1
|
Ying P, Zhou W, Svensson L, Berger E, Fransson E, Eriksson F, Xu K, Liang T, Xu J, Song B, Chen S, Erhart P, Fan Z. Highly efficient path-integral molecular dynamics simulations with GPUMD using neuroevolution potentials: Case studies on thermal properties of materials. J Chem Phys 2025; 162:064109. [PMID: 39936513 DOI: 10.1063/5.0241006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/24/2025] [Indexed: 02/13/2025] Open
Abstract
Path-integral molecular dynamics (PIMD) simulations are crucial for accurately capturing nuclear quantum effects in materials. However, their computational intensity often makes it challenging to address potential finite-size effects. Here, we present a specialized graphics processing units (GPUs) implementation of PIMD methods, including ring-polymer molecular dynamics (RPMD) and thermostatted ring-polymer molecular dynamics (TRPMD), into the open-source Graphics Processing Units Molecular Dynamics (GPUMD) package, combined with highly accurate and efficient machine-learned neuroevolution potential (NEP) models. This approach achieves almost the accuracy of first-principles calculations with the computational efficiency of empirical potentials, enabling large-scale atomistic simulations that incorporate nuclear quantum effects, effectively overcoming finite-size limitations at a relatively affordable computational cost. We validate and demonstrate the efficacy of the combined NEP-PIMD approach by examining various thermal properties of diverse materials, including lithium hydride (LiH), three porous metal-organic frameworks (MOFs), liquid water, and elemental aluminum. For LiH, our NEP-PIMD simulations successfully capture the isotope effect, reproducing the experimentally observed dependence of the lattice parameter on the reduced mass. For MOFs, our results reveal that achieving good agreement with experimental data requires consideration of both nuclear quantum effects and dispersive interactions. For water, our PIMD simulations capture the significant impact of nuclear quantum effects on its microscopic structure. For aluminum, the TRPMD method effectively captures thermal expansion and phonon properties, aligning well with quantum mechanical predictions. This efficient GPU-accelerated NEP-PIMD implementation in the GPUMD package provides an alternative, accessible, accurate, and scalable tool for exploring complex material properties influenced by nuclear quantum effects, with potential applications across a broad range of materials.
Collapse
Affiliation(s)
- Penghua Ying
- Department of Physical Chemistry, School of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Wenjiang Zhou
- Department of Energy and Resources Engineering, Peking University, Beijing 100871, China
- School of Advanced Engineering, Great Bay University, Dongguan 523000, China
| | - Lucas Svensson
- Department of Physics, Chalmers University of Technology, 41926 Gothenburg, Sweden
- Wallenberg Initiative Materials Science for Sustainability, Chalmers University of Technology, 41926 Gothenburg, Sweden
| | - Esmée Berger
- Department of Physics, Chalmers University of Technology, 41926 Gothenburg, Sweden
- Wallenberg Initiative Materials Science for Sustainability, Chalmers University of Technology, 41926 Gothenburg, Sweden
| | - Erik Fransson
- Department of Physics, Chalmers University of Technology, 41926 Gothenburg, Sweden
| | - Fredrik Eriksson
- Department of Physics, Chalmers University of Technology, 41926 Gothenburg, Sweden
| | - Ke Xu
- Department of Electronic Engineering and Materials Science and Technology Research Center, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR 999077, China
| | - Ting Liang
- Department of Electronic Engineering and Materials Science and Technology Research Center, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR 999077, China
| | - Jianbin Xu
- Department of Electronic Engineering and Materials Science and Technology Research Center, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR 999077, China
| | - Bai Song
- Department of Energy and Resources Engineering, Peking University, Beijing 100871, China
- Department of Advanced Manufacturing and Robotics, Peking University, Beijing 100871, China
- National Key Laboratory of Advanced MicroNanoManufacture Technology, Beijing 100871, China
| | - Shunda Chen
- Department of Civil and Environmental Engineering, George Washington University, Washington, District of Columbia 20052, USA
| | - Paul Erhart
- Department of Physics, Chalmers University of Technology, 41926 Gothenburg, Sweden
- Wallenberg Initiative Materials Science for Sustainability, Chalmers University of Technology, 41926 Gothenburg, Sweden
| | - Zheyong Fan
- College of Physical Science and Technology, Bohai University, Jinzhou 121013, China
| |
Collapse
|
2
|
Zhang C, Cao D, Cao J, Song Y, Zheng Y, Luo L, Liu J, Yuan Y. Fine-Tune the Structural Components of Porous Frameworks for Photocatalytic Hydrogen Production. Chemistry 2025; 31:e202403733. [PMID: 39639833 DOI: 10.1002/chem.202403733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/22/2024] [Accepted: 12/06/2024] [Indexed: 12/07/2024]
Abstract
With the depletion of fossil fuels and increasing pollution problems, green and sustainable energy supply attracts worldwide attention. Hydrogen is a green and high-density energy substance, and photocatalytic hydrogen generation is an effective and sustainable method. Therefore, developing high-performance photocatalysts plays a crucial role in practical application. Porous frameworks with large surface areas and diversified structures are considered promising candidates for photocatalysts. This review summarizes the recent progress on porous frameworks and their derivatives through fine-tuning structural components in terms of building monomers, functional groups, and metal hybridization for photocatalytic production of hydrogen. A detailed correlation is conducted between the structural features of porous frameworks and photocatalysis capability. In addition, we summarized the advantages of porous materials for photocatalytic hydrogen production and future development.
Collapse
Affiliation(s)
- Cheng Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry Jilin University, Changchun, 130012, China
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Doudou Cao
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Jiarui Cao
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Yingbo Song
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Yue Zheng
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Lu Luo
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Jia Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry Jilin University, Changchun, 130012, China
| | - Ye Yuan
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
3
|
Khotchasanthong K, Chinchan K, Kongpatpanich K, Pinyo W, Kielar F, Dungkaew W, Sukwattanasinitt M, Laksee S, Chainok K. Construction of 2D zinc(II) MOFs with tricarboxylate and N-donor mixed ligands for multiresponsive luminescence sensors and CO 2 adsorption. Dalton Trans 2024; 53:18243-18257. [PMID: 39364617 DOI: 10.1039/d4dt01825g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
The solvothermal reactions of ZnCl2·6H2O, benzene-1,3,5-tribenzoic acid (H3btb), and N-heterocyclic ancillary imidazole (Im) or aminopyrimidine (a mp) ligands led to the creation of two-dimensional (2D) zinc(II) based metal-organic frameworks (MOFs), (Me2NH2)2[Zn2(btb)2(Im)2]·2DMF·3MeOH (1) and (Me2NH2)2[Zn2(btb)2(amp)]·H2O·2DMF·MeOH (2). The btb3- ligands in 1 and 2 form an anionic 2D layered structure with a (63) honeycomb (hcb) topology by linking to Zn(II) centres through their carboxylate groups. The incorporation of N-heterocyclic auxiliary ligands Im and amp into the hcb nets resulted in the formation of a 2D hydrogen-bonded and covalently pillared bilayer structure featuring two-fold interpenetrating networks. Each of these networks consists of small channels that are occupied by Me2NH2 cations and solvent molecules. Both 1 and 2 emit blue luminescence emissions in the solid state at room temperature and exhibit a great selectivity and sensitivity for the detection of acetone and multiple heavy metal ions including Hg2+, Cu2+, Fe2+, Pb2+, Cr3+, and Fe3+ ions. At 1 bar, activated 1 and 2 demonstrate moderate capacities for adsorbing CO2 at room temperature, with a preference for CO2 over N2. Notably, at higher pressures (up to 20 bar), their activated samples 1 and 2 show a temperature-dependent enhancement of CO2 uptake while retaining good stability.
Collapse
Affiliation(s)
- Kenika Khotchasanthong
- Thammasat University Research Unit in Multifunctional Crystalline Materials and Applications (TU-MCMA), Faculty of Science and Technology, Thammasat University, Pathum Thani 12121, Thailand.
| | - Kunlanit Chinchan
- Thammasat University Research Unit in Multifunctional Crystalline Materials and Applications (TU-MCMA), Faculty of Science and Technology, Thammasat University, Pathum Thani 12121, Thailand.
| | - Kanokwan Kongpatpanich
- School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong 21210, Thailand
| | - Waraporn Pinyo
- NSTDA Characterization and Testing Center, Thailand Science Park, Pathum Thani 12120, Thailand
| | - Filip Kielar
- Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Winya Dungkaew
- Department of Chemistry, Faculty of Science, Mahasarakham University, Maha Sarakham 43100, Thailand
| | | | - Sakchai Laksee
- Nuclear Technology Research and Development Center, Thailand Institute of Nuclear Technology (Public Organization), Nakhon Nayok, 26120, Thailand
| | - Kittipong Chainok
- Thammasat University Research Unit in Multifunctional Crystalline Materials and Applications (TU-MCMA), Faculty of Science and Technology, Thammasat University, Pathum Thani 12121, Thailand.
- Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
4
|
Li H, Zhou Y, Chen C, Li Y, Liu Z, Wu M, Hong M. A Stable Layered Microporous MOF Assembled with Y-O Chains for Separation of MTO Products. Inorg Chem 2024; 63:21548-21554. [PMID: 39463097 DOI: 10.1021/acs.inorgchem.4c03735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Benefiting from highly tunable pore environments, some metal-organic frameworks (MOFs) have recently shown promising prospects in the separation of methanol-to-olefin (MTO) products (mainly C3H6 and C2H4). However, the "trade-off" between gas storage capacity and selectivity always results in inefficient separation. In addition, poor stability of MOFs also limits practical separation applications. Herein, we have successfully assembled a layered Y-MOF (FJI-W9) with bent diisophthalate ligands (H4L), Y-O chains, and 2-fluorobenzoic acids. As expected, FJI-W9 not only exhibits good chemical stability but also shows significant potential for C3H6/C2H4 separation. For FJI-W9, the C3H6 uptake at 298 K and 10 kPa is 63 cm3/g, and the IAST selectivity of FJI-W9 for C3H6/C2H4 (V/V = 50/50) is calculated to be 20.5. To the best of our knowledge, both C3H6 uptake and selectivity of FJI-W9 surpass most porous materials. GCMC simulation indicates that the special supramolecular binding sites in FJI-W9 have much stronger interactions with C3H6 than C2H4 molecules. More importantly, practical breakthrough experiments demonstrate that FJI-W9 can effectively separate C3H6/C2H4 (50/50) mixtures, thus obtaining high-purity C2H4 and C3H6, respectively.
