1
|
Hartwell AM, Wheat AE, Dijkstra JA. Natural warming differentiates communities and increases diversity in deep-sea Ridge Flank Hydrothermal Systems. Commun Biol 2024; 7:379. [PMID: 38548927 PMCID: PMC10978836 DOI: 10.1038/s42003-024-06070-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 03/19/2024] [Indexed: 04/01/2024] Open
Abstract
Ridge Flank Hydrothermal Systems have discrete pockets of fluid discharge that mimic climate-induced ocean warming. Unlike traditional hydrothermal fluids, those discharged by Ridge Flank Hydrothermal Systems have a chemical composition indistinguishable from background water, enabling evaluation of the effect of warming temperature. Here we link temperature and terrain variables to community composition and biodiversity by combining remotely operated vehicle images of vent and non-vent zone communities with associated environmental variables. We show overall differences in composition, family richness, and biodiversity between zones, though richness and diversity were only significantly greater in vent zones at one location. Temperature was a contributing factor to observed greater biodiversity near vent zones. Overall, our results suggest that warming in the deep sea will affect species composition and diversity. However, due to the diverse outcomes projected for ocean warming, additional research is necessary to forecast the impacts of ocean warming on deep-sea ecosystems.
Collapse
Affiliation(s)
- Anne M Hartwell
- University of New Hampshire Center for Coastal and Ocean Mapping/Joint Hydrographic Center, 24 Colovos Rd, Durham, NH, USA.
| | - Anna E Wheat
- Oregon State University, 1500 SW Jefferson Ave, Corvallis, OR, 97331, USA
| | - Jennifer A Dijkstra
- University of New Hampshire Center for Coastal and Ocean Mapping/Joint Hydrographic Center, 24 Colovos Rd, Durham, NH, USA
| |
Collapse
|
2
|
Xu J, Zhao R, Liu A, Li L, Li S, Li Y, Qu M, Di Y. To live or die: "Fine-tuning" adaptation revealed by systemic analyses in symbiotic bathymodiolin mussels from diverse deep-sea extreme ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170434. [PMID: 38278266 DOI: 10.1016/j.scitotenv.2024.170434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 01/28/2024]
Abstract
Hydrothermal vents (HVs) and cold seeps (CSs) are typical deep-sea extreme ecosystems with their own geochemical characteristics to supply the unique living conditions for local communities. Once HVs or CSs stop emission, the dramatic environmental change would pose survival risks to deep-sea organisms. Up to now, limited knowledge has been available to understand the biological responses and adaptive strategy to the extreme environments and their transition from active to extinct stage, mainly due to the technical difficulties and lack of representative organisms. In this study, bathymodiolin mussels, the dominant and successful species surviving in diverse deep-sea extreme ecosystems, were collected from active and extinct HVs (Southwest Indian Ocean) or CSs (South China Sea) via two individual cruises. The transcriptomic analysis and determination of multiple biological indexes in stress defense and metabolic systems were conducted in both gills and digestive glands of mussels, together with the metagenomic analysis of symbionts in mussels. The results revealed the ecosystem- and tissue-specific transcriptional regulation in mussels, addressing the autologous adaptations in antioxidant defense, energy utilization and key compounds (i.e. sulfur) metabolism. In detail, the successful antioxidant defense contributed to conquering the oxidative stress induced during the unavoidable metabolism of xenobiotics commonly existing in the extreme ecosystems; changes in metabolic rate functioned to handle toxic matters in different surroundings; upregulated gene expression of sulfide:quinone oxidoreductase indicated an active sulfide detoxification in mussels from HVs and active stage of HVs & CSs. Coordinately, a heterologous adaptation, characterized by the functional compensation between symbionts and mussels in energy utilization, sulfur and carbon metabolism, was also evidenced by the bacterial metagenomic analysis. Taken together, a new insight was proposed that symbiotic bathymodiolin mussels would develop a "finetuning" strategy combining the autologous and heterologous regulations to fulfill the efficient and effective adaptations for successful survival.
Collapse
Affiliation(s)
- Jianzhou Xu
- Ocean College, Zhejiang University, Zhoushan 316000, China; Hainan Institute of Zhejiang University, Sanya 572024, China
| | - Ruoxuan Zhao
- Ocean College, Zhejiang University, Zhoushan 316000, China
| | - Ao Liu
- Ocean College, Zhejiang University, Zhoushan 316000, China
| | - Liya Li
- Ocean College, Zhejiang University, Zhoushan 316000, China; Hainan Institute of Zhejiang University, Sanya 572024, China
| | - Shuimei Li
- Ocean College, Zhejiang University, Zhoushan 316000, China
| | - Yichen Li
- Ocean College, Zhejiang University, Zhoushan 316000, China
| | - Mengjie Qu
- Ocean College, Zhejiang University, Zhoushan 316000, China; Hainan Institute of Zhejiang University, Sanya 572024, China
| | - Yanan Di
- Ocean College, Zhejiang University, Zhoushan 316000, China; Hainan Institute of Zhejiang University, Sanya 572024, China.
| |
Collapse
|
3
|
Peoples LM, Gerringer ME, Weston JNJ, León-Zayas R, Sekarore A, Sheehan G, Church MJ, Michel APM, Soule SA, Shank TM. A deep-sea isopod that consumes Sargassum sinking from the ocean's surface. Proc Biol Sci 2024; 291:20240823. [PMID: 39255840 PMCID: PMC11387067 DOI: 10.1098/rspb.2024.0823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/02/2024] [Accepted: 07/19/2024] [Indexed: 09/12/2024] Open
Abstract
Most deep-ocean life relies on organic carbon from the surface ocean. While settling primary production rapidly attenuates in the water column, pulses of organic material can be quickly transported to depth in the form of food falls. One example of fresh material that can reach great depths across the tropical Atlantic Ocean and Caribbean Sea is the pelagic macroalgae Sargassum. However, little is known about the deep-ocean organisms able to use this food source. Here, we encountered the isopod Bathyopsurus nybelini at depths 5002-6288 m in the Puerto Rico Trench and Mid-Cayman Spreading Center using the Deep Submergence Vehicle Alvin. In most of the 32 observations, the isopods carried fronds of Sargassum. Through an integrative suite of morphological, DNA sequencing, and microbiological approaches, we show that this species is adapted to feed on Sargassum by using a specialized swimming stroke, having serrated and grinding mouthparts, and containing a gut microbiome that provides a dietary contribution through the degradation of macroalgal polysaccharides and fixing nitrogen. The isopod's physiological, morphological, and ecological adaptations demonstrate that vertical deposition of Sargassum is a direct trophic link between the surface and deep ocean and that some deep-sea organisms are poised to use this material.
Collapse
Affiliation(s)
- Logan M. Peoples
- Flathead Lake Biological Station, University of Montana, Polson, MT, USA
| | | | | | | | - Abisage Sekarore
- Department of Biology, State University of New York at Geneseo, Geneseo, NY, USA
| | - Grace Sheehan
- Biology Department, Willamette University, Salem, OR, USA
| | - Matthew J. Church
- Flathead Lake Biological Station, University of Montana, Polson, MT, USA
| | - Anna P. M. Michel
- Department of Applied Ocean Physics and Engineering, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - S. Adam Soule
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, USA
| | - Timothy M. Shank
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| |
Collapse
|
4
|
Wang Z, Fang C, Yang C, Zhang G, Sun D. Latitudinal gradient and influencing factors of deep-sea particle export along the Kyushu-Palau Ridge in the Philippine Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167460. [PMID: 37797769 DOI: 10.1016/j.scitotenv.2023.167460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/21/2023] [Accepted: 09/27/2023] [Indexed: 10/07/2023]
Abstract
The export of particulate organic matter (POM) to deep-sea is crucial for deep-sea ecosystems. However, in situ measurements of large-scale POM export flux are scarce in the tropical and subtropical western Pacific, leading to reliance on biogeochemical models or sediment trap data from a few stations. To address this gap, the underwater vision profiler was used to measure particulate density and to calculate particulate organic carbon (POC) fluxes along the Kyushu-Palau Ridge (KPR) in the Philippine Sea. The results revealed a significant latitudinal gradient of POC fluxes: 37 % of the POC output from 200 m depth was preserved to 2000 m in the Western Pacific Warm Pool and up to 51 % was preserved in the North Pacific Subtropical Gyre. The near-bottom POC fluxes north of 25°N (1.64 ± 0.80 mg m-2 d-1) were significantly higher than the average near-bottom value of the entire transect (0.60 ± 0.43 mg m-2 d-1). Multiple linear regression analysis showed that the chlorophyll concentration had a significant positive effect on the POC fluxes at all depths, except near the bottom, while local factors such as mesoscale eddies and the interaction effect between the topography and current velocity only had significant effects on the POC fluxes at depths of >2000 m. Particle size spectrum analysis revealed that particles ranging from 64 to 323 μm in size exerted a dominant influence on the increase in the POC fluxes in the near-bottom layers situated north of 25°N. These findings indicated that the spatial heterogeneity of POC fluxes in the western Pacific was governed not only by upper ocean primary productivity but also by mesoscale processes, current velocity, and topography. These results provided crucial fundamental information for cartography of the distribution and simulation of the dynamics of deep-sea organisms along the KPR in the Philippine Sea.
Collapse
Affiliation(s)
- Ziyu Wang
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resource, Hangzhou 310012, China
| | - Chen Fang
- College of Oceanography, Hohai University, Nanjing 210024, China
| | - Chenghao Yang
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Guoyin Zhang
- Key Laboratory of Submarine Geosciences, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Dong Sun
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resource, Hangzhou 310012, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China.
| |
Collapse
|
5
|
Martins IS, Schrodt F, Blowes SA, Bates AE, Bjorkman AD, Brambilla V, Carvajal-Quintero J, Chow CFY, Daskalova GN, Edwards K, Eisenhauer N, Field R, Fontrodona-Eslava A, Henn JJ, van Klink R, Madin JS, Magurran AE, McWilliam M, Moyes F, Pugh B, Sagouis A, Trindade-Santos I, McGill BJ, Chase JM, Dornelas M. Widespread shifts in body size within populations and assemblages. Science 2023; 381:1067-1071. [PMID: 37676959 DOI: 10.1126/science.adg6006] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 08/10/2023] [Indexed: 09/09/2023]
Abstract
Biotic responses to global change include directional shifts in organismal traits. Body size, an integrative trait that determines demographic rates and ecosystem functions, is thought to be shrinking in the Anthropocene. Here, we assessed the prevalence of body size change in six taxon groups across 5025 assemblage time series spanning 1960 to 2020. Using the Price equation to partition this change into within-species body size versus compositional changes, we detected prevailing decreases in body size through time driven primarily by fish, with more variable patterns in other taxa. We found that change in assemblage composition contributes more to body size changes than within-species trends, but both components show substantial variation in magnitude and direction. The biomass of assemblages remains quite stable as decreases in body size trade off with increases in abundance.
Collapse
Affiliation(s)
- Inês S Martins
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews KY16 9TH, Scotland
- Leverhulme Centre for Anthropocene Biodiversity, University of York, York YO10 5DD, UK
| | - Franziska Schrodt
- School of Geography, University of Nottingham, University Park, Nottingham NG7 2RD
| | - Shane A Blowes
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig 04103, Germany
- Department of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale) 06099, Germany
| | - Amanda E Bates
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| | - Anne D Bjorkman
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg 40530, Sweden
- Gothenburg Global Biodiversity Centre, Gothenburg 41319, Sweden
| | - Viviana Brambilla
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews KY16 9TH, Scotland
- MARE, Guia Marine Laboratory, Faculty of Sciences, University of Lisbon, Cascais 2750-374, Portugal
| | - Juan Carvajal-Quintero
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig 04103, Germany
- Institute of Biology, Leipzig University, Leipzig 04103, Germany
| | - Cher F Y Chow
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews KY16 9TH, Scotland
| | - Gergana N Daskalova
- International Institute for Applied Systems Analysis (IIASA), Laxenburg 2361, Austria
| | - Kyle Edwards
- Department of Oceanography, University of Hawai''i at Mānoa, Honolulu, HI 96822, USA
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig 04103, Germany
- Institute of Biology, Leipzig University, Leipzig 04103, Germany
| | - Richard Field
- School of Geography, University of Nottingham, University Park, Nottingham NG7 2RD
| | - Ada Fontrodona-Eslava
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews KY16 9TH, Scotland
| | - Jonathan J Henn
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, CA 92521, USA
- Institute of Arctic and Alpine Research, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Roel van Klink
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig 04103, Germany
- Department of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale) 06099, Germany
| | - Joshua S Madin
- Hawai''i Institute of Marine Biology, University of Hawai''i at Manoa, Kāne'ohe, Hawai''i 96744, USA
| | - Anne E Magurran
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews KY16 9TH, Scotland
| | - Michael McWilliam
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews KY16 9TH, Scotland
| | - Faye Moyes
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews KY16 9TH, Scotland
| | - Brittany Pugh
- School of Geography, University of Nottingham, University Park, Nottingham NG7 2RD
- University College London, School of Geography, Gower Street, London WC1E 6AE, UK
| | - Alban Sagouis
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig 04103, Germany
- Department of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale) 06099, Germany
| | - Isaac Trindade-Santos
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews KY16 9TH, Scotland
- Macroevolution Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1, Tancha, Onna-son, Kunigami-gun 904-0495, Okinawa, Japan
| | - Brian J McGill
- School of Biology and Ecology and Mitchell Center for Sustainability Solutions, University of Maine, Orono, ME 04469, USA
| | - Jonathan M Chase
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig 04103, Germany
- Department of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale) 06099, Germany
| | - Maria Dornelas
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews KY16 9TH, Scotland
- Leverhulme Centre for Anthropocene Biodiversity, University of York, York YO10 5DD, UK
- MARE, Guia Marine Laboratory, Faculty of Sciences, University of Lisbon, Cascais 2750-374, Portugal
| |
Collapse
|
6
|
Dorak Z, Köker L, Gürevin C, Saç G. How do environmental variables affect the temporal dynamics of zooplankton functional groups in a hyper-eutrophic wetland? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:97115-97127. [PMID: 37587395 DOI: 10.1007/s11356-023-29252-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/05/2023] [Indexed: 08/18/2023]
Abstract
In recent years, trait-based research on zooplankton has gained importance to enable comprehensive interpretation of ecosystem processes, but this approach is still limited in inland waters. Wetlands, one of the most important inland water resources, provide many ecological and economic services in the ecosystem, but like all other water bodies in the world, they are under threat of deterioration and depletion for various reasons. In this study, the taxonomic structure of the zooplankton community in Lake Manyas, one of the important wetlands of Türkiye, as well as their functional characteristics such as body size (small, large) and feeding strategies (microphagous, raptorials) were investigated monthly between 2019 and 2020. The hypothesis that environmental variables influence the species composition and functional groups of zooplankton was tested, given that their structure is shaped by environmental gradients. A total of 62 taxa, including rotifer-dominated, cosmopolite and eutrophication indicator species, were identified. These taxa categorized into three functional groups dominated by small microphagous. Although the zooplankton structure had a high taxonomic diversity, functional homogeneity was observed which reflected a low grazing rate in the ecosystem. Albeit water temperature and total organic carbon significantly affected the distribution of all functional groups, each dominant taxa interacted with different environmental variables. Changing environmental conditions in the lake affected the presence and/or quantity of the zooplankton functional groups (ZFGs). The results showed that ZFGs are strongly associated with environmental conditions and that the response of trait-based functional groups to environmental changes can provide useful knowledge about aquatic ecosystem's health.
