34976315 PMCID: PMC8688861 DOI: 10.1016/j.csbj.2021.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 11/15/2021] [Accepted: 12/03/2021] [Indexed: 11/10/2022] Open
Abstract
Ribosome biogenesis is an energetically costly process, and tight regulation is required for stoichiometric balance between components. This requires coordination of RNA polymerases I, II, and III. Lack of nutrients or the presence of stress leads to downregulation of ribosome biogenesis, a process for which mechanistic target of rapamycin complex I (mTORC1) is key. mTORC1 activity is communicated by means of specific transcription factors, and in yeast, which is a primary model system in which transcriptional coordination has been delineated, transcription factors involved in regulation of ribosomal protein genes include Fhl1p and its cofactors, Ifh1p and Crf1p. Ifh1p is an activator, whereas Crf1p has been implicated in maintaining the repressed state upon mTORC1 inhibition. Computational analyses of evolutionary relationships have indicated that Ifh1p and Crf1p descend from a common ancestor. Here, we discuss recent evidence, which suggests that Crf1p also functions as an activator. We propose a model that consolidates available experimental evidence, which posits that Crf1p functions as an alternate activator to prevent the stronger activator Ifh1p from re-binding gene promoters upon mTORC1 inhibition. The correlation between retention of Crf1p in related yeast strains and duplication of ribosomal protein genes suggests that this backup activation may be important to ensure gene expression when Ifh1p is limiting. With ribosome biogenesis as a hallmark of cell growth, failure to control assembly of ribosomal components leads to several human pathologies. A comprehensive understanding of mechanisms underlying this process is therefore of the essence.
Collapse
Key Words
- CK2, casein kinase 2
- Crf1, corepressor with forkhead like
- Crf1p
- FHA, forkhead-associated
- FHB, forkhead-binding
- FKBP, FK506 binding protein
- Fhl1, forkhead like
- Fpr1, FK506-sensitive proline rotamase
- Gene regulation
- Hmo1, high mobility group
- Ifh1, interacts with forkhead like
- Ifh1p
- RASTR, ribosome assembly stress response
- RP, ribosomal protein
- Rap1, repressor/activator protein
- RiBi, ribosome biogenesis
- Ribosomal protein
- Ribosome biogenesis
- Sfp1, split finger protein
- WGD, whole genome duplication
- mTORC1
- mTORC1, mechanistic target of rapamycin complex 1
Collapse
Affiliation(s)
- Sanjay Kumar
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Muneera Mashkoor
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Anne Grove
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
18
|
Kato T, Azegami J, Kano M, El Enshasy HA, Park EY. Effects of sirtuins on the riboflavin production in Ashbya gossypii. Appl Microbiol Biotechnol 2021; 105:7813-7823. [PMID: 34559286 DOI: 10.1007/s00253-021-11595-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/08/2021] [Accepted: 09/11/2021] [Indexed: 12/01/2022]
Abstract
This study focuses on sirtuins, which catalyze the reaction of NAD+-dependent protein deacetylase, for riboflavin production in A. gossypii. Nicotinamide, a known inhibitor of sirtuin, made the color of A. gossypii colonies appear a deeper yellow at 5 mM. A. gossypii has 4 sirtuin genes (AgHST1, AgHST2, AgHST3, AgHST4) and these were disrupted to investigate the role of sirtuins in riboflavin production in A. gossypii. AgHST1∆, AgHST3∆, and AgHST4∆ strains were obtained, but AgHST2∆ was not. The AgHST1∆ and AgHST3∆ strains produced approximately 4.3- and 2.9-fold higher amounts of riboflavin than the WT strain. The AgHST3∆ strain showed a lower human sirtuin 6 (SIRT6)-like activity than the WT strain and only in the AgHST3∆ strain was a higher amount of acetylation of histone H3 K9 and K56 (H3K9ac and H3K56ac) observed compared to the WT strain. These results indicate that AgHst3 is SIRT6-like sirtuin in A. gossypii and the activity has an influence on the riboflavin production in A. gossypii. In the presence of 5 mM hydroxyurea and 50 µM camptothecin, which causes DNA damage, especially double-strand DNA breaks, the color of the WT strain colonies turned a deeper yellow. Additionally, hydroxyurea significantly led to the production of approximately 1.5 higher amounts of riboflavin and camptothecin also enhanced the riboflavin production even through the significant difference was not detected. Camptothecin tended to increase the amount of H3K56ac, but the amount of H3K56ac was not increased by hydroxyurea treatment. This study revealed that AgHst1 and AgHst3 are involved in the riboflavin production in A. gossypii through NAD metabolism and the acetylation of H3, respectively. This new finding is a step toward clarifying the role of sirtuins in riboflavin over-production by A. gossypii.Key points• Nicotinamide enhanced the riboflavin production in Ashbya gossypii.• Disruption of AgHST1 or AgHST3 gene also enhanced the riboflavin production in Ashbya gossypii.• Acetylation of H3K56 led to the enhancement of the riboflavin production in Ashbya gossypii.
Collapse
Affiliation(s)
- Tatsuya Kato
- Green Chemistry Research Division, Research Institute of Green Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan. .,Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan. .,Department of Applied Life Science, Faculty of Agriculture, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan.
| | - Junya Azegami
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan
| | - Mai Kano
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan
| | - Hesham A El Enshasy
- Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia (UTM), 81310 UTM, Johor Bahru, Malaysia.,City of Scientific Research and Technology Applications, New Borg Al Arab, Alexandria, Egypt
| | - Enoch Y Park
- Green Chemistry Research Division, Research Institute of Green Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan.,Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan.,Department of Applied Life Science, Faculty of Agriculture, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan
| |
Collapse
|
19
|
Kato T, Yokomori A, Suzuki R, Azegami J, El Enshasy HA, Park EY. Effects of a proteasome inhibitor on the riboflavin production in Ashbya gossypii. J Appl Microbiol 2021; 132:1176-1184. [PMID: 34496097 DOI: 10.1111/jam.15296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/01/2021] [Accepted: 09/01/2021] [Indexed: 10/20/2022]
Abstract
AIMS Effects of a proteasome inhibitor, MG-132, on the riboflavin production in Ashbya gossypii were investigated to elucidate the relationship of the riboflavin production with flavoprotein homeostasis. METHODS AND RESULTS The addition of MG-132 to the liquid medium reduced the specific riboflavin production by 79% in A. gossypii at 25 μM after 24 h. The addition of the inhibitor also caused the accumulation of reactive oxygen species and ubiquitinated proteins. These results indicated that MG-132 works in A. gossypii without any genetic engineering and reduces riboflavin production. In the presence of 25 μM MG-132, specific NADH dehydrogenase activity was increased by 1.4-fold compared to DMSO, but specific succinate dehydrogenase (SDH) activity was decreased to 52% compared to DMSO. Additionally, the amount of AgSdh1p (ACR052Wp) was also reduced. Specific riboflavin production was reduced to 22% when 20 mM malonate, a SDH inhibitor, was added to the culture medium. The riboflavin production in heterozygous AgSDH1 gene-disrupted mutant (AgSDH1-/+ ) was reduced to 63% compared to that in wild type. CONCLUSIONS MG-132 suppresses the riboflavin production and SDH activity in A. gossypii. SDH is one of the flavoproteins involved in the riboflavin production in A. gossypii. SIGNIFICANCE AND IMPACT OF THE STUDY This study shows that MG-132 has a negative influence on the riboflavin production and SDH activity in A. gossypii and leads to the elucidation of the connection of the riboflavin production with flavoproteins.
Collapse
Affiliation(s)
- Tatsuya Kato
- Green Chemistry Research Division, Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan.,Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan.,Department of Applied Life Science, Faculty of Agriculture, Shizuoka University, Shizuoka, Japan
| | - Ami Yokomori
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Riho Suzuki
- Department of Applied Life Science, Faculty of Agriculture, Shizuoka University, Shizuoka, Japan
| | - Junya Azegami
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Hesham A El Enshasy
- Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia (UTM), Johor Bahru, Malaysia.,City of Scientific Research and Technology Applications, New Borg Al Arab, Alexandria, Egypt
| | - Enoch Y Park
- Green Chemistry Research Division, Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan.,Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan.,Department of Applied Life Science, Faculty of Agriculture, Shizuoka University, Shizuoka, Japan
| |
Collapse
|
20
|
Woods BL, Cannon KS, Vogt EJD, Crutchley JM, Gladfelter AS. Interplay of septin amphipathic helices in sensing membrane-curvature and filament bundling. Mol Biol Cell 2021; 32:br5. [PMID: 34319771 PMCID: PMC8684760 DOI: 10.1091/mbc.e20-05-0303] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The curvature of the membrane defines cell shape. Septins are GTP-binding proteins that assemble into heteromeric complexes and polymerize into filaments at areas of micron-scale membrane curvature. An amphipathic helix (AH) domain within the septin complex is necessary and sufficient for septins to preferentially assemble onto micron-scale curvature. Here we report that the nonessential fungal septin, Shs1, also has an AH domain capable of recognizing membrane curvature. In a septin mutant strain lacking a fully functional Cdc12 AH domain (cdc12-6), the C-terminal extension of Shs1, containing an AH domain, becomes essential. Additionally, we find that the Cdc12 AH domain is important for regulating septin filament bundling, suggesting septin AH domains have multiple, distinct functions and that bundling and membrane binding may be coordinately controlled.
