1
|
Lannoo MJ, Stiles RM. The Use of Cognition by Amphibians Confronting Environmental Change: Examples from the Behavioral Ecology of Crawfish Frogs ( Rana areolata). Animals (Basel) 2025; 15:736. [PMID: 40076019 PMCID: PMC11898707 DOI: 10.3390/ani15050736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/24/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025] Open
Abstract
Amphibian conservation concerns frequently center on the idea of 'saving' them, with the underlying assumption they are the passive victims of anthropogenic environmental change. But this approach ignores the physiological, biochemical, and behavioral flexibility amphibians have employed since they first evolved ~365 million years ago. One overlooked advantage amphibians possess in the struggle for survival, and one humans might use in their efforts to conserve them, is their brains share the same blueprint as human brains, which allows them to acquire knowledge and understanding through experiences-in other words, amphibians have cognitive capabilities that assist them in their effort to survive. Here, we use four examples from our work on the behavioral ecology of Crawfish Frogs (Rana areolata) to form hypotheses about how cognition affects amphibian reaction to environmental and social change. The first two examples describe Crawfish Frog responses to seasonality and reproductive status, the third details their reaction to ecological disturbance, and the fourth describes how their response to the same stimulus changes with growth/age. In each example, we detail the neuronal circuitry thought to be involved and hypothesize the role of cognition. We propose that as one component of our fight to conserve amphibians, researchers should consider the full range of anatomical, physiological, biochemical, and behavioral features amphibians themselves employ in their defense, which are features responsible for their historical evolutionary success up until the Anthropocene. Further, we submit that acknowledging amphibians possess cognitive abilities can enrich interpretations of not only behavioral and ecological observations but also of neuroanatomical and neurophysiological results.
Collapse
Affiliation(s)
- Michael J. Lannoo
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Rm 135 Holmstedt Hall-ISU, Terre Haute, IN 47809, USA
| | - Rochelle M. Stiles
- San Francisco Zoological Society, 1 Zoo Road, San Francisco, CA 94132, USA;
| |
Collapse
|
2
|
Orford JT, Tan H, Martin JM, Wong BBM, Alton LA. Impacts of Exposure to Ultraviolet Radiation and an Agricultural Pollutant on Morphology and Behavior of Tadpoles (Limnodynastes tasmaniensis). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:1615-1626. [PMID: 38837484 DOI: 10.1002/etc.5895] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/27/2024] [Accepted: 04/17/2024] [Indexed: 06/07/2024]
Abstract
Amphibians are the most threatened vertebrate class globally. Multiple factors have been implicated in their global decline, and it has been hypothesized that interactions between stressors may be a major cause. Increased ultraviolet (UV) radiation, as a result of ozone depletion, has been identified as one such stressor. Exposure to UV radiation has been shown to have detrimental effects on amphibians and can exacerbate the effects of other stressors, such as chemical pollutants. Chemical pollution has likewise been recognized as a major factor contributing to amphibian declines, particularly, endocrine-disrupting chemicals. In this regard, 17β-trenbolone is a potent anabolic steroid used in the agricultural industry to increase muscle mass in cattle and has been repeatedly detected in the environment where amphibians live and breed. At high concentrations, 17β-trenbolone has been shown to impact amphibian survival and gonadal development. In the present study, we investigated the effects of environmentally realistic UV radiation and 17β-trenbolone exposure, both in isolation and in combination, on the morphology and behavior of tadpoles (Limnodynastes tasmaniensis). We found that neither stressor in isolation affected tadpoles, nor did we find any interactive effects. The results from our 17β-trenbolone treatment are consistent with recent research suggesting that, at environmentally realistic concentrations, tadpoles may be less vulnerable to this pollutant compared to other vertebrate classes. The absence of UV radiation-induced effects found in the present study could be due to species-specific variation in susceptibility, as well as the dosage utilized. We suggest that future research should incorporate long-term studies with multiple stressors to accurately identify the threats to, and subsequent consequences for, amphibians under natural conditions. Environ Toxicol Chem 2024;43:1615-1626. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Jack T Orford
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Hung Tan
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Jake M Martin
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Bob B M Wong
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Lesley A Alton
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
- Centre for Geometric Biology, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
3
|
Womack MC, McKay Strobel S, Phillips JR, Parreiras JS, Grundler MR, Vredenburg VT, Wake MH. Organisms have gravity: taking an organism-centered approach in experimental biology. J Exp Biol 2024; 227:jeb247461. [PMID: 38887874 DOI: 10.1242/jeb.247461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
When you take the time to observe another organism, there is a sort of gravity that can take hold, a mixture of curiosity and connection that expands and strengthens the more you interact with that organism. Yet, in research, a connection with one's study organism can, at times, feel countercultural. Study organisms are sometimes viewed more as tools to conveniently study biological questions. Here, we explicitly highlight the importance of organism-centered research not only in scientific discovery, but also in conservation and in the communication and perception of science.
