1
|
Cai X, Zheng S, Wang X, Wang S, Guo M. An unconventional effector MoRpa12 targeting host nuclei is essential for the development and pathogenicity of Magnaporthe oryzae. Microbiol Res 2025; 296:128125. [PMID: 40056712 DOI: 10.1016/j.micres.2025.128125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/18/2025] [Accepted: 02/25/2025] [Indexed: 03/10/2025]
Abstract
RNA polymerase I (Pol I) is a multi-subunit protein complex associated with the transcription of most ribosomal RNA molecules in all eukaryotes. Rpa12 is a small subunit of the Pol I catalytic core and plays a critical role in RNA cleavage, transcription initiation and elongation during proliferation in yeast and mammals. However, the function of Rpa12 in phytopathogenic fungi has not yet been characterized. Here, we present the functional characterization of MoRpa12, a homologue of the yeast Rpa12, in Magnaporthe oryzae. MoRpa12 shows upregulation during the infection phase, and MoRpa12-GFP exhibits nuclear localization at different developmental stages of M. oryzae and translocates into the nuclei of plant cells after fungal penetration. The MoRpa12 mutants also exhibit significant defects on mitosis, autophagy, oxidative stress tolerance, cell wall integrity, septin ring assembly, lipid and glycogen metabolism, and pathogenicity. The four cysteine residues at the amino terminus of this protein are critical for the nuclear localization of MoRpa12, and their site-directed mutagenesis affects the localization, fungal invasion, and full virulence of M. oryzae. In conclusion, our findings indicate that MoRpa12 functions as an unconventional secreted effector targeting host nuclei and is essential for the fungal growth and plant infection of M. oryzae.
Collapse
Affiliation(s)
- Xiaoyan Cai
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Hefei 230036, PR China; College of Plant Protection, Anhui Agricultural University, Hefei 230036, PR China
| | - Shengjie Zheng
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Hefei 230036, PR China; College of Plant Protection, Anhui Agricultural University, Hefei 230036, PR China
| | - Xiuting Wang
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Hefei 230036, PR China; College of Plant Protection, Anhui Agricultural University, Hefei 230036, PR China
| | - Shuaishuai Wang
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Hefei 230036, PR China; College of Plant Protection, Anhui Agricultural University, Hefei 230036, PR China
| | - Min Guo
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Hefei 230036, PR China; College of Plant Protection, Anhui Agricultural University, Hefei 230036, PR China.
| |
Collapse
|
2
|
Qian H, Wu MH, Zhao WH, Zhu XM, Sun LX, Lu JP, Klionsky DJ, Lin FC, Liu XH. MoSec13 combined with MoGcn5b modulates MoAtg8 acetylation and regulates autophagy in Magnaporthe oryzae. Autophagy 2025:1-18. [PMID: 40320672 DOI: 10.1080/15548627.2025.2499289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/19/2025] [Accepted: 04/24/2025] [Indexed: 05/11/2025] Open
Abstract
Macroautophagy/autophagy is an evolutionarily conserved cellular degradation process that is crucial for cellular homeostasis in Magnaporthe oryzae. However, the precise regulatory mechanisms governing autophagy in this organism remain unclear. In this study, we found a multiregional localization of MoSec13 to the vesicle membrane, endoplasmic reticulum, nucleus, and perinucleus. MoSec13 negatively regulated autophagy through specific amino acid residues in its own WD40 structural domain by interacting with MoAtg7 and MoAtg8. We also found that the histone acetyltransferase MoGcn5b mediated the acetylation of MoAtg8 and regulated autophagy activity. Subsequently, we further determined that MoSec13 regulated the acetylation status of MoAtg8 by controlling the interaction between MoGcn5b and MoAtg8 in the nucleus. In addition, MoSec13 maintained lipid homeostasis by controlling TORC2 activity. This multilayered integration establishes MoSec13 as an essential node within the autophagic regulatory network. Our findings fill a critical gap in understanding the role of Sec13 in autophagy of filamentous fungi and provide a molecular foundation for developing new therapeutic strategies against rice blast fungus.ABBREVIATIONS BFA: brefeldin A; BiFC: bimolecular fluorescence complementation; CM: complete medium; CMAC: 7-amino-4-chloromethylcoumarin; Co-IP: co-immunoprecipitation; COPII: coat complex II; GFP: green fluorescent protein; HPH: hygromycin phosphotransferase; MM-N: nitrogen-starvation conditions; NPC: nuclear pore complex; PAS: phagophore assembly site; PE: phosphatidylethanolamine; UPR: unfolded protein response.
Collapse
Affiliation(s)
- Hui Qian
- State Key Laboratory for Quality and Safety of Agro-Products, Zhejiang Provincial Key Laboratory of Agricultural Microbiomics, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ming-Hua Wu
- State Key Laboratory for Quality and Safety of Agro-Products, Zhejiang Provincial Key Laboratory of Agricultural Microbiomics, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wen-Hui Zhao
- State Key Laboratory for Quality and Safety of Agro-Products, Zhejiang Provincial Key Laboratory of Agricultural Microbiomics, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xue-Ming Zhu
- State Key Laboratory for Quality and Safety of Agro-Products, Zhejiang Provincial Key Laboratory of Agricultural Microbiomics, Key Laboratory of Agricultural Microbiome (MARA), Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
- Xianghu Laboratory, Hangzhou, Zhejiang, China
| | - Li-Xiao Sun
- Yantai Vocational College, Yantai, Shandong, China
| | - Jian-Ping Lu
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Daniel J Klionsky
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Fu-Cheng Lin
- State Key Laboratory for Quality and Safety of Agro-Products, Zhejiang Provincial Key Laboratory of Agricultural Microbiomics, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- State Key Laboratory for Quality and Safety of Agro-Products, Zhejiang Provincial Key Laboratory of Agricultural Microbiomics, Key Laboratory of Agricultural Microbiome (MARA), Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
- Xianghu Laboratory, Hangzhou, Zhejiang, China
| | - Xiao-Hong Liu
- State Key Laboratory for Quality and Safety of Agro-Products, Zhejiang Provincial Key Laboratory of Agricultural Microbiomics, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Wengler MR, Talbot NJ. Mechanisms of regulated cell death during plant infection by the rice blast fungus Magnaporthe oryzae. Cell Death Differ 2025; 32:793-801. [PMID: 39794451 DOI: 10.1038/s41418-024-01442-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 12/10/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025] Open
Abstract
Fungi are the most important group of plant pathogens, responsible for many of the world's most devastating crop diseases. One of the reasons they are such successful pathogens is because several fungi have evolved the capacity to breach the tough outer cuticle of plants using specialized infection structures called appressoria. This is exemplified by the filamentous ascomycete fungus Magnaporthe oryzae, causal agent of rice blast, one of the most serious diseases affecting rice cultivation globally. M. oryzae develops a pressurized dome-shaped appressorium that uses mechanical force to rupture the rice leaf cuticle. Appressoria form in response to the hydrophobic leaf surface, which requires the Pmk1 MAP kinase signalling pathway, coupled to a series of cell-cycle checkpoints that are necessary for regulated cell death of the fungal conidium and development of a functionally competent appressorium. Conidial cell death requires autophagy, which occurs within each cell of the spore, and is regulated by components of the cargo-independent autophagy pathway. This results in trafficking of the contents of all three cells to the incipient appressorium, which develops enormous turgor of up to 8.0 MPa, due to glycerol accumulation, and differentiates a thickened, melanin-lined cell wall. The appressorium then re-polarizes, re-orienting the actin and microtubule cytoskeleton to enable development of a penetration peg in a perpendicular orientation, that ruptures the leaf surface using mechanical force. Re-polarization requires septin GTPases which form a ring structure at the base of the appressorium, which delineates the point of plant infection, and acts as a scaffold for actin re-localization, enhances cortical rigidity, and forms a lateral diffusion barrier to focus polarity determinants that regulate penetration peg formation. Here we review the mechanism of regulated cell death in M. oryzae, which requires autophagy but may also involve ferroptosis. We critically evaluate the role of regulated cell death in appressorium morphogenesis and examine how it is initiated and regulated, both temporally and spatially, during plant infection. We then use this synopsis to present a testable model for control of regulated cell death during appressorium-dependent plant infection by the blast fungus.
Collapse
|
4
|
Xiao J, Kang X, Li N, Hu J, Wang Y, Si J, Pan Y, Zhang S. The role of the poly(A) binding protein-binding protein MoPbp1 as a regulator of the TOR signaling pathway in growth, autophagy, and pathogenicity of the rice blast fungus. Int J Biol Macromol 2025; 306:141730. [PMID: 40043978 DOI: 10.1016/j.ijbiomac.2025.141730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 03/01/2025] [Accepted: 03/02/2025] [Indexed: 05/11/2025]
Abstract
The target of the rapamycin (TOR) signaling pathway is crucial for biological function in plant pathogenic fungi, yet its regulatory mechanisms remain limited. In this study, the biological functions of MoPbp1 were identified and characterized, and the findings indicate that MoPbp1 contributes to hyphal growth, conidiation, appressoria formation, metabolism of glycogen and lipid droplets, responses to stress, and pathogenicity in Magnaporthe oryzae. Further investigation revealed that MoPBP1 acts as a negative regulator of TOR activity and influences autophagy. In addition, transcriptome data revealed that MoPBP1 mainly regulates amino acid metabolism pathways, components of membrane, and oxidation-reduction process. Our results suggest that MoPbp1 is required for autophagy and pathogenicity in M. oryzae. Overall, we first revealed the relationship between Pbp1 and TOR activity in plant pathogenic fungi.
Collapse
Affiliation(s)
- Junlian Xiao
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China
| | - Xiaoru Kang
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China
| | - Na Li
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China
| | - Jinmei Hu
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China
| | - Yu Wang
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China
| | - Jianyu Si
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China
| | - Yuemin Pan
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China.
| | - Shulin Zhang
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
5
|
Wu M, Zhang H, Jia M, Cao X, Wang J. The role of the casein kinase 1 (CK1) family in fungal infections. Mol Biol Rep 2025; 52:430. [PMID: 40285862 DOI: 10.1007/s11033-025-10526-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 04/17/2025] [Indexed: 04/29/2025]
Abstract
The Casein kinase 1 (CK1) family, as an important member of the protein kinase family, exhibits high evolutionary conservation and is widely distributed in various cell types. CK1 plays critical roles in numerous cellular biological processes, and its abnormal expression is closely associated with the development and progression of various diseases. The CK1 protein family has been extensively studied and reported as an influential factor in various mammalian diseases. Increasing evidence indicates that the CK1 family also plays an indispensable role in fungal growth and infection processes. For example, CK1 protein in Candida albicans plays a crucial role in virulence and drug resistance; CK1 protein in Cryptococcus neoformans affects cell integrity and stress response; and CK1 protein in Magnaporthe oryzae and Fusarium graminearum is involved in fungal growth, conidiation, and pathogenesis. Advances in protein kinase inhibitor research, particularly through enhanced understanding of kinase-substrate interactions and species-specific structural features, are poised to enable the development of highly specific fungal CK1 inhibitors with improved anti-fungi indices.
Collapse
Affiliation(s)
- Meiling Wu
- College of Chemistry and Life Science, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing, 100124, China
| | - Haolin Zhang
- College of Chemistry and Life Science, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing, 100124, China
| | - Miao Jia
- College of Chemistry and Life Science, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing, 100124, China
| | - Xingyu Cao
- College of Chemistry and Life Science, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing, 100124, China
| | - Juan Wang
- College of Chemistry and Life Science, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing, 100124, China.
| |
Collapse
|
6
|
Quime BG, Ryder LS, Talbot NJ. Live cell imaging of plant infection provides new insight into the biology of pathogenesis by the rice blast fungus Magnaporthe oryzae. J Microsc 2025; 297:274-288. [PMID: 39797625 PMCID: PMC11808454 DOI: 10.1111/jmi.13382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/16/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025]
Abstract
Magnaporthe oryzae is the causal agent of rice blast, one of the most serious diseases affecting rice cultivation around the world. During plant infection, M. oryzae forms a specialised infection structure called an appressorium. The appressorium forms in response to the hydrophobic leaf surface and relies on multiple signalling pathways, including a MAP kinase phosphorelay and cAMP-dependent signalling, integrated with cell cycle control and autophagic cell death of the conidium. Together, these pathways regulate appressorium morphogenesis.The appressorium generates enormous turgor, applied as mechanical force to breach the rice cuticle. Re-polarisation of the appressorium requires a turgor-dependent sensor kinase which senses when a critical threshold of turgor has been reached to initiate septin-dependent re-polarisation of the appressorium and plant infection. Invasive growth then requires differential expression and secretion of a large repertoire of effector proteins secreted by distinct secretory pathways depending on their destination, which is also governed by codon usage and tRNA thiolation. Cytoplasmic effectors require an unconventional Golgi-independent secretory pathway and evidence suggests that clathrin-mediated endocytosis is necessary for their delivery into plant cells. The blast fungus then develops a transpressorium, a specific invasion structure used to move from cell-to-cell using pit field sites containing plasmodesmata, to facilitate its spread in plant tissue. This is controlled by the same MAP kinase signalling pathway as appressorium development and requires septin-dependent hyphal constriction. Recent progress in understanding the mechanisms of rice infection by this devastating pathogen using live cell imaging procedures are presented.