Collapse
Affiliation(s)
- Hengbo Li
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Yunzhe Zhou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Cheng Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Yashuang Li
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Zheng Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Mingyan Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Maochun Hong
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| |
Collapse
|
5
|
Zhang ZF, Su MD. Mechanistic Insights into the Reactivity and Activation Barrier Origins for CO 2 Capture by Heavy Group-14 Imine Analogues. Inorg Chem 2024; 63:19687-19700. [PMID: 39385624 DOI: 10.1021/acs.inorgchem.4c02874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Using M06-2X-D3/def2-TZVP, the [2 + 2] cycloaddition reactions of carbon dioxide with the heavy imine analogues G14=N-Rea (G14 = Group 14 element) were investigated. The theoretical evidence reveals that the nature of the doubly bonded G14=N moiety in heavy imine analogues, G14=N-Rea (L1L2G14=N-L3), is characterized by the electron-sharing interaction between triplet L1L2G14 and triplet N-L3 fragments. Based on our theoretical studies, except for the carbon-based imine, all four heavy imine analogues with Si=N, Ge=N, Sn=N, and Pb=N groups can easily engage in [2 + 2] cycloaddition reactions with CO2. Energy decomposition analysis-natural orbitals for chemical valence analyses and the FMO theory strongly suggest that in the CO2 capture reaction by heavy imine analogues G14=N-Rea, the primary bonding interaction is the occupied p-π orbital (G14=N-Rea) → vacant p-π* orbital (CO2) interaction, instead of the empty p-π* orbital (G14=N-Rea) ← filled p-π orbital (CO2) interaction. The activation barrier of the CO2 capture reactions by G14=N-Rea molecules is primarily determined by the deformation energy of CO2. Shaik's valence bond state correlation diagram model, used to rationalize the computed results, indicates that the singlet-triplet energy splitting of G14=N-Rea is a key factor in determining the reaction barrier for the current CO2 capture reactions.
Collapse
Affiliation(s)
- Zheng-Feng Zhang
- Department of Applied Chemistry, National Chiayi University, Chiayi 60004, Taiwan
| | - Ming-Der Su
- Department of Applied Chemistry, National Chiayi University, Chiayi 60004, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
6
|
Chen K, Mousavi SH, Yu Z, Zhang L, Gu Q, Snurr RQ, Webley PA, Sun N, Li GK. Molecular Insight into the Electric Field Regulation of N 2 and CH 4 Adsorption in the Trapdoor ZSM-25 Zeolites. ACS APPLIED MATERIALS & INTERFACES 2024; 16:51129-51138. [PMID: 39258359 DOI: 10.1021/acsami.4c11059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Controlling gas admission by regulating pore accessibility in porous materials has been a topic of extensive research. Recently, the electric field (E-field) has emerged as an external stimulus to alter the adsorption behavior of some microporous adsorbents. However, the mechanism behind this phenomenon is not yet fully understood. Here, we demonstrate the crucial role of the trapdoor cations of zeolite molecular sieves in E-field-regulated gas adsorption. The E-field activation caused framework expansion and cation deviation, significantly reducing the energy barrier for gas molecules passing through the pore aperture gated by the trapdoor cation. This led to an increase in the N2 adsorption capacity of ZSM-25 and a 60% improvement in N2/CH4 selectivity in the quest for nitrogen rejection for natural gas processing. By combining experimental and computational approaches, we elucidated the influence of E-field activation as a concurrent effect of the reduced heat of adsorption caused by framework expansion and the decrease in the energy barrier resulting from promoted cation oscillation. These findings pave the way for the material design of E-field-regulated adsorption and its application in molecular separation.
Collapse
Affiliation(s)
- Kaifei Chen
- Photon Science Research Center for Carbon Dioxide, CAS Key Lab of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 201210, Shanghai, China
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Seyed Hesam Mousavi
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Zhi Yu
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Lina Zhang
- Photon Science Research Center for Carbon Dioxide, CAS Key Lab of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 201210, Shanghai, China
| | - Qinfen Gu
- Australian Synchrotron, ANSTO, 800 Blackburn Rd, Clayton, Victoria 3168 Australia
| | - Randall Q Snurr
- Department of Chemical & Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Paul A Webley
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Nannan Sun
- Photon Science Research Center for Carbon Dioxide, CAS Key Lab of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 201210, Shanghai, China
| | - Gang Kevin Li
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
7
|
Li L, Zhao S, Huang H, Dong M, Liang J, Li H, Hao J, Zhao E, Gu X. Advanced Soft Porous Organic Crystal with Multiple Gas-Induced Single-Crystal-to-Single-Crystal Transformations for Highly Selective Separation of Propylene and Propane. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303057. [PMID: 38098252 PMCID: PMC10916656 DOI: 10.1002/advs.202303057] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 10/20/2023] [Indexed: 03/07/2024]
Abstract
Soft porous organic crystals with stimuli-responsive single-crystal-to-single-crystal (SCSC) transformations are important tools for unraveling their structural transformations at the molecular level, which is of crucial importance for the rapid development of stimuli-responsive systems. Carefully balancing the crystallinity and flexibility of materials is the prerequisite to construct advanced organic crystals with SCSC, which remains challenging. Herein, a squaraine-based soft porous organic crystal (SPOC-SQ) with multiple gas-induced SCSC transformations and temperature-regulated gate-opening adsorption of various C1-C3 hydrocarbons is reported. SPOC-SQ is featured with both crystallinity and flexibility, which enable pertaining the single crystallinity of the purely organic framework during accommodating gas molecules and directly unveiling gas-framework interplays by SCXRD technique. Thanks to the excellent softness of SPOC-SQ crystals, multiple metastable single crystals are obtained after gas removals, which demonstrates a molecular-scale shape-memory effect. Benefiting from the single crystallinity, the molecule-level structural evolutions of the SPOC-SQ crystal framework during gas departure are uncovered. With the unique temperature-dependent gate-opening structural transformations, SPOC-SQ exhibits distinctly different absorption behaviors towards C3 H6 and C3 H8 , and highly efficient and selective separation of C3 H6 /C3 H8 (v/v, 50/50) is achieved at 273 K. Such advanced soft porous organic crystals are of both theoretical values and practical implications.
Collapse
Affiliation(s)
- Lin Li
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringState Key Laboratory of Chemical Resource EngineeringCollege of Materials Science and EngineeringAnalysis and Test CenterBeijing University of Chemical TechnologyBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Shuhong Zhao
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringState Key Laboratory of Chemical Resource EngineeringCollege of Materials Science and EngineeringAnalysis and Test CenterBeijing University of Chemical TechnologyBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Huiming Huang
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringState Key Laboratory of Chemical Resource EngineeringCollege of Materials Science and EngineeringAnalysis and Test CenterBeijing University of Chemical TechnologyBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Muyao Dong
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringState Key Laboratory of Chemical Resource EngineeringCollege of Materials Science and EngineeringAnalysis and Test CenterBeijing University of Chemical TechnologyBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Jie Liang
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringState Key Laboratory of Chemical Resource EngineeringCollege of Materials Science and EngineeringAnalysis and Test CenterBeijing University of Chemical TechnologyBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Hui Li
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringState Key Laboratory of Chemical Resource EngineeringCollege of Materials Science and EngineeringAnalysis and Test CenterBeijing University of Chemical TechnologyBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Jian Hao
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringState Key Laboratory of Chemical Resource EngineeringCollege of Materials Science and EngineeringAnalysis and Test CenterBeijing University of Chemical TechnologyBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Engui Zhao
- School of ScienceHarbin Institute of TechnologyShenzhenHIT Campus of University TownShenzhen518055P. R. China
| | - Xinggui Gu
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringState Key Laboratory of Chemical Resource EngineeringCollege of Materials Science and EngineeringAnalysis and Test CenterBeijing University of Chemical TechnologyBeijing University of Chemical TechnologyBeijing100029P. R. China
- Beijing National Laboratory for Molecular SciencesBeijing100190P. R. China
| |
Collapse
|
8
|
Chakraborty R, Talbot JJ, Shen H, Yabuuchi Y, Carsch KM, Jiang HZH, Furukawa H, Long JR, Head-Gordon M. Quantum chemical modeling of hydrogen binding in metal-organic frameworks: validation, insight, predictions and challenges. Phys Chem Chem Phys 2024; 26:6490-6511. [PMID: 38324335 DOI: 10.1039/d3cp05540j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
A detailed chemical understanding of H2 interactions with binding sites in the nanoporous crystalline structure of metal-organic frameworks (MOFs) can lay a sound basis for the design of new sorbent materials. Computational quantum chemical calculations can aid in this quest. To set the stage, we review general thermodynamic considerations that control the usable storage capacity of a sorbent. We then discuss cluster modeling of H2 ligation at MOF binding sites using state-of-the-art density functional theory (DFT) calculations, and how the binding can be understood using energy decomposition analysis (EDA). Employing these tools, we illustrate the connections between the character of the MOF binding site and the associated adsorption thermodynamics using four experimentally characterized MOFs, highlighting the role of open metal sites (OMSs) in accessing binding strengths relevant to room temperature storage. The sorbents are MOF-5, with no open metal sites, Ni2(m-dobdc), containing Lewis acidic Ni(II) sites, Cu(I)-MFU-4l, containing π basic Cu(I) sites and V2Cl2.8(btdd), also containing π-basic V(II) sites. We next explore the potential for binding multiple H2 molecules at a single metal site, with thermodynamics useful for storage at ambient temperature; a materials design goal which has not yet been experimentally demonstrated. Computations on Ca2+ or Mg2+ bound to catecholate or Ca2+ bound to porphyrin show the potential for binding up to 4 H2; there is precedent for the inclusion of both catecholate and porphyrin motifs in MOFs. Turning to transition metals, we discuss the prediction that two H2 molecules can bind at V(II)-MFU-4l, a material that has been synthesized with solvent coordinated to the V(II) site. Additional calculations demonstrate binding three equivalents of hydrogen per OMS in Sc(I) or Ti(I)-exchanged MFU-4l. Overall, the results suggest promising prospects for experimentally realizing higher capacity hydrogen storage MOFs, if nontrivial synthetic and desolvation challenges can be overcome. Coupled with the unbounded chemical diversity of MOFs, there is ample scope for additional exploration and discovery.
