1
|
He C, Li C, Liu Y, Chen TT, Li C, Chu X, Liu S, Wang L, Zhang Y, Ouyang S, Fu J, Song L, Luo ZQ. Modulation of host ATP levels by secreted bacterial effectors. Nat Commun 2025; 16:4675. [PMID: 40394005 PMCID: PMC12092593 DOI: 10.1038/s41467-025-60046-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 05/13/2025] [Indexed: 05/22/2025] Open
Abstract
Adenosine 5'-triphosphate (ATP) is the currency of energy in cells; it plays essential roles in virtually all cellular processes, ranging from basic metabolism to signaling in development and disease. The opportunistic bacterial pathogen Legionella pneumophila utilizes the Dot/Icm type IV secretion system to deliver over 300 effectors into host cells, some of which utilize ATP to perform biochemical reactions catalyzed by their unique enzymatic activities. However, whether L. pneumophila directly regulates ATP level in host cells is unknown. Here, we discover that the Dot/Icm substrate Ceg14 (Lpg0437, a.k.a. SidL) is an ATP/dATPase, which after being activated by the host protein actin, efficiently converts ATP and dATP into adenosine and deoxyadenosine monophosphate, respectively by a mechanism that requires its S-HxxxE (x, any amino acid) motif. The activity of Ceg14 is regulated by its metaeffector AnkJ (Lpg0436, a.k.a. LegA11), which inhibits its ATPase activity via direct protein-protein interactions. Ceg14 and AnkJ impose temporal regulation of ATP levels in L. pneumophila-infected cells. Our results demonstrate that L. pneumophila modulates the energy level of host cells to create an environment permissive for its growth.
Collapse
Affiliation(s)
- Chunlin He
- Department of Respiratory Medicine, Center for Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, The First Hospital of Jilin University, Changchun, 130021, China
| | - Chuang Li
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Yao Liu
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Tao-Tao Chen
- Key Laboratory of Microbial Pathogenesis and Interventions-Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Chunxiuli Li
- Department of Respiratory Medicine, Center for Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, The First Hospital of Jilin University, Changchun, 130021, China
| | - Xiao Chu
- Department of Respiratory Medicine, Center for Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, The First Hospital of Jilin University, Changchun, 130021, China
| | - Shuxin Liu
- Department of Respiratory Medicine, Center for Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, The First Hospital of Jilin University, Changchun, 130021, China
| | - Lidong Wang
- Department of Respiratory Medicine, Center for Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, The First Hospital of Jilin University, Changchun, 130021, China
| | - Yong Zhang
- Department of Respiratory Medicine, Center for Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, The First Hospital of Jilin University, Changchun, 130021, China
| | - Songying Ouyang
- Key Laboratory of Microbial Pathogenesis and Interventions-Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Jiaqi Fu
- Department of Respiratory Medicine, Center for Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, The First Hospital of Jilin University, Changchun, 130021, China
| | - Lei Song
- Department of Respiratory Medicine, Center for Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, The First Hospital of Jilin University, Changchun, 130021, China.
| | - Zhao-Qing Luo
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
2
|
Yeap HW, Goh GR, Rosli SN, Pung HS, Giogha C, Eng VV, Pearson JS, Hartland EL, Chen KW. A bacterial network of T3SS effectors counteracts host pro-inflammatory responses and cell death to promote infection. EMBO J 2025; 44:2424-2445. [PMID: 40128366 PMCID: PMC12048508 DOI: 10.1038/s44318-025-00412-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 02/21/2025] [Accepted: 02/21/2025] [Indexed: 03/26/2025] Open
Abstract
Innate immune signalling and cell death pathways are highly interconnected processes involving receptor-interacting protein kinases (RIPKs) as mediators of potent anti-microbial responses. However, these processes are often antagonised by bacterial type III secretion system (T3SS) effectors, and the cellular mechanisms by which the host retaliates are not completely understood. Here, we demonstrate that during Citrobacter rodentium infection, murine macrophages and colonic epithelial cells exhibit RIPK1 kinase-dependent caspase-8 activation to counteract NleE effector-mediated suppression of pro-inflammatory signalling. While C. rodentium injects into the host cells a second effector, NleB, to block caspase-8 signalling, macrophages respond by triggering RIPK3-mediated necroptosis, whereupon a third T3SS effector, EspL, acts to inactivate necroptosis. We further show that NleB and EspL collaborate to suppress caspase-8 and NLRP3 inflammasome activation in macrophages. Our findings suggest that C. rodentium has evolved to express a complex network of effectors as an adaptation to the importance of cell death for anti-bacterial defence in the host-pathogen arms race.
Collapse
Affiliation(s)
- Hui Wen Yeap
- Immunology Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Ghin Ray Goh
- Immunology Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Safwah Nasuha Rosli
- Immunology Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Hai Shin Pung
- Immunology Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Cristina Giogha
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
| | - Vik Ven Eng
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Microbiology, Monash University, Clayton, VIC, Australia
| | - Jaclyn S Pearson
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Microbiology, Monash University, Clayton, VIC, Australia
- School of Medicine, University of St Andrews, St Andrews, KY16 9TF, Fife, UK
| | - Elizabeth L Hartland
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
- Department of Microbiology, Monash University, Clayton, VIC, Australia
| | - Kaiwen W Chen
- Immunology Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
3
|
Boothman SM, Preston S, Minden J. Wolbachia infection confers post-translational modification of glutamic acid decarboxylase and other proteins in D. melanogaster. Microbiol Spectr 2025:e0246524. [PMID: 40293253 DOI: 10.1128/spectrum.02465-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 03/25/2025] [Indexed: 04/30/2025] Open
Abstract
Wolbachia pipientis is a ubiquitous intracellular bacterium that is known for its manipulation of reproduction in arthropod hosts. Wolbachia has also been shown to colonize virtually all somatic tissues, including the brain, but little is known about the interaction between host and bacterium in these locations. To this end, we studied the effects of Wolbachia infection on the brain of Drosophila melanogaster. Using comparative proteomics, we uncovered the post-translational modification of many proteins within the Drosophila head and body upon infection, with glutamic acid decarboxylase being modified within the head only. Given this enzyme's role in neurotransmitter synthesis, we next tested how Wolbachia infection impacts host behaviors and gamma aminobutyric acid (GABA) production within Drosophila. We discovered an improved response to yeast odors in Wolbachia-infected, mated females compared with their uninfected counterparts. Gross measurements of GABA in whole brains showed no detectable change in GABA abundance upon infection. Treatments with a GABA antagonist indicated that the behavioral change was not GABA-dependent, leaving the mechanism behind Wolbachia-mediated changes in behavior obscure. Given the multiple protein changes in the Drosophila head upon infection, we propose a model in which Wolbachia drives the modification of glutamic acid decarboxylase and several metabolic proteins to increase survival in the specialized niche of the brain. These results give rise to new questions about the Wolbachia-Drosophila relationship, and future work will focus on the mechanism through which Wolbachia confers these protein changes.IMPORTANCEIn order to fully understand the biology of an organism, we must understand its interactions with its resident microbes. Wolbachia is commonly used to study such interactions, but the molecular interactions this bacterium has with its hosts are not well understood, especially within somatic tissues. Here, we address this knowledge gap by characterizing the changes in host proteins within Drosophila melanogaster upon Wolbachia infection. Our results provide the first description of post-translational modifications induced by Wolbachia infection within a host, unveiling a new level of regulation in the Wolbachia-host relationship. The modification of glutamic acid decarboxylase within the Drosophila head was not shown to be connected to changes in GABA production or host behavior, indicating another role for this enzyme during Wolbachia infection within the brain. Altogether, these results provide more information about Wolbachia's infection of somatic tissue and spark new inquiries into the host-bacterium relationship.
Collapse
Affiliation(s)
- Sarah M Boothman
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Sarah Preston
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Jonathan Minden
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
4
|
Hu X, Cai W, Zhang L, Zhu Z, Okita TW, Tian L. Molecular Dialog of Ralstonia solanacearum and Plant Hosts with Highlights on Type III Effectors. Int J Mol Sci 2025; 26:3686. [PMID: 40332227 PMCID: PMC12027289 DOI: 10.3390/ijms26083686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/07/2025] [Accepted: 04/11/2025] [Indexed: 05/08/2025] Open
Abstract
Ralstonia solanacearum is a highly destructive soil-borne bacterium that causes bacterial wilt disease in more than 310 plant species worldwide. The pathogenicity of the bacteria is closely associated with type III effectors (T3Es), a class of virulence factors that are delivered to host plant cells by the type III secretion system. In spite of the complex evolutionary history and genetic diversity of the R. solanacearum species complex (RSSC), more than 100 different T3Es have been identified from the genomes of various strains. Based on the available functional studies, certain T3Es interact with host plant proteins and suppress host cell immunity, whereas other T3Es are recognized by the host plant to trigger specific resistance mechanisms. This review summarizes the mechanisms by which T3Es interfere with plant immune responses and the activation of the plant defense system upon T3E recognition. This in-depth review of the molecular interactions between R. solanacearum and its host plants offers insights into the complexity of plant-pathogen interactions and provides a scientific rationale and theoretical support for the future breeding of resistant crops.
Collapse
Affiliation(s)
- Xinyu Hu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China; (X.H.); (W.C.); (L.Z.); (Z.Z.)
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou 311300, China
| | - Weiwei Cai
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China; (X.H.); (W.C.); (L.Z.); (Z.Z.)
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou 311300, China
| | - Laining Zhang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China; (X.H.); (W.C.); (L.Z.); (Z.Z.)
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou 311300, China
| | - Zhujun Zhu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China; (X.H.); (W.C.); (L.Z.); (Z.Z.)
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou 311300, China
| | - Thomas W. Okita
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA
| | - Li Tian
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China; (X.H.); (W.C.); (L.Z.); (Z.Z.)
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
5
|
Zhang B, Orning P, Lehman JW, Dinis A, Torres-Ulloa L, Elling R, Kelliher MA, Bertin J, Proulx MK, Goguen JD, Ryan L, Kandasamy RK, Espevik T, Pai AA, Fitzgerald KA, Lien E. Raver1 links Ripk1 RNA splicing to caspase-8-mediated pyroptotic cell death, inflammation, and pathogen resistance. Proc Natl Acad Sci U S A 2025; 122:e2420802122. [PMID: 39946533 PMCID: PMC11848402 DOI: 10.1073/pnas.2420802122] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/08/2025] [Indexed: 02/19/2025] Open
Abstract
Multiple cell death and inflammatory signaling pathways converge on two critical factors: receptor-interacting serine/threonine kinase 1 (RIPK1) and caspase-8. Careful regulation of these molecules is critical to control apoptosis, pyroptosis, and inflammation. Here, we found a pivotal role of Raver1 as an essential regulator of Ripk1 pre-mRNA splicing, expression, and functionality and the subsequent caspase-8-dependent inflammatory cell death. We show that Raver1 influences mRNA diversity primarily by repressing alternative exon inclusion. Macrophages from Raver1-deficient mice exhibit altered splicing of Ripk1. As a result, Raver1-deficient primary macrophages display diminished cell death and decreased interleukin-18 and interleukin-1ß production, when infected with Yersinia bacteria, or by restraining TGF-ß-activated kinase 1 or IKKβ in the presence of lipopolysaccharide, tumor necrosis factor family members, or interferon-γ. These responses are accompanied by reduced activation of caspase-8, Gasdermin D and E, and caspase-1 in the absence of Raver1. Consequently, Raver1-deficient mice showed heightened susceptibility to Yersinia infection. Raver1 and RIPK1 also controlled the expression and function of the C-type lectin receptor Mincle. Our study underscores the critical regulatory role of Raver1 in modulating innate immune responses and highlights its significance in directing in vivo and in vitro inflammatory processes.