Collapse
|
7
|
Kalicharan RE, Fernandez J. Triple Threat: How Global Fungal Rice and Wheat Pathogens Utilize Comparable Pathogenicity Mechanisms to Drive Host Colonization. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2025; 38:173-186. [PMID: 39807944 DOI: 10.1094/mpmi-09-24-0106-fi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Plant pathogens pose significant threats to global cereal crop production, particularly for essential crops such as rice and wheat, which are fundamental to global food security and provide nearly 40% of the global caloric intake. As the global population continues to rise, increasing agricultural production to meet food demands becomes even more critical. However, the production of these vital crops is constantly threatened by phytopathological diseases, especially those caused by fungal pathogens such as Magnaporthe oryzae, the causative agent of rice blast disease; Fusarium graminearum, responsible for Fusarium head blight in wheat; and Zymoseptoria tritici, the source of Septoria tritici blotch. All three pathogens are hemibiotrophic, initially colonizing the host through a biotrophic, symptomless lifestyle, followed by causing cell death through the necrotrophic phase. Additionally, they deploy a diverse range of effectors, including proteinaceous and non-proteinaceous molecules, to manipulate fundamental host cellular processes, evade immune responses, and promote disease progression. This review discusses recent advances in understanding the effector biology of these three pathogens, highlighting both the shared functionalities and unique molecular mechanisms they employ to regulate conserved elements of host pathways, such as directly manipulating gene transcription in host nuclei, disrupting reactive oxygen species signaling, interfering with protein stability, and undermining host structural integrity. By detailing these complex interactions, the review explores potential targets for innovative control measures and emphasizes the need for further research to develop effective strategies against these destructive pathogens in the face of evolving environmental and agricultural challenges. [Formula: see text] Copyright © 2025 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Rachel E Kalicharan
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, U.S.A
| | - Jessie Fernandez
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, U.S.A
| |
Collapse
|
8
|
Zhang X, He R, Li Y, Ren S, Xiang S, Zheng J, Qu Z, Zhou S, Zhou Z, Chen XL. tRNA thiolation optimizes appressorium-mediated infection by enhancing codon-specific translation in Magnaporthe oryzae. Nucleic Acids Res 2025; 53:gkae1302. [PMID: 39777460 PMCID: PMC11705076 DOI: 10.1093/nar/gkae1302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 12/17/2024] [Accepted: 12/23/2024] [Indexed: 01/30/2025] Open
Abstract
Thiolation, a post-transcriptional modification catalyzed by Uba4-Urm1-Ncs2/Ncs6 pathway in three specific transfer RNAs (tRNAs), is conserved from yeast to humans and plays an important role in enhancing codon-anticodon interaction and translation efficiency. Yet, except for affecting effector secretion, its roles in plant pathogenic fungi are not fully understood. Here, we used Magnaporthe oryzae as a model system to illustrate the vital role of s2U34 modification on the appressorium-mediated virulence. The absence of tRNA thiolation leads to diminished translation elongation at AAA/CAA/GAA but not their synonymous codons, resulting in reduced levels of key proteins enriched in these codons, which are critical for appressorium development and function. Importantly, overexpressing these proteins can partially mitigate the defects resulting from NCS2 deletion. Our study sheds light on the s2U34 modification's role in plant pathogenic fungi, enhancing our understanding of translational control beyond effector secretion.
Collapse
Affiliation(s)
- Xinrong Zhang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Rongrong He
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yinan Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuchao Ren
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shikun Xiang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing Zheng
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhiguang Qu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shu Zhou
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhipeng Zhou
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiao-Lin Chen
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
9
|
Lv L, Yang C, Zhang X, Chen T, Luo M, Yu G, Chen Q. Autophagy-related protein PlATG2 regulates the vegetative growth, sporangial cleavage, autophagosome formation, and pathogenicity of peronophythora litchii. Virulence 2024; 15:2322183. [PMID: 38438325 PMCID: PMC10913709 DOI: 10.1080/21505594.2024.2322183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/18/2024] [Indexed: 03/06/2024] Open
Abstract
Autophagy is an intracellular degradation process that is important for the development and pathogenicity of phytopathogenic fungi and for the defence response of plants. However, the molecular mechanisms underlying autophagy in the pathogenicity of the plant pathogenic oomycete Peronophythora litchii, the causal agent of litchi downy blight, have not been well characterized. In this study, the autophagy-related protein ATG2 homolog, PlATG2, was identified and characterized using a CRISPR/Cas9-mediated gene replacement strategy in P. litchii. A monodansylcadaverine (MDC) staining assay indicated that deletion of PlATG2 abolished autophagosome formation. Infection assays demonstrated that ΔPlatg2 mutants showed significantly impaired pathogenicity in litchi leaves and fruits. Further studies have revealed that PlATG2 participates in radial growth and asexual/sexual development of P. litchii. Moreover, zoospore release and cytoplasmic cleavage of sporangia were considerably lower in the ΔPlatg2 mutants than in the wild-type strain by FM4-64 staining. Taken together, our results revealed that PlATG2 plays a pivotal role in vegetative growth, sporangia and oospore production, zoospore release, sporangial cleavage, and plant infection of P. litchii. This study advances our understanding of the pathogenicity mechanisms of the phytopathogenic oomycete P. litchii and is conducive to the development of effective control strategies.
Collapse
Affiliation(s)
- Lin Lv
- Hainan Yazhou Bay Seed Laboratory, College of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Sanya, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Chengdong Yang
- Hainan Yazhou Bay Seed Laboratory, College of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Sanya, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Xue Zhang
- Hainan Yazhou Bay Seed Laboratory, College of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Sanya, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Taixu Chen
- Hainan Yazhou Bay Seed Laboratory, College of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Sanya, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Manfei Luo
- Hainan Yazhou Bay Seed Laboratory, College of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Sanya, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Ge Yu
- Hainan Yazhou Bay Seed Laboratory, College of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Sanya, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Qinghe Chen
- Hainan Yazhou Bay Seed Laboratory, College of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Sanya, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| |
Collapse
|
10
|
Kay WT, O'Neill P, Gurr SJ, Fones HN. Long-term survival of asexual Zymoseptoria tritici spores in the environment. BMC Biol 2024; 22:265. [PMID: 39563388 PMCID: PMC11575008 DOI: 10.1186/s12915-024-02060-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 11/01/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND The fungal phytopathogen Zymoseptoria tritici, causal agent of the economically damaging Septoria tritici blotch of wheat, is different from most foliar fungal pathogens in that its germination occurs slowly and apparently randomly after arrival on the leaf surface and is followed by a potentially prolonged period of epiphytic growth and even reproduction, during which no feeding structures are formed by the fungus. Thus, understanding the cues for germination and the mechanisms that underpin survival in low-nutrient environments could provide key new avenues for disease control. RESULTS In this work, we examine survival, culturability and virulence of spores following transfer from a high nutrient environment to water. We find that a sub-population of Z. tritici spores can survive and remain virulent for at least 7 weeks in water alone, during which time multicellular structures split to single cells. The fungus relies heavily on stored lipids; however, if cell suspensions in water are dried, the cells survive without lipid utilisation. Changes in gene expression in the first hours after suspension in water reflect adaptation to stress, while longer term starvation (7 days) induces changes particularly in primary metabolism and cytochrome P450 (CYP) gene expression. Importantly, we also found that Z. tritici spores are equally or better able to survive in soil as in water, and that rain-splash occurring 49 days after soil inoculation can transfer cells to wheat seedlings growing in inoculated soil and cause Septoria leaf blotch disease. CONCLUSIONS Z. tritici blastospores can survive in water or soil for long periods, potentially spanning the intercrop period for UK winter wheat. They rely on internal lipid stores, with no external nutrition, and although a large proportion of spores do not survive for such an extended period, those that do remain as virulent as spores grown on rich media. Thus, Z. tritici has exceptional survival strategies, which are likely to be important in understanding its population genetics and in developing novel routes for Septoria leaf blotch control.
Collapse
Affiliation(s)
- William T Kay
- Biosciences, University of Exeter, Exeter, UK
- Department of Biology, University of Oxford, Oxford, UK
| | | | | | | |
Collapse
|
11
|
Xie R, Jiang B, Cao W, Wang S, Guo M. The dual-specificity kinase MoLKH1-mediated cell cycle, autophagy, and suppression of plant immunity is critical for development and pathogenicity of Magnaporthe oryzae. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108879. [PMID: 38964088 DOI: 10.1016/j.plaphy.2024.108879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/06/2024]
Abstract
Cell cycle progression, autophagic cell death during appressorium development, and ROS degradation at the infection site are important for the development of rice blast disease. However, the association of cell cycle, autophagy and ROS detoxification remains largely unknown in M. oryzae. Here, we identify the dual-specificity kinase MoLKH1, which serves as an important cell cycle regulator required for appressorium formation by regulating cytokinesis and cytoskeleton in M. oryzae. MoLKH1 is transcriptionally activated by H2O2 and required for H2O2-induced autophagic cell death and suppression of ROS-activated plant defense during plant invasion of M. oryzae. In addition, the Molkh1 mutant also showed several phenotypic defects, including delayed growth, abnormal conidiation, damaged cell wall integrity, impaired glycogen and lipid transport, reduced secretion of extracellular enzymes and effectors, and attenuated virulence of M. oryzae. Nuclear localization of MoLKH1 requires the nuclear localization sequence, Lammer motif, as well as the kinase active site and ATP-binding site in this protein. Site-directed mutagenesis showed that each of them plays crucial roles in fungal growth and pathogenicity of M. oryzae. In conclusion, our results demonstrate that MoLKH1-mediated cell cycle, autophagy, and suppression of plant immunity play crucial roles in development and pathogenicity of M. oryzae.
Collapse
Affiliation(s)
- Rui Xie
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Hefei, 230036, PR China; College of Plant Protection, Anhui Agricultural University, Hefei, 230036, PR China
| | - Bingxin Jiang
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Hefei, 230036, PR China; College of Plant Protection, Anhui Agricultural University, Hefei, 230036, PR China
| | - Wei Cao
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Hefei, 230036, PR China; College of Plant Protection, Anhui Agricultural University, Hefei, 230036, PR China
| | - Shuaishuai Wang
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Hefei, 230036, PR China; College of Plant Protection, Anhui Agricultural University, Hefei, 230036, PR China
| | - Min Guo
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Hefei, 230036, PR China; College of Plant Protection, Anhui Agricultural University, Hefei, 230036, PR China.
| |
Collapse
|
12
|
Hashimoto M, Kimura S, Arioka M. Nucleophagy in Aspergillus oryzae is Mediated by Autophagosome Formation and Vacuole-Mediated Degradation. Curr Microbiol 2024; 81:315. [PMID: 39162852 PMCID: PMC11335778 DOI: 10.1007/s00284-024-03838-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/07/2024] [Indexed: 08/21/2024]
Abstract
We previously reported autophagy-mediated degradation of nuclei, nucleophagy, in the filamentous fungus Aspergillus oryzae. In this study, we examined whether nuclei are degraded as a whole. We generated A. oryzae mutants deleted for orthologs of Saccharomyces cerevisiae YPT7 and ATG15 which are required, respectively, for autophagosome-vacuole fusion and vacuolar degradation of autophagic bodies. Degradation of histone H2B-EGFP under starvation conditions was greatly decreased in the ΔAoypt7 and ΔAoatg15 mutants. Fluorescence and electron microscopic observations showed that autophagosomes and autophagic bodies surrounding the entire nuclei were accumulated in the cytoplasm of ΔAoypt7 and the vacuole of ΔAoatg15, respectively. These results indicate that nuclei are engulfed in the autophagosomes as a whole and transported/released into the vacuolar lumen where they are degraded.
Collapse
Affiliation(s)
- Mau Hashimoto
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-Ku, Tokyo, 113-8657, Japan
| | - Satoshi Kimura
- Electron Microscope Section, Technology Advancement Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-Ku, Tokyo, 113-8657, Japan
| | - Manabu Arioka
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-Ku, Tokyo, 113-8657, Japan.
- Collaborative Research Institute for Innovative Microbiology (CRIIM), The University of Tokyo, 1-1-1 Yayoi, Bunkyo-Ku, Tokyo, 113-8657, Japan.
| |
Collapse
|
13
|
Zhu L, Zhu M, Li X, Shen Y, Duan S, Yang J. Functional Characterization of Ao4g24: An Uncharacterized Gene Involved in Conidiation, Trap Formation, Stress Response, and Secondary Metabolism in Arthrobotrys oligospora. Microorganisms 2024; 12:1532. [PMID: 39203374 PMCID: PMC11356499 DOI: 10.3390/microorganisms12081532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 09/03/2024] Open
Abstract
Arthrobotrys oligospora is a typical nematode-trapping (NT) fungus, which can secrete food cues to lure, capture, and digest nematodes by triggering the production of adhesive networks (traps). Based on genomic and proteomic analyses, multiple pathogenic genes and proteins involved in trap formation have been characterized; however, there are numerous uncharacterized genes that play important roles in trap formation. The functional studies of these unknown genes are helpful in systematically elucidating the complex interactions between A. oligospora and nematode hosts. In this study, we screened the gene AOL_s00004g24 (Ao4g24). This gene is similar to the SWI/SNF chromatin remodeling complex, which was found to play a potential role in trap formation in our previous transcriptome analysis. Here, we characterized the function of Ao4g24 by gene disruption, phenotypic analysis, and metabolomics. The deletion of Ao4g24 led to a remarkable decrease in conidia yield, trap formation, and secondary metabolites. Meanwhile, the absence of Ao4g24 influenced the mitochondrial membrane potential, ATP content, autophagy, ROS level, and stress response. These results indicate that Ao4g24 has crucial functions in sporulation, trap formation, and pathogenicity in NT fungi. Our study provides a reference for understanding the role of unidentified genes in mycelium growth and trap formation in NT fungi.