Collapse
Affiliation(s)
- Romit Chakraborty
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Chemistry, University of California, Berkeley, CA 94720, USA.
| | - Justin J Talbot
- Department of Chemistry, University of California, Berkeley, CA 94720, USA.
| | - Hengyuan Shen
- Department of Chemistry, University of California, Berkeley, CA 94720, USA.
| | - Yuto Yabuuchi
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Chemistry, University of California, Berkeley, CA 94720, USA.
| | - Kurtis M Carsch
- Department of Chemistry, University of California, Berkeley, CA 94720, USA.
| | - Henry Z H Jiang
- Department of Chemistry, University of California, Berkeley, CA 94720, USA.
| | - Hiroyasu Furukawa
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Chemistry, University of California, Berkeley, CA 94720, USA.
| | - Jeffrey R Long
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Chemistry, University of California, Berkeley, CA 94720, USA.
- Department of Chemical and Biomedical Engineering, University of California, Berkeley, CA 94720, USA
| | - Martin Head-Gordon
- Department of Chemistry, University of California, Berkeley, CA 94720, USA.
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
9
|
Shaker LM, Al-Amiery AA, Al-Azzawi WK. Nanomaterials: paving the way for the hydrogen energy frontier. DISCOVER NANO 2024; 19:3. [PMID: 38169021 PMCID: PMC10761664 DOI: 10.1186/s11671-023-03949-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024]
Abstract
This comprehensive review explores the transformative role of nanomaterials in advancing the frontier of hydrogen energy, specifically in the realms of storage, production, and transport. Focusing on key nanomaterials like metallic nanoparticles, metal-organic frameworks, carbon nanotubes, and graphene, the article delves into their unique properties. It scrutinizes the application of nanomaterials in hydrogen storage, elucidating both challenges and advantages. The review meticulously evaluates diverse strategies employed to overcome limitations in traditional storage methods and highlights recent breakthroughs in nanomaterial-centric hydrogen storage. Additionally, the article investigates the utilization of nanomaterials to enhance hydrogen production, emphasizing their role as efficient nanocatalysts in boosting hydrogen fuel cell efficiency. It provides a comprehensive overview of various nanocatalysts and their potential applications in fuel cells. The exploration extends to the realm of hydrogen transport and delivery, specifically in storage tanks and pipelines, offering insights into the nanomaterials investigated for this purpose and recent advancements in the field. In conclusion, the review underscores the immense potential of nanomaterials in propelling the hydrogen energy frontier. It emphasizes the imperative for continued research aimed at optimizing the properties and performance of existing nanomaterials while advocating for the development of novel nanomaterials with superior attributes for hydrogen storage, production, and transport. This article serves as a roadmap, shedding light on the pivotal role nanomaterials can play in advancing the development of clean and sustainable hydrogen energy technologies.
Collapse
Affiliation(s)
- Lina M Shaker
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, University Kebangsaan Malaysia (UKM), P.O. Box 43000, Bangi, Selangor, Malaysia
| | - Ahmed A Al-Amiery
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, University Kebangsaan Malaysia (UKM), P.O. Box 43000, Bangi, Selangor, Malaysia.
| | | |
Collapse
|
10
|
Feng C, Liu S, Tan X, Dai M, Chen Q, Huang X. Polydopamine-modified MOF-5-derived carbon as persulfate activator for aniline aerofloat degradation. CHEMOSPHERE 2023; 345:140436. [PMID: 37838028 DOI: 10.1016/j.chemosphere.2023.140436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
Residual flotation chemicals in beneficiation wastewater seriously threaten local ecosystems, such as groundwater or soil, and must be treated effectively. Currently, the degradation of organic pollutants using nitrided MOFs-derived carbon to activate persulfate (PDS) has attracted considerable attention. Hence, we developed a new synthetic strategy to load dopamine hydrochloride (PDA) onto MOF-5-derived porous carbon (PC) to form NPC, and the degradation of a typical flotation Aniline aerofloat (AAF) at high salinity by a low dose of the NPC/PDS system was investigated. Several characterization analyses such as TEM, XRD, Raman, FT-IR and XPS demonstrated that the nitrogen-rich indolequinone unit in PDA provided nitrogen to PC during the pyrolysis process. This enabled the core-shell structure of NPC and the synergy among the multiple components to induce the AAF degradation by PDS over a wide pH scale in a short period of time. It was deduced that the degradation of AAF by the NPC-8/PDS system was a non-radical pathway dominated by 1O2, which relied mainly on the conversion of superoxide radicals (O2•-) and surface-bound radicals. Among them, the pyridine N in the sp2 hybrid carbon was considered as a possible active site. This non-radical pathway was resistant to pH changes and background substances in the water, and well overcame the inhibition of the reaction by natural organic substances and inorganic anions in natural water. In this study, A novel approach to the synthesis of homogeneous MOFs nuclear-derived porous carbon was proposed and the application of MOFs-derived porous carbon for AAF remediation of mineral processing wastewater was broadened.
Collapse
Affiliation(s)
- Chenzhi Feng
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Shaobo Liu
- School of Architecture and Art, Central South University, Changsha, 410083, PR China.
| | - Xiaofei Tan
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China; Shenzhen Research Institute of Hunan University, Shenzhen 518055, PR China.
| | - Mingyang Dai
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Qiang Chen
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Xinyi Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| |
Collapse
|
11
|
Guo S, Gao M, Zhang W, Liu F, Guo X, Zhou K. Recent Advances in Laser-Induced Synthesis of MOF Derivatives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303065. [PMID: 37319033 DOI: 10.1002/adma.202303065] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/01/2023] [Indexed: 06/17/2023]
Abstract
Metal-organic frameworks (MOFs) are crystalline materials with permanent pores constructed by the self-assembly of organic ligands and metal clusters through coordination bonds. Due to their diversity and tunability, MOFs are used as precursors to be converted into other types of functional materials by pyrolytic recrystallization. Laser-induced synthesis is proven to be a powerful pyrolytic processing technique with fast and accurate laser irradiation, low loss, high efficiency, selectivity, and programmability, which endow MOF derivatives with new features. Laser-induced MOF derivatives exhibit high versatility in multidisciplinary research fields. In this review, first, the basic principles of laser smelting and the types of materials for laser preparation of MOF derivatives are briefly introduced. Subsequently, it is focused on the peculiarity of the engineering of structural defects and their applications in catalysis, environmental protection, and energy fields. Finally, the challenges and opportunities at the current stage are highlighted with the aim of elucidating the future direction of the rapidly growing field of laser-induced synthesis of MOF derivatives.
Collapse
Affiliation(s)
- Shuailong Guo
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Ming Gao
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Wang Zhang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Feng Liu
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, China
| | - Xueyi Guo
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Kun Zhou
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| |
Collapse
|
12
|
Gong W, Xie Y, Yamano A, Ito S, Tang X, Reinheimer EW, Malliakas CD, Dong J, Cui Y, Farha OK. Modulator-Dependent Dynamics Synergistically Enabled Record SO 2 Uptake in Zr(IV) Metal-Organic Frameworks Based on Pyrene-Cored Molecular Quadripod Ligand. J Am Chem Soc 2023. [PMID: 38037882 DOI: 10.1021/jacs.3c09648] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Developing innovative porous solid sorbents for the capture and storage of toxic SO2 is crucial for energy-efficient transportation and subsequent processing. Nonetheless, the quest for high-performance SO2 sorbents, characterized by exceptional uptake capacity, minimal regeneration energy requirements, and outstanding recyclability under ambient conditions, remains a significant challenge. In this study, we present the design of a unique tertiary amine-embedded, pyrene-based quadripod-shaped ligand. This ligand is then assembled into a highly porous Zr-metal-organic framework (MOF) denoted as Zr-TPA, which exhibits a newly discovered 3,4,8-c woy net structure. Remarkably, our Zr-TPA MOF achieved an unprecedented SO2 sorption capacity of 22.7 mmol g-1 at 298 K and 1 bar, surpassing those of all previously reported solid sorbents. We elucidated the distinct SO2 sorption behaviors observed in isostructural Zr-TPA variants synthesized with different capping modulators (formate, acetate, benzoate, and trifluoroacetate, abbreviated as FA, HAc, BA, and TFA, respectively) through computational analyses. These analyses revealed unexpected SO2-induced modulator-node dynamics, resulting in transient chemisorption that enhanced synergistic SO2 sorption. Additionally, we conducted a proof-of-concept experiment demonstrating that the captured SO2 in Zr-TPA-FA can be converted in situ into a valuable pharmaceutical intermediate known as aryl N-aminosulfonamide, with a high yield and excellent recyclability. This highlights the potential of robust Zr-MOFs for storing SO2 in catalytic applications. In summary, this work contributes significantly to the development of efficient SO2 solid sorbents and advances our understanding of the molecular mechanisms underlying SO2 sorption in Zr-MOF materials.