Collapse
Affiliation(s)
- Zeynep Dorak
- Faculty of Aquatic Sciences, Department of Marine and Freshwater Resources Management, Istanbul University, 34134, Fatih, Istanbul, Türkiye.
| | - Latife Köker
- Faculty of Aquatic Sciences, Department of Marine and Freshwater Resources Management, Istanbul University, 34134, Fatih, Istanbul, Türkiye
| | - Cenk Gürevin
- Faculty of Aquatic Sciences, Department of Marine and Freshwater Resources Management, Istanbul University, 34134, Fatih, Istanbul, Türkiye
| | - Gülşah Saç
- Department of Biology, Faculty of Science, Istanbul University, Vezneciler, Istanbul, Türkiye
| |
Collapse
|
7
|
Pinheiro M, Martins I, Raimundo J, Caetano M, Neuparth T, Santos MM. Stressors of emerging concern in deep-sea environments: microplastics, pharmaceuticals, personal care products and deep-sea mining. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162557. [PMID: 36898539 DOI: 10.1016/j.scitotenv.2023.162557] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/16/2023] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
Although most deep-sea areas are remote in comparison to coastal zones, a growing body of literature indicates that many sensitive ecosystems could be under increased stress from anthropogenic sources. Among the multiple potential stressors, microplastics (MPs), pharmaceuticals and personal care products (PPCPs/PCPs) and the imminent start of commercial deep-sea mining have received increased attention. Here we review recent literature on these emerging stressors in deep-sea environments and discuss cumulative effects with climate change associated variables. Importantly, MPs and PPCPs have been detected in deep-sea waters, organisms and sediments, in some locations in comparable levels to coastal areas. The Atlantic Ocean and the Mediterranean Sea are the most studied areas and where higher levels of MPs and PPCPs have been detected. The paucity of data for most other deep-sea ecosystems indicates that many more locations are likely to be contaminated by these emerging stressors, but the absence of studies hampers a better assessment of the potential risk. The main knowledge gaps in the field are identified and discussed, and future research priorities are highlighted to improve hazard and risk assessment.
Collapse
Affiliation(s)
- Marlene Pinheiro
- CIIMAR/CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre S/N, 4169-007 Porto, Portugal
| | - Irene Martins
- CIIMAR/CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal
| | - Joana Raimundo
- CIIMAR/CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal; IPMA - Portuguese Institute for Sea and Atmosphere, Avenida Alfredo Magalhães Ramalho 6, 1495-165 Algés, Portugal
| | - Miguel Caetano
- CIIMAR/CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal; IPMA - Portuguese Institute for Sea and Atmosphere, Avenida Alfredo Magalhães Ramalho 6, 1495-165 Algés, Portugal
| | - Teresa Neuparth
- CIIMAR/CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal.
| | - Miguel M Santos
- CIIMAR/CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre S/N, 4169-007 Porto, Portugal.
| |
Collapse
|
8
|
Messié M, Sherlock RE, Huffard CL, Pennington JT, Choy CA, Michisaki RP, Gomes K, Chavez FP, Robison BH, Smith KL. Coastal upwelling drives ecosystem temporal variability from the surface to the abyssal seafloor. Proc Natl Acad Sci U S A 2023; 120:e2214567120. [PMID: 36947518 PMCID: PMC10068760 DOI: 10.1073/pnas.2214567120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 02/10/2023] [Indexed: 03/23/2023] Open
Abstract
Long-term biological time series that monitor ecosystems across the ocean's full water column are extremely rare. As a result, classic paradigms are yet to be tested. One such paradigm is that variations in coastal upwelling drive changes in marine ecosystems throughout the water column. We examine this hypothesis by using data from three multidecadal time series spanning surface (0 m), midwater (200 to 1,000 m), and benthic (~4,000 m) habitats in the central California Current Upwelling System. Data include microscopic counts of surface plankton, video quantification of midwater animals, and imaging of benthic seafloor invertebrates. Taxon-specific plankton biomass and midwater and benthic animal densities were separately analyzed with principal component analysis. Within each community, the first mode of variability corresponds to most taxa increasing and decreasing over time, capturing seasonal surface blooms and lower-frequency midwater and benthic variability. When compared to local wind-driven upwelling variability, each community correlates to changes in upwelling damped over distinct timescales. This suggests that periods of high upwelling favor increase in organism biomass or density from the surface ocean through the midwater down to the abyssal seafloor. These connections most likely occur directly via changes in primary production and vertical carbon flux, and to a lesser extent indirectly via other oceanic changes. The timescales over which species respond to upwelling are taxon-specific and are likely linked to the longevity of phytoplankton blooms (surface) and of animal life (midwater and benthos), which dictate how long upwelling-driven changes persist within each community.
Collapse
Affiliation(s)
- Monique Messié
- Monterey Bay Aquarium Research Institute, Moss Landing, CA95039
| | - Rob E. Sherlock
- Monterey Bay Aquarium Research Institute, Moss Landing, CA95039
| | | | | | - C. Anela Choy
- Monterey Bay Aquarium Research Institute, Moss Landing, CA95039
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California San Diego, San Diego, CA92093
| | | | - Kevin Gomes
- Monterey Bay Aquarium Research Institute, Moss Landing, CA95039
| | | | | | | |
Collapse
|
9
|
Simon-Lledó E, Bett BJ, Benoist NMA, Hoving HJ, Aleynik D, Horton T, Jones DOB. Mass falls of crustacean carcasses link surface waters and the deep seafloor. Ecology 2023; 104:e3898. [PMID: 36263763 PMCID: PMC10078340 DOI: 10.1002/ecy.3898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/02/2022] [Accepted: 09/09/2022] [Indexed: 02/03/2023]
Affiliation(s)
| | | | | | - Henk-Jan Hoving
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | | | | | | |
Collapse
|
10
|
Stratmann T, Simon-Lledó E, Morganti TM, de Kluijver A, Vedenin A, Purser A. Habitat types and megabenthos composition from three sponge-dominated high-Arctic seamounts. Sci Rep 2022; 12:20610. [PMID: 36446839 PMCID: PMC9708660 DOI: 10.1038/s41598-022-25240-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
Seamounts are isolated underwater mountains stretching > 1000 m above the seafloor. They are identified as biodiversity hotspots of marine life, and host benthic assemblages that may vary on regional (among seamounts) and local (within seamounts) scales. Here, we collected seafloor imagery of three seamounts at the Langseth Ridge in the central Arctic Ocean to assess habitats and megabenthos community composition at the Central Mount (CM), the Karasik Seamount (KS), and the Northern Mount (NM). The majority of seafloor across these seamounts comprised bare rock, covered with a mixed layer of sponge spicule mats intermixed with detrital debris composed of polychaete tubes, and sand, gravel, and/or rocks. The megabenthos assemblages consisted of in total 15 invertebrate epibenthos taxa and 4 fish taxa, contributing to mean megabenthos densities of 55,745 ind. ha-1 at CM, 110,442 ind. ha-1 at KS, and 65,849 ind. ha-1 at NM. The faunal assemblages at all three seamounts were dominated by habitat-forming Tetractinellida sponges that contributed between 66% (KS) and 85% (CM) to all megabenthos. Interestingly, taxa richness did not differ at regional and local scale, whereas the megabenthos community composition did. Abiotic and biogenic factors shaping distinct habitat types played a major role in structuring of benthic communities in high-Arctic seamounts.
Collapse
Affiliation(s)
- Tanja Stratmann
- grid.5477.10000000120346234Department of Earth Sciences, Utrecht University, Vening Meineszgebouw A, Princetonlaan 8, 3584 CB Utrecht, The Netherlands ,grid.419529.20000 0004 0491 3210HGF MPG Joint Research Group for Deep-Sea Ecology and Technology, Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359 Bremen, Germany ,grid.10914.3d0000 0001 2227 4609Department of Ocean Systems, NIOZ – Royal Netherlands Institute for Sea Research, Landsdiep 4, 1797 SZ ‘t Horntje (Texel), The Netherlands
| | - Erik Simon-Lledó
- grid.418022.d0000 0004 0603 464XOcean BioGeosciences, National Oceanography Centre, European Way, Southampton, SO14 3ZH UK
| | - Teresa Maria Morganti
- grid.419529.20000 0004 0491 3210HGF MPG Joint Research Group for Deep-Sea Ecology and Technology, Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359 Bremen, Germany ,grid.423940.80000 0001 2188 0463Marine Chemistry Department, Leibniz Institute for Baltic Sea Research Warnemünde, Seestraße 15, 18119 Rostock, Germany
| | - Anna de Kluijver
- grid.5477.10000000120346234Department of Earth Sciences, Utrecht University, Vening Meineszgebouw A, Princetonlaan 8, 3584 CB Utrecht, The Netherlands
| | - Andrey Vedenin
- grid.500026.10000 0004 0487 6958Marine Biology Section, Senckenberg am Meer, Südstrand 40, 26382 Wilhelmshaven, Germany
| | - Autun Purser
- grid.10894.340000 0001 1033 7684Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
| |
Collapse
|
11
|
Johnston NM, Murphy EJ, Atkinson A, Constable AJ, Cotté C, Cox M, Daly KL, Driscoll R, Flores H, Halfter S, Henschke N, Hill SL, Höfer J, Hunt BPV, Kawaguchi S, Lindsay D, Liszka C, Loeb V, Manno C, Meyer B, Pakhomov EA, Pinkerton MH, Reiss CS, Richerson K, Jr. WOS, Steinberg DK, Swadling KM, Tarling GA, Thorpe SE, Veytia D, Ward P, Weldrick CK, Yang G. Status, Change, and Futures of Zooplankton in the Southern Ocean. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2021.624692] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In the Southern Ocean, several zooplankton taxonomic groups, euphausiids, copepods, salps and pteropods, are notable because of their biomass and abundance and their roles in maintaining food webs and ecosystem structure and function, including the provision of globally important ecosystem services. These groups are consumers of microbes, primary and secondary producers, and are prey for fishes, cephalopods, seabirds, and marine mammals. In providing the link between microbes, primary production, and higher trophic levels these taxa influence energy flows, biological production and biomass, biogeochemical cycles, carbon flux and food web interactions thereby modulating the structure and functioning of ecosystems. Additionally, Antarctic krill (Euphausia superba) and various fish species are harvested by international fisheries. Global and local drivers of change are expected to affect the dynamics of key zooplankton species, which may have potentially profound and wide-ranging implications for Southern Ocean ecosystems and the services they provide. Here we assess the current understanding of the dominant metazoan zooplankton within the Southern Ocean, including Antarctic krill and other key euphausiid, copepod, salp and pteropod species. We provide a systematic overview of observed and potential future responses of these taxa to a changing Southern Ocean and the functional relationships by which drivers may impact them. To support future ecosystem assessments and conservation and management strategies, we also identify priorities for Southern Ocean zooplankton research.
Collapse
|
12
|
Emblemsvåg M, Werner KM, Núñez‐Riboni I, Frelat R, Torp Christensen H, Fock HO, Primicerio R. Deep demersal fish communities respond rapidly to warming in a frontal region between Arctic and Atlantic waters. GLOBAL CHANGE BIOLOGY 2022; 28:2979-2990. [PMID: 35195322 PMCID: PMC9304235 DOI: 10.1111/gcb.16113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/14/2021] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
The assessment of climate impact on marine communities dwelling deeper than the well-studied shelf seas has been hampered by the lack of long-term data. For a long time, the prevailing expectation has been that thermal stability in deep ocean layers will delay ecosystem responses to warming. Few observational studies have challenged this view and indicated that deep organisms can respond exceptionally fast to physical change at the sea surface. To address the depth-specific impact of climate change, we investigated spatio-temporal changes in fish community structure along a bathymetry gradient of 150-1500 m between 1998 and 2016 in East Greenland. Here, the Arctic East Greenland Current and the Atlantic Irminger Current meet and mix, representing a sub-Arctic transition zone. We found the strongest signals of community reorganizations at depths between 350 and 1000 m and only weak responses in the shallowest and deepest regions. Changes were in synchrony with atmospheric warming, loss in sea ice and variability in physical sea surface conditions both within our study region and North of the Denmark Strait. These results suggest that interannual variability and long-term climate trends of the larger ecoregion can rapidly affect fish communities down to 1000-m depth through atmospheric ocean coupling and food web interactions.
Collapse
Affiliation(s)
| | | | | | - Romain Frelat
- Wageningen University and ResearchWageningenThe Netherlands
| | | | | | | |
Collapse
|
13
|
Pierrat J, Bédier A, Eeckhaut I, Magalon H, Frouin P. Sophistication in a seemingly simple creature: a review of wild holothurian nutrition in marine ecosystems. Biol Rev Camb Philos Soc 2022; 97:273-298. [PMID: 34647401 PMCID: PMC9293300 DOI: 10.1111/brv.12799] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 09/15/2021] [Accepted: 09/20/2021] [Indexed: 11/29/2022]
Abstract
Holothurians are marine invertebrates that are among the most widespread benthic megafauna communities by both biomass and abundance in shallow-water and deep-sea ecosystems, their functions supporting important ecological services worldwide. Despite their simple appearance as sea cucumbers, holothurians show a wide range of feeding practices. However, information on what and how these animals eat is scattered and potentially confusing. We provide a comprehensive review of holothurian nutrition in coastal and deep-sea ecosystems. First, we describe morphological aspects of holothurian feeding and the ultrastructure of tentacles. We discuss the two processes for food capture, concluding that mucus adhesion is likely the main method; two mucous cells, type-1 and type-2, possibly allow the adhesion and de-adhesion, respectively, of food particles. Secondly, this review aims to clarify behavioural aspects of holothurian suspension- and deposit-feeding. We discuss the daily feeding cycle, and selective feeding strategies. We conclude that there is selectivity for fine and organically rich particles, and that feeding through the cloaca is also a route for nutrient absorption. Third, we provide a wide description of the diet of holothurians, which can be split into two categories: living and non-living material. We suggest that Synallactida, Molpadida, Persiculida, Holothuriida and Elasipodida, ingest the same fractions, and emphasise the importance of bacteria in the diet of holothurians.
Collapse
Affiliation(s)
- Joséphine Pierrat
- UMR ENTROPIE (IRD, CNRS, Univ. Reunion, Ifremer, Univ. New Caledonia)University of La RéunionSt‐Denis97 400France
| | | | - Igor Eeckhaut
- Biology of Marine Organisms and Biomimetism LabUniversity of MonsMons7000Belgium
| | - Hélène Magalon
- UMR ENTROPIE (IRD, CNRS, Univ. Reunion, Ifremer, Univ. New Caledonia)University of La RéunionSt‐Denis97 400France
- Labex CorailPerpignan66 000France
| | - Patrick Frouin
- UMR ENTROPIE (IRD, CNRS, Univ. Reunion, Ifremer, Univ. New Caledonia)University of La RéunionSt‐Denis97 400France
- Labex CorailPerpignan66 000France
| |
Collapse
|
14
|
Nomaki H, Rastelli E, Ogawa NO, Matsui Y, Tsuchiya M, Manea E, Corinaldesi C, Hirai M, Ohkouchi N, Danovaro R, Nunoura T, Amaro T. In situ experimental evidences for responses of abyssal benthic biota to shifts in phytodetritus compositions linked to global climate change. GLOBAL CHANGE BIOLOGY 2021; 27:6139-6155. [PMID: 34523189 PMCID: PMC9293103 DOI: 10.1111/gcb.15882] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/04/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
Abyssal plains cover more than half of Earth's surface, and the main food source in these ecosystems is phytodetritus, mainly originating from primary producers in the euphotic zone of the ocean. Global climate change is influencing phytoplankton abundance, productivity, and distribution. Increasing importance of picoplankton over diatom as primary producers in surface oceans (especially projected for higher latitudes) is projected and hence altering the quantity of organic carbon supplied to the abyssal seafloor as phytodetritus, consequences of which remain largely unknown. Here, we investigated the in situ responses of abyssal biota from viruses to megafauna to different types of phytoplankton input (diatoms or cyanobacteria which were labeled with stable isotopes) at equatorial (oligotrophic) and temperate (eutrophic) benthic sites in the Pacific Ocean (1°N at 4277 m water depth and 39°N at 5260 m water depth, respectively). Our results show that meiofauna and macrofauna generally preferred diatoms as a food source and played a relatively larger role in the consumption of phytodetritus at higher latitudes (39°N). Contrarily, prokaryotes and viruses showed similar or even stronger responses to cyanobacterial than to diatom supply. Moreover, the response of prokaryotes and viruses was very rapid (within 1-2 days) at both 1°N and 39°N, with quickest responses reported in the case of cyanobacterial supply at higher latitudes. Overall, our results suggest that benthic deep-sea eukaryotes will be negatively affected by the predicted decrease in diatoms in surface oceans, especially at higher latitudes, where benthic prokaryotes and viruses will otherwise likely increase their quantitative role and organic carbon cycling rates. In turn, such changes can contribute to decrease carbon transfer from phytodetritus to higher trophic levels, with strong potential to affect oceanic food webs, their biodiversity and consequently carbon sequestration capacity at the global scale.