Collapse
Affiliation(s)
- Molly C Womack
- Department of Biology, Utah State University, Logan, UT 94321, USA
| | | | | | | | - Maggie R Grundler
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, CA 94720, USA
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Vance T Vredenburg
- Department of Biology, San Francisco State University, San Francisco, CA 94132, USA
| | - Marvalee H Wake
- Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
4
|
Assis VR, Robert J, Titon SCM. Introduction to the special issue Amphibian immunity: stress, disease and ecoimmunology. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220117. [PMID: 37305915 PMCID: PMC10258669 DOI: 10.1098/rstb.2022.0117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 06/13/2023] Open
Abstract
Amphibian populations have been declining worldwide, with global climate changes and infectious diseases being among the primary causes of this scenario. Infectious diseases are among the primary drivers of amphibian declines, including ranavirosis and chytridiomycosis, which have gained more attention lately. While some amphibian populations are led to extinction, others are disease-resistant. Although the host's immune system plays a major role in disease resistance, little is known about the immune mechanisms underlying amphibian disease resistance and host-pathogen interactions. As ectotherms, amphibians are directly subjected to changes in temperature and rainfall, which modulate stress-related physiology, including immunity and pathogen physiology associated with diseases. In this sense, the contexts of stress, disease and ecoimmunology are essential for a better understanding of amphibian immunity. This issue brings details about the ontogeny of the amphibian immune system, including crucial aspects of innate and adaptive immunity and how ontogeny can influence amphibian disease resistance. In addition, the papers in the issue demonstrate an integrated view of the amphibian immune system associated with the influence of stress on immune-endocrine interactions. The collective body of research presented herein can provide valuable insights into the mechanisms underlying disease outcomes in natural populations, particularly in the context of changing environmental conditions. These findings may ultimately enhance our ability to forecast effective conservation strategies for amphibian populations. This article is part of the theme issue 'Amphibian immunity: stress, disease and ecoimmunology'.
Collapse
Affiliation(s)
- Vania Regina Assis
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, 05508-900 São Paulo, Brazil
- College of Public Health, University of South Florida, Tampa, FL 33612-9415, USA
| | - Jacques Robert
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA
| | | |
Collapse
|
5
|
Cavasos K, Poudyal NC, Brunner JL, Warwick AR, Jones J, Moherman N, George M, Willard JD, Brinks ZT, Gray MJ. Attitudes and Behavioral Intentions of Pet Amphibian Owners About Biosecurity Practices. ECOHEALTH 2023; 20:194-207. [PMID: 37486511 DOI: 10.1007/s10393-023-01645-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/28/2023] [Accepted: 04/28/2023] [Indexed: 07/25/2023]
Abstract
Global trade has been linked with the emergence of novel pathogens and declines in amphibian populations worldwide. The potential for pathogen transmission within and between collections of captive amphibians and spillover to wild populations makes it important to understand the motivations, knowledge, attitudes and behaviors of pet amphibian owners. We surveyed US pet amphibian owners to understand their characteristics and evaluated whether and how they were associated with behavioral intentions to adopt biosecurity practices. We found that the majority of pet amphibian owners are aware of the threat of emerging pathogens, concerned about potential spillover of pathogens from captive to wild populations and willing to adopt biosecurity practices to mitigate pathogen threats. Intentions to adopt such practices were driven more by psychosocial constructs such as attitudes, perceptions and beliefs than demographic characteristics. Pet amphibian owners also expressed a strong interest in acquiring, and willingness to pay a price premium for, certified disease-free animals. These findings advance our understanding of the characteristics, motivations and behaviors of pet owners, a key stakeholder in global amphibian trade, which could help to inform new policies and outreach strategies to engage them in mitigating pathogen threats. Moreover, our results imply the economic viability of a market-based program to promote pathogen-free, sustainable trade of amphibians.
Collapse
Affiliation(s)
- Kevin Cavasos
- School of Natural Resources, University of Tennessee, Knoxville, TN, 37996, USA
| | - Neelam C Poudyal
- School of Natural Resources, University of Tennessee, Knoxville, TN, 37996, USA.
| | - Jesse L Brunner
- School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Alexa R Warwick
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, 48824, USA
| | - Joshua Jones
- Pet Advocacy Network, Alexandria, VA, 22314, USA
| | | | | | | | | | - Matthew J Gray
- School of Natural Resources, University of Tennessee, Knoxville, TN, 37996, USA
| |
Collapse
|
6
|
Liang D, Li Y, Li S, Meng D, Li F, Huang S, Gong M, Qin J, Li H. Dose-dependent inhibitory effects of glyphosate on invasive Pomacea canaliculata reproductive and developmental growth under oxidative deposition. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 253:114659. [PMID: 36812869 DOI: 10.1016/j.ecoenv.2023.114659] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/28/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Glyphosate (GLY) is the most widely used herbicide worldwide, and its effects on animals and plants have attracted increasing attention. In this study, we explored the following: (1) the effects of multigenerational chronic exposure to GLY and H2O2, alone or in combination, on the egg hatching rate and individual morphology of Pomacea canaliculata; and (2) the effects of short-term chronic exposure to GLY and H2O2, alone or in combination, on the reproductive system of P. canaliculata. The results showed that H2O2 and GLY exposure had distinct inhibitory effects on the hatching rate and individual growth indices with a substantial dose effect, and the F1 generation had the lowest resistance. In addition, with the prolongation of exposure time, the ovarian tissue was damaged, and the fecundity decreased; however, the snails could still lay eggs. In conclusion, these results suggest that P. canaliculata can tolerate low concentrations of pollution and in addition to drug dosage, the control should focus on two time points, the juvenile and early stage of spawning.