Collapse
Affiliation(s)
- Boyao Zhang
- Division of Infectious Diseases and Immunology, Department of Medicine, Program in Innate Immunity, University of Massachusetts Chan Medical School, Worcester, MA01605
| | - Pontus Orning
- Division of Infectious Diseases and Immunology, Department of Medicine, Program in Innate Immunity, University of Massachusetts Chan Medical School, Worcester, MA01605
- Department of Clinical and Molecular Medicine, Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim7491, Norway
| | - Jesse W. Lehman
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA01655
| | - Alexandre Dinis
- Division of Infectious Diseases and Immunology, Department of Medicine, Program in Innate Immunity, University of Massachusetts Chan Medical School, Worcester, MA01605
| | - Leslie Torres-Ulloa
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA01655
| | - Roland Elling
- Institute for Immunodeficiency, Center of Chronic Immunodeficiency, University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg79106, Germany
- Institute for Immunodeficiency, Center for Pediatrics and Adolescent Medicine University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg79106, Germany
| | - Michelle A. Kelliher
- Department of Molecular Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA01605
| | - John Bertin
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, PA19426
- Sanofi, Immunology and Inflammation Research Therapeutic Area, Cambridge, MA02141
| | - Megan K. Proulx
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA01655
| | - Jon D. Goguen
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA01655
| | - Liv Ryan
- Department of Clinical and Molecular Medicine, Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim7491, Norway
| | - Richard K. Kandasamy
- Division of Infectious Diseases and Immunology, Department of Medicine, Program in Innate Immunity, University of Massachusetts Chan Medical School, Worcester, MA01605
- Department of Clinical and Molecular Medicine, Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim7491, Norway
- Department of Laboratory Medicine and Pathology, Center for Individualized Medicine, Mayo Clinic, Rochester, MN55905
| | - Terje Espevik
- Department of Clinical and Molecular Medicine, Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim7491, Norway
- Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim7006, Norway
| | - Athma A. Pai
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA01655
| | - Katherine A. Fitzgerald
- Division of Infectious Diseases and Immunology, Department of Medicine, Program in Innate Immunity, University of Massachusetts Chan Medical School, Worcester, MA01605
- Department of Clinical and Molecular Medicine, Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim7491, Norway
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA01605
| | - Egil Lien
- Division of Infectious Diseases and Immunology, Department of Medicine, Program in Innate Immunity, University of Massachusetts Chan Medical School, Worcester, MA01605
- Department of Clinical and Molecular Medicine, Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim7491, Norway
| |
Collapse
|
6
|
Malik HS, Bliska JB. Guards and decoys: RIPoptosome and inflammasome pathway regulators of bacterial effector-triggered immunity. PLoS Pathog 2025; 21:e1012884. [PMID: 39883598 PMCID: PMC11781737 DOI: 10.1371/journal.ppat.1012884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025] Open
Abstract
Virulent microbes produce proteins that interact with host cell targets to promote pathogenesis. For example, virulent bacterial pathogens have proteins called effectors that are typically enzymes and are secreted into host cells. To detect and respond to the activities of effectors, diverse phyla of host organisms evolved effector-triggered immunity (ETI). In ETI, effectors are often sensed indirectly by detection of their virulence activities in host cells. ETI mechanisms can be complex and involve several classes of host proteins. Guards monitor the functional or physical integrity of another host protein, the guardee or decoy, and become activated to initiate an immune response when the guardee or decoy is modified or disrupted by an effector. A guardee typically has an intrinsic anti-pathogen function and is the intended target of an effector. A decoy structurally mimics a host protein that has intrinsic anti-pathogen activity and is unintentionally targeted by an effector. A decoy can be an individual protein, or a protein domain integrated into a guard. Here, we review the origins of ETI and focus on 5 mechanisms, in which the key steps of a pathway can include activation of a caspase by a RIPoptosome or inflammasome, formation of pores in the plasma membrane, release of cytokines and ending in cell death by pyroptosis. Survey of the 5 mechanisms, which have been shown to be host protective in mouse models of bacterial infection, reveal how distinct regulators of RIPoptosome or inflammasome pathways can act as guards or integrated decoys to trigger ETI. Common themes are highlighted and the limited mechanistic understanding of ETI bactericidal activity is discussed.
Collapse
Affiliation(s)
- Haleema Sadia Malik
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - James B. Bliska
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| |
Collapse
|
7
|
Patel DT, Stogios PJ, Jaroszewski L, Urbanus ML, Sedova M, Semper C, Le C, Takkouche A, Ichii K, Innabi J, Patel DH, Ensminger AW, Godzik A, Savchenko A. Global atlas of predicted functional domains in Legionella pneumophila Dot/Icm translocated effectors. Mol Syst Biol 2025; 21:59-89. [PMID: 39562741 PMCID: PMC11696984 DOI: 10.1038/s44320-024-00076-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/17/2024] [Accepted: 10/31/2024] [Indexed: 11/21/2024] Open
Abstract
Legionella pneumophila utilizes the Dot/Icm type IVB secretion system to deliver hundreds of effector proteins inside eukaryotic cells to ensure intracellular replication. Our understanding of the molecular functions of the largest pathogenic arsenal known to the bacterial world remains incomplete. By leveraging advancements in 3D protein structure prediction, we provide a comprehensive structural analysis of 368 L. pneumophila effectors, representing a global atlas of predicted functional domains summarized in a database ( https://pathogens3d.org/legionella-pneumophila ). Our analysis identified 157 types of diverse functional domains in 287 effectors, including 159 effectors with no prior functional annotations. Furthermore, we identified 35 cryptic domains in 30 effector models that have no similarity with experimentally structurally characterized proteins, thus, hinting at novel functionalities. Using this analysis, we demonstrate the activity of thirteen functional domains, including three cryptic domains, predicted in L. pneumophila effectors to cause growth defects in the Saccharomyces cerevisiae model system. This illustrates an emerging strategy of exploring synergies between predictions and targeted experimental approaches in elucidating novel effector activities involved in infection.
Collapse
Affiliation(s)
- Deepak T Patel
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Peter J Stogios
- BioZone, Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, M5S 1A4, Canada
| | - Lukasz Jaroszewski
- University of California, Riverside, School of Medicine, Biosciences Division, Riverside, CA, USA
| | - Malene L Urbanus
- Department of Biochemistry, University of Toronto, Toronto, ON, M5G 1M1, Canada
| | - Mayya Sedova
- University of California, Riverside, School of Medicine, Biosciences Division, Riverside, CA, USA
| | - Cameron Semper
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Cathy Le
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Abraham Takkouche
- University of California, Riverside, School of Medicine, Biosciences Division, Riverside, CA, USA
| | - Keita Ichii
- University of California, Riverside, School of Medicine, Biosciences Division, Riverside, CA, USA
| | - Julie Innabi
- University of California, Riverside, School of Medicine, Biosciences Division, Riverside, CA, USA
| | - Dhruvin H Patel
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Alexander W Ensminger
- Department of Biochemistry, University of Toronto, Toronto, ON, M5G 1M1, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5G 1M1, Canada.
| | - Adam Godzik
- University of California, Riverside, School of Medicine, Biosciences Division, Riverside, CA, USA.
| | - Alexei Savchenko
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, T2N 4N1, Canada.
- BioZone, Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, M5S 1A4, Canada.
| |
Collapse
|
8
|
Zhang B, Orning P, Lehman JW, Dinis A, Torres-Ulloa L, Elling R, Kelliher MA, Bertin J, Proulx MK, Ryan L, Kandasamy R, Espevik T, Pai AA, Fitzgerald KA, Lien E. Raver1 links Ripk1 RNA splicing to caspase-8-mediated pyroptotic cell death, inflammation, and pathogen resistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.27.625707. [PMID: 39651143 PMCID: PMC11623576 DOI: 10.1101/2024.11.27.625707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Multiple cell death and inflammatory signaling pathways converge on two critical factors: receptor interacting serine/threonine kinase 1 (RIPK1) and caspase-8. Careful regulation of these molecules is critical to control apoptosis, pyroptosis and inflammation. Here we discovered a pivotal role of Raver1 as an essential regulator of Ripk1 pre-mRNA splicing, expression, and functionality, and the subsequent caspase-8-dependent inflammatory cell death. Macrophages from Raver1 -deficient mice exhibit altered splicing of Ripk1 , accompanied by diminished cell death and reduced activation of caspase-8, Gasdermin D and E, caspase-1, as well as decreased interleukin-18 (IL-18) and IL-1ß production. These effects were triggered by Yersinia bacteria, or by restraining TAK1 or IKKβ in the presence of LPS, TNF family members, or IFNγ. Consequently, animals lacking Raver1 showed heightened susceptibility to Yersinia infection. Raver1 and RIPK1 also controlled the expression and function of the C-type lectin receptor Mincle. Our study underscores the critical regulatory role of Raver1 in modulating innate immune responses and highlights its significance in directing in vivo and in vitro inflammatory processes. Significance Caspase-8 and the kinase RIPK1 are at focal points of several inflammation and cell death pathways. Thus, a careful regulation of their actions is needed. Our work identifies the RNA splicing factor Raver1 as a critical factor directing the splicing of Ripk1 in order to modulate RIPK1/caspase-8-driven pyroptosis, apoptosis and inflammation. Raver1 is central for macrophage responses to Yersinia bacteria, initiated after blockade of kinases TAK1 and IKK, measured as activation of RIPK1, caspase-8, Gasdermin D, caspase-3, IL-1ß and IL-18. Importantly, Raver1 is necessary for host resistance to Yersinia infection in vivo . We propose that Raver1 is key for correct tuning of RIPK1-caspase-8 dependent processes.
Collapse
|
9
|
Song D, Cen Y, Qian Z, Wu XS, Rivera K, Wee TL, Demerdash OE, Chang K, Pappin D, Vakoc CR, Tonks NK. PTPN23-dependent ESCRT machinery functions as a cell death checkpoint. Nat Commun 2024; 15:10364. [PMID: 39609437 PMCID: PMC11604704 DOI: 10.1038/s41467-024-54749-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 11/20/2024] [Indexed: 11/30/2024] Open
Abstract
Cell death plasticity is crucial for modulating tissue homeostasis and immune responses, but our understanding of the molecular components that regulate cell death pathways to determine cell fate remains limited. Here, a CRISPR screen of acute myeloid leukemia cells identifies protein tyrosine phosphatase non-receptor type 23 (PTPN23) as essential for survival. Loss of PTPN23 activates nuclear factor-kappa B, apoptotic, necroptotic, and pyroptotic pathways by causing the accumulation of death receptors and toll-like receptors (TLRs) in endosomes. These effects are recapitulated by depletion of PTPN23 co-dependent genes in the endosomal sorting complex required for transport (ESCRT) pathway. Through proximity-dependent biotin labeling, we show that NAK-associated protein 1 interacts with PTPN23 to facilitate endosomal sorting of tumor necrosis factor receptor 1 (TNFR1), sensitizing cells to TNF-α-induced cytotoxicity. Our findings reveal PTPN23-dependent ESCRT machinery as a cell death checkpoint that regulates the spatiotemporal distribution of death receptors and TLRs to restrain multiple cell death pathways.
Collapse
MESH Headings
- Humans
- Endosomal Sorting Complexes Required for Transport/metabolism
- Endosomal Sorting Complexes Required for Transport/genetics
- Endosomes/metabolism
- Receptors, Tumor Necrosis Factor, Type I/metabolism
- Receptors, Tumor Necrosis Factor, Type I/genetics
- Apoptosis
- NF-kappa B/metabolism
- Cell Death
- Protein Tyrosine Phosphatases, Non-Receptor/metabolism
- Protein Tyrosine Phosphatases, Non-Receptor/genetics
- Toll-Like Receptors/metabolism
- Tumor Necrosis Factor-alpha/metabolism
- Signal Transduction
- Cell Line, Tumor
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/genetics
- HEK293 Cells
- Receptors, Death Domain/metabolism
Collapse
Affiliation(s)
- Dongyan Song
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
- Molecular and Cellular Biology Graduate Program, Stony Brook University, Stony Brook, NY, USA
| | - Yuxin Cen
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
- Molecular and Cellular Biology Graduate Program, Stony Brook University, Stony Brook, NY, USA
| | - Zhe Qian
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
- Molecular and Cellular Biology Graduate Program, Stony Brook University, Stony Brook, NY, USA
| | - Xiaoli S Wu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
- Graduate Program in Genetics, Stony Brook University, Stony Brook, NY, USA
| | - Keith Rivera
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
| | - Tse-Luen Wee
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
| | - Osama E Demerdash
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
| | - Kenneth Chang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
| | - Darryl Pappin
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
| | | | - Nicholas K Tonks
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA.
| |
Collapse
|
10
|
Birhanu AG, Riaz T, Støen M, Tønjum T. Differential Abundance of Protein Acylation in Mycobacterium tuberculosis Under Exposure to Nitrosative Stress. Proteomics Clin Appl 2024; 18:e202300212. [PMID: 39082596 DOI: 10.1002/prca.202300212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/05/2024] [Accepted: 07/15/2024] [Indexed: 11/15/2024]
Abstract
BACKGROUND Human macrophages generate antimicrobial reactive nitrogen species in response to infection by Mycobacterium tuberculosis (Mtb). Exposure to these redox-reactive compounds induces stress response in Mtb, which can affect posttranslational modifications (PTM). METHODS Here, we present the global analysis of the PTM acylation of Mtb proteins in response to a sublethal dose of nitrosative stress in the form of nitric oxide (NO) using label free quantification. RESULTS A total of 6437 acylation events were identified on 1496 Mtb proteins, and O-acylation accounted for 92.2% of the events identified, while 7.8% were N-acylation events. About 22% of the sites identified were found to be acylated by more than one acyl-group. Furthermore, the abundance of each acyl-group decreased as their molecular weight increased. Quantitative PTM analysis revealed differential abundance of acylation in proteins involved in stress response, iron ion homeostasis, growth, energy metabolism, and antimicrobial resistance (AMR) induced by nitrosative stress over time. CONCLUSIONS The results reveal a potential role of Mtb protein acylation in the bacterial stress responses and AMR. To our knowledge, this is the first report on global O-acylation profile of Mtb in response to NO. This will significantly improve our understanding of the changes in Mtb acylation under nitrosative stress, highly relevant for global health.