Collapse
Affiliation(s)
- Hidetaka Nomaki
- X‐starJapan Agency for Marine‐Earth Science and Technology (JAMSTEC)YokosukaJapan
| | - Eugenio Rastelli
- Department of Marine BiotechnologyStazione Zoologica Anton DohrnFano Marine CentreFanoItaly
| | | | - Yohei Matsui
- X‐starJapan Agency for Marine‐Earth Science and Technology (JAMSTEC)YokosukaJapan
| | | | - Elisabetta Manea
- Institute of Marine SciencesNational Research Council (ISMAR‐CNR)VeniceItaly
| | - Cinzia Corinaldesi
- Department of Materials, Environmental Sciences and Urban PlanningPolytechnic University of MarcheAnconaItaly
| | - Miho Hirai
- X‐starJapan Agency for Marine‐Earth Science and Technology (JAMSTEC)YokosukaJapan
| | | | - Roberto Danovaro
- Department of Environmental and Life SciencesPolytechnic University of MarcheAnconaItaly
- Stazione Zoologica Anton DohrnNaplesItaly
| | - Takuro Nunoura
- Research Center for Bioscience and Nanoscience (CeBN)JAMSTECYokosukaJapan
| | - Teresa Amaro
- Department of Biology & CESAMUniversity of AveiroAveiroPortugal
- Hellenic Center for Marine Research (HCMR)HeraklionGreece
| |
Collapse
|
15
|
Alfaro-Lucas JM, Pradillon F, Zeppilli D, Michel LN, Martinez-Arbizu P, Tanaka H, Foviaux M, Sarrazin J. High environmental stress and productivity increase functional diversity along a deep-sea hydrothermal vent gradient. Ecology 2020; 101:e03144. [PMID: 32720359 DOI: 10.1002/ecy.3144] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 05/18/2020] [Accepted: 06/09/2020] [Indexed: 11/06/2022]
Abstract
Productivity and environmental stress are major drivers of multiple biodiversity facets and faunal community structure. Little is known on their interacting effects on early community assembly processes in the deep sea (>200 m), the largest environment on Earth. However, at hydrothermal vents productivity correlates, at least partially, with environmental stress. Here, we studied the colonization of rock substrata deployed along a deep-sea hydrothermal vent gradient at four sites with and without direct influence of vent fluids at 1,700-m depth in the Lucky Strike vent field (Mid-Atlantic Ridge [MAR]). We examined in detail the composition of faunal communities (>20 μm) established after 2 yr and evaluated species and functional patterns. We expected the stressful hydrothermal activity to (1) limit functional diversity and (2) filter for traits clustering functionally similar species. However, our observations did not support our hypotheses. On the contrary, our results show that hydrothermal activity enhanced functional diversity. Moreover, despite high species diversity, environmental conditions at surrounding sites appear to filter for specific traits, thereby reducing functional richness. In fact, diversity in ecological functions may relax the effect of competition, allowing several species to coexist in high densities in the reduced space of the highly productive vent habitats under direct fluid emissions. We suggest that the high productivity at fluid-influenced sites supports higher functional diversity and traits that are more energetically expensive. The presence of exclusive species and functional entities led to a high turnover between surrounding sites. As a result, some of these sites contributed more than expected to the total species and functional β diversities. The observed faunal overlap and energy links (exported productivity) suggest that rather than operating as separate entities, habitats with and without influence of hydrothermal fluids may be considered as interconnected entities. Low functional richness and environmental filtering suggest that surrounding areas, with their very heterogeneous species and functional assemblages, may be especially vulnerable to environmental changes related to natural and anthropogenic impacts, including deep-sea mining.
Collapse
Affiliation(s)
| | | | | | | | - P Martinez-Arbizu
- Senckenberg am Meer, German Center for Marine Biodiversity Research, Wilhelmshaven, Germany
| | - H Tanaka
- Tokyo Sea Life Park, Tokyo, Japan
| | | | | |
Collapse
|
16
|
Blowes SA, Supp SR, Antão LH, Bates A, Bruelheide H, Chase JM, Moyes F, Magurran A, McGill B, Myers-Smith IH, Winter M, Bjorkman AD, Bowler DE, Byrnes JEK, Gonzalez A, Hines J, Isbell F, Jones HP, Navarro LM, Thompson PL, Vellend M, Waldock C, Dornelas M. The geography of biodiversity change in marine and terrestrial assemblages. Science 2020; 366:339-345. [PMID: 31624208 DOI: 10.1126/science.aaw1620] [Citation(s) in RCA: 238] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 09/10/2019] [Indexed: 12/19/2022]
Abstract
Human activities are fundamentally altering biodiversity. Projections of declines at the global scale are contrasted by highly variable trends at local scales, suggesting that biodiversity change may be spatially structured. Here, we examined spatial variation in species richness and composition change using more than 50,000 biodiversity time series from 239 studies and found clear geographic variation in biodiversity change. Rapid compositional change is prevalent, with marine biomes exceeding and terrestrial biomes trailing the overall trend. Assemblage richness is not changing on average, although locations exhibiting increasing and decreasing trends of up to about 20% per year were found in some marine studies. At local scales, widespread compositional reorganization is most often decoupled from richness change, and biodiversity change is strongest and most variable in the oceans.
Collapse
Affiliation(s)
- Shane A Blowes
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Germany. .,Martin Luther University Halle-Wittenberg, Institute of Computer Science, Halle (Saale), Germany
| | - Sarah R Supp
- Data Analytics Program, Denison University, Granville, OH, USA.
| | - Laura H Antão
- Centre for Biological Diversity, School of Biology, University of St. Andrews, St. Andrews, UK.,Department of Biology and CESAM, Universidade de Aveiro, Aveiro, Portugal.,Research Centre for Ecological Change, Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
| | - Amanda Bates
- Department of Ocean Sciences, Memorial University of Newfoundland, Newfoundland, Canada
| | - Helge Bruelheide
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Germany.,Martin Luther University Halle-Wittenberg, Institute of Biology/Geobotany and Botanical Garden, Halle (Saale), Germany
| | - Jonathan M Chase
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Germany.,Martin Luther University Halle-Wittenberg, Institute of Computer Science, Halle (Saale), Germany
| | - Faye Moyes
- Centre for Biological Diversity, School of Biology, University of St. Andrews, St. Andrews, UK
| | - Anne Magurran
- Centre for Biological Diversity, School of Biology, University of St. Andrews, St. Andrews, UK
| | - Brian McGill
- School of Biology and Ecology, University of Maine, Orono, ME, USA
| | | | - Marten Winter
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Germany
| | - Anne D Bjorkman
- Senckenberg Gesellschaft für Naturforschung, Biodiversity and Climate Research Centre (BiK-F), Frankfurt am Main, Germany
| | - Diana E Bowler
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Germany
| | - Jarrett E K Byrnes
- Department of Biology, University of Massachusetts Boston, Boston, MA, USA
| | - Andrew Gonzalez
- Department of Biology, Quebec Centre for Biodiversity Science, McGill University, Montreal, QC, Canada
| | - Jes Hines
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Germany.,Leipzig University, Institute of Biology, Leipzig, Germany
| | - Forest Isbell
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN, USA
| | - Holly P Jones
- Department of Biological Sciences and Institute for the Study of the Environment, Sustainability, and Energy, Northern Illinois University, DeKalb, IL, USA
| | - Laetitia M Navarro
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Germany.,Martin Luther University Halle-Wittenberg, Institute of Biology/Geobotany and Botanical Garden, Halle (Saale), Germany
| | - Patrick L Thompson
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Mark Vellend
- Département de biologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Conor Waldock
- Ocean and Earth Science, National Oceanography Centre, University of Southampton, Southampton, UK & Life Sciences, Natural History Museum, Cromwell Road, London, UK
| | - Maria Dornelas
- Centre for Biological Diversity, School of Biology, University of St. Andrews, St. Andrews, UK.
| |
Collapse
|
17
|
Morato T, González‐Irusta J, Dominguez‐Carrió C, Wei C, Davies A, Sweetman AK, Taranto GH, Beazley L, García‐Alegre A, Grehan A, Laffargue P, Murillo FJ, Sacau M, Vaz S, Kenchington E, Arnaud‐Haond S, Callery O, Chimienti G, Cordes E, Egilsdottir H, Freiwald A, Gasbarro R, Gutiérrez‐Zárate C, Gianni M, Gilkinson K, Wareham Hayes VE, Hebbeln D, Hedges K, Henry L, Johnson D, Koen‐Alonso M, Lirette C, Mastrototaro F, Menot L, Molodtsova T, Durán Muñoz P, Orejas C, Pennino MG, Puerta P, Ragnarsson SÁ, Ramiro‐Sánchez B, Rice J, Rivera J, Roberts JM, Ross SW, Rueda JL, Sampaio Í, Snelgrove P, Stirling D, Treble MA, Urra J, Vad J, van Oevelen D, Watling L, Walkusz W, Wienberg C, Woillez M, Levin LA, Carreiro‐Silva M. Climate-induced changes in the suitable habitat of cold-water corals and commercially important deep-sea fishes in the North Atlantic. GLOBAL CHANGE BIOLOGY 2020; 26:2181-2202. [PMID: 32077217 PMCID: PMC7154791 DOI: 10.1111/gcb.14996] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 12/17/2019] [Accepted: 01/06/2020] [Indexed: 05/16/2023]
Abstract
The deep sea plays a critical role in global climate regulation through uptake and storage of heat and carbon dioxide. However, this regulating service causes warming, acidification and deoxygenation of deep waters, leading to decreased food availability at the seafloor. These changes and their projections are likely to affect productivity, biodiversity and distributions of deep-sea fauna, thereby compromising key ecosystem services. Understanding how climate change can lead to shifts in deep-sea species distributions is critically important in developing management measures. We used environmental niche modelling along with the best available species occurrence data and environmental parameters to model habitat suitability for key cold-water coral and commercially important deep-sea fish species under present-day (1951-2000) environmental conditions and to project changes under severe, high emissions future (2081-2100) climate projections (RCP8.5 scenario) for the North Atlantic Ocean. Our models projected a decrease of 28%-100% in suitable habitat for cold-water corals and a shift in suitable habitat for deep-sea fishes of 2.0°-9.9° towards higher latitudes. The largest reductions in suitable habitat were projected for the scleractinian coral Lophelia pertusa and the octocoral Paragorgia arborea, with declines of at least 79% and 99% respectively. We projected the expansion of suitable habitat by 2100 only for the fishes Helicolenus dactylopterus and Sebastes mentella (20%-30%), mostly through northern latitudinal range expansion. Our results projected limited climate refugia locations in the North Atlantic by 2100 for scleractinian corals (30%-42% of present-day suitable habitat), even smaller refugia locations for the octocorals Acanella arbuscula and Acanthogorgia armata (6%-14%), and almost no refugia for P. arborea. Our results emphasize the need to understand how anticipated climate change will affect the distribution of deep-sea species including commercially important fishes and foundation species, and highlight the importance of identifying and preserving climate refugia for a range of area-based planning and management tools.
Collapse
|
18
|
Gan Z, Yuan J, Liu X, Dong D, Li F, Li X. Comparative transcriptomic analysis of deep- and shallow-water barnacle species (Cirripedia, Poecilasmatidae) provides insights into deep-sea adaptation of sessile crustaceans. BMC Genomics 2020; 21:240. [PMID: 32183697 PMCID: PMC7077169 DOI: 10.1186/s12864-020-6642-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/03/2020] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Barnacles are specialized marine organisms that differ from other crustaceans in possession of a calcareous shell, which is attached to submerged surfaces. Barnacles have a wide distribution, mostly in the intertidal zone and shallow waters, but a few species inhabit the deep-sea floor. It is of interest to investigate how such sessile crustaceans became adapted to extreme deep-sea environments. We sequenced the transcriptomes of a deep-sea barnacle, Glyptelasma gigas collected at a depth of 731 m from the northern area of the Zhongjiannan Basin, and a shallow-water coordinal relative, Octolasmis warwicki. The purpose of this study was to provide genetic resources for investigating adaptation mechanisms of deep-sea barnacles. RESULTS Totals of 62,470 and 51,585 unigenes were assembled for G. gigas and O. warwicki, respectively, and functional annotation of these unigenes was made using public databases. Comparison of the protein-coding genes between the deep- and shallow-water barnacles, and with those of four other shallow-water crustaceans, revealed 26 gene families that had experienced significant expansion in G. gigas. Functional annotation showed that these expanded genes were predominately related to DNA repair, signal transduction and carbohydrate metabolism. Base substitution analysis on the 11,611 single-copy orthologs between G. gigas and O. warwicki indicated that 25 of them were distinctly positive selected in the deep-sea barnacle, including genes related to transcription, DNA repair, ligand binding, ion channels and energy metabolism, potentially indicating their importance for survival of G. gigas in the deep-sea environment. CONCLUSIONS The barnacle G. gigas has adopted strategies of expansion of specific gene families and of positive selection of key genes to counteract the negative effects of high hydrostatic pressure, hypoxia, low temperature and food limitation on the deep-sea floor. These expanded gene families and genes under positive selection would tend to enhance the capacities of G. gigas for signal transduction, genetic information processing and energy metabolism, and facilitate networks for perceiving and responding physiologically to the environmental conditions in deep-sea habitats. In short, our results provide genomic evidence relating to deep-sea adaptation of G. gigas, which provide a basis for further biological studies of sessile crustaceans in the deep sea.
Collapse
Affiliation(s)
- Zhibin Gan
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Jianbo Yuan
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Xinming Liu
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Dong Dong
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Fuhua Li
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China.
| | - Xinzheng Li
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China.
| |
Collapse
|
19
|
Ecological variables for developing a global deep-ocean monitoring and conservation strategy. Nat Ecol Evol 2020; 4:181-192. [PMID: 32015428 DOI: 10.1038/s41559-019-1091-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 12/19/2019] [Indexed: 11/09/2022]
Abstract
The deep sea (>200 m depth) encompasses >95% of the world's ocean volume and represents the largest and least explored biome on Earth (<0.0001% of ocean surface), yet is increasingly under threat from multiple direct and indirect anthropogenic pressures. Our ability to preserve both benthic and pelagic deep-sea ecosystems depends upon effective ecosystem-based management strategies and monitoring based on widely agreed deep-sea ecological variables. Here, we identify a set of deep-sea essential ecological variables among five scientific areas of the deep ocean: (1) biodiversity; (2) ecosystem functions; (3) impacts and risk assessment; (4) climate change, adaptation and evolution; and (5) ecosystem conservation. Conducting an expert elicitation (1,155 deep-sea scientists consulted and 112 respondents), our analysis indicates a wide consensus amongst deep-sea experts that monitoring should prioritize large organisms (that is, macro- and megafauna) living in deep waters and in benthic habitats, whereas monitoring of ecosystem functioning should focus on trophic structure and biomass production. Habitat degradation and recovery rates are identified as crucial features for monitoring deep-sea ecosystem health, while global climate change will likely shift bathymetric distributions and cause local extinction in deep-sea species. Finally, deep-sea conservation efforts should focus primarily on vulnerable marine ecosystems and habitat-forming species. Deep-sea observation efforts that prioritize these variables will help to support the implementation of effective management strategies on a global scale.
Collapse
|
20
|
Ashford OS, Kenny AJ, Barrio Froján CRS, Horton T, Rogers AD. Investigating the environmental drivers of deep-seafloor biodiversity: A case study of peracarid crustacean assemblages in the Northwest Atlantic Ocean. Ecol Evol 2019; 9:14167-14204. [PMID: 31938511 PMCID: PMC6953587 DOI: 10.1002/ece3.5852] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 10/11/2019] [Accepted: 11/01/2019] [Indexed: 11/14/2022] Open
Abstract
The deep-sea benthos covers over 90% of seafloor area and hosts a great diversity of species which contribute toward essential ecosystem services. Evidence suggests that deep-seafloor assemblages are structured predominantly by their physical environment, yet knowledge of assemblage/environment relationships is limited. Here, we utilized a very large dataset of Northwest Atlantic Ocean continental slope peracarid crustacean assemblages as a case study to investigate the environmental drivers of deep-seafloor macrofaunal biodiversity. We investigated biodiversity from a phylogenetic, functional, and taxonomic perspective, and found that a wide variety of environmental drivers, including food availability, physical disturbance (bottom trawling), current speed, sediment characteristics, topographic heterogeneity, and temperature (in order of relative importance), significantly influenced peracarid biodiversity. We also found deep-water peracarid assemblages to vary seasonally and interannually. Contrary to prevailing theory on the drivers of deep-seafloor diversity, we found high topographic heterogeneity (at the hundreds to thousands of meter scale) to negatively influence assemblage diversity, while broadscale sediment characteristics (i.e., percent sand content) were found to influence assemblages more than sediment particle-size diversity. However, our results support other paradigms of deep-seafloor biodiversity, including that assemblages may vary inter- and intra-annually, and how assemblages respond to changes in current speed. We found that bottom trawling negatively affects the evenness and diversity of deep-sea soft-sediment peracarid assemblages, but that predicted changes in ocean temperature as a result of climate change may not strongly influence continental slope biodiversity over human timescales, although it may alter deep-sea community biomass. Finally, we emphasize the value of analyzing multiple metrics of biodiversity and call for researchers to consider an expanded definition of biodiversity in future investigations of deep-ocean life.