Collapse
Affiliation(s)
- Wei Gong
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yi Xie
- Department of Chemistry and International Institute for Nanotechnology (IIN), Northwestern University, Evanston, Illinois 60208, United States
| | - Akihito Yamano
- Rigaku Corporation, 3-9-12 Matsubara-cho, Akishima, Tokyo 196-8666, Japan
| | - Sho Ito
- Rigaku Corporation, 3-9-12 Matsubara-cho, Akishima, Tokyo 196-8666, Japan
| | - Xianhui Tang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Eric W Reinheimer
- Rigaku Americas Corporation, 9009 New Trails Drive, The Woodlands, Texas 77381, United States
| | - Christos D Malliakas
- Department of Chemistry and International Institute for Nanotechnology (IIN), Northwestern University, Evanston, Illinois 60208, United States
| | - Jinqiao Dong
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yong Cui
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Omar K Farha
- Department of Chemistry and International Institute for Nanotechnology (IIN), Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemical & Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
13
|
Azzouz A, Roy R. Innovative Strategy for Truly Reversible Capture of Polluting Gases-Application to Carbon Dioxide. Int J Mol Sci 2023; 24:16463. [PMID: 38003653 PMCID: PMC10671383 DOI: 10.3390/ijms242216463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
This paper consists of a deep analysis and data comparison of the main strategies undertaken for achieving truly reversible capture of carbon dioxide involving optimized gas uptakes while affording weakest retention strength. So far, most strategies failed because the estimated amount of CO2 produced by equivalent energy was higher than that captured. A more viable and sustainable approach in the present context of a persistent fossil fuel-dependent economy should be based on a judicious compromise between effective CO2 capture with lowest energy for adsorbent regeneration. The most relevant example is that of so-called promising technologies based on amino adsorbents which unavoidably require thermal regeneration. In contrast, OH-functionalized adsorbents barely reach satisfactory CO2 uptakes but act as breathing surfaces affording easy gas release even under ambient conditions or in CO2-free atmospheres. Between these two opposite approaches, there should exist smart approaches to tailor CO2 retention strength even at the expense of the gas uptake. Among these, incorporation of zero-valent metal and/or OH-enriched amines or amine-enriched polyol species are probably the most promising. The main findings provided by the literature are herein deeply and systematically analysed for highlighting the main criteria that allow for designing ideal CO2 adsorbent properties.
Collapse
Affiliation(s)
- Abdelkrim Azzouz
- Nanoqam, Department of Chemistry, University of Quebec at Montreal, Montreal, QC H3C 3P8, Canada;
- École de Technologie Supérieure, Montreal, QC H3C 1K3, Canada
| | - René Roy
- Nanoqam, Department of Chemistry, University of Quebec at Montreal, Montreal, QC H3C 3P8, Canada;
- Glycosciences and Nanomaterials Laboratory, Department of Chemistry, University of Quebec at Montreal, Montreal, QC H3C 3P8, Canada
- Weihai CY Dendrimer Technology Co., Ltd., No. 369-13, Caomiaozi Town, Lingang District, Weihai 264211, China
| |
Collapse
|
14
|
Wu X, Liu Y. Predicting Gas Adsorption without the Knowledge of Pore Structures: A Machine Learning Method Based on Classical Density Functional Theory. J Phys Chem Lett 2023; 14:10094-10102. [PMID: 37921618 DOI: 10.1021/acs.jpclett.3c02708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Predicting gas adsorption from the pore structure is an intuitive and widely used methodology in adsorption. However, in real-world systems, the structural information is usually very complicated and can only be approximately obtained from the characterization data. In this work, we developed a machine learning (ML) method to predict gas adsorption form the raw characterization data of N2 adsorption. The ML method is modeled by a convolutional neural network and trained by a large number of data that are generated from a classical density functional theory, and the model gives a very accurate prediction of Ar adsorption. Though the training set is limited to modeling slit pores, the model can be applied to three-dimensional structured pores and real-world materials. The good agreements suggest that there is a universal relationship among adsorption isotherms of different adsorbates, which could be captured by the ML model.
Collapse
Affiliation(s)
- Xiangkun Wu
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Yu Liu
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| |
Collapse
|
15
|
Chen K, Yu Z, Mousavi SH, Singh R, Gu Q, Snurr RQ, Webley PA, Li GK. Regulating adsorption performance of zeolites by pre-activation in electric fields. Nat Commun 2023; 14:5479. [PMID: 37673916 PMCID: PMC10482906 DOI: 10.1038/s41467-023-41227-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 08/25/2023] [Indexed: 09/08/2023] Open
Abstract
While multiple external stimuli (e.g., temperature, light, pressure) have been reported to regulate gas adsorption, limited studies have been conducted on controlling molecular admission in nanopores through the application of electric fields (E-field). Here we show gas adsorption capacity and selectivity in zeolite molecular sieves can be regulated by an external E-field. Through E-field pre-activation during degassing, several zeolites exhibited enhanced CO2 adsorption and decreased CH4 and N2 adsorptions, improving the CO2/CH4 and CO2/N2 separation selectivity by at least 25%. The enhanced separation performance of the zeolites pre-activated by E-field was maintained in multiple adsorption/desorption cycles. Powder X-ray diffraction analysis and ab initio computational studies revealed that the cation relocation and framework expansion induced by the E-field accounted for the changes in gas adsorption capacities. These findings demonstrate a regulation approach to sharpen the molecular sieving capability by E-fields and open new avenues for carbon capture and molecular separations.
Collapse
Affiliation(s)
- Kaifei Chen
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Zhi Yu
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Seyed Hesam Mousavi
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Ranjeet Singh
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Qinfen Gu
- Australian Synchrotron, ANSTO, 800 Blackburn Rd, Clayton, VIC, 3168, Australia
| | - Randall Q Snurr
- Department of Chemical & Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Paul A Webley
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC, 3800, Australia.
| | - Gang Kevin Li
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
16
|
Park J, Jaramillo DE, Shi Y, Jiang HZH, Yusuf H, Furukawa H, Bloch ED, Cormode DS, Miller JS, Harris TD, Johnston-Halperin E, Flatté ME, Long JR. Permanent Porosity in the Room-Temperature Magnet and Magnonic Material V(TCNE) 2. ACS CENTRAL SCIENCE 2023; 9:777-786. [PMID: 37122461 PMCID: PMC10141614 DOI: 10.1021/acscentsci.3c00053] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Indexed: 05/03/2023]
Abstract
Materials that simultaneously exhibit permanent porosity and high-temperature magnetic order could lead to advances in fundamental physics and numerous emerging technologies. Herein, we show that the archetypal molecule-based magnet and magnonic material V(TCNE)2 (TCNE = tetracyanoethylene) can be desolvated to generate a room-temperature microporous magnet. The solution-phase reaction of V(CO)6 with TCNE yields V(TCNE)2·0.95CH2Cl2, for which a characteristic temperature of T* = 646 K is estimated from a Bloch fit to variable-temperature magnetization data. Removal of the solvent under reduced pressure affords the activated compound V(TCNE)2, which exhibits a T* value of 590 K and permanent microporosity (Langmuir surface area of 850 m2/g). The porous structure of V(TCNE)2 is accessible to the small gas molecules H2, N2, O2, CO2, ethane, and ethylene. While V(TCNE)2 exhibits thermally activated electron transfer with O2, all the other studied gases engage in physisorption. The T* value of V(TCNE)2 is slightly modulated upon adsorption of H2 (T* = 583 K) or CO2 (T* = 596 K), while it decreases more significantly upon ethylene insertion (T* = 459 K). These results provide an initial demonstration of microporosity in a room-temperature magnet and highlight the possibility of further incorporation of small-molecule guests, potentially even molecular qubits, toward future applications.
Collapse
Affiliation(s)
- Jesse
G. Park
- Department
of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
| | - David E. Jaramillo
- Department
of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Yueguang Shi
- Department
of Physics and Astronomy, University of
Iowa, Iowa City, Iowa 52242-1479, United States
| | - Henry Z. H. Jiang
- Department
of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Institute
for Decarbonization Materials, Berkeley, California 94720, United States
| | - Huma Yusuf
- Department
of Physics, Ohio State University, Columbus, Ohio 43210-1117, United States
| | - Hiroyasu Furukawa
- Department
of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Institute
for Decarbonization Materials, Berkeley, California 94720, United States
| | - Eric D. Bloch
- Department
of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
| | - Donley S. Cormode
- Department
of Physics, Ohio State University, Columbus, Ohio 43210-1117, United States
| | - Joel S. Miller
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112-0850, United States
| | - T. David Harris
- Department
of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
- Institute
for Decarbonization Materials, Berkeley, California 94720, United States
| | | | - Michael E. Flatté
- Department
of Physics and Astronomy, University of
Iowa, Iowa City, Iowa 52242-1479, United States
- Department
of Applied Physics, Eindhoven University
of Technology, Eindhoven 5612 AZ, The Netherlands
| | - Jeffrey R. Long
- Department
of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Institute
for Decarbonization Materials, Berkeley, California 94720, United States
- Department
of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, California 94720, United States
- Email
for J.R.L.:
| |
Collapse
|
17
|
Nilwanna K, Sittiwong J, Boekfa B, Treesukol P, Boonya-udtayan S, Probst M, Maihom T, Limtrakul J. Aluminum‐based metal‐organic framework support metal(II)-hydride as catalyst for the hydrogenation of carbon dioxide to formic acid: A computational study. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.113116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
18
|
Dong A, Chen D, Li Q, Qian J. Metal-Organic Frameworks for Greenhouse Gas Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2201550. [PMID: 36563116 DOI: 10.1002/smll.202201550] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/15/2022] [Indexed: 06/17/2023]
Abstract
Using petrol to supply energy for a car or burning coal to heat a building generates plenty of greenhouse gas (GHG) emissions, including carbon dioxide (CO2 ), water vapor (H2 O), methane (CH4 ), nitrous oxide (N2 O), ozone (O3 ), fluorinated gases. These up-and-coming metal-organic frameworks (MOFs) are structurally endowed with rigid inorganic nodes and versatile organic linkers, which have been extensively used in the GHG-related applications to improve the lives and protect the environment. Porous MOF materials and their derivatives have been demonstrated to be competitive and promising candidates for GHG separation, storage and conversions as they shows facile preparation, large porosity, adjustable nanostructure, abundant topology, and tunable physicochemical property. Enormous progress has been made in GHG storage and separation intrinsically stemmed from the different interaction between guest molecule and host framework from MOF itself in the recent five years. Meanwhile, the use of porous MOF materials to transform GHG and the influence of external conditions on the adsorption performance of MOFs for GHG are also enclosed. In this review, it is also highlighted that the existing challenges and future directions are discussed and envisioned in the rational design, facile synthesis and comprehensive utilization of MOFs and their derivatives for practical applications.