Collapse
Affiliation(s)
- Benjamin L Woods
- Biology Department, University of North Carolina, Chapel Hill, NC 27599
| | - Kevin S Cannon
- Biology Department, University of North Carolina, Chapel Hill, NC 27599
| | - Ellysa J D Vogt
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599
| | - John M Crutchley
- Biology Department, University of North Carolina, Chapel Hill, NC 27599
| | - Amy S Gladfelter
- Biology Department, University of North Carolina, Chapel Hill, NC 27599.,Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599.,Marine Biological Laboratory, Woods Hole, MA 02543
| |
Collapse
|
21
|
Nielsen KN, Salgado JFM, Natsopoulou ME, Kristensen T, Stajich JE, De Fine Licht HH. Diploidy within a Haploid Genus of Entomopathogenic Fungi. Genome Biol Evol 2021; 13:evab158. [PMID: 34247231 PMCID: PMC8325562 DOI: 10.1093/gbe/evab158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2021] [Indexed: 12/28/2022] Open
Abstract
Fungi in the genus Metarhizium are soil-borne plant-root endophytes and rhizosphere colonizers, but also potent insect pathogens with highly variable host ranges. These ascomycete fungi are predominantly asexually reproducing and ancestrally haploid, but two independent origins of persistent diploidy within the Coleoptera-infecting Metarhizium majus species complex are known and has been attributed to incomplete chromosomal segregation following meiosis during the sexual cycle. There is also evidence for infrequent sexual cycles in the locust-specific pathogenic fungus Metarhizium acridum (Hypocreales: Clavicipitaceae), which is an important entomopathogenic biocontrol agent used for the control of grasshoppers in agricultural systems as an alternative to chemical control. Here, we show that the genome of the M. acridum isolate ARSEF 324, which is formulated and commercially utilized is functionally diploid. We used single-molecule real-time sequencing technology to complete a high-quality assembly of ARSEF 324. K-mer frequencies, intragenomic collinearity between contigs and single nucleotide variant read depths across the genome revealed the first incidence of diploidy described within the species M. acridum. The haploid assembly of 44.7 Mb consisted of 20.8% repetitive elements, which is the highest proportion described of any Metarhizium species. The long-read diploid genome assembly sheds light on past research on this strain, such as unusual high UVB tolerance. The data presented here could fuel future investigation into the fitness landscape of fungi with infrequent sexual reproduction and aberrant ploidy levels, not least in the context of biocontrol agents.
Collapse
Affiliation(s)
- Knud Nor Nielsen
- Section for Organismal Biology, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - João Felipe Moreira Salgado
- Department of Microbiology and Plant Pathology, University of California Riverside, California, USA
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Brazil
| | - Myrsini Eirini Natsopoulou
- Section for Organismal Biology, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Thea Kristensen
- Section for Organismal Biology, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Jason E Stajich
- Department of Microbiology and Plant Pathology, University of California Riverside, California, USA
| | - Henrik H De Fine Licht
- Section for Organismal Biology, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
22
|
Role of RIM101 for Sporulation at Alkaline pH in Ashbya gossypii. J Fungi (Basel) 2021; 7:jof7070527. [PMID: 34209071 PMCID: PMC8304098 DOI: 10.3390/jof7070527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 01/12/2023] Open
Abstract
Microorganisms need to sense and adapt to fluctuations in the environmental pH. In fungal species, this response is mediated by the conserved pacC/RIM101 pathway. In Aspergillus nidulans, PacC activates alkaline-expressed genes and represses acid-controlled genes in response to alkaline pH and has important functions in regulating growth and conidia formation. In Saccharomyces cerevisiae, the PacC homolog Rim101 is required for adaptation to extracellular pH and to regulate transcription of IME1, the Initiator of MEiosis. S. cerevisiae rim101 mutants are defective in sporulation. In Ashbya gossypii, a filamentous fungus belonging to the family of Saccharomycetaceae, little is known about the role of pH in regulating growth and sporulation. Here, we deleted the AgRIM101 homolog (AFR190C). Our analyses show that Rim101 is important for growth and essential for sporulation at alkaline pH in A. gossypii. Acidic liquid sporulation media were alkalinized by sporulating strains, while the high pH of alkaline media (starting pH = 8.6) was reduced to a pH ~ 7.5 by these strains. However, Agrim101 mutants were unable to sporulate in alkaline media and failed to reduce the initial high pH, while they were capable of sporulation in acidic liquid media in which they increased the pH like the wild type.
Collapse
|
23
|
Boekhout T, Aime MC, Begerow D, Gabaldón T, Heitman J, Kemler M, Khayhan K, Lachance MA, Louis EJ, Sun S, Vu D, Yurkov A. The evolving species concepts used for yeasts: from phenotypes and genomes to speciation networks. FUNGAL DIVERS 2021; 109:27-55. [PMID: 34720775 PMCID: PMC8550739 DOI: 10.1007/s13225-021-00475-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 05/31/2021] [Indexed: 12/12/2022]
Abstract
Here we review how evolving species concepts have been applied to understand yeast diversity. Initially, a phenotypic species concept was utilized taking into consideration morphological aspects of colonies and cells, and growth profiles. Later the biological species concept was added, which applied data from mating experiments. Biophysical measurements of DNA similarity between isolates were an early measure that became more broadly applied with the advent of sequencing technology, leading to a sequence-based species concept using comparisons of parts of the ribosomal DNA. At present phylogenetic species concepts that employ sequence data of rDNA and other genes are universally applied in fungal taxonomy, including yeasts, because various studies revealed a relatively good correlation between the biological species concept and sequence divergence. The application of genome information is becoming increasingly common, and we strongly recommend the use of complete, rather than draft genomes to improve our understanding of species and their genome and genetic dynamics. Complete genomes allow in-depth comparisons on the evolvability of genomes and, consequently, of the species to which they belong. Hybridization seems a relatively common phenomenon and has been observed in all major fungal lineages that contain yeasts. Note that hybrids may greatly differ in their post-hybridization development. Future in-depth studies, initially using some model species or complexes may shift the traditional species concept as isolated clusters of genetically compatible isolates to a cohesive speciation network in which such clusters are interconnected by genetic processes, such as hybridization.
Collapse
Affiliation(s)
- Teun Boekhout
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
- Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
| | - M. Catherine Aime
- Dept Botany and Plant Pathology, College of Agriculture, Purdue University, West Lafayette, IN 47907 USA
| | - Dominik Begerow
- Evolution of Plants and Fungi, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Toni Gabaldón
- Barcelona Supercomputing Centre (BSC–CNS), Jordi Girona, 29, 08034 Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710 USA
| | - Martin Kemler
- Evolution of Plants and Fungi, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Kantarawee Khayhan
- Department of Microbiology and Parasitology, Faculty of Medical Sciences, University of Phayao, Phayao, 56000 Thailand
| | - Marc-André Lachance
- Department of Biology, University of Western Ontario, London, ON N6A 5B7 Canada
| | - Edward J. Louis
- Department of Genetics and Genome Biology, Genetic Architecture of Complex Traits, University of Leicester, Leicester, LE1 7RH UK
| | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710 USA
| | - Duong Vu
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Andrey Yurkov
- German Collection of Microorganisms and Cell Cultures, Leibniz Institute DSMZ, Brunswick, Germany
| |
Collapse
|
24
|
Peska V, Fajkus P, Bubeník M, Brázda V, Bohálová N, Dvořáček V, Fajkus J, Garcia S. Extraordinary diversity of telomeres, telomerase RNAs and their template regions in Saccharomycetaceae. Sci Rep 2021; 11:12784. [PMID: 34140564 PMCID: PMC8211666 DOI: 10.1038/s41598-021-92126-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 06/03/2021] [Indexed: 01/08/2023] Open
Abstract
Telomerase RNA (TR) carries the template for synthesis of telomere DNA and provides a scaffold for telomerase assembly. Fungal TRs are long and have been compared to higher eukaryotes, where they show considerable diversity within phylogenetically close groups. TRs of several Saccharomycetaceae were recently identified, however, many of these remained uncharacterised in the template region. Here we show that this is mainly due to high variability in telomere sequence. We predicted the telomere sequences using Tandem Repeats Finder and then we identified corresponding putative template regions in TR candidates. Remarkably long telomere units and the corresponding putative TRs were found in Tetrapisispora species. Notably, variable lengths of the annealing sequence of the template region (1–10 nt) were found. Consequently, species with the same telomere sequence may not harbour identical TR templates. Thus, TR sequence alone can be used to predict a template region and telomere sequence, but not to determine these exactly. A conserved feature of telomere sequences, tracts of adjacent Gs, led us to test the propensity of individual telomere sequences to form G4. The results show highly diverse values of G4-propensity, indicating the lack of ubiquitous conservation of this feature across Saccharomycetaceae.