Collapse
Affiliation(s)
- Dongxia Liang
- College of Natural Resources and Environment, South China Agricultural University/ Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, Guangzhou 510642, China; Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangzhou 510640, Guangdong, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture of China, South China Agricultural University /Guangdong Engineering Research Center for Modern Eco-agriculture and Circular Agriculture, Guangzhou 510642, China
| | - Yinshi Li
- College of Natural Resources and Environment, South China Agricultural University/ Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, Guangzhou 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture of China, South China Agricultural University /Guangdong Engineering Research Center for Modern Eco-agriculture and Circular Agriculture, Guangzhou 510642, China
| | - Shuoyu Li
- College of Natural Resources and Environment, South China Agricultural University/ Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, Guangzhou 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture of China, South China Agricultural University /Guangdong Engineering Research Center for Modern Eco-agriculture and Circular Agriculture, Guangzhou 510642, China
| | - Dele Meng
- College of Natural Resources and Environment, South China Agricultural University/ Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, Guangzhou 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture of China, South China Agricultural University /Guangdong Engineering Research Center for Modern Eco-agriculture and Circular Agriculture, Guangzhou 510642, China
| | - Fengchun Li
- College of Natural Resources and Environment, South China Agricultural University/ Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, Guangzhou 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture of China, South China Agricultural University /Guangdong Engineering Research Center for Modern Eco-agriculture and Circular Agriculture, Guangzhou 510642, China
| | - Siying Huang
- Institute of Agricultural Economics and Information, Guangdong Academy of Agricultural Sciences/Key Laboratory of Urban Agriculture in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
| | - Maojian Gong
- College of Natural Resources and Environment, South China Agricultural University/ Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, Guangzhou 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture of China, South China Agricultural University /Guangdong Engineering Research Center for Modern Eco-agriculture and Circular Agriculture, Guangzhou 510642, China; Shenzhen Agricultural Science and Technology Promotion Center, Shenzhen 518057, China
| | - Junhao Qin
- College of Natural Resources and Environment, South China Agricultural University/ Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, Guangzhou 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture of China, South China Agricultural University /Guangdong Engineering Research Center for Modern Eco-agriculture and Circular Agriculture, Guangzhou 510642, China
| | - Huashou Li
- College of Natural Resources and Environment, South China Agricultural University/ Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, Guangzhou 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture of China, South China Agricultural University /Guangdong Engineering Research Center for Modern Eco-agriculture and Circular Agriculture, Guangzhou 510642, China.
| |
Collapse
|
7
|
Souza KS, Fortunato DS, Jardim L, Terribile LC, Lima-Ribeiro MS, Mariano CÁ, Pinto-Ledezma JN, Loyola R, Dobrovolski R, Rangel TF, Machado IF, Rocha T, Batista MG, Lorini ML, Vale MM, Navas CA, Maciel NM, Villalobos F, Olalla-Tarraga MÂ, Rodrigues JFM, Gouveia SF, Diniz-Filho JAF. Evolutionary rescue and geographic range shifts under climate change for global amphibians. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1038018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
Abstract
By the end of this century, human-induced climate change and habitat loss may drastically reduce biodiversity, with expected effects on many amphibian lineages. One of these effects is the shift in the geographic distributions of species when tracking suitable climates. Here, we employ a macroecological approach to dynamically model geographic range shifts by coupling ecological niche models and eco-evolutionary mechanisms, aiming to assess the probability of evolutionary rescue (i.e., rapid adaptation) and dispersal under climate change. Evolutionary models estimated the probability of population persistence by adapting to changes in the temperature influenced by precipitation in the following decades, while compensating the fitness reduction and maintaining viable populations in the new climates. In addition, we evaluated emerging patterns of species richness and turnover at the assemblage level. Our approach was able to identify which amphibian populations among 7,193 species at the global scale could adapt to temperature changes or disperse into suitable regions in the future. Without evolutionary adaptation and dispersal, 47.7% of the species could go extinct until the year 2,100, whereas adding both processes will slightly decrease this extinction rate to 36.5%. Although adaptation to climate is possible for populations in about 25.7% of species, evolutionary rescue is the only possibility to avoid extinction in 4.2% of them. Dispersal will allow geographic range shifts for 49.7% of species, but only 6.5% may avoid extinction by reaching climatically suitable environments. This reconfiguration of species distributions and their persistence creates new assemblage-level patterns at the local scale. Temporal beta-diversity across the globe showed relatively low levels of species turnover, mainly due to the loss of species. Despite limitations with obtaining data, our approach provides more realistic assessments of species responses to ongoing climate changes. It shows that, although dispersal and evolutionary rescue may attenuate species losses, they are not enough to avoid a significant reduction of species’ geographic ranges in the future. Actions that guarantee a higher potential of adaptation (e.g., genetic diversity through larger population sizes) and increased connectivity for species dispersion to track suitable climates become essential, increasing the resilience of biodiversity to climate change.