Collapse
Affiliation(s)
| | | | | | | | | | - Jinkui Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, and School of Life Science, Yunnan University, Kunming 650032, China; (L.Z.); (M.Z.); (X.L.); (Y.S.); (S.D.)
| |
Collapse
|
14
|
Wang JY, Cai YY, Li L, Zhu XM, Shen ZF, Wang ZH, Liao J, Lu JP, Liu XH, Lin FC. Dihydroorotase MoPyr4 is required for development, pathogenicity, and autophagy in rice blast fungus. Cell Commun Signal 2024; 22:362. [PMID: 39010102 PMCID: PMC11247805 DOI: 10.1186/s12964-024-01741-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/06/2024] [Indexed: 07/17/2024] Open
Abstract
Dihydroorotase (DHOase) is the third enzyme in the six enzymatic reaction steps of the endogenous pyrimidine nucleotide de novo biosynthesis pathway, which is a metabolic pathway conserved in both bacteria and eukaryotes. However, research on the biological function of DHOase in plant pathogenic fungi is very limited. In this study, we identified and named MoPyr4, a homologous protein of Saccharomyces cerevisiae DHOase Ura4, in the rice blast fungus Magnaporthe oryzae and investigated its ability to regulate fungal growth, pathogenicity, and autophagy. Deletion of MoPYR4 led to defects in growth, conidiation, appressorium formation, the transfer and degradation of glycogen and lipid droplets, appressorium turgor accumulation, and invasive hypha expansion in M. oryzae, which eventually resulted in weakened fungal pathogenicity. Long-term replenishment of exogenous uridine-5'-phosphate (UMP) can effectively restore the phenotype and virulence of the ΔMopyr4 mutant. Further study revealed that MoPyr4 also participated in the regulation of the Pmk1-MAPK signaling pathway, co-localized with peroxisomes for the oxidative stress response, and was involved in the regulation of the Osm1-MAPK signaling pathway in response to hyperosmotic stress. In addition, MoPyr4 interacted with MoAtg5, the core protein involved in autophagy, and positively regulated autophagic degradation. Taken together, our results suggested that MoPyr4 for UMP biosynthesis was crucial for the development and pathogenicity of M. oryzae. We also revealed that MoPyr4 played an essential role in the external stress response and pathogenic mechanism through participation in the Pmk1-MAPK signaling pathway, peroxisome-related oxidative stress response mechanism, the Osm1-MAPK signaling pathway and the autophagy pathway.
Collapse
Affiliation(s)
- Jing-Yi Wang
- Xianghu Laboratory, State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Ying-Ying Cai
- Xianghu Laboratory, State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Lin Li
- Xianghu Laboratory, State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xue-Ming Zhu
- Xianghu Laboratory, State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Zi-Fang Shen
- Xianghu Laboratory, State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Zi-He Wang
- Xianghu Laboratory, State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jian Liao
- Xianghu Laboratory, State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jian-Ping Lu
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiao-Hong Liu
- Xianghu Laboratory, State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Fu-Cheng Lin
- Xianghu Laboratory, State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.
- Xianghu Laboratory, State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
15
|
Liu Q, Long R, Lin C, Bi X, Liang Z, Deng YZ. Phosphatidylethanolamines link ferroptosis and autophagy during appressorium formation of rice blast fungus. MOLECULAR PLANT PATHOLOGY 2024; 25:e13489. [PMID: 38956897 PMCID: PMC11219472 DOI: 10.1111/mpp.13489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 06/13/2024] [Indexed: 07/04/2024]
Abstract
A cell death pathway, ferroptosis, occurs in conidial cells and is critical for formation and function of the infection structure, the appressorium, in the rice blast fungus Magnaporthe oryzae. In this study, we identified an orthologous lysophosphatidic acid acyltransferase (Lpaat) acting at upstream of phosphatidylethanolamines (PEs) biosynthesis and which is required for such fungal ferroptosis and pathogenicity. Two PE species, DOPE and SLPE, that depend on Lpaat function for production were sufficient for induction of lipid peroxidation and the consequent ferroptosis, thus positively regulating fungal pathogenicity. On the other hand, both DOPE and SLPE positively regulated autophagy. Loss of the LPAAT gene led to a decrease in the lipidated form of the autophagy protein Atg8, which is probably responsible for the autophagy defect of the lpaatΔ mutant. GFP-Lpaat was mostly localized on the membrane of lipid droplets (LDs) that were stained by the fluorescent dye monodansylpentane (MDH), suggesting that LDs serve as a source of lipids for membrane PE biosynthesis and probably as a membrane source of autophagosome. Overall, our results reveal novel intracellular membrane-bound organelle dynamics based on Lpaat-mediated lipid metabolism, providing a temporal and spatial link of ferroptosis and autophagy.
Collapse
Affiliation(s)
- Qiao Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research CentreSouth China Agricultural UniversityGuangzhouChina
| | - Ruhui Long
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research CentreSouth China Agricultural UniversityGuangzhouChina
| | - Chaoxiang Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research CentreSouth China Agricultural UniversityGuangzhouChina
| | - Xinping Bi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research CentreSouth China Agricultural UniversityGuangzhouChina
| | - Zhibin Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research CentreSouth China Agricultural UniversityGuangzhouChina
| | - Yi Zhen Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research CentreSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
| |
Collapse
|
16
|
Liang M, Feng A, Wang C, Zhu X, Su J, Xu Z, Yang J, Wang W, Chen K, Chen B, Lin X, Feng J, Chen S. Bacillus amyloliquefaciens LM-1 Affects Multiple Cell Biological Processes in Magnaporthe oryzae to Suppress Rice Blast. Microorganisms 2024; 12:1246. [PMID: 38930628 PMCID: PMC11205629 DOI: 10.3390/microorganisms12061246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Magnaporthe oryzae, one of the most destructive rice pathogens, causes significant losses during the rice harvest every year. Bacillus amyloliquefaciens has been explored in many crops as a potential biocontrol agent. However, the mechanisms of B. amyloliquefaciens controled rice blast are not fully understood. Here, a biocontrol strain LM-1, isolated from a contaminated medium, was identified as B. amyloliquefaciens using morphological observation, physiological and biochemical tests, and 16S rDNA sequencing. LM-1 inhibited the growth and pathogenicity of M. oryzae and Bipolaris oryzae (Breda de Haan) Shoem. The mycelia of M. oryzae co-cultured with LM-1 were enlarged and broken by fluorescence microscopy using calcofluor white. LM-1 inhibited the mycelia of M. oryzae from producing conidia. Genes itu, srf, and fenB were detected in LM-1. Furthermore, the supernatant of LM-1 interfered with the appressorium formation of M. oryzae, blocked conidial cell death, and reduced autophagy degradation but did not affect the normal germination of rice seeds and seeding growth. Additionally, we observed hypersensitivity reactions, reactive oxygen species, and iron accumulation reduction in rice cells inoculated with supernatant. Our study reveals that LM-1 has a control effect on rice blast and affects cell wall integrity, sporulation, appressorium formation, cell death, and autophagy.
Collapse
Affiliation(s)
- Meiling Liang
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (M.L.); (A.F.); (C.W.); (X.Z.); (J.S.); (J.Y.); (W.W.); (K.C.); (B.C.); (X.L.); (J.F.)
| | - Aiqing Feng
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (M.L.); (A.F.); (C.W.); (X.Z.); (J.S.); (J.Y.); (W.W.); (K.C.); (B.C.); (X.L.); (J.F.)
| | - Congying Wang
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (M.L.); (A.F.); (C.W.); (X.Z.); (J.S.); (J.Y.); (W.W.); (K.C.); (B.C.); (X.L.); (J.F.)
| | - Xiaoyuan Zhu
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (M.L.); (A.F.); (C.W.); (X.Z.); (J.S.); (J.Y.); (W.W.); (K.C.); (B.C.); (X.L.); (J.F.)
| | - Jing Su
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (M.L.); (A.F.); (C.W.); (X.Z.); (J.S.); (J.Y.); (W.W.); (K.C.); (B.C.); (X.L.); (J.F.)
| | - Zihan Xu
- School of Life Sciences, South China Normal University, Guangzhou 510631, China;
| | - Jianyuan Yang
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (M.L.); (A.F.); (C.W.); (X.Z.); (J.S.); (J.Y.); (W.W.); (K.C.); (B.C.); (X.L.); (J.F.)
| | - Wenjuan Wang
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (M.L.); (A.F.); (C.W.); (X.Z.); (J.S.); (J.Y.); (W.W.); (K.C.); (B.C.); (X.L.); (J.F.)
| | - Kailing Chen
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (M.L.); (A.F.); (C.W.); (X.Z.); (J.S.); (J.Y.); (W.W.); (K.C.); (B.C.); (X.L.); (J.F.)
| | - Bing Chen
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (M.L.); (A.F.); (C.W.); (X.Z.); (J.S.); (J.Y.); (W.W.); (K.C.); (B.C.); (X.L.); (J.F.)
| | - Xiaopeng Lin
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (M.L.); (A.F.); (C.W.); (X.Z.); (J.S.); (J.Y.); (W.W.); (K.C.); (B.C.); (X.L.); (J.F.)
| | - Jinqi Feng
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (M.L.); (A.F.); (C.W.); (X.Z.); (J.S.); (J.Y.); (W.W.); (K.C.); (B.C.); (X.L.); (J.F.)
| | - Shen Chen
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (M.L.); (A.F.); (C.W.); (X.Z.); (J.S.); (J.Y.); (W.W.); (K.C.); (B.C.); (X.L.); (J.F.)
| |
Collapse
|
17
|
Guo S, Zhang S. The Cysteine Protease CfAtg4 Interacts with CfAtg8 to Govern the Growth, Autophagy and Pathogenicity of Colletotrichum fructicola. J Fungi (Basel) 2024; 10:431. [PMID: 38921417 PMCID: PMC11204552 DOI: 10.3390/jof10060431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/07/2024] [Accepted: 06/08/2024] [Indexed: 06/27/2024] Open
Abstract
Camellia oleifera is a native woody oil plant in southern China and is infected with anthracnose wherever it is grown. We previously identified Colletotrichum fructicola as the major causal agent of anthracnose on C. oleifera and found that CfAtg8 regulates the pathogenicity and development of C. fructicola. Here, we revealed that CfAtg4 interacts with CfAtg8, contributing to the formation of autophagosomes. The CfAtg81-160 allele, which only contains 1-160 amino acids of the CfAtg8, partially recovered the autophagosome numbers and autophagy defects of the ΔCfatg4 mutant. Consequently, these recoveries resulted in the restoration of the defects of the ΔCfatg4 mutant in growth and responses to different external stresses, albeit to an extent. Importantly, we illustrated the critical roles of CfAtg81-160 in appressoria formation, and pathogenicity. Collectively, our findings provide new insights into the importance of the interaction between CfAtg8 and CfAtg4 in the growth, autophagy and pathogenicity of the phytopathogenic fungi.
Collapse
Affiliation(s)
- Shufeng Guo
- College of Forestry, Central South University of Forestry and Technology, Changsha 410004, China;
- Key Laboratory of Forest Bio-Resources and Integrated Pest Management for Higher Education in Hunan Province, Changsha 410004, China
- Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Changsha 410004, China
| | - Shengpei Zhang
- College of Forestry, Central South University of Forestry and Technology, Changsha 410004, China;
- Key Laboratory of Forest Bio-Resources and Integrated Pest Management for Higher Education in Hunan Province, Changsha 410004, China
- Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Changsha 410004, China
| |
Collapse
|
18
|
Liu Q, Long R, Zhi C, Liang Z, Deng YZ. PUFA-PLs biosynthesis enzymes contribute to pathogenic development of rice blast fungus Magnaporthe oryzae. Mycology 2024; 15:602-619. [PMID: 39678643 PMCID: PMC11636149 DOI: 10.1080/21501203.2024.2350169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/26/2024] [Indexed: 12/17/2024] Open
Abstract
Rice blast is one of the most devastating diseases and a serious threat to global food security. It is caused by the ascomycetous fungus Magnaporthe oryzae. During the pathogenic development of M. oryzae, ferroptotic death of conidial cells is critical for appressorium formation and infection to host rice. In this study, we identified and functionally characterised orthologs of fatty acid desaturase (Fad2) and acyl-CoA synthetase long-chain family (Acsl4) in M. oryzae. Pathogenicity was impaired in the fad2Δ or acsl4Δ mutant and targeted lipidomics analysis demonstrated that Fad2 and Acsl4 were involved in the production of polyunsaturated fatty acids (PUFAs)-containing phospholipids (PUFA-PLs) potentially contributing to ferroptosis. Treatment with FeCl3, an oxidative agent to cause lipid peroxidation, could partially restore fad2Δ pathogenicity. Fad2 was also found to potentially interact with proteins involved in cellular redox homoeostasis. Overall, our results elucidate the role of PUFA-PLs biosynthesis in fungal cell death and fungal pathogenicity, providing a theoretical basis for the development of specific pesticides/drugs targeting ferroptosis caused by lipid peroxidation.
Collapse
Affiliation(s)
- Qiao Liu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Ruhui Long
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Cailing Zhi
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Zhibin Liang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Yi Zhen Deng
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou, China
| |
Collapse
|
19
|
Cruz-Mireles N, Osés-Ruiz M, Derbyshire P, Jégousse C, Ryder LS, Bautista MJA, Eseola A, Sklenar J, Tang B, Yan X, Ma W, Findlay KC, Were V, MacLean D, Talbot NJ, Menke FLH. The phosphorylation landscape of infection-related development by the rice blast fungus. Cell 2024; 187:2557-2573.e18. [PMID: 38729111 DOI: 10.1016/j.cell.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 02/02/2024] [Accepted: 04/10/2024] [Indexed: 05/12/2024]
Abstract
Many of the world's most devastating crop diseases are caused by fungal pathogens that elaborate specialized infection structures to invade plant tissue. Here, we present a quantitative mass-spectrometry-based phosphoproteomic analysis of infection-related development by the rice blast fungus Magnaporthe oryzae, which threatens global food security. We mapped 8,005 phosphosites on 2,062 fungal proteins following germination on a hydrophobic surface, revealing major re-wiring of phosphorylation-based signaling cascades during appressorium development. Comparing phosphosite conservation across 41 fungal species reveals phosphorylation signatures specifically associated with biotrophic and hemibiotrophic fungal infection. We then used parallel reaction monitoring (PRM) to identify phosphoproteins regulated by the fungal Pmk1 MAPK that controls plant infection by M. oryzae. We define 32 substrates of Pmk1 and show that Pmk1-dependent phosphorylation of regulator Vts1 is required for rice blast disease. Defining the phosphorylation landscape of infection therefore identifies potential therapeutic interventions for the control of plant diseases.