Collapse
Affiliation(s)
- Oliver S. Ashford
- Department of ZoologyUniversity of OxfordOxfordUK
- Centre for the Environment, Fisheries and Aquaculture Science (Cefas)LowestoftUK
- Present address:
Scripps Institution of OceanographyLa JollaCAUSA
| | - Andrew J. Kenny
- Centre for the Environment, Fisheries and Aquaculture Science (Cefas)LowestoftUK
| | | | - Tammy Horton
- National Oceanography CentreUniversity of Southampton Waterfront CampusSouthamptonUK
| | | |
Collapse
|
21
|
Grient JMA, Rogers AD. Habitat structure as an alternative explanation for body‐size patterns in the deep sea. Ecosphere 2019. [DOI: 10.1002/ecs2.2900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- J. M. A. Grient
- School of Geography and the Environment University of Oxford Oxford UK
| | - A. D. Rogers
- REV Ocean Oksenøyveinen 10 NO‐1366 Lysaker Norway
| |
Collapse
|
22
|
The temporal variability of the macrofauna at the deep-sea observatory HAUSGARTEN (Fram Strait, Arctic Ocean). Polar Biol 2019. [DOI: 10.1007/s00300-018-02442-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
23
|
Macreadie PI, McLean DL, Thomson PG, Partridge JC, Jones DOB, Gates AR, Benfield MC, Collin SP, Booth DJ, Smith LL, Techera E, Skropeta D, Horton T, Pattiaratchi C, Bond T, Fowler AM. Eyes in the sea: Unlocking the mysteries of the ocean using industrial, remotely operated vehicles (ROVs). THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 634:1077-1091. [PMID: 29660864 DOI: 10.1016/j.scitotenv.2018.04.049] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 04/01/2018] [Accepted: 04/04/2018] [Indexed: 04/14/2023]
Abstract
For thousands of years humankind has sought to explore our oceans. Evidence of this early intrigue dates back to 130,000BCE, but the advent of remotely operated vehicles (ROVs) in the 1950s introduced technology that has had significant impact on ocean exploration. Today, ROVs play a critical role in both military (e.g. retrieving torpedoes and mines) and salvage operations (e.g. locating historic shipwrecks such as the RMS Titanic), and are crucial for oil and gas (O&G) exploration and operations. Industrial ROVs collect millions of observations of our oceans each year, fueling scientific discoveries. Herein, we assembled a group of international ROV experts from both academia and industry to reflect on these discoveries and, more importantly, to identify key questions relating to our oceans that can be supported using industry ROVs. From a long list, we narrowed down to the 10 most important questions in ocean science that we feel can be supported (whole or in part) by increasing access to industry ROVs, and collaborations with the companies that use them. The questions covered opportunity (e.g. what is the resource value of the oceans?) to the impacts of global change (e.g. which marine ecosystems are most sensitive to anthropogenic impact?). Looking ahead, we provide recommendations for how data collected by ROVs can be maximised by higher levels of collaboration between academia and industry, resulting in win-win outcomes. What is clear from this work is that the potential of industrial ROV technology in unravelling the mysteries of our oceans is only just beginning to be realised. This is particularly important as the oceans are subject to increasing impacts from global change and industrial exploitation. The coming decades will represent an important time for scientists to partner with industry that use ROVs in order to make the most of these 'eyes in the sea'.
Collapse
Affiliation(s)
- Peter I Macreadie
- School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, Victoria 3216, Australia.
| | - Dianne L McLean
- Oceans Institute, The University of Western Australia, 35 Stirling Hwy Crawley, Western Australia 6009, Australia; School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | - Paul G Thomson
- Oceans Institute, The University of Western Australia, 35 Stirling Hwy Crawley, Western Australia 6009, Australia; School of Civil, Environmental and Mining Engineering, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | - Julian C Partridge
- Oceans Institute, The University of Western Australia, 35 Stirling Hwy Crawley, Western Australia 6009, Australia; School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | - Daniel O B Jones
- National Oceanography Centre, University of Southampton Waterfront Campus, Southampton SO14 3ZH, UK
| | - Andrew R Gates
- National Oceanography Centre, University of Southampton Waterfront Campus, Southampton SO14 3ZH, UK
| | - Mark C Benfield
- Louisiana State University, Collegee of the Coast and Environment, Department of Oceanography and Coastal Sciences, Baton Rouge, LA 70803, USA
| | - Shaun P Collin
- Oceans Institute, The University of Western Australia, 35 Stirling Hwy Crawley, Western Australia 6009, Australia; School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | - David J Booth
- Fish Ecology Laboratory, School of Life Sciences, University of Technology, Sydney, Broadway, 2007, Australia
| | - Luke L Smith
- Woodside Energy, 240 Georges Terace, Perth, Western Australia 6000, Australia
| | - Erika Techera
- Oceans Institute, The University of Western Australia, 35 Stirling Hwy Crawley, Western Australia 6009, Australia
| | - Danielle Skropeta
- School of Chemistry, University of Wollongong, Wollongong, 2500, Australia
| | - Tammy Horton
- National Oceanography Centre, University of Southampton Waterfront Campus, Southampton SO14 3ZH, UK
| | - Charitha Pattiaratchi
- Oceans Institute, The University of Western Australia, 35 Stirling Hwy Crawley, Western Australia 6009, Australia
| | - Todd Bond
- Oceans Institute, The University of Western Australia, 35 Stirling Hwy Crawley, Western Australia 6009, Australia
| | - Ashley M Fowler
- Fish Ecology Laboratory, School of Life Sciences, University of Technology, Sydney, Broadway, 2007, Australia; New South Wales Department of Primary Industries, Sydney Institute of Marine Science, Mosman, NSW, 2088, Australia
| |
Collapse
|
24
|
O'Leary BC, Roberts CM. Ecological connectivity across ocean depths: Implications for protected area design. Glob Ecol Conserv 2018. [DOI: 10.1016/j.gecco.2018.e00431] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
25
|
Dornelas M, Antão LH, Moyes F, Bates AE, Magurran AE, Adam D, Akhmetzhanova AA, Appeltans W, Arcos JM, Arnold H, Ayyappan N, Badihi G, Baird AH, Barbosa M, Barreto TE, Bässler C, Bellgrove A, Belmaker J, Benedetti‐Cecchi L, Bett BJ, Bjorkman AD, Błażewicz M, Blowes SA, Bloch CP, Bonebrake TC, Boyd S, Bradford M, Brooks AJ, Brown JH, Bruelheide H, Budy P, Carvalho F, Castañeda‐Moya E, Chen CA, Chamblee JF, Chase TJ, Siegwart Collier L, Collinge SK, Condit R, Cooper EJ, Cornelissen JHC, Cotano U, Kyle Crow S, Damasceno G, Davies CH, Davis RA, Day FP, Degraer S, Doherty TS, Dunn TE, Durigan G, Duffy JE, Edelist D, Edgar GJ, Elahi R, Elmendorf SC, Enemar A, Ernest SKM, Escribano R, Estiarte M, Evans BS, Fan T, Turini Farah F, Loureiro Fernandes L, Farneda FZ, Fidelis A, Fitt R, Fosaa AM, Daher Correa Franco GA, Frank GE, Fraser WR, García H, Cazzolla Gatti R, Givan O, Gorgone‐Barbosa E, Gould WA, Gries C, Grossman GD, Gutierréz JR, Hale S, Harmon ME, Harte J, Haskins G, Henshaw DL, Hermanutz L, Hidalgo P, Higuchi P, Hoey A, Van Hoey G, Hofgaard A, Holeck K, Hollister RD, Holmes R, Hoogenboom M, Hsieh C, Hubbell SP, Huettmann F, Huffard CL, Hurlbert AH, Macedo Ivanauskas N, et alDornelas M, Antão LH, Moyes F, Bates AE, Magurran AE, Adam D, Akhmetzhanova AA, Appeltans W, Arcos JM, Arnold H, Ayyappan N, Badihi G, Baird AH, Barbosa M, Barreto TE, Bässler C, Bellgrove A, Belmaker J, Benedetti‐Cecchi L, Bett BJ, Bjorkman AD, Błażewicz M, Blowes SA, Bloch CP, Bonebrake TC, Boyd S, Bradford M, Brooks AJ, Brown JH, Bruelheide H, Budy P, Carvalho F, Castañeda‐Moya E, Chen CA, Chamblee JF, Chase TJ, Siegwart Collier L, Collinge SK, Condit R, Cooper EJ, Cornelissen JHC, Cotano U, Kyle Crow S, Damasceno G, Davies CH, Davis RA, Day FP, Degraer S, Doherty TS, Dunn TE, Durigan G, Duffy JE, Edelist D, Edgar GJ, Elahi R, Elmendorf SC, Enemar A, Ernest SKM, Escribano R, Estiarte M, Evans BS, Fan T, Turini Farah F, Loureiro Fernandes L, Farneda FZ, Fidelis A, Fitt R, Fosaa AM, Daher Correa Franco GA, Frank GE, Fraser WR, García H, Cazzolla Gatti R, Givan O, Gorgone‐Barbosa E, Gould WA, Gries C, Grossman GD, Gutierréz JR, Hale S, Harmon ME, Harte J, Haskins G, Henshaw DL, Hermanutz L, Hidalgo P, Higuchi P, Hoey A, Van Hoey G, Hofgaard A, Holeck K, Hollister RD, Holmes R, Hoogenboom M, Hsieh C, Hubbell SP, Huettmann F, Huffard CL, Hurlbert AH, Macedo Ivanauskas N, Janík D, Jandt U, Jażdżewska A, Johannessen T, Johnstone J, Jones J, Jones FAM, Kang J, Kartawijaya T, Keeley EC, Kelt DA, Kinnear R, Klanderud K, Knutsen H, Koenig CC, Kortz AR, Král K, Kuhnz LA, Kuo C, Kushner DJ, Laguionie‐Marchais C, Lancaster LT, Min Lee C, Lefcheck JS, Lévesque E, Lightfoot D, Lloret F, Lloyd JD, López‐Baucells A, Louzao M, Madin JS, Magnússon B, Malamud S, Matthews I, McFarland KP, McGill B, McKnight D, McLarney WO, Meador J, Meserve PL, Metcalfe DJ, Meyer CFJ, Michelsen A, Milchakova N, Moens T, Moland E, Moore J, Mathias Moreira C, Müller J, Murphy G, Myers‐Smith IH, Myster RW, Naumov A, Neat F, Nelson JA, Paul Nelson M, Newton SF, Norden N, Oliver JC, Olsen EM, Onipchenko VG, Pabis K, Pabst RJ, Paquette A, Pardede S, Paterson DM, Pélissier R, Peñuelas J, Pérez‐Matus A, Pizarro O, Pomati F, Post E, Prins HHT, Priscu JC, Provoost P, Prudic KL, Pulliainen E, Ramesh BR, Mendivil Ramos O, Rassweiler A, Rebelo JE, Reed DC, Reich PB, Remillard SM, Richardson AJ, Richardson JP, van Rijn I, Rocha R, Rivera‐Monroy VH, Rixen C, Robinson KP, Ribeiro Rodrigues R, de Cerqueira Rossa‐Feres D, Rudstam L, Ruhl H, Ruz CS, Sampaio EM, Rybicki N, Rypel A, Sal S, Salgado B, Santos FAM, Savassi‐Coutinho AP, Scanga S, Schmidt J, Schooley R, Setiawan F, Shao K, Shaver GR, Sherman S, Sherry TW, Siciński J, Sievers C, da Silva AC, Rodrigues da Silva F, Silveira FL, Slingsby J, Smart T, Snell SJ, Soudzilovskaia NA, Souza GBG, Maluf Souza F, Castro Souza V, Stallings CD, Stanforth R, Stanley EH, Mauro Sterza J, Stevens M, Stuart‐Smith R, Rondon Suarez Y, Supp S, Yoshio Tamashiro J, Tarigan S, Thiede GP, Thorn S, Tolvanen A, Teresa Zugliani Toniato M, Totland Ø, Twilley RR, Vaitkus G, Valdivia N, Vallejo MI, Valone TJ, Van Colen C, Vanaverbeke J, Venturoli F, Verheye HM, Vianna M, Vieira RP, Vrška T, Quang Vu C, Van Vu L, Waide RB, Waldock C, Watts D, Webb S, Wesołowski T, White EP, Widdicombe CE, Wilgers D, Williams R, Williams SB, Williamson M, Willig MR, Willis TJ, Wipf S, Woods KD, Woehler EJ, Zawada K, Zettler ML, Hickler T. BioTIME: A database of biodiversity time series for the Anthropocene. GLOBAL ECOLOGY AND BIOGEOGRAPHY : A JOURNAL OF MACROECOLOGY 2018; 27:760-786. [PMID: 30147447 PMCID: PMC6099392 DOI: 10.1111/geb.12729] [Show More Authors] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 11/25/2017] [Accepted: 11/28/2017] [Indexed: 05/08/2023]
Abstract
MOTIVATION The BioTIME database contains raw data on species identities and abundances in ecological assemblages through time. These data enable users to calculate temporal trends in biodiversity within and amongst assemblages using a broad range of metrics. BioTIME is being developed as a community-led open-source database of biodiversity time series. Our goal is to accelerate and facilitate quantitative analysis of temporal patterns of biodiversity in the Anthropocene. MAIN TYPES OF VARIABLES INCLUDED The database contains 8,777,413 species abundance records, from assemblages consistently sampled for a minimum of 2 years, which need not necessarily be consecutive. In addition, the database contains metadata relating to sampling methodology and contextual information about each record. SPATIAL LOCATION AND GRAIN BioTIME is a global database of 547,161 unique sampling locations spanning the marine, freshwater and terrestrial realms. Grain size varies across datasets from 0.0000000158 km2 (158 cm2) to 100 km2 (1,000,000,000,000 cm2). TIME PERIOD AND GRAIN BioTIME records span from 1874 to 2016. The minimal temporal grain across all datasets in BioTIME is a year. MAJOR TAXA AND LEVEL OF MEASUREMENT BioTIME includes data from 44,440 species across the plant and animal kingdoms, ranging from plants, plankton and terrestrial invertebrates to small and large vertebrates. SOFTWARE FORMAT .csv and .SQL.