Collapse
Affiliation(s)
- Alemayehu Godana Birhanu
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Microbiology, University of Oslo, Nydalen, Oslo, Norway
| | - Tahira Riaz
- Department of Microbiology, University of Oslo, Nydalen, Oslo, Norway
| | - Mari Støen
- Department of Microbiology, Oslo University Hospital, Nydalen, Oslo, Norway
| | - Tone Tønjum
- Department of Microbiology, University of Oslo, Nydalen, Oslo, Norway
- Department of Microbiology, Oslo University Hospital, Nydalen, Oslo, Norway
| |
Collapse
|
11
|
Hassanzadeh K, Liu J, Maddila S, Mouradian MM. Posttranslational Modifications of α-Synuclein, Their Therapeutic Potential, and Crosstalk in Health and Neurodegenerative Diseases. Pharmacol Rev 2024; 76:1254-1290. [PMID: 39164116 PMCID: PMC11549938 DOI: 10.1124/pharmrev.123.001111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 07/28/2024] [Accepted: 08/09/2024] [Indexed: 08/22/2024] Open
Abstract
α-Synuclein (α-Syn) aggregation in Lewy bodies and Lewy neurites has emerged as a key pathogenetic feature in Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy. Various factors, including posttranslational modifications (PTMs), can influence the propensity of α-Syn to misfold and aggregate. PTMs are biochemical modifications of a protein that occur during or after translation and are typically mediated by enzymes. PTMs modulate several characteristics of proteins including their structure, activity, localization, and stability. α-Syn undergoes various posttranslational modifications, including phosphorylation, ubiquitination, SUMOylation, acetylation, glycation, O-GlcNAcylation, nitration, oxidation, polyamination, arginylation, and truncation. Different PTMs of a protein can physically interact with one another or work together to influence a particular physiological or pathological feature in a process known as PTMs crosstalk. The development of detection techniques for the cooccurrence of PTMs in recent years has uncovered previously unappreciated mechanisms of their crosstalk. This has led to the emergence of evidence supporting an association between α-Syn PTMs crosstalk and synucleinopathies. In this review, we provide a comprehensive evaluation of α-Syn PTMs, their impact on misfolding and pathogenicity, the pharmacological means of targeting them, and their potential as biomarkers of disease. We also highlight the importance of the crosstalk between these PTMs in α-Syn function and aggregation. Insight into these PTMS and the complexities of their crosstalk can improve our understanding of the pathogenesis of synucleinopathies and identify novel targets of therapeutic potential. SIGNIFICANCE STATEMENT: α-Synuclein is a key pathogenic protein in Parkinson's disease and other synucleinopathies, making it a leading therapeutic target for disease modification. Multiple posttranslational modifications occur at various sites in α-Synuclein and alter its biophysical and pathological properties, some interacting with one another to add to the complexity of the pathogenicity of this protein. This review details these modifications, their implications in disease, and potential therapeutic opportunities.
Collapse
Affiliation(s)
- Kambiz Hassanzadeh
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, Piscataway, New Jersey
| | - Jun Liu
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, Piscataway, New Jersey
| | - Santhosh Maddila
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, Piscataway, New Jersey
| | - M Maral Mouradian
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, Piscataway, New Jersey
| |
Collapse
|
12
|
Zhou M, Zhang J, Zhao Z, Liu W, Wu Z, Huang L. Pseudomonas syringae pv. actinidiae Unique Effector HopZ5 Interacts with GF14C to Trigger Plant Immunity. PHYTOPATHOLOGY 2024; 114:2322-2330. [PMID: 39102501 DOI: 10.1094/phyto-09-23-0330-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
The bacterial canker of kiwifruit caused by Pseudomonas syringae pv. actinidiae (Psa) is the most devastating disease threatening the global kiwifruit production. This pathogen delivers multiple effector proteins into plant cells to resist plant immune responses and facilitate their survival. Here, we focused on the unique effector HopZ5 in Psa, which previously has been reported to have virulence functions. In this study, our results showed that HopZ5 could cause macroscopic cell death and trigger a serious immune response by agroinfiltration in Nicotiana benthamiana, along with upregulated expression of immunity-related genes and significant accumulation of reactive oxygen species and callose. Subsequently, we confirmed that HopZ5 interacted with the phosphoserine-binding protein GF14C in both the nonhost plant N. benthamiana (NbGF14C) and the host plant kiwifruit (AcGF14C), and silencing of NbGF14C compromised HopZ5-mediated cell death, suggesting that GF14C plays a crucial role in the detection of HopZ5. Further studies showed that overexpression of NbGF14C both markedly reduced the infection of Sclerotinia sclerotiorum and Phytophthora capsica in N. benthamiana, and overexpression of AcGF14C significantly enhanced the resistance of kiwifruit against Psa, indicating that GF14C positively regulates plant immunity. Collectively, our results revealed that the virulence effector HopZ5 could be recognized by plants and interact with GF14C to activate plant immunity.
Collapse
Affiliation(s)
- Mingxia Zhou
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling 712100, Shaanxi, China
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jinglong Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling 712100, Shaanxi, China
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhibo Zhao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling 712100, Shaanxi, China
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang 550025, Guizhou, China
| | - Wei Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling 712100, Shaanxi, China
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhiran Wu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling 712100, Shaanxi, China
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Lili Huang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling 712100, Shaanxi, China
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
13
|
Hershkovitz D, Chen EJ, Ensminger AW, Dugan AS, Conway KT, Joyce AC, Segal G, Isberg RR. Genetic evidence for a regulated cysteine protease catalytic triad in LegA7, a Legionella pneumophila protein that impinges on a stress response pathway. mSphere 2024; 9:e0022224. [PMID: 39166849 PMCID: PMC11423584 DOI: 10.1128/msphere.00222-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/30/2024] [Indexed: 08/23/2024] Open
Abstract
Legionella pneumophila grows within membrane-bound vacuoles in phylogenetically diverse hosts. Intracellular growth requires the function of the Icm/Dot type-IVb secretion system, which translocates more than 300 proteins into host cells. A screen was performed to identify L. pneumophila proteins that stimulate mitogen-activated protein kinase (MAPK) activation, using Icm/Dot translocated proteins ectopically expressed in mammalian cells. In parallel, a second screen was performed to identify L. pneumophila proteins expressed in yeast that cause growth inhibition in MAPK pathway-stimulatory high-osmolarity medium. LegA7 was shared in both screens, a protein predicted to be a member of the bacterial cysteine protease family that has five carboxyl-terminal ankyrin repeats. Three conserved residues in the predicted catalytic triad of LegA7 were mutated. These mutations abolished the ability of LegA7 to inhibit yeast growth. To identify other residues important for LegA7 function, a generalizable selection strategy in yeast was devised to isolate mutants that have lost function and no longer cause growth inhibition on a high-osmolarity medium. Mutations were isolated in the two carboxyl-terminal ankyrin repeats, as well as an inter-domain region located between the cysteine protease domain and the ankyrin repeats. These mutations were predicted by AlphaFold modeling to localize to the face opposite from the catalytic site, arguing that they interfere with the positive regulation of the catalytic activity. Based on our data, we present a model in which LegA7 harbors a cysteine protease domain with an inter-domain and two carboxyl-terminal ankyrin repeat regions that modulate the function of the catalytic domain. IMPORTANCE Legionella pneumophila grows in a membrane-bound compartment in macrophages during disease. Construction of the compartment requires a dedicated secretion system that translocates virulence proteins into host cells. One of these proteins, LegA7, is shown to activate a stress response pathway in host cells called the mitogen-activated protein kinase (MAPK) pathway. The effects on the mammalian MAPK pathway were reconstructed in yeast, allowing the development of a strategy to identify the role of individual domains of LegA7. A domain similar to cysteine proteases is demonstrated to be critical for impinging on the MAPK pathway, and the catalytic activity of this domain is required for targeting this path. In addition, a conserved series of repeats, called ankyrin repeats, controls this activity. Data are provided that argue the interaction of the ankyrin repeats with unknown targets probably results in activation of the cysteine protease domain.
Collapse
Affiliation(s)
- Dar Hershkovitz
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Emy J Chen
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
- Program in Genetics, Molecular and Cellular Biology, Graduate School of Biomedical Sciences Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Alexander W Ensminger
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Aisling S Dugan
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Kaleigh T Conway
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
- Program in Genetics, Molecular and Cellular Biology, Graduate School of Biomedical Sciences Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Alex C Joyce
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Gil Segal
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Ralph R Isberg
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
14
|
Archana, Gupta AK, Noumani A, Panday DK, Zaidi F, Sahu GK, Joshi G, Yadav M, Borah SJ, Susmitha V, Mohan A, Kumar A, Solanki PR. Gut microbiota derived short-chain fatty acids in physiology and pathology: An update. Cell Biochem Funct 2024; 42:e4108. [PMID: 39228159 DOI: 10.1002/cbf.4108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/28/2024] [Accepted: 08/09/2024] [Indexed: 09/05/2024]
Abstract
Short-chain fatty acids (SCFAs) are essential molecules produced by gut bacteria that fuel intestinal cells and may also influence overall health. An imbalance of SCFAs can result in various acute and chronic diseases, including diabetes, obesity and colorectal cancer (CRC). This review delves into the multifaceted roles of SCFAs, including a brief discussion on their source and various gut-residing bacteria. Primary techniques used for detection of SCFAs, including gas chromatography, high-performance gas chromatography, nuclear magnetic resonance and capillary electrophoresis are also discussed through this article. This review study also compiles various synthesis pathways of SCFAs from diverse substrates such as sugar, acetone, ethanol and amino acids. The different pathways through which SCFAs enter cells for immune response regulation are also highlighted. A major emphasis is the discussion on diseases associated with SCFA dysregulation, such as anaemia, brain development, CRC, depression, obesity and diabetes. This includes exploring the relationship between SCFA levels across ethnicities and their connection with blood pressure and CRC. In conclusion, this review highlights the critical role of SCFAs in maintaining gut health and their implications in various diseases, emphasizing the need for further research on SCFA detection, synthesis and their potential as diagnostic biomarkers. Future studies of SCFAs will pave the way for the development of novel diagnostic tools and therapeutic strategies for optimizing gut health and preventing diseases associated with SCFA dysregulation.
Collapse
Affiliation(s)
- Archana
- Nano-Bio Laboratory, Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, India
| | - Abhijeet Kumar Gupta
- Nano-Bio Laboratory, Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, India
| | - Ashab Noumani
- Nano-Bio Laboratory, Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, India
| | - Dharmendra Kumar Panday
- Nano-Bio Laboratory, Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, India
| | - Fareen Zaidi
- Nano-Bio Laboratory, Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, India
| | - Gaurav Kumar Sahu
- Nano-Bio Laboratory, Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, India
| | - Gunjan Joshi
- Nano-Bio Laboratory, Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, India
| | - Manisha Yadav
- Nano-Bio Laboratory, Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, India
| | - Shikha Jyoti Borah
- Nano-Bio Laboratory, Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, India
| | - Vanne Susmitha
- Nano-Bio Laboratory, Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, India
| | - Anand Mohan
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India
| | - Anil Kumar
- National Institute of Immunology, New Delhi, India
| | - Pratima R Solanki
- Nano-Bio Laboratory, Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
15
|
Jetton D, Muendlein HI, Connolly WM, Magri Z, Smirnova I, Batorsky R, Mecsas J, Degterev A, Poltorak A. Non-canonical autophosphorylation of RIPK1 drives timely pyroptosis to control Yersinia infection. Cell Rep 2024; 43:114641. [PMID: 39154339 PMCID: PMC11465231 DOI: 10.1016/j.celrep.2024.114641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/17/2024] [Accepted: 07/31/2024] [Indexed: 08/20/2024] Open
Abstract
Caspase-8-dependent pyroptosis has been shown to mediate host protection from Yersinia infection. For this mode of cell death, the kinase activity of receptor-interacting protein kinase 1 (RIPK1) is required, but the autophosphorylation sites required to drive caspase-8 activation have not been determined. Here, we show that non-canonical autophosphorylation of RIPK1 at threonine 169 (T169) is necessary for caspase-8-mediated pyroptosis. Mice with alanine in the T169 position are highly susceptible to Yersinia dissemination. Mechanistically, the delayed formation of a complex containing RIPK1, ZBP1, Fas-associated protein with death domain (FADD), and caspase-8 abrogates caspase-8 maturation in T169A mice and leads to the eventual activation of RIPK3-dependent necroptosis in vivo; however, this is insufficient to protect the host, suggesting that timely pyroptosis during early response is specifically required to control infection. These results position RIPK1 T169 phosphorylation as a driver of pyroptotic cell death critical for host defense.
