1
|
Rossi FM, Pizzorusso T. Neuroproteomics applied to the study of visual cortex plasticity. Neuroscience 2025; 576:8-16. [PMID: 40258567 DOI: 10.1016/j.neuroscience.2025.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 04/01/2025] [Accepted: 04/11/2025] [Indexed: 04/23/2025]
Abstract
The huge complexity of neuronal circuits arises from a temporarily overlapped influence of genetic and environmental factors (Nature and Nurture). During specific temporal windows of postnatal development, the so-called critical or sensitive periods of plasticity, the brain is particularly susceptible to the effects of experience, though this sensitivity declines with age. The most widely used experimental paradigm for studying critical periods of plasticity is the ocular dominance model in the mammalian visual cortex. Recent advancements in large-scale methodological approaches have enabled the analysis of the cellular and molecular factors regulating plasticity, highlighting the complex interaction among various metabolic and regulatory pathways. Traditionally, genomic and transcriptomic techniques have been employed to investigate the Central Nervous System in a comprehensive manner, including studies on critical period plasticity in the visual cortex. However, it is the technical advancements in proteomic approaches that have established neuroproteomics as a powerful tool for investigating both normal and pathological brain states. Despite its potential, proteomics has been underutilized in studying visual cortical plasticity. Here, we review existing studies and emphasize the importance of exploiting neuroproteomics, and of integrating with other complementary "omic" approaches, to accurately identify the true active cellular agents and ultimate mediators of brain functions.
Collapse
Affiliation(s)
- Francesco Mattia Rossi
- Laboratorio de Neurociencias "Neuroplasticity Unit", Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay.
| | - Tommaso Pizzorusso
- BIO@SNS Laboratory, Scuola Normale Superiore/Institute of Neuroscience, National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy.
| |
Collapse
|
2
|
Bosworth AP, Contreras M, Sancho L, Salas IH, Paumier A, Novak SW, Manor U, Allen NJ. Astrocyte glypican 5 regulates synapse maturation and stabilization. Cell Rep 2025; 44:115374. [PMID: 40048429 PMCID: PMC12013928 DOI: 10.1016/j.celrep.2025.115374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 11/28/2024] [Accepted: 02/10/2025] [Indexed: 03/29/2025] Open
Abstract
The maturation and stabilization of appropriate synaptic connections is a vital step in neural circuit development; however, the molecular signals underlying these processes are not fully understood. We show that astrocytes, through production of glypican 5 (GPC5), are required for maturation and refinement of synapses in the mouse cortex during the critical period. In the absence of astrocyte GPC5, thalamocortical synapses show structural immaturity, including smaller presynaptic terminals, decreased postsynaptic density area, and presence of more postsynaptic partners at multisynaptic connections. This structural immaturity is accompanied by a delay in developmental incorporation of GLUA2-containing AMPARs at intracortical synapses. The functional impact of this is that mice lacking astrocyte GPC5 exhibit increased levels of ocular dominance plasticity in adulthood. This demonstrates that astrocyte GPC5 is necessary for maturation and stabilization of synaptic connections, which has implications for disorders with altered synaptic function where GPC5 levels are altered, including Alzheimer's disease and frontotemporal dementia.
Collapse
Affiliation(s)
- Alexandra P Bosworth
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Rd., La Jolla, CA 92037, USA; Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Minerva Contreras
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Rd., La Jolla, CA 92037, USA; Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Laura Sancho
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Rd., La Jolla, CA 92037, USA
| | - Isabel H Salas
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Rd., La Jolla, CA 92037, USA
| | - Adrien Paumier
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Rd., La Jolla, CA 92037, USA
| | - Sammy Weiser Novak
- Waitt Advanced Biophotonics Center, The Salk Institute for Biological Studies, 10010 North Torrey Pines Rd., La Jolla, CA 92037, USA
| | - Uri Manor
- Waitt Advanced Biophotonics Center, The Salk Institute for Biological Studies, 10010 North Torrey Pines Rd., La Jolla, CA 92037, USA; Department of Cell & Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nicola J Allen
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Rd., La Jolla, CA 92037, USA.
| |
Collapse
|
3
|
Al Mamun A, Quan Z, Geng P, Wang S, Shao C, Xiao J. Targeting Remyelination in Spinal Cord Injury: Insights and Emerging Therapeutic Strategies. CNS Neurosci Ther 2024; 30:1-15. [PMID: 39723448 DOI: 10.1111/cns.70193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/27/2024] [Accepted: 12/07/2024] [Indexed: 12/28/2024] Open
Abstract
INTRODUCTION Spinal cord injury (SCI) is a severe neurological disease characterized by significant motor, sensory, and autonomic dysfunctions. SCI is a major global disability cause, often resulting in long-term neurological impairments due to the impeded regeneration and remyelination of axons. A SCI interferes with communication between the brain and the spinal cord networks that control neurological functions. Recent advancements in understanding the molecular and cellular mechanisms of remyelination have opened novel therapeutic interventions. METHOD This review systematically sourced articles related to spinal chord injury, remyelination, regeneration and pathophysiology from major medical databases, including Scopus, PubMed, and Web of Science. RESULTS This review discusses the efficacy of targeted therapy in enhancing myelin repair after SCI by identifying key molecules and signaling pathways. This explores the effectiveness of specific pharmacological agents and biological factors in promoting oligodendrocyte precursor cell proliferation, differentiation, and myelin sheath formation using in vitro and in vivo models. Targeted therapies have shown promising results in improving remyelination, providing hope for functional recovery in SCI patients. CONCLUSIONS This review demonstrates challenges and future perspectives in translating findings into clinical practice, emphasizing safety profiles, delivery method optimization, and combinatory therapy potential. This review also supports the possibility of targeted remyelination therapies as a promising strategy for SCI treatment, paving the way for future clinical applications.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People's Hospital, Lishui, Zhejiang, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhou Quan
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People's Hospital, Lishui, Zhejiang, China
| | - Peiwu Geng
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People's Hospital, Lishui, Zhejiang, China
| | - Shuanghu Wang
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People's Hospital, Lishui, Zhejiang, China
| | - Chuxiao Shao
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People's Hospital, Lishui, Zhejiang, China
| | - Jian Xiao
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People's Hospital, Lishui, Zhejiang, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
4
|
Griswold KA, Vasylieva I, Smith MC, Fiske KL, Welsh OL, Roth AN, Watson AM, Watkins SC, Sutherland DM, Dermody TS. Sialic acid and PirB are not required for targeting of neural circuits by neurotropic mammalian orthoreovirus. mSphere 2024; 9:e0062924. [PMID: 39320067 PMCID: PMC11540169 DOI: 10.1128/msphere.00629-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 08/26/2024] [Indexed: 09/26/2024] Open
Abstract
Serotype 3 (T3) strains of mammalian orthoreovirus (reovirus) spread to the central nervous system to infect the brain and cause lethal encephalitis in newborn mice. Although reovirus targets several regions in the brain, susceptibility to infection is not uniformly distributed. The neuronal subtypes and anatomic sites targeted throughout the brain are not precisely known. Reovirus binds several attachment factors and entry receptors, including sialic acid (SA)-containing glycans and paired immunoglobulin-like receptor B (PirB). While these receptors are not required for infection of some types of neurons, reovirus engagement of these receptors can influence neuronal infection in certain contexts. To identify patterns of T3 neurotropism, we used microbial identification after passive tissue clearance and hybridization chain reaction to stain reovirus-infected cells throughout intact, optically transparent brains of newborn mice. Three-dimensional reconstructions revealed in detail the sites targeted by reovirus throughout the brain volume, including dense infection of the midbrain and hindbrain. Using reovirus mutants incapable of binding SA and mice lacking PirB expression, we found that neither SA nor PirB is required for the infection of various brain regions. However, SA may confer minor differences in infection that vary by region. Collectively, these studies indicate that many regions in the brain of newborn mice are susceptible to reovirus and that patterns of reovirus infection are not dependent on reovirus receptors SA and PirB.IMPORTANCENeurotropic viruses invade the central nervous system (CNS) and target various cell types to cause disease manifestations, such as meningitis, myelitis, or encephalitis. Infections of the CNS are often difficult to treat and can lead to lasting sequelae or death. Mammalian orthoreovirus (reovirus) causes age-dependent lethal encephalitis in many young mammals. Reovirus infects neurons in several different regions of the brain. However, the complete pattern of CNS infection is not understood. We found that reovirus targets almost all regions of the brain and that patterns of tropism are not dependent on receptors sialic acid and paired immunoglobulin-like receptor B. These studies confirm that two known reovirus receptors do not completely explain the cell types infected in brain tissue and establish strategies that can be used to understand complete patterns of viral tropism in an intact brain.
Collapse
Affiliation(s)
- Kira A. Griswold
- Department of
Microbiology and Molecular Genetics, University of Pittsburgh School of
Medicine, Pittsburgh,
Pennsylvania, USA
- Institute of
Infection, Inflammation, and Immunity, UPMC Children’s Hospital
of Pittsburgh, Pittsburgh,
Pennsylvania, USA
| | - Iaroslavna Vasylieva
- Department of Cell
Biology, University of Pittsburgh,
Pittsburgh, Pennsylvania,
USA
- Center for Biologic
Imaging, University of Pittsburgh,
Pittsburgh, Pennsylvania,
USA
| | - Megan C. Smith
- Department of Cell
Biology, University of Pittsburgh,
Pittsburgh, Pennsylvania,
USA
- Center for Biologic
Imaging, University of Pittsburgh,
Pittsburgh, Pennsylvania,
USA
| | - Kay L. Fiske
- Institute of
Infection, Inflammation, and Immunity, UPMC Children’s Hospital
of Pittsburgh, Pittsburgh,
Pennsylvania, USA
- Department of
Pediatrics, University of Pittsburgh School of
Medicine, Pittsburgh,
Pennsylvania, USA
| | - Olivia L. Welsh
- Institute of
Infection, Inflammation, and Immunity, UPMC Children’s Hospital
of Pittsburgh, Pittsburgh,
Pennsylvania, USA
- Department of
Pediatrics, University of Pittsburgh School of
Medicine, Pittsburgh,
Pennsylvania, USA
| | - Alexa N. Roth
- Institute of
Infection, Inflammation, and Immunity, UPMC Children’s Hospital
of Pittsburgh, Pittsburgh,
Pennsylvania, USA
- Department of
Pediatrics, University of Pittsburgh School of
Medicine, Pittsburgh,
Pennsylvania, USA
| | - Alan M. Watson
- Department of Cell
Biology, University of Pittsburgh,
Pittsburgh, Pennsylvania,
USA
- Center for Biologic
Imaging, University of Pittsburgh,
Pittsburgh, Pennsylvania,
USA
| | - Simon C. Watkins
- Department of Cell
Biology, University of Pittsburgh,
Pittsburgh, Pennsylvania,
USA
- Center for Biologic
Imaging, University of Pittsburgh,
Pittsburgh, Pennsylvania,
USA
| | - Danica M. Sutherland
- Institute of
Infection, Inflammation, and Immunity, UPMC Children’s Hospital
of Pittsburgh, Pittsburgh,
Pennsylvania, USA
- Department of
Pediatrics, University of Pittsburgh School of
Medicine, Pittsburgh,
Pennsylvania, USA
| | - Terence S. Dermody
- Department of
Microbiology and Molecular Genetics, University of Pittsburgh School of
Medicine, Pittsburgh,
Pennsylvania, USA
- Institute of
Infection, Inflammation, and Immunity, UPMC Children’s Hospital
of Pittsburgh, Pittsburgh,
Pennsylvania, USA
- Department of
Pediatrics, University of Pittsburgh School of
Medicine, Pittsburgh,
Pennsylvania, USA
| |
Collapse
|
5
|
Du R, Wang P, Tian N. CD3ζ-Mediated Signaling Protects Retinal Ganglion Cells in Glutamate Excitotoxicity of the Retina. Cells 2024; 13:1006. [PMID: 38920637 PMCID: PMC11201742 DOI: 10.3390/cells13121006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/28/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024] Open
Abstract
Excessive levels of glutamate activity could potentially damage and kill neurons. Glutamate excitotoxicity is thought to play a critical role in many CNS and retinal diseases. Accordingly, glutamate excitotoxicity has been used as a model to study neuronal diseases. Immune proteins, such as major histocompatibility complex (MHC) class I molecules and their receptors, play important roles in many neuronal diseases, while T-cell receptors (TCR) are the primary receptors of MHCI. We previously showed that a critical component of TCR, CD3ζ, is expressed by mouse retinal ganglion cells (RGCs). The mutation of CD3ζ or MHCI molecules compromises the development of RGC structure and function. In this study, we investigated whether CD3ζ-mediated molecular signaling regulates RGC death in glutamate excitotoxicity. We show that mutation of CD3ζ significantly increased RGC survival in NMDA-induced excitotoxicity. In addition, we found that several downstream molecules of TCR, including Src (proto-oncogene tyrosine-protein kinase) family kinases (SFKs) and spleen tyrosine kinase (Syk), are expressed by RGCs. Selective inhibition of an SFK member, Hck, or Syk members, Syk or Zap70, significantly increased RGC survival in NMDA-induced excitotoxicity. These results provide direct evidence to reveal the underlying molecular mechanisms that control RGC death under disease conditions.
Collapse
Affiliation(s)
- Rui Du
- Department of Ophthalmology and Visual Science, University of Utah School of Medicine, Salt Lake City, UT 84132, USA; (R.D.); (P.W.)
| | - Ping Wang
- Department of Ophthalmology and Visual Science, University of Utah School of Medicine, Salt Lake City, UT 84132, USA; (R.D.); (P.W.)
| | - Ning Tian
- Department of Ophthalmology and Visual Science, University of Utah School of Medicine, Salt Lake City, UT 84132, USA; (R.D.); (P.W.)