Collapse
Affiliation(s)
- Anrui Dong
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325000, P. R. China
| | - Dandan Chen
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325000, P. R. China
| | - Qipeng Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
- College of Chemistry and Chemical Engineering, Zhaotong University, Zhaotong, 657099, P. R. China
| | - Jinjie Qian
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325000, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| |
Collapse
|
19
|
MOFs for Electrochemical Energy Conversion and Storage. INORGANICS 2023. [DOI: 10.3390/inorganics11020065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Metal organic frameworks (MOFs) are a family of crystalline porous materials which attracts much attention for their possible application in energy electrochemical conversion and storage devices due to their ordered structures characterized by large surface areas and the presence in selected cases of a redox-active porous skeleton. Their synthetic versatility and relevant host-guest chemistry make them suitable platform for use in stable and flexible conductive materials. In this review we summarize the most recent results obtained in this field, by analyzing the use of MOFs in fuel and solar cells with special emphasis on PEMFCs and PSCs, their application in supercapacitors and the employment in batteries by differentiating Li-, Na- and other metal ion-batteries. Finally, an overview of the water splitting reaction MOF-catalyzed is also reported.
Collapse
|
20
|
Ishak MAIB, Jumbri KB. Effect of Temperature on the Hydrogen Adsorption and Transportation Inside MOF-5 Through Molecular Dynamics Simulation. SPRINGER PROCEEDINGS IN ENERGY 2023:97-103. [DOI: 10.1007/978-981-99-0859-2_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
21
|
Ishak MAIB, Abdullah NAFB, Jumbri KB, Taha MFB. Solvation-Free Energy and Thermodynamic Properties of Hydrogen Adsorption Inside Porous HKUST-1 Composite Through Molecular Dynamics Simulation. SPRINGER PROCEEDINGS IN ENERGY 2023:89-95. [DOI: 10.1007/978-981-99-0859-2_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
22
|
Bukowski BC, Snurr RQ. Insights and Heuristics for Predicting Diffusion Rates of Chemical Warfare Agents in Zirconium Metal-Organic Frameworks. ACS APPLIED MATERIALS & INTERFACES 2022; 14:55608-55615. [PMID: 36475611 DOI: 10.1021/acsami.2c17313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Designing nanoporous catalysts to destroy chemical warfare agents (CWAs) and environmental contaminants requires consideration of both intrinsic catalytic activity and the mass transfer of molecules in and out of the pores. Polar adsorbates such as CWAs experience a heterogeneous environment in many metal-organic frameworks (MOFs) due to the arrangement of the metal nodes and organic linkers of the MOF. However, quantitative relationships between the pore architecture and the resulting diffusion properties of polar molecules have not been established. We used molecular dynamics simulations to calculate the diffusion coefficients of the CWA simulant dimethyl methyl phosphonate (DMMP) in a diverse set of 776 MOFs with Zr6 nodes. We developed a 4-parameter machine learning model to predict DMMP diffusivities in Zr6 MOFs and found the model to be transferable to the CWA sarin. We then developed a simplified heuristic based on the machine learning model that the node-node distance and accessible surface area should be maximized to find MOFs with rapid CWA diffusion.
Collapse
Affiliation(s)
- Brandon C Bukowski
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Randall Q Snurr
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
23
|
Xie L, Chan KY, Li VCY. Molecular dynamics simulation of hydration and free energy of ions in nanochannels of polyelectrolyte threaded metal organic framework and the impacts on selective ion transport. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
24
|
Li H, Chen C, Di Z, Liu Y, Ji Z, Zou S, Wu M, Hong M. Rational Pore Design of a Cage-like Metal-Organic Framework for Efficient C 2H 2/CO 2 Separation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:52216-52222. [PMID: 36356232 DOI: 10.1021/acsami.2c17196] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Considering the importance of C2H2 in industry, it is of great significance to develop porous materials for efficient C2H2/CO2 separation. Besides the high selectivity, the C2H2 adsorption capacity is another vital factor in C2H2/CO2 separation. However, the "trade-off" between these two factors is still perplexing. Rational pore design of metal-organic frameworks (MOFs) has been proven to be an effective way to solve the above problem. In this work, we have appropriately combined three kinds of strategies in the design of the MOF (FJI-H33), i.e., the introduction of open metal sites, construction of cage-like cavities, and adjustment of moderate pore size. As anticipated, FJI-H33 exhibits both outstanding C2H2 adsorption capacity and high C2H2/CO2 selectivity. At 298 K and 100 kPa, the C2H2 storage capacity of FJI-H33 is 154 cm3/g, while the CO2 uptake is only 80 cm3/g. The ideal adsorbed solution theory (IAST) selectivity of C2H2/CO2 (50:50) is calculated as high as 15.5 at 298 K. More importantly, the excellent practical separation performance was verified by breakthrough experiments. In addition, the calculation of adsorption sites and relevant energy by density functional theory (DFT) provides a good explanation for the excellent separation performance and pore design strategy.
Collapse
Affiliation(s)
- Hengbo Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Cheng Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
| | - Zhengyi Di
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
| | - Yuanzheng Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
| | - Zhenyu Ji
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Shuixiang Zou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
| | - Mingyan Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
| | - Maochun Hong
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
| |
Collapse
|
25
|
Gupta S. Recent reports on vanadium based coordination polymers and MOFs. REV INORG CHEM 2022. [DOI: 10.1515/revic-2022-0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Coordination polymers (CP) and metal-organic frameworks (MOF) have become a topic of immense interest in this century primarily because of the structural diversity that they offer. This structural diversity results in their multifaceted utility in various fields of science and technology such as catalysis, medicine, gas storage or separation, conductivity and magnetism. Their utility inspires a large variety of scientists to engage with them in their scientific pursuit thus creating a buzz around them in the scientific community. Metals capable of forming CPs and MOFs are primarily transition metals. Among them vanadium-based CPs and MOFs demand detailed discussion because of the unique nature of vanadium which makes it stable in many oxidation states and coordination number. Vanadium’s versatility imparts additional structural marvel and usefulness to these CPs and MOFs.
Collapse
Affiliation(s)
- Samik Gupta
- Department of Chemistry , Sambhu Nath College , Labpur , Birbhum , West Bengal , 731303 , India
| |
Collapse
|
26
|
Guo Q, Ma XP, Zheng LW, Zhao CX, Wei XY, Xu Y, Li Y, Xie JJ, Zhang KG, Yuan CG. Exceptional removal and immobilization of selenium species by bimetal-organic frameworks. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 245:114097. [PMID: 36150305 DOI: 10.1016/j.ecoenv.2022.114097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Binary metallic organic frameworks can always play excellent functions for pollutants removal. One binary MOFs, UiO-66(Fe/Zr)), was newly synthesized and applied to remove aquatic selenite (SeIV) and selenate (SeVI). The adsorption behaviors and mechanisms were investigated using batch experiments, spectroscopic analyses, and theoretical calculations (DFT). The characterization results showed that the material inherited the topological structure of UiO-66 and excellent thermal stability. The large specific surface area (467.52 m2/g) and uniform mesoporous structures of the synthesized MOFs resulted in fast adsorption efficiency and high adsorption capacity for selenium species. The adsorbent kept high adsorption efficiency in a wide pH range from 2 to 11 with good anti-interference ability. The maximum adsorption capacity for Se(IV) and Se(VI) reached as high as 196 mg/g at pH 3 and 258 mg/g at pH 5, respectively. The process was conformed to fit pseudo-second-order kinetics and Langmuir isotherm, and could be explained by the formation of Fe/Zr-O-Se bond on the material surface, which was interpreted by the results of XPS, FTIR and DFT calculation. The regeneration and TCLP experiments demonstrated that UiO-66(Fe/Zr) could be regenerated for five cycles without obvious decrease of efficiencies, and the leaching rate of the adsorbed Se(IV) and Se(VI) in the spent adsorbent were only 4.8% and 2.3%. More than 99% of original Se(IV) and Se(VI) in the lake and tap water samples (1.0 mg/L of Se) could be removed in 2.0 h.