Collapse
Affiliation(s)
- David Jetton
- Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, MA 02111, USA
| | - Hayley I Muendlein
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Wilson M Connolly
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Zoie Magri
- Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, MA 02111, USA
| | - Irina Smirnova
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Rebecca Batorsky
- Data Intensive Studies Center, Tufts University, Medford, MA 02155, USA
| | - Joan Mecsas
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Alexei Degterev
- Department of Cell, Molecular & Developmental Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Alexander Poltorak
- Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, MA 02111, USA; Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA.
| |
Collapse
|
16
|
Nataraj NM, Sillas RG, Herrmann BI, Shin S, Brodsky IE. Blockade of IKK signaling induces RIPK1-independent apoptosis in human macrophages. PLoS Pathog 2024; 20:e1012469. [PMID: 39186805 PMCID: PMC11407650 DOI: 10.1371/journal.ppat.1012469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/17/2024] [Accepted: 07/31/2024] [Indexed: 08/28/2024] Open
Abstract
Regulated cell death in response to microbial infection plays an important role in immune defense and is triggered by pathogen disruption of essential cellular pathways. Gram-negative bacterial pathogens in the Yersinia genus disrupt NF-κB signaling via translocated effectors injected by a type III secretion system, thereby preventing induction of cytokine production and antimicrobial defense. In murine models of infection, Yersinia blockade of NF-κB signaling triggers cell-extrinsic apoptosis through Receptor Interacting Serine-Threonine Protein Kinase 1 (RIPK1) and caspase-8, which is required for bacterial clearance and host survival. Unexpectedly, we find that human macrophages undergo apoptosis independently of RIPK1 in response to Yersinia or chemical blockade of IKKβ. Instead, IKK blockade led to decreased cFLIP expression, and overexpression of cFLIP contributed to protection from IKK blockade-induced apoptosis in human macrophages. We found that IKK blockade also induces RIPK1 kinase activity-independent apoptosis in human T cells and human pancreatic cells. Altogether, our data indicate that, in contrast to murine cells, blockade of IKK activity in human cells triggers a distinct apoptosis pathway that is independent of RIPK1 kinase activity. These findings have implications for the contribution of RIPK1 to cell death in human cells and the efficacy of RIPK1 inhibition in human diseases.
Collapse
Affiliation(s)
- Neha M Nataraj
- Institute for Immunology & Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Reyna Garcia Sillas
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Beatrice I Herrmann
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Sunny Shin
- Institute for Immunology & Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Igor E Brodsky
- Institute for Immunology & Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
17
|
Wertman RS, Yost W, Herrmann BI, Bourne CM, Sorobetea D, Go CK, Saller BS, Groß O, Scott P, Rongvaux A, Taabazuing CY, Brodsky IE. Distinct sequential death complexes regulate pyroptosis and IL-1β release in response to Yersinia blockade of immune signaling. SCIENCE ADVANCES 2024; 10:eadl3629. [PMID: 39058785 PMCID: PMC11277400 DOI: 10.1126/sciadv.adl3629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 06/25/2024] [Indexed: 07/28/2024]
Abstract
Pathogen infection of host cells triggers an inflammatory cell death termed pyroptosis via activation of inflammatory caspases. However, blockade of immune signaling kinases by the Yersinia virulence factor YopJ triggers cell death involving both apoptotic caspase-8 and pyroptotic caspase-1. While caspase-1 is normally activated within inflammasomes, Yersinia-induced caspase-1 activation is independent of known inflammasome components. We report that caspase-8 is an essential initiator, while caspase-1 is an essential amplifier of its own activation through two feed-forward loops involving caspase-1 auto-processing and caspase-1-dependent activation of gasdermin D and NLPR3. Notably, while Yersinia-induced caspase-1 activation and cell death are inflammasome-independent, IL-1β release requires NLPR3 inflammasome activation. Mechanistically, caspase-8 is rapidly activated within multiple foci throughout the cell, followed by assembly of a canonical inflammasome speck, indicating that caspase-8 and canonical inflammasome complex assemblies are kinetically and spatially distinct. Our findings reveal that functionally interconnected but distinct death complexes mediate pyroptosis and IL-1β release in response to pathogen blockade of immune signaling.
Collapse
Affiliation(s)
- Ronit Schwartz Wertman
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Winslow Yost
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Beatrice I. Herrmann
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Christopher M. Bourne
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel Sorobetea
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Christina K. Go
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Benedikt S. Saller
- Institute of Neuropathology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany
- Faculty of Biology, University of Freiburg, Freiburg 79106, Germany
| | - Olaf Groß
- Institute of Neuropathology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg 79106, Germany
| | - Phillip Scott
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Anthony Rongvaux
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Department of Immunology, University of Washington, Seattle, WA 98195, USA
| | - Cornelius Y. Taabazuing
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Igor E. Brodsky
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
18
|
Osbron CA, Lawson C, Hanna N, Koehler HS, Goodman AG. Caspase-8 activity mediates TNFα production and restricts Coxiella burnetii replication during murine macrophage infection. Infect Immun 2024; 92:e0005324. [PMID: 38837340 PMCID: PMC11238558 DOI: 10.1128/iai.00053-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/14/2024] [Indexed: 06/07/2024] Open
Abstract
Coxiella burnetii is an obligate intracellular bacteria that causes the global zoonotic disease Q Fever. Treatment options for chronic infection are limited, and the development of novel therapeutic strategies requires a greater understanding of how C. burnetii interacts with immune signaling. Cell death responses are known to be manipulated by C. burnetii, but the role of caspase-8, a central regulator of multiple cell death pathways, has not been investigated. In this research, we studied bacterial manipulation of caspase-8 signaling and the significance of caspase-8 to C. burnetii infection, examining bacterial replication, cell death induction, and cytokine signaling. We measured caspase, RIPK, and MLKL activation in C. burnetii-infected tumor necrosis factor alpha (TNFα)/cycloheximide-treated THP-1 macrophage-like cells and TNFα/ZVAD-treated L929 cells to assess apoptosis and necroptosis signaling. Additionally, we measured C. burnetii replication, cell death, and TNFα induction over 12 days in RIPK1-kinase-dead, RIPK3-kinase-dead, or RIPK3-kinase-dead-caspase-8-/- bone marrow-derived macrophages (BMDMs) to understand the significance of caspase-8 and RIPK1/3 during infection. We found that caspase-8 is inhibited by C. burnetii, coinciding with inhibition of apoptosis and increased susceptibility to necroptosis. Furthermore, C. burnetii replication was increased in BMDMs lacking caspase-8, but not in those lacking RIPK1/3 kinase activity, corresponding with decreased TNFα production and reduced cell death. As TNFα is associated with the control of C. burnetii, this lack of a TNFα response may allow for the unchecked bacterial growth we saw in caspase-8-/- BMDMs. This research identifies and explores caspase-8 as a key regulator of C. burnetii infection, opening novel therapeutic doors.
Collapse
Affiliation(s)
- Chelsea A. Osbron
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Crystal Lawson
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Nolan Hanna
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Heather S. Koehler
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Alan G. Goodman
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| |
Collapse
|
19
|
Hershkovitz D, Chen EJ, Ensminger AW, Dugan AS, Conway KT, Joyce AC, Segal G, Isberg RR. Genetic evidence for a regulated cysteine protease catalytic triad in LegA7, a Legionella pneumophila protein that impinges on a stress response pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.17.585421. [PMID: 38562771 PMCID: PMC10983931 DOI: 10.1101/2024.03.17.585421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Legionella pneumophila grows within membrane-bound vacuoles in phylogenetically diverse hosts. Intracellular growth requires the function of the Icm/Dot type-IVb secretion system, which translocates more than 300 proteins into host cells. A screen was performed to identify L. pneumophila proteins that stimulate MAPK activation, using Icm/Dot translocated proteins ectopically expressed in mammalian cells. In parallel, a second screen was performed to identify L. pneumophila proteins expressed in yeast that cause growth inhibition in MAPK pathway-stimulatory high osmolarity medium. LegA7 was shared in both screens, a protein predicted to be a member of the bacterial cysteine protease family that has five carboxyl-terminal ankyrin repeats. Three conserved residues in the predicted catalytic triad of LegA7 were mutated. These mutations abolished the ability of LegA7 to inhibit yeast growth. To identify other residues important for LegA7 function, a generalizable selection strategy in yeast was devised to isolate mutants that have lost function and no longer cause growth inhibition on high osmolarity medium. Mutations were isolated in the two carboxyl-terminal ankyrin repeats, as well as an inter-domain region located between the cysteine protease domain and the ankyrin repeats. These mutations were predicted by AlphaFold modeling to localize to the face opposite from the catalytic site, arguing that they interfere with the positive regulation of the catalytic activity. Based on our data, we present a model in which LegA7 harbors a cysteine protease domain with an inter-domain and two carboxyl-terminal ankyrin repeat regions that modulate the function of the catalytic domain.
Collapse
Affiliation(s)
- Dar Hershkovitz
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, 6997801, Israel
| | - Emy J. Chen
- Department of Molecular Biology and Microbiology
- Program in Genetics, Molecular and Cellular Biology, Graduate School of Biomedical Sciences, Tufts University School of Medicine,150 Harrison Ave., Boston, MA 02115, USA
| | | | - Aisling S. Dugan
- Department of Molecular Biology and Microbiology
- Current Address: Dept. of Biology, Brown University, Providence, RI 02912
| | - Kaleigh T. Conway
- Department of Molecular Biology and Microbiology
- Program in Genetics, Molecular and Cellular Biology, Graduate School of Biomedical Sciences, Tufts University School of Medicine,150 Harrison Ave., Boston, MA 02115, USA
| | | | - Gil Segal
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, 6997801, Israel
| | | |
Collapse
|
20
|
Li Y, Perez-Gil J, Lois LM, Varejão N, Reverter D. Broad-spectrum ubiquitin/ubiquitin-like deconjugation activity of the rhizobial effector NopD from Bradyrhizobium (sp. XS1150). Commun Biol 2024; 7:644. [PMID: 38802699 PMCID: PMC11130253 DOI: 10.1038/s42003-024-06344-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024] Open
Abstract
The post-translational modification of proteins by ubiquitin-like modifiers (UbLs), such as SUMO, ubiquitin, and Nedd8, regulates a vast array of cellular processes. Dedicated UbL deconjugating proteases families reverse these modifications. During bacterial infection, effector proteins, including deconjugating proteases, are released to disrupt host cell defenses and promote bacterial survival. NopD, an effector protein from rhizobia involved in legume nodule symbiosis, exhibits deSUMOylation activity and, unexpectedly, also deubiquitination and deNeddylation activities. Here, we present two crystal structures of Bradyrhizobium (sp. XS1150) NopD complexed with either Arabidopsis SUMO2 or ubiquitin at 1.50 Å and 1.94 Å resolution, respectively. Despite their low sequence similarity, SUMO and ubiquitin bind to a similar NopD interface, employing a unique loop insertion in the NopD sequence. In vitro binding and activity assays reveal specific residues that distinguish between deubiquitination and deSUMOylation. These unique multifaceted deconjugating activities against SUMO, ubiquitin, and Nedd8 exemplify an optimized bacterial protease that disrupts distinct UbL post-translational modifications during host cell infection.
Collapse
Affiliation(s)
- Ying Li
- Institut de Biotecnologia i de Biomedicina and Dept. de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
- Qingdao University, 266071, Qingdao, China
| | - Jordi Perez-Gil
- Center for Research in Agricultural Genomics-CRAG, Edifici CRAG-Campus UAB, 08193, Bellaterra, Barcelona, Spain
- ARC Centre of Excellence in Synthetic Biology and Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - L Maria Lois
- Center for Research in Agricultural Genomics-CRAG, Edifici CRAG-Campus UAB, 08193, Bellaterra, Barcelona, Spain
- Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Nathalia Varejão
- Institut de Biotecnologia i de Biomedicina and Dept. de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain.
| | - David Reverter
- Institut de Biotecnologia i de Biomedicina and Dept. de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
21
|
Fromm K, Ortelli M, Boegli A, Dehio C. Translocation of YopJ family effector proteins through the VirB/VirD4 T4SS of Bartonella. Proc Natl Acad Sci U S A 2024; 121:e2310348121. [PMID: 38709922 PMCID: PMC11098119 DOI: 10.1073/pnas.2310348121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 03/25/2024] [Indexed: 05/08/2024] Open
Abstract
The evolutionary conserved YopJ family comprises numerous type-III-secretion system (T3SS) effectors of diverse mammalian and plant pathogens that acetylate host proteins to dampen immune responses. Acetylation is mediated by a central acetyltransferase domain that is flanked by conserved regulatory sequences, while a nonconserved N-terminal extension encodes the T3SS-specific translocation signal. Bartonella spp. are facultative-intracellular pathogens causing intraerythrocytic bacteremia in their mammalian reservoirs and diverse disease manifestations in incidentally infected humans. Bartonellae do not encode a T3SS, but most species possess a type-IV-secretion system (T4SS) to translocate Bartonella effector proteins (Beps) into host cells. Here we report that the YopJ homologs present in Bartonellae species represent genuine T4SS effectors. Like YopJ family T3SS effectors of mammalian pathogens, the "Bartonella YopJ-like effector A" (ByeA) of Bartonella taylorii also targets MAP kinase signaling to dampen proinflammatory responses, however, translocation depends on a functional T4SS. A split NanoLuc luciferase-based translocation assay identified sequences required for T4SS-dependent translocation in conserved regulatory regions at the C-terminus and proximal to the N-terminus of ByeA. The T3SS effectors YopP from Yersinia enterocolitica and AvrA from Salmonella Typhimurium were also translocated via the Bartonella T4SS, while ByeA was not translocated via the Yersinia T3SS. Our data suggest that YopJ family T3SS effectors may have evolved from an ancestral T4SS effector, such as ByeA of Bartonella. In this evolutionary scenario, the signal for T4SS-dependent translocation encoded by N- and C-terminal sequences remained functional in the derived T3SS effectors due to the essential role these sequences coincidentally play in regulating acetyltransferase activity.