- Department of Neurobiology, University of Utah, Salt Lake City, UT 84132, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84132, USA
- Veterans Affairs Medical Center, Salt Lake City, UT 84148, USA
| |
Collapse
|
6
|
Djurišić M. Immune receptors and aging brain. Biosci Rep 2024; 44:BSR20222267. [PMID: 38299364 PMCID: PMC10866841 DOI: 10.1042/bsr20222267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/08/2024] [Accepted: 01/29/2024] [Indexed: 02/02/2024] Open
Abstract
Aging brings about a myriad of degenerative processes throughout the body. A decrease in cognitive abilities is one of the hallmark phenotypes of aging, underpinned by neuroinflammation and neurodegeneration occurring in the brain. This review focuses on the role of different immune receptors expressed in cells of the central and peripheral nervous systems. We will discuss how immune receptors in the brain act as sentinels and effectors of the age-dependent shift in ligand composition. Within this 'old-age-ligand soup,' some immune receptors contribute directly to excessive synaptic weakening from within the neuronal compartment, while others amplify the damaging inflammatory environment in the brain. Ultimately, chronic inflammation sets up a positive feedback loop that increases the impact of immune ligand-receptor interactions in the brain, leading to permanent synaptic and neuronal loss.
Collapse
Affiliation(s)
- Maja Djurišić
- Departments of Biology, Neurobiology, and Bio-X, Stanford University, Stanford, CA 94305, U.S.A
| |
Collapse
|
7
|
Nibuya M, Kezuka D, Kanno Y, Wakamatsu S, Suzuki E. Behavioral stress and antidepressant treatments altered hippocampal expression of Nogo signal-related proteins in rats. J Psychiatr Res 2024; 170:207-216. [PMID: 38157668 DOI: 10.1016/j.jpsychires.2023.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/26/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024]
Abstract
Some immune molecules including neurite outgrowth inhibitor (Nogo) ligands and their receptor(Nogo receptor-1: NgR1)are expressed at the neuronal synaptic sites. Paired immunoglobulin-like receptor B (PirB) is another Nogo receptor that also binds to major histocompatibility complex I and β-amyloid and suppresses dendritic immune cell functions and neuronal plasticity in the central nervous system. Augmenting structural and functional neural plasticity by manipulating the Nogo signaling pathway is a novel promising strategy for treating brain ischemia and degenerative processes such as Alzheimer's disease. In recent decades psychiatric research using experimental animals has focused on the attenuation of neural plasticity by stress loadings and on the enhanced resilience by psychopharmacological treatments. In the present study, we examined possible expressional alterations in Nogo signal-related proteins in the rat hippocampus after behavioral stress loadings and antidepressant treatments. To validate the effectiveness of the procedures, previously reported increase in brain-derived neurotrophic factor (BDNF) by ECS or ketamine administration and decrease of BDNF by stress loadings are also shown in the present study. Significant increases in hippocampal NgR1 and PirB expression were observed following chronic variable stress, and a significant increase in NgR1 expression was observed under a single prolonged stress paradigm. These results indicate a possible contribution of enhanced Nogo signaling to the attenuation of neural plasticity in response to stressful experiences. Additionally, the suppression of hippocampal NgR1 expression using electroconvulsive seizure treatment and administration of subanesthetic dose of ketamine supported the increased neural plasticity induced by the antidepressant treatments.
Collapse
Affiliation(s)
- Masashi Nibuya
- Division of Psychiatry, Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyagino, Sendai City, Miyagi, 983-8536, Japan.
| | - Dai Kezuka
- Division of Psychiatry, Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyagino, Sendai City, Miyagi, 983-8536, Japan
| | - Yoshihiko Kanno
- Division of Psychiatry, Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyagino, Sendai City, Miyagi, 983-8536, Japan
| | - Shunosuke Wakamatsu
- Division of Psychiatry, Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyagino, Sendai City, Miyagi, 983-8536, Japan
| | - Eiji Suzuki
- Division of Psychiatry, Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyagino, Sendai City, Miyagi, 983-8536, Japan
| |
Collapse
|
8
|
Huang Z. Evidence that Alzheimer's Disease Is a Disease of Competitive Synaptic Plasticity Gone Awry. J Alzheimers Dis 2024; 99:447-470. [PMID: 38669548 PMCID: PMC11119021 DOI: 10.3233/jad-240042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Mounting evidence indicates that a physiological function of amyloid-β (Aβ) is to mediate neural activity-dependent homeostatic and competitive synaptic plasticity in the brain. I have previously summarized the lines of evidence supporting this hypothesis and highlighted the similarities between Aβ and anti-microbial peptides in mediating cell/synapse competition. In cell competition, anti-microbial peptides deploy a multitude of mechanisms to ensure both self-protection and competitor elimination. Here I review recent studies showing that similar mechanisms are at play in Aβ-mediated synapse competition and perturbations in these mechanisms underpin Alzheimer's disease (AD). Specifically, I discuss evidence that Aβ and ApoE, two crucial players in AD, co-operate in the regulation of synapse competition. Glial ApoE promotes self-protection by increasing the production of trophic monomeric Aβ and inhibiting its assembly into toxic oligomers. Conversely, Aβ oligomers, once assembled, promote the elimination of competitor synapses via direct toxic activity and amplification of "eat-me" signals promoting the elimination of weak synapses. I further summarize evidence that neuronal ApoE may be part of a gene regulatory network that normally promotes competitive plasticity, explaining the selective vulnerability of ApoE expressing neurons in AD brains. Lastly, I discuss evidence that sleep may be key to Aβ-orchestrated plasticity, in which sleep is not only induced by Aβ but is also required for Aβ-mediated plasticity, underlining the link between sleep and AD. Together, these results strongly argue that AD is a disease of competitive synaptic plasticity gone awry, a novel perspective that may promote AD research.
Collapse
Affiliation(s)
- Zhen Huang
- Departments of Neuroscience and Neurology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
9
|
Kellogg CM, Pham K, Machalinski AH, Porter HL, Blankenship HE, Tooley KB, Stout MB, Rice HC, Sharpe AL, Beckstead MJ, Chucair-Elliott AJ, Ocañas SR, Freeman WM. Microglial MHC-I induction with aging and Alzheimer's is conserved in mouse models and humans. GeroScience 2023; 45:3019-3043. [PMID: 37393197 PMCID: PMC10643718 DOI: 10.1007/s11357-023-00859-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/21/2023] [Indexed: 07/03/2023] Open
Abstract
Major histocompatibility complex I (MHC-I) CNS cellular localization and function is still being determined after previously being thought to be absent from the brain. MHC-I expression has been reported to increase with brain aging in mouse, rat, and human whole tissue analyses, but the cellular localization was undetermined. Neuronal MHC-I is proposed to regulate developmental synapse elimination and tau pathology in Alzheimer's disease (AD). Here, we report that across newly generated and publicly available ribosomal profiling, cell sorting, and single-cell data, microglia are the primary source of classical and non-classical MHC-I in mice and humans. Translating ribosome affinity purification-qPCR analysis of 3-6- and 18-22-month-old (m.o.) mice revealed significant age-related microglial induction of MHC-I pathway genes B2m, H2-D1, H2-K1, H2-M3, H2-Q6, and Tap1 but not in astrocytes and neurons. Across a timecourse (12-23 m.o.), microglial MHC-I gradually increased until 21 m.o. and then accelerated. MHC-I protein was enriched in microglia and increased with aging. Microglial expression, and absence in astrocytes and neurons, of MHC-I-binding leukocyte immunoglobulin-like (Lilrs) and paired immunoglobin-like type 2 (Pilrs) receptor families could enable cell -autonomous MHC-I signaling and increased with aging in mice and humans. Increased microglial MHC-I, Lilrs, and Pilrs were observed in multiple AD mouse models and human AD data across methods and studies. MHC-I expression correlated with p16INK4A, suggesting an association with cellular senescence. Conserved induction of MHC-I, Lilrs, and Pilrs with aging and AD opens the possibility of cell-autonomous MHC-I signaling to regulate microglial reactivation with aging and neurodegeneration.
Collapse
Affiliation(s)
- Collyn M Kellogg
- Genes and Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13Th Street, Oklahoma City, OK, USA
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Kevin Pham
- Genes and Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13Th Street, Oklahoma City, OK, USA
| | - Adeline H Machalinski
- Genes and Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13Th Street, Oklahoma City, OK, USA
| | - Hunter L Porter
- Genes and Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13Th Street, Oklahoma City, OK, USA
| | - Harris E Blankenship
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Kyla B Tooley
- Genes and Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13Th Street, Oklahoma City, OK, USA
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Michael B Stout
- Aging and Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Heather C Rice
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Amanda L Sharpe
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Michael J Beckstead
- Aging and Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK, USA
| | - Ana J Chucair-Elliott
- Genes and Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13Th Street, Oklahoma City, OK, USA
| | - Sarah R Ocañas
- Genes and Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13Th Street, Oklahoma City, OK, USA
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Willard M Freeman
- Genes and Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13Th Street, Oklahoma City, OK, USA.
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK, USA.
| |
Collapse
|
10
|
Kim MS, Cho K, Cho MH, Kim NY, Kim K, Kim DH, Yoon SY. Neuronal MHC-I complex is destabilized by amyloid-β and its implications in Alzheimer's disease. Cell Biosci 2023; 13:181. [PMID: 37773139 PMCID: PMC10540404 DOI: 10.1186/s13578-023-01132-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 09/11/2023] [Indexed: 10/01/2023] Open
Abstract
BACKGROUNDS The expression of major histocompatibility complex I (MHC-I) in neurons has recently been shown to regulate neurite outgrowth and synaptic plasticity. However, its contribution to neurodegenerative diseases such as Alzheimer's disease (AD) remains largely unknown. METHODS In this study, we investigated the relationship between impaired MHC-I-β2M complex and AD in vitro and human AD samples. Interaction between protein was identified by liquid chromatography-tandem mass spectrometry and confirmed by immunoprecipitation. Single-chain trimer of MHC-I-β2M was generated to study the effect of stabilization of MHC-I-β2M complex on NCAM1 signaling. RESULTS MHC-I is destabilized in the brains of AD patients and neuronal cells treated with oligomeric β-amyloid (Aβ). Specifically, Aβ oligomers disassemble the MHC-I-β2-microglobulin (β2M) complex, leading to reduced interactions with neural cell adhesion molecule 1 (NCAM1), a novel interactor of neuronal MHC-I, and decreased signaling. Inhibition of MHC-I-β2M complex destabilization by non-dissociable MHC-I-β2M-peptide complex restored MHC-I-NCAM1 signaling in neuronal cells. CONCLUSIONS The current study demonstrated that disruption of MHC-1-NCAM1 signaling by Aβ induced disassembly of MHC-I-β2M complex is involved in the pathophysiology of AD. Moreover, our findings suggest modulation of MHC-I stability may be a potential therapeutic target for restoring synaptic function in AD.
Collapse
Affiliation(s)
- Min-Seok Kim
- ADEL Institute of Science & Technology (AIST), ADEL, Inc., Seoul, Korea
| | - Kwangmin Cho
- ADEL Institute of Science & Technology (AIST), ADEL, Inc., Seoul, Korea
| | - Mi-Hyang Cho
- ADEL Institute of Science & Technology (AIST), ADEL, Inc., Seoul, Korea
| | - Na-Young Kim
- ADEL Institute of Science & Technology (AIST), ADEL, Inc., Seoul, Korea
| | - Kyunggon Kim
- Department of Convergence Medicine, Convergence Medicine Research Center/Biomedical Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Dong-Hou Kim
- Department of Brain Science, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| | - Seung-Yong Yoon
- ADEL Institute of Science & Technology (AIST), ADEL, Inc., Seoul, Korea.
- Department of Brain Science, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| |
Collapse
|
11
|
Kellogg CM, Pham K, Machalinski AH, Porter HL, Blankenship HE, Tooley K, Stout MB, Rice HC, Sharpe AL, Beckstead MJ, Chucair-Elliott AJ, Ocañas SR, Freeman WM. Microglial MHC-I induction with aging and Alzheimer's is conserved in mouse models and humans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.07.531435. [PMID: 36945372 PMCID: PMC10028873 DOI: 10.1101/2023.03.07.531435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Major Histocompatibility Complex I (MHC-I) CNS cellular localization and function is still being determined after previously being thought to be absent from the brain. MHC-I expression has been reported to increase with brain aging in mouse, rat, and human whole tissue analyses but the cellular localization was undetermined. Neuronal MHC-I is proposed to regulate developmental synapse elimination and tau pathology in Alzheimer's disease (AD). Here we report that across newly generated and publicly available ribosomal profiling, cell sorting, and single-cell data, microglia are the primary source of classical and non-classical MHC-I in mice and humans. Translating Ribosome Affinity Purification-qPCR analysis of 3-6 and 18-22 month old (m.o.) mice revealed significant age-related microglial induction of MHC-I pathway genes B2m , H2-D1 , H2-K1 , H2-M3 , H2-Q6 , and Tap1 but not in astrocytes and neurons. Across a timecourse (12-23 m.o.), microglial MHC-I gradually increased until 21 m.o. and then accelerated. MHC-I protein was enriched in microglia and increased with aging. Microglial expression, and absence in astrocytes and neurons, of MHC-I binding Leukocyte Immunoglobulin-like (Lilrs) and Paired immunoglobin-like type 2 (Pilrs) receptor families could enable cell-autonomous MHC-I signaling and increased with aging in mice and humans. Increased microglial MHC-I, Lilrs, and Pilrs were observed in multiple AD mouse models and human AD data across methods and studies. MHC-I expression correlated with p16INK4A , suggesting an association with cellular senescence. Conserved induction of MHC-I, Lilrs, and Pilrs with aging and AD opens the possibility of cell-autonomous MHC-I signaling to regulate microglial reactivation with aging and neurodegeneration.