Collapse
Affiliation(s)
- Qi Guo
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science & Engineering, North China Electric Power University, Baoding 071000, China
| | - Xin-Peng Ma
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science & Engineering, North China Electric Power University, Baoding 071000, China
| | - Li-Wei Zheng
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science & Engineering, North China Electric Power University, Baoding 071000, China
| | - Chang-Xian Zhao
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science & Engineering, North China Electric Power University, Baoding 071000, China
| | - Xiao-Yang Wei
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science & Engineering, North China Electric Power University, Baoding 071000, China
| | - Yan Xu
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science & Engineering, North China Electric Power University, Baoding 071000, China
| | - Yuan Li
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science & Engineering, North China Electric Power University, Baoding 071000, China; Wetland Research Center for Baiyangdian Lake, North China Electric Power University, Baoding 071000, China
| | - Jiao-Jiao Xie
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science & Engineering, North China Electric Power University, Baoding 071000, China; Wetland Research Center for Baiyangdian Lake, North China Electric Power University, Baoding 071000, China
| | - Ke-Gang Zhang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science & Engineering, North China Electric Power University, Baoding 071000, China; Wetland Research Center for Baiyangdian Lake, North China Electric Power University, Baoding 071000, China
| | - Chun-Gang Yuan
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science & Engineering, North China Electric Power University, Baoding 071000, China; Wetland Research Center for Baiyangdian Lake, North China Electric Power University, Baoding 071000, China.
| |
Collapse
|
27
|
Han Y, Das P, He Y, Sorescu DC, Jordan KD, Rosi NL. Crystallographic Mapping and Tuning of Water Adsorption in Metal-Organic Frameworks Featuring Distinct Open Metal Sites. J Am Chem Soc 2022; 144:19567-19575. [PMID: 36228180 DOI: 10.1021/jacs.2c08717] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Crucial steps toward designing water sorption materials and fine-tuning their properties for specific applications include precise identification of adsorption sites and establishment of rigorous molecular-level insight into the water adsorption process. We report stepwise crystallographic mapping and density functional theory computations of adsorbed water molecules in ALP-MOF-1, a metal-organic framework decorated with distinct open metal sites and carbonyl functional groups that serve as water anchoring sites for seeding the nucleation of a complex water network. Identification of an unusual water adsorption step in ALP-MOF-1 motivated the tuning of metal ion composition to adjust water uptake. These studies provide direct evidence that the identity of the open metal sites in MOFs can dramatically affect water adsorption behavior between 0 and ∼20% RH and that multiple proximal water anchoring sites along the MOF skeleton facilitate water uptake which could be potentially useful for applications requiring rapid and energetically facile water sorption.
Collapse
Affiliation(s)
- Yi Han
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Prasenjit Das
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Yiwen He
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Dan C Sorescu
- U.S. Department of Energy, National Energy Technology Laboratory, Pittsburgh, Pennsylvania 15236, United States.,Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Kenneth D Jordan
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States.,Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Nathaniel L Rosi
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States.,Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
28
|
New Cu(II)-based three dimensional supramolecular coordination polymer as photocatalyst for the degradation of methylene blue. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133533] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
29
|
Hu P, Hu J, Liu H, Wang H, Zhou J, Krishna R, Ji H. Quasi-Orthogonal Configuration of Propylene within a Scalable Metal-Organic Framework Enables Its Purification from Quinary Propane Dehydrogenation Byproducts. ACS CENTRAL SCIENCE 2022; 8:1159-1168. [PMID: 36032760 PMCID: PMC9413434 DOI: 10.1021/acscentsci.2c00554] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Propylene production via nonoxidative propane dehydrogenation (PDH) holds great promise in meeting growing global demand for propylene. Effective adsorptive purification of a low concentration of propylene from quinary PDH byproducts comprising methane (CH4), ethylene (C2H4), ethane (C2H6), propylene (C3H6), and propane (C3H8) has been an unsolved academic bottleneck. Herein, we now report an ultramicroporous zinc metal-organic framework (Zn-MOF, termed as 1) underlying a rigid one-dimensional channel, enabling trace C3H6 capture and effective separation from quinary PDH byproducts. Adsorption isotherms of 1 suggest a record-high C3H6 uptake of 34.0/92.4 cm3 cm-3 (0.01/0.1 bar) at 298 K. In situ spectroscopies, crystallographic experiments, and modeling have jointly elucidated that the outstanding propylene uptakes at lower pressure are dominated by multiple binding interactions and swift diffusion behavior, yielding quasi-orthogonal configuration of propylene in adaptive channels. Breakthrough tests demonstrate that 30.8 L of propylene with a serviceable purity of 95.0-99.4% can be accomplished from equimolar C3H6/C3H8 mixtures for 1 kg of activated 1. Such an excellent property is also validated by the breakthrough tests of quinary mixtures containing CH4/C2H4/C2H6/C3H6/C3H8 (3/5/6/42/44, v/v/v/v/v). Particularly, structurally stable 1 can be easily synthesized on the kilogram scale using cheap materials (only $167 for per kilogram of 1), which is important in industrial applications.
Collapse
Affiliation(s)
- Peng Hu
- Fine
Chemical Industry Research Institute, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, People’s Republic of China
| | - Jialang Hu
- Fine
Chemical Industry Research Institute, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, People’s Republic of China
| | - Hao Liu
- Fine
Chemical Industry Research Institute, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, People’s Republic of China
| | - Hao Wang
- Fine
Chemical Industry Research Institute, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, People’s Republic of China
| | - Jie Zhou
- Fine
Chemical Industry Research Institute, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, People’s Republic of China
| | - Rajamani Krishna
- Van’t
Hoff Institute for Molecular Sciences, University
of Amsterdam, Park 904, 1098 XH Amsterdam, The Netherlands
| | - Hongbing Ji
- Fine
Chemical Industry Research Institute, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, People’s Republic of China
| |
Collapse
|
30
|
Experimental and molecular modelling approach for rapid adsorption of Bisphenol A using Zr and Fe based metal–organic frameworks. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
31
|
Pirot SM, Omer KM. Designing of robust and sensitive assay via encapsulation of highly emissive and stable blue copper nanocluster into zeolitic imidazole framework (ZIF-8) with quantitative detection of tetracycline. J Anal Sci Technol 2022. [DOI: 10.1186/s40543-022-00333-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractMetal–organic frameworks (MOFs) with high stability and porosity have gained great attention in bioanalysis due to their potential in improving sensitivity and robustness of assays. Herein, to improve both the stability and the emission intensity of Cu nanoclusters (CuNCs), in situ entrapment strategy of CuNCs into zeolitic imidazolate framework-8 (ZIF-8) is described. Blue emissive and stable CuNCs was prepared, for the first time, using thiamine hydrochloride as capping agents, and showed strong and stable emission at 440 nm when excited at 375 nm with fluorescence quantum yields 12%. Encapsulation of CuNC into ZIF-8 showed dramatic enhancement of the fluorescence intensity up to 53% fluorescence quantum yield. Furthermore, the CuNCs@ZIF-8 possesses better stability (more than three months) due to protective and confinement effect of MOFs. Upon the addition of tetracycline to CuNCs@ZIF-8 solution, the blue emission intensity was significantly decreased. The fluorescence ratio (Fo/F) against the concentration of tetracycline exhibited a satisfactory linear relationship from 1.0 to 10.0 µM with a detection limit (LOD) of 0.30 µM. The current probe was applied for quantification of tetracycline in drug sample with satisfactory accuracy and precision.
Graphical abstract
Collapse
|
32
|
Dummert SV, Saini H, Hussain MZ, Yadava K, Jayaramulu K, Casini A, Fischer RA. Cyclodextrin metal-organic frameworks and derivatives: recent developments and applications. Chem Soc Rev 2022; 51:5175-5213. [PMID: 35670434 DOI: 10.1039/d1cs00550b] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
While there is a tremendous amount of scientific research on metal organic frameworks (MOFs) for gas storage/separation, catalysis and energy storage, the development and application of biocompatible MOFs still poses major challenges. In general, they can be synthesised from various biocompatible linkers and metal ions but particularly cyclodextrins (CDs) as cyclic oligosaccharides are an astute choice for the former. Although the field of CD-MOF materials is still in the early stages and their design and fabrication comes with many hurdles, the benefits coming from CDs built in a porous framework are exciting. Versatile host-guest complexation abilities, high encapsulation capacity and hydrophilicity are among the valuable properties inherent to CDs and offer extended and novel applications to MOFs. In this review, we provide an overview of the state-of-the-art synthesis, design, properties and applications of these materials. Initially, a rationale for the preparation of CD-based MOFs is provided, based on the chemical and structural properties of CDs and including their advantages and disadvantages. Further on, the review exhaustively surveys CD-MOF based materials by categorising them into three sub-classes, namely (i) CD-MOFs, (ii) CD-MOF hybrids, obtained via combination with external materials, and (iii) CD-MOF-derived materials prepared under pyrolytic conditions. Subsequently, CD-based MOFs in practical applications, such as drug delivery and cancer therapy, sensors, gas storage, (enantiomer) separations, electrical devices, food industry, and agriculture, are discussed. We conclude by summarizing the state of the art in the field and highlighting some promising future developments of CD-MOFs.