Collapse
Affiliation(s)
- Katja Fromm
- Biozentrum, University of Basel, Basel4056, Switzerland
| | | | | | | |
Collapse
|
22
|
Lauber E, González-Fuente M, Escouboué M, Vicédo C, Luneau JS, Pouzet C, Jauneau A, Gris C, Zhang ZM, Pichereaux C, Carrère S, Deslandes L, Noël LD. Bacterial host adaptation through sequence and structural variations of a single type III effector gene. iScience 2024; 27:109224. [PMID: 38439954 PMCID: PMC10909901 DOI: 10.1016/j.isci.2024.109224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 12/02/2023] [Accepted: 02/08/2024] [Indexed: 03/06/2024] Open
Abstract
Molecular mechanisms underlying quantitative variations of pathogenicity remain elusive. Here, we identified the Xanthomonas campestris XopJ6 effector that triggers disease resistance in cauliflower and Arabidopsis thaliana. XopJ6 is a close homolog of the Ralstoniapseudosolanacearum PopP2 YopJ family acetyltransferase. XopJ6 is recognized by the RRS1-R/RPS4 NLR pair that integrates a WRKY decoy domain mimicking effector targets. We identified a XopJ6 natural variant carrying a single residue substitution in XopJ6 WRKY-binding site that disrupts interaction with WRKY proteins. This mutation allows XopJ6 to evade immune perception while retaining some XopJ6 virulence functions. Interestingly, xopJ6 resides in a Tn3-family transposon likely contributing to xopJ6 copy number variation (CNV). Using synthetic biology, we demonstrate that xopJ6 CNV tunes pathogen virulence on Arabidopsis through gene dosage-mediated modulation of xopJ6 expression. Together, our findings highlight how sequence and structural genetic variations restricted at a particular effector gene contribute to bacterial host adaptation.
Collapse
Affiliation(s)
- Emmanuelle Lauber
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Université de Toulouse, INRAE, CNRS, F-31326 Castanet-Tolosan, France
| | - Manuel González-Fuente
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Université de Toulouse, INRAE, CNRS, F-31326 Castanet-Tolosan, France
| | - Maxime Escouboué
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Université de Toulouse, INRAE, CNRS, F-31326 Castanet-Tolosan, France
| | - Céline Vicédo
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Université de Toulouse, INRAE, CNRS, F-31326 Castanet-Tolosan, France
| | - Julien S. Luneau
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Université de Toulouse, INRAE, CNRS, F-31326 Castanet-Tolosan, France
| | - Cécile Pouzet
- TRI-FRAIB Imaging Platform Facilities, FRAIB, Université de Toulouse, CNRS, UPS, 31320 Castanet-Tolosan, France
| | - Alain Jauneau
- TRI-FRAIB Imaging Platform Facilities, FRAIB, Université de Toulouse, CNRS, UPS, 31320 Castanet-Tolosan, France
| | - Carine Gris
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Université de Toulouse, INRAE, CNRS, F-31326 Castanet-Tolosan, France
| | - Zhi-Min Zhang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Carole Pichereaux
- Fédération de Recherche Agrobiosciences, Interactions et Biodiversité (FRAIB), Université de Toulouse, CNRS, Université de Toulouse III - Paul Sabatier (UT3), Auzeville-Tolosane, France
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université de Toulouse III - Paul Sabatier (UT3), Toulouse, France
- Infrastructure nationale de protéomique, ProFI, FR 2048, Toulouse, France
| | - Sébastien Carrère
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Université de Toulouse, INRAE, CNRS, F-31326 Castanet-Tolosan, France
| | - Laurent Deslandes
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Université de Toulouse, INRAE, CNRS, F-31326 Castanet-Tolosan, France
| | - Laurent D. Noël
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Université de Toulouse, INRAE, CNRS, F-31326 Castanet-Tolosan, France
| |
Collapse
|
23
|
Marks KD, Anderson DM. Protection from plague via single dose administration of antibody to neutralize the type I interferon response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.11.584497. [PMID: 38559124 PMCID: PMC10979884 DOI: 10.1101/2024.03.11.584497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Yersinia pestis is a gram-negative bacterium and the causative agent for the plague. Yersinia spp . use effector proteins of the type III secretion system (T3SS) to skew the host immune response toward a bacterial advantage during infection. Previous work established that mice which lack the type I IFN receptor (IFNAR), exhibit resistance to pulmonary infection by Y. pestis . In this work, we addressed the efficacy of a single dose administration of neutralizing antibody to IFNAR (MAR1) as a preventive treatment for plague. We show that single dose administration of MAR1 provides protection from mortality due to secondary septicemic plague where it appears to reduce the production of serum TNFα during the disease phase. We further demonstrate that the T3SS effector protein YopJ is necessary for MAR1-induced protection, however IFNAR-dependent serum TNFα was observed independent of YopJ. We further define tissue-specific anti-bacterial roles of IFNAR that are blocked by YopJ activity indicating that YopJ and IFNAR work in parallel to promote disease. The combined data suggest that therapeutic targeting of IFNAR signaling may reduce the hyper-inflammatory response associated with plague.
Collapse
|
24
|
Matsuda R, Sorobetea D, Zhang J, Peterson ST, Grayczyk JP, Yost W, Apenes N, Kovalik ME, Herrmann B, O’Neill RJ, Bohrer AC, Lanza M, Assenmacher CA, Mayer-Barber KD, Shin S, Brodsky IE. A TNF-IL-1 circuit controls Yersinia within intestinal pyogranulomas. J Exp Med 2024; 221:e20230679. [PMID: 38363547 PMCID: PMC10873131 DOI: 10.1084/jem.20230679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 11/22/2023] [Accepted: 01/19/2024] [Indexed: 02/17/2024] Open
Abstract
Tumor necrosis factor (TNF) is a pleiotropic inflammatory cytokine that mediates antimicrobial defense and granuloma formation in response to infection by numerous pathogens. We previously reported that Yersinia pseudotuberculosis colonizes the intestinal mucosa and induces the recruitment of neutrophils and inflammatory monocytes into organized immune structures termed pyogranulomas (PG) that control Yersinia infection. Inflammatory monocytes are essential for the control and clearance of Yersinia within intestinal PG, but how monocytes mediate Yersinia restriction is poorly understood. Here, we demonstrate that TNF signaling in monocytes is required for bacterial containment following enteric Yersinia infection. We further show that monocyte-intrinsic TNFR1 signaling drives the production of monocyte-derived interleukin-1 (IL-1), which signals through IL-1 receptors on non-hematopoietic cells to enable PG-mediated control of intestinal Yersinia infection. Altogether, our work reveals a monocyte-intrinsic TNF-IL-1 collaborative inflammatory circuit that restricts intestinal Yersinia infection.
Collapse
Affiliation(s)
- Rina Matsuda
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel Sorobetea
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jenna Zhang
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Stefan T. Peterson
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - James P. Grayczyk
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Winslow Yost
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nicolai Apenes
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Maria E. Kovalik
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Beatrice Herrmann
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rosemary J. O’Neill
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrea C. Bohrer
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Matthew Lanza
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Charles-Antoine Assenmacher
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Katrin D. Mayer-Barber
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sunny Shin
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Igor E. Brodsky
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
25
|
Bastidas RJ, Kędzior M, Davidson RK, Walsh SC, Dolat L, Sixt BS, Pruneda JN, Coers J, Valdivia RH. The acetylase activity of Cdu1 regulates bacterial exit from infected cells by protecting Chlamydia effectors from degradation. eLife 2024; 12:RP87386. [PMID: 38358795 PMCID: PMC10942603 DOI: 10.7554/elife.87386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
Many cellular processes are regulated by ubiquitin-mediated proteasomal degradation. Pathogens can regulate eukaryotic proteolysis through the delivery of proteins with de-ubiquitinating (DUB) activities. The obligate intracellular pathogen Chlamydia trachomatis secretes Cdu1 (ChlaDUB1), a dual deubiquitinase and Lys-acetyltransferase, that promotes Golgi remodeling and survival of infected host cells presumably by regulating the ubiquitination of host and bacterial proteins. Here, we determined that Cdu1's acetylase but not its DUB activity is important to protect Cdu1 from ubiquitin-mediated degradation. We further identified three C. trachomatis proteins on the pathogen-containing vacuole (InaC, IpaM, and CTL0480) that required Cdu1's acetylase activity for protection from degradation and determined that Cdu1 and these Cdu1-protected proteins are required for optimal egress of Chlamydia from host cells. These findings highlight a non-canonical mechanism of pathogen-mediated protection of virulence factors from degradation after their delivery into host cells and the coordinated regulation of secreted effector proteins.
Collapse
Affiliation(s)
- Robert J Bastidas
- Department of Integrative Immunobiology, Duke UniversityDurhamUnited States
| | - Mateusz Kędzior
- Department of Integrative Immunobiology, Duke UniversityDurhamUnited States
| | - Robert K Davidson
- Department of Molecular Genetics and Microbiology, Duke UniversityDukeUnited States
| | - Stephen C Walsh
- Department of Molecular Genetics and Microbiology, Duke UniversityDukeUnited States
| | - Lee Dolat
- Department of Integrative Immunobiology, Duke UniversityDurhamUnited States
| | - Barbara S Sixt
- Deparment of Molecular Biology, Umeå UniversityUmeåSweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå UniversityUmeåSweden
- Umeå Centre for Microbial Research (UCMR), Umeå UniversityUmeåSweden
| | - Jonathan N Pruneda
- Department of Molecular Microbiology & Immunology, Oregon Health & Science UniversityPortlandUnited States
| | - Jorn Coers
- Department of Integrative Immunobiology, Duke UniversityDurhamUnited States
- Department of Molecular Genetics and Microbiology, Duke UniversityDukeUnited States
| | - Raphael H Valdivia
- Department of Integrative Immunobiology, Duke UniversityDurhamUnited States
- Department of Molecular Genetics and Microbiology, Duke UniversityDukeUnited States
| |
Collapse
|
26
|
Osbron CA, Lawson C, Hanna N, Koehler HS, Goodman AG. Caspase-8 activity mediates TNFα production and restricts Coxiella burnetii replication during murine macrophage infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.02.578698. [PMID: 38352389 PMCID: PMC10862817 DOI: 10.1101/2024.02.02.578698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Coxiella burnetii is an obligate intracellular bacteria which causes the global zoonotic disease Q Fever. Treatment options for infection are limited, and development of novel therapeutic strategies requires a greater understanding of how C. burnetii interacts with immune signaling. Cell death responses are known to be manipulated by C. burnetii, but the role of caspase-8, a central regulator of multiple cell death pathways, has not been investigated. In this research, we studied bacterial manipulation of caspase-8 signaling and the significance of caspase-8 to C. burnetii infection, examining bacterial replication, cell death induction, and cytokine signaling. We measured caspase, RIPK, and MLKL activation in C. burnetii-infected TNFα/CHX-treated THP-1 macrophage-like cells and TNFα/ZVAD-treated L929 cells to assess apoptosis and necroptosis signaling. Additionally, we measured C. burnetii replication, cell death, and TNFα induction over 12 days in RIPK1-kinase-dead, RIPK3-kinase-dead, or RIPK3-kinase-dead-caspase-8-/- BMDMs to understand the significance of caspase-8 and RIPK1/3 during infection. We found that caspase-8 is inhibited by C. burnetii, coinciding with inhibition of apoptosis and increased susceptibility to necroptosis. Furthermore, C. burnetii replication was increased in BMDMs lacking caspase-8, but not in those lacking RIPK1/3 kinase activity, corresponding with decreased TNFα production and reduced cell death. As TNFα is associated with the control of C. burnetii, this lack of a TNFα response may allow for the unchecked bacterial growth we saw in caspase-8-/- BMDMs. This research identifies and explores caspase-8 as a key regulator of C. burnetii infection, opening novel therapeutic doors.