Collapse
Affiliation(s)
- Neftaly Cruz-Mireles
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Miriam Osés-Ruiz
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Paul Derbyshire
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Clara Jégousse
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Lauren S Ryder
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Mark Jave A Bautista
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Alice Eseola
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Jan Sklenar
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Bozeng Tang
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Xia Yan
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Weibin Ma
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Kim C Findlay
- Department of Cell and Developmental Biology, The John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Vincent Were
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Dan MacLean
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Nicholas J Talbot
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK.
| | - Frank L H Menke
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK.
| |
Collapse
|
20
|
Zhang L, Zhang Y, Liu Y, Miao W, Ai J, Li J, Peng S, Li S, Ye L, Zeng R, Shi X, Ma J, Lin Y, Kuang W, Cui R. Multi-omics analysis revealed that the protein kinase MoKin1 affected the cellular response to endoplasmic reticulum stress in the rice blast fungus, Magnaporthe oryzae. BMC Genomics 2024; 25:449. [PMID: 38714914 PMCID: PMC11077741 DOI: 10.1186/s12864-024-10337-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 04/23/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Previous studies have shown that protein kinase MoKin1 played an important role in the growth, conidiation, germination and pathogenicity in rice blast fungus, Magnaporthe oryzae. ΔMokin1 mutant showed significant phenotypic defects and significantly reduced pathogenicity. However, the internal mechanism of how MoKin1 affected the development of physiology and biochemistry remained unclear in M. oryzae. RESULT This study adopted a multi-omics approach to comprehensively analyze MoKin1 function, and the results showed that MoKin1 affected the cellular response to endoplasmic reticulum stress (ER stress). Proteomic analysis revealed that the downregulated proteins in ΔMokin1 mutant were enriched mainly in the response to ER stress triggered by the unfolded protein. Loss of MoKin1 prevented the ER stress signal from reaching the nucleus. Therefore, the phosphorylation of various proteins regulating the transcription of ER stress-related genes and mRNA translation was significantly downregulated. The insensitivity to ER stress led to metabolic disorders, resulting in a significant shortage of carbohydrates and a low energy supply, which also resulted in severe phenotypic defects in ΔMokin1 mutant. Analysis of MoKin1-interacting proteins indicated that MoKin1 really took participate in the response to ER stress. CONCLUSION Our results showed the important role of protein kinase MoKin1 in regulating cellular response to ER stress, providing a new research direction to reveal the mechanism of MoKin1 affecting pathogenic formation, and to provide theoretical support for the new biological target sites searching and bio-pesticides developing.
Collapse
Affiliation(s)
- Lianhu Zhang
- College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Yifan Zhang
- College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Yankun Liu
- College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Wenjing Miao
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Jingyu Ai
- College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Jingling Li
- College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Song Peng
- College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Songyan Li
- College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Lifang Ye
- College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Rong Zeng
- College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Xugen Shi
- College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Jian Ma
- College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Yachun Lin
- College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China.
| | - Weigang Kuang
- College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China.
| | - Ruqiang Cui
- College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China.
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China.
| |
Collapse
|
21
|
Zhang Z, Wang S, Guo M. The CHY-type zinc finger protein MoChy1 is involved in polarized growth, conidiation, autophagy and pathogenicity of Magnaporthe oryzae. Int J Biol Macromol 2024; 268:131867. [PMID: 38670181 DOI: 10.1016/j.ijbiomac.2024.131867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
Polarized growth is critical for the development of filamentous phytopathogens, and the CHY-type zinc finger protein Chy1 regulates microtubule assembly to influence polarized growth and thereby affect plant infections. However, the biological role of a Chy1 homolog MoChy1 remains unknown in Magnaporthe oryzae. We found here that the MoChy1-GFP was distributed in the cytoplasm outside the vacuole in hyphae and localized mainly to the vacuole compartments as the appressorium matured. The Mochy1 mutants showed an extremely slow growth rate, curved and branched mycelium, reduced conidiation, and a smaller size in the appressorium. Meanwhile, the Mochy1 mutants showed increased sensitivity to benomyl, damaged microtubule cytoskeleton, and mislocalized polarisome protein MoSpa2 and chitin synthase MoChs6 in hyphae. Compared to Guy11, the Mochy1 mutants exhibited increased sensitivity to H2O2, impaired ability to eliminate host-derived ROS and reduced penetration into host plants, resulting in a strong reduction in pathogenicity of Mochy1 mutants. Furthermore, the Mochy1 mutants also exhibited defects in chitin distribution, osmotic stress tolerance, and septin ring organization during appressorium differentiation and fungal development. Nonselective autophagy was negatively regulated in Mochy1 mutants compared to Guy11. In summary, MoChy1 plays multiple roles in fungal polar growth and full virulence of M. oryzae.
Collapse
Affiliation(s)
- Zhaodi Zhang
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Hefei 230036, PR China; College of Plant Protection, Anhui Agricultural University, Hefei 230036, PR China
| | - Shuaishuai Wang
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Hefei 230036, PR China; College of Plant Protection, Anhui Agricultural University, Hefei 230036, PR China.
| | - Min Guo
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Hefei 230036, PR China; College of Plant Protection, Anhui Agricultural University, Hefei 230036, PR China.
| |
Collapse
|
22
|
Baudin M, Le Naour‐Vernet M, Gladieux P, Tharreau D, Lebrun M, Lambou K, Leys M, Fournier E, Césari S, Kroj T. Pyricularia oryzae: Lab star and field scourge. MOLECULAR PLANT PATHOLOGY 2024; 25:e13449. [PMID: 38619508 PMCID: PMC11018116 DOI: 10.1111/mpp.13449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/08/2024] [Accepted: 03/09/2024] [Indexed: 04/16/2024]
Abstract
Pyricularia oryzae (syn. Magnaporthe oryzae), is a filamentous ascomycete that causes a major disease called blast on cereal crops, as well as on a wide variety of wild and cultivated grasses. Blast diseases have a tremendous impact worldwide particularly on rice and on wheat, where the disease emerged in South America in the 1980s, before spreading to Asia and Africa. Its economic importance, coupled with its amenability to molecular and genetic manipulation, have inspired extensive research efforts aiming at understanding its biology and evolution. In the past 40 years, this plant-pathogenic fungus has emerged as a major model in molecular plant-microbe interactions. In this review, we focus on the clarification of the taxonomy and genetic structure of the species and its host range determinants. We also discuss recent molecular studies deciphering its lifecycle. TAXONOMY Kingdom: Fungi, phylum: Ascomycota, sub-phylum: Pezizomycotina, class: Sordariomycetes, order: Magnaporthales, family: Pyriculariaceae, genus: Pyricularia. HOST RANGE P. oryzae has the ability to infect a wide range of Poaceae. It is structured into different host-specialized lineages that are each associated with a few host plant genera. The fungus is best known to cause tremendous damage to rice crops, but it can also attack other economically important crops such as wheat, maize, barley, and finger millet. DISEASE SYMPTOMS P. oryzae can cause necrotic lesions or bleaching on all aerial parts of its host plants, including leaf blades, sheaths, and inflorescences (panicles, spikes, and seeds). Characteristic symptoms on leaves are diamond-shaped silver lesions that often have a brown margin and whose appearance is influenced by numerous factors such as the plant genotype and environmental conditions. USEFUL WEBSITES Resources URL Genomic data repositories http://genome.jouy.inra.fr/gemo/ Genomic data repositories http://openriceblast.org/ Genomic data repositories http://openwheatblast.net/ Genome browser for fungi (including P. oryzae) http://fungi.ensembl.org/index.html Comparative genomics database https://mycocosm.jgi.doe.gov/mycocosm/home T-DNA mutant database http://atmt.snu.kr/ T-DNA mutant database http://www.phi-base.org/ SNP and expression data https://fungidb.org/fungidb/app/.
Collapse
Affiliation(s)
- Maël Baudin
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRDMontpellierFrance
- Present address:
Université Angers, Institut Agro, INRAE, IRHS, SFR QUASAVAngersFrance
| | - Marie Le Naour‐Vernet
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRDMontpellierFrance
| | - Pierre Gladieux
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRDMontpellierFrance
| | - Didier Tharreau
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRDMontpellierFrance
- CIRAD, UMR PHIMMontpellierFrance
| | - Marc‐Henri Lebrun
- UMR 1290 BIOGER – Campus Agro Paris‐Saclay – INRAE‐AgroParisTechPalaiseauFrance
| | - Karine Lambou
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRDMontpellierFrance
| | - Marie Leys
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRDMontpellierFrance
| | - Elisabeth Fournier
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRDMontpellierFrance
| | - Stella Césari
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRDMontpellierFrance
| | - Thomas Kroj
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRDMontpellierFrance
| |
Collapse
|
23
|
Eisermann I, Talbot NJ. Septin-dependent invasive growth by the rice blast fungus Magnaporthe oryzae. JOURNAL OF PLANT DISEASES AND PROTECTION : SCIENTIFIC JOURNAL OF THE GERMAN PHYTOMEDICAL SOCIETY (DPG) 2024; 131:1145-1151. [PMID: 38947556 PMCID: PMC11213810 DOI: 10.1007/s41348-024-00883-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 02/05/2024] [Indexed: 07/02/2024]
Abstract
Septin GTPases are morphogenetic proteins that are widely conserved in eukaryotic organisms fulfilling diverse roles in cell division, differentiation and development. In the filamentous fungal pathogen Magnaporthe oryzae, the causal agent of the devastating blast diseases of rice and wheat, septins have been shown to be essential for plant infection. The blast fungus elaborates a specialised infection structure called an appressorium with which it mechanically ruptures the plant cuticle. Septin aggregation and generation of a hetero-oligomeric ring structure at the base of the infection cell is indispensable for plant infection. Furthermore, once the fungus enters host tissue it develops another infection structure, the transpressorium, enabling it to move between living host plant cells, which also requires septins for its function. Specific inhibition of septin aggregation-either genetically or with chemical inhibitors-prevents plant infection. Significantly, by screening for inhibitors of septin aggregation, broad spectrum anti-fungal compounds have been identified that prevent rice blast and a number of other cereal diseases in field trials. We review the recent advances in our understanding of septin biology and their potential as targets for crop disease control.
Collapse
Affiliation(s)
- Iris Eisermann
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, NR47UH UK
| | - Nicholas J. Talbot
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, NR47UH UK
| |
Collapse
|
24
|
Feng L, Dong M, Huang Z, Wang Q, An B, He C, Wang Q, Luo H. CgCFEM1 Is Required for the Full Virulence of Colletotrichum gloeosporioides. Int J Mol Sci 2024; 25:2937. [PMID: 38474183 DOI: 10.3390/ijms25052937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/24/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
Colletotrichum gloeosporioides is widely distributed and causes anthracnose on many crops, resulting in serious economic losses. Common fungal extracellular membrane (CFEM) domain proteins have been implicated in virulence and their interaction with the host plant, but their roles in C. gloeosporioides are still unknown. In this study, a CFEM-containing protein of C. gloeosporioides was identified and named as CgCFEM1. The expression levels of CgCFEM1 were found to be markedly higher in appressoria, and this elevated expression was particularly pronounced during the initial stages of infection in the rubber tree. Absence of CgCFEM1 resulted in impaired pathogenicity, accompanied by notable perturbations in spore morphogenesis, conidiation, appressorium development and primary invasion. During the process of appressorium development, the absence of CgCFEM1 enhanced the mitotic activity in both conidia and germ tubes, as well as compromised conidia autophagy. Rapamycin was found to basically restore the appressorium formation, and the activity of target of rapamycin (TOR) kinase was significantly induced in the CgCFEM1 knockout mutant (∆CgCFEM1). Furthermore, CgCFEM1 was proved to suppress chitin-triggered reactive oxygen species (ROS) accumulation and change the expression patterns of defense-related genes. Collectively, we identified a fungal effector CgCFEM1 that contributed to pathogenicity by regulating TOR-mediated conidia and appressorium morphogenesis of C. gloeosporioides and inhibiting the defense responses of the rubber tree.
Collapse
Affiliation(s)
- Liping Feng
- Sanya Nanfan Research Institute of Hainan University, School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Meixia Dong
- Sanya Nanfan Research Institute of Hainan University, School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Zhirui Huang
- Sanya Nanfan Research Institute of Hainan University, School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Qian Wang
- Sanya Nanfan Research Institute of Hainan University, School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Bang An
- Sanya Nanfan Research Institute of Hainan University, School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Chaozu He
- Sanya Nanfan Research Institute of Hainan University, School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Qiannan Wang
- Sanya Nanfan Research Institute of Hainan University, School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Hongli Luo
- Sanya Nanfan Research Institute of Hainan University, School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| |
Collapse
|
25
|
Mohaimin AZ, Krishnamoorthy S, Shivanand P. A critical review on bioaerosols-dispersal of crop pathogenic microorganisms and their impact on crop yield. Braz J Microbiol 2024; 55:587-628. [PMID: 38001398 PMCID: PMC10920616 DOI: 10.1007/s42770-023-01179-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Bioaerosols are potential sources of pathogenic microorganisms that can cause devastating outbreaks of global crop diseases. Various microorganisms, insects and viroids are known to cause severe crop diseases impeding global agro-economy. Such losses threaten global food security, as it is estimated that almost 821 million people are underfed due to global crisis in food production. It is estimated that global population would reach 10 billion by 2050. Hence, it is imperative to substantially increase global food production to about 60% more than the existing levels. To meet the increasing demand, it is essential to control crop diseases and increase yield. Better understanding of the dispersive nature of bioaerosols, seasonal variations, regional diversity and load would enable in formulating improved strategies to control disease severity, onset and spread. Further, insights on regional and global bioaerosol composition and dissemination would help in predicting and preventing endemic and epidemic outbreaks of crop diseases. Advanced knowledge of the factors influencing disease onset and progress, mechanism of pathogen attachment and penetration, dispersal of pathogens, life cycle and the mode of infection, aid the development and implementation of species-specific and region-specific preventive strategies to control crop diseases. Intriguingly, development of R gene-mediated resistant varieties has shown promising results in controlling crop diseases. Forthcoming studies on the development of an appropriately stacked R gene with a wide range of resistance to crop diseases would enable proper management and yield. The article reviews various aspects of pathogenic bioaerosols, pathogen invasion and infestation, crop diseases and yield.