Collapse
Affiliation(s)
- Maria Dornelas
- Centre for Biological Diversity and Scottish Oceans Institute, School of Biology, University of St. AndrewsSt AndrewsUnited Kingdom
| | - Laura H. Antão
- Centre for Biological Diversity and Scottish Oceans Institute, School of Biology, University of St. AndrewsSt AndrewsUnited Kingdom
- Department of Biology and CESAMUniversidade de Aveiro, Campus Universitário de SantiagoAveiroPortugal
| | - Faye Moyes
- Centre for Biological Diversity and Scottish Oceans Institute, School of Biology, University of St. AndrewsSt AndrewsUnited Kingdom
| | - Amanda E. Bates
- National Oceanography Centre, University of Southampton Waterfront CampusSouthamptonUnited Kingdom
- Department of Ocean Sciences, Memorial University of NewfoundlandSt John'sNewfoundland and LabradorCanada
| | - Anne E. Magurran
- Centre for Biological Diversity and Scottish Oceans Institute, School of Biology, University of St. AndrewsSt AndrewsUnited Kingdom
| | - Dušan Adam
- Department of Forest Ecology, Silva Tarouca Research InstituteBrnoCzech Republic
| | | | - Ward Appeltans
- UNESCO, Intergovernmental Oceanographic Commission, IOC Project Office for IODEOostendeBelgium
| | | | - Haley Arnold
- Centre for Biological Diversity and Scottish Oceans Institute, School of Biology, University of St. AndrewsSt AndrewsUnited Kingdom
| | | | - Gal Badihi
- Centre for Biological Diversity and Scottish Oceans Institute, School of Biology, University of St. AndrewsSt AndrewsUnited Kingdom
| | - Andrew H. Baird
- ARC Centre of Excellence for Coral Reef Studies, James Cook UniversityTownsvilleQueenslandAustralia
| | - Miguel Barbosa
- Centre for Biological Diversity and Scottish Oceans Institute, School of Biology, University of St. AndrewsSt AndrewsUnited Kingdom
- Department of Biology and CESAMUniversidade de Aveiro, Campus Universitário de SantiagoAveiroPortugal
| | - Tiago Egydio Barreto
- Laboratório de Ecologia e Restauração Florestal, Fundação Espaço Eco, Piracicaba, São PauloBrazil
| | | | - Alecia Bellgrove
- School of Life and Environmental SciencesCentre for Integrative Ecology, Deakin UniversityWarrnamboolVictoriaAustralia
| | - Jonathan Belmaker
- School of Zoology, George S. Wise Faculty of Life SciencesTel Aviv UniversityTel AvivIsrael
| | | | - Brian J. Bett
- National Oceanography Centre, University of Southampton Waterfront CampusSouthamptonUnited Kingdom
| | - Anne D. Bjorkman
- Section for Ecoinformatics and Biodiversity, Department of BioscienceAarhus UniversityAarhusDenmark
| | - Magdalena Błażewicz
- Laboratory of Polar Biology and Oceanobiology, Faculty of Biology and Environmental ProtectionUniversity of ŁódźŁódźPoland
| | - Shane A. Blowes
- School of Zoology, George S. Wise Faculty of Life SciencesTel Aviv UniversityTel AvivIsrael
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
| | - Christopher P. Bloch
- Department of Biological SciencesBridgewater State UniversityBridgewaterMassachusetts
| | | | - Susan Boyd
- Centre for Biological Diversity and Scottish Oceans Institute, School of Biology, University of St. AndrewsSt AndrewsUnited Kingdom
| | - Matt Bradford
- CSIRO Land & WaterEcosciences Precinct, Dutton ParkQueenslandAustralia
| | - Andrew J. Brooks
- Marine Science Institute, University of CaliforniaSanta BarbaraCalifornia
| | - James H. Brown
- Department of BiologyUniversity of New MexicoAlbuquerqueNew Mexico
| | - Helge Bruelheide
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Institute of Biology/Geobotany and Botanical Garden, Martin‐Luther‐University Halle‐WittenbergHalleGermany
| | - Phaedra Budy
- Department of Watershed Sciences and the Ecology Center, US Geological Survey, UCFWRU and Utah State UniversityLoganUtah
| | - Fernando Carvalho
- Universidade do Extremo Sul Catarinense (PPG‐CA)CriciúmaSanta CatarinaBrazil
| | - Edward Castañeda‐Moya
- Southeast Environmental Research Center (OE 148), Florida International UniversityMiamiFlorida
| | - Chaolun Allen Chen
- Coral Reef Ecology and Evolution LabBiodiversity Research Centre, Academia SinicaTaipeiTaiwan
| | | | - Tory J. Chase
- ARC Centre of Excellence for Coral Reef Studies, James Cook UniversityTownsvilleQueenslandAustralia
- Marine Biology and Aquaculture, College of Science and EngineeringJames Cook UniversityDouglasQueenslandAustralia
| | | | | | - Richard Condit
- Center for Tropical Forest ScienceWashingtonDistrict of Columbia
| | - Elisabeth J. Cooper
- Biosciences Fisheries and EconomicsUiT‐ The Arctic University of NorwayTromsøNorway
| | - J. Hans C. Cornelissen
- Systems Ecology, Department of Ecological Science, Vrije UniversiteitAmsterdamThe Netherlands
| | | | - Shannan Kyle Crow
- The National Institute of Water and Atmospheric ResearchAucklandNew Zealand
| | - Gabriella Damasceno
- Lab of Vegetation Ecology, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Rio ClaroBrazil
| | | | - Robert A. Davis
- School of ScienceEdith Cowan UniversityJoondalupWestern AustraliaAustralia
| | - Frank P. Day
- Department of Biological SciencesOld Dominion UniversityNorfolkVirginia
| | - Steven Degraer
- Royal Belgian Institute of Natural Sciences, Operational Directorate Natural Environment, Marine Ecology and ManagementBrusselsBelgium
- Marine Biology Research Group, Ghent UniversityGentBelgium
| | - Tim S. Doherty
- School of ScienceEdith Cowan UniversityJoondalupWestern AustraliaAustralia
- School of Life and Environmental SciencesCentre for Integrative Ecology (Burwood Campus), Deakin UniversityGeelongVictoriaAustralia
| | | | - Giselda Durigan
- Divisão de Florestas e Estações Experimentais, Floresta Estadual de Assis, Laboratório de Ecologia e Hidrologia Florestal, Instituto FlorestalSão PauloBrazil
| | - J. Emmett Duffy
- Tennenbaum Marine Observatories Network, Smithsonian InstitutionWashington, District of Columbia
| | - Dor Edelist
- National Institute of Oceanography, Tel‐ShikmonaHaifaIsrael
| | - Graham J. Edgar
- Institute for Marine and Antarctic Studies, University of TasmaniaHobartTasmaniaAustralia
| | - Robin Elahi
- Hopkins Marine Station, Stanford University, StanfordCalifornia
| | | | - Anders Enemar
- Department of Biological and Environmental SciencesUniversity of GothenburgGothenburgSweden
| | - S. K. Morgan Ernest
- Department of Wildlife Ecology and ConservationUniversity of FloridaGainesvilleFL
| | - Rubén Escribano
- Instituto Milenio de Oceanografía, Universidad de ConcepciónConcepciónChile
| | - Marc Estiarte
- CSIC, Global Ecology Unit CREAF‐CSIC‐UABBellaterraCataloniaSpain
- CREAF, Universitat Autònoma de BarcelonaCerdanyola del VallèsCataloniaSpain
| | - Brian S. Evans
- Migratory Bird Center, Smithsonian Conservation Biology Institute, National Zoological ParkWashingtonDistrict of Columbia
| | - Tung‐Yung Fan
- National Museum of Marine Biology and AquariumPingtung CountyTaiwan
| | - Fabiano Turini Farah
- Laboratório de Ecologia e Restauração Florestal, Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São PauloSão PauloBrazil
| | - Luiz Loureiro Fernandes
- Departamento de Oceanografia e Ecologia, Universidade Federal do Espírito Santo, Vitória, Espírito SantoBrazil
| | - Fábio Z. Farneda
- Centre for Ecology, Evolution and Environmental Changes – cE3c, Faculty of SciencesUniversity of LisbonLisbonPortugal
- Biological Dynamics of Forest Fragments Project, National Institute for Amazonian Research and Smithsonian Tropical Research InstituteManausBrazil
- Department of Ecology/PPGEFederal University of Rio de JaneiroRio de JaneiroBrazil
| | - Alessandra Fidelis
- Lab of Vegetation Ecology, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Rio ClaroBrazil
| | - Robert Fitt
- School of Biological SciencesUniversity of AberdeenAberdeenUnited Kingdom
| | - Anna Maria Fosaa
- Botanical Department, Faroese Museum of Natural HistoryTorshavnFaroe Islands
| | | | - Grace E. Frank
- Marine Biology and Aquaculture, College of Science and EngineeringJames Cook UniversityDouglasQueenslandAustralia
| | | | - Hernando García
- Alexander von Humboldt Biological Resources Research InstituteBogotá DCColombia
| | | | - Or Givan
- School of Zoology, George S. Wise Faculty of Life SciencesTel Aviv UniversityTel AvivIsrael
| | - Elizabeth Gorgone‐Barbosa
- Lab of Vegetation Ecology, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Rio ClaroBrazil
| | - William A. Gould
- USDA Forest Service, 65 USDA Forest Service, International Institute of Tropical ForestrySan JuanPuerto Rico
| | - Corinna Gries
- Center for Limnology, University of WisconsinMadisonWisconsin
| | - Gary D. Grossman
- The Warnell School of Forestry and Natural ResourcesUniversity of GeorgiaAthensGeorgia
| | - Julio R. Gutierréz
- Departamento de Biología, Facultad de Ciencias, Universidad de La SerenaLa SerenaChile
- Centro de Estudios Avanzados en Zonas Aridas (CEAZA)La SerenaChile
- Institute of Ecology and Biodiversity (IEB)SantiagoChile
| | - Stephen Hale
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Atlantic Ecology DivisionNarragansettRhode Island
| | - Mark E. Harmon
- Department of Forest Ecosystems and SocietyOregon State UniversityCorvallisOregon
| | - John Harte
- The Energy and Resources Group and The Department of Environmental Science, Policy and ManagementUniversity of CaliforniaBerkeleyCalifornia
| | - Gary Haskins
- Cetacean Research & Rescue UnitBanffUnited Kingdom
| | - Donald L. Henshaw
- U.S. Forest Service Pacific Northwest Research LaboratoryCorvallisOregon
| | - Luise Hermanutz
- Memorial University, St John'sNewfoundland and LabradorCanada
| | - Pamela Hidalgo
- Instituto Milenio de Oceanografía, Universidad de ConcepciónConcepciónChile
| | - Pedro Higuchi
- Laboratório de Dendrologia e Fitossociologia, Universidade do Estado de Santa CatarinaFlorianópolisSanta CatarinaBrazil
| | - Andrew Hoey
- ARC Centre of Excellence for Coral Reef Studies, James Cook UniversityTownsvilleQueenslandAustralia
| | - Gert Van Hoey
- Department of Aquatic Environment and Quality, Flanders Research Institute for Agriculture, Fisheries and FoodOostendeBelgium
| | | | - Kristen Holeck
- Department of Natural Resources and Cornell Biological Field StationCornell UniversityIthacaNew York
| | | | | | - Mia Hoogenboom
- ARC Centre of Excellence for Coral Reef Studies, James Cook UniversityTownsvilleQueenslandAustralia
- Marine Biology and Aquaculture, College of Science and EngineeringJames Cook UniversityDouglasQueenslandAustralia
| | - Chih‐hao Hsieh
- Institute of Oceanography, National Taiwan UniversityTaipeiTaiwan
| | | | - Falk Huettmann
- EWHALE lab‐ Biology and Wildlife DepartmentInstitute of Arctic Biology, University of AlaskaFairbanksAlaska
| | | | - Allen H. Hurlbert
- Department of BiologyUniversity of North CarolinaChapel HillNorth Carolina
| | | | - David Janík
- Department of Forest Ecology, Silva Tarouca Research InstituteBrnoCzech Republic
| | - Ute Jandt
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Institute of Biology/Geobotany and Botanical Garden, Martin‐Luther‐University Halle‐WittenbergHalleGermany
| | - Anna Jażdżewska
- Laboratory of Polar Biology and Oceanobiology, Faculty of Biology and Environmental ProtectionUniversity of ŁódźŁódźPoland
| | | | - Jill Johnstone
- Department of BiologyUniversity of SaskatchewanSaskatoonSaskatchewanCanada
| | - Julia Jones
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State UniversityCorvallisOregon
| | - Faith A. M. Jones
- Centre for Biological Diversity and Scottish Oceans Institute, School of Biology, University of St. AndrewsSt AndrewsUnited Kingdom
| | - Jungwon Kang
- Centre for Biological Diversity and Scottish Oceans Institute, School of Biology, University of St. AndrewsSt AndrewsUnited Kingdom
| | | | | | - Douglas A. Kelt
- Department of WildlifeFish, and Conservation Biology, University of California, DavisDavisCalifornia
| | - Rebecca Kinnear
- Centre for Biological Diversity and Scottish Oceans Institute, School of Biology, University of St. AndrewsSt AndrewsUnited Kingdom
- Shetland Oil Terminal Environmental Advisory Group (SOTEAG)St AndrewsUnited Kingdom
| | - Kari Klanderud
- Faculty of Environmental Sciences and Natural Resource ManagementNorwegian University of Life SciencesÅsNorway
| | - Halvor Knutsen
- Institute of Marine ResearchHisNorway
- Department of Natural Sciences, Faculty of Engineering and Science, Centre for Coastal Research, University of AgderKristiansandNorway
| | | | - Alessandra R. Kortz
- Centre for Biological Diversity and Scottish Oceans Institute, School of Biology, University of St. AndrewsSt AndrewsUnited Kingdom
| | - Kamil Král
- Department of Forest Ecology, Silva Tarouca Research InstituteBrnoCzech Republic
| | - Linda A. Kuhnz
- Monterey Bay Aquarium Research InstituteMoss LandingCalifornia
| | - Chao‐Yang Kuo
- ARC Centre of Excellence for Coral Reef Studies, James Cook UniversityTownsvilleQueenslandAustralia
| | - David J. Kushner
- Channel Islands National Park, U. S. National Park ServiceCalifornia, VenturaCalifornia
| | | | | | - Cheol Min Lee
- Forest and Climate Change Adaptation LaboratoryCenter for Forest and Climate Change, National Institute of Forest ScienceSeoulRepublic of Korea
| | - Jonathan S. Lefcheck
- Department of Biological SciencesVirginia Institute of Marine Science, The College of William & Mary, Gloucester PointVirginia
| | - Esther Lévesque
- Département des sciences de l'environnementUniversité du Québec à Trois‐Rivières and Centre d’études nordiquesQuébecCanada
| | - David Lightfoot
- Department of BiologyMuseum of Southwestern Biology, University of New MexicoAlbuquerqueNew Mexico
| | - Francisco Lloret
- CREAF, Universitat Autònoma de BarcelonaCerdanyola del VallèsCataloniaSpain
| | | | - Adrià López‐Baucells
- Centre for Ecology, Evolution and Environmental Changes – cE3c, Faculty of SciencesUniversity of LisbonLisbonPortugal
- Biological Dynamics of Forest Fragments Project, National Institute for Amazonian Research and Smithsonian Tropical Research InstituteManausBrazil
- Museu de Ciències Naturals de GranollersCatalunyaSpain
| | | | - Joshua S. Madin
- Hawai‘i Institute of Marine Biology, University of Hawai‘i at Mānoa, KaneoheHawai‘iUSA
- Department of Biological SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | | | - Shahar Malamud
- School of Zoology, George S. Wise Faculty of Life SciencesTel Aviv UniversityTel AvivIsrael
| | - Iain Matthews
- Centre for Biological Diversity and Scottish Oceans Institute, School of Biology, University of St. AndrewsSt AndrewsUnited Kingdom
| | | | - Brian McGill
- School of Biology and EcologySustainability Solutions Initiative, University of MaineOronoMaine
| | | | - William O. McLarney
- Stream Biomonitoring Program, Mainspring Conservation TrustFranklinNorth Carolina
| | - Jason Meador
- Stream Biomonitoring Program, Mainspring Conservation TrustFranklinNorth Carolina
| | | | | | - Christoph F. J. Meyer
- Centre for Ecology, Evolution and Environmental Changes – cE3c, Faculty of SciencesUniversity of LisbonLisbonPortugal
- Biological Dynamics of Forest Fragments Project, National Institute for Amazonian Research and Smithsonian Tropical Research InstituteManausBrazil
- Ecosystems and Environment Research Centre (EERC), School of Environment and Life Sciences, University of SalfordSalfordUnited Kingdom
| | - Anders Michelsen
- Terrestrial Ecology Section, Department of Biology, University of CopenhagenCopenhagenDenmark
| | - Nataliya Milchakova
- Laboratory of Phytoresources, Kovalevsky Institute of Marine Biological Research of RAS (IMBR)SevastopolRussia
| | - Tom Moens
- Marine Biology Research Group, Ghent UniversityGentBelgium
| | - Even Moland
- Institute of Marine ResearchHisNorway
- Department of Natural Sciences, Faculty of Engineering and Science, Centre for Coastal Research, University of AgderKristiansandNorway
| | - Jon Moore
- Shetland Oil Terminal Environmental Advisory Group (SOTEAG)St AndrewsUnited Kingdom
- Aquatic Survey & Monitoring Ltd. ASMLDurhamUnited Kingdom
| | | | - Jörg Müller
- Bavarian Forest National ParkGrafenauGermany
- Field Station Fabrikschleichach, University of WürzburgRauhenebrachGermany
| | - Grace Murphy
- Department of BiologyDalhousie UniversityHalifaxNova ScotiaCanada
| | | | | | - Andrew Naumov
- Zoological Institute, Russian Academy SciencesSt PetersburgRussia
| | - Francis Neat
- Marine Scotland, Marine LaboratoryScottish GovernmentEdinburghUnited Kingdom
| | - James A. Nelson
- Department of BiologyUniversity of Louisiana at LafayetteLafayetteLouisiana