Collapse
Affiliation(s)
- Chelsea A. Osbron
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Crystal Lawson
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Nolan Hanna
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Heather S. Koehler
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Alan G. Goodman
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| |
Collapse
|
27
|
Berneking L, Bekere I, Rob S, Schnapp M, Huang J, Ruckdeschel K, Aepfelbacher M. A bacterial effector protein promotes nuclear translocation of Stat3 to induce IL-10. Eur J Cell Biol 2023; 102:151364. [PMID: 37806297 DOI: 10.1016/j.ejcb.2023.151364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/22/2023] [Accepted: 09/30/2023] [Indexed: 10/10/2023] Open
Abstract
The multifunctional Yersinia effector YopM inhibits effector triggered immunity and increases production of the anti-inflammatory cytokine Interleukin-10 (IL-10) to suppress the host immune response. Previously it was shown that YopM induces IL-10 gene expression by elevating phosphorylation of the serine-threonine kinase RSK1 in the nucleus of human macrophages. Using transcriptomics, we found that YopM strongly affects expression of genes belonging to the JAK-STAT signaling pathway. Further analysis revealed that YopM mediates nuclear translocation of the transcription factor Stat3 in Y. enterocolitica infected macrophages and that knockdown of Stat3 inhibited YopM-induced IL-10 gene expression. YopM-induced Stat3 translocation did not depend on autocrine IL-10, activation of RSK1 or tyrosine phosphorylation of Stat3. Thus, besides activation of RSK1, stimulation of nuclear translocation of Stat3 is another mechanism by which YopM increases IL-10 gene expression in macrophages.
Collapse
Affiliation(s)
- Laura Berneking
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Indra Bekere
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Sören Rob
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Marie Schnapp
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Jiabin Huang
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Klaus Ruckdeschel
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Martin Aepfelbacher
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.
| |
Collapse
|
28
|
Clucas J, Meier P. Roles of RIPK1 as a stress sentinel coordinating cell survival and immunogenic cell death. Nat Rev Mol Cell Biol 2023; 24:835-852. [PMID: 37568036 DOI: 10.1038/s41580-023-00623-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2023] [Indexed: 08/13/2023]
Abstract
Cell death and inflammation are closely linked arms of the innate immune response to combat infection and tissue malfunction. Recent advancements in our understanding of the intricate signals originating from dying cells have revealed that cell death serves as more than just an end point. It facilitates the exchange of information between the dying cell and cells of the tissue microenvironment, particularly immune cells, alerting and recruiting them to the site of disturbance. Receptor-interacting serine/threonine-protein kinase 1 (RIPK1) is emerging as a critical stress sentinel that functions as a molecular switch, governing cellular survival, inflammatory responses and immunogenic cell death signalling. Its tight regulation involves multiple layers of post-translational modifications. In this Review, we discuss the molecular mechanisms that regulate RIPK1 to maintain homeostasis and cellular survival in healthy cells, yet drive cell death in a context-dependent manner. We address how RIPK1 mutations or aberrant regulation is associated with inflammatory and autoimmune disorders and cancer. Moreover, we tease apart what is known about catalytic and non-catalytic roles of RIPK1 and discuss the successes and pitfalls of current strategies that aim to target RIPK1 in the clinic.
Collapse
Affiliation(s)
- Jarama Clucas
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, UK
| | - Pascal Meier
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, UK.
| |
Collapse
|
29
|
Bastidas RJ, Kędzior M, Davidson RK, Walsh SC, Dolat L, Sixt BS, Pruneda JN, Coers J, Valdivia RH. The acetylase activity of Cdu1 regulates bacterial exit from infected cells by protecting Chlamydia effectors from degradation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.28.530337. [PMID: 36909574 PMCID: PMC10002621 DOI: 10.1101/2023.02.28.530337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Many cellular processes are regulated by ubiquitin-mediated proteasomal degradation. Pathogens can regulate eukaryotic proteolysis through the delivery of proteins with de-ubiquitinating (DUB) activities. The obligate intracellular pathogen Chlamydia trachomatis secretes Cdu1 (ChlaDUB1), a dual deubiquitinase and Lys-acetyltransferase, that promotes Golgi remodeling and survival of infected host cells presumably by regulating the ubiquitination of host and bacterial proteins. Here we determined that Cdu1's acetylase but not its DUB activity is important to protect Cdu1 from ubiquitin-mediated degradation. We further identified three C. trachomatis proteins on the pathogen-containing vacuole (InaC, IpaM, and CTL0480) that required Cdu1's acetylase activity for protection from degradation and determined that Cdu1 and these Cdu1-protected proteins are required for optimal egress of Chlamydia from host cells. These findings highlight a non-canonical mechanism of pathogen-mediated protection of virulence factors from degradation after their delivery into host cells and the coordinated regulation of secreted effector proteins.
Collapse
Affiliation(s)
- Robert J. Bastidas
- Department of Integrative Immunobiology, Duke University, Durham, N.C 27708, USA
| | - Mateusz Kędzior
- Department of Integrative Immunobiology, Duke University, Durham, N.C 27708, USA
| | - Robert K. Davidson
- Department of Molecular Genetics and Microbiology, Duke University, Durham, N.C 27708, USA
| | - Stephen C. Walsh
- Department of Molecular Genetics and Microbiology, Duke University, Durham, N.C 27708, USA
| | - Lee Dolat
- Department of Integrative Immunobiology, Duke University, Durham, N.C 27708, USA
| | - Barbara S. Sixt
- Deparment of Molecular Biology, Umeå University, Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Jonathan N. Pruneda
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Jörn Coers
- Department of Integrative Immunobiology, Duke University, Durham, N.C 27708, USA
- Department of Molecular Genetics and Microbiology, Duke University, Durham, N.C 27708, USA
| | - Raphael H. Valdivia
- Department of Integrative Immunobiology, Duke University, Durham, N.C 27708, USA
- Department of Molecular Genetics and Microbiology, Duke University, Durham, N.C 27708, USA
| |
Collapse
|
30
|
Tomar V, Rikkerink EHA, Song J, Sofkova-Bobcheva S, Bus VGM. Structure-Function Characterisation of Eop1 Effectors from the Erwinia-Pantoea Clade Reveals They May Acetylate Their Defence Target through a Catalytic Dyad. Int J Mol Sci 2023; 24:14664. [PMID: 37834112 PMCID: PMC10572645 DOI: 10.3390/ijms241914664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
The YopJ group of acetylating effectors from phytopathogens of the genera Pseudomonas and Ralstonia have been widely studied to understand how they modify and suppress their host defence targets. In contrast, studies on a related group of effectors, the Eop1 group, lag far behind. Members of the Eop1 group are widely present in the Erwinia-Pantoea clade of Gram-negative bacteria, which contains phytopathogens, non-pathogens and potential biocontrol agents, implying that they may play an important role in agroecological or pathological adaptations. The lack of research in this group of YopJ effectors has left a significant knowledge gap in their functioning and role. For the first time, we perform a comparative analysis combining AlphaFold modelling, in planta transient expressions and targeted mutational analyses of the Eop1 group effectors from the Erwinia-Pantoea clade, to help elucidate their likely activity and mechanism(s). This integrated study revealed several new findings, including putative binding sites for inositol hexakisphosphate and acetyl coenzyme A and newly postulated target-binding domains, and raises questions about whether these effectors function through a catalytic triad mechanism. The results imply that some Eop1s may use a catalytic dyad acetylation mechanism that we found could be promoted by the electronegative environment around the active site.
Collapse
Affiliation(s)
- Vishant Tomar
- Mt Albert Research Centre, The New Zealand Institute for Plant and Food Research Limited, Auckland 1025, New Zealand
- School of Agriculture and Environment, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand;
| | - Erik H. A. Rikkerink
- Mt Albert Research Centre, The New Zealand Institute for Plant and Food Research Limited, Auckland 1025, New Zealand
| | - Janghoon Song
- Pear Research Institute, National Institute of Horticultural & Herbal Science, Rural Development Administration, Naju 58216, Republic of Korea
| | - Svetla Sofkova-Bobcheva
- School of Agriculture and Environment, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand;
| | - Vincent G. M. Bus
- Hawkes Bay Research Centre, The New Zealand Institute for Plant and Food Research Limited, Havelock North 4130, New Zealand;
| |
Collapse
|
31
|
Roberts CG, Franklin TG, Pruneda JN. Ubiquitin-targeted bacterial effectors: rule breakers of the ubiquitin system. EMBO J 2023; 42:e114318. [PMID: 37555693 PMCID: PMC10505922 DOI: 10.15252/embj.2023114318] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/10/2023] [Accepted: 07/18/2023] [Indexed: 08/10/2023] Open
Abstract
Regulation through post-translational ubiquitin signaling underlies a large portion of eukaryotic biology. This has not gone unnoticed by invading pathogens, many of which have evolved mechanisms to manipulate or subvert the host ubiquitin system. Bacteria are particularly adept at this and rely heavily upon ubiquitin-targeted virulence factors for invasion and replication. Despite lacking a conventional ubiquitin system of their own, many bacterial ubiquitin regulators loosely follow the structural and mechanistic rules established by eukaryotic ubiquitin machinery. Others completely break these rules and have evolved novel structural folds, exhibit distinct mechanisms of regulation, or catalyze foreign ubiquitin modifications. Studying these interactions can not only reveal important aspects of bacterial pathogenesis but also shed light on unexplored areas of ubiquitin signaling and regulation. In this review, we discuss the methods by which bacteria manipulate host ubiquitin and highlight aspects that follow or break the rules of ubiquitination.
Collapse
Affiliation(s)
- Cameron G Roberts
- Department of Molecular Microbiology & ImmunologyOregon Health & Science UniversityPortlandORUSA
| | - Tyler G Franklin
- Department of Molecular Microbiology & ImmunologyOregon Health & Science UniversityPortlandORUSA
| | - Jonathan N Pruneda
- Department of Molecular Microbiology & ImmunologyOregon Health & Science UniversityPortlandORUSA
| |
Collapse
|
32
|
Wertman RS, Go CK, Saller BS, Groß O, Scott P, Brodsky IE. Sequentially activated death complexes regulate pyroptosis and IL-1β release in response to Yersinia blockade of immune signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.14.557714. [PMID: 37745613 PMCID: PMC10515920 DOI: 10.1101/2023.09.14.557714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
The Yersinia virulence factor YopJ potently inhibits immune signaling in macrophages by blocking activation of the signaling kinases TAK1 and IKK. In response, macrophages trigger a backup pathway of host defense that mediates cell death via the apoptotic enzyme caspase-8 and pyroptotic enzyme caspase-1. While caspase-1 is normally activated within multiprotein inflammasome complexes that contain the adaptor ASC and NLRs, which act as sensors of pathogen virulence, caspase-1 activation following Yersinia blockade of TAK1/IKK surprisingly requires caspase-8 and is independent of all known inflammasome components. Here, we report that caspase-1 activation by caspase-8 requires both caspase-8 catalytic and auto-processing activity. Intriguingly, while caspase-8 serves as an essential initiator of caspase-1 activation, caspase-1 amplifies its own activation through a feed-forward loop involving auto-processing, caspase-1-dependent cleavage of the pore-forming protein GSDMD, and subsequent activation of the canonical NLRP3 inflammasome. Notably, while caspase-1 activation and cell death are independent of inflammasomes during Yersinia infection, IL-1β release requires the canonical NLPR3 inflammasome. Critically, activation of caspase-8 and activation of the canonical inflammasome are kinetically and spatially separable events, as rapid capase-8 activation occurs within multiple foci throughout the cell, followed by delayed subsequent assembly of a single canonical inflammasome. Importantly, caspase-8 auto-processing normally serves to prevent RIPK3/MLKL-mediated necroptosis, and in caspase-8's absence, MLKL triggers NLPR3 inflammasome activation and IL-1β release. Altogether, our findings reveal that functionally interconnected but temporally and spatially distinct death complexes differentially mediate pyroptosis and IL-1β release to ensure robust host defense against pathogen blockade of TAK1 and IKK.
Collapse
Affiliation(s)
- Ronit Schwartz Wertman
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, USA 19104
| | - Christina K. Go
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, USA 19104
| | - Benedikt S. Saller
- Institute of Neuropathology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany 79106
- Faculty of Biology, University of Freiburg, Freiburg, Germany 79106
| | - Olaf Groß
- Institute of Neuropathology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany 79106
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany 79106
| | - Phillip Scott
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, USA 19104
| | - Igor E. Brodsky
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, USA 19104
| |
Collapse
|
33
|
Chai Q, Lei Z, Liu CH. Pyroptosis modulation by bacterial effector proteins. Semin Immunol 2023; 69:101804. [PMID: 37406548 DOI: 10.1016/j.smim.2023.101804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/07/2023]
Abstract
Pyroptosis is a proinflammatory form of programmed cell death featured with membrane pore formation that causes cellular swelling and allows the release of intracellular inflammatory mediators. This cell death process is elicited by the activation of the pore-forming proteins named gasdermins, and is intricately orchestrated by diverse regulatory factors in mammalian hosts to exert a prompt immune response against infections. However, growing evidence suggests that bacterial pathogens have evolved to regulate host pyroptosis for evading immune clearance and establishing progressive infection. In this review, we highlight current understandings of the functional role and regulatory network of pyroptosis in host antibacterial immunity. Thereafter, we further discuss the latest advances elucidating the mechanisms by which bacterial pathogens modulate pyroptosis through adopting their effector proteins to drive infections. A better understanding of regulatory mechanisms underlying pyroptosis at the interface of host-bacterial interactions will shed new light on the pathogenesis of infectious diseases and contribute to the development of promising therapeutic strategies against bacterial pathogens.