Collapse
Affiliation(s)
- Abdul Zul'Adly Mohaimin
- Environmental and Life Sciences Programme, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Bandar Seri Begawan, BE1410, Brunei Darussalam
| | - Sarayu Krishnamoorthy
- Environmental and Life Sciences Programme, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Bandar Seri Begawan, BE1410, Brunei Darussalam
| | - Pooja Shivanand
- Environmental and Life Sciences Programme, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Bandar Seri Begawan, BE1410, Brunei Darussalam.
| |
Collapse
|
26
|
Shi H, Meng S, Qiu J, Xie S, Jiang N, Luo C, Naqvi NI, Kou Y. MoAti1 mediates mitophagy by facilitating recruitment of MoAtg8 to promote invasive growth in Magnaporthe oryzae. MOLECULAR PLANT PATHOLOGY 2024; 25:e13439. [PMID: 38483039 PMCID: PMC10938464 DOI: 10.1111/mpp.13439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/18/2024] [Accepted: 02/03/2024] [Indexed: 03/17/2024]
Abstract
Mitophagy is a selective autophagy for the degradation of damaged or excessive mitochondria to maintain intracellular homeostasis. In Magnaporthe oryzae, a filamentous ascomycetous fungus that causes rice blast, the most devastating disease of rice, mitophagy occurs in the invasive hyphae to promote infection. To date, only a few proteins are known to participate in mitophagy and the mechanisms of mitophagy are largely unknown in pathogenic fungi. Here, by a yeast two-hybrid screen with the core autophagy-related protein MoAtg8 as a bait, we obtained a MoAtg8 interactor MoAti1 (MoAtg8-interacting protein 1). Fluorescent observations and protease digestion analyses revealed that MoAti1 is primarily localized to the peripheral mitochondrial outer membrane and is responsible for recruiting MoAtg8 to mitochondria under mitophagy induction conditions. MoAti1 is specifically required for mitophagy, but not for macroautophagy and pexophagy. Infection assays suggested that MoAti1 is required for mitophagy in invasive hyphae during pathogenesis. Notably, no homologues of MoAti1 were found in rice and human protein databases, indicating that MoAti1 may be used as a potential target to control rice blast. By the host-induced gene silencing (HIGS) strategy, transgenic rice plants targeted to silencing MoATI1 showed enhanced resistance against M. oryzae with unchanged agronomic traits. Our results suggest that MoATI1 is required for mitophagy and pathogenicity in M. oryzae and can be used as a target for reducing rice blast.
Collapse
Affiliation(s)
- Huanbin Shi
- State Key Lab of Rice Biology and BreedingChina National Rice Research InstituteHangzhouChina
| | - Shuai Meng
- State Key Lab of Rice Biology and BreedingChina National Rice Research InstituteHangzhouChina
| | - Jiehua Qiu
- State Key Lab of Rice Biology and BreedingChina National Rice Research InstituteHangzhouChina
| | - Shuwei Xie
- State Key Lab of Rice Biology and BreedingChina National Rice Research InstituteHangzhouChina
| | - Nan Jiang
- State Key Lab of Rice Biology and BreedingChina National Rice Research InstituteHangzhouChina
| | - Chaoxi Luo
- Key Lab of Horticultural Plant Biology, Ministry of Education, and College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Naweed I. Naqvi
- Temasek Life Sciences Laboratory, Department of Biological SciencesNational University of SingaporeSingapore
| | - Yanjun Kou
- State Key Lab of Rice Biology and BreedingChina National Rice Research InstituteHangzhouChina
| |
Collapse
|
27
|
Wu XY, Dong B, Zhu XM, Cai YY, Li L, Lu JP, Yu B, Cheng JL, Xu F, Bao JD, Wang Y, Liu XH, Lin FC. SP-141 targets Trs85 to inhibit rice blast fungus infection and functions as a potential broad-spectrum antifungal agent. PLANT COMMUNICATIONS 2024; 5:100724. [PMID: 37771153 PMCID: PMC10873891 DOI: 10.1016/j.xplc.2023.100724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/12/2023] [Accepted: 09/25/2023] [Indexed: 09/30/2023]
Abstract
Rice blast is a devastating disease worldwide, threatening rice production and food security. The blast fungus Magnaporthe oryzae invades the host via the appressorium, a specialized pressure-generating structure that generates enormous turgor pressure to penetrate the host cuticle. However, owing to ongoing evolution of fungicide resistance, it is vitally important to identify new targets and fungicides. Here, we show that Trs85, a subunit of the transport protein particle III complex, is essential for appressorium-mediated infection in M. oryzae. We explain how Trs85 regulates autophagy through Ypt1 (a small guanosine triphosphatase protein) in M. oryzae. We then identify a key conserved amphipathic α helix within Trs85 that is associated with pathogenicity of M. oryzae. Through computer-aided screening, we identify a lead compound, SP-141, that affects autophagy and the Trs85-Ypt1 interaction. SP-141 demonstrates a substantial capacity to effectively inhibit infection caused by the rice blast fungus while also exhibiting wide-ranging potential as an antifungal agent with broad-spectrum activity. Taken together, our data show that Trs85 is a potential new target and that SP-141 has potential for the control of rice blast. Our findings thus provide a novel strategy that may help in the fight against rice blast.
Collapse
Affiliation(s)
- Xi-Yu Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Bo Dong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310058, Zhejiang Province, China; Department of Pharmacology and Nutritional Science, College of Medicine, The University of Kentucky, Lexington, KY 40506, USA; Markey Cancer Center, College of Medicine, The University of Kentucky, Lexington, KY 40506, USA
| | - Xue-Ming Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310058, Zhejiang Province, China
| | - Ying-Ying Cai
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Lin Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310058, Zhejiang Province, China
| | - Jian-Ping Lu
- College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Bin Yu
- Institute of Pesticide and Environmental Toxicology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Jing-Li Cheng
- Institute of Pesticide and Environmental Toxicology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Fei Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310058, Zhejiang Province, China
| | - Jian-Dong Bao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310058, Zhejiang Province, China
| | - Ying Wang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201106, Shanghai, China
| | - Xiao-Hong Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang Province, China.
| | - Fu-Cheng Lin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang Province, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310058, Zhejiang Province, China.
| |
Collapse
|
28
|
Chen R, Lu K, Yang L, Jiang J, Li L. Peroxin MoPex22 Regulates the Import of Peroxisomal Matrix Proteins and Appressorium-Mediated Plant Infection in Magnaporthe oryzae. J Fungi (Basel) 2024; 10:143. [PMID: 38392815 PMCID: PMC10890347 DOI: 10.3390/jof10020143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
Magnaporthe oryzae, the pathogen responsible for rice blast disease, utilizes specialized infection structures known as appressoria to breach the leaf cuticle and establish intracellular, infectious hyphae. Our study demonstrates that the peroxin MoPex22 is crucial for appressorium function, specifically for the development of primary penetration hyphae. The ∆Mopex22 mutant exhibited slow growth, reduced aerial hyphae, and almost complete loss of virulence. Specifically, despite the mutant's capability to form appressoria, it showed abnormalities during appressorium development, including reduced turgor, increased permeability of the appressorium wall, failure to form septin rings, and significantly decreased ability to penetrate host cells. Additionally, there was a delay in the degradation of lipid droplets during conidial germination and appressorium development. Consistent with these findings, the ΔMopex22 mutant showed an inefficient utilization of long-chain fatty acids and defects in cell wall integrity. Moreover, our findings indicate that MoPex22 acts as an anchor for MoPex4, facilitating the localization of MoPex4 to peroxisomes. Together with MoPex4, it affects the function of MoPex5, thus regulating the import of peroxisomal matrix proteins. Overall, these results highlight the essential role of MoPex22 in regulating the transport of peroxisomal matrix proteins, which affect fatty acid metabolism, glycerol accumulation, cell wall integrity, growth, appressorium development, and the pathogenicity of M. oryzae. This study provides valuable insights into the significance of peroxin functions in fungal biology and appressorium-mediated plant infection.
Collapse
Affiliation(s)
- Rangrang Chen
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Kailun Lu
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Lina Yang
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Jihong Jiang
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Lianwei Li
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| |
Collapse
|
29
|
Shen Q, Naqvi NI. The Ferroptosis landscape of biotic interactions in plants. CURRENT OPINION IN PLANT BIOLOGY 2024; 77:102499. [PMID: 38142619 DOI: 10.1016/j.pbi.2023.102499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 11/06/2023] [Accepted: 12/06/2023] [Indexed: 12/26/2023]
Abstract
Ferroptosis is a cell death pathway that relies on iron- and reactive oxygen species-dependent lethal accumulation of lipid peroxides in the cytosol and/or plasma membrane. Interestingly, Ferroptosis is widely involved in modulating such regulated fatality in the host plant as well as the pathogen albeit with different outcome, dynamics, and interesting metabolic adaptations. Although the basic mechanism of Ferroptosis has been established recently in plants and associated microbes, the conservation, acclimatization, and application of such regulated cell death modality are now beginning to be explored further. Efforts towards this will certainly help better understand the origin, molecular mechanisms, and function of Ferroptosis-associated developmental regulation of biotic interactions in plants.
Collapse
Affiliation(s)
- Qing Shen
- Temasek Life Sciences Laboratory, 1 Research Link, 117604, Singapore
| | - Naweed I Naqvi
- Temasek Life Sciences Laboratory, 1 Research Link, 117604, Singapore; Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, 117558, Singapore.
| |
Collapse
|
30
|
Li YB, Shen N, Deng X, Liu Z, Zhu S, Liu C, Tang D, Han LB. Fimbrin associated with Pmk1 to regulate the actin assembly during Magnaporthe oryzae hyphal growth and infection. STRESS BIOLOGY 2024; 4:5. [PMID: 38252344 PMCID: PMC10803693 DOI: 10.1007/s44154-023-00147-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/26/2023] [Indexed: 01/23/2024]
Abstract
The dynamic assembly of the actin cytoskeleton is vital for Magnaporthe oryzae development and host infection. The actin-related protein MoFim1 is a key factor for organizing the M. oryzae actin cytoskeleton. Currently, how MoFim1 is regulated in M. oryzae to precisely rearrange the actin cytoskeleton is unclear. In this study, we found that MoFim1 associates with the M. oryzae mitogen-activated protein (MAP) kinase Pmk1 to regulate actin assembly. MoFim1 directly interacted with Pmk1, and the phosphorylation level of MoFim1 was decreased in Δpmk1, which led to a change in the subcellular distribution of MoFim1 in the hyphae of Δpmk1. Moreover, the actin cytoskeleton was aberrantly organized at the hyphal tip in the Δpmk1, which was similar to what was observed in the Δmofim1 during hyphal growth. Furthermore, phosphorylation analysis revealed that Pmk1 could phosphorylate MoFim1 at serine 94. Loss of phosphorylation of MoFim1 at serine 94 decreased actin bundling activity. Additionally, the expression of the site mutant of MoFim1 S94D (in which serine 94 was replaced with aspartate to mimic phosphorylation) in Δpmk1 could reverse the defects in actin organization and hyphal growth in Δpmk1. It also partially rescues the formation of appressorium failure in Δpmk1. Taken together, these findings suggest a regulatory mechanism in which Pmk1 phosphorylates MoFim1 to regulate the assembly of the actin cytoskeleton during hyphal development and pathogenesis.
Collapse
Affiliation(s)
- Yuan-Bao Li
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Ningning Shen
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Xianya Deng
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Zixuan Liu
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Shuai Zhu
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Chengyu Liu
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Dingzhong Tang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China.
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China.
| | - Li-Bo Han
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China.
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China.
| |
Collapse
|
31
|
Li L, Zhu XM, Bao JD, Wang JY, Liu XH, Lin FC. The cell cycle, autophagy, and cell wall integrity pathway jointly governed by MoSwe1 in Magnaporthe oryzae. Cell Commun Signal 2024; 22:19. [PMID: 38195499 PMCID: PMC10775494 DOI: 10.1186/s12964-023-01389-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/06/2023] [Indexed: 01/11/2024] Open
Abstract
The cell cycle is pivotal to cellular differentiation in plant pathogenic fungi. Cell wall integrity (CWI) signaling plays an essential role in coping with cell wall stress. Autophagy is a degradation process in which cells decompose their components to recover macromolecules and provide energy under stress conditions. However, the specific association between cell cycle, autophagy and CWI pathway remains unclear in model pathogenic fungi Magnaporthe oryzae. Here, we have identified MoSwe1 as the conserved component of the cell cycle in the rice blast fungus. We have found that MoSwe1 targets MoMps1, a conserved critical MAP kinase of the CWI pathway, through protein phosphorylation that positively regulates CWI signaling. The CWI pathway is abnormal in the ΔMoswe1 mutant with cell cycle arrest. In addition, we provided evidence that MoSwe1 positively regulates autophagy by interacting with MoAtg17 and MoAtg18, the core autophagy proteins. Moreover, the S phase initiation was earlier, the morphology of conidia and appressoria was abnormal, and septum formation and glycogen degradation were impaired in the ΔMoswe1 mutant. Our research defines that MoSWE1 regulation of G1/S transition, CWI pathway, and autophagy supports its specific requirement for appressorium development and virulence in plant pathogenic fungi. Video Abstract.