| | - Michael Paul Nelson
- Department of Forest Ecosystems and SocietyOregon State UniversityCorvallisOregon
| | | | - Natalia Norden
- Alexander von Humboldt Biological Resources Research InstituteBogotá DCColombia
| | - Jeffrey C. Oliver
- University of Arizona Health Sciences Library, University of ArizonaTucsonArizona
| | - Esben M. Olsen
- Institute of Marine ResearchHisNorway
- Department of Natural Sciences, Faculty of Engineering and Science, Centre for Coastal Research, University of AgderKristiansandNorway
| | | | - Krzysztof Pabis
- Laboratory of Polar Biology and Oceanobiology, Faculty of Biology and Environmental ProtectionUniversity of ŁódźŁódźPoland
| | - Robert J. Pabst
- Department of Forest Ecosystems and SocietyOregon State UniversityCorvallisOregon
| | - Alain Paquette
- Center for Forest Research, Université du Québec à Montréal (UQAM)MontrealQuebecCanada
| | - Sinta Pardede
- Wildlife Conservation Society Indonesia ProgramBogorIndonesia
| | - David M. Paterson
- Centre for Biological Diversity and Scottish Oceans Institute, School of Biology, University of St. AndrewsSt AndrewsUnited Kingdom
- Shetland Oil Terminal Environmental Advisory Group (SOTEAG)St AndrewsUnited Kingdom
| | - Raphaël Pélissier
- UMR AMAP, IRD, CIRAD, CNRS, INRA, Montpellier UniversityMontpellierFrance
| | - Josep Peñuelas
- CSIC, Global Ecology Unit CREAF‐CSIC‐UABBellaterraCataloniaSpain
- CREAF, Universitat Autònoma de BarcelonaCerdanyola del VallèsCataloniaSpain
| | - Alejandro Pérez‐Matus
- Subtidal Ecology Laboratory & Center for Marine Conservation, Estación Costera de Investigaciones MarinasFacultad de Ciencias Biológicas, Pontificia Universidad Católica de ChileSantiagoCasillaChile
| | - Oscar Pizarro
- Australian Centre of Field Robotics, University of SydneySydneyNew South WalesAustralia
| | - Francesco Pomati
- Department of Aquatic EcologyEawag: Swiss Federal Institute of Aquatic Science and TechnologySwitzerland
| | - Eric Post
- Department of WildlifeFish, and Conservation Biology, University of California, DavisDavisCalifornia
| | | | - John C. Priscu
- Department of Land Resources and Environmental SciencesMontana State UniversityBozemanMontana
| | - Pieter Provoost
- UNESCO, Intergovernmental Oceanographic Commission, IOC Project Office for IODEOostendeBelgium
| | | | | | - B. R. Ramesh
- Department of EcologyFrench Institute of PondicherryPuducherryIndia
| | | | - Andrew Rassweiler
- Channel Islands National Park, U. S. National Park ServiceCalifornia, VenturaCalifornia
| | - Jose Eduardo Rebelo
- Ichthyology Laboratory, Fisheries and AquacultureUniversity of AveiroAveiroPortugal
| | - Daniel C. Reed
- Marine Science Institute, University of CaliforniaSanta BarbaraCalifornia
| | - Peter B. Reich
- Department of Forest Resources, University of MinnesotaSt PaulMinnesota
- Hawkesbury Institute for the Environment, Western Sydney UniversityPenrithNew South WalesAustralia
| | - Suzanne M. Remillard
- Department of Forest Ecosystems and SocietyOregon State UniversityCorvallisOregon
| | - Anthony J. Richardson
- CSIRO Oceans and AtmosphereQueensland, BioSciences Precinct (QBP)St Lucia, BrisbaneQldAustralia
- Centre for Applications in Natural Resource Mathematics, The University of QueenslandSt LuciaQueenslandAustralia
| | | | - Itai van Rijn
- School of Zoology, George S. Wise Faculty of Life SciencesTel Aviv UniversityTel AvivIsrael
| | - Ricardo Rocha
- Centre for Ecology, Evolution and Environmental Changes – cE3c, Faculty of SciencesUniversity of LisbonLisbonPortugal
- Biological Dynamics of Forest Fragments Project, National Institute for Amazonian Research and Smithsonian Tropical Research InstituteManausBrazil
- Metapopulation Research Centre, Faculty of Biosciences, University of HelsinkiHelsinkiFinland
| | - Victor H. Rivera‐Monroy
- Department of Oceanography and Coastal Sciences, College of the Coast and EnvironmentLouisiana State UniversityBaton RougeLouisiana
| | - Christian Rixen
- Swiss Federal Institute for Forest, Snow and Landscape ResearchDavos DorfSwitzerland
| | | | - Ricardo Ribeiro Rodrigues
- Laboratório de Ecologia e Restauração Florestal, Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São PauloSão PauloBrazil
| | - Denise de Cerqueira Rossa‐Feres
- Departamento de Zoologia e Botânica, Universidade Estadual Paulista – UNESPCâmpus São José do Rio Preto, São José do Rio PretoBrazil
| | - Lars Rudstam
- Department of Natural Resources and Cornell Biological Field StationCornell UniversityIthacaNew York
| | - Henry Ruhl
- National Oceanography Centre, University of Southampton Waterfront CampusSouthamptonUnited Kingdom
| | - Catalina S. Ruz
- Subtidal Ecology Laboratory & Center for Marine Conservation, Estación Costera de Investigaciones MarinasFacultad de Ciencias Biológicas, Pontificia Universidad Católica de ChileSantiagoCasillaChile
| | - Erica M. Sampaio
- Biological Dynamics of Forest Fragments Project, National Institute for Amazonian Research and Smithsonian Tropical Research InstituteManausBrazil
- Department of Animal Physiology, Eberhard Karls University TübingenTübingenGermany
| | - Nancy Rybicki
- National Research Program, U.S. Geological SurveyRestonVirginia
| | - Andrew Rypel
- Wisconsin Department of Natural Resources and Center for LimnologyUniversity of Wisconsin‐MadisonMadisonWisconsin
| | - Sofia Sal
- Department of Life SciencesImperial College LondonAscotBerkshireUnited Kingdom
| | - Beatriz Salgado
- Alexander von Humboldt Biological Resources Research InstituteBogotá DCColombia
| | | | - Ana Paula Savassi‐Coutinho
- Departamento de Ciências Biológicas, Escola Superior de Agricultura ‘Luiz de Queiroz’, Universidade de São PauloSão PauloBrazil
| | - Sara Scanga
- Department of BiologyUtica CollegeUticaNew York
| | - Jochen Schmidt
- The National Institute of Water and Atmospheric ResearchAucklandNew Zealand
| | - Robert Schooley
- Wildlife Ecology and Conservation, Department of Natural Resources and Environmental SciencesUniversity of IllinoisChampaignIllinois
| | | | - Kwang‐Tsao Shao
- Biodiversity Research Center, Academia SinicaNankang, TaipeiTaiwan
| | | | | | | | - Jacek Siciński
- Laboratory of Polar Biology and Oceanobiology, Faculty of Biology and Environmental ProtectionUniversity of ŁódźŁódźPoland
| | - Caya Sievers
- Centre for Biological Diversity and Scottish Oceans Institute, School of Biology, University of St. AndrewsSt AndrewsUnited Kingdom
| | - Ana Carolina da Silva
- Laboratório de Dendrologia e Fitossociologia, Universidade do Estado de Santa CatarinaFlorianópolisSanta CatarinaBrazil
| | | | | | - Jasper Slingsby
- Department of Biological Sciences, Centre for Statistics in Ecology, Environment and ConservationUniversity of CapeTownRondeboschSouth Africa
- Fynbos Node, South African Environmental Observation NetworkClaremontSouth Africa
| | - Tracey Smart
- Coastal Finfish Section, South Carolina Department of Natural Resources, Marine Resources Research InstituteCharlestonSouth Carolina
| | - Sara J. Snell
- Department of BiologyUniversity of North CarolinaChapel HillNorth Carolina
| | - Nadejda A. Soudzilovskaia
- Conservation Biology DepartmentInstitute of Environmental Studies, CML, Leiden UniversityLeidenThe Netherlands
| | - Gabriel B. G. Souza
- Laboratório de Biologia e Tecnologia Pesqueira, Universidade Federal do Rio de JaneiroRio de JaneiroBrazil
| | | | - Vinícius Castro Souza
- Laboratório de Ecologia e Restauração Florestal, Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São PauloSão PauloBrazil
| | | | - Rowan Stanforth
- Centre for Biological Diversity and Scottish Oceans Institute, School of Biology, University of St. AndrewsSt AndrewsUnited Kingdom
| | | | | | - Maarten Stevens
- INBO, Research Institute for Nature and ForestBrusselsBelgium
| | - Rick Stuart‐Smith
- Institute for Marine and Antarctic Studies, University of TasmaniaHobartTasmaniaAustralia
| | - Yzel Rondon Suarez
- Centro de Estudos em Recursos Naturais, Universidade Estadual de Mato Grosso do SulDouradosMato Grosso do SulBrazil
| | - Sarah Supp
- School of Biology and EcologyUniversity of MaineOronoMaine
| | | | | | - Gary P. Thiede
- Department of Watershed Sciences and the Ecology Center, US Geological Survey, UCFWRU and Utah State UniversityLoganUtah
| | - Simon Thorn
- Field Station Fabrikschleichach, University of WürzburgRauhenebrachGermany
| | - Anne Tolvanen
- Natural Resources Institute Finland, University of OuluOuluFinland
| | | | - Ørjan Totland
- Department of BiologyUniversity of BergenBergenNorway
| | - Robert R. Twilley
- Department of Oceanography and Coastal Sciences, College of the Coast and EnvironmentLouisiana State UniversityBaton RougeLouisiana
| | | | - Nelson Valdivia
- Universidad Austral de Chile and Centro FONDAP en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL)ValdiviaChile
| | | | | | - Carl Van Colen
- Marine Biology Research Group, Ghent UniversityGentBelgium
| | - Jan Vanaverbeke
- Royal Belgian Institute of Natural Sciences, Operational Directorate Natural Environment, Marine Ecology and ManagementBrusselsBelgium
| | - Fabio Venturoli
- Escola de Agronomia, Universidade Federal de GoiásGoiâniaBrazil
| | - Hans M. Verheye
- Department of Environmental AffairsOceans and Coastal ResearchCape TownSouth Africa
- Department of Biological SciencesMarine Research InstituteUniversity of Cape TownCape TownSouth Africa
| | - Marcelo Vianna
- Laboratório de Biologia e Tecnologia Pesqueira, Universidade Federal do Rio de JaneiroRio de JaneiroBrazil
| | - Rui P. Vieira
- National Oceanography Centre, University of Southampton Waterfront CampusSouthamptonUnited Kingdom
| | - Tomáš Vrška
- Department of Forest Ecology, Silva Tarouca Research InstituteBrnoCzech Republic
| | - Con Quang Vu
- Institute of Ecology and Biological Resources, VASTHanoiVietnam
| | - Lien Van Vu
- Vietnam National Museum of NatureHanoiVietnam
- Graduate University of Science and Technology, VASTHanoiVietnam
| | - Robert B. Waide
- Department of BiologyUniversity of New MexicoAlbuquerqueNew Mexico
| | - Conor Waldock
- National Oceanography Centre, University of Southampton Waterfront CampusSouthamptonUnited Kingdom
| | - Dave Watts
- CSIRO Oceans and Atmosphere FlagshipHobartTasmaniaAustralia
| | - Sara Webb
- Biology Department, Drew UniversityMadisonNew Jersey
- Environmental Studies Department, Drew UniversityMadisonNew Jersey
| | | | - Ethan P. White
- Department of Wildlife Ecology & ConservationUniversity of FloridaGainesvilleFlorida
- Informatics Institute, University of FloridaGainesvilleFlorida
| | | | - Dustin Wilgers
- Department of Natural SciencesMcPherson CollegeMcPhersonKansas
| | - Richard Williams
- Australian Antarctic Division, Channel HighwayKingstonTasmaniaAustralia
| | - Stefan B. Williams
- Australian Centre of Field Robotics, University of SydneySydneyNew South WalesAustralia
| | | | - Michael R. Willig
- Department of Ecology & Evolutionary Biology, Center for Environmental Sciences & EngineeringUniversity of ConnecticutMansfieldConnecticut
| | - Trevor J. Willis
- Institute of Marine Sciences, School of Biological Sciences, University of PortsmouthPortsmouthUnited Kingdom
| | - Sonja Wipf
- Research Team Mountain Ecosystems, WSL Institute for Snow and Avalanche Research SLFDavosSwitzerland
| | | | - Eric J. Woehler
- Institute for Marine and Antarctic Studies, University of TasmaniaHobartTasmaniaAustralia
| | - Kyle Zawada
- Centre for Biological Diversity and Scottish Oceans Institute, School of Biology, University of St. AndrewsSt AndrewsUnited Kingdom
- Department of Biological SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Michael L. Zettler
- Leibniz Institute for Baltic Sea Research Warnemünde, Seestr. 15, D‐18119 RostockGermany
| | | |
Collapse
|
26
|
Climate change impacts on the biota and on vulnerable habitats of the deep Mediterranean Sea. RENDICONTI LINCEI-SCIENZE FISICHE E NATURALI 2018. [DOI: 10.1007/s12210-018-0725-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
27
|
Danovaro R, Corinaldesi C, Dell'Anno A, Rastelli E. Potential impact of global climate change on benthic deep-sea microbes. FEMS Microbiol Lett 2018; 364:4553516. [PMID: 29045616 DOI: 10.1093/femsle/fnx214] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 10/12/2017] [Indexed: 11/12/2022] Open
Abstract
Benthic deep-sea environments are the largest ecosystem on Earth, covering ∼65% of the Earth surface. Microbes inhabiting this huge biome at all water depths represent the most abundant biological components and a relevant portion of the biomass of the biosphere, and play a crucial role in global biogeochemical cycles. Increasing evidence suggests that global climate changes are affecting also deep-sea ecosystems, both directly (causing shifts in bottom-water temperature, oxygen concentration and pH) and indirectly (through changes in surface oceans' productivity and in the consequent export of organic matter to the seafloor). However, the responses of the benthic deep-sea biota to such shifts remain largely unknown. This applies particularly to deep-sea microbes, which include bacteria, archaea, microeukaryotes and their viruses. Understanding the potential impacts of global change on the benthic deep-sea microbial assemblages and the consequences on the functioning of the ocean interior is a priority to better forecast the potential consequences at global scale. Here we explore the potential changes in the benthic deep-sea microbiology expected in the coming decades using case studies on specific systems used as test models.
Collapse
Affiliation(s)
- Roberto Danovaro
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy.,Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Cinzia Corinaldesi
- Department of Sciences and Engineering of Materials, Environment and Urbanistics, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Antonio Dell'Anno
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Eugenio Rastelli
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy.,Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| |
Collapse
|
28
|
Yool A, Martin AP, Anderson TR, Bett BJ, Jones DOB, Ruhl HA. Big in the benthos: Future change of seafloor community biomass in a global, body size-resolved model. GLOBAL CHANGE BIOLOGY 2017; 23:3554-3566. [PMID: 28317324 DOI: 10.1111/gcb.13680] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 02/24/2017] [Accepted: 02/24/2017] [Indexed: 05/16/2023]
Abstract
Deep-water benthic communities in the ocean are almost wholly dependent on near-surface pelagic ecosystems for their supply of energy and material resources. Primary production in sunlit surface waters is channelled through complex food webs that extensively recycle organic material, but lose a fraction as particulate organic carbon (POC) that sinks into the ocean interior. This exported production is further rarefied by microbial breakdown in the abyssal ocean, but a residual ultimately drives diverse assemblages of seafloor heterotrophs. Advances have led to an understanding of the importance of size (body mass) in structuring these communities. Here we force a size-resolved benthic biomass model, BORIS, using seafloor POC flux from a coupled ocean-biogeochemistry model, NEMO-MEDUSA, to investigate global patterns in benthic biomass. BORIS resolves 16 size classes of metazoans, successively doubling in mass from approximately 1 μg to 28 mg. Simulations find a wide range of seasonal responses to differing patterns of POC forcing, with both a decline in seasonal variability, and an increase in peak lag times with increasing body size. However, the dominant factor for modelled benthic communities is the integrated magnitude of POC reaching the seafloor rather than its seasonal pattern. Scenarios of POC forcing under climate change and ocean acidification are then applied to investigate how benthic communities may change under different future conditions. Against a backdrop of falling surface primary production (-6.1%), and driven by changes in pelagic remineralization with depth, results show that while benthic communities in shallow seas generally show higher biomass in a warmed world (+3.2%), deep-sea communities experience a substantial decline (-32%) under a high greenhouse gas emissions scenario. Our results underscore the importance for benthic ecology of reducing uncertainty in the magnitude and seasonality of seafloor POC fluxes, as well as the importance of studying a broader range of seafloor environments for future model development.