Collapse
Affiliation(s)
- Collyn M. Kellogg
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
| | - Kevin Pham
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA
| | - Adeline H. Machalinski
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA
| | - Hunter L. Porter
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA
| | - Harris E. Blankenship
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Kyla Tooley
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Michael B. Stout
- Aging & Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA
| | - Heather C. Rice
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
| | - Amanda L. Sharpe
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Michael J. Beckstead
- Aging & Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK USA
| | - Ana J. Chucair-Elliott
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA
| | - Sarah R. Ocañas
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
| | - Willard M. Freeman
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK USA
| |
Collapse
|
12
|
Shang P, Simpson JD, Taylor GM, Sutherland DM, Welsh OL, Aravamudhan P, Natividade RDS, Schwab K, Michel JJ, Poholek AC, Wu Y, Rajasundaram D, Koehler M, Alsteens D, Dermody TS. Paired immunoglobulin-like receptor B is an entry receptor for mammalian orthoreovirus. Nat Commun 2023; 14:2615. [PMID: 37147336 PMCID: PMC10163058 DOI: 10.1038/s41467-023-38327-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 04/25/2023] [Indexed: 05/07/2023] Open
Abstract
Mammalian orthoreovirus (reovirus) infects most mammals and is associated with celiac disease in humans. In mice, reovirus infects the intestine and disseminates systemically to cause serotype-specific patterns of disease in the brain. To identify receptors conferring reovirus serotype-dependent neuropathogenesis, we conducted a genome-wide CRISPRa screen and identified paired immunoglobulin-like receptor B (PirB) as a receptor candidate. Ectopic expression of PirB allowed reovirus binding and infection. PirB extracelluar D3D4 region is required for reovirus attachment and infectivity. Reovirus binds to PirB with nM affinity as determined by single molecule force spectroscopy. Efficient reovirus endocytosis requires PirB signaling motifs. In inoculated mice, PirB is required for maximal replication in the brain and full neuropathogenicity of neurotropic serotype 3 (T3) reovirus. In primary cortical neurons, PirB expression contributes to T3 reovirus infectivity. Thus, PirB is an entry receptor for reovirus and contributes to T3 reovirus replication and pathogenesis in the murine brain.
Collapse
Affiliation(s)
- Pengcheng Shang
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Institute of Infection, Inflammation, and Immunity, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Joshua D Simpson
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Gwen M Taylor
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Institute of Infection, Inflammation, and Immunity, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Danica M Sutherland
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Institute of Infection, Inflammation, and Immunity, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Olivia L Welsh
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Institute of Infection, Inflammation, and Immunity, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Pavithra Aravamudhan
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Institute of Infection, Inflammation, and Immunity, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Rita Dos Santos Natividade
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Kristina Schwab
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Joshua J Michel
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Amanda C Poholek
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yijen Wu
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Dhivyaa Rajasundaram
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Melanie Koehler
- Leibniz Institute for Food Systems Biology at the Technical University Munich, Freising, Germany
| | - David Alsteens
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
- WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Terence S Dermody
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Institute of Infection, Inflammation, and Immunity, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA.
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
13
|
Nagappan-Chettiar S, Yasuda M, Johnson-Venkatesh EM, Umemori H. The molecular signals that regulate activity-dependent synapse refinement in the brain. Curr Opin Neurobiol 2023; 79:102692. [PMID: 36805716 PMCID: PMC10023433 DOI: 10.1016/j.conb.2023.102692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/11/2022] [Accepted: 01/10/2023] [Indexed: 02/19/2023]
Abstract
The formation of appropriate synaptic connections is critical for the proper functioning of the brain. Early in development, neurons form a surplus of immature synapses. To establish efficient, functional neural networks, neurons selectively stabilize active synapses and eliminate less active ones. This process is known as activity-dependent synapse refinement. Defects in this process have been implicated in neuropsychiatric disorders such as schizophrenia and autism. Here we review the manner and mechanisms by which synapse elimination is regulated through activity-dependent competition. We propose a theoretical framework for the molecular mechanisms of synapse refinement, in which three types of signals regulate the refinement. We then describe the identity of these signals and discuss how multiple molecular signals interact to achieve appropriate synapse refinement in the brain.
Collapse
Affiliation(s)
- Sivapratha Nagappan-Chettiar
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA. https://twitter.com/sivapratha
| | - Masahiro Yasuda
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Erin M Johnson-Venkatesh
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Hisashi Umemori
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
14
|
Fu WY, Ip NY. The role of genetic risk factors of Alzheimer's disease in synaptic dysfunction. Semin Cell Dev Biol 2023; 139:3-12. [PMID: 35918217 DOI: 10.1016/j.semcdb.2022.07.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 12/31/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by the progressive deterioration of cognitive functions. Due to the extended global life expectancy, the prevalence of AD is increasing among aging populations worldwide. While AD is a multifactorial disease, synaptic dysfunction is one of the major neuropathological changes that occur early in AD, before clinical symptoms appear, and is associated with the progression of cognitive deterioration. However, the underlying pathological mechanisms leading to this synaptic dysfunction remains unclear. Recent large-scale genomic analyses have identified more than 40 genetic risk factors that are associated with AD. In this review, we discuss the functional roles of these genes in synaptogenesis and synaptic functions under physiological conditions, and how their functions are dysregulated in AD. This will provide insights into the contributions of these encoded proteins to synaptic dysfunction during AD pathogenesis.
Collapse
Affiliation(s)
- Wing-Yu Fu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong, China
| | - Nancy Y Ip
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong, China; Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, Guangdong 518057, China.
| |
Collapse
|
15
|
Li X, Zhai Q, Gou X, Quan M, Li Y, Zhang X, Deng B, Tian Y, Wang Q, Hou L. Involvement of Paired Immunoglobulin-Like Receptor B in Cognitive Dysfunction Through Hippocampal-Dependent Synaptic Plasticity Impairments in Mice Subjected to Chronic Sleep Restriction. Mol Neurobiol 2023; 60:1132-1149. [PMID: 36417104 PMCID: PMC9899186 DOI: 10.1007/s12035-022-03127-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 11/04/2022] [Indexed: 11/24/2022]
Abstract
Sleep loss is often associated with cognitive dysfunction. Alterations in the structure and function of synapses in the hippocampus are thought to underlie memory storage. Paired immunoglobulin-like receptor B (PirB) plays a negative role in various neurological diseases by inhibiting axon regeneration and synaptic plasticity. However, the contributions of PirB to the mechanisms underlying the changes in synaptic plasticity after sleep loss that ultimately promote deficits in cognitive function have not been well elucidated. Here, we showed that chronic sleep restriction (CSR) mice displayed cognitive impairment and synaptic deficits accompanied by upregulation of PirB expression in the hippocampus. Mechanistically, PirB caused the dysregulation of actin through the RhoA/ROCK2/LIMK1/cofilin signalling pathway, leading to abnormal structural and functional plasticity, which in turn resulted in cognitive dysfunction. PirB knockdown alleviated synaptic deficits and cognitive impairment after CSR by inhibiting the RhoA/ROCK2/LIMK1/cofilin signalling pathway. Moreover, we found that fasudil, a widely used ROCK2 inhibitor, could mimic the beneficial effect of PirB knockdown and ameliorate synaptic deficits and cognitive impairment, further demonstrating that PirB induced cognitive dysfunction after CSR via the RhoA/ROCK2/LIMK1/cofilin signalling pathway. Our study sheds new light on the role of PirB as an important mediator in modulating the dysfunction of synaptic plasticity and cognitive function via the RhoA/ROCK2/LIMK1/cofilin signalling pathway, which indicated that hippocampal PirB is a promising therapeutic target for counteracting cognitive impairment after CSR. This illustration depicts the signalling pathway by PirB in mediating cognitive impairment and synaptic deficits in CSR mice. In the hippocampus of CSR mice, the expression level of PirB was significantly increased. In addition, CSR increases RhoA and ROCK2 levels and reduces levels of both LIMK1 and cofilin phosphorylation. PirB knockdown reverses cognitive impairment and synaptic plasticity disorders caused by CSR through the RhoA/ROCK2/LIMK1/cofilin signalling pathway.
Collapse
Affiliation(s)
- Xuying Li
- Department of Anesthesiology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102 Fujian China ,Department of Anesthesiology, Affiliated Haikou Hospital, Xiangya Medical College of Central South University, Haikou, 570000 Hainan China
| | - Qian Zhai
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Xingchun Gou
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, 710021 Shaanxi China
| | - Minxue Quan
- Department of Anesthesiology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102 Fujian China
| | - Yansong Li
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Xiaohua Zhang
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, 710021 Shaanxi China
| | - Bin Deng
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Yi Tian
- Department of Anesthesiology, Affiliated Haikou Hospital, Xiangya Medical College of Central South University, Haikou, 570000 Hainan China
| | - Qiang Wang
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Lichao Hou
- Department of Anesthesiology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102 Fujian China
| |
Collapse
|
16
|
Huang Z. A Function of Amyloid-β in Mediating Activity-Dependent Axon/Synapse Competition May Unify Its Roles in Brain Physiology and Pathology. J Alzheimers Dis 2023; 92:29-57. [PMID: 36710681 PMCID: PMC10023438 DOI: 10.3233/jad-221042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Amyloid-β protein precursor (AβPP) gives rise to amyloid-β (Aβ), a peptide at the center of Alzheimer's disease (AD). AβPP, however, is also an ancient molecule dating back in evolution to some of the earliest forms of metazoans. This suggests a possible ancestral function that may have been obscured by those that evolve later. Based on literature from the functions of Aβ/AβPP in nervous system development, plasticity, and disease, to those of anti-microbial peptides (AMPs) in bacterial competition as well as mechanisms of cell competition uncovered first by Drosophila genetics, I propose that Aβ/AβPP may be part of an ancient mechanism employed in cell competition, which is subsequently co-opted during evolution for the regulation of activity-dependent neural circuit development and plasticity. This hypothesis is supported by foremost the high similarities of Aβ to AMPs, both of which possess unique, opposite (i.e., trophic versus toxic) activities as monomers and oligomers. A large body of data further suggests that the different Aβ oligomeric isoforms may serve as the protective and punishment signals long predicted to mediate activity-dependent axonal/synaptic competition in the developing nervous system and that the imbalance in their opposite regulation of innate immune and glial cells in the brain may ultimately underpin AD pathogenesis. This hypothesis can not only explain the diverse roles observed of Aβ and AβPP family molecules, but also provide a conceptual framework that can unify current hypotheses on AD. Furthermore, it may explain major clinical observations not accounted for and identify approaches for overcoming shortfalls in AD animal modeling.
Collapse
Affiliation(s)
- Zhen Huang
- Departments of Neuroscience and Neurology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
17
|
Kawaguchi Y, Matsubayashi J, Kawakami Y, Nishida R, Kurihara Y, Takei K. LOTUS suppresses amyloid β-induced dendritic spine elimination through the blockade of amyloid β binding to PirB. Mol Med 2022; 28:154. [PMID: 36510132 PMCID: PMC9743548 DOI: 10.1186/s10020-022-00581-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/26/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common neurodegenerative disease worldwide but has no effective treatment. Amyloid beta (Aβ) protein, a primary risk factor for AD, accumulates and aggregates in the brain of patients with AD. Paired immunoglobulin-like receptor B (PirB) has been identified as a receptor of Aβ and Aβ-PirB molecular interactions that cause synapse elimination and synaptic dysfunction. PirB deletion has been shown to suppress Aβ-induced synaptic dysfunction and behavioral deficits in AD model mice, implying that PirB mediates Aβ-induced AD pathology. Therefore, inhibiting the Aβ-PirB molecular interaction could be a successful approach for combating AD pathology. We previously showed that lateral olfactory tract usher substance (LOTUS) is an endogenous antagonist of type1 Nogo receptor and PirB and that LOTUS overexpression promotes neuronal regeneration following damage to the central nervous system, including spinal cord injury and ischemic stroke. Therefore, in this study, we investigated whether LOTUS inhibits Aβ-PirB interaction and Aβ-induced dendritic spine elimination. METHODS The inhibitory role of LOTUS against Aβ-PirB (or leukocyte immunoglobulin-like receptor subfamily B member 2: LilrB2) binding was assessed using a ligand-receptor binding assay in Cos7 cells overexpressing PirB and/or LOTUS. We assessed whether LOTUS inhibits Aβ-induced intracellular alterations and synaptotoxicity using immunoblots and spine imaging in a primary cultured hippocampal neuron. RESULTS We found that LOTUS inhibits the binding of Aβ to PirB overexpressed in Cos7 cells. In addition, we found that Aβ-induced dephosphorylation of cofilin and Aβ-induced decrease in post-synaptic density-95 expression were suppressed in cultured hippocampal neurons from LOTUS-overexpressing transgenic (LOTUS-tg) mice compared with that in wild-type mice. Moreover, primary cultured hippocampal neurons from LOTUS-tg mice improved the Aβ-induced decrease in dendritic spine density. Finally, we studied whether human LOTUS protein inhibits Aβ binding to LilrB2, a human homolog of PirB, and found that human LOTUS inhibited the binding of Aβ to LilrB2 in a similar manner. CONCLUSIONS This study implied that LOTUS improved Aβ-induced synapse elimination by suppressing Aβ-PirB interaction in rodents and inhibited Aβ-LilrB2 interaction in humans. Our findings revealed that LOTUS may be a promising therapeutic agent in counteracting Aβ-induced AD pathologies.