Collapse
Affiliation(s)
- Lin Li
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xue-Ming Zhu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Jian-Dong Bao
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Jiao-Yu Wang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xiao-Hong Liu
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Fu-Cheng Lin
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
32
|
Lambou K, Tag A, Lassagne A, Collemare J, Clergeot PH, Barbisan C, Perret P, Tharreau D, Millazo J, Chartier E, De Vries RP, Hirsch J, Morel JB, Beffa R, Kroj T, Thomas T, Lebrun MH. The bZIP transcription factor BIP1 of the rice blast fungus is essential for infection and regulates a specific set of appressorium genes. PLoS Pathog 2024; 20:e1011945. [PMID: 38252628 PMCID: PMC10833574 DOI: 10.1371/journal.ppat.1011945] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 02/01/2024] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
The rice blast fungus Magnaporthe oryzae differentiates specialized cells called appressoria that are required for fungal penetration into host leaves. In this study, we identified the novel basic leucine zipper (bZIP) transcription factor BIP1 (B-ZIP Involved in Pathogenesis-1) that is essential for pathogenicity. BIP1 is required for the infection of plant leaves, even if they are wounded, but not for appressorium-mediated penetration of artificial cellophane membranes. This phenotype suggests that BIP1 is not implicated in the differentiation of the penetration peg but is necessary for the initial establishment of the fungus within plant cells. BIP1 expression was restricted to the appressorium by both transcriptional and post-transcriptional control. Genome-wide transcriptome analysis showed that 40 genes were down regulated in a BIP1 deletion mutant. Most of these genes were specifically expressed in the appressorium. They encode proteins with pathogenesis-related functions such as enzymes involved in secondary metabolism including those encoded by the ACE1 gene cluster, small secreted proteins such as SLP2, BAS2, BAS3, and AVR-Pi9 effectors, as well as plant cuticle and cell wall degrading enzymes. Interestingly, this BIP1 network is different from other known infection-related regulatory networks, highlighting the complexity of gene expression control during plant-fungal interactions. Promoters of BIP1-regulated genes shared a GCN4/bZIP-binding DNA motif (TGACTC) binding in vitro to BIP1. Mutation of this motif in the promoter of MGG_08381.7 from the ACE1 gene cluster abolished its appressorium-specific expression, showing that BIP1 behaves as a transcriptional activator. In summary, our findings demonstrate that BIP1 is critical for the expression of early invasion-related genes in appressoria. These genes are likely needed for biotrophic invasion of the first infected host cell, but not for the penetration process itself. Through these mechanisms, the blast fungus strategically anticipates the host plant environment and responses during appressorium-mediated penetration.
Collapse
Affiliation(s)
- Karine Lambou
- CNRS-Bayer Crop Science, UMR 5240 MAP, Lyon, France
- Plant Health Institute of Montpellier (PHIM), Montpellier University, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| | - Andrew Tag
- Department of Biology, Texas A&M University. College Station, Texas, United States of America
| | - Alexandre Lassagne
- Plant Health Institute of Montpellier (PHIM), Montpellier University, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| | - Jérôme Collemare
- CNRS-Bayer Crop Science, UMR 5240 MAP, Lyon, France
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Pierre-Henri Clergeot
- CNRS-Bayer Crop Science, UMR 5240 MAP, Lyon, France
- ASP Bourgogne Franche-Comté, Dijon, France
| | | | - Philippe Perret
- Biochemistry Department, Bayer Crop Science SAS, Lyon, France
- Bayer S.A.S. Crop Science Division Global Toxicology- Sophia Antipolis Cedex, France
| | - Didier Tharreau
- Plant Health Institute of Montpellier (PHIM), Montpellier University, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
- Plant Health Institute of Montpellier (PHIM), CIRAD, Montpellier, France
| | - Joelle Millazo
- Plant Health Institute of Montpellier (PHIM), Montpellier University, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
- Plant Health Institute of Montpellier (PHIM), CIRAD, Montpellier, France
| | - Elia Chartier
- Plant Health Institute of Montpellier (PHIM), Montpellier University, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| | - Ronald P. De Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands
| | - Judith Hirsch
- Plant Health Institute of Montpellier (PHIM), Montpellier University, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
- Pathologie Végétale, INRAE, Montfavet, France
| | - Jean-Benoit Morel
- Plant Health Institute of Montpellier (PHIM), Montpellier University, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| | - Roland Beffa
- Biochemistry Department, Bayer Crop Science SAS, Lyon, France
| | - Thomas Kroj
- Plant Health Institute of Montpellier (PHIM), Montpellier University, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| | - Terry Thomas
- Department of Biology, Texas A&M University. College Station, Texas, United States of America
| | - Marc-Henri Lebrun
- CNRS-Bayer Crop Science, UMR 5240 MAP, Lyon, France
- Université Paris-Saclay, INRAE, UR 1290 BIOGER, Palaiseau, France
| |
Collapse
|
33
|
Lai D, Wang D, Shao X, Qin J, Zhuang Q, Xu H, Xiao W. Comparative physiological and transcriptome analysis provide insights into the inhibitory effect of osthole on Penicillium choerospondiatis. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 198:105749. [PMID: 38225092 DOI: 10.1016/j.pestbp.2023.105749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/06/2023] [Accepted: 12/10/2023] [Indexed: 01/17/2024]
Abstract
Blue mold induced by Penicillium choerospondiatis is a primary cause of growth and postharvest losses in the fruit of Phyllanthus emblica. There is an urgent need to explore novel and safe fungicides to control this disease. Here, we demonstrated osthole, a natural coumarin compound isolated from Cnidium monnieri, exhibited a strong inhibitory effect on mycelia growth, conidial germination rate and germ tube length of P. choerospondiatis, and effectively suppressed the blue mold development in postharvest fruit of P. emblica. The median effective concentration of osthole was 9.86 mg/L. Osthole treatment resulted in cellular structural disruption, reactive oxygen species (ROS) accumulation, and induced autophagic vacuoles containing cytoplasmic components in fungal cells. Transcriptome analysis revealed that osthole treatment led to the differentially expressed genes mainly enriched in the cell wall synthesis, TCA cycle, glycolysis/ gluconeogenesis, oxidative phosphorylation. Moreover, osthole treatment led to increase genes expression involved in peroxisome, autophagy and endocytosis. Particularly, the autophagy pathway related genes (PcATG1, PcATG3, PcATG15, PcATG27, PcYPT7 and PcSEC18) were prominently up-regulated by osthole. Summarily, these results revealed the potential antifungal mechanism of osthole against P. choerospondiatis. Osthole has potentials to develop as a natural antifungal agent for controlling blue mold disease in postharvest fruits.
Collapse
Affiliation(s)
- Duo Lai
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs/ Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, People's Republic of China
| | - Delin Wang
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs/ Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, People's Republic of China
| | - Xuehua Shao
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs/ Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, People's Republic of China
| | - Jian Qin
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs/ Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, People's Republic of China
| | - Qingli Zhuang
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs/ Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, People's Republic of China
| | - Hanhong Xu
- National Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Weiqiang Xiao
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs/ Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, People's Republic of China.
| |
Collapse
|
34
|
Rogers AM, Taylor R, Egan MJ. The cell-end protein Tea4 spatially regulates hyphal branch initiation and appressorium remodeling in the blast fungus Magnaporthe oryzae. Mol Biol Cell 2024; 35:br2. [PMID: 37903237 PMCID: PMC10881174 DOI: 10.1091/mbc.e23-06-0214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/29/2023] [Accepted: 10/19/2023] [Indexed: 11/01/2023] Open
Abstract
The differentiation of specialized infection cells, called appressoria, from polarized germ tubes of the blast fungus Magnaporthe oryzae, requires remarkable remodeling of cell polarity and architecture, yet our understanding of this process remains incomplete. Here we investigate the behavior and role of cell-end marker proteins in appressorium remodeling and hyphal branch emergence. We show that the SH3 domain-containing protein Tea4 is required for the normal formation of an F-actin ring at Tea1-GFP-labeled polarity nodes, which contributes to the remodeling of septin structures and repolarization of the appressorium. Further, we show that Tea1 localizes to a cortical structure during hyphal septation which, unlike contractile septin rings, persists after septum formation, and, in combination with other polarity determinants, likely spatially regulates branch emergence. Genetic loss of Tea4 leads to mislocalization of Tea1 at the hyphal apex and with it, impaired growth directionality. In contrast, Tea1 is largely depleted from septation events in Δtea4 mutants and branching and septation are significantly reduced. Together, our data provide new insight into polarity remodeling during infection-related and vegetative growth by the blast fungus.
Collapse
Affiliation(s)
- Audra Mae Rogers
- Department of Entomology and Plant Pathology, University of Arkansas Systems Division of Agriculture, Fayetteville, AR 72701
| | - Rachel Taylor
- Department of Entomology and Plant Pathology, University of Arkansas Systems Division of Agriculture, Fayetteville, AR 72701
| | - Martin John Egan
- Department of Entomology and Plant Pathology, University of Arkansas Systems Division of Agriculture, Fayetteville, AR 72701
| |
Collapse
|
35
|
Guo P, Wang Y, Xu J, Yang Z, Zhang Z, Qian J, Hu J, Yin Z, Yang L, Liu M, Liu X, Li G, Zhang H, Rumsey R, Wang P, Zhang Z. Autophagy and cell wall integrity pathways coordinately regulate the development and pathogenicity through MoAtg4 phosphorylation in Magnaporthe oryzae. PLoS Pathog 2024; 20:e1011988. [PMID: 38289966 PMCID: PMC10857709 DOI: 10.1371/journal.ppat.1011988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 02/09/2024] [Accepted: 01/20/2024] [Indexed: 02/01/2024] Open
Abstract
Autophagy and Cell wall integrity (CWI) signaling are critical stress-responsive processes during fungal infection of host plants. In the rice blast fungus Magnaporthe oryzae, autophagy-related (ATG) proteins phosphorylate CWI kinases to regulate virulence; however, how autophagy interplays with CWI signaling to coordinate such regulation remains unknown. Here, we have identified the phosphorylation of ATG protein MoAtg4 as an important process in the coordination between autophagy and CWI in M. oryzae. The ATG kinase MoAtg1 phosphorylates MoAtg4 to inhibit the deconjugation and recycling of the key ATG protein MoAtg8. At the same time, MoMkk1, a core kinase of CWI, also phosphorylates MoAtg4 to attenuate the C-terminal cleavage of MoAtg8. Significantly, these two phosphorylation events maintain proper autophagy levels to coordinate the development and pathogenicity of the rice blast fungus.
Collapse
Affiliation(s)
- Pusheng Guo
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Yurong Wang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Jiayun Xu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Zhixiang Yang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Ziqi Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Jinyi Qian
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Jiexiong Hu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Ziyi Yin
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Leiyun Yang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Muxing Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Xinyu Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Gang Li
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Haifeng Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Ryan Rumsey
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Ping Wang
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
36
|
Kulkarni M, Hardwick JM. Programmed Cell Death in Unicellular Versus Multicellular Organisms. Annu Rev Genet 2023; 57:435-459. [PMID: 37722687 PMCID: PMC11491101 DOI: 10.1146/annurev-genet-033123-095833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Programmed cell death (self-induced) is intrinsic to all cellular life forms, including unicellular organisms. However, cell death research has focused on animal models to understand cancer, degenerative disorders, and developmental processes. Recently delineated suicidal death mechanisms in bacteria and fungi have revealed ancient origins of animal cell death that are intertwined with immune mechanisms, allaying earlier doubts that self-inflicted cell death pathways exist in microorganisms. Approximately 20 mammalian death pathways have been partially characterized over the last 35 years. By contrast, more than 100 death mechanisms have been identified in bacteria and a few fungi in recent years. However, cell death is nearly unstudied in most human pathogenic microbes that cause major public health burdens. Here, we consider how the current understanding of programmed cell death arose through animal studies and how recently uncovered microbial cell death mechanisms in fungi and bacteria resemble and differ from mechanisms of mammalian cell death.
Collapse
Affiliation(s)
- Madhura Kulkarni
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA; ,
| | - J Marie Hardwick
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA; ,
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
37
|
Cho E, Lee SH, Dean RA, Jeon J. Distinct dynamics of the nucleolus in response to nutrient availability and during development in the rice blast fungus. mBio 2023; 14:e0184423. [PMID: 37768072 PMCID: PMC10653916 DOI: 10.1128/mbio.01844-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/11/2023] [Indexed: 09/29/2023] Open
Abstract
IMPORTANCE The nucleolus is a dynamic subnuclear structure that is involved in many fundamental processes of the nucleus. In higher eukaryotic cells, the size and shape of nucleoli correlate with nucleolar activities. For fungi, knowledge of the nucleolus and its functions is primarily gleaned from budding yeast. Whether such correlation is conserved and how nucleolar functions are regulated in filamentous fungi including important human and crop pathogens are largely unknown. Our observations reveal that the dynamics of nucleolus in a model plant pathogenic fungus, Magnaporthe oryzae, is distinct from those of animal and yeast nucleoli under low nutrient availability and during pathogenic development. Our data not only provide new insight into the nucleoli in filamentous fungi but also highlight the need for investigating how nucleolar dynamics is regulated in comparison to other eukaryotes.