Collapse
Affiliation(s)
- Andrew Yool
- National Oceanography Centre, University of Southampton Waterfront Campus, Southampton, UK
| | - Adrian P Martin
- National Oceanography Centre, University of Southampton Waterfront Campus, Southampton, UK
| | - Thomas R Anderson
- National Oceanography Centre, University of Southampton Waterfront Campus, Southampton, UK
| | - Brian J Bett
- National Oceanography Centre, University of Southampton Waterfront Campus, Southampton, UK
| | - Daniel O B Jones
- National Oceanography Centre, University of Southampton Waterfront Campus, Southampton, UK
| | - Henry A Ruhl
- National Oceanography Centre, University of Southampton Waterfront Campus, Southampton, UK
| |
Collapse
|
29
|
Long-term change in epibenthic assemblages at the Prince Edward Islands: a comparison between 1988 and 2013. Polar Biol 2017. [DOI: 10.1007/s00300-017-2132-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Clare DS, Spencer M, Robinson LA, Frid CLJ. Explaining ecological shifts: the roles of temperature and primary production in the long-term dynamics of benthic faunal composition. OIKOS 2017. [DOI: 10.1111/oik.03661] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- David S. Clare
- School of Environmental Sciences, Univ. of Liverpool, Brownlow Street, Liverpool; L69 3GP UK
| | - Matthew Spencer
- School of Environmental Sciences, Univ. of Liverpool, Brownlow Street, Liverpool; L69 3GP UK
| | - Leonie A. Robinson
- School of Environmental Sciences, Univ. of Liverpool, Brownlow Street, Liverpool; L69 3GP UK
| | - Christopher L. J. Frid
- School of Environmental Sciences, Univ. of Liverpool, Brownlow Street, Liverpool; L69 3GP UK
- Griffith School of Environment, Griffith Univ.; Southport QLD Australia
| |
Collapse
|
31
|
Basher Z, Costello MJ. The past, present and future distribution of a deep-sea shrimp in the Southern Ocean. PeerJ 2016; 4:e1713. [PMID: 26925334 PMCID: PMC4768674 DOI: 10.7717/peerj.1713] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 01/29/2016] [Indexed: 01/22/2023] Open
Abstract
Shrimps have a widespread distribution across the shelf, slope and seamount regions of the Southern Ocean. Studies of Antarctic organisms have shown that individual species and higher taxa display different degrees of sensitivity and adaptability in response to environmental change. We use species distribution models to predict changes in the geographic range of the deep-sea Antarctic shrimp Nematocarcinus lanceopes under changing climatic conditions from the Last Glacial Maximum to the present and to the year 2100. The present distribution range indicates a pole-ward shift of the shrimp population since the last glaciation. This occurred by colonization of slopes from nearby refugia located around the northern part of Scotia Arc, southern tip of South America, South Georgia, Bouvet Island, southern tip of the Campbell plateau and Kerguelen plateau. By 2100, the shrimp are likely to expand their distribution in east Antarctica but have a continued pole-ward contraction in west Antarctica. The range extension and contraction process followed by the deep-sea shrimp provide a geographic context of how other deep-sea Antarctic species may have survived during the last glaciation and may endure with projected changing climatic conditions in the future.
Collapse
Affiliation(s)
- Zeenatul Basher
- Institute of Marine Science, Leigh Marine Laboratory, The University of Auckland, Auckland, New Zealand
| | - Mark J. Costello
- Institute of Marine Science, Leigh Marine Laboratory, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
32
|
Laguionie-Marchais C, Kuhnz LA, Huffard CL, Ruhl HA, Smith KL. Spatial and temporal variation in sponge spicule patches at Station M, northeast Pacific. MARINE BIOLOGY 2015; 162:617-624. [PMID: 25705055 PMCID: PMC4325134 DOI: 10.1007/s00227-014-2609-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Accepted: 12/30/2014] [Indexed: 05/19/2023]
Abstract
Changes in habitat-forming organisms can have complex consequences for associated species. Sessile epibenthic glass "plate" sponges (Porifera: Hexactinellida) are conspicuous inhabitants of soft-sediment abyssal areas and their siliceous spicules create persistent spicule patches on the seafloor. Sponge spicule patch density, spatial dispersion, and percent cover were examined over a seven-year period (2006-2013) using remotely operated vehicle videos from Station M in the abyssal northeast Pacific (50˚00N, 123˚00W, ~4,000 m depth). There was an apparent large increase in newly dead plate sponges in February 2007 compared with December 2006, with this trend continuing through June 2007 (mean 0.03 % cover increasing to 0.33 %). A second increase in mean percent cover of dead plate sponges occurred from May 2011 (0.24 %) through June 2012 (0.60 %). Among the 28 megafaunal taxa occurring in association with the patches, the distributions of three taxa [two sponge taxa (Porifera) and brittle stars (Ophiuroidea)] suggested selectivity for the sponge spicule patches. The community structure of visible megafauna within sponge spicule patches was different when compared with that outside the patches suggesting that the sponges, after death, provide preferred habitat patches for certain benthic megafauna. These findings indicate that sponge spicule patches contribute to habitat heterogeneity in space and time.
Collapse
Affiliation(s)
- C. Laguionie-Marchais
- Ocean and Earth Science, University of Southampton, National Oceanography Centre, Southampton, European Way, Southampton, SO14 3HZ UK
- Department of Zoology (Polychaete Group), Natural History Museum, London, SW7 5BD UK
| | - L. A. Kuhnz
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Road, Moss Landing, CA 95039 USA
| | - C. L. Huffard
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Road, Moss Landing, CA 95039 USA
| | - H. A. Ruhl
- National Oceanography Centre, University of Southampton Waterfront Campus, European Way, Southampton, SO14 3HZ UK
| | - K. L. Smith
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Road, Moss Landing, CA 95039 USA
| |
Collapse
|
33
|
Taxonomic, Ecological and Historical Considerations on the Deep-Water Benthic Mollusc Fauna of the Red Sea. THE RED SEA 2015. [DOI: 10.1007/978-3-662-45201-1_29] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
34
|
Jones DOB, Yool A, Wei CL, Henson SA, Ruhl HA, Watson RA, Gehlen M. Global reductions in seafloor biomass in response to climate change. GLOBAL CHANGE BIOLOGY 2014; 20:1861-72. [PMID: 24382828 PMCID: PMC4261893 DOI: 10.1111/gcb.12480] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 11/20/2013] [Indexed: 05/06/2023]
Abstract
Seafloor organisms are vital for healthy marine ecosystems, contributing to elemental cycling, benthic remineralization, and ultimately sequestration of carbon. Deep-sea life is primarily reliant on the export flux of particulate organic carbon from the surface ocean for food, but most ocean biogeochemistry models predict global decreases in export flux resulting from 21st century anthropogenically induced warming. Here we show that decadal-to-century scale changes in carbon export associated with climate change lead to an estimated 5.2% decrease in future (2091-2100) global open ocean benthic biomass under RCP8.5 (reduction of 5.2 Mt C) compared with contemporary conditions (2006-2015). Our projections use multi-model mean export flux estimates from eight fully coupled earth system models, which contributed to the Coupled Model Intercomparison Project Phase 5, that have been forced by high and low representative concentration pathways (RCP8.5 and 4.5, respectively). These export flux estimates are used in conjunction with published empirical relationships to predict changes in benthic biomass. The polar oceans and some upwelling areas may experience increases in benthic biomass, but most other regions show decreases, with up to 38% reductions in parts of the northeast Atlantic. Our analysis projects a future ocean with smaller sized infaunal benthos, potentially reducing energy transfer rates though benthic multicellular food webs. More than 80% of potential deep-water biodiversity hotspots known around the world, including canyons, seamounts, and cold-water coral reefs, are projected to experience negative changes in biomass. These major reductions in biomass may lead to widespread change in benthic ecosystems and the functions and services they provide.
Collapse
Affiliation(s)
- Daniel O B Jones
- National Oceanography Centre, University of Southampton Waterfront Campus, European Way, Southampton, SO14 3ZH, UK
| | | | | | | | | | | | | |
Collapse
|
35
|
Deep ocean communities impacted by changing climate over 24 y in the abyssal northeast Pacific Ocean. Proc Natl Acad Sci U S A 2013; 110:19838-41. [PMID: 24218565 DOI: 10.1073/pnas.1315447110] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The deep ocean, covering a vast expanse of the globe, relies almost exclusively on a food supply originating from primary production in surface waters. With well-documented warming of oceanic surface waters and conflicting reports of increasing and decreasing primary production trends, questions persist about how such changes impact deep ocean communities. A 24-y time-series study of sinking particulate organic carbon (food) supply and its utilization by the benthic community was conducted in the abyssal northeast Pacific (~4,000-m depth). Here we show that previous findings of food deficits are now punctuated by large episodic surpluses of particulate organic carbon reaching the sea floor, which meet utilization. Changing surface ocean conditions are translated to the deep ocean, where decadal peaks in supply, remineralization, and sequestration of organic carbon have broad implications for global carbon budget projections.
Collapse
|
36
|
Williams ST, Smith LM, Herbert DG, Marshall BA, Warén A, Kiel S, Dyal P, Linse K, Vilvens C, Kano Y. Cenozoic climate change and diversification on the continental shelf and slope: evolution of gastropod diversity in the family Solariellidae (Trochoidea). Ecol Evol 2013; 3:887-917. [PMID: 23610633 PMCID: PMC3631403 DOI: 10.1002/ece3.513] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 01/30/2013] [Accepted: 02/01/2013] [Indexed: 11/11/2022] Open
Abstract
Recent expeditions have revealed high levels of biodiversity in the tropical deep-sea, yet little is known about the age or origin of this biodiversity, and large-scale molecular studies are still few in number. In this study, we had access to the largest number of solariellid gastropods ever collected for molecular studies, including many rare and unusual taxa. We used a Bayesian chronogram of these deep-sea gastropods (1) to test the hypothesis that deep-water communities arose onshore, (2) to determine whether Antarctica acted as a source of diversity for deep-water communities elsewhere and (3) to determine how factors like global climate change have affected evolution on the continental slope. We show that although fossil data suggest that solariellid gastropods likely arose in a shallow, tropical environment, interpretation of the molecular data is equivocal with respect to the origin of the group. On the other hand, the molecular data clearly show that Antarctic species sampled represent a recent invasion, rather than a relictual ancestral lineage. We also show that an abrupt period of global warming during the Palaeocene Eocene Thermal Maximum (PETM) leaves no molecular record of change in diversification rate in solariellids and that the group radiated before the PETM. Conversely, there is a substantial, although not significant increase in the rate of diversification of a major clade approximately 33.7 Mya, coinciding with a period of global cooling at the Eocene-Oligocene transition. Increased nutrients made available by contemporaneous changes to erosion, ocean circulation, tectonic events and upwelling may explain increased diversification, suggesting that food availability may have been a factor limiting exploitation of deep-sea habitats. Tectonic events that shaped diversification in reef-associated taxa and deep-water squat lobsters in central Indo-West Pacific were also probably important in the evolution of solariellids during the Oligo-Miocene.
Collapse
Affiliation(s)
- S T Williams
- Department of Life Sciences, Natural History Museum Cromwell Road, London, SW7 5BD, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Drazen JC, Bailey DM, Ruhl HA, Smith KL. The role of carrion supply in the abundance of deep-water fish off California. PLoS One 2012; 7:e49332. [PMID: 23133679 PMCID: PMC3487845 DOI: 10.1371/journal.pone.0049332] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 10/09/2012] [Indexed: 11/20/2022] Open
Abstract
Few time series of deep-sea systems exist from which the factors affecting abyssal fish populations can be evaluated. Previous analysis showed an increase in grenadier abundance, in the eastern North Pacific, which lagged epibenthic megafaunal abundance, mostly echinoderms, by 9–20 months. Subsequent diet studies suggested that carrion is the grenadier's most important food. Our goal was to evaluate if changes in carrion supply might drive the temporal changes in grenadier abundance. We analyzed a unique 17 year time series of abyssal grenadier abundance and size, collected at Station M (4100 m, 220 km offshore of Pt. Conception, California), and reaffirmed the increase in abundance and also showed an increase in mean size resulting in a ∼6 fold change in grenadier biomass. We compared this data with abundance estimates for surface living nekton (pacific hake and jack mackerel) eaten by the grenadiers as carrion. A significant positive correlation between Pacific hake (but not jack mackerel) and grenadiers was found. Hake seasonally migrate to the waters offshore of California to spawn. They are the most abundant nekton species in the region and the target of the largest commercial fishery off the west coast. The correlation to grenadier abundance was strongest when using hake abundance metrics from the area within 100 nmi of Station M. No significant correlation between grenadier abundance and hake biomass for the entire California current region was found. Given the results and grenadier longevity, migration is likely responsible for the results and the location of hake spawning probably is more important than the size of the spawning stock in understanding the dynamics of abyssal grenadier populations. Our results suggest that some abyssal fishes' population dynamics are controlled by the flux of large particles of carrion. Climate and fishing pressures affecting epipelagic fish stocks could readily modulate deep-sea fish dynamics.
Collapse
Affiliation(s)
- Jeffrey C Drazen
- Department of Oceanography, University of Hawaii, Honolulu, Hawaii, United States of America.
| | | | | | | |
Collapse
|
38
|
Abstract
With frigid temperatures and virtually no in situ productivity, the deep oceans, Earth's largest ecosystem, are especially energy-deprived systems. Our knowledge of the effects of this energy limitation on all levels of biological organization is very incomplete. Here, we use the Metabolic Theory of Ecology to examine the relative roles of carbon flux and temperature in influencing metabolic rate, growth rate, lifespan, body size, abundance, biomass, and biodiversity for life on the deep seafloor. We show that the relative impacts of thermal and chemical energy change across organizational scales. Results suggest that individual metabolic rates, growth, and turnover proceed as quickly as temperature-influenced biochemical kinetics allow but that chemical energy limits higher-order community structure and function. Understanding deep-sea energetics is a pressing problem because of accelerating climate change and the general lack of environmental regulatory policy for the deep oceans.
Collapse
|
39
|
Analysis of the community structure of abyssal kinetoplastids revealed similar communities at larger spatial scales. ISME JOURNAL 2011; 6:713-23. [PMID: 22071346 DOI: 10.1038/ismej.2011.138] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Knowledge of the spatial scales of diversity is necessary to evaluate the mechanisms driving biodiversity and biogeography in the vast but poorly understood deep sea. The community structure of kinetoplastids, an important group of microbial eukaryotes belonging to the Euglenozoa, from all abyssal plains of the South Atlantic and two areas of the eastern Mediterranean was studied using partial small subunit ribosomal DNA gene clone libraries. A total of 1364 clones from 10 different regions were retrieved. The analysis revealed statistically not distinguishable communities from both the South-East Atlantic (Angola and Guinea Basin) and the South-West Atlantic (Angola and Brazil Basin) at spatial scales of 1000-3000 km, whereas all other communities were significantly differentiated from one another. It seems likely that multiple processes operate at the same time to shape communities of deep-sea kinetoplastids. Nevertheless, constant and homogenous environmental conditions over large spatial scales at abyssal depths, together with high dispersal capabilities of microbial eukaryotes, maintain best the results of statistically indistinguishable communities at larger spatial scales.
Collapse
|
40
|
Hughes SJM, Ruhl HA, Hawkins LE, Hauton C, Boorman B, Billett DSM. Deep-sea echinoderm oxygen consumption rates and an interclass comparison of metabolic rates in Asteroidea, Crinoidea, Echinoidea, Holothuroidea and Ophiuroidea. ACTA ACUST UNITED AC 2011; 214:2512-21. [PMID: 21753044 DOI: 10.1242/jeb.055954] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Echinoderms are important components of deep-sea communities because of their abundance and the fact that their activities contribute to carbon cycling. Estimating the echinoderm contribution to food webs and carbon cycling is important to our understanding of the functioning of the deep-sea environment and how this may alter in the future as climatic changes take place. Metabolic rate data from deep-sea echinoderm species are, however, scarce. To obtain such data from abyssal echinoderms, a novel in situ respirometer system, the benthic incubation chamber system (BICS), was deployed by remotely operated vehicle (ROV) at depths ranging from 2200 to 3600 m. Oxygen consumption rates were obtained in situ from four species of abyssal echinoderm (Ophiuroidea and Holothuroidea). The design and operation of two versions of BICS are presented here, together with the in situ respirometry measurements. These results were then incorporated into a larger echinoderm metabolic rate data set, which included the metabolic rates of 84 echinoderm species from all five classes (Asteroidea, Crinoidea, Echinoidea, Holothuroidea and Ophiuroidea). The allometric scaling relationships between metabolic rate and body mass derived in this study for each echinoderm class were found to vary. Analysis of the data set indicated no change in echinoderm metabolic rate with depth (by class or phylum). The allometric scaling relationships presented here provide updated information for mass-dependent deep-sea echinoderm metabolic rate for use in ecosystem models, which will contribute to the study of both shallow water and deep-sea ecosystem functioning and biogeochemistry.