Collapse
Affiliation(s)
- Yuki Kawaguchi
- grid.268441.d0000 0001 1033 6139Molecular Medical Bioscience Laboratory, Department of Medical Life Science, Yokohama City University Graduate School of Medical Life Science, 1-7-29 Suehiro-Cho, Tsurumi Ward, Yokohama, 230-0045 Japan
| | - Junpei Matsubayashi
- grid.268441.d0000 0001 1033 6139Molecular Medical Bioscience Laboratory, Department of Medical Life Science, Yokohama City University Graduate School of Medical Life Science, 1-7-29 Suehiro-Cho, Tsurumi Ward, Yokohama, 230-0045 Japan
| | - Yutaka Kawakami
- grid.268441.d0000 0001 1033 6139Molecular Medical Bioscience Laboratory, Department of Medical Life Science, Yokohama City University Graduate School of Medical Life Science, 1-7-29 Suehiro-Cho, Tsurumi Ward, Yokohama, 230-0045 Japan ,grid.419280.60000 0004 1763 8916Department of Anesthesiology, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Ryohei Nishida
- grid.268441.d0000 0001 1033 6139Molecular Medical Bioscience Laboratory, Department of Medical Life Science, Yokohama City University Graduate School of Medical Life Science, 1-7-29 Suehiro-Cho, Tsurumi Ward, Yokohama, 230-0045 Japan
| | - Yuji Kurihara
- grid.268441.d0000 0001 1033 6139Molecular Medical Bioscience Laboratory, Department of Medical Life Science, Yokohama City University Graduate School of Medical Life Science, 1-7-29 Suehiro-Cho, Tsurumi Ward, Yokohama, 230-0045 Japan ,grid.260433.00000 0001 0728 1069Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Kohtaro Takei
- grid.268441.d0000 0001 1033 6139Molecular Medical Bioscience Laboratory, Department of Medical Life Science, Yokohama City University Graduate School of Medical Life Science, 1-7-29 Suehiro-Cho, Tsurumi Ward, Yokohama, 230-0045 Japan
| |
Collapse
|
18
|
Lowery RL, Majewska AK. Synapse-specific plasticity relies on neuroimmune interactions. Proc Natl Acad Sci U S A 2022; 119:e2207817119. [PMID: 35737828 PMCID: PMC9271177 DOI: 10.1073/pnas.2207817119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Rebecca L. Lowery
- Department of Neuroscience, Center for Visual Science, University of Rochester, Rochester, NY 14642
| | - Ania K. Majewska
- Department of Neuroscience, Center for Visual Science, University of Rochester, Rochester, NY 14642
| |
Collapse
|
19
|
Seng C, Luo W, Földy C. Circuit formation in the adult brain. Eur J Neurosci 2022; 56:4187-4213. [PMID: 35724981 PMCID: PMC9546018 DOI: 10.1111/ejn.15742] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 11/30/2022]
Abstract
Neurons in the mammalian central nervous system display an enormous capacity for circuit formation during development but not later in life. In principle, new circuits could be also formed in adult brain, but the absence of the developmental milieu and the presence of growth inhibition and hundreds of working circuits are generally viewed as unsupportive for such a process. Here, we bring together evidence from different areas of neuroscience—such as neurological disorders, adult‐brain neurogenesis, innate behaviours, cell grafting, and in vivo cell reprogramming—which demonstrates robust circuit formation in adult brain. In some cases, adult‐brain rewiring is ongoing and required for certain types of behaviour and memory, while other cases show significant promise for brain repair in disease models. Together, these examples highlight that the adult brain has higher capacity for structural plasticity than previously recognized. Understanding the underlying mechanisms behind this retained plasticity has the potential to advance basic knowledge regarding the molecular organization of synaptic circuits and could herald a new era of neural circuit engineering for therapeutic repair.
Collapse
Affiliation(s)
- Charlotte Seng
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Science, University of Zurich, Zürich, Switzerland
| | - Wenshu Luo
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Science, University of Zurich, Zürich, Switzerland
| | - Csaba Földy
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Science, University of Zurich, Zürich, Switzerland
| |
Collapse
|
20
|
Marin IA, Gutman-Wei AY, Chew KS, Raissi AJ, Djurisic M, Shatz CJ. The nonclassical MHC class I Qa-1 expressed in layer 6 neurons regulates activity-dependent plasticity via microglial CD94/NKG2 in the cortex. Proc Natl Acad Sci U S A 2022; 119:e2203965119. [PMID: 35648829 PMCID: PMC9191652 DOI: 10.1073/pnas.2203965119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/20/2022] [Indexed: 12/30/2022] Open
Abstract
During developmental critical periods, circuits are sculpted by a process of activity-dependent competition. The molecular machinery involved in regulating the complex process of responding to different levels of activity is now beginning to be identified. Here, we show that the nonclassical major histocompatibility class I (MHCI) molecule Qa-1 is expressed in the healthy brain in layer 6 corticothalamic neurons. In the visual cortex, Qa-1 expression begins during the critical period for ocular dominance (OD) plasticity and is regulated by neuronal activity, suggesting a role in regulating activity-dependent competition. Indeed, in mice lacking Qa-1, OD plasticity is perturbed. Moreover, signaling through CD94/NKG2, a known cognate Qa-1 heterodimeric receptor in the immune system, is implicated: selectively targeting this interaction phenocopies the plasticity perturbation observed in Qa-1 knockouts. In the cortex, CD94/NKG2 is expressed by microglial cells, which undergo activity-dependent changes in their morphology in a Qa-1–dependent manner. Our study thus reveals a neuron–microglial interaction dependent upon a nonclassical MHCI molecule expressed in L6 neurons, which regulates plasticity in the visual cortex. These results also point to an unexpected function for the Qa-1/HLA-E (ligand) and CD94/NKG2 (receptor) interaction in the nervous system, in addition to that described in the immune system.
Collapse
Affiliation(s)
- Ioana A. Marin
- Department of Biology, Stanford University, Stanford, CA 94035
- Department of Neurobiology, Stanford University, Stanford, CA 94035
| | - Alan Y. Gutman-Wei
- Department of Biology, Stanford University, Stanford, CA 94035
- Department of Neurobiology, Stanford University, Stanford, CA 94035
| | - Kylie S. Chew
- Department of Biology, Stanford University, Stanford, CA 94035
- Department of Neurobiology, Stanford University, Stanford, CA 94035
| | - Aram J. Raissi
- Department of Biology, Stanford University, Stanford, CA 94035
- Department of Neurobiology, Stanford University, Stanford, CA 94035
| | - Maja Djurisic
- Department of Biology, Stanford University, Stanford, CA 94035
- Department of Neurobiology, Stanford University, Stanford, CA 94035
| | - Carla J. Shatz
- Department of Biology, Stanford University, Stanford, CA 94035
- Department of Neurobiology, Stanford University, Stanford, CA 94035
| |
Collapse
|
21
|
Cossart R, Garel S. Step by step: cells with multiple functions in cortical circuit assembly. Nat Rev Neurosci 2022; 23:395-410. [DOI: 10.1038/s41583-022-00585-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2022] [Indexed: 12/23/2022]
|
22
|
Skirzewski M, Molotchnikoff S, Hernandez LF, Maya-Vetencourt JF. Multisensory Integration: Is Medial Prefrontal Cortex Signaling Relevant for the Treatment of Higher-Order Visual Dysfunctions? Front Mol Neurosci 2022; 14:806376. [PMID: 35110996 PMCID: PMC8801884 DOI: 10.3389/fnmol.2021.806376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/17/2021] [Indexed: 11/29/2022] Open
Abstract
In the mammalian brain, information processing in sensory modalities and global mechanisms of multisensory integration facilitate perception. Emerging experimental evidence suggests that the contribution of multisensory integration to sensory perception is far more complex than previously expected. Here we revise how associative areas such as the prefrontal cortex, which receive and integrate inputs from diverse sensory modalities, can affect information processing in unisensory systems via processes of down-stream signaling. We focus our attention on the influence of the medial prefrontal cortex on the processing of information in the visual system and whether this phenomenon can be clinically used to treat higher-order visual dysfunctions. We propose that non-invasive and multisensory stimulation strategies such as environmental enrichment and/or attention-related tasks could be of clinical relevance to fight cerebral visual impairment.
Collapse
Affiliation(s)
- Miguel Skirzewski
- Rodent Cognition Research and Innovation Core, University of Western Ontario, London, ON, Canada
| | - Stéphane Molotchnikoff
- Département de Sciences Biologiques, Université de Montréal, Montreal, QC, Canada
- Département de Génie Electrique et Génie Informatique, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Luis F. Hernandez
- Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, United States
| | - José Fernando Maya-Vetencourt
- Department of Biology, University of Pisa, Pisa, Italy
- Centre for Synaptic Neuroscience, Istituto Italiano di Tecnologia (IIT), Genova, Italy
- *Correspondence: José Fernando Maya-Vetencourt
| |
Collapse
|
23
|
Wu G, Xu Y, Schultz RD, Chen H, Xie J, Deng M, Liu X, Gui X, John S, Lu Z, Arase H, Zhang N, An Z, Zhang CC. LILRB3 supports acute myeloid leukemia development and regulates T-cell antitumor immune responses through the TRAF2-cFLIP-NF-κB signaling axis. NATURE CANCER 2021; 2:1170-1184. [PMID: 35122056 PMCID: PMC8809885 DOI: 10.1038/s43018-021-00262-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 08/24/2021] [Indexed: 01/08/2023]
Abstract
Leukocyte immunoglobulin-like receptor B (LILRB), a family of immune checkpoint receptors, contributes to acute myeloid leukemia (AML) development, but the specific mechanisms triggered by activation or inhibition of these immune checkpoints in cancer is largely unknown. Here we demonstrate that the intracellular domain of LILRB3 is constitutively associated with the adaptor protein TRAF2. Activated LILRB3 in AML cells leads to recruitment of cFLIP and subsequent NF-κB upregulation, resulting in enhanced leukemic cell survival and inhibition of T-cell-mediated anti-tumor activity. Hyperactivation of NF-κB induces a negative regulatory feedback loop mediated by A20, which disrupts the interaction of LILRB3 and TRAF2; consequently the SHP-1/2-mediated inhibitory activity of LILRB3 becomes dominant. Finally, we show that blockade of LILRB3 signaling with antagonizing antibodies hampers AML progression. LILRB3 thus exerts context-dependent activating and inhibitory functions, and targeting LILRB3 may become a potential therapeutic strategy for AML treatment.
Collapse
Affiliation(s)
- Guojin Wu
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | - Yixiang Xu
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX, USA
| | - Robbie D Schultz
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX, USA
| | - Heyu Chen
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | - Jingjing Xie
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | - Mi Deng
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | - Xiaoye Liu
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | - Xun Gui
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX, USA
| | - Samuel John
- Division of Pediatric Hematology- Oncology, Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | - Zhigang Lu
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | - Hisashi Arase
- Department of Immunochemistry, Research Institute for Microbial Diseases and Laboratory of Immunochemistry, World Premier International Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Ningyan Zhang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX, USA
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX, USA
| | - Cheng Cheng Zhang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
24
|
Faust TE, Gunner G, Schafer DP. Mechanisms governing activity-dependent synaptic pruning in the developing mammalian CNS. Nat Rev Neurosci 2021; 22:657-673. [PMID: 34545240 PMCID: PMC8541743 DOI: 10.1038/s41583-021-00507-y] [Citation(s) in RCA: 196] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2021] [Indexed: 02/08/2023]
Abstract
Almost 60 years have passed since the initial discovery by Hubel and Wiesel that changes in neuronal activity can elicit developmental rewiring of the central nervous system (CNS). Over this period, we have gained a more comprehensive picture of how both spontaneous neural activity and sensory experience-induced changes in neuronal activity guide CNS circuit development. Here we review activity-dependent synaptic pruning in the mammalian CNS, which we define as the removal of a subset of synapses, while others are maintained, in response to changes in neural activity in the developing nervous system. We discuss the mounting evidence that immune and cell-death molecules are important mechanistic links by which changes in neural activity guide the pruning of specific synapses, emphasizing the role of glial cells in this process. Finally, we discuss how these developmental pruning programmes may go awry in neurodevelopmental disorders of the human CNS, focusing on autism spectrum disorder and schizophrenia. Together, our aim is to give an overview of how the field of activity-dependent pruning research has evolved, led to exciting new questions and guided the identification of new, therapeutically relevant mechanisms that result in aberrant circuit development in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Travis E Faust
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Georgia Gunner
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Dorothy P Schafer
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
25
|
Albarran E, Raissi A, Jáidar O, Shatz CJ, Ding JB. Enhancing motor learning by increasing the stability of newly formed dendritic spines in the motor cortex. Neuron 2021; 109:3298-3311.e4. [PMID: 34437845 DOI: 10.1016/j.neuron.2021.07.030] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 07/10/2021] [Accepted: 07/30/2021] [Indexed: 12/18/2022]
Abstract
Dendritic spine dynamics are thought to be substrates for motor learning and memory, and altered spine dynamics often lead to impaired performance. Here, we describe an exception to this rule by studying mice lacking paired immunoglobulin receptor B (PirB-/-). Pyramidal neuron dendrites in PirB-/- mice have increased spine formation rates and density. Surprisingly, PirB-/- mice learn a skilled reaching task faster than wild-type (WT) littermates. Furthermore, stabilization of learning-induced spines is elevated in PirB-/- mice. Mechanistically, single-spine uncaging experiments suggest that PirB is required for NMDA receptor (NMDAR)-dependent spine shrinkage. The degree of survival of newly formed spines correlates with performance, suggesting that increased spine stability is advantageous for learning. Acute inhibition of PirB function in M1 of adult WT mice increases the survival of learning-induced spines and enhances motor learning. These results demonstrate that there are limits on motor learning that can be lifted by manipulating PirB, even in adulthood.