Collapse
Affiliation(s)
- Vratislav Peska
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, 61265, Czech Republic.
| | - Petr Fajkus
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, 61265, Czech Republic.,Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, Brno, 62500, Czech Republic
| | - Michal Bubeník
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, 61265, Czech Republic.,Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, Brno, 62500, Czech Republic
| | - Václav Brázda
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, 61265, Czech Republic
| | - Natália Bohálová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, 61265, Czech Republic.,Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, 62500, Czech Republic
| | - Vojtěch Dvořáček
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, 61265, Czech Republic
| | - Jiří Fajkus
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, 61265, Czech Republic.,Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, Brno, 62500, Czech Republic
| | - Sònia Garcia
- Institut Botànic de Barcelona (IBB-CSIC, Ajuntament de Barcelona), Passeig del Migdia s/n, 08038, Barcelona, Catalonia, Spain.
| |
Collapse
|
25
|
Hage H, Rosso MN, Tarrago L. Distribution of methionine sulfoxide reductases in fungi and conservation of the free-methionine-R-sulfoxide reductase in multicellular eukaryotes. Free Radic Biol Med 2021; 169:187-215. [PMID: 33865960 DOI: 10.1016/j.freeradbiomed.2021.04.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 12/17/2022]
Abstract
Methionine, either as a free amino acid or included in proteins, can be oxidized into methionine sulfoxide (MetO), which exists as R and S diastereomers. Almost all characterized organisms possess thiol-oxidoreductases named methionine sulfoxide reductase (Msr) enzymes to reduce MetO back to Met. MsrA and MsrB reduce the S and R diastereomers of MetO, respectively, with strict stereospecificity and are found in almost all organisms. Another type of thiol-oxidoreductase, the free-methionine-R-sulfoxide reductase (fRMsr), identified so far in prokaryotes and a few unicellular eukaryotes, reduces the R MetO diastereomer of the free amino acid. Moreover, some bacteria possess molybdenum-containing enzymes that reduce MetO, either in the free or protein-bound forms. All these Msrs play important roles in the protection of organisms against oxidative stress. Fungi are heterotrophic eukaryotes that colonize all niches on Earth and play fundamental functions, in organic matter recycling, as symbionts, or as pathogens of numerous organisms. However, our knowledge on fungal Msrs is still limited. Here, we performed a survey of msr genes in almost 700 genomes across the fungal kingdom. We show that most fungi possess one gene coding for each type of methionine sulfoxide reductase: MsrA, MsrB, and fRMsr. However, several fungi living in anaerobic environments or as obligate intracellular parasites were devoid of msr genes. Sequence inspection and phylogenetic analyses allowed us to identify non-canonical sequences with potentially novel enzymatic properties. Finaly, we identified several ocurences of msr horizontal gene transfer from bacteria to fungi.
Collapse
Affiliation(s)
- Hayat Hage
- Biodiversité et Biotechnologie Fongiques, UMR1163, INRAE, Aix Marseille Université, Marseille, France
| | - Marie-Noëlle Rosso
- Biodiversité et Biotechnologie Fongiques, UMR1163, INRAE, Aix Marseille Université, Marseille, France
| | - Lionel Tarrago
- Biodiversité et Biotechnologie Fongiques, UMR1163, INRAE, Aix Marseille Université, Marseille, France.
| |
Collapse
|
26
|
Gordon MR, Zhu J, Qu V, Li R. A case of convergent-gene interference in the budding yeast knockout library causing chromosome instability. G3 (BETHESDA, MD.) 2021; 11:jkab084. [PMID: 33724427 PMCID: PMC8104933 DOI: 10.1093/g3journal/jkab084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 12/07/2020] [Indexed: 11/12/2022]
Abstract
To maintain genome stability, organisms depend on faithful chromosome segregation, a process affected by diverse genetic pathways, some of which are not directly linked to mitosis. In this study, we set out to explore one such pathway represented by an undercharacterized gene, SNO1, identified previously in screens of the yeast knockout (YKO) library for mitotic fidelity genes. We found that the causative factor increasing mitotic error rate in the sno1Δ mutant is not loss of the Sno1 protein, but rather perturbation to the mRNA of the neighboring convergent gene, CTF13, encoding an essential component for forming the yeast kinetochore. This is caused by a combination of the Kanamycin resistance gene and the transcriptional terminator used in the YKO library affecting the CTF13 mRNA level and quality . We further provide a list of gene pairs potentially subjected to this artifact, which may be useful for accurate phenotypic interpretation of YKO mutants.
Collapse
Affiliation(s)
- Molly R Gordon
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jin Zhu
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Victoria Qu
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Rong Li
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Mechanobiology Institute and Department of Biological Sciences, National University of Singapore, Singapore 117411, Singapore
| |
Collapse
|
27
|
Vázquez-Rosas-Landa M, Sánchez-Rangel D, Hernández-Domínguez EE, Pérez-Torres CA, López-Buenfil A, de Jesús García-Ávila C, Carrillo-Hernández ED, Castañeda-Casasola CC, Rodríguez-Haas B, Pérez-Lira J, Villafán E, Alonso-Sánchez A, Ibarra-Laclette E. Design of a diagnostic system based on molecular markers derived from the ascomycetes pan-genome analysis: The case of Fusarium dieback disease. PLoS One 2021; 16:e0246079. [PMID: 33507916 PMCID: PMC7843019 DOI: 10.1371/journal.pone.0246079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 01/12/2021] [Indexed: 11/21/2022] Open
Abstract
A key factor to take actions against phytosanitary problems is the accurate and rapid detection of the causal agent. Here, we develop a molecular diagnostics system based on comparative genomics to easily identify fusariosis and specific pathogenic species as the Fusarium kuroshium, the symbiont of the ambrosia beetle Euwallaceae kuroshio Gomez and Hulcr which is responsible for Fusarium dieback disease in San Diego CA, USA. We performed a pan-genome analysis using sixty-three ascomycetes fungi species including phytopathogens and fungi associated with the ambrosia beetles. Pan-genome analysis revealed that 2,631 orthologue genes are only shared by Fusarium spp., and on average 3,941 (SD ± 1,418.6) are species-specific genes. These genes were used for PCR primer design and tested on DNA isolated from i) different strains of ascomycete species, ii) artificially infected avocado stems and iii) plant tissue of field-collected samples presumably infected. Our results let us propose a useful set of primers to either identify any species from Fusarium genus or, in a specific manner, species such as F. kuroshium, F. oxysporum, and F. graminearum. The results suggest that the molecular strategy employed in this study can be expanded to design primers against different types of pathogens responsible for provoking critical plant diseases.