Collapse
Affiliation(s)
- Sarah V Dummert
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, Lichtenbergstraße 4, D-85748 Garching, Germany.
| | - Haneesh Saini
- Department of Chemistry, Indian Institute of Technology Jammu, Jammu & Kashmir, 181221, India.
| | - Mian Zahid Hussain
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, Lichtenbergstraße 4, D-85748 Garching, Germany.
| | - Khushboo Yadava
- Department of Chemistry, Indian Institute of Technology Jammu, Jammu & Kashmir, 181221, India. .,Indian Institute of Science Education and Research Kolkata, Nadia 741246, India
| | - Kolleboyina Jayaramulu
- Department of Chemistry, Indian Institute of Technology Jammu, Jammu & Kashmir, 181221, India.
| | - Angela Casini
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, Lichtenbergstraße 4, D-85748 Garching, Germany.
| | - Roland A Fischer
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, Lichtenbergstraße 4, D-85748 Garching, Germany.
| |
Collapse
|
33
|
Xie L, Chan KY, Li VCY. Counterion distribution around a polyelectrolyte confined in a metal–organic framework. MOLECULAR SIMULATION 2022. [DOI: 10.1080/08927022.2022.2068797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Liangxu Xie
- Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong
- Hong Kong Quantum AI Lab Limited, Hong Kong Science Park, Pak Shek Kok, Hong Kong
| | - Kwong-Yu Chan
- Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong
- Hong Kong Quantum AI Lab Limited, Hong Kong Science Park, Pak Shek Kok, Hong Kong
| | - Vanessa Chi-Ying Li
- Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong
- Hong Kong Quantum AI Lab Limited, Hong Kong Science Park, Pak Shek Kok, Hong Kong
| |
Collapse
|
34
|
Hu P, Hu J, Wang H, Liu H, Zhou J, Liu Y, Wang Y, Ji H. One-Step Ethylene Purification by an Ethane-Screening Metal-Organic Framework. ACS APPLIED MATERIALS & INTERFACES 2022; 14:15195-15204. [PMID: 35315657 DOI: 10.1021/acsami.1c25005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Efficient purification of ethylene (C2H4) from ethane (C2H6) is a crucial but daunting task for the chemical industry given their similar physical natures and molecular dimensions. Reversed capture of C2H6 from C2H6/C2H4 dual-mixtures can be expected to directly yield high-purity C2H4 through a one-step separation unit, but it remains a daunting challenge. Here, we skillfully target an unusual "electrostatic-driven linker microrotation" (EDLM) in a Zr-MOF through coupling dual-ligands having electron-withdrawing/donating groups (e.g., F and CH3 motifs). EDLM triggered microrotation of linker geometry and screening sites not only enhanced structural rigidity and hydrophobic nature, etc., but also effectively purified C2H4 through reversely trapping C2H6. Under ambient conditions, 1 kg of activated 2 adsorbents directly produces 7.2 L of C2H4 with over 99.9%+ purity in a single breakthrough operation starting from the equimolar C2H6/C2H4 cracked mixtures. Geometrical models and simulations have revealed that EDLM-derived H-bonding interaction and microrotation of linker geometry, synergistically customized C2H6-selective screening sites and pore inert for reversed C2H6 capture and improved surface hydrophobicity. Adsorption isotherms, modeling simulations, and breakthrough tests based on pressure swing adsorption (PSA) conditions have jointly elucidated the underlying separation properties for C2H4 purification. The enhanced hydrophobic nature, cycling durability, and separation property awarded 2 a new benchmark adsorbent to purify the olefin/paraffin mixtures.
Collapse
Affiliation(s)
- Peng Hu
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P.R. China
| | - Jialang Hu
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P.R. China
| | - Hao Wang
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P.R. China
| | - Hao Liu
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P.R. China
| | - Jie Zhou
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P.R. China
| | - Yao Liu
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P.R. China
| | - Yongqing Wang
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P.R. China
| | - Hongbing Ji
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P.R. China
| |
Collapse
|
35
|
Sinha S, De S, Mishra D, Shekhar S, Agarwal A, Sahu KK. Phosphonomethyl iminodiacetic acid functionalized metal organic framework supported PAN composite beads for selective removal of La(III) from wastewater: Adsorptive performance and column separation studies. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127802. [PMID: 34896724 DOI: 10.1016/j.jhazmat.2021.127802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/15/2021] [Accepted: 11/11/2021] [Indexed: 06/14/2023]
Abstract
The rare earth elements being toxic in nature are being accumulated in water bodies as their industrial usage is growing exponentially, thus their efficient separation holds an immense significance. Herein, ligand functionalized metal organic framework (MOF), Phosphonomethyl iminodiacetic acid coordinated at Fe-BTC, was synthesized post-synthetically and incorporated subsequently in polyacrylonitrile polymer to prepare the composite beads via nonsolvent induced-phase-inversion technique for selective adsorption of La(III) from the wastewater in batch and dynamic column mode. XPS NMR, and FTIR were used to establish the interaction between functionalized ligand and unsaturated metal nodes of MOF. The adsorption capacity was 232.5 mg/g and 77.51 mg/g at 298 K of the functionalized MOF and composite beads respectively. Adsorption kinetics followed a pseudo-second order rate equation, and isotherm indicated the best fitting with Langmuir model. The dynamic behavior of the adsorption column packed with MOF/Polymer beads was fairly described by the Thomas model. The breakthrough time of 23.2 h could be attained with 12 cm of bed height and 10 ml/min of flow rate. These MOF/Polymer beads shown the selectivity of La over transitional metals were recycled over 5 times with about 15% loss of adsorption capacity. The findings provide suggestive insights of the potential use of functionalized MOF towards the separation of the rare earth element.
Collapse
Affiliation(s)
- Shivendra Sinha
- MER Division, National Metallurgical Laboratory, Jamshedpur, India; Academy of Scientific and Innovative Research, New Delhi, India
| | - S De
- Chemical Engineering Department, IIT Kharagpur, India.
| | - D Mishra
- MER Division, National Metallurgical Laboratory, Jamshedpur, India.
| | - S Shekhar
- MER Division, National Metallurgical Laboratory, Jamshedpur, India
| | - A Agarwal
- MER Division, National Metallurgical Laboratory, Jamshedpur, India
| | - K K Sahu
- MER Division, National Metallurgical Laboratory, Jamshedpur, India
| |
Collapse
|
36
|
Erciyes A, Andac M. Synthesis and characterization of nano-sized magnesium 1,4-benzenedicarboxylate metal organic framework via electrochemical method. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.122970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
37
|
Tharmalingam B, Mathivanan M, Anitha O, Kaminsky W, Murugesapandian B. Nitrogen rich triaminoguanidine-pyrrole conjugate as supramolecular synthon for the construction of charge-assisted hydrogen bonded network with various carboxylic acids. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2021.122637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
38
|
Chiou DS, Chuang YC, Chang CK, Hsu CH, Lin LC, Kang DY. X-ray diffraction for probing free energy profiles and self-diffusivity of gases in metal–organic frameworks. CrystEngComm 2022. [DOI: 10.1039/d2ce00968d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This paper presents a novel methodology for measuring the free energy profiles and the self-diffusivity of gases in crystalline microporous materials.
Collapse
Affiliation(s)
- Da-Shiuan Chiou
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Yu-Chun Chuang
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu, 30076 Taiwan
| | - Chung-Kai Chang
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu, 30076 Taiwan
| | - Cheng-Hsun Hsu
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Li-Chiang Lin
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Dun-Yen Kang
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| |
Collapse
|
39
|
Application of MOF materials as drug delivery systems for cancer therapy and dermal treatment. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214262] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
40
|
Abdi J, Hadavimoghaddam F, Hadipoor M, Hemmati-Sarapardeh A. Modeling of CO 2 adsorption capacity by porous metal organic frameworks using advanced decision tree-based models. Sci Rep 2021; 11:24468. [PMID: 34963681 PMCID: PMC8714819 DOI: 10.1038/s41598-021-04168-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 12/17/2021] [Indexed: 02/05/2023] Open
Abstract
In recent years, metal organic frameworks (MOFs) have been distinguished as a very promising and efficient group of materials which can be used in carbon capture and storage (CCS) projects. In the present study, the potential ability of modern and powerful decision tree-based methods such as Categorical Boosting (CatBoost), Light Gradient Boosting Machine (LightGBM), Extreme Gradient Boosting (XGBoost), and Random Forest (RF) was investigated to predict carbon dioxide adsorption by 19 different MOFs. Reviewing the literature, a comprehensive databank was gathered including 1191 data points related to the adsorption capacity of different MOFs in various conditions. The inputs of the implemented models were selected as temperature (K), pressure (bar), specific surface area (m2/g) and pore volume (cm3/g) of the MOFs and the output was CO2 uptake capacity (mmol/g). Root mean square error (RMSE) values of 0.5682, 1.5712, 1.0853, and 1.9667 were obtained for XGBoost, CatBoost, LightGBM, and RF models, respectively. The sensitivity analysis showed that among all investigated parameters, only the temperature negatively impacts the CO2 adsorption capacity and the pressure and specific surface area of the MOFs had the most significant effects. Among all implemented models, the XGBoost was found to be the most trustable model. Moreover, this model showed well-fitting with experimental data in comparison with different isotherm models. The accurate prediction of CO2 adsorption capacity by MOFs using the XGBoost approach confirmed that it is capable of handling a wide range of data, cost-efficient and straightforward to apply in environmental applications.