Collapse
Affiliation(s)
- Sarah Jane Murty Hughes
- School of Ocean and Earth Science, University of Southampton, National Oceanography Centre, European Way, Southampton SO14 3HZ, UK.
| | | | | | | | | | | |
Collapse
|
41
|
Mellin C, Russell BD, Connell SD, Brook BW, Fordham DA. Geographic range determinants of two commercially important marine molluscs. DIVERS DISTRIB 2011. [DOI: 10.1111/j.1472-4642.2011.00822.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
42
|
Ramirez-Llodra E, Tyler PA, Baker MC, Bergstad OA, Clark MR, Escobar E, Levin LA, Menot L, Rowden AA, Smith CR, Van Dover CL. Man and the last great wilderness: human impact on the deep sea. PLoS One 2011; 6:e22588. [PMID: 21829635 PMCID: PMC3148232 DOI: 10.1371/journal.pone.0022588] [Citation(s) in RCA: 192] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 06/30/2011] [Indexed: 11/19/2022] Open
Abstract
The deep sea, the largest ecosystem on Earth and one of the least studied, harbours high biodiversity and provides a wealth of resources. Although humans have used the oceans for millennia, technological developments now allow exploitation of fisheries resources, hydrocarbons and minerals below 2000 m depth. The remoteness of the deep seafloor has promoted the disposal of residues and litter. Ocean acidification and climate change now bring a new dimension of global effects. Thus the challenges facing the deep sea are large and accelerating, providing a new imperative for the science community, industry and national and international organizations to work together to develop successful exploitation management and conservation of the deep-sea ecosystem. This paper provides scientific expert judgement and a semi-quantitative analysis of past, present and future impacts of human-related activities on global deep-sea habitats within three categories: disposal, exploitation and climate change. The analysis is the result of a Census of Marine Life--SYNDEEP workshop (September 2008). A detailed review of known impacts and their effects is provided. The analysis shows how, in recent decades, the most significant anthropogenic activities that affect the deep sea have evolved from mainly disposal (past) to exploitation (present). We predict that from now and into the future, increases in atmospheric CO(2) and facets and consequences of climate change will have the most impact on deep-sea habitats and their fauna. Synergies between different anthropogenic pressures and associated effects are discussed, indicating that most synergies are related to increased atmospheric CO(2) and climate change effects. We identify deep-sea ecosystems we believe are at higher risk from human impacts in the near future: benthic communities on sedimentary upper slopes, cold-water corals, canyon benthic communities and seamount pelagic and benthic communities. We finalise this review with a short discussion on protection and management methods.
Collapse
Affiliation(s)
- Eva Ramirez-Llodra
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas, Barcelona, Spain
| | - Paul A. Tyler
- School of Ocean and Earth Science, University of Southampton, National Oceanography Centre Southampton, Southampton, United Kingdom
| | - Maria C. Baker
- School of Ocean and Earth Science, University of Southampton, National Oceanography Centre Southampton, Southampton, United Kingdom
| | | | - Malcolm R. Clark
- National Institute of Water and Atmospheric Research, Wellington, New Zealand
| | - Elva Escobar
- Universidad Nacional Autónoma de México, Instituto de Ciencias del Mar y Limnología, México, D.F., Mexico
| | - Lisa A. Levin
- Integrative Oceanography Division, Scripps Institution of Oceanography, La Jolla, California, United States of America
| | | | - Ashley A. Rowden
- National Institute of Water and Atmospheric Research, Wellington, New Zealand
| | - Craig R. Smith
- Department of Oceanography, University of Hawaii, Honolulu, Hawaii, United States of America
| | - Cindy L. Van Dover
- Division of Marine Science and Conservation, Nicholas School of the Environment, Duke University, Beaufort, North Carolina, United States of America
| |
Collapse
|
43
|
Wolff GA, Billett DSM, Bett BJ, Holtvoeth J, FitzGeorge-Balfour T, Fisher EH, Cross I, Shannon R, Salter I, Boorman B, King NJ, Jamieson A, Chaillan F. The effects of natural iron fertilisation on deep-sea ecology: the Crozet Plateau, Southern Indian Ocean. PLoS One 2011; 6:e20697. [PMID: 21695118 PMCID: PMC3114783 DOI: 10.1371/journal.pone.0020697] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 05/06/2011] [Indexed: 11/17/2022] Open
Abstract
The addition of iron to high-nutrient low-chlorophyll (HNLC) oceanic waters stimulates phytoplankton, leading to greater primary production. Large-scale artificial ocean iron fertilization (OIF) has been proposed as a means of mitigating anthropogenic atmospheric CO2, but its impacts on ocean ecosystems below the photic zone are unknown. Natural OIF, through the addition of iron leached from volcanic islands, has been shown to enhance primary productivity and carbon export and so can be used to study the effects of OIF on life in the ocean. We compared two closely-located deep-sea sites (∼400 km apart and both at ∼4200 m water depth) to the East (naturally iron fertilized; +Fe) and South (HNLC) of the Crozet Islands in the southern Indian Ocean. Our results suggest that long-term geo-engineering of surface oceanic waters via artificial OIF would lead to significant changes in deep-sea ecosystems. We found that the +Fe area had greater supplies of organic matter inputs to the seafloor, including polyunsaturated fatty acid and carotenoid nutrients. The +Fe site also had greater densities and biomasses of large deep-sea animals with lower levels of evenness in community structuring. The species composition was also very different, with the +Fe site showing similarities to eutrophic sites in other ocean basins. Moreover, major differences occurred in the taxa at the +Fe and HNLC sites revealing the crucial role that surface oceanic conditions play in changing and structuring deep-sea benthic communities.
Collapse
Affiliation(s)
- George A Wolff
- School of Environmental Sciences, University of Liverpool, Liverpool, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
ETTER RONJ, BOYLE ELIZABETHE, GLAZIER AMANDA, JENNINGS ROBERTM, DUTRA EDIANE, CHASE MIKER. Phylogeography of a pan-Atlantic abyssal protobranch bivalve: implications for evolution in the Deep Atlantic. Mol Ecol 2011; 20:829-43. [DOI: 10.1111/j.1365-294x.2010.04978.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
45
|
McClain CR, Barry JP. Habitat heterogeneity, disturbance, and productivity work in concert to regulate biodiversity in deep submarine canyons. Ecology 2010; 91:964-76. [PMID: 20462112 DOI: 10.1890/09-0087.1] [Citation(s) in RCA: 171] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Habitat heterogeneity is a major structuring agent of ecological assemblages promoting beta diversity and ultimately contributing to overall higher global diversity. The exact processes by which heterogeneity increases diversity are scale dependent and encompass variation in other well-known processes, e.g., productivity, disturbance, and temperature. Thus, habitat heterogeneity likely triggers multiple and cascading diversity effects through ecological assemblages. Submarine canyons, a pervasive feature of the world's oceans, likely increase habitat heterogeneity at multiple spatial scales similar to their terrestrial analogues. However, our understanding of how processes regulating diversity, and the potential for cascading effects within these important topographic features, remains incomplete. Utilizing remote-operated vehicles (ROVs) for coring and video transects, we quantified faunal turnover in the deep-sea benthos at a rarely examined scale (1 m-1 km). Macrofaunal community structure, megafaunal density, carbon flux, and sediment characteristics were analyzed for the soft-bottom benthos at the base of cliff faces in Monterey Canyon (northeast Pacific Ocean) at three depths. We documented a remarkable degree of faunal turnover and changes in overall community structure at scales < 100 m, and often < 10 m, related to geographic features of a canyon complex. Ultimately, our findings indicated that multiple linked processes related to habitat heterogeneity, ecosystem engineering, and bottom-up dynamics are important to deep-sea biodiversity.
Collapse
Affiliation(s)
- Craig R McClain
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Road, Moss Landing, California 95039, USA.
| | | |
Collapse
|
46
|
Glover AG, Gooday AJ, Bailey DM, Billett DSM, Chevaldonné P, Colaço A, Copley J, Cuvelier D, Desbruyères D, Kalogeropoulou V, Klages M, Lampadariou N, Lejeusne C, Mestre NC, Paterson GLJ, Perez T, Ruhl H, Sarrazin J, Soltwedel T, Soto EH, Thatje S, Tselepides A, Van Gaever S, Vanreusel A. Temporal change in deep-sea benthic ecosystems: a review of the evidence from recent time-series studies. ADVANCES IN MARINE BIOLOGY 2010; 58:1-95. [PMID: 20959156 DOI: 10.1016/b978-0-12-381015-1.00001-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Societal concerns over the potential impacts of recent global change have prompted renewed interest in the long-term ecological monitoring of large ecosystems. The deep sea is the largest ecosystem on the planet, the least accessible, and perhaps the least understood. Nevertheless, deep-sea data collected over the last few decades are now being synthesised with a view to both measuring global change and predicting the future impacts of further rises in atmospheric carbon dioxide concentrations. For many years, it was assumed by many that the deep sea is a stable habitat, buffered from short-term changes in the atmosphere or upper ocean. However, recent studies suggest that deep-seafloor ecosystems may respond relatively quickly to seasonal, inter-annual and decadal-scale shifts in upper-ocean variables. In this review, we assess the evidence for these long-term (i.e. inter-annual to decadal-scale) changes both in biologically driven, sedimented, deep-sea ecosystems (e.g. abyssal plains) and in chemosynthetic ecosystems that are partially geologically driven, such as hydrothermal vents and cold seeps. We have identified 11 deep-sea sedimented ecosystems for which published analyses of long-term biological data exist. At three of these, we have found evidence for a progressive trend that could be potentially linked to recent climate change, although the evidence is not conclusive. At the other sites, we have concluded that the changes were either not significant, or were stochastically variable without being clearly linked to climate change or climate variability indices. For chemosynthetic ecosystems, we have identified 14 sites for which there are some published long-term data. Data for temporal changes at chemosynthetic ecosystems are scarce, with few sites being subjected to repeated visits. However, the limited evidence from hydrothermal vents suggests that at fast-spreading centres such as the East Pacific Rise, vent communities are impacted on decadal scales by stochastic events such as volcanic eruptions, with associated fauna showing complex patterns of community succession. For the slow-spreading centres such as the Mid-Atlantic Ridge, vent sites appear to be stable over the time periods measured, with no discernable long-term trend. At cold seeps, inferences based on spatial studies in the Gulf of Mexico, and data on organism longevity, suggest that these sites are stable over many hundreds of years. However, at the Haakon Mosby mud volcano, a large, well-studied seep in the Barents Sea, periodic mud slides associated with gas and fluid venting may disrupt benthic communities, leading to successional sequences over time. For chemosynthetic ecosystems of biogenic origin (e.g. whale-falls), it is likely that the longevity of the habitat depends mainly on the size of the carcass and the ecological setting, with large remains persisting as a distinct seafloor habitat for up to 100 years. Studies of shallow-water analogs of deep-sea ecosystems such as marine caves may also yield insights into temporal processes. Although it is obvious from the geological record that past climate change has impacted deep-sea faunas, the evidence that recent climate change or climate variability has altered deep-sea benthic communities is extremely limited. This mainly reflects the lack of remote sensing of this vast seafloor habitat. Current and future advances in deep-ocean benthic science involve new remote observing technologies that combine a high temporal resolution (e.g. cabled observatories) with spatial capabilities (e.g. autonomous vehicles undertaking image surveys of the seabed).
Collapse
Affiliation(s)
- A G Glover
- Zoology Department, The Natural History Museum, London, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Climate variation affects surface ocean processes and the production of organic carbon, which ultimately comprises the primary food supply to the deep-sea ecosystems that occupy approximately 60% of the Earth's surface. Warming trends in atmospheric and upper ocean temperatures, attributed to anthropogenic influence, have occurred over the past four decades. Changes in upper ocean temperature influence stratification and can affect the availability of nutrients for phytoplankton production. Global warming has been predicted to intensify stratification and reduce vertical mixing. Research also suggests that such reduced mixing will enhance variability in primary production and carbon export flux to the deep sea. The dependence of deep-sea communities on surface water production has raised important questions about how climate change will affect carbon cycling and deep-ocean ecosystem function. Recently, unprecedented time-series studies conducted over the past two decades in the North Pacific and the North Atlantic at >4,000-m depth have revealed unexpectedly large changes in deep-ocean ecosystems significantly correlated to climate-driven changes in the surface ocean that can impact the global carbon cycle. Climate-driven variation affects oceanic communities from surface waters to the much-overlooked deep sea and will have impacts on the global carbon cycle. Data from these two widely separated areas of the deep ocean provide compelling evidence that changes in climate can readily influence deep-sea processes. However, the limited geographic coverage of these existing time-series studies stresses the importance of developing a more global effort to monitor deep-sea ecosystems under modern conditions of rapidly changing climate.
Collapse
|
48
|
Bailey DM, Collins MA, Gordon JDM, Zuur AF, Priede IG. Long-term changes in deep-water fish populations in the northeast Atlantic: a deeper reaching effect of fisheries? Proc Biol Sci 2009; 276:1965-9. [PMID: 19324746 DOI: 10.1098/rspb.2009.0098] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A severe scarcity of life history and population data for deep-water fishes is a major impediment to successful fisheries management. Long-term data for non-target species and those living deeper than the fishing grounds are particularly rare. We analysed a unique dataset of scientific trawls made from 1977 to 1989 and from 1997 to 2002, at depths from 800 to 4800 m. Over this time, overall fish abundance fell significantly at all depths from 800 to 2500 m, considerably deeper than the maximum depth of commercial fishing (approx. 1600 m). Changes in abundance were significantly larger in species whose ranges fell at least partly within fished depths and did not appear to be consistent with any natural factors such as changes in fluxes from the surface or the abundance of potential prey. If the observed decreases in abundance are due to fishing, then its effects now extend into the lower bathyal zone, resulting in declines in areas that have been previously thought to be unaffected. A possible mechanism is impacts on the shallow parts of the ranges of fish species, resulting in declines in abundance in the lower parts of their ranges. This unexpected phenomenon has important consequences for fisheries and marine reserve management, as this would indicate that the impacts of fisheries can be transmitted into deep offshore areas that are neither routinely monitored nor considered as part of the managed fishery areas.
Collapse
Affiliation(s)
- D M Bailey
- Faculty of Biomedical and Life Sciences, University of Glasgow, Graham Kerr Building, Glasgow G12 8QQ, UK.
| | | | | | | | | |
Collapse
|
49
|
Uthicke S, Schaffelke B, Byrne M. A boom–bust phylum? Ecological and evolutionary consequences of density variations in echinoderms. ECOL MONOGR 2009. [DOI: 10.1890/07-2136.1] [Citation(s) in RCA: 258] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
50
|
Ernest SKM, Brown JH, Thibault KM, White EP, Goheen JR. Zero sum, the niche, and metacommunities: long-term dynamics of community assembly. Am Nat 2009; 172:E257-69. [PMID: 18947326 DOI: 10.1086/592402] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Recent models of community assembly, structure, and dynamics have incorporated, to varying degrees, three mechanistic processes: resource limitation and interspecific competition, niche requirements of species, and exchanges between a local community and a regional species pool. Synthesizing 30 years of data from an intensively studied desert rodent community, we show that all of these processes, separately and in combination, have influenced the structural organization of this community and affected its dynamical response to both natural environmental changes and experimental perturbations. In addition, our analyses suggest that zero-sum constraints, niche differences, and metacommunity processes are inextricably linked in the ways that they affect the structure and dynamics of this system. Explicit consideration of the interaction of these processes should yield a deeper understanding of the assembly and dynamics of other ecological communities. This synthesis highlights the role that long-term data, especially when coupled with experimental manipulations, can play in assessing the fundamental processes that govern the structure and function of ecological communities.
Collapse
Affiliation(s)
- S K Morgan Ernest
- Department of Biology and the Ecology Center, Utah State University, Logan, Utah 84322, USA.
| | | | | | | | | |
Collapse
|