Collapse
Affiliation(s)
- Mirna Vázquez-Rosas-Landa
- Red de Estudios Moleculares Avanzados (REMAv), Instituto de Ecología A.C. (INECOL), Xalapa, Veracruz, México
| | - Diana Sánchez-Rangel
- Red de Estudios Moleculares Avanzados (REMAv), Instituto de Ecología A.C. (INECOL), Xalapa, Veracruz, México
- Catedrático CONACYT en el INECOL, Xalapa, Veracruz, México
| | - Eric E. Hernández-Domínguez
- Red de Estudios Moleculares Avanzados (REMAv), Instituto de Ecología A.C. (INECOL), Xalapa, Veracruz, México
- Catedrático CONACYT en el INECOL, Xalapa, Veracruz, México
| | - Claudia-Anahí Pérez-Torres
- Red de Estudios Moleculares Avanzados (REMAv), Instituto de Ecología A.C. (INECOL), Xalapa, Veracruz, México
- Catedrático CONACYT en el INECOL, Xalapa, Veracruz, México
| | | | - Clemente de Jesús García-Ávila
- Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria (SENASICA), Centro Nacional de Referencia Fitosanitaria (CNRF), Tecámac, Estado de México, México
| | | | - Cynthia-Coccet Castañeda-Casasola
- Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria (SENASICA), Centro Nacional de Referencia Fitosanitaria (CNRF), Tecámac, Estado de México, México
| | - Benjamín Rodríguez-Haas
- Red de Estudios Moleculares Avanzados (REMAv), Instituto de Ecología A.C. (INECOL), Xalapa, Veracruz, México
| | - Josué Pérez-Lira
- Red de Estudios Moleculares Avanzados (REMAv), Instituto de Ecología A.C. (INECOL), Xalapa, Veracruz, México
| | - Emanuel Villafán
- Red de Estudios Moleculares Avanzados (REMAv), Instituto de Ecología A.C. (INECOL), Xalapa, Veracruz, México
| | - Alexandro Alonso-Sánchez
- Red de Estudios Moleculares Avanzados (REMAv), Instituto de Ecología A.C. (INECOL), Xalapa, Veracruz, México
| | - Enrique Ibarra-Laclette
- Red de Estudios Moleculares Avanzados (REMAv), Instituto de Ecología A.C. (INECOL), Xalapa, Veracruz, México
- * E-mail:
| |
Collapse
|
28
|
Priest SJ, Coelho MA, Mixão V, Clancey SA, Xu Y, Sun S, Gabaldón T, Heitman J. Factors enforcing the species boundary between the human pathogens Cryptococcus neoformans and Cryptococcus deneoformans. PLoS Genet 2021; 17:e1008871. [PMID: 33465111 PMCID: PMC7846113 DOI: 10.1371/journal.pgen.1008871] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 01/29/2021] [Accepted: 12/04/2020] [Indexed: 12/17/2022] Open
Abstract
Hybridization has resulted in the origin and variation in extant species, and hybrids continue to arise despite pre- and post-zygotic barriers that limit their formation and evolutionary success. One important system that maintains species boundaries in prokaryotes and eukaryotes is the mismatch repair pathway, which blocks recombination between divergent DNA sequences. Previous studies illuminated the role of the mismatch repair component Msh2 in blocking genetic recombination between divergent DNA during meiosis. Loss of Msh2 results in increased interspecific genetic recombination in bacterial and yeast models, and increased viability of progeny derived from yeast hybrid crosses. Hybrid isolates of two pathogenic fungal Cryptococcus species, Cryptococcus neoformans and Cryptococcus deneoformans, are isolated regularly from both clinical and environmental sources. In the present study, we sought to determine if loss of Msh2 would relax the species boundary between C. neoformans and C. deneoformans. We found that crosses between these two species in which both parents lack Msh2 produced hybrid progeny with increased viability and high levels of aneuploidy. Whole-genome sequencing revealed few instances of recombination among hybrid progeny and did not identify increased levels of recombination in progeny derived from parents lacking Msh2. Several hybrid progeny produced structures associated with sexual reproduction when incubated alone on nutrient-rich medium in light, a novel phenotype in Cryptococcus. These findings represent a unique, unexpected case where rendering the mismatch repair system defective did not result in increased meiotic recombination across a species boundary. This suggests that alternative pathways or other mismatch repair components limit meiotic recombination between homeologous DNA and enforce species boundaries in the basidiomycete Cryptococcus species. Several mechanisms enforce species boundaries by either preventing the formation of hybrid zygotes, known as pre-zygotic barriers, or preventing the viability and fecundity of hybrids, known as post-zygotic barriers. Despite these barriers, interspecific hybrids form at an appreciable frequency, such as hybrid isolates of the human fungal pathogenic species, Cryptococcus neoformans and Cryptococcus deneoformans, which are regularly isolated from both clinical and environmental sources. C. neoformans x C. deneoformans hybrids are typically highly aneuploid, sterile, and display phenotypes intermediate to those of either parent, although self-fertile isolates and transgressive phenotypes have been observed. One important mechanism known to enforce species boundaries or lead to incipient speciation is the DNA mismatch repair system, which blocks recombination between divergent DNA sequences during meiosis. The aim of this study was to determine if genetically deleting the DNA mismatch repair component Msh2 would relax the species boundary between C. neoformans and C. deneoformans. Progeny derived from C. neoformans x C. deneoformans crosses in which both parental strains lacked Msh2 had higher viability, and unlike previous studies in Saccharomyces, these Cryptococcus hybrid progeny had higher levels of aneuploidy and no observable increase in meiotic recombination at the whole-genome level.
Collapse
Affiliation(s)
- Shelby J. Priest
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Marco A. Coelho
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Verónica Mixão
- Life Sciences Department, Barcelona Supercomputing Center, Barcelona, Spain
- Institute for Research in Biomedicine, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Shelly Applen Clancey
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Yitong Xu
- Program in Cell and Molecular Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Toni Gabaldón
- Life Sciences Department, Barcelona Supercomputing Center, Barcelona, Spain
- Institute for Research in Biomedicine, Barcelona Institute of Science and Technology, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
29
|
Abstract
The single gene, single protein, single function hypothesis is increasingly becoming obsolete. Numerous studies have demonstrated that individual proteins can moonlight, meaning they can have multiple functions based on their cellular or developmental context. In this review, we discuss moonlighting proteins, highlighting the biological pathways where this phenomenon may be particularly relevant. In addition, we combine genetic, cell biological, and evolutionary perspectives so that we can better understand how, when, and why moonlighting proteins may take on multiple roles.
Collapse
Affiliation(s)
- Nadia Singh
- Department of Biology, University of Oregon, Eugene, Oregon 97403, USA;
| | - Needhi Bhalla
- Department of Molecular Cell and Developmental Biology, University of California, Santa Cruz, California 95064, USA;
| |
Collapse
|
30
|
Sporulation in Ashbya gossypii. J Fungi (Basel) 2020; 6:jof6030157. [PMID: 32872517 PMCID: PMC7558398 DOI: 10.3390/jof6030157] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 12/28/2022] Open
Abstract
Ashbya gossypii is a filamentous ascomycete belonging to the yeast family of Saccharomycetaceae. At the end of its growth phase Ashbya generates abundant amounts of riboflavin and spores that form within sporangia derived from fragmented cellular compartments of hyphae. The length of spores differs within species of the genus. Needle-shaped Ashbya spores aggregate via terminal filaments. A. gossypii is a homothallic fungus which may possess a and α mating types. However, the solo-MATa type strain is self-fertile and sporulates abundantly apparently without the need of prior mating. The central components required for the regulation of sporulation, encoded by IME1, IME2, IME4, KAR4, are conserved with Saccharomyces cerevisiae. Nutrient depletion generates a strong positive signal for sporulation via the cAMP-PKA pathway and SOK2, which is also essential for sporulation. Strong inhibitors of sporulation besides mutations in the central regulatory genes are the addition of exogenous cAMP or the overexpression of the mating type gene MATα2. Sporulation has been dissected using gene-function analyses and global RNA-seq transcriptomics. This revealed a role of Msn2/4, another potential PKA-target, for spore wall formation and a key dual role of the protein A kinase Tpk2 at the onset of sporulation as well as for breaking the dormancy of spores to initiate germination. Recent work has provided an overview of ascus development, regulation of sporulation and spore maturation. This will be summarized in the current review with a focus on the central regulatory genes. Current research and open questions will also be discussed.