Collapse
Affiliation(s)
- Eunbyeol Cho
- Department of Biotechnology, College of Life and Applied Sciences, Yeungnam University, Gyeongsan, Gyeongbuk, South Korea
| | - Song Hee Lee
- Department of Biotechnology, College of Life and Applied Sciences, Yeungnam University, Gyeongsan, Gyeongbuk, South Korea
- Plant Immunity Research Center, Seoul National University, Seoul, South Korea
| | - Ralph A. Dean
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, USA
| | - Junhyun Jeon
- Department of Biotechnology, College of Life and Applied Sciences, Yeungnam University, Gyeongsan, Gyeongbuk, South Korea
- Plant Immunity Research Center, Seoul National University, Seoul, South Korea
| |
Collapse
|
38
|
Li G, Gong Z, Dulal N, Marroquin-Guzman M, Rocha RO, Richter M, Wilson RA. A protein kinase coordinates cycles of autophagy and glutaminolysis in invasive hyphae of the fungus Magnaporthe oryzae within rice cells. Nat Commun 2023; 14:4146. [PMID: 37438395 DOI: 10.1038/s41467-023-39880-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/27/2023] [Indexed: 07/14/2023] Open
Abstract
The blast fungus Magnaporthe oryzae produces invasive hyphae in living rice cells during early infection, separated from the host cytoplasm by plant-derived interfacial membranes. However, the mechanisms underpinning this intracellular biotrophic growth phase are poorly understood. Here, we show that the M. oryzae serine/threonine protein kinase Rim15 promotes biotrophic growth by coordinating cycles of autophagy and glutaminolysis in invasive hyphae. Alongside inducing autophagy, Rim15 phosphorylates NAD-dependent glutamate dehydrogenase, resulting in increased levels of α-ketoglutarate that reactivate target-of-rapamycin (TOR) kinase signaling, which inhibits autophagy. Deleting RIM15 attenuates invasive hyphal growth and triggers plant immunity; exogenous addition of α-ketoglutarate prevents these effects, while glucose addition only suppresses host defenses. Our results indicate that Rim15-dependent cycles of autophagic flux liberate α-ketoglutarate - via glutaminolysis - to reactivate TOR signaling and fuel biotrophic growth while conserving glucose for antioxidation-mediated host innate immunity suppression.
Collapse
Affiliation(s)
- Gang Li
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Ziwen Gong
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE, USA
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Nawaraj Dulal
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Margarita Marroquin-Guzman
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE, USA
- Bayer CropScience, Chesterfield, MO, USA
| | - Raquel O Rocha
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE, USA
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, CT, USA
| | - Michael Richter
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Richard A Wilson
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE, USA.
| |
Collapse
|
39
|
Eisermann I, Garduño‐Rosales M, Talbot NJ. The emerging role of septins in fungal pathogenesis. Cytoskeleton (Hoboken) 2023; 80:242-253. [PMID: 37265147 PMCID: PMC10952683 DOI: 10.1002/cm.21765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 06/03/2023]
Abstract
Fungal pathogens undergo specific morphogenetic transitions in order to breach the outer surfaces of plants and invade the underlying host tissue. The ability to change cell shape and switch between non-polarised and polarised growth habits is therefore critical to the lifestyle of plant pathogens. Infection-related development involves remodelling of the cytoskeleton, plasma membrane and cell wall at specific points during fungal pathogenesis. Septin GTPases are components of the cytoskeleton that play pivotal roles in actin remodelling, micron-scale plasma membrane curvature sensing and cell polarity. Septin assemblages, such as rings, collars and gauzes, are known to have important roles in cell shape changes and are implicated in formation of specialised infection structures to enter plant cells. Here, we review and compare the reported functions of septins of plant pathogenic fungi, with a special focus on invasive growth. Finally, we discuss septins as potential targets for broad-spectrum antifungal plant protection strategies.
Collapse
Affiliation(s)
- Iris Eisermann
- The Sainsbury LaboratoryUniversity of East AngliaNorwichUK
| | | | | |
Collapse
|
40
|
Wu Z, Shi H, Li Y, Yan F, Sun Z, Lin C, Xu M, Lin F, Kou Y, Tao Z. Transcriptional Regulation of Autophagy-Related Genes by Sin3 Negatively Modulates Autophagy in Magnaporthe oryzae. Microbiol Spectr 2023; 11:e0017123. [PMID: 37191531 PMCID: PMC10269650 DOI: 10.1128/spectrum.00171-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/30/2023] [Indexed: 05/17/2023] Open
Abstract
Autophagy is a conserved degradation and recycling pathway in eukaryotes and is important for their normal growth and development. An appropriate status of autophagy is crucial for organisms which is tightly regulated both temporally and continuously. Transcriptional regulation of autophagy-related genes (ATGs) is an important layer in autophagy regulation. However, the transcriptional regulators and their mechanisms are still unclear, especially in fungal pathogens. Here, we identified Sin3, a component of the histone deacetylase complex, as a transcriptional repressor of ATGs and negative regulator of autophagy induction in the rice fungal pathogen Magnaporthe oryzae. A loss of SIN3 resulted in upregulated expression of ATGs and promoted autophagy with an increased number of autophagosomes under normal growth conditions. Furthermore, we found that Sin3 negatively regulated the transcription of ATG1, ATG13, and ATG17 through direct occupancy and changed levels of histone acetylation. Under nutrient-deficient conditions, the transcription of SIN3 was downregulated, and the reduced occupancy of Sin3 from those ATGs resulted in histone hyperacetylation and activated their transcription and in turn promoted autophagy. Thus, our study uncovers a new mechanism of Sin3 in modulating autophagy through transcriptional regulation. IMPORTANCE Autophagy is an evolutionarily conserved metabolic process and is required for the growth and pathogenicity of phytopathogenic fungi. The transcriptional regulators and precise mechanisms of regulating autophagy, as well as whether the induction or repression of ATGs is associated with autophagy level, are still poorly understood in M. oryzae. In this study, we revealed that Sin3 acts as a transcriptional repressor of ATGs to negatively regulate autophagy level in M. oryzae. Under the nutrient-rich conditions, Sin3 inhibits autophagy with a basal level through directly repressing the transcription of ATG1-ATG13-ATG17. Upon nutrient-deficient treatment, the transcriptional level of SIN3 would decrease and dissociation of Sin3 from those ATGs associates with histone hyperacetylation and activates their transcriptional expression and in turn contributes to autophagy induction. Our findings are important as we uncover a new mechanism of Sin3 for the first time to negatively modulate autophagy at the transcriptional level in M. oryzae.
Collapse
Affiliation(s)
- Zhongling Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Huanbin Shi
- State Key Lab of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| | - Yuan Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute, Zhejiang University, Sanya, China
| | - Fei Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Ziyue Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Chuyu Lin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Mengting Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Fucheng Lin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yanjun Kou
- State Key Lab of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| | - Zeng Tao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
41
|
Fernandez J. The Phantom Menace: latest findings on effector biology in the rice blast fungus. ABIOTECH 2023; 4:140-154. [PMID: 37581025 PMCID: PMC10423181 DOI: 10.1007/s42994-023-00099-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/11/2023] [Indexed: 08/16/2023]
Abstract
Magnaporthe oryzae is a hemibiotrophic fungus responsible for the economically devastating and recalcitrant rice blast disease. However, the blast fungus is not only restricted to rice plants as it can also infect wheat, millet, and other crops. Despite previous outstanding discoveries aimed to understand and control the disease, the fungus remains one of the most important pathogens that threatens global food security. To cause disease, M. oryzae initiates morphological changes to attach, penetrate, and colonize rice cells, all while suppressing plant immune defenses that would otherwise hinder its proliferation. As such, M. oryzae actively secretes a battery of small proteins called "effectors" to manipulate host machinery. In this review, we summarize the latest findings in effector identification, expression, regulation, and functionality. We review the most studied effectors and their roles in pathogenesis. Additionally, we discern the current methodologies to structurally catalog effectors, and we highlight the importance of climate change and its impact on the future of rice blast disease.
Collapse
Affiliation(s)
- Jessie Fernandez
- Department of Microbiology and Cell Science at University of Florida-Institute of Food and Agricultural Science, Gainesville, FL 32611 USA
| |
Collapse
|
42
|
Yan X, Zhang S, Yu Z, Sun L, Sohail MA, Ye Z, Zhou L, Qi X. The MAP Kinase PvMK1 Regulates Hyphal Development, Autophagy, and Pathogenesis in the Bayberry Twig Blight Fungus Pestalotiopsis versicolor. J Fungi (Basel) 2023; 9:606. [PMID: 37367542 DOI: 10.3390/jof9060606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/13/2023] [Accepted: 05/17/2023] [Indexed: 06/28/2023] Open
Abstract
Bayberry twig blight caused by the ascomycete fungus Pestalotiopsis versicolor is a devastating disease threatening worldwide bayberry production. However, the molecular basis underlying the pathogenesis of P. versicolor is largely unknown. Here, we identified and functionally characterized the MAP kinase PvMk1 in P. versicolor through genetic and cellular biochemical approaches. Our analysis reveals a central role of PvMk1 in regulating P. versicolor virulence on bayberry. We demonstrate that PvMk1 is involved in hyphal development, conidiation, melanin biosynthesis, and cell wall stress responses. Notably, PvMk1 regulates P. versicolor autophagy and is essential for hyphal growth under nitrogen-depleting conditions. These findings suggest the multifaceted role of PvMk1 in regulating P. versicolor development and virulence. More remarkably, this evidence of virulence-involved cellular processes regulated by PvMk1 has paved a fundamental way for further understanding the impact of P. versicolor pathogenesis on bayberry.
Collapse
Affiliation(s)
- Xiujuan Yan
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
- State Key Laboratory for Managing Biotic and Chemical Threats to Quality and Safety of Agro-Products, Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Shuwen Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to Quality and Safety of Agro-Products, Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Zheping Yu
- State Key Laboratory for Managing Biotic and Chemical Threats to Quality and Safety of Agro-Products, Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Li Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to Quality and Safety of Agro-Products, Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Muhammad Aamir Sohail
- Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Zihong Ye
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Lei Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to Quality and Safety of Agro-Products, Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xingjiang Qi
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
- State Key Laboratory for Managing Biotic and Chemical Threats to Quality and Safety of Agro-Products, Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Biotechnology Research Institute, Xianghu Laboratory, Hangzhou 310021, China
| |
Collapse
|
43
|
Liu N, Huang M, Liang X, Cao M, Lun Z, Zhang Y, Yang J, Bhadauria V, Zhao W, Yan J, Peng YL, Lu X. Magnaporthe oryzae endoplasmic reticulum membrane complex regulates the biogenesis of membrane proteins for pathogenicity. THE NEW PHYTOLOGIST 2023; 238:1163-1181. [PMID: 36772852 DOI: 10.1111/nph.18810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
In eukaryotes, the majority of newly synthesized integral membrane proteins are inserted into the endoplasmic reticulum (ER) membrane before transferred to their functional sites. The conserved ER membrane complex (EMC) takes part in the insertion process for tail-anchored membrane proteins. However, the function of EMC in phytopathogenic fungi has not been characterized. Here, we report the identification and functional characterization of two EMC subunits MoEmc5 and MoEmc2 in Magnaporthe oryzae. The knockout mutants ΔMoemc5 and ΔMoemc2 exhibit substantial defect in autophagy, pathogenicity, cell wall integrity, and magnesium ion sensitivity. We demonstrate that the autophagy process was severely impaired in the ΔMoemc5 and ΔMoemc2 mutants because of the low-protein steady-state level of Atg9, the sole membrane-associated autophagy protein. Furthermore, the protein level of membrane proteins Chs4, Fks1, and MoMnr2 is also significantly reduced in the ΔMoemc5 and ΔMoemc2 strains, leading to their supersensitivity to Calcofluor white, Congo red, and magnesium. In addition, MoEmc5, but not MoEmc2, acts as a magnesium transporter independent of its EMC function. Magnaporthe oryzae EMC regulates the biogenesis of membrane proteins for autophagy and virulence; therefore, EMC subunits could be potential targets for fungicide design in the future.
Collapse
Affiliation(s)
- Ning Liu
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing, 100193, China
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Manna Huang
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing, 100193, China
| | - Xinyuan Liang
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing, 100193, China
| | - Miao Cao
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing, 100193, China
| | - Zhiqin Lun
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing, 100193, China
| | - Yan Zhang
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing, 100193, China
| | - Jun Yang
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing, 100193, China
| | - Vijai Bhadauria
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing, 100193, China
| | - Wensheng Zhao
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing, 100193, China
| | - Jiye Yan
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - You-Liang Peng
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing, 100193, China
| | - Xunli Lu
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
44
|
Abstract
The fungal cell wall is essential for growth and survival, and is a key target for antifungal drugs and the immune system. The cell wall must be robust but flexible, protective and shielding yet porous to nutrients and membrane vesicles and receptive to exogenous signals. Most fungi have a common inner wall skeleton of chitin and β-glucans that functions as a flexible viscoelastic frame to which a more diverse set of outer cell wall polymers and glycosylated proteins are attached. Whereas the inner wall largely determines shape and strength, the outer wall confers properties of hydrophobicity, adhesiveness, and chemical and immunological heterogeneity. The spatial organization and dynamic regulation of the wall in response to prevailing growth conditions enable fungi to thrive within changing, diverse and often hostile environments. Understanding this architecture provides opportunities to develop diagnostics and drugs to combat life-threatening fungal infections.
Collapse
Affiliation(s)
- Neil A R Gow
- Medical Research Council Centre for Medical Mycology, School of Biosciences, University of Exeter, Exeter, UK.
| | - Megan D Lenardon
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
45
|
Yang C, Jiang X, Ma L, Xiao D, Liu X, Ying Z, Li Y, Lin Y. Transcriptomic and Metabolomic Profiles Provide Insights into the Red-Stipe Symptom of Morel Fruiting Bodies. J Fungi (Basel) 2023; 9:jof9030373. [PMID: 36983541 PMCID: PMC10058789 DOI: 10.3390/jof9030373] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
The cultivation of true morels (Morchella spp., Morchellaceae, Ascomycota) has rapidly expanded in recent years, especially in China. Red stipe is a symptom wherein the stipe of morel fruiting bodies becomes red-gray, resulting in the gradual death of the affected fruiting bodies. The impact of red-stipe symptom occurrence on the development and nutritional quality of morel fruiting bodies remains unclear. Herein, morel ascocarps with the red-stipe symptom (R) and normal (N), artificially cultivated in the Fujian Province of China, were selected for the transcriptome and metabolome analysis to study the physiological and biochemical responses of morel fruiting bodies to the red-stipe symptom. Transcriptome data revealed several differentially expressed genes between the R and N groups significantly enriched in the tyrosine, riboflavin, and glycerophospholipid metabolism pathways. Similarly, the differentially accumulated metabolites were mainly assigned to metabolic pathways, including tyrosine, the biosynthesis of plant secondary metabolites, and the biosynthesis of amino acids. Moreover, the transcriptome and metabolome data combination revealed that tyrosine metabolism was the most enriched pathway, which was followed by ATP-binding cassette (ABC) transport, alanine, aspartate, and glutamate metabolism. Overall, the integration of transcriptomic and metabolomic data of M. sextelata affected by red-stipe symptoms identified several important genes, metabolites, and pathways. These findings further improve our understanding of the mechanisms underlying the red-stipe symptom development of M. sextelata and provide new insights into how to optimize its cultivation methods.