Collapse
Affiliation(s)
- Eddy Albarran
- Neurosciences Graduate Program, Stanford University, Stanford, CA 94305, USA
| | - Aram Raissi
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Omar Jáidar
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Carla J Shatz
- Department of Biology, Stanford University, Stanford, CA 94305, USA; Department of Neurobiology, Stanford University, Stanford, CA 94305, USA; Stanford Bio-X, Stanford University, Stanford, CA 94305, USA.
| | - Jun B Ding
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA; Stanford Bio-X, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
26
|
The relationship between transcription and eccentricity in human V1. Brain Struct Funct 2021; 226:2807-2818. [PMID: 34618233 DOI: 10.1007/s00429-021-02387-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 08/24/2021] [Indexed: 02/07/2023]
Abstract
Gene expression gradients radiating from regions of primary sensory cortices have recently been described and are thought to underlie the large-scale organization of the human cerebral cortex. However, the role of transcription in the functional layout of a single region within the adult brain has yet to be clarified, likely owing to the difficulty of identifying a brain region anatomically consistent enough across individuals with dense enough tissue sampling. Overcoming these hurdles in human primary visual cortex (V1), we show a relationship between differential gene expression and the cortical layout of eccentricity in human V1. Interestingly, these genes are unique from those previously identified that contribute to the positioning of cortical areas in the visual processing hierarchy. Enrichment analyses show that a subset of the identified genes encode for structures related to inhibitory interneurons, ion channels, as well as cellular projections, and are expressed more in foveal compared to peripheral portions of human V1. These findings predict that tissue density should be higher in foveal compared to peripheral V1. Using a histological pipeline, we validate this prediction using Nissl-stained sections of postmortem occipital cortex. We discuss these findings relative to previous studies in non-human primates, as well as in the context of an organizational pattern in which the adult human brain employs transcription gradients at multiple spatial scales: across the cerebral cortex, across areas within processing hierarchies, and within single cortical areas.
Collapse
|
27
|
Yang M, Jian L, Fan W, Chen X, Zou H, Huang Y, Chen X, Zhou YG, Yuan R. Axon regeneration after optic nerve injury in rats can be improved via PirB knockdown in the retina. Cell Biosci 2021; 11:158. [PMID: 34380548 PMCID: PMC8359350 DOI: 10.1186/s13578-021-00670-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/25/2021] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND In the central nervous system (CNS), three types of myelin-associated inhibitors (MAIs) exert major inhibitory effects on nerve regeneration: Nogo-A, myelin-associated glycoprotein (MAG), and oligodendrocyte-myelin glycoprotein (OMgp). MAIs have two co-receptors, Nogo receptor (NgR) and paired immunoglobulin-like receptor B (PirB). Existing studies confirm that inhibiting NgR only exerted a modest disinhibitory effect in CNS. However, the inhibitory effects of PirB on nerve regeneration after binding to MAIs are controversial too. We aimed to further investigate the effect of PirB knockdown on the neuroprotection and axonal regeneration of retinal ganglion cells (RGCs) after optic nerve injury in rats. METHODS The differential expression of PirB in the retina was observed via immunofluorescence and western blotting after 1, 3, and 7 days of optic nerve injury (ONI). The retina was locally transfected with adeno-associated virus (AAV) PirB shRNA, then, the distribution of virus in tissues and cells was observed 21 days after AAV transfection to confirm the efficiency of PirB knockdown. Level of P-Stat3 and expressions of ciliary neurotrophic factor (CNTF) were detected via western blotting. RGCs were directly labeled with cholera toxin subunit B (CTB). The new axons of the optic nerve were specifically labeled with growth associated protein-43 (GAP43) via immunofluorescence. Flash visual evoked potential (FVEP) was used to detect the P1 and N1 latency, as well as N1-P1, P1-N2 amplitude to confirm visual function. RESULTS PirB expression in the retina was significantly increased after ONI. PirB knockdown was successful and significantly promoted P-Stat3 level and CNTF expression in the retina. PirB knockdown promoted the regeneration of optic nerve axons and improved the visual function indexes such as N1-P1 and P1-N2 amplitude. CONCLUSIONS PirB is one of the key molecules that inhibit the regeneration of the optic nerve, and inhibition of PirB has an excellent effect on promoting nerve regeneration, which allows the use of PirB as a target molecule to promote functional recovery after ONI.
Collapse
Affiliation(s)
- Mei Yang
- Department of Ophthalmology, Xinqiao Hospital, Army Medical University, 183 Xinqiao Zhengjie, Shapingba District, Chongqing, 400037, People's Republic of China
| | - Lan Jian
- Department of Ophthalmology, Xinqiao Hospital, Army Medical University, 183 Xinqiao Zhengjie, Shapingba District, Chongqing, 400037, People's Republic of China
| | - Wei Fan
- Department of Ophthalmology, Xinqiao Hospital, Army Medical University, 183 Xinqiao Zhengjie, Shapingba District, Chongqing, 400037, People's Republic of China
| | - Xing Chen
- The Molecular Biology Center, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Army Medical University, 10 Changjiang Zhilu, Chongqing, 400042, People's Republic of China
| | - Huan Zou
- Department of Ophthalmology, Xinqiao Hospital, Army Medical University, 183 Xinqiao Zhengjie, Shapingba District, Chongqing, 400037, People's Republic of China
| | - Yanming Huang
- Department of Ophthalmology, Xinqiao Hospital, Army Medical University, 183 Xinqiao Zhengjie, Shapingba District, Chongqing, 400037, People's Republic of China
| | - Xiaofan Chen
- Department of Ophthalmology, Xinqiao Hospital, Army Medical University, 183 Xinqiao Zhengjie, Shapingba District, Chongqing, 400037, People's Republic of China
| | - Yuan-Guo Zhou
- The Molecular Biology Center, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Army Medical University, 10 Changjiang Zhilu, Chongqing, 400042, People's Republic of China.
| | - Rongdi Yuan
- Department of Ophthalmology, Xinqiao Hospital, Army Medical University, 183 Xinqiao Zhengjie, Shapingba District, Chongqing, 400037, People's Republic of China.
| |
Collapse
|
28
|
Liu B, Cheng W, Cheng D, Pu J, Nie Z, Xia C, Chen Y, Yang C. PirB functions as an intrinsic suppressor in hippocampal neural stem cells. Aging (Albany NY) 2021; 13:16062-16071. [PMID: 34120891 PMCID: PMC8266311 DOI: 10.18632/aging.203134] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/18/2021] [Indexed: 12/05/2022]
Abstract
Neural stem cells play pivotal roles during prenatal development and throughout life. Here, we report that Paired immunoglobulin-like receptor B (PirB) functions as a suppressor during brain neurogenesis in the adult mouse. PirB expression increased with age during development, and its deficiency promoted neural stem cell proliferation and differentiation in vivo and in vitro. Furthermore, we detected an increase in Type 1 neural stem cells in PirB-deficient mice compared to their wild-type littermates. PirB deficiency promoted stemness marker gene expression of Sox2 and KLF4 by activating Akt1 phosphorylation. These findings suggest that PirB inhibits the self-renewal and differentiation capacities of neural stem cells. Thus, PirB may have the potential to serve as a therapeutic target for treatment of reduced neurogenesis in adults due to aging or other pathological conditions.
Collapse
Affiliation(s)
- Baiyang Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjing Cheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China
| | - Dating Cheng
- Kunming Medical University, Kunming, Yunnan 650500, China
| | - Jun Pu
- Kunming Medical University, Kunming, Yunnan 650500, China
| | - Zhi Nie
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
- Kunming Medical University, Kunming, Yunnan 650500, China
| | - Cuifeng Xia
- Kunming Medical University, Kunming, Yunnan 650500, China
| | - Yongbin Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Cuiping Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China
| |
Collapse
|
29
|
Amin L, Harris DA. Aβ receptors specifically recognize molecular features displayed by fibril ends and neurotoxic oligomers. Nat Commun 2021; 12:3451. [PMID: 34103486 PMCID: PMC8187732 DOI: 10.1038/s41467-021-23507-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 04/29/2021] [Indexed: 12/31/2022] Open
Abstract
Several cell-surface receptors for neurotoxic forms of amyloid-β (Aβ) have been described, but their molecular interactions with Aβ assemblies and their relative contributions to mediating Alzheimer's disease pathology have remained uncertain. Here, we used super-resolution microscopy to directly visualize Aβ-receptor interactions at the nanometer scale. We report that one documented Aβ receptor, PrPC, specifically inhibits the polymerization of Aβ fibrils by binding to the rapidly growing end of each fibril, thereby blocking polarized elongation at that end. PrPC binds neurotoxic oligomers and protofibrils in a similar fashion, suggesting that it may recognize a common, end-specific, structural motif on all of these assemblies. Finally, two other Aβ receptors, FcγRIIb and LilrB2, affect Aβ fibril growth in a manner similar to PrPC. Our results suggest that receptors may trap Aβ oligomers and protofibrils on the neuronal surface by binding to a common molecular determinant on these assemblies, thereby initiating a neurotoxic signal.
Collapse
Affiliation(s)
- Ladan Amin
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - David A Harris
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
30
|
Zhang Z, Wang Z, Ling Z, Li Y, Pan J, Gao Q, Zhang J, Yan L, Zhang Z, Li J, Xiao F. A screened PirB antagonist peptide antagonizes Aβ 42-mediated inhibition of neurite outgrowth in vitro. Appl Microbiol Biotechnol 2021; 105:4649-4662. [PMID: 34059940 DOI: 10.1007/s00253-021-11363-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 05/07/2021] [Accepted: 05/20/2021] [Indexed: 11/26/2022]
Abstract
Alzheimer's disease (AD) is a type of progressive neurodegenerative disease, and amyloid β-protein 42 (Aβ42) serves an important role in the pathological process of development of AD. Paired immunoglobulin-like receptor B (PirB) is a functional receptor for myelin inhibitors of neuron regeneration in the CNS, and it has also been identified to function as a high-affinity receptor for Aβ. Here, we used a phage display to identify a specific PirB antagonist peptide 11(PAP11, PFRLQLS), which could reverse Aβ42-induced neurotoxicity and promote neurite outgrowth in vitro. Immunofluorescence analysis showed that PAP11 colocalized with PirB on the membrane of cortical neurons. Horseradish peroxidase-streptavidin-biotin assay further proved that PAP11 directly binds to PirB and the dissociation constant (Kd) was 0.128μM. PAP11 functionally antagonized the neurite outgrowth inhibitory effect induced by Aβ42 in cortical neurons, and the underlying mechanism was associated with a PirB-ROCK2/CRMP2 signaling pathway. The novel PirB antagonist peptide PAP11 may be a promising candidate therapeutic agent for the treatment of AD and other neurodegenerative diseases. KEY POINTS: • PAP11 was the first PirB antagonist peptide screened by phage display technology. • PAP11 could protect neurons by blocking the binding of Aβ42 and PirB. • PAP11 reverse inhibitory effect of neurite outgrowth through ROCK2/CRMP2 pathway.
Collapse
Affiliation(s)
- Zheng Zhang
- Department of Pharmacy, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Zijian Wang
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, China
| | - Zhipeng Ling
- Department of Microbial and Biochemical Pharmacy, College of Pharmacy, Jinan University, Guangzhou, China
| | - Yu Li
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, China
| | - Junping Pan
- Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, China
| | - Qin Gao
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, China
| | - Jichun Zhang
- Department of Physiology, School of medicine, Jinan University, Guangzhou, China
| | - Li Yan
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Zhidong Zhang
- Department of Pharmacy, The First Affiliated Hospital, Jinan University, Guangzhou, China.
| | - Junliang Li
- Department of Neurosurgery, Guangzhou Women and Children's Medical Center, Guangzhou, China.
| | - Fei Xiao
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, China.
| |
Collapse
|
31
|
Stehle JH, Sheng Z, Hausmann L, Bechstein P, Weinmann O, Hernesniemi J, Neimat JS, Schwab ME, Zemmar A. Exercise-induced Nogo-A influences rodent motor learning in a time-dependent manner. PLoS One 2021; 16:e0250743. [PMID: 33951058 PMCID: PMC8099082 DOI: 10.1371/journal.pone.0250743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/13/2021] [Indexed: 11/22/2022] Open
Abstract
The adult, mature central nervous system (CNS) has limited plasticity. Physical exercising can counteract this limitation by inducing plasticity and fostering processes such as learning, memory consolidation and formation. Little is known about the molecular factors that govern these mechanisms, and how they are connected with exercise. In this study, we used immunohistochemical and behavioral analyses to investigate how running wheel exercise affects expression of the neuronal plasticity-inhibiting protein Nogo-A in the rat cortex, and how it influences motor learning in vivo. Following one week of exercise, rats exhibited a decrease in Nogo-A levels, selectively in motor cortex layer 2/3, but not in layer 5. Nogo-A protein levels returned to baseline after two weeks of running wheel exercise. In a skilled motor task (forelimb-reaching), administration of Nogo-A function-blocking antibodies over the course of the first training week led to improved motor learning. By contrast, Nogo-A antibody application over two weeks of training resulted in impaired learning. Our findings imply a bimodal, time-dependent function of Nogo-A in exercise-induced neuronal plasticity: While an activity-induced suppression of the plasticity-inhibiting protein Nogo-A appears initially beneficial for enhanced motor learning, presumably by allowing greater plasticity in establishing novel synaptic connections, this process is not sustained throughout continued exercise. Instead, upregulation of Nogo-A over the course of the second week of running wheel exercise in rats implies that Nogo-A is required for consolidation of acquired motor skills during the delayed memory consolidation process, possibly by inhibiting ongoing neuronal morphological reorganization to stabilize established synaptic pathways. Our findings suggest that Nogo-A downregulation allows leaning to occur, i.e. opens a 'learning window', while its later upregulation stabilizes the learnt engrams. These findings underline the importance of appropriately timing of application of Nogo-A antibodies in future clinical trials that aim to foster memory performance while avoiding adverse effects.