Collapse
Affiliation(s)
- Qiyao Chai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Zehui Lei
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Cui Hua Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 101408, China.
| |
Collapse
|
34
|
Nandi I, Aroeti B. Mitogen-Activated Protein Kinases (MAPKs) and Enteric Bacterial Pathogens: A Complex Interplay. Int J Mol Sci 2023; 24:11905. [PMID: 37569283 PMCID: PMC10419152 DOI: 10.3390/ijms241511905] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 08/13/2023] Open
Abstract
Diverse extracellular and intracellular cues activate mammalian mitogen-activated protein kinases (MAPKs). Canonically, the activation starts at cell surface receptors and continues via intracellular MAPK components, acting in the host cell nucleus as activators of transcriptional programs to regulate various cellular activities, including proinflammatory responses against bacterial pathogens. For instance, binding host pattern recognition receptors (PRRs) on the surface of intestinal epithelial cells to bacterial pathogen external components trigger the MAPK/NF-κB signaling cascade, eliciting cytokine production. This results in an innate immune response that can eliminate the bacterial pathogen. However, enteric bacterial pathogens evolved sophisticated mechanisms that interfere with such a response by delivering virulent proteins, termed effectors, and toxins into the host cells. These proteins act in numerous ways to inactivate or activate critical components of the MAPK signaling cascades and innate immunity. The consequence of such activities could lead to successful bacterial colonization, dissemination, and pathogenicity. This article will review enteric bacterial pathogens' strategies to modulate MAPKs and host responses. It will also discuss findings attempting to develop anti-microbial treatments by targeting MAPKs.
Collapse
Affiliation(s)
| | - Benjamin Aroeti
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190410, Israel;
| |
Collapse
|
35
|
Malireddi RS, Bynigeri RR, Mall R, Nadendla EK, Connelly JP, Pruett-Miller SM, Kanneganti TD. Whole-genome CRISPR screen identifies RAVER1 as a key regulator of RIPK1-mediated inflammatory cell death, PANoptosis. iScience 2023; 26:106938. [PMID: 37324531 PMCID: PMC10265528 DOI: 10.1016/j.isci.2023.106938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/24/2023] [Accepted: 05/18/2023] [Indexed: 06/17/2023] Open
Abstract
Transforming growth factor-β-activated kinase 1 (TAK1) is a central regulator of innate immunity, cell death, inflammation, and cellular homeostasis. Therefore, many pathogens carry TAK1 inhibitors (TAK1i). As a host strategy to counteract this, inhibition or deletion of TAK1 induces spontaneous inflammatory cell death, PANoptosis, through the RIPK1-PANoptosome complex, containing the NLRP3 inflammasome and caspase-8/FADD/RIPK3 as integral components; however, PANoptosis also promotes pathological inflammation. Therefore, understanding molecular mechanisms that regulate TAK1i-induced cell death is essential. Here, we report a genome-wide CRISPR screen in macrophages that identified TAK1i-induced cell death regulators, including polypyrimidine tract-binding (PTB) protein 1 (PTBP1), a known regulator of RIPK1, and a previously unknown regulator RAVER1. RAVER1 blocked alternative splicing of Ripk1, and its genetic depletion inhibited TAK1i-induced, RIPK1-mediated inflammasome activation and PANoptosis. Overall, our CRISPR screen identified several positive regulators of PANoptosis. Moreover, our study highlights the utility of genome-wide CRISPR-Cas9 screens in myeloid cells for comprehensive characterization of complex cell death pathways to discover therapeutic targets.
Collapse
Affiliation(s)
| | - Ratnakar R. Bynigeri
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Raghvendra Mall
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Eswar Kumar Nadendla
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Jon P. Connelly
- Center for Advanced Genome Engineering (CAGE), St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Shondra M. Pruett-Miller
- Center for Advanced Genome Engineering (CAGE), St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | | |
Collapse
|
36
|
Matsuda R, Sorobetea D, Zhang J, Peterson ST, Grayczyk JP, Herrmann B, Yost W, O’Neill R, Bohrer AC, Lanza M, Assenmacher CA, Mayer-Barber KD, Shin S, Brodsky IE. A TNF-IL-1 circuit controls Yersinia within intestinal granulomas. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.21.537749. [PMID: 37197029 PMCID: PMC10176537 DOI: 10.1101/2023.04.21.537749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Tumor necrosis factor (TNF) is a pleiotropic inflammatory cytokine that mediates antimicrobial defense and granuloma formation in response to infection by numerous pathogens. Yersinia pseudotuberculosis colonizes the intestinal mucosa and induces recruitment of neutrophils and inflammatory monocytes into organized immune structures termed pyogranulomas that control the bacterial infection. Inflammatory monocytes are essential for control and clearance of Yersinia within intestinal pyogranulomas, but how monocytes mediate Yersinia restriction is poorly understood. Here, we demonstrate that TNF signaling in monocytes is required for bacterial containment following enteric Yersinia infection. We further show that monocyte-intrinsic TNFR1 signaling drives production of monocyte-derived interleukin-1 (IL-1), which signals through IL-1 receptor on non-hematopoietic cells to enable pyogranuloma-mediated control of Yersinia infection. Altogether, our work reveals a monocyte-intrinsic TNF-IL-1 collaborative circuit as a crucial driver of intestinal granuloma function, and defines the cellular target of TNF signaling that restricts intestinal Yersinia infection.
Collapse
Affiliation(s)
- Rina Matsuda
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Daniel Sorobetea
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Jenna Zhang
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Stefan T. Peterson
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - James P. Grayczyk
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Beatrice Herrmann
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Winslow Yost
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Rosemary O’Neill
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Andrea C. Bohrer
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Matthew Lanza
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Charles-Antoine Assenmacher
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Katrin D. Mayer-Barber
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sunny Shin
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Igor E. Brodsky
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| |
Collapse
|
37
|
Sorobetea D, Matsuda R, Peterson ST, Grayczyk JP, Rao I, Krespan E, Lanza M, Assenmacher CA, Mack M, Beiting DP, Radaelli E, Brodsky IE. Inflammatory monocytes promote granuloma control of Yersinia infection. Nat Microbiol 2023; 8:666-678. [PMID: 36879169 PMCID: PMC10653359 DOI: 10.1038/s41564-023-01338-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 02/09/2023] [Indexed: 03/08/2023]
Abstract
Granulomas are organized immune cell aggregates formed in response to chronic infection or antigen persistence. The bacterial pathogen Yersinia pseudotuberculosis (Yp) blocks innate inflammatory signalling and immune defence, inducing neutrophil-rich pyogranulomas (PGs) within lymphoid tissues. Here we uncover that Yp also triggers PG formation within the murine intestinal mucosa. Mice lacking circulating monocytes fail to form defined PGs, have defects in neutrophil activation and succumb to Yp infection. Yersinia lacking virulence factors that target actin polymerization to block phagocytosis and reactive oxygen burst do not induce PGs, indicating that intestinal PGs form in response to Yp disruption of cytoskeletal dynamics. Notably, mutation of the virulence factor YopH restores PG formation and control of Yp in mice lacking circulating monocytes, demonstrating that monocytes override YopH-dependent blockade of innate immune defence. This work reveals an unappreciated site of Yersinia intestinal invasion and defines host and pathogen drivers of intestinal granuloma formation.
Collapse
Affiliation(s)
- Daniel Sorobetea
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rina Matsuda
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Stefan T Peterson
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - James P Grayczyk
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Indira Rao
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elise Krespan
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Matthew Lanza
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Charles-Antoine Assenmacher
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Matthias Mack
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - Daniel P Beiting
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Enrico Radaelli
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Igor E Brodsky
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
38
|
De Ryck J, Van Damme P, Goormachtig S. From prediction to function: Current practices and challenges towards the functional characterization of type III effectors. Front Microbiol 2023; 14:1113442. [PMID: 36846751 PMCID: PMC9945535 DOI: 10.3389/fmicb.2023.1113442] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/19/2023] [Indexed: 02/10/2023] Open
Abstract
The type III secretion system (T3SS) is a well-studied pathogenicity determinant of many bacteria through which effectors (T3Es) are translocated into the host cell, where they exercise a wide range of functions to deceive the host cell's immunity and to establish a niche. Here we look at the different approaches that are used to functionally characterize a T3E. Such approaches include host localization studies, virulence screenings, biochemical activity assays, and large-scale omics, such as transcriptomics, interactomics, and metabolomics, among others. By means of the phytopathogenic Ralstonia solanacearum species complex (RSSC) as a case study, the current advances of these methods will be explored, alongside the progress made in understanding effector biology. Data obtained by such complementary methods provide crucial information to comprehend the entire function of the effectome and will eventually lead to a better understanding of the phytopathogen, opening opportunities to tackle it.
Collapse
Affiliation(s)
- Joren De Ryck
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- iRIP Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Petra Van Damme
- iRIP Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Sofie Goormachtig
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| |
Collapse
|
39
|
Chen KW, Brodsky IE. Yersinia interactions with regulated cell death pathways. Curr Opin Microbiol 2023; 71:102256. [PMID: 36584489 DOI: 10.1016/j.mib.2022.102256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/18/2022] [Accepted: 11/30/2022] [Indexed: 12/29/2022]
Abstract
Cell death in response to infection is conserved across all kingdoms of life. In metazoans, cell death upon bacterial infection is primarily carried out by the cysteine and aspartate protease and receptor-interacting serine/threonine protein kinase families. The Gram-negative bacterial genus Yersinia includes pathogens that cause disease in humans and other animals ranging from plague to gastrointestinal infections. Pathogenic Yersiniae express a type-III secretion system (T3SS), which translocates effectors that disrupt phagocytosis and innate immune signaling to evade immune defenses and replicate extracellularly in infected tissues. Blockade of innate immune signaling, disruption of the actin cytoskeleton, and the membrane-disrupting activity of the T3SS translocon pore, are all sensed by innate immune cells. Here, we discuss recent advances in understanding the pathways that regulate Yersinia-induced cell death, and how manipulation of these cell death pathways over the course of infection promotes bacterial dissemination or host defense.
Collapse
Affiliation(s)
- Kaiwen W Chen
- Immunology Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Igor E Brodsky
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, United States; Department of Microbiology, University of Pennsylvania Perelman School of Medicine, United States.
| |
Collapse
|
40
|
Duan H, Zhang X, Figeys D. An emerging field: Post-translational modification in microbiome. Proteomics 2023; 23:e2100389. [PMID: 36239139 DOI: 10.1002/pmic.202100389] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/11/2022]
Abstract
Post-translational modifications (PTMs) play an essential role in most biological processes. PTMs on human proteins have been extensively studied. Studies on bacterial PTMs are emerging, which demonstrate that bacterial PTMs are different from human PTMs in their types, mechanisms and functions. Few PTM studies have been done on the microbiome. Here, we reviewed several studied PTMs in bacteria including phosphorylation, acetylation, succinylation, glycosylation, and proteases. We discussed the enzymes responsible for each PTM and their functions. We also summarized the current methods used to study microbiome PTMs and the observations demonstrating the roles of PTM in the microbe-microbe interactions within the microbiome and their interactions with the environment or host. Although new methods and tools for PTM studies are still needed, the existing technologies have made great progress enabling a deeper understanding of the functional regulation of the microbiome. Large-scale application of these microbiome-wide PTM studies will provide a better understanding of the microbiome and its roles in the development of human diseases.
Collapse
Affiliation(s)
- Haonan Duan
- School of Pharmaceutical Sciences, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Xu Zhang
- Center for Biologics Evaluation, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, Canada
| | - Daniel Figeys
- School of Pharmaceutical Sciences, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
41
|
Yang R, Atkinson S, Chen Z, Cui Y, Du Z, Han Y, Sebbane F, Slavin P, Song Y, Yan Y, Wu Y, Xu L, Zhang C, Zhang Y, Hinnebusch BJ, Stenseth NC, Motin VL. Yersinia pestis and Plague: some knowns and unknowns. ZOONOSES (BURLINGTON, MASS.) 2023; 3:5. [PMID: 37602146 PMCID: PMC10438918 DOI: 10.15212/zoonoses-2022-0040] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Since its first identification in 1894 during the third pandemic in Hong Kong, there has been significant progress of understanding the lifestyle of Yersinia pestis, the pathogen that is responsible for plague. Although we now have some understanding of the pathogen's physiology, genetics, genomics, evolution, gene regulation, pathogenesis and immunity, there are many unknown aspects of the pathogen and its disease development. Here, we focus on some of the knowns and unknowns relating to Y. pestis and plague. We notably focus on some key Y. pestis physiological and virulence traits that are important for its mammal-flea-mammal life cycle but also its emergence from the enteropathogen Yersinia pseudotuberculosis. Some aspects of the genetic diversity of Y. pestis, the distribution and ecology of plague as well as the medical countermeasures to protect our population are also provided. Lastly, we present some biosafety and biosecurity information related to Y. pestis and plague.