Collapse
|
31
|
Jiménez A, Hoff B, Revuelta JL. Multiplex genome editing in Ashbya gossypii using CRISPR-Cpf1. N Biotechnol 2020; 57:29-33. [DOI: 10.1016/j.nbt.2020.02.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/04/2020] [Accepted: 02/11/2020] [Indexed: 12/11/2022]
|
32
|
Yam CQX, Chia DB, Shi I, Lim HH, Surana U. Dun1, a Chk2-related kinase, is the central regulator of securin-separase dynamics during DNA damage signaling. Nucleic Acids Res 2020; 48:6092-6107. [PMID: 32402080 PMCID: PMC7293041 DOI: 10.1093/nar/gkaa355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 04/23/2020] [Accepted: 04/29/2020] [Indexed: 01/26/2023] Open
Abstract
The DNA damage checkpoint halts cell cycle progression in G2 in response to genotoxic insults. Central to the execution of cell cycle arrest is the checkpoint-induced stabilization of securin-separase complex (yeast Pds1-Esp1). The checkpoint kinases Chk1 and Chk2 (yeast Chk1 and Rad53) are thought to critically contribute to the stability of securin-separase complex by phosphorylation of securin, rendering it resistant to proteolytic destruction by the anaphase promoting complex (APC). Dun1, a Rad53 paralog related to Chk2, is also essential for checkpoint-imposed arrest. Dun1 is required for the DNA damage-induced transcription of DNA repair genes; however, its role in the execution of cell cycle arrest remains unknown. Here, we show that Dun1′s role in checkpoint arrest is independent of its involvement in the transcription of repair genes. Instead, Dun1 is necessary to prevent Pds1 destruction during DNA damage in that the Dun1-deficient cells degrade Pds1, escape G2 arrest and undergo mitosis despite the presence of checkpoint-active Chk1 and Rad53. Interestingly, proteolytic degradation of Pds1 in the absence of Dun1 is mediated not by APC but by the HECT domain-containing E3 ligase Rsp5. Our results suggest a regulatory scheme in which Dun1 prevents chromosome segregation during DNA damage by inhibiting Rsp5-mediated proteolytic degradation of securin Pds1.
Collapse
Affiliation(s)
- Candice Qiu Xia Yam
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Proteos, 61 Biopolis Drive, Singapore.,Bioprocessing Technology Institute, A*STAR, Singapore
| | - David Boy Chia
- Biotransformation Innovation Platform, A*STAR, Singapore
| | - Idina Shi
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Proteos, 61 Biopolis Drive, Singapore
| | - Hong Hwa Lim
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Proteos, 61 Biopolis Drive, Singapore.,Bioprocessing Technology Institute, A*STAR, Singapore
| | - Uttam Surana
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Proteos, 61 Biopolis Drive, Singapore.,Bioprocessing Technology Institute, A*STAR, Singapore.,Biotransformation Innovation Platform, A*STAR, Singapore.,Department of Pharmacology, National University of Singapore, Singapore
| |
Collapse
|
33
|
Analysis of localization of cell-cycle regulators in Neurospora crassa. Fungal Biol 2020; 124:613-618. [PMID: 32540184 DOI: 10.1016/j.funbio.2020.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/21/2020] [Accepted: 02/25/2020] [Indexed: 11/20/2022]
Abstract
Most fungi are multinucleated organisms. In some fungi, they have asynchronous nuclei in the same cytoplasm. We analyzed a cell-cycle regulation mechanism using a model fungus Neurospora crassa, which can make heterokaryon cells. G1/S cyclin CLN-1 and cyclin-dependent kinase CDC-2 were tagged with different fluorescence in different strains and expressed. By forming a heterokaryon strain of these, two different fluorescence-tagged proteins were expressed in the same cytoplasm. CDC-2 was localized in all nuclei, whereas CLN-1 was not detected in most of the nuclei and was dispersed in the cytoplasm with small granular clusters. This indicates that in multinucleated fungi, cell-cycle regulators, similar to other proteins, are shared around the nuclei regardless of different cell-cycle stages. Moreover, each nucleus can select and use a special cell-cycle regulator only when it is necessary. Fungal nuclei may have a novel pickup mechanism of necessary proteins from their cytoplasm at the point of use.
Collapse
|
34
|
Kato T, Azegami J, Yokomori A, Dohra H, El Enshasy HA, Park EY. Genomic analysis of a riboflavin-overproducing Ashbya gossypii mutant isolated by disparity mutagenesis. BMC Genomics 2020; 21:319. [PMID: 32326906 PMCID: PMC7181572 DOI: 10.1186/s12864-020-6709-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 03/30/2020] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Ashbya gossypii naturally overproduces riboflavin and has been utilized for industrial riboflavin production. To improve riboflavin production, various approaches have been developed. In this study, to investigate the change in metabolism of a riboflavin-overproducing mutant, namely, the W122032 strain (MT strain) that was isolated by disparity mutagenesis, genomic analysis was carried out. RESULTS In the genomic analysis, 33 homozygous and 1377 heterozygous mutations in the coding sequences of the genome of MT strain were detected. Among these heterozygous mutations, the proportion of mutated reads in each gene was different, ranging from 21 to 75%. These results suggest that the MT strain may contain multiple nuclei containing different mutations. We tried to isolate haploid spores from the MT strain to prove its ploidy, but this strain did not sporulate under the conditions tested. Heterozygous mutations detected in genes which are important for sporulation likely contribute to the sporulation deficiency of the MT strain. Homozygous and heterozygous mutations were found in genes encoding enzymes involved in amino acid metabolism, the TCA cycle, purine and pyrimidine nucleotide metabolism and the DNA mismatch repair system. One homozygous mutation in AgILV2 gene encoding acetohydroxyacid synthase, which is also a flavoprotein in mitochondria, was found. Gene ontology (GO) enrichment analysis showed heterozygous mutations in all 22 DNA helicase genes and genes involved in oxidation-reduction process. CONCLUSION This study suggests that oxidative stress and the aging of cells were involved in the riboflavin over-production in A. gossypii riboflavin over-producing mutant and provides new insights into riboflavin production in A. gossypii and the usefulness of disparity mutagenesis for the creation of new types of mutants for metabolic engineering.
Collapse
Affiliation(s)
- Tatsuya Kato
- Green Chemistry Research Division, Research Institute of Green Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan
| | - Junya Azegami
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan
| | - Ami Yokomori
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan
| | - Hideo Dohra
- Instrumental Research Support Office, Research Institute of Green Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan
| | - Hesham A. El Enshasy
- Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia (UTM), 81310 UTM, Johor Bahru, Malaysia
| | - Enoch Y. Park
- Green Chemistry Research Division, Research Institute of Green Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan
| |
Collapse
|
35
|
Vakirlis N, Carvunis AR, McLysaght A. Synteny-based analyses indicate that sequence divergence is not the main source of orphan genes. eLife 2020; 9:e53500. [PMID: 32066524 PMCID: PMC7028367 DOI: 10.7554/elife.53500] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/07/2020] [Indexed: 12/20/2022] Open
Abstract
The origin of 'orphan' genes, species-specific sequences that lack detectable homologues, has remained mysterious since the dawn of the genomic era. There are two dominant explanations for orphan genes: complete sequence divergence from ancestral genes, such that homologues are not readily detectable; and de novo emergence from ancestral non-genic sequences, such that homologues genuinely do not exist. The relative contribution of the two processes remains unknown. Here, we harness the special circumstance of conserved synteny to estimate the contribution of complete divergence to the pool of orphan genes. By separately comparing yeast, fly and human genes to related taxa using conservative criteria, we find that complete divergence accounts, on average, for at most a third of eukaryotic orphan and taxonomically restricted genes. We observe that complete divergence occurs at a stable rate within a phylum but at different rates between phyla, and is frequently associated with gene shortening akin to pseudogenization.
Collapse
Affiliation(s)
- Nikolaos Vakirlis
- Smurfit Institute of GeneticsTrinity College Dublin, University of DublinDublinIreland
| | - Anne-Ruxandra Carvunis
- Department of Computational and Systems Biology, Pittsburgh Center for Evolutionary Biology and Medicine, School of MedicineUniversity of PittsburghPittsburghUnited States
| | - Aoife McLysaght
- Smurfit Institute of GeneticsTrinity College Dublin, University of DublinDublinIreland
| |
Collapse
|
36
|
Díaz-Fernández D, Aguiar TQ, Martín VI, Romaní A, Silva R, Domingues L, Revuelta JL, Jiménez A. Microbial lipids from industrial wastes using xylose-utilizing Ashbya gossypii strains. BIORESOURCE TECHNOLOGY 2019; 293:122054. [PMID: 31487616 DOI: 10.1016/j.biortech.2019.122054] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/21/2019] [Accepted: 08/22/2019] [Indexed: 05/08/2023]
Abstract
This work presents the exploitation of waste industrial by-products as raw materials for the production of microbial lipids in engineered strains of the filamentous fungus Ashbya gossypii. A lipogenic xylose-utilizing strain was used to apply a metabolic engineering approach aiming at relieving regulatory mechanisms to further increase the biosynthesis of lipids. Three genomic manipulations were applied: the overexpression of a feedback resistant form of the acetyl-CoA carboxylase enzyme; the expression of a truncated form of Mga2, a regulator of the main Δ9 desaturase gene; and the overexpression of an additional copy of DGA1 that codes for diacylglycerol acyltransferase. The performance of the engineered strain was evaluated in culture media containing mixed formulations of corn-cob hydrolysates, sugarcane molasses or crude glycerol. Our results demonstrate the efficiency of the engineered strains, which were able to accumulate about 40% of cell dry weight (CDW) in lipid content using organic industrial wastes as feedstocks.