Collapse
|
8
|
Dvorsky C, Riddle K, Boone M. Assessing the Impact of Chemical Algae Management Strategies on Anurans and Aquatic Communities. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:213-224. [PMID: 36342350 PMCID: PMC10107480 DOI: 10.1002/etc.5514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/22/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Pond management with chemical and biological agents that reduce overgrowth of algae is an important means of maintaining water quality in residential ponds, yet the effects on nontarget species are not fully understood. We assessed the impact of Aquashade (a common nontoxic pond dye) and copper sulfate (a toxic algaecide) on American toad (Anaxyrus americanus), northern leopard frog (Lithobates pipiens), and Cope's gray treefrog (Hyla chrysoscelis) metamorphosis in outdoor mesocosm experiments. We also evaluated the relative impact of tadpole grazing versus chemical treatment on phytoplankton and periphyton abundance. We found no significant effects of pond management treatment on anuran metamorphosis, suggesting that addition of Aquashade and copper sulfate at tested concentrations does not significantly impact anurans under these experimental conditions. Interestingly, we found that the presence of tadpoles more strongly reduced algal abundance than Aquashade or copper sulfate by significantly decreasing phytoplankton and periphyton abundance over time. The present study suggests that anuran tadpoles may be effective at maintaining water quality, and that Aquashade and copper sulfate may have minimal effects on amphibian metamorphosis. Environ Toxicol Chem 2023;42:213-224. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
|
9
|
Global Warming and Long-Distance Spread of Invasive Discoglossus pictus (Amphibia, Alytidae): Conservation Implications for Protected Amphibians in the Iberian Peninsula. Animals (Basel) 2022; 12:ani12233236. [PMID: 36496757 PMCID: PMC9736426 DOI: 10.3390/ani12233236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/06/2022] [Accepted: 11/12/2022] [Indexed: 11/24/2022] Open
Abstract
Discoglossus pictus is a North African amphibian that was introduced in southern France early the 20th century and has spread south and north along the Mediterranean coastal plains up to 170 km. In order to disentangle the conservation implications of the spread of D. pictus for sensitive native species, we examined the impact of long-term climate warming on the basis of niche overlap analysis, taking into account abiotic factors. The study area covered the distribution ranges of all genus Discoglossus species in northwestern Africa (659,784 km2), Sicily (27,711 km2), the Iberian Peninsula, and southern France (699,546 km2). Niche overlap was measured from species environmental spaces extracted via PCA, including climate and relief environmental variables. Current and future climatic suitability for each species was assessed in an ensemble-forecasting framework of species distribution models, built using contemporary species data and climate predictors and projected to 2070's climatic conditions. Our results show a strong climatic niche overlap between D. pictus and native and endemic species in the Iberian Peninsula. In this context, all species will experience an increase in climatic suitability over the next decades, with the only exception being Pelodytes punctatus, which could be negatively affected by synergies between global warming and cohabitation with D. pictus.
Collapse
|
10
|
Over 25 Years of Partnering to Conserve Chiricahua Leopard Frogs (Rana chiricahuensis) in Arizona, Combining Ex Situ and In Situ Strategies. JOURNAL OF ZOOLOGICAL AND BOTANICAL GARDENS 2022. [DOI: 10.3390/jzbg3040039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Phoenix Zoo has partnered with US Fish and Wildlife Service, Arizona Game and Fish Department, US Forest Service, and other organizations for more than 25 years to help recover Chiricahua leopard frogs (Rana [=Lithobates] chiricahuensis) in Arizona, USA. This federally threatened species faces declines due to habitat loss and degradation, long-term drought, disease, and invasive species. Over 26,000 larvae, froglets, and adults, as well as 26 egg masses produced by adults held at the Phoenix Zoo have been released to the wild, augmenting and/or re-establishing wild populations. Chiricahua leopard frog-occupied sites in Arizona have increased from 38 in 2007, when the species’ recovery plan was published, to a high of 155 in the last five years, as a result of ex situ and in situ conservation efforts. As one of the longest-running programs of its kind in the United States, communication among partners has been key to sustaining it. Recovery strategies and complex decisions are made as a team and we have worked through numerous management challenges together. Though Chiricahua leopard frogs still face significant threats and a long road to recovery, this program serves as a strong example of the positive effects of conservation partnerships for native wildlife.
Collapse
|
11
|
Osman OA, Andersson J, Martin-Sanchez PM, Eiler A. National eDNA-based monitoring of Batrachochytrium dendrobatidis and amphibian species in Norway. METABARCODING AND METAGENOMICS 2022. [DOI: 10.3897/mbmg.6.85199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Freshwaters represent the most threatened environments with regard to biodiversity loss and, therefore, there is a need for national monitoring programs to effectively document species distribution and evaluate potential risks for vulnerable species. The monitoring of species for effective management practices is, however, challenged by insufficient data acquisition when using traditional methods. Here we present the application of environmental DNA (eDNA) metabarcoding of amphibians in combination with quantitative PCR (qPCR) assays for an invasive pathogenic chytrid species (Batrachochytrium dendrobatidis -Bd), a potential threat to endemic and endangered amphibian species. Statistical comparison of amphibian species detection using either traditional or eDNA-based approaches showed weak correspondence. By tracking the distribution of Bd over three years, we concluded that the risk for amphibian extinction is low since Bd was only detected at five sites where multiple amphibians were present over the sampled years. Our results show that eDNA-based detection can be used for simultaneous monitoring of amphibian diversity and the presence of amphibian pathogens at the national level in order to assess potential species extinction risks and establish effective management practices. As such our study represents suggestions for a national monitoring program based on eDNA.