Collapse
Affiliation(s)
- Jörg H. Stehle
- Department of Neurosurgery, Henan Provincial People´s Hospital, Henan University People’s Hospital, Henan University School of Medicine, People’s Hospital of Zhengzhou University, Zhengzhou, China
- Dr. Senckenbergische Anatomie, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Zhiyuan Sheng
- Department of Neurosurgery, Henan Provincial People´s Hospital, Henan University People’s Hospital, Henan University School of Medicine, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Laura Hausmann
- Department of Neurology, University Hospital RWTH Aachen, Aachen, Germany
| | - Philipp Bechstein
- Dr. Senckenbergische Anatomie, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Oliver Weinmann
- Brain Research Institute, University of Zurich, Zurich, Switzerland
- Department of Biology and Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Juha Hernesniemi
- Department of Neurosurgery, Henan Provincial People´s Hospital, Henan University People’s Hospital, Henan University School of Medicine, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Joseph S. Neimat
- Department of Neurosurgery, University of Louisville, School of Medicine, Louisville, Kentucky, United States of America
| | - Martin E. Schwab
- Brain Research Institute, University of Zurich, Zurich, Switzerland
- Department of Biology and Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Ajmal Zemmar
- Department of Neurosurgery, Henan Provincial People´s Hospital, Henan University People’s Hospital, Henan University School of Medicine, People’s Hospital of Zhengzhou University, Zhengzhou, China
- Brain Research Institute, University of Zurich, Zurich, Switzerland
- Department of Biology and Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
32
|
Yusifov R, Tippmann A, Staiger JF, Schlüter OM, Löwel S. Spine dynamics of PSD-95-deficient neurons in the visual cortex link silent synapses to structural cortical plasticity. Proc Natl Acad Sci U S A 2021; 118:e2022701118. [PMID: 33649238 PMCID: PMC7958355 DOI: 10.1073/pnas.2022701118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Critical periods (CPs) are time windows of heightened brain plasticity during which experience refines synaptic connections to achieve mature functionality. At glutamatergic synapses on dendritic spines of principal cortical neurons, the maturation is largely governed by postsynaptic density protein-95 (PSD-95)-dependent synaptic incorporation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors into nascent AMPA-receptor silent synapses. Consequently, in mouse primary visual cortex (V1), impaired silent synapse maturation in PSD-95-deficient neurons prevents the closure of the CP for juvenile ocular dominance plasticity (jODP). A structural hallmark of jODP is increased spine elimination, induced by brief monocular deprivation (MD). However, it is unknown whether impaired silent synapse maturation facilitates spine elimination and also preserves juvenile structural plasticity. Using two-photon microscopy, we assessed spine dynamics in apical dendrites of layer 2/3 pyramidal neurons (PNs) in binocular V1 during ODP in awake adult mice. Under basal conditions, spine formation and elimination ratios were similar between PSD-95 knockout (KO) and wild-type (WT) mice. However, a brief MD affected spine dynamics only in KO mice, where MD doubled spine elimination, primarily affecting newly formed spines, and caused a net reduction in spine density similar to what has been observed during jODP in WT mice. A similar increase in spine elimination after MD occurred if PSD-95 was knocked down in single PNs of layer 2/3. Thus, structural plasticity is dictated cell autonomously by PSD-95 in vivo in awake mice. Loss of PSD-95 preserves hallmark features of spine dynamics in jODP into adulthood, revealing a functional link of PSD-95 for experience-dependent synapse maturation and stabilization during CPs.
Collapse
Affiliation(s)
- Rashad Yusifov
- Department of Systems Neuroscience, Johann Friedrich Blumenbach Institut für Zoologie und Anthropologie, Universität Göttingen, D-37075 Göttingen, Germany
- Collaborative Research Center 889, Universität Göttingen, D-37075 Göttingen, Germany
- Campus Institute for Dynamics of Biological Networks, Universität Göttingen, D-37075 Göttingen, Germany
| | - Anja Tippmann
- Department of Systems Neuroscience, Johann Friedrich Blumenbach Institut für Zoologie und Anthropologie, Universität Göttingen, D-37075 Göttingen, Germany
- Campus Institute for Dynamics of Biological Networks, Universität Göttingen, D-37075 Göttingen, Germany
| | - Jochen F Staiger
- Collaborative Research Center 889, Universität Göttingen, D-37075 Göttingen, Germany
- Institute for Neuroanatomy, University Medical Center, Universität Göttingen, D-37075 Göttingen, Germany
| | - Oliver M Schlüter
- Collaborative Research Center 889, Universität Göttingen, D-37075 Göttingen, Germany
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Universität Göttingen, D-37075 Göttingen, Germany
| | - Siegrid Löwel
- Department of Systems Neuroscience, Johann Friedrich Blumenbach Institut für Zoologie und Anthropologie, Universität Göttingen, D-37075 Göttingen, Germany;
- Collaborative Research Center 889, Universität Göttingen, D-37075 Göttingen, Germany
- Campus Institute for Dynamics of Biological Networks, Universität Göttingen, D-37075 Göttingen, Germany
| |
Collapse
|
33
|
Deng M, Chen H, Liu X, Huang R, He Y, Yoo B, Xie J, John S, Zhang N, An Z, Zhang CC. Leukocyte immunoglobulin-like receptor subfamily B: therapeutic targets in cancer. Antib Ther 2021; 4:16-33. [PMID: 33928233 PMCID: PMC7944505 DOI: 10.1093/abt/tbab002] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 02/06/2023] Open
Abstract
Inhibitory leukocyte immunoglobulin-like receptors (LILRBs 1–5) transduce signals via intracellular immunoreceptor tyrosine-based inhibitory motifs that recruit phosphatases to negatively regulate immune activation. The activation of LILRB signaling in immune cells may contribute to immune evasion. In addition, the expression and signaling of LILRBs in cancer cells especially in certain hematologic malignant cells directly support cancer development. Certain LILRBs thus have dual roles in cancer biology—as immune checkpoint molecules and tumor-supporting factors. Here, we review the expression, ligands, signaling, and functions of LILRBs, as well as therapeutic development targeting them. LILRBs may represent attractive targets for cancer treatment, and antagonizing LILRB signaling may prove to be effective anti-cancer strategies.
Collapse
Affiliation(s)
- Mi Deng
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Heyu Chen
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaoye Liu
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ryan Huang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yubo He
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Byounggyu Yoo
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jingjing Xie
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Samuel John
- Department of Pediatrics, Pediatric Hematology-Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ningyan Zhang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Houston Health Science Center, Houston, TX 77030, USA
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Houston Health Science Center, Houston, TX 77030, USA
| | - Cheng Cheng Zhang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
34
|
Bicks LK, Peng M, Taub A, Akbarian S, Morishita H. An Adolescent Sensitive Period for Social Dominance Hierarchy Plasticity Is Regulated by Cortical Plasticity Modulators in Mice. Front Neural Circuits 2021; 15:676308. [PMID: 34054438 PMCID: PMC8149998 DOI: 10.3389/fncir.2021.676308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/19/2021] [Indexed: 01/08/2023] Open
Abstract
Social dominance hierarchies are a common adaptation to group living and exist across a broad range of the animal kingdom. Social dominance is known to rely on the prefrontal cortex (PFC), a brain region that shows a protracted developmental trajectory in mice. However, it is unknown to what extent the social dominance hierarchy is plastic across postnatal development and how it is regulated. Here we identified a sensitive period for experience-dependent social dominance plasticity in adolescent male mice, which is regulated by mechanisms that affect cortical plasticity. We show that social dominance hierarchies in male mice are already formed at weaning and are highly stable into adulthood. However, one experience of forced losing significantly reduces social dominance during the adolescent period but not in adulthood, suggesting adolescence as a sensitive period for experience-dependent social dominance plasticity. Notably, robust adolescent plasticity can be prolonged into adulthood by genetic deletion of Lynx1, a molecular brake that normally limits cortical plasticity through modulation of cortical nicotinic signaling. This plasticity is associated with increased activation of established nodes of the social dominance network including dorsal medial PFC and medial dorsal thalamus evidenced by increased c-Fos. Pharmacologically mediated elevation of cortical plasticity by valproic acid rapidly destabilizes the hierarchy of adult wildtype animals. These findings provide insight into mechanisms through which increased behavioral plasticity may be achieved to improve therapeutic recovery from psychiatric disorders that are associated with social deficits.
Collapse
Affiliation(s)
- Lucy K Bicks
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Michelle Peng
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Alana Taub
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Schahram Akbarian
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Hirofumi Morishita
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
35
|
Reh R, Williams LJ, Todd RM, Ward LM. Warped rhythms: Epileptic activity during critical periods disrupts the development of neural networks for human communication. Behav Brain Res 2020; 399:113016. [PMID: 33212087 DOI: 10.1016/j.bbr.2020.113016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 12/27/2022]
Abstract
It is well established that temporal lobe epilepsy-the most common and well-studied form of epilepsy-can impair communication by disrupting social-emotional and language functions. In pediatric epilepsy, where seizures co-occur with the development of critical brain networks, age of onset matters: The earlier in life seizures begin, the worse the disruption in network establishment, resulting in academic hardship and social isolation. Yet, little is known about the processes by which epileptic activity disrupts developing human brain networks. Here we take a synthetic perspective-reviewing a range of research spanning studies on molecular and oscillatory processes to those on the development of large-scale functional networks-in support of a novel model of how such networks can be disrupted by epilepsy. We seek to bridge the gap between research on molecular processes, on the development of human brain circuitry, and on clinical outcomes to propose a model of how epileptic activity disrupts brain development.
Collapse
Affiliation(s)
- Rebecca Reh
- University of British Columbia, Department of Psychology, 2136 West Mall, Vancouver BC V6T 1Z4, Canada
| | - Lynne J Williams
- BC Children's Hospital MRI Research Facility, 4480 Oak Street, Vancouver, BC V6H 0B3, Canada
| | - Rebecca M Todd
- University of British Columbia, Department of Psychology, 2136 West Mall, Vancouver BC V6T 1Z4, Canada; University of British Columbia, Djavad Mowafaghian Centre for Brain Health, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada.
| | - Lawrence M Ward
- University of British Columbia, Department of Psychology, 2136 West Mall, Vancouver BC V6T 1Z4, Canada; University of British Columbia, Djavad Mowafaghian Centre for Brain Health, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
36
|
Baroncelli L, Lunghi C. Neuroplasticity of the visual cortex: in sickness and in health. Exp Neurol 2020; 335:113515. [PMID: 33132181 DOI: 10.1016/j.expneurol.2020.113515] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/14/2020] [Accepted: 10/21/2020] [Indexed: 01/18/2023]
Abstract
Brain plasticity refers to the ability of synaptic connections to adapt their function and structure in response to experience, including environmental changes, sensory deprivation and injuries. Plasticity is a distinctive, but not exclusive, property of the developing nervous system. This review introduces the concept of neuroplasticity and describes classic paradigms to illustrate cellular and molecular mechanisms underlying synapse modifiability. Then, we summarize a growing number of studies showing that the adult cerebral cortex retains a significant degree of plasticity highlighting how the identification of strategies to enhance the plastic potential of the adult brain could pave the way for the development of novel therapeutic approaches aimed at treating amblyopia and other neurodevelopmental disorders. Finally, we analyze how the visual system adjusts to neurodegenerative conditions leading to blindness and we discuss the crucial role of spared plasticity in the visual system for sight recovery.
Collapse
Affiliation(s)
- Laura Baroncelli
- Institute of Neuroscience, National Research Council (CNR), I-56124 Pisa, Italy; Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, I-56128 Pisa, Italy.
| | - Claudia Lunghi
- Laboratoire des systèmes perceptifs, Département d'études cognitives, École normale supérieure, PSL University, CNRS, 75005 Paris, France
| |
Collapse
|
37
|
Fricke S, Metzdorf K, Ohm M, Haak S, Heine M, Korte M, Zagrebelsky M. Fast Regulation of GABA AR Diffusion Dynamics by Nogo-A Signaling. Cell Rep 2020; 29:671-684.e6. [PMID: 31618635 DOI: 10.1016/j.celrep.2019.09.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/02/2019] [Accepted: 09/06/2019] [Indexed: 12/29/2022] Open
Abstract
Precisely controlling the excitatory and inhibitory balance is crucial for the stability and information-processing ability of neuronal networks. However, the molecular mechanisms maintaining this balance during ongoing sensory experiences are largely unclear. We show that Nogo-A signaling reciprocally regulates excitatory and inhibitory transmission. Loss of function for Nogo-A signaling through S1PR2 rapidly increases GABAAR diffusion, thereby decreasing their number at synaptic sites and the amplitude of GABAergic mIPSCs at CA3 hippocampal neurons. This increase in GABAAR diffusion rate is correlated with an increase in Ca2+ influx and requires the calcineurin-mediated dephosphorylation of the γ2 subunit at serine 327. These results suggest that Nogo-A signaling rapidly strengthens inhibitory GABAergic transmission by restricting the diffusion dynamics of GABAARs. Together with the observation that Nogo-A signaling regulates excitatory transmission in an opposite manner, these results suggest a crucial role for Nogo-A signaling in modulating the excitation and inhibition balance to restrict synaptic plasticity.