Collapse
Affiliation(s)
- David Díaz-Fernández
- Metabolic Engineering Group, Department of Microbiology and Genetics, University of Salamanca, Campus Miguel de Unamuno, E-37007 Salamanca, Spain
| | - Tatiana Q Aguiar
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Victoria Isabel Martín
- Metabolic Engineering Group, Department of Microbiology and Genetics, University of Salamanca, Campus Miguel de Unamuno, E-37007 Salamanca, Spain
| | - Aloia Romaní
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Rui Silva
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Lucília Domingues
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - José Luis Revuelta
- Metabolic Engineering Group, Department of Microbiology and Genetics, University of Salamanca, Campus Miguel de Unamuno, E-37007 Salamanca, Spain.
| | - Alberto Jiménez
- Metabolic Engineering Group, Department of Microbiology and Genetics, University of Salamanca, Campus Miguel de Unamuno, E-37007 Salamanca, Spain.
| |
Collapse
|
37
|
Jiménez A, Muñoz‐Fernández G, Ledesma‐Amaro R, Buey RM, Revuelta JL. One-vector CRISPR/Cas9 genome engineering of the industrial fungus Ashbya gossypii. Microb Biotechnol 2019; 12:1293-1301. [PMID: 31055883 PMCID: PMC6801137 DOI: 10.1111/1751-7915.13425] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 11/30/2022] Open
Abstract
The filamentous fungus Ashbya gossypii is currently used for the industrial production of vitamin B2. Furthermore, the ability of A. gossypii to grow using low-cost substrates together with the inexpensive downstream processing makes this fungus an attractive biotechnological chassis. Indeed, the production in A. gossypii of other high-added value compounds such as folic acid, nucleosides and biolipids has been described. Hence, the development of new methods to expand the molecular toolkit for A. gossypii genomic manipulation constitutes an important issue for the biotechnology of this fungus. In this work, we present a one-vector CRISPR/Cas9 system for genomic engineering of A. gossypii. We demonstrate the efficiency of the system as a marker-less approach for nucleotide deletions and substitutions both with visible and invisible phenotypes. Particularly, the system has been validated for three types of genomic editions: gene inactivation, the genomic erasure of loxP scars and the introduction of point mutations. We anticipate that the use of the CRISPR/Cas9 system for A. gossypii will largely contribute to facilitate the genomic manipulations of this industrial fungus in a marker-less manner.
Collapse
Affiliation(s)
- Alberto Jiménez
- Metabolic Engineering GroupDepartamento de Microbiología y GenéticaUniversidad de SalamancaCampus Miguel de UnamunoE‐37007SalamancaSpain
| | - Gloria Muñoz‐Fernández
- Metabolic Engineering GroupDepartamento de Microbiología y GenéticaUniversidad de SalamancaCampus Miguel de UnamunoE‐37007SalamancaSpain
| | - Rodrigo Ledesma‐Amaro
- Metabolic Engineering GroupDepartamento de Microbiología y GenéticaUniversidad de SalamancaCampus Miguel de UnamunoE‐37007SalamancaSpain
- Imperial College Centre for Synthetic Biology and Department of BioengineeringImperial College LondonLondonSW7 2AZUK
| | - Rubén M. Buey
- Metabolic Engineering GroupDepartamento de Microbiología y GenéticaUniversidad de SalamancaCampus Miguel de UnamunoE‐37007SalamancaSpain
| | - José L. Revuelta
- Metabolic Engineering GroupDepartamento de Microbiología y GenéticaUniversidad de SalamancaCampus Miguel de UnamunoE‐37007SalamancaSpain
| |
Collapse
|
38
|
Shalamitskii MY, Naumov GI. Phylogenetic Analysis of Pectinases from Ascomycetous Yeasts. APPL BIOCHEM MICRO+ 2019. [DOI: 10.1134/s0003683818070074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
39
|
Ester-Producing Mechanism of Ethanol O-acyltransferase EHT1 Gene in Pichia pastoris from Shanxi Aged Vinegar. BIOMED RESEARCH INTERNATIONAL 2019; 2019:4862647. [PMID: 30719444 PMCID: PMC6335666 DOI: 10.1155/2019/4862647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 12/07/2018] [Accepted: 12/20/2018] [Indexed: 11/17/2022]
Abstract
The ethanol O-acyltransferase EHT1 is an important element of key signaling pathways and is widely expressed in yeast strains. In this study, we investigated the expression of EHT1 in the overexpression lines or knockout system of Pichia pastoris using qRT-PCR and western blotting. The amount of total protein was determined using the Bradford method; the esterase activity was determined using p-nitrophenyl acetate as a substrate, and the production of volatile fatty acids in wild-type, knockout, and over-expression systems was detected using SPME GC-MS. The esterase activity of EHT1-knockout P. pastoris was significantly lower than that in wild type (P<0.01), and the activities of esterase in three EHT1-overexpressing strains—OE-1, OE-2, and OE-3—were significantly higher than those in wild type (P<0.01). In the EHT1-knockout strain products, the contents of nine volatile fatty acids were significantly lower than those in wild type (P<0.01), and the relative percentages of three fatty acids, methyl nonanoate, methyl decanoate, and ethyl caprate, were significantly lower than those in the other six species in the wild-type and knockout groups (P<0.05). The nine volatile fatty acids in the fermentation products of the overexpressed EHT1 gene were significantly higher than those in the wild-type group (P<0.01). The relative percentages of the three fatty acid esters, methyl nonanoate, methyl caprate, and ethyl caprate, were significantly higher than those in the other six species (P<0.05). EHT1 plays an important regulatory role in esterase activity and the production of medium-chain volatile fatty acids.
Collapse
|
40
|
Fairhead C, Fischer G, Liti G, Neuvéglise C, Schacherer J. André Goffeau's imprinting on second generation yeast "genomologists". Yeast 2019; 36:167-175. [PMID: 30645763 DOI: 10.1002/yea.3377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/21/2018] [Accepted: 01/07/2019] [Indexed: 12/31/2022] Open
Abstract
All authors of the present paper have worked in labs that participated to the sequencing effort of the Saccharomyces cerevisiae reference genome, and we owe to this the fact that we have all chosen to work on genomics of yeasts. S. cerevisiae has been a popular model species for genetics since the 20th century as well as being a model for general eukaryotic cellular processes. Although it has also been used empirically in fermentation for millennia, there was until recently, a lack of knowledge about the natural and evolutionary history of this yeast. The achievement of the international effort to sequence its genome was the foundation for understanding many eukaryotic biological processes but also represented the first step towards the study of the genome and ecological diversity of yeast populations worldwide. We will describe recent advances in yeast comparative and population genomics that find their origins in the S. cerevisiae genome project initiated and pursued by André Goffeau.
Collapse
Affiliation(s)
- Cécile Fairhead
- UMR Génétique Quantitative et Evolution - Le Moulon, INRA - Université Paris-Sud - CNRS - AgroParisTech, Orsay, France
| | - Gilles Fischer
- Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, Sorbonne Université, CNRS, Paris, France
| | - Gianni Liti
- INSERM, IRCAN, Université Côte d'Azur, CNRS, Nice, France
| | - Cécile Neuvéglise
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Joseph Schacherer
- UMR 7156 Génétique Moléculaire, Génomique, Microbiologie, Université de Strasbourg, CNRS, Strasbourg, France
| |
Collapse
|
41
|
Escalera-Fanjul X, Quezada H, Riego-Ruiz L, González A. Whole-Genome Duplication and Yeast’s Fruitful Way of Life. Trends Genet 2019; 35:42-54. [DOI: 10.1016/j.tig.2018.09.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/10/2018] [Accepted: 09/27/2018] [Indexed: 01/30/2023]
|
42
|
Waldl M, Thiel BC, Ochsenreiter R, Holzenleiter A, de Araujo Oliveira JV, Walter MEMT, Wolfinger MT, Stadler PF. TERribly Difficult: Searching for Telomerase RNAs in Saccharomycetes. Genes (Basel) 2018; 9:genes9080372. [PMID: 30049970 PMCID: PMC6115765 DOI: 10.3390/genes9080372] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/17/2018] [Accepted: 07/18/2018] [Indexed: 11/20/2022] Open
Abstract
The telomerase RNA in yeasts is large, usually >1000 nt, and contains functional elements that have been extensively studied experimentally in several disparate species. Nevertheless, they are very difficult to detect by homology-based methods and so far have escaped annotation in the majority of the genomes of Saccharomycotina. This is a consequence of sequences that evolve rapidly at nucleotide level, are subject to large variations in size, and are highly plastic with respect to their secondary structures. Here, we report on a survey that was aimed at closing this gap in RNA annotation. Despite considerable efforts and the combination of a variety of different methods, it was only partially successful. While 27 new telomerase RNAs were identified, we had to restrict our efforts to the subgroup Saccharomycetacea because even this narrow subgroup was diverse enough to require different search models for different phylogenetic subgroups. More distant branches of the Saccharomycotina remain without annotated telomerase RNA.