Collapse
|
12
|
Determination of priority areas for amphibian conservation in Guerrero (Mexico), through systematic conservation planning tools. J Nat Conserv 2022. [DOI: 10.1016/j.jnc.2022.126235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
He J, Tang X, Pu P, Zhang T, Niu Z, Meng F, Xi L, Ma M, Wu J, Ma M, Chen Q. Influence of High Temperatures and Heat Wave on Thermal Biology, Locomotor Performance, and Antioxidant System of High-Altitude Frog Nanorana pleskei Endemic to Qinghai-Tibet Plateau. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.763191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Investigating how highland amphibians respond to changes in ambient temperature may be of great significance for their fate prediction and effective conservation in the background of global warming. Here, using field individuals as the control group, we investigated the influence of high temperatures (20.5 and 25.5°C) and heat wave (15–26.6°C) on the thermal preference, critical thermal limits, locomotor performance, oxidative stress, and antioxidant enzyme activities in high-altitude frog Nanorana pleskei (3,490 m) endemic to the Qinghai-Tibet Plateau (QTP). After 2 weeks of acclimation to high temperatures and heat wave, the thermal preference (Tpref), critical thermal maximum (CTmax), and range of tolerable temperature significantly increased, while the critical thermal minimum (CTmin) was significantly decreased. The total time of jump to exhaustion significantly decreased, and burst swimming speed significantly increased in frogs acclimated in the high temperature and heat wave groups compared with the field group. In the high temperature group, the level of H2O2 and lipid peroxide (malondialdehyde, MDA), as well as the activities of glutathione peroxidase (GPX), glutathione reductase (GR), catalase (CAT), superoxide dismutase (SOD), and total antioxidant capacity (T-AOC) significantly increased in the liver or muscle. However, in the heat wave group, the MDA content significantly decreased in the liver, and antioxidants activities decreased in the liver and muscle except for CAT activities that were significantly increased in the liver. These results indicated that N. pleskei could respond to the oxidative stress caused by high temperatures by enhancing the activity of antioxidant enzymes. The heat wave did not appear to cause oxidative damage in N. pleskei, which may be attributed to the fact that they have successfully adapted to the dramatic temperature fluctuations on the QTP.
Collapse
|
14
|
Scheele BC, Hollanders M, Hoffmann EP, Newell DA, Lindenmayer DB, McFadden M, Gilbert DJ, Grogan LF. Conservation translocations for amphibian species threatened by chytrid fungus: A review, conceptual framework, and recommendations. CONSERVATION SCIENCE AND PRACTICE 2021. [DOI: 10.1111/csp2.524] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Ben C. Scheele
- Fenner School of Environment and Society Australian National University Canberra Australian Capital Territory Australia
| | - Matthijs Hollanders
- Faculty of Science and Engineering Southern Cross University Lismore New South Wales Australia
| | - Emily P. Hoffmann
- Fenner School of Environment and Society Australian National University Canberra Australian Capital Territory Australia
- School of Biological Sciences The University of Western Australia Crawley Western Australia Australia
| | - David A. Newell
- Faculty of Science and Engineering Southern Cross University Lismore New South Wales Australia
| | - David B. Lindenmayer
- Fenner School of Environment and Society Australian National University Canberra Australian Capital Territory Australia
| | - Michael McFadden
- Taronga Conservation Society Australia Mosman New South Wales Australia
| | - Deon J. Gilbert
- Wildlife Conservation and Science Zoos Victoria Parkville Victoria Australia
| | - Laura F. Grogan
- Centre for Planetary Health and Food Security, School of Environment and Science Griffith University Southport Queensland Australia
| |
Collapse
|
15
|
Habitat-dependent effects of predatory spiders on prey frogs in a Neotropical wet forest. JOURNAL OF TROPICAL ECOLOGY 2021. [DOI: 10.1017/s0266467421000274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractIn seasonal wet Neotropical forests, many studies have suggested that species-rich terrestrial frog assemblages are regulated bottom-up by the abundance of leaf litter. However, terrestrial frogs are prey to a diverse community of predators, and no studies have tested for top-down effects of predators on this or other anuran assemblages. Here, we used an extensive field dataset to model the relative contribution of food resources, microhabitat resources and predators towards the occupancy and detection of two frog species (Craugastor bransfordii and Oophaga pumilio) at La Selva, Costa Rica. Frog occupancy was most strongly influenced by predatory spiders and secondarily influenced by the abundance of leaf litter. Predators exerted stronger effects on frogs than food resources, and frogs avoided predators more as leaf litter decreased. Detection probability was elevated when predators were present. We found support for bottom-up effects of leaf litter on the terrestrial frog assemblage, but top-down effects by predators exerted stronger effects on frog occupancy and detection. Because predator avoidance varied along a resource gradient, predator and resource effects appear to be dependent, supporting interactions between top-down and bottom-up mechanisms. Climate-driven decreases in leaf litter may drive decreased availability of frog refugia and increased interactions between frogs and predators.