Collapse
Affiliation(s)
- Ruifu Yang
- Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Steve Atkinson
- School of Life Sciences, Centre for Biomolecular Science, University of Nottingham, Nottingham, United Kingdom
| | - Ziqi Chen
- Vanke School of Public Health, Tsinghua University, Beijing 100084, China
| | - Yujun Cui
- Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Zongmin Du
- Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Yanping Han
- Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Florent Sebbane
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Philip Slavin
- Division of History and Politics, University of Stirling, Stirling FK9 4LJ, UK
| | - Yajun Song
- Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Yanfeng Yan
- Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Yarong Wu
- Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Lei Xu
- Vanke School of Public Health, Tsinghua University, Beijing 100084, China
| | - Chutian Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Yun Zhang
- Vanke School of Public Health, Tsinghua University, Beijing 100084, China
| | - B. Joseph Hinnebusch
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, Montana, USA
| | - Nils Chr. Stenseth
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, N-0316 Oslo, Norway
| | - Vladimir L. Motin
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
42
|
Thioester-mediated biocatalytic amide bond synthesis with in situ thiol recycling. Nat Catal 2022. [DOI: 10.1038/s41929-022-00889-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
43
|
RIPK1 and RIPK3 in antibacterial defence. Biochem Soc Trans 2022; 50:1583-1594. [DOI: 10.1042/bst20211242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/25/2022]
Abstract
Upon sensing pathogenic bacterial infection, host cells activate a multitude of inflammatory and immunogenic responses to promote bacterial clearance and restore tissue homeostasis. RIPK1 and RIPK3 are two key players in antimicrobial defence, by either driving inflammatory signalling or inducing programmed cell death activation, ranging from apoptosis, pyroptosis to necroptosis. In this review, we first discuss the mechanisms by which RIPK1 and RIPK3 promote the assembly of death-inducing complexes and how these cell death pathways are activated as host responses to counteract pathogenic bacteria. We further outline the immunological importance of cell death in antibacterial defence and highlight outstanding questions in the field.
Collapse
|
44
|
Abstract
Tumour necrosis factor (TNF) is a central cytokine in inflammatory reactions, and biologics that neutralize TNF are among the most successful drugs for the treatment of chronic inflammatory and autoimmune pathologies. In recent years, it became clear that TNF drives inflammatory responses not only directly by inducing inflammatory gene expression but also indirectly by inducing cell death, instigating inflammatory immune reactions and disease development. Hence, inhibitors of cell death are being considered as a new therapy for TNF-dependent inflammatory diseases.
Collapse
|
45
|
Nilsson P, Ravinet M, Cui Y, Berg PR, Zhang Y, Guo R, Luo T, Song Y, Trucchi E, Hoff SNK, Lv R, Schmid BV, Easterday WR, Jakobsen KS, Stenseth NC, Yang R, Jentoft S. Polygenic plague resistance in the great gerbil uncovered by population sequencing. PNAS NEXUS 2022; 1:pgac211. [PMID: 36712379 PMCID: PMC9802093 DOI: 10.1093/pnasnexus/pgac211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 09/15/2022] [Accepted: 09/27/2022] [Indexed: 06/18/2023]
Abstract
Pathogens can elicit high selective pressure on hosts, potentially altering genetic diversity over short evolutionary timescales. Intraspecific variation in immune response is observable as variable survivability from specific infections. The great gerbil (Rhombomys opimus) is a rodent plague host with a heterogenic but highly resistant phenotype. Here, we investigate the genomic basis for plague-resistant phenotypes by exposing wild-caught great gerbils to plague (Yersinia pestis). Whole genome sequencing of 10 survivors and 10 moribund individuals revealed a subset of genomic regions showing elevated differentiation. Gene ontology analysis of candidate genes in these regions demonstrated enrichment of genes directly involved in immune functions, cellular metabolism and the regulation of apoptosis as well as pathways involved in transcription, translation, and gene regulation. Transcriptomic analysis revealed that the early activated great gerbil immune response to plague consisted of classical components of the innate immune system. Our approach combining challenge experiments with transcriptomics and population level sequencing, provides new insight into the genetic background of plague-resistance and confirms its complex nature, most likely involving multiple genes and pathways of both the immune system and regulation of basic cellular functions.
Collapse
Affiliation(s)
- Pernille Nilsson
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, 0371 Oslo, Norway
| | | | | | | | | | - Rong Guo
- Xinjiang Center for Disease Control and Prevention, Urumqi 830002, China
| | - Tao Luo
- Xinjiang Center for Disease Control and Prevention, Urumqi 830002, China
| | - Yajun Song
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Emiliano Trucchi
- Department of Life and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy
| | - Siv N K Hoff
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, 0371 Oslo, Norway
| | - Ruichen Lv
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Boris V Schmid
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, 0371 Oslo, Norway
| | - W Ryan Easterday
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, 0371 Oslo, Norway
| | | | | | - Ruifu Yang
- To whom correspondence should be addressed:
| | | |
Collapse
|
46
|
Lucas RM, Luo L, Stow JL. ERK1/2 in immune signalling. Biochem Soc Trans 2022; 50:1341-1352. [PMID: 36281999 PMCID: PMC9704528 DOI: 10.1042/bst20220271] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 07/30/2023]
Abstract
Extracellular signal-related kinases 1 and 2 (ERK1/2) are the final components of the mitogen-activated protein kinase (MAPK) phosphorylation cascade, an integral module in a diverse array of signalling pathways for shaping cell behaviour and fate. More recently, studies have shown that ERK1/2 plays an essential role downstream of immune receptors to elicit inflammatory gene expression in response to infection and cell or tissue damage. Much of this work has studied ERK1/2 activation in Toll-like receptor (TLR) pathways, providing mechanistic insights into its recruitment, compartmentalisation and activation in cells of the innate immune system. In this review, we summarise the typical activation of ERK1/2 in growth factor receptor pathways before discussing its known roles in immune cell signalling with a focus downstream of TLRs. We examine emerging research uncovering evidence of dysfunctional ERK1/2 signalling in inflammatory diseases and discuss the potential therapeutic benefit of targeting ERK1/2 pathways in inflammation.
Collapse
Affiliation(s)
- Richard M. Lucas
- Institute for Molecular Bioscience (IMB) and Centre for Inflammation and Disease Research, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Lin Luo
- Institute for Molecular Bioscience (IMB) and Centre for Inflammation and Disease Research, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Jennifer L. Stow
- Institute for Molecular Bioscience (IMB) and Centre for Inflammation and Disease Research, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
47
|
Caspase-1 Inhibition Reduces Occurrence of PANoptosis in Macrophages Infected by E. faecalis OG1RF. J Clin Med 2022; 11:jcm11206204. [PMID: 36294525 PMCID: PMC9605124 DOI: 10.3390/jcm11206204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 11/05/2022] Open
Abstract
To investigate the effect of caspase-1 inhibition on PANoptosis in macrophages infected with Enterococcus faecalis OG1RF. RAW264.7 cells with and without pretreatment by caspase-1 inhibitor were infected with E. faecalis OG1RF at multiplicities of infection (MOIs). A live cell imaging analysis system and Western blot were applied to evaluate the dynamic curve of cell death and the expression of executor proteins of PANoptosis. The mRNA expression of IL-1β and IL-18 was quantified by RT-qPCR. Morphological changes were observed under scanning electron microscopy. We found that PI-positive cells emerged earlier and peaked at a faster rate in E. faecalis-infected macrophages (Ef-MPs) at higher MOIs. The expression of the N-terminal domain of the effector protein gasdermin D (GSDMD-N), cleaved caspase-3 and pMLKL were significantly upregulated at MOIs of 10:1 at 6 h and at MOI of 1:1 at 12 h postinfection. In Ef-MPs pretreated with caspase-1 inhibitor, the number of PI-positive cells was significantly reduced, and the expression of IL-1β and IL-18 genes and cleaved caspase-1/-3 and GSDMD-N proteins was significantly downregulated (p < 0.05), while pMLKL was still markedly increased (p < 0.05). Ef-MPs remained relatively intact with caspase-1 inhibitor. In conclusion, E. faecalis induced cell death in macrophages in an MOI-dependent manner. Caspase-1 inhibitor simultaneously inhibited pyroptosis and apoptosis in Ef-MPs, but necroptosis still occurred.
Collapse
|
48
|
Qi S, Wang Q, Zhang J, Liu Q, Li C. Pyroptosis and Its Role in the Modulation of Cancer Progression and Antitumor Immunity. Int J Mol Sci 2022; 23:ijms231810494. [PMID: 36142404 PMCID: PMC9501080 DOI: 10.3390/ijms231810494] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/04/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Pyroptosis is a type of programmed cell death (PCD) accompanied by an inflammatory reaction and the rupture of a membrane. Pyroptosis is divided into a canonical pathway triggered by caspase-1, and a non-canonical pathway independent of caspase-1. More and more pyroptosis-related participants, pathways, and regulatory mechanisms have been exploited in recent years. Pyroptosis plays crucial roles in the initiation, progression, and metastasis of cancer and it affects the immunotherapeutic outcome by influencing immune cell infiltration as well. Extensive studies are required to elucidate the molecular mechanisms between pyroptosis and cancer. In this review, we introduce the discovery history of pyroptosis, delineate the signaling pathways of pyroptosis, and then make comparisons between pyroptosis and other types of PCD. Finally, we provide an overview of pyroptosis in different cancer types. With the progression in the field of pyroptosis, new therapeutic targets and strategies can be explored to combat cancer.
Collapse
Affiliation(s)
- Sihan Qi
- School of Engineering Medicine, Beihang University, Beijing 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Qilin Wang
- School of Engineering Medicine, Beihang University, Beijing 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Junyou Zhang
- School of Engineering Medicine, Beihang University, Beijing 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Qian Liu
- School of Engineering Medicine, Beihang University, Beijing 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Chunyan Li
- School of Engineering Medicine, Beihang University, Beijing 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
- Key Laboratory of Big Data-Based Precision Medicine (Ministry of Industry and Information Technology), Beihang University, Beijing 100191, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing 100191, China
- Correspondence:
| |
Collapse
|
49
|
Tabassum Z, Tseng JH, Isemann C, Tian X, Chen Y, Herring LE, Cohen TJ. Identification of a reciprocal negative feedback loop between tau-modifying proteins MARK2 kinase and CBP acetyltransferase. J Biol Chem 2022; 298:101977. [PMID: 35469920 PMCID: PMC9136110 DOI: 10.1016/j.jbc.2022.101977] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 04/14/2022] [Accepted: 04/16/2022] [Indexed: 11/30/2022] Open
Abstract
The posttranslational regulation of the neuronal proteome is critical for brain homeostasis but becomes dysregulated in the aged or diseased brain, in which abnormal posttranslational modifications (PTMs) are frequently observed. While the full extent of modified substrates that comprise the "PTM-ome" are slowly emerging, how the upstream enzymes catalyzing these processes are regulated themselves is not well understood, particularly in the context of neurodegeneration. Here, we describe the reciprocal regulation of a kinase, the microtubule affinity-regulating kinase 2 (MARK2), and an acetyltransferase, CREB-binding protein (CBP), two enzymes known to extensively modify tau proteins in the progression of Alzheimer's disease. We found that MARK2 negatively regulates CBP and, conversely, CBP directly acetylates and inhibits MARK2 kinase activity. These findings highlight a reciprocal negative feedback loop between a kinase and an acetyltransferase, which has implications for how PTM interplay is coordinated on substrates including tau. Our study suggests that PTM profiles occur through the posttranslational control of the master PTM remodeling enzymes themselves.
Collapse
Affiliation(s)
- Zarin Tabassum
- Department of Neurology, UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jui-Heng Tseng
- Department of Neurology, UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Camryn Isemann
- Department of Neurology, UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Xu Tian
- Department of Neurology, UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Youjun Chen
- Department of Neurology, UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Laura E Herring
- UNC Proteomics Core Facility, Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Todd J Cohen
- Department of Neurology, UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina, USA.
| |
Collapse
|
50
|
Stévenin V, Neefjes J. Control of host PTMs by intracellular bacteria: An opportunity toward novel anti-infective agents. Cell Chem Biol 2022; 29:741-756. [PMID: 35512694 DOI: 10.1016/j.chembiol.2022.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/15/2022] [Accepted: 04/15/2022] [Indexed: 02/08/2023]
Abstract
Intracellular bacteria have developed a multitude of mechanisms to influence the post-translational modifications (PTMs) of host proteins to pathogen advantages. The recent explosion of insights into the diversity and sophistication of host PTMs and their manipulation by infectious agents challenges us to formulate a comprehensive vision of this complex and dynamic facet of the host-pathogen interaction landscape. As new discoveries continue to shed light on the central roles of PTMs in infectious diseases, technological advances foster our capacity to detect old and new PTMs and investigate their control and impact during pathogenesis, opening new possibilities for chemical intervention and infection treatment. Here, we present a comprehensive overview of these pathogenic mechanisms and offer perspectives on how these insights may contribute to the development of a new class of therapeutics that are urgently needed to face rising antibiotic resistances.
Collapse
Affiliation(s)
- Virginie Stévenin
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center (LUMC), Leiden 2333 ZC, the Netherlands.
| | - Jacques Neefjes
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center (LUMC), Leiden 2333 ZC, the Netherlands
| |
Collapse
|