Collapse
Affiliation(s)
- Steffen Fricke
- Zoological Institute, Division of Cellular Neurobiology, TU Braunschweig, Braunschweig 38108, Germany
| | - Kristin Metzdorf
- Zoological Institute, Division of Cellular Neurobiology, TU Braunschweig, Braunschweig 38108, Germany
| | - Melanie Ohm
- Zoological Institute, Division of Cellular Neurobiology, TU Braunschweig, Braunschweig 38108, Germany
| | - Stefan Haak
- Zoological Institute, Division of Cellular Neurobiology, TU Braunschweig, Braunschweig 38108, Germany
| | - Martin Heine
- Molecular Physiology Group, Leibniz Institute of Neurobiology, Magdeburg 39118, Germany; Functional Neurobiology, Institute for Developmental Biology and Neurobiology, Johannes Gutenberg University, Mainz 55128, Germany
| | - Martin Korte
- Zoological Institute, Division of Cellular Neurobiology, TU Braunschweig, Braunschweig 38108, Germany; Helmholtz Centre for Infection Research, AG NIND, Inhoffenstr. 7, Braunschweig 38124, Germany
| | - Marta Zagrebelsky
- Zoological Institute, Division of Cellular Neurobiology, TU Braunschweig, Braunschweig 38108, Germany.
| |
Collapse
|
38
|
Warre-Cornish K, Perfect L, Nagy R, Duarte RRR, Reid MJ, Raval P, Mueller A, Evans AL, Couch A, Ghevaert C, McAlonan G, Loth E, Murphy D, Powell TR, Vernon AC, Srivastava DP, Price J. Interferon-γ signaling in human iPSC-derived neurons recapitulates neurodevelopmental disorder phenotypes. SCIENCE ADVANCES 2020; 6:eaay9506. [PMID: 32875100 PMCID: PMC7438100 DOI: 10.1126/sciadv.aay9506] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 07/07/2020] [Indexed: 05/07/2023]
Abstract
Maternal immune activation increases the risk of neurodevelopmental disorders. Elevated cytokines, such as interferon-γ (IFN-γ), in offspring's brains play a central role. IFN-γ activates an antiviral cellular state, limiting viral entry and replication. Moreover, IFN-γ is implicated in brain development. We tested the hypothesis that IFN-γ signaling contributes to molecular and cellular phenotypes associated with neurodevelopmental disorders. Transient IFN-γ treatment of neural progenitors derived from human induced pluripotent stem cells increased neurite outgrowth. RNA sequencing analysis revealed that major histocompatibility complex class I (MHCI) genes were persistently up-regulated through neuronal differentiation-an effect that was mediated by IFN-γ-induced promyelocytic leukemia protein (PML) nuclear bodies. Critically, IFN-γ-induced neurite outgrowth required both PML and MHCI. We also found evidence that IFN-γ disproportionately altered the expression of genes associated with schizophrenia and autism, suggesting convergence between genetic and environmental risk factors. Together, these data implicate IFN-γ signaling in neurodevelopmental disorder etiology.
Collapse
Affiliation(s)
- Katherine Warre-Cornish
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, UK
| | - Leo Perfect
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, UK
| | - Roland Nagy
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, UK
| | - Rodrigo R. R. Duarte
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- Division of Infectious Diseases, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Matthew J. Reid
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, UK
| | - Pooja Raval
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, UK
| | - Annett Mueller
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Amanda L. Evans
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Amalie Couch
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, UK
| | - Cédric Ghevaert
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Grainne McAlonan
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, UK
- Department of Forensic and Neurodevelopmental Sciences, King’s College London, London, UK
| | - Eva Loth
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, UK
- Department of Forensic and Neurodevelopmental Sciences, King’s College London, London, UK
| | - Declan Murphy
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, UK
- Department of Forensic and Neurodevelopmental Sciences, King’s College London, London, UK
| | - Timothy R. Powell
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- Division of Infectious Diseases, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Anthony C. Vernon
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, UK
| | - Deepak P. Srivastava
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, UK
| | - Jack Price
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, UK
- National Institute for Biological Standards and Control, South Mimms, UK
| |
Collapse
|
39
|
Xu W, Löwel S, Schlüter OM. Silent Synapse-Based Mechanisms of Critical Period Plasticity. Front Cell Neurosci 2020; 14:213. [PMID: 32765222 PMCID: PMC7380267 DOI: 10.3389/fncel.2020.00213] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/17/2020] [Indexed: 01/08/2023] Open
Abstract
Critical periods are postnatal, restricted time windows of heightened plasticity in cortical neural networks, during which experience refines principal neuron wiring configurations. Here, we propose a model with two distinct types of synapses, innate synapses that establish rudimentary networks with innate function, and gestalt synapses that govern the experience-dependent refinement process. Nascent gestalt synapses are constantly formed as AMPA receptor-silent synapses which are the substrates for critical period plasticity. Experience drives the unsilencing and stabilization of gestalt synapses, as well as synapse pruning. This maturation process changes synapse patterning and consequently the functional architecture of cortical excitatory networks. Ocular dominance plasticity (ODP) in the primary visual cortex (V1) is an established experimental model for cortical plasticity. While converging evidence indicates that the start of the critical period for ODP is marked by the maturation of local inhibitory circuits, recent results support our model that critical periods end through the progressive maturation of gestalt synapses. The cooperative yet opposing function of two postsynaptic signaling scaffolds of excitatory synapses, PSD-93 and PSD-95, governs the maturation of gestalt synapses. Without those proteins, networks do not progress far beyond their innate functionality, resulting in rather impaired perception. While cortical networks remain malleable throughout life, the cellular mechanisms and the scope of critical period and adult plasticity differ. Critical period ODP is initiated with the depression of deprived eye responses in V1, whereas adult ODP is characterized by an initial increase in non-deprived eye responses. Our model proposes the gestalt synapse-based mechanism for critical period ODP, and also predicts a different mechanism for adult ODP based on the sparsity of nascent gestalt synapses at that age. Under our model, early life experience shapes the boundaries (the gestalt) for network function, both for its optimal performance as well as for its pathological state. Thus, reintroducing nascent gestalt synapses as plasticity substrates into adults may improve the network gestalt to facilitate functional recovery.
Collapse
Affiliation(s)
- Weifeng Xu
- Department of Neuroscience, Brown University, Providence, RI, United States
- Carney Institute for Brain Science, Brown University, Providence, RI, United States
| | - Siegrid Löwel
- Department of Systems Neuroscience, Johann-Friedrich-Blumenbach Institute for Zoology & Anthropology, University of Göttingen, Göttingen, Germany
- Campus Institute for Dynamics of Biological Networks, University of Göttingen, Göttingen, Germany
- Collaborative Research Center 889, University of Göttingen, Göttingen, Germany
| | - Oliver M. Schlüter
- Collaborative Research Center 889, University of Göttingen, Göttingen, Germany
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
40
|
Yuan R, Yang M, Fan W, Lan J, Zhou YG. Paired Immunoglobulin-like Receptor B Inhibition in Müller Cells Promotes Neurite Regeneration After Retinal Ganglion Cell Injury in vitro. Neurosci Bull 2020; 36:972-984. [PMID: 32445021 DOI: 10.1007/s12264-020-00510-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/31/2020] [Indexed: 02/07/2023] Open
Abstract
In the central nervous system (CNS), three types of myelin-associated inhibitors (MAIs) have major inhibitory effects on nerve regeneration. They include Nogo-A, myelin-associated glycoprotein, and oligodendrocyte-myelin glycoprotein. MAIs possess two co-receptors, Nogo receptor (NgR) and paired immunoglobulin-like receptor B (PirB). Previous studies have confirmed that the inhibition of NgR only results in a modest increase in regeneration in the CNS; however, the inhibitory effects of PirB with regard to nerve regeneration after binding to MAIs remain controversial. In this study, we demonstrated that PirB is expressed in primary cultures of retinal ganglion cells (RGCs), and the inhibitory effects of the three MAIs on the growth of RGC neurites are not significantly decreased after direct PirB knockdown using adenovirus PirB shRNA. Interestingly, we found that retinal Müller cells expressed PirB and that its knockdown enhanced the regeneration of co-cultured RGC neurites. PirB knockdown also activated the JAK/Stat3 signaling pathway in Müller cells and upregulated ciliary neurotrophic factor levels. These findings indicate that PirB plays a novel role in retinal Müller cells and that its action in these cells may indirectly affect the growth of RGC neurites. The results also reveal that PirB in Müller cells affects RGC neurite regeneration. Our findings provide a novel basis for the use of PirB as a target molecule to promote nerve regeneration.
Collapse
Affiliation(s)
- Rongdi Yuan
- Department of Ophthalmology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.,The Molecular Biology Centre, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Mei Yang
- Department of Ophthalmology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Wei Fan
- Department of Ophthalmology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Jian Lan
- Department of Ophthalmology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Yuan-Guo Zhou
- The Molecular Biology Centre, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Army Medical University, Chongqing, 400042, China.
| |
Collapse
|
41
|
Funk KE, Lotz SK. Assessing the Expression of Major Histocompatibility Complex Class I on Primary Murine Hippocampal Neurons by Flow Cytometry. J Vis Exp 2020. [PMID: 32510500 DOI: 10.3791/61436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Increasing evidence supports the hypothesis that neuro-immune interactions impact nervous system function in both homeostatic and pathologic conditions. A well-studied function of major histocompatibility complex class I (MHCI) is the presentation of cell-derived peptides to the adaptive immune system, particularly in response to infection. More recently it has been shown that the expression of MHCI molecules on neurons can modulate activity-dependent changes in the synaptic connectivity during normal development and neurologic disorders. The importance of these functions to the brain health supports the need for a sensitive assay that readily detects MHCI expression on neurons. Here we describe a method for primary culture of murine hippocampal neurons and then assessment of MHCI expression by flow cytometric analysis. Murine hippocampus is microdissected from prenatal mouse pups at the embryonic day 18. Tissue is dissociated into a single cell suspension using enzymatic and mechanical techniques, then cultured in a serum-free media that limits growth of non-neuronal cells. After 7 days in vitro, MHCI expression is stimulated by treating cultured cells pharmacologically with beta interferon. MHCI molecules are labeled in situ with a fluorescently tagged antibody, then cells are non-enzymatically dissociated into a single cell suspension. To confirm the neuronal identity, cells are fixed with paraformaldehyde, permeabilized, and labeled with a fluorescently tagged antibody that recognizes neuronal nuclear antigen NeuN. MHCI expression is then quantified on neurons by flow cytometric analysis. Neuronal cultures can easily be manipulated by either genetic modifications or pharmacologic interventions to test specific hypotheses. With slight modifications, these methods can be used to culture other neuronal populations or to assess expression of other proteins of interest.
Collapse
Affiliation(s)
- Kristen E Funk
- Department of Biological Sciences, University of North Carolina at Charlotte;
| | - Sarah K Lotz
- Department of Biological Sciences, University of North Carolina at Charlotte
| |
Collapse
|
42
|
Kurihara Y, Takai T, Takei K. Nogo receptor antagonist LOTUS exerts suppression on axonal growth-inhibiting receptor PIR-B. J Neurochem 2020; 155:285-299. [PMID: 32201946 DOI: 10.1111/jnc.15013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/28/2020] [Accepted: 03/16/2020] [Indexed: 01/08/2023]
Abstract
Damaged axons in the adult mammalian central nervous system have a restricted regenerative capacity mainly because of Nogo protein, which is a major myelin-associated axonal growth inhibitor with binding to both receptors of Nogo receptor-1 (NgR1) and paired immunoglobulin-like receptor (PIR)-B. Lateral olfactory tract usher substance (LOTUS) exerts complete suppression of NgR1-mediated axonal growth inhibition by antagonizing NgR1. However, the regulation of PIR-B functions in neurons remains unknown. In this study, protein-protein interactions analyses found that LOTUS binds to PIR-B and abolishes Nogo-binding to PIR-B completely. Reverse transcription-polymerase chain reaction and immunocytochemistry revealed that PIR-B is expressed in dorsal root ganglions (DRGs) from wild-type and Ngr1-deficient mice (male and female). In these DRG neurons, Nogo induced growth cone collapse and neurite outgrowth inhibition, but treatment with the soluble form of LOTUS completely suppressed them. Moreover, Nogo-induced growth cone collapse and neurite outgrowth inhibition in Ngr1-deficient DRG neurons were neutralized by PIR-B function-blocking antibodies, indicating that these Nogo-induced phenomena were mediated by PIR-B. Our data show that LOTUS negatively regulates a PIR-B function. LOTUS thus exerts an antagonistic action on both receptors of NgR1 and PIR-B. This may lead to an improvement in the defective regeneration of axons following injury.
Collapse
Affiliation(s)
- Yuji Kurihara
- Molecular Medical Bioscience Laboratory, Department of Medical Life Science, Yokohama City University Graduate School of Medical Life Science, Yokohama, Japan
| | - Toshiyuki Takai
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Kohtaro Takei
- Molecular Medical Bioscience Laboratory, Department of Medical Life Science, Yokohama City University Graduate School of Medical Life Science, Yokohama, Japan
| |
Collapse
|
43
|
Delclos PJ, Forero SA, Rosenthal GG. Divergent neurogenomic responses shape social learning of both personality and mate preference. J Exp Biol 2020; 223:jeb220707. [PMID: 32054683 DOI: 10.1242/jeb.220707] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 02/05/2020] [Indexed: 12/21/2022]
Abstract
Behavior plays a fundamental role in shaping the origin and fate of species. Mating decisions can act to promote or restrict gene flow, as can personality traits that influence dispersal and niche use. Mate choice and personality are often both learned and therefore influenced by an individual's social environment throughout development. Likewise, the molecular pathways that shape these behaviors may also be co-expressed. In this study on swordtail fish (Xiphophorus birchmanni), we show that female mating preferences for species-typical pheromone cues are entirely dependent on social experience with adult males. Experience with adults also shapes development along the shy-bold personality axis, with shy behaviors arising from exposure to risk-averse heterospecifics as a potential stress-coping strategy. In maturing females, conspecific exposure results in a strong upregulation of olfaction and vision genes compared with heterospecific exposure, as well as immune response genes previously linked to anxiety, learning and memory. Conversely, heterospecific exposure involves an increased expression of genes important for neurogenesis, synaptic plasticity and social decision-making. We identify subsets of genes within the social decision-making network and with known stress-coping roles that may be directly coupled to the olfactory processes females rely on for social communication. Based on these results, we conclude that the social environment affects the neurogenomic trajectory through which socially sensitive behaviors are learned, resulting in adult phenotypes adapted for specific social groupings.