Collapse
|
16
|
Abreu‐Jardim TPF, Jardim L, Ballesteros‐Mejia L, Maciel NM, Collevatti RG. Predicting impacts of global climatic change on genetic and phylogeographical diversity of a Neotropical treefrog. DIVERS DISTRIB 2021. [DOI: 10.1111/ddi.13299] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Tatianne P. F. Abreu‐Jardim
- Laboratório de Genética & Biodiversidade Instituto de Ciências Biológicas Universidade Federal de Goiás (UFG) Goiânia Brazil
- Laboratório de Herpetologia e Comportamento Animal Departamento de Ecologia Instituto de Ciências Biológicas Universidade Federal de Goiás Goiânia Brazil
| | - Lucas Jardim
- Instituto Nacional de Ciência e Tecnologia (INCT) em Evolução e Conservação da Biodiversidade Instituto de Ciências Biológicas Universidade Federal de Goiás (UFG) Goiânia Brazil
| | - Liliana Ballesteros‐Mejia
- Institut de Systématique, Evolution, Biodiversité (ISYEB) UMR 7205 – CNRS MNHN UMPC EPHE Muséum National d'Histoire NaturelleSorbonne Université Paris France
| | - Natan M. Maciel
- Laboratório de Herpetologia e Comportamento Animal Departamento de Ecologia Instituto de Ciências Biológicas Universidade Federal de Goiás Goiânia Brazil
| | - Rosane G. Collevatti
- Laboratório de Genética & Biodiversidade Instituto de Ciências Biológicas Universidade Federal de Goiás (UFG) Goiânia Brazil
| |
Collapse
|
17
|
Higgins K, Guerrel J, Lassiter E, Mooers A, Palen WJ, Ibáñez R. Observations on spindly leg syndrome in a captive population of Andinobates geminisae. Zoo Biol 2021; 40:330-341. [PMID: 33734478 DOI: 10.1002/zoo.21598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 02/23/2021] [Indexed: 11/07/2022]
Abstract
Amphibian health problems of unknown cause limit the success of the growing number of captive breeding programs. Spindly leg syndrome (SLS) is one such disease, where affected individuals with underdeveloped limbs often require euthanization. We experimentally evaluated husbandry-related factors of SLS in a captive population of the critically endangered frog, Andinobates geminisae. SLS has been linked to tadpole nutrition, vitamin B deficiency, water filtration methods, and water quality, but few of these have been experimentally tested. We tested the effects of water filtration method and vitamin supplementation (2017) and the effects of tadpole husbandry protocol intensity (2018) on time to metamorphosis and the occurrence of SLS. We found that vitamin supplementation and reconstituted reverse osmosis filtration of tadpole rearing water significantly reduced SLS prevalence and that reduced tadpole husbandry delayed time to metamorphosis. A fortuitous accident in 2018 resulted in a decrease in the phosphate content of rearing water, which afforded us an additional opportunity to assess the influence of phosphate on calcium sequestration. We found that tadpoles that had more time to sequester calcium for ossification during development had decreased the prevalence of SLS. Taken together, our results suggest that the qualities of the water used to rear tadpoles plays an important role in the development of SLS. Specifically, filtration method, vitamin supplementation, and calcium availability of tadpole rearing water may play important roles. Focused experiments are still needed, but our findings provide important information for amphibian captive rearing programs affected by high SLS prevalence.
Collapse
Affiliation(s)
- Kathleen Higgins
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Jorge Guerrel
- Smithsonian Tropical Research Institute, Panamá, Republic of Panama
| | - Elliot Lassiter
- Smithsonian Tropical Research Institute, Panamá, Republic of Panama
| | - Arne Mooers
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Wendy J Palen
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
- Earth to Ocean Research Group, Simon Fraser University, British Columbia, Canada
| | - Roberto Ibáñez
- Smithsonian Tropical Research Institute, Panamá, Republic of Panama
- Sistema Nacional de Investigación, SENACYT, Panamá, Republic of Panama
| |
Collapse
|
18
|
Watt AM, Marcec-Greaves R, Hinkson KM, Poo S, Roberts B, Pitcher TE. Effects of age on sperm quality metrics in endangered Mississippi gopher frogs (Lithobates sevosus) from captive populations used for controlled propagation and reintroduction efforts. Zoo Biol 2021; 40:218-226. [PMID: 33606315 DOI: 10.1002/zoo.21594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/08/2021] [Indexed: 01/13/2023]
Abstract
A decline in sperm quality with age is a common prediction of senescence-based hypotheses and empirical studies. While widely studied across taxa, there is little known on the effect of ageing on sperm quality in amphibians, especially in captive populations used for controlled propagation and reintroduction efforts. Here, we investigated variation in sperm quality metrics (i.e., motility, concentration, and morphology) in the endangered Mississippi gopher frog (Lithobates sevosus) among males of three age categories using individuals from captive breeding populations housed at three different zoological institutions. Different aged males across the species expectant lifespan (1-9, 1-2, 3-4, and 8-9-year-old subcategories) were chosen in an attempt to identify an optimal breeding age relevant for captive breeding programs. Moreover, we explored and statistically controlled for potential differences in sperm quality which may be attributed to the type of induction hormones and source populations that differed among institutions. Results indicated that males of different ages did not differ in sperm motility or concentration. However, we did find that older males (8-9 years old) had significantly longer sperm than other age categories and younger males (1-2 years old) had significantly more atypical sperm than other age categories. Furthermore, we found no significant differences in any sperm quality metrics between the different induction hormones or source populations used at the different institutions. Within a captive breeding program, this information is especially valuable as our results indicate that males that have only recently sexually matured may not be ready to breed, while older males maintain sperm quality metrics presumably related to fertilization success.