Collapse
Affiliation(s)
- Chi Yang
- Institute of Edible Mushroom, National and Local Joint Engineering Research Center for Breeding & Cultivation of Featured Edible Mushroom, Fujian Academy of Agricultural Sciences, Fuzhou 350014, China
| | - Xiaoling Jiang
- Institute of Edible Mushroom, National and Local Joint Engineering Research Center for Breeding & Cultivation of Featured Edible Mushroom, Fujian Academy of Agricultural Sciences, Fuzhou 350014, China
| | - Lu Ma
- Institute of Edible Mushroom, National and Local Joint Engineering Research Center for Breeding & Cultivation of Featured Edible Mushroom, Fujian Academy of Agricultural Sciences, Fuzhou 350014, China
| | - Donglai Xiao
- Institute of Edible Mushroom, National and Local Joint Engineering Research Center for Breeding & Cultivation of Featured Edible Mushroom, Fujian Academy of Agricultural Sciences, Fuzhou 350014, China
| | - Xiaoyu Liu
- Institute of Edible Mushroom, National and Local Joint Engineering Research Center for Breeding & Cultivation of Featured Edible Mushroom, Fujian Academy of Agricultural Sciences, Fuzhou 350014, China
| | - Zhenghe Ying
- Institute of Edible Mushroom, National and Local Joint Engineering Research Center for Breeding & Cultivation of Featured Edible Mushroom, Fujian Academy of Agricultural Sciences, Fuzhou 350014, China
| | - Yaru Li
- Institute of Edible Mushroom, National and Local Joint Engineering Research Center for Breeding & Cultivation of Featured Edible Mushroom, Fujian Academy of Agricultural Sciences, Fuzhou 350014, China
| | - Yanquan Lin
- Institute of Edible Mushroom, National and Local Joint Engineering Research Center for Breeding & Cultivation of Featured Edible Mushroom, Fujian Academy of Agricultural Sciences, Fuzhou 350014, China
| |
Collapse
|
46
|
Rogers AM, Egan MJ. Septum-associated microtubule organizing centers within conidia support infectious development by the blast fungus Magnaporthe oryzae. Fungal Genet Biol 2023; 165:103768. [PMID: 36596442 DOI: 10.1016/j.fgb.2022.103768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/16/2022] [Accepted: 12/22/2022] [Indexed: 01/01/2023]
Abstract
Cytoplasmic microtubule arrays play important and diverse roles within fungal cells, including serving as molecular highways for motor-driven organelle motility. While the dynamic plus ends of cytoplasmic microtubules are free to explore the cytoplasm through their stochastic growth and shrinkage, their minus ends are nucleated at discrete organizing centers, composed of large multi-subunit protein complexes. The location and composition of these microtubule organizing centers varies depending on genus, cell type, and in some instances cell-cycle stage. Despite their obvious importance, our understanding of the nature, diversity, and regulation of microtubule organizing centers in fungi remains incomplete. Here, using three-color fluorescence microscopy based live-cell imaging, we investigate the organization and dynamic behavior of the microtubule cytoskeleton within infection-related cell types of the filamentous fungus,Magnaporthe oryzae, a highly destructive pathogen of rice and wheat. We provide data to support the idea that cytoplasmic microtubules are nucleated at septa, rather than at nuclear spindle pole bodies, within the three-celled blast conidium, and provide new insight into remodeling of the microtubule cytoskeleton during nuclear division and inheritance. Lastly, we provide a more complete picture of the architecture and subcellular organization of the prototypical blast appressorium, a specialized pressure-generating cell type used to invade host tissue. Taken together, our study provides new insight into microtubule nucleation, organization, and dynamics in specialized and differentiated fungal cell types.
Collapse
Affiliation(s)
- Audra Mae Rogers
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701, USA
| | - Martin John Egan
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701, USA.
| |
Collapse
|
47
|
Comparative Transcriptomics of Fusarium graminearum and Magnaporthe oryzae Spore Germination Leading up To Infection. mBio 2023; 14:e0244222. [PMID: 36598191 PMCID: PMC9973345 DOI: 10.1128/mbio.02442-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
For fungal plant pathogens, the germinating spore provides the first interaction with the host. Spore germlings move across the plant surface and use diverse penetration strategies for ingress into plant surfaces. Penetration strategies include pressurized melanized appressoria, which facilitate physically punching through the plant cuticle, and nonmelanized appressoria, which penetrate with the help of enzymes or cuticular damage to breach the plant surface. Two well-studied plant pathogens, Fusarium graminearum and Magnaporthe oryzae, are typical of these two modes of penetration. We applied comparative transcriptomics to Fusarium graminearum and Magnaporthe oryzae to characterize the genetic programming of the early host-pathogen interface. Four sequential stages of development following spore localization on the plant surface, from spore swelling to appressorium formation, were sampled for each species on culture medium and on barley sheaths, and transcriptomic analyses were performed. Gene expression in the prepenetration stages in both species and under both conditions was similar. In contrast, gene expression in the final stage was strongly influenced by the environment. Appressorium formation involved the greatest number of differentially expressed genes. Laser-dissection microscopy was used to perform detailed transcriptomics of initial infection points by F. graminearum. These analyses revealed new and important aspects of early fungal ingress in this species. Expression of the trichothecene genes involved in biosynthesis of deoxynivalenol by F. graminearum implies that toxisomes are not fully functional until after penetration and indicates that deoxynivalenol is not essential for penetration under our conditions. The use of comparative gene expression of divergent fungi promises to advance highly effective targets for antifungal strategies. IMPORTANCE Fusarium graminearum and Magnaporthe oryzae are two of the most important pathogens of cereal grains worldwide. Despite years of research, strong host resistance has not been identified for F. graminearum, so other methods of control are essential. The pathogen takes advantage of multiple entry points to infect the host, including breaches in the florets due to senescence of flower parts and penetration of the weakened trichome bases to breach the epidermis. In contrast, M. oryzae directly punctures leaves that it infects, and resistant cultivars have been characterized. The threat of either pathogen causing a major disease outbreak is ever present. Comparative transcriptomics demonstrated its potential to reveal novel and effective disease prevention strategies that affect the initial stages of disease. Shedding light on the basis of this diversity of infection strategies will result in development of increasingly specific control strategies.
Collapse
|
48
|
Dual Transcriptome Analysis Reveals That ChATG8 Is Required for Fungal Development, Melanization and Pathogenicity during the Interaction between Colletotrichum higginsianum and Arabidopsis thaliana. Int J Mol Sci 2023; 24:ijms24054376. [PMID: 36901806 PMCID: PMC10002072 DOI: 10.3390/ijms24054376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 01/26/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
Anthracnose disease of cruciferous plants caused by Colletotrichum higginsianum is a serious fungal disease that affects cruciferous crops such as Chinese cabbage, Chinese flowering cabbage, broccoli, mustard plant, as well as the model plant Arabidopsis thaliana. Dual transcriptome analysis is commonly used to identify the potential mechanisms of interaction between host and pathogen. In order to identify differentially expressed genes (DEGs) in both the pathogen and host, the conidia of wild-type (ChWT) and Chatg8 mutant (Chatg8Δ) strains were inoculated onto leaves of A. thaliana, and the infected leaves of A. thaliana at 8, 22, 40, and 60 h post-inoculation (hpi) were subjected to dual RNA-seq analysis. The results showed that comparison of gene expression between the 'ChWT' and 'Chatg8Δ' samples detected 900 DEGs (306 upregulated and 594 down-regulated) at 8 hpi, 692 DEGs (283 upregulated and 409 down-regulated) at 22 hpi, 496 DEGs (220 upregulated and 276 down-regulated) at 40 hpi, and 3159 DEGs (1544 upregulated and 1615 down-regulated) at 60 hpi. GO and KEGG analyses found that the DEGs were mainly involved in fungal development, biosynthesis of secondary metabolites, plant-fungal interactions, and phytohormone signaling. The regulatory network of key genes annotated in the Pathogen-Host Interactions database (PHI-base) and Plant Resistance Genes database (PRGdb), as well as a number of key genes highly correlated with the 8, 22, 40, and 60 hpi, were identified during the infection. Among the key genes, the most significant enrichment was in the gene encoding the trihydroxynaphthalene reductase (THR1) in the melanin biosynthesis pathway. Both Chatg8Δ and Chthr1Δ strains showed varying degrees of reduction of melanin in appressoria and colonies. The pathogenicity of the Chthr1Δ strain was lost. In addition, six DEGs from C. higginsianum and six DEGs from A. thaliana were selected for real-time quantitative PCR (RT-qPCR) to confirm the RNA-seq results. The information gathered from this study enriches the resources available for research into the role of the gene ChATG8 during the infection of A. thaliana by C. higginsianum, such as potential links between melanin biosynthesis and autophagy, and the response of A. thaliana to different fungal strains, thereby providing a theoretical basis for the breeding of cruciferous green leaf vegetable cultivars with resistance to anthracnose disease.
Collapse
|
49
|
Yang L, Liu X, Wang J, Li L, Feng W, Ji Z. Pyridoxine biosynthesis protein MoPdx1 affects the development and pathogenicity of Magnaporthe oryzae. Front Cell Infect Microbiol 2023; 13:1099967. [PMID: 36824685 PMCID: PMC9941553 DOI: 10.3389/fcimb.2023.1099967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/30/2023] [Indexed: 02/10/2023] Open
Abstract
B vitamins are essential micro-organic compounds for the development of humans and animals. Vitamin B6 comprises a group of components including pyridoxine, pyridoxal, and pyridoxamine. In addition, vitamin B6 acts as the coenzymes in amino acid biosynthesis, decarboxylation, racemic reactions, and other biological processes. In this study, we found that the expressions of a gene encoding pyridoxine biosynthesis protein (PDX1) were significantly upregulated in the early infectious stages in M. oryzae. Furthermore, deletion of MoPDX1 slowed vegetative growth on different media, especially on MM media, and the growth defect was rescued when MoPdx1-protein was expressed in mutants strains and when commercial VB6 (pyridoxine) was added exogenously. However, VB6 content in different strains cultured in CM media has no significant difference, suggested that MoPdx1 was involved in de novo VB6 biosynthesis not in uptake process, and VB6 regulates the vegetative growth of M. oryzae. The ΔMopdx1 mutants presented abnormal appressorium turgor, slowed invasive growth and reduced virulence on rice seedlings and sheath cells. MoPdx1 was located in the cytoplasm and present in spore and germ tubes at 14 hours post inoculation (hpi) and then transferred into the appressorium at 24 hpi. Addition of VB6 in the conidial suspentions could rescue the defects of appressorium turgor pressure at 14 hpi or 24 hpi, invasive growth and pathogenicity of the MoPDX1 deletion mutants. Indicated that MoPdx1 affected the appressorium turgor pressure, invasive growth and virulence mainly depended on de novo VB6, and VB6 was biosynthesized in conidia, then transported into the appressorium, which play important roles in substances transportation from conidia to appressorium thus to regulate the appressorium turgor pressure. However, deletion of MoPDX1 did not affect the ability that scavenge ROS produced by rice cells, and the mutant strains were unable to activate host defense responses. In addition, co-immunoprecipitation (Co-IP) assays investigating potential MoPdx1-interacting proteins suggested that MoPdx1 might take part in multiple pathways, especially in the ribosome and in biosynthesis of some substances. These results indicate that vitamins are involved in the development and pathogenicity of M. oryzae.
Collapse
Affiliation(s)
- Lina Yang
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiaohong Liu
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jie Wang
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Lianwei Li
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Wanzhen Feng
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
| | - Zhaolin Ji
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China,*Correspondence: Zhaolin Ji,
| |
Collapse
|
50
|
MoMaf1 Mediates Vegetative Growth, Conidiogenesis, and Pathogenicity in the Rice Blast Fungus Magnaporthe oryzae. J Fungi (Basel) 2023; 9:jof9010106. [PMID: 36675927 PMCID: PMC9861366 DOI: 10.3390/jof9010106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/03/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
In eukaryotes, Maf1 is an essential and specific negative regulator of RNA polymerase (Pol) III. Pol III, which synthesizes 5S RNA and transfer RNAs (tRNAs), is suppressed by Maf1 under the conditions of nutrient starvation or environmental stress. Here, we identified M. oryzae MoMaf1, a homolog of ScMaf1 in budding yeast. A heterogeneous complementation assay revealed that MoMaf1 restored growth defects in the ΔScmaf1 mutant under SDS stress. Destruction of MoMAF1 elevated 5S rRNA content and increased sensitivity to cell wall agents. Moreover, the ΔMomaf1 mutant exhibited reduced vegetative growth, conidiogenesis, and pathogenicity. Interestingly, we found that MoMaf1 underwent nuclear-cytoplasmic shuffling, through which MoMaf1 accumulated in nuclei under nutrient deficiency or upon the interaction of M. oryzae with rice. Therefore, this study can help to elucidate the pathogenic molecular mechanism of M. oryzae.
Collapse
|