Collapse
Affiliation(s)
- Maria Waldl
- Institute for Theoretical Chemistry, University of Vienna, Währingerstraße 17, A-1090 Wien, Austria.
| | - Bernhard C Thiel
- Institute for Theoretical Chemistry, University of Vienna, Währingerstraße 17, A-1090 Wien, Austria.
| | - Roman Ochsenreiter
- Institute for Theoretical Chemistry, University of Vienna, Währingerstraße 17, A-1090 Wien, Austria.
| | - Alexander Holzenleiter
- BioInformatics Group, Fakultät CB Hochschule Mittweida, Technikumplatz 17, D-09648 Mittweida, Germany.
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstraße 16-18, D-04107 Leipzig, Germany.
| | - João Victor de Araujo Oliveira
- Departamento de Ciência da Computação, Instituto de Ciências Exatas, Universidade de Brasília, Campus Universitário⁻Asa Norte, Brasília, DF CEP: 70910-900, Brazil.
| | - Maria Emília M T Walter
- Departamento de Ciência da Computação, Instituto de Ciências Exatas, Universidade de Brasília, Campus Universitário⁻Asa Norte, Brasília, DF CEP: 70910-900, Brazil.
| | - Michael T Wolfinger
- Institute for Theoretical Chemistry, University of Vienna, Währingerstraße 17, A-1090 Wien, Austria.
- Center for Anatomy and Cell Biology, Medical University of Vienna, Währingerstraße 13, 1090 Vienna, Austria.
| | - Peter F Stadler
- Institute for Theoretical Chemistry, University of Vienna, Währingerstraße 17, A-1090 Wien, Austria.
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Competence Center for Scalable Data Services and Solutions, and Leipzig Research Center for Civilization Diseases, Universität Leipzig, D-04107 Leipzig, Germany.
- Max Planck Institute for Mathematics in the Sciences, Inselstraße 22, D-04103 Leipzig, Germany.
- Santa Fe Institute, 1399 Hyde Park Rd., Santa Fe, NM 87501, USA.
| |
Collapse
|
43
|
EFSA Panel on Additives and Products or Substances used in Animal Feed (EFSA FEEDAP Panel), Rychen G, Aquilina G, Azimonti G, Bampidis V, Bastos MDL, Bories G, Chesson A, Cocconcelli PS, Flachowsky G, Gropp J, Kolar B, Kouba M, López‐Alonso M, López Puente S, Mantovani A, Mayo B, Ramos F, Saarela M, Villa RE, Wester P, Costa L, Dierick N, Glandorf B, Herman L, Kärenlampi S, Leng L, Tebbe C, Aguilera J, Manini P, Tarrés‐Call J, Wallace RJ. Safety and efficacy of vitamin B 2 (riboflavin) produced by Ashbya gossypii ■■■■■ for all animal species based on a dossier submitted by BASF SE. EFSA J 2018; 16:e05337. [PMID: 32625973 PMCID: PMC7009745 DOI: 10.2903/j.efsa.2018.5337] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The European Commission asked EFSA for an opinion on the safety for the target animals, consumer, user and the environment and on the efficacy of a riboflavin-based additive (minimum 80%) produced by a genetically modified strain of Ashbya gossypii (■■■■■). It is intended to be used in feed for all animal species and categories. The additive under assessment does not give rise to safety concerns on the genetic modification of the production strain. The additive contains 80% of riboflavin (vitamin B2) and 20% of spent growth medium. The additive is safe for target animals with a wide margin of safety. The use of riboflavin 80% produced by A. gossypii ■■■■■ in animal nutrition does not represent a safety concern for consumers. The Panel on Additives and Products or Substances used in Animal Feed (FEEDAP) cannot draw a final conclusion on the risk posed for the user by inhalation of riboflavin produced by A. gossypii ■■■■■ and on the potential to be irritant to skin or eyes. The product under assessment is not a skin sensitiser; however, riboflavin is a known photosensitiser. The use of riboflavin produced by A. gossypii ■■■■■ in animal nutrition does not pose a risk to the environment. The additive is regarded as an effective source of riboflavin in covering the animal's requirement when administered via feed. The FEEDAP Panel made recommendations on the description of the additive.
Collapse
|
44
|
Dunne MP, Kelly S. OMGene: mutual improvement of gene models through optimisation of evolutionary conservation. BMC Genomics 2018; 19:307. [PMID: 29703150 PMCID: PMC5923031 DOI: 10.1186/s12864-018-4704-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 04/19/2018] [Indexed: 12/15/2022] Open
Abstract
Background The accurate determination of the genomic coordinates for a given gene – its gene model – is of vital importance to the utility of its annotation, and the accuracy of bioinformatic analyses derived from it. Currently-available methods of computational gene prediction, while on the whole successful, frequently disagree on the model for a given predicted gene, with some or all of the variant gene models often failing to match the biologically observed structure. Many prediction methods can be bolstered by using experimental data such as RNA-seq. However, these resources are not always available, and rarely give a comprehensive portrait of an organism’s transcriptome due to temporal and tissue-specific expression profiles. Results Orthology between genes provides evolutionary evidence to guide the construction of gene models. OMGene (Optimise My Gene) aims to improve gene model accuracy in the absence of experimental data by optimising the consistency of multiple sequence alignments of orthologous genes from multiple species. Using RNA-seq data sets from plants, mammals, and fungi, considering intron/exon junction representation and exon coverage, and assessing the intra-orthogroup consistency of subcellular localisation predictions, we demonstrate the utility of OMGene for improving gene models in annotated genomes. Conclusions We show that significant improvements in the accuracy of gene model annotations can be made, both in established and in de novo annotated genomes, by leveraging information from multiple species.
Collapse
Affiliation(s)
- Michael P Dunne
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Steven Kelly
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK.
| |
Collapse
|
45
|
Dunn MJ, Kinney GM, Washington PM, Berman J, Anderson MZ. Functional diversification accompanies gene family expansion of MED2 homologs in Candida albicans. PLoS Genet 2018; 14:e1007326. [PMID: 29630599 PMCID: PMC5908203 DOI: 10.1371/journal.pgen.1007326] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/19/2018] [Accepted: 03/21/2018] [Indexed: 01/03/2023] Open
Abstract
Gene duplication facilitates functional diversification and provides greater phenotypic flexibility to an organism. Expanded gene families arise through repeated gene duplication but the extent of functional divergence that accompanies each paralogous gene is generally unexplored because of the difficulty in isolating the effects of single family members. The telomere-associated (TLO) gene family is a remarkable example of gene family expansion, with 14 members in the more pathogenic Candida albicans relative to two TLO genes in the closely-related species C. dubliniensis. TLO genes encode interchangeable Med2 subunits of the major transcriptional regulatory complex Mediator. To identify biological functions associated with each C. albicans TLO, expression of individual family members was regulated using a Tet-ON system and the strains were assessed across a range of phenotypes involved in growth and virulence traits. All TLOs affected multiple phenotypes and a single phenotype was often affected by multiple TLOs, including simple phenotypes such as cell aggregation and complex phenotypes such as virulence in a Galleria mellonella model of infection. No phenotype was regulated by all TLOs, suggesting neofunctionalization or subfunctionalization of ancestral properties among different family members. Importantly, regulation of three phenotypes could be mapped to individual polymorphic sites among the TLO genes, including an indel correlated with two phenotypes, growth in sucrose and macrophage killing. Different selective pressures have operated on the TLO sequence, with the 5’ conserved Med2 domain experiencing purifying selection and the gene/clade-specific 3’ end undergoing extensive positive selection that may contribute to the impact of individual TLOs on phenotypic variability. Therefore, expansion of the TLO gene family has conferred unique regulatory properties to each paralog such that it influences a range of phenotypes. We posit that the genetic diversity associated with this expansion contributed to C. albicans success as a commensal and opportunistic pathogen. Gene duplication is a rapid mechanism to generate additional sequences for natural selection to act upon and confer greater organismal fitness. If additional copies of the gene are beneficial, this process may be repeated to produce an expanded gene family containing many copies of related sequences. Following duplication, individual gene family members may retain functions of the ancestral gene or acquire new functions through mutation. How functional diversification accompanies expansion into large gene families remains largely unexplored due to the difficulty in assessing individual genes in the presence of the remaining family members. Here, we addressed this question using an inducible promoter to regulate expression of individual genes of the TLO gene family in the commensal yeast and opportunistic pathogen Candida albicans, which encode components of a major transcriptional regulator. Induced expression of individual TLOs affected a wide range of phenotypes such that significant functional overlap occurred among TLO genes and most phenotypes were affected by more than one TLO. Induced expression of individual TLOs did not produce massive phenotypic effects in most cases, suggesting that functional overlap among TLO genes may buffer new mutations that arise. Specific sequence variants among the TLO genes correlated with certain phenotypes and these sequence variants did not necessarily correlate with sequence similarity across the entire gene. Therefore, individual TLO family members evolved specific functional roles following duplication that likely reflect a combination of inherited function and new mutation.