Collapse
Affiliation(s)
- Ashley M Watt
- Department of Integrative Biology, University of Windsor, Windsor, Ontario, Canada
| | - Ruth Marcec-Greaves
- National Amphibian Conservation Center, Detroit Zoological Society, Royal Oak, Michigan, USA
| | - Kristin M Hinkson
- Department of Conservation and Research, Memphis Zoological Society, Memphis, Tennessee, USA
| | - Sinlan Poo
- Department of Conservation and Research, Memphis Zoological Society, Memphis, Tennessee, USA
| | - Beth Roberts
- Department of Conservation and Research, Memphis Zoological Society, Memphis, Tennessee, USA
| | - Trevor E Pitcher
- Department of Integrative Biology, University of Windsor, Windsor, Ontario, Canada.,Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario, Canada
| |
Collapse
|
19
|
Martin H. C, Ibáñez R, Nothias LF, Caraballo-Rodríguez AM, Dorrestein PC, Gutiérrez M. Metabolites from Microbes Isolated from the Skin of the Panamanian Rocket Frog Colostethus panamansis (Anura: Dendrobatidae). Metabolites 2020; 10:E406. [PMID: 33065987 PMCID: PMC7601193 DOI: 10.3390/metabo10100406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 09/28/2020] [Accepted: 10/09/2020] [Indexed: 01/02/2023] Open
Abstract
The Panamanian rocket frog Colostethus panamansis (family Dendrobatidae) has been affected by chytridiomycosis, a deadly disease caused by the fungus Batrachochytrium dendrobatidis (Bd). While there are still uninfected frogs, we set out to isolate microbes from anatomically distinct regions in an effort to create a cultivable resource within Panama for potential drug/agricultural/ecological applications that perhaps could also be used as part of a strategy to protect frogs from infections. To understand if there are specific anatomies that should be explored in future applications of this resource, we mapped skin-associated bacteria of C. panamansis and their metabolite production potential by mass spectrometry on a 3D model. Our results indicate that five bacterial families (Enterobacteriaceae, Comamonadaceae, Aeromonadaceae, Staphylococcaceae and Pseudomonadaceae) dominate the cultivable microbes from the skin of C. panamansis. The combination of microbial classification and molecular analysis in relation to the anti-Bd inhibitory databases reveals the resource has future potential for amphibian conservation.
Collapse
Affiliation(s)
- Christian Martin H.
- Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Clayton, Panama 0843-01103, Panama;
- Department of Biotechnology, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur 522510, India
| | - Roberto Ibáñez
- Smithsonian Tropical Research Institute, Balboa, Ancon, Panama 0843-03092, Panama;
| | - Louis-Félix Nothias
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA; (L.-F.N.); (A.M.C.-R.); (P.C.D.)
| | - Andrés Mauricio Caraballo-Rodríguez
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA; (L.-F.N.); (A.M.C.-R.); (P.C.D.)
| | - Pieter C. Dorrestein
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA; (L.-F.N.); (A.M.C.-R.); (P.C.D.)
| | - Marcelino Gutiérrez
- Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Clayton, Panama 0843-01103, Panama;
| |
Collapse
|
20
|
Roach NS, Urbina-Cardona N, Lacher TE. Land cover drives amphibian diversity across steep elevational gradients in an isolated neotropical mountain range: Implications for community conservation. Glob Ecol Conserv 2020. [DOI: 10.1016/j.gecco.2020.e00968] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
21
|
Pathirana N, Meegaskumbura M, Rajakaruna R. Host resistance and tolerance to parasitism: development-dependent fitness consequences in Common Hourglass Tree Frog (Polypedates cruciger) tadpoles exposed to two larval trematodes. CAN J ZOOL 2019. [DOI: 10.1139/cjz-2018-0126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tolerance and resistance to parasites are defense strategies of host organisms. Here, we tested the development-dependent tolerance and resistance of Polypedates cruciger Blyth, 1852 tadpoles to trematode infection. We exposed the tadpoles at Gosner stages 27, 28–29, and 30–31 to two types of cercariae (furcocercous and pleurolophocercous cercariae of Acanthostomum burminis (Bhalerao, 1926)) under laboratory conditions. To determine tolerance (the ability of a host to limit health effects of a given parasite load), we exposed the tadpoles until all cercariae penetrated the host. As a measure of determining resistance, we exposed tadpoles to cercariae for a limited time and counted the number of cercariae penetrating the tadpoles. The survival of tadpoles exposed at early stages was significantly lower than that of tadpoles exposed at later stages (mixed-effect model, p < 0.05), suggesting an age-dependent tolerance to parasitism. Tadpoles exposed at early stages were also smaller, took longer to metamorphosis, showed lower resistance to parasitism (ANOVA, p < 0.001), and developed axial malformations. In the resistance experiment, fewer parasites penetrated later stage tadpoles than early stage tadpoles. Tadpoles of P. cruciger showed a development-dependent tolerance and resistance to parasitism, resulting in greater survival and fewer malformations when parasitism occurs at late stages.