Collapse
Affiliation(s)
- Jafar Abdi
- grid.440804.c0000 0004 0618 762XFaculty of Chemical and Materials Engineering, Shahrood University of Technology, 3619995161 Shahrood, Iran
| | - Fahimeh Hadavimoghaddam
- grid.446213.60000 0001 0068 9862Ufa State Petroleum Technological University, Ufa, Russia 450064
| | - Masoud Hadipoor
- grid.444962.90000 0004 0612 3650Department of Petroleum Engineering, Ahwaz Faculty of Petroleum Engineering, Petroleum University of Technology (PUT), Ahwaz, Iran
| | - Abdolhossein Hemmati-Sarapardeh
- Department of Petroleum Engineering, Shahid Bahonar University of Kerman, Kerman, Iran. .,College of Construction Engineering, Jilin University, Changchun, 130600, China.
| |
Collapse
|
41
|
Li H, Wang K, Wu M, Hong M. A Cage-based Porous Metal-organic Framework for Efficient C2H2 Storage and Separation. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-1361-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
42
|
Platero-Prats AE, Mavrandonakis A, Liu J, Chen Z, Chen Z, Li Z, Yakovenko AA, Gallington LC, Hupp JT, Farha OK, Cramer CJ, Chapman KW. The Molecular Path Approaching the Active Site in Catalytic Metal-Organic Frameworks. J Am Chem Soc 2021; 143:20090-20094. [PMID: 34826220 DOI: 10.1021/jacs.1c11213] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
How molecules approach, bind at, and release from catalytic sites is key to heterogeneous catalysis, including for emerging metal-organic framework (MOF)-based catalysts. We use in situ synchrotron X-ray scattering analysis to evaluate the dominant binding sites for reagent and product molecules in the vicinity of catalytic Ni-oxo clusters in NU-1000 with different surface functionalization under conditions approaching those used in catalysis. The locations of the reagent and product molecules within the pores can be linked to the activity for ethylene hydrogenation. For the most active catalyst, ethylene reagent molecules bind close to the catalytic clusters, but only at temperatures approaching experimentally observed onset of catalysis. The ethane product molecules favor a different binding location suggesting that the product is readily released from the active site. An unusual guest-dependence of the framework negative thermal expansion is documented. We hypothesize that reagent and product binding sites reflect the pathway through the MOF to the active site and can be used to identify key factors that impact the catalytic activity.
Collapse
Affiliation(s)
- Ana E Platero-Prats
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Andreas Mavrandonakis
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jian Liu
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Zhihengyu Chen
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11790, United States
| | - Zhijie Chen
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Zhanyong Li
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Andrey A Yakovenko
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Leighanne C Gallington
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Joseph T Hupp
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Omar K Farha
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States.,Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Christopher J Cramer
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Karena W Chapman
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States.,Department of Chemistry, Stony Brook University, Stony Brook, New York 11790, United States
| |
Collapse
|
43
|
Kidanemariam A, Park J. Metal-organic framework based on Co and 4,4′-dimethylenebiphenyl diphosphonic acid as an efficient methylene blue adsorbent. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.08.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
44
|
Shi N, Song Y, Xing X, Chen J. Negative thermal expansion in framework structure materials. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214204] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
45
|
Strong π-stacking causes unusually large anisotropic thermal expansion and thermochromism. Proc Natl Acad Sci U S A 2021; 118:2106572118. [PMID: 34706935 DOI: 10.1073/pnas.2106572118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2021] [Indexed: 11/18/2022] Open
Abstract
π-stacking in ground-state dimers/trimers/tetramers of N-butoxyphenyl(naphthalene)diimide (BNDI) exceeds 50 kcal ⋅ mol-1 in strength, drastically surpassing that for the *3[pyrene]2 excimer (∼30 kcal ⋅ mol-1; formal bond order = 1) and similar to other weak-to-moderate classical covalent bonds. Cooperative π-stacking in triclinic (BNDI-T) and monoclinic (BNDI-M) polymorphs effects unusually large linear thermal expansion coefficients (α a , α b , α c , β) of (452, -16.8, -154, 273) × 10-6 ⋅ K-1 and (70.1, -44.7, 163, 177) × 10-6 ⋅ K-1, respectively. BNDI-T exhibits highly reversible thermochromism over a 300-K range, manifest by color changes from orange (ambient temperature) toward red (cryogenic temperatures) or yellow (375 K), with repeated thermal cycling sustained for over at least 2 y.
Collapse
|
46
|
Hu Y, Yang H, Wang R, Duan M. Fabricating Ag@MOF-5 nanoplates by the template of MOF-5 and evaluating its antibacterial activity. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127093] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
47
|
Gan Z, Zhang W, Shi J, Xu X, Hu X, Zhang X, Wang X, Arslan M, Xiao J, Zou X. Collaborative compounding of metal-organic frameworks and lanthanide coordination polymers for ratiometric visual detection of tetracycline. DYES AND PIGMENTS 2021; 194:109545. [DOI: 10.1016/j.dyepig.2021.109545] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
48
|
Zhang Z, Cui Y, Vila R, Li Y, Zhang W, Zhou W, Chiu W, Cui Y. Cryogenic Electron Microscopy for Energy Materials. Acc Chem Res 2021; 54:3505-3517. [PMID: 34278783 DOI: 10.1021/acs.accounts.1c00183] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The development of clean energy generation, transmission, and distribution technology, for example, high energy density batteries and high efficiency solar cells, is critical to the progress toward a sustainable future. Such advancement in both scientific understanding and technological innovations entail an atomic- and molecular-resolution understanding of the key materials and fundamental processes governing the operation and failure of the systems. These dynamic processes span multiple length and time scales bridging materials and interfaces involved across the entire device architecture. However, these key components are often highly sensitive to air, moisture, and electron-beam radiation and therefore remain resistant to conventional nanoscale interrogation by electron-optical methods, such as high-resolution (scanning) transmission electron microscopy and spectroscopy.Fortunately, the rapid progress in cryogenic electron microscopy (cryo-EM) for physical sciences starts to offer researchers new tools and methods to probe these otherwise inaccessible length scales of components and phenomena in energy science. Specifically, weakly bonded and reactive materials, interfaces and phases that typically degrade under high energy electron-beam irradiation and environmental exposure can potentially be protected and stabilized by cryogenic methods, bringing up thrilling opportunities to address many crucial yet unanswered questions in energy science, which can eventually lead to new scientific discoveries and technological breakthroughs.Thus, in this Account, we aim to highlight the significance of cryo-EM to energy related research and the impactful results that can be potentially spawned from there. Due to the limited space, we will mainly review representative examples of cryo-EM methodology for lithium (Li)-based batteries, hybrid perovskite solar cells, and metal-organic-frameworks, which have shown great promise in revealing atomic resolution of both structural and chemical information on the sensitive yet critical components in these systems. We will first emphasize the application of cryo-EM to resolve the nanostructure and chemistry of solid-electrolyte interphases, cathode-electrolyte interphase, and electrode materials in batteries to reflect how cryo-EM could inspire rational materials design and guide battery research toward practical applications. We then discuss how cryo-EM helped to reveal guest intercalation chemistry in weakly bonded metal-organic-frameworks to develop a complete picture of host-guest interaction. Next, we summarize efforts in hybrid perovskite materials for solar cells where cryo-EM preserved the volatile organic molecules and protected perovskites from any air or moisture contamination. Finally, we conclude with perspectives and brief discussion on future directions for cryo-EM in energy and materials science.
Collapse
Affiliation(s)
- Zewen Zhang
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Yi Cui
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Rafael Vila
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Yanbin Li
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Wenbo Zhang
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Weijiang Zhou
- Biophysics Program, School of Medicine, Stanford University, Stanford, California 94305, United States
| | - Wah Chiu
- Biophysics Program, School of Medicine, Stanford University, Stanford, California 94305, United States
- Department of Bioengineering, Stanford University, Stanford, California 94305, United States
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Yi Cui
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| |
Collapse
|
49
|
Cho HS, Tanaka H, Lee Y, Zhang Y, Jiang J, Kim M, Kim H, Kang JK, Terasaki O. Physicochemical Understanding of the Impact of Pore Environment and Species of Adsorbates on Adsorption Behaviour. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Hae Sung Cho
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 China
- Graduate School of EEWS Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Hideki Tanaka
- Research Initiative for Supra-Materials (RISM) Shinshu University 4-17-1 Wakasato Nagano 380-8553 Japan
| | - Yongjin Lee
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 China
- Department of Chemistry and Chemical Engineering Education and Research Center for Smart Energy and Materials Inha University Incheon 22212 Republic of Korea
| | - Yue‐Biao Zhang
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 China
| | - Juncong Jiang
- Department of Chemistry University of California Berkeley CA 94720 USA
| | - Minho Kim
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Hyungjun Kim
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Jeung Ku Kang
- Graduate School of EEWS Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Osamu Terasaki
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 China
- Graduate School of EEWS Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| |
Collapse
|
50
|
Cho HS, Tanaka H, Lee Y, Zhang YB, Jiang J, Kim M, Kim H, Kang JK, Terasaki O. Physicochemical Understanding of the Impact of Pore Environment and Species of Adsorbates on Adsorption Behaviour. Angew Chem Int Ed Engl 2021; 60:20504-20510. [PMID: 34184380 DOI: 10.1002/anie.202107897] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Indexed: 11/10/2022]
Abstract
For a better design of adsorbents, it is important to know the intermolecular interaction among adsorbates and host material, leading to improved guest selectivity and uptake capacity. In this study, we demonstrate the influence of the interaction among adsorbates and substrate, controlled by the pore environment and species of adsorbates, on the adsorption behaviour. We report the unique CO2 adsorption behaviour of MOF-205 due to distinct pore geometry. The precise analysis through gas-adsorption crystallography with molecular simulation shows that capillary condensation of CO2 in MOF-205 occurs preferentially in the large dodecahedral pore rather than the small tetrahedral pore, because the interaction of CO2 with MOF-205 framework is weaker than that among CO2 molecules, while Ar and N2 are sequentially filled into two different pores of MOF-205 according to their size. Comparison of the materials with different pore environments reveals that the relative strength of the adsorbate-adsorbate and adsorbate-substrate interaction gives rise to different shapes of isotherms.
Collapse
Affiliation(s)
- Hae Sung Cho
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China.,Graduate School of EEWS, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hideki Tanaka
- Research Initiative for Supra-Materials (RISM), Shinshu University, 4-17-1 Wakasato, Nagano, 380-8553, Japan
| | - Yongjin Lee
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China.,Department of Chemistry and Chemical Engineering, Education and Research Center for Smart Energy and Materials, Inha University, Incheon, 22212, Republic of Korea
| | - Yue-Biao Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Juncong Jiang
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
| | - Minho Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hyungjun Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jeung Ku Kang
- Graduate School of EEWS, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Osamu Terasaki
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China.,Graduate School of EEWS, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|