Collapse
Affiliation(s)
- Pablo J Delclos
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
- Centro de Investigaciones Científicas de las Huastecas 'Aguazarca', A. C., Calnali, Hidalgo 43233, Mexico
- Department of Biology & Biochemistry, University of Houston, Houston, TX 77004, USA
| | - Santiago A Forero
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
- Department of Psychology, Cornell University, Ithaca, NY 14850, USA
| | - Gil G Rosenthal
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
- Centro de Investigaciones Científicas de las Huastecas 'Aguazarca', A. C., Calnali, Hidalgo 43233, Mexico
| |
Collapse
|
44
|
Cardozo PL, de Lima IBQ, Maciel EMA, Silva NC, Dobransky T, Ribeiro FM. Synaptic Elimination in Neurological Disorders. Curr Neuropharmacol 2020; 17:1071-1095. [PMID: 31161981 PMCID: PMC7052824 DOI: 10.2174/1570159x17666190603170511] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/23/2019] [Accepted: 05/31/2019] [Indexed: 12/12/2022] Open
Abstract
Synapses are well known as the main structures responsible for transmitting information through the release and recognition of neurotransmitters by pre- and post-synaptic neurons. These structures are widely formed and eliminated throughout the whole lifespan via processes termed synaptogenesis and synaptic pruning, respectively. Whilst the first pro-cess is needed for ensuring proper connectivity between brain regions and also with the periphery, the second phenomenon is important for their refinement by eliminating weaker and unnecessary synapses and, at the same time, maintaining and fa-voring the stronger ones, thus ensuring proper synaptic transmission. It is well-known that synaptic elimination is modulated by neuronal activity. However, only recently the role of the classical complement cascade in promoting this phenomenon has been demonstrated. Specifically, microglial cells recognize activated complement component 3 (C3) bound to synapses tar-geted for elimination, triggering their engulfment. As this is a highly relevant process for adequate neuronal functioning, dis-ruptions or exacerbations in synaptic pruning could lead to severe circuitry alterations that could underlie neuropathological alterations typical of neurological and neuropsychiatric disorders. In this review, we focus on discussing the possible in-volvement of excessive synaptic elimination in Alzheimer’s disease, as it has already been reported dendritic spine loss in post-synaptic neurons, increased association of complement proteins with its synapses and, hence, augmented microglia-mediated pruning in animal models of this disorder. In addition, we briefly discuss how this phenomenon could be related to other neurological disorders, including multiple sclerosis and schizophrenia.
Collapse
Affiliation(s)
- Pablo L Cardozo
- Laboratório de Neurobioquímica, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Izabella B Q de Lima
- Laboratório de Neurobioquímica, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Esther M A Maciel
- Laboratório de Neurobioquímica, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Nathália C Silva
- Laboratório de Neurobioquímica, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Fabíola M Ribeiro
- Laboratório de Neurobioquímica, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
45
|
Liu C, Xu Y, Yang H, Zhang J. Establishment of axon regeneration regulatory network and the role of low intensity pulsed ultrasound in the network. Saudi J Biol Sci 2020; 26:1922-1926. [PMID: 31889775 PMCID: PMC6923491 DOI: 10.1016/j.sjbs.2019.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/11/2019] [Accepted: 07/13/2019] [Indexed: 11/28/2022] Open
Abstract
Objective To establish an axon regeneration regulatory network for optimal selection, and explore the role of low intensity pulsed ultrasound in the network. Methods The axon regeneration regulatory network involving axon regeneration-related proteins NGF, BDNF and PirB was constructed by using GO and KEGG. The maximum possible pathway acting on axon regeneration was screened by Bayesian network theory. The node of low - intensity pulsed ultrasound in NGF - involved axon regeneration network was complemented by combining literature methods. Results The NGF, BDNF and PirB-involved axonal regeneration regulatory pathway was successfully constructed. The low intensity pulsed ultrasound played a role in axon regeneration by acting on ERK1/2-CREB pathway and GSK-3β. NGF-TrKA-Rap1-ERK1/2-CREB-Bcl-2 was optimized as optimal pathway by Bayesian theory. Conclusion The regulatory pathway of axon regeneration involving nerve growth related factors and low intensity pulsed ultrasound was initially established, which provided a theoretical basis for further study of axon regeneration, and also new ideas for action of low intensity pulsed ultrasound on axon regeneration regulatory pathway.
Collapse
Affiliation(s)
- Chunyang Liu
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yanhua Xu
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Hong Yang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Jianhua Zhang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| |
Collapse
|
46
|
Abstract
The symptoms of Alzheimer disease reflect a loss of neural circuit integrity in the brain, but neurons do not work in isolation. Emerging evidence suggests that the intricate balance of interactions between neurons, astrocytes, microglia and vascular cells required for healthy brain function becomes perturbed during the disease, with early changes likely protecting neural circuits from damage, followed later by harmful effects when the balance cannot be restored. Moving beyond a neuronal focus to understand the complex cellular interactions in Alzheimer disease and how these change throughout the course of the disease may provide important insight into developing effective therapeutics.
Collapse
|
47
|
Ocular Dominance Plasticity in Binocular Primary Visual Cortex Does Not Require C1q. J Neurosci 2019; 40:769-783. [PMID: 31801811 DOI: 10.1523/jneurosci.1011-19.2019] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 10/21/2019] [Accepted: 10/23/2019] [Indexed: 11/21/2022] Open
Abstract
C1q, the initiator of the classical complement cascade, mediates synapse elimination in the postnatal mouse dorsolateral geniculate nucleus of the thalamus and sensorimotor cortex. Here, we asked whether C1q plays a role in experience-dependent synaptic refinement in the visual system at later stages of development. The binocular zone of primary visual cortex (V1b) undergoes spine loss and changes in neuronal responsiveness following the closure of one eye during a defined critical period [a process referred to as ocular dominance plasticity (ODP)]. We therefore hypothesized that ODP would be impaired in the absence of C1q, and that V1b development would also be abnormal without C1q-mediated synapse elimination. However, when we examined several features of V1b development in mice lacking C1q, we found that the densities of most spine populations on basal and proximal apical dendrites, as well as firing rates and ocular dominance, were normal. C1q was only transiently required for the development of spines on apical, but not basal, secondary dendrites. Dendritic morphologies were also unaffected. Although we did not observe the previously described spine loss during ODP in either genotype, our results reveal that the animals lacking C1q had normal shifts in neuronal responsiveness following eye closure. Experiments were performed in both male and female mice. These results suggest that the development and plasticity of the mouse V1b is grossly normal in the absence of C1q.SIGNIFICANCE STATEMENT These findings illustrate that the development and experience-dependent plasticity of V1b is mostly normal in the absence of C1q, even though C1q has previously been shown to be required for developmental synapse elimination in the mouse visual thalamus as well as sensorimotor cortex. The V1b phenotypes in mice lacking C1q are more similar to the mild defects previously observed in the hippocampus of these mice, emphasizing that the contribution of C1q to synapse elimination appears to be dependent on context.
Collapse
|
48
|
Yue J, Zhang C, Shi X, Wei Y, Liu L, Liu S, Yang H. Activation of leukocyte immunoglobulin-like receptor B2 signaling pathway in cortical lesions of pediatric patients with focal cortical dysplasia type IIb and tuberous sclerosis complex. Brain Dev 2019; 41:829-838. [PMID: 31495513 DOI: 10.1016/j.braindev.2019.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/24/2019] [Accepted: 08/13/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUNDS Focal cortical dysplasia type IIb (FCD IIb) and tuberous sclerosis complex (TSC) are very frequently associated with epilepsy in pediatric patients. Human leukocyte immunoglobulin-like receptor B2 (LILRB2) participates in the process of neurite growth, synaptic plasticity, and inflammatory reaction, suggesting a potential role of LILRB2 in epilepsy. However, little is known about the distribution and expression of LILRB2 in cortical lesions of FCD IIb and cortical tubers of TSC. METHODS In this study, we have described the distribution and expression of LILRB2 signaling pathway in cortical lesions of pediatric patients with FCD IIb (n = 15) and TSC (n = 12) relative to age-matched autopsy control samples (CTX, n = 10), respectively. The protein levels of LILRB2 pathway molecules were assessed by western blotting and immunohistochemistry. The expression pattern was investigated by immunohistochemistry and double labeling experiment. Spearman correlation analysis to explore the correlation between LILRB2 protein level and seizure frequency. RESULTS The protein levels of LILRB2 and its downstream molecules POSH, SHROOM3, ROCK1, ROCK2 were increased in cortices of patients compared to CTX. Protein levels of LILRB2 negatively correlated with the frequency of seizures in FCD IIb and TSC patients, respectively. Moreover, all LILRB2 pathway molecules were strongly expressed in dysmorphic neurons, balloon cells, and giant cells, LILRB2 co-localized with neuron marker and astrocyte marker. CONCLUSION Taken together, the special expression patterns of LILRB2 signaling pathway in cortical lesions of FCD IIb and TSC implies that it may be involved in the process of epilepsy.
Collapse
Affiliation(s)
- Jiong Yue
- Epilepsy Research Center of PLA, Department of Neurosurgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Chunqing Zhang
- Epilepsy Research Center of PLA, Department of Neurosurgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xianjun Shi
- Epilepsy Research Center of PLA, Department of Neurosurgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yujia Wei
- Epilepsy Research Center of PLA, Department of Neurosurgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Lihong Liu
- Epilepsy Research Center of PLA, Department of Neurosurgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Shiyong Liu
- Epilepsy Research Center of PLA, Department of Neurosurgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Hui Yang
- Epilepsy Research Center of PLA, Department of Neurosurgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China.
| |
Collapse
|
49
|
Zemmar A, Chen CC, Weinmann O, Kast B, Vajda F, Bozeman J, Isaad N, Zuo Y, Schwab ME. Oligodendrocyte- and Neuron-Specific Nogo-A Restrict Dendritic Branching and Spine Density in the Adult Mouse Motor Cortex. Cereb Cortex 2019; 28:2109-2117. [PMID: 28505229 PMCID: PMC6018724 DOI: 10.1093/cercor/bhx116] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Indexed: 01/27/2023] Open
Abstract
Nogo-A has been well described as a myelin-associated inhibitor of neurite outgrowth and functional neuroregeneration after central nervous system (CNS) injury. Recently, a new role of Nogo-A has been identified as a negative regulator of synaptic plasticity in the uninjured adult CNS. Nogo-A is present in neurons and oligodendrocytes. However, it is yet unclear which of these two pools regulate synaptic plasticity. To address this question we used newly generated mouse lines in which Nogo-A is specifically knocked out in (1) oligodendrocytes (oligoNogo-A KO) or (2) neurons (neuroNogo-A KO). We show that both oligodendrocyte- and neuron-specific Nogo-A KO mice have enhanced dendritic branching and spine densities in layer 2/3 cortical pyramidal neurons. These effects are compartmentalized: neuronal Nogo-A affects proximal dendrites whereas oligodendrocytic Nogo-A affects distal regions. Finally, we used two-photon laser scanning microscopy to measure the spine turnover rate of adult mouse motor cortex layer 5 cells and find that both Nogo-A KO mouse lines show enhanced spine remodeling after 4 days. Our results suggest relevant control functions of glial as well as neuronal Nogo-A for synaptic plasticity and open new possibilities for more selective and targeted plasticity enhancing strategies.
Collapse
Affiliation(s)
- Ajmal Zemmar
- Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland.,Department of Biology and Department of Health Sciences and Technology, ETH Zurich, 8057 Zurich, Switzerland.,Department of Neurosurgery, University Hospital Zurich, University of Zurich, CH-8091, Zurich, Switzerland
| | - Chia-Chien Chen
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| | - Oliver Weinmann
- Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland.,Department of Biology and Department of Health Sciences and Technology, ETH Zurich, 8057 Zurich, Switzerland
| | - Brigitt Kast
- Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland.,Department of Biology and Department of Health Sciences and Technology, ETH Zurich, 8057 Zurich, Switzerland
| | - Flora Vajda
- Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland.,Department of Biology and Department of Health Sciences and Technology, ETH Zurich, 8057 Zurich, Switzerland
| | - James Bozeman
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| | - Noel Isaad
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| | - Yi Zuo
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| | - Martin E Schwab
- Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland.,Department of Biology and Department of Health Sciences and Technology, ETH Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
50
|
Morimoto K, Nakajima K. Role of the Immune System in the Development of the Central Nervous System. Front Neurosci 2019; 13:916. [PMID: 31551681 PMCID: PMC6735264 DOI: 10.3389/fnins.2019.00916] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 08/16/2019] [Indexed: 01/01/2023] Open
Abstract
The central nervous system (CNS) and the immune system are both intricate and highly organized systems that regulate the entire body, with both sharing certain common features in developmental mechanisms and operational modes. It is known that innate immunity-related molecules, such as cytokines, toll-like receptors, the complement family, and acquired immunity-related molecules, such as the major histocompatibility complex and antibody receptors, are also expressed in the brain and play important roles in brain development. Moreover, although the brain has previously been regarded as an immune-privileged site, it is known to contain lymphatic vessels. Not only microglia but also lymphocytes regulate cognition and play a vital role in the formation of neuronal circuits. This review provides an overview of the function of immune cells and immune molecules in the CNS, with particular emphasis on their effect on neural developmental processes.
Collapse
Affiliation(s)
- Keiko Morimoto
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
| | - Kazunori Nakajima
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|