Collapse
Affiliation(s)
- N.U.K. Pathirana
- Department of Zoology, University of Peradeniya, Peradeniya 20400, Sri Lanka
- Postgraduate Institute of Science, University of Peradeniya, Peradeniya 20400, Sri Lanka
- Freshwater Fish Group and Fish Health Unit, Centre for Sustainable Aquatic Ecosystems, School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia 6150, Australia
| | - M. Meegaskumbura
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi 530004, People’s Republic of China
- Department of Molecular Biology and Biotechnology, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - R.S. Rajakaruna
- Department of Zoology, University of Peradeniya, Peradeniya 20400, Sri Lanka
- Postgraduate Institute of Science, University of Peradeniya, Peradeniya 20400, Sri Lanka
| |
Collapse
|
22
|
Dos Santos MM, Griffiths RA, Jowett T, Rock J, Bishop PJ. A comparison of understanding of the amphibian crisis by zoo visitors across three countries. Zoo Biol 2019; 38:471-480. [PMID: 31602677 DOI: 10.1002/zoo.21516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 05/23/2019] [Accepted: 09/26/2019] [Indexed: 11/08/2022]
Abstract
Despite the global declines in the rate of amphibians, evaluation of public understanding of the crisis has not yet been carried out. We surveyed visitors (n = 1,293) at 15 zoos in Brazil, New Zealand, and the United Kingdom, using a certainty-based assessment method to compare visitor knowledge of the global amphibian crisis. We further analyzed zoo educational material about amphibians to explore its potential to raise awareness through amphibian-focused environmental education. Visitors in the three countries had relatively little understanding of amphibians and the global amphibian crisis. When the degree of confidence in answering the questions (high, medium, and low) is accounted for, correct answers varied between 28% and 39%. This compared to scores of between 58% and 73% when the degree of confidence in responding was not accounted for. However, specific areas of knowledge (e.g., biology, conservation, biogeography, and conceptual ideas) varied significantly across the countries. Visitors had a weaker grasp of biogeographical and conservation issues than general amphibian biology. Zoo visitors in Brazil knew less about amphibian conservation than those in New Zealand or the United Kingdom. There was less amphibian-focused content in educational materials in zoos in Brazil than there was in the United Kingdom. Improving information about the global amphibian crisis may increase support for future conservation actions. Outreach education is one of the most important approaches in any strategic planning for conservation of species. Amphibian-focused environmental education at institutions such as zoos and aquaria can be a crucial intervention to support amphibian conservation worldwide.
Collapse
Affiliation(s)
| | - Richard A Griffiths
- Durrell Institute of Conservation and Ecology, School of Anthropology and Conservation, University of Kent, Canterbury, UK
| | - Tim Jowett
- Department of Mathematics & Statistics, University of Otago, Dunedin, New Zealand
| | - Jennifer Rock
- Center for Science Communication, University of Otago, Dunedin, New Zealand
| | - Phillip J Bishop
- Department of Zoology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
23
|
Monroy-Vilchis O, Heredia-Bobadilla RL, Zarco-González MM, Ávila-Akerberg V, Sunny A. Genetic diversity and structure of two endangered mole salamander species of the Trans-Mexican Volcanic Belt. HERPETOZOA 2019. [DOI: 10.3897/herpetozoa.32.e38023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The most important factor leading to amphibian population declines and extinctions is habitat degradation and destruction. To help prevent further extinctions, studies are needed to make appropriate conservation decisions in small and fragmented populations. The goal of this study was to provide data from the population genetics of two micro-endemic mole salamanders from the Trans-Mexican Volcanic Belt. Nine microsatellite markers were used to study the population genetics of 152 individuals from twoAmbystomaspecies. We sampled 38 individuals in two localities forA. altamiraniandA. rivualre. We found medium to high levels of genetic diversity expressed as heterozygosity in the populations. However, all the populations presented few alleles per locus and genotypes. We found strong genetic structure between populations for each species. Effective population size was small but similar to that of the studies from other mole salamanders with restricted distributions or with recently fragmented habitats. Despite the medium to high levels of genetic diversity expressed as heterozygosity, we found few alleles, evidence of a genetic bottleneck and that the effective population size is small in all populations. Therefore, this study is important