Collapse
Affiliation(s)
- Matthew J. Dunn
- Department of Microbiology, The Ohio State University, Columbus, OH, United States of America
| | - Griffin M. Kinney
- Department of Microbiology, The Ohio State University, Columbus, OH, United States of America
| | - Pamela M. Washington
- Department of Microbiology, The Ohio State University, Columbus, OH, United States of America
| | - Judith Berman
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv, Israel
| | - Matthew Z. Anderson
- Department of Microbiology, The Ohio State University, Columbus, OH, United States of America
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States of America
- * E-mail:
| |
Collapse
|
46
|
Abstract
Newly available genome sequences of two Mucoralean fungi, Phycomyces blakesleeanus and Mucor circinelloides, provide evidence for an ancient whole-genome duplication that contributed to the generation of expanded gene families. These fungi have robust responses to light that can be correlated with the expansion of gene networks involved in light sensing and signaling.
Collapse
Affiliation(s)
- Jason E Stajich
- Department of Plant Pathology & Microbiology and Institute for Integrative Genome Biology, University of California-Riverside, Riverside, CA 92521, USA.
| |
Collapse
|
47
|
Abstract
The recurrent cycle of whole genome duplication (WGD) followed by massive duplicate gene loss (fractionation) differentiates plant evolutionary history from that of most other phylogenetic domains, where WGD has occurred relatively rarely, even on an evolutionary time scale. We discuss the mechanism of WGD and its biological consequences. We survey the prevalence of WGD in the flowering plants. We outline some of the major kinds of combinatorial optimization problems arising in computational biology for analyzing WGD. Fractionation and its consequences are the subject of mathematical modeling questions and further combinatorial algorithms. A strong connection is made between WGD in phylogenetic context and the theory of gene trees and species trees. We illustrate the analysis of WGD with studies involving a large number of sequenced plant genomes, including grape, the crucifers and other rosids, the asterid tomato, the eudicot Nelumbo nucifera and pineapple, a monocot.
Collapse
Affiliation(s)
- David Sankoff
- Department of Mathematics and Statistics, University of Ottawa, 585 King Edward Ave., Ottawa, ON, K1N 6N5, Canada.
| | - Chunfang Zheng
- Department of Mathematics and Statistics, University of Ottawa, 585 King Edward Ave., Ottawa, ON, K1N 6N5, Canada
| |
Collapse
|
48
|
Xiang X. Nuclear movement in fungi. Semin Cell Dev Biol 2017; 82:3-16. [PMID: 29241689 DOI: 10.1016/j.semcdb.2017.10.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 10/17/2017] [Accepted: 10/23/2017] [Indexed: 12/22/2022]
Abstract
Nuclear movement within a cell occurs in a variety of eukaryotic organisms including yeasts and filamentous fungi. Fungal molecular genetic studies identified the minus-end-directed microtubule motor cytoplasmic dynein as a critical protein for nuclear movement or orientation of the mitotic spindle contained in the nucleus. Studies in the budding yeast first indicated that dynein anchored at the cortex via its anchoring protein Num1 exerts pulling force on an astral microtubule to orient the anaphase spindle across the mother-daughter axis before nuclear division. Prior to anaphase, myosin V interacts with the plus end of an astral microtubule via Kar9-Bim1/EB1 and pulls the plus end along the actin cables to move the nucleus/spindle close to the bud neck. In addition, pushing or pulling forces generated from cortex-linked polymerization or depolymerization of microtubules drive nuclear movements in yeasts and possibly also in filamentous fungi. In filamentous fungi, multiple nuclei within a hyphal segment undergo dynein-dependent back-and-forth movements and their positioning is also influenced by cytoplasmic streaming toward the hyphal tip. In addition, nuclear movement occurs at various stages of fungal development and fungal infection of plant tissues. This review discusses our current understanding on the mechanisms of nuclear movement in fungal organisms, the importance of nuclear positioning and the regulatory strategies that ensure the proper positioning of nucleus/spindle.
Collapse
Affiliation(s)
- Xin Xiang
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences - F. Edward Hébert School of Medicine, Bethesda, MD, USA.
| |
Collapse
|
49
|
Abstract
Some genomes are known to have incurred a genome doubling (tetraploidization) event in their evolutionary history, and this is reflected today in patterns of duplicated segments scattered throughout their chromosomes. These duplications may be used as data to “halve” the genome, i.e. to reconstruct the ancestral genome at the moment of tetraploidization, but the solution is often highly non-unique. To resolve this problem, we adapt the genome halving algorithm of El-Mabrouk and Sankoff to take account of an external reference genome. We apply this to reconstruct the tetraploid ancestor of maize, using either rice or sorghum as the reference.
Collapse
Affiliation(s)
- Chunfang Zheng
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Qian Zhu
- Department of Biochemistry, University of Ottawa, Ottawa, Ontario, Canada
| | - David Sankoff
- Department of Mathematics and Statistics, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
50
|
Wasserstrom L, Dünkler A, Walther A, Wendland J. The APSES protein Sok2 is a positive regulator of sporulation in Ashbya gossypii. Mol Microbiol 2017; 106:949-960. [PMID: 28985003 DOI: 10.1111/mmi.13859] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2017] [Indexed: 01/26/2023]
Abstract
Ashbya gossypii is a homothallic, flavinogenic, filamentous ascomycete that starts overproduction of riboflavin and fragments its mycelium quantitatively into spore producing sporangia at the end of a growth phase. Mating is not required for sporulation and the standard homothallic laboratory strain is a MATa strain. Here we show that ectopic expression of Saccharomyces cerevisiae MATα2 in A. gossypii completely suppresses sporulation, inhibits riboflavin overproduction and downregulates among others AgSOK2. AgSok2 belongs to a fungal-specific group of (APSES) transcription factors. Deletion of AgSOK2 strongly reduces riboflavin production and blocks sporulation. The initiator of meiosis, AgIME1, is a transcription factor essential for sporulation. We characterized the AgIME1 promoter region required for complementation of the Agime1 mutant. Reporter assays with AgIME1 promoter fragments fused to lacZ showed that AgSok2 does not control AgIME1 transcription. However, global transcriptome analysis identified two other essential regulators of sporulation, AgIME2 and AgNDT80, as potential targets of AgSok2. Our data suggest that sporulation and riboflavin production in A. gossypii are under mating type locus and nutritional control. Sok2, a target of the cAMP/protein kinase A pathway, serves as a central positive regulator to promote sporulation. This contrasts Saccharomyces cerevisiae where Sok2 is a repressor of IME1 transcription.
Collapse
Affiliation(s)
- Lisa Wasserstrom
- Carlsberg Laboratory, Yeast & Fermentation, DK-1799 Copenhagen V, Denmark
| | - Alexander Dünkler
- Carlsberg Laboratory, Yeast & Fermentation, DK-1799 Copenhagen V, Denmark
| | - Andrea Walther
- Carlsberg Laboratory, Yeast & Fermentation, DK-1799 Copenhagen V, Denmark
| | - Jürgen Wendland
- Carlsberg Laboratory, Yeast & Fermentation, DK-1799 Copenhagen V, Denmark.,Vrije Universiteit Brussel, Department of Bioengineering Sciences Research Group of Microbiology, Functional Yeast Genomics, BE-1050 Brussels, Belgium
| |
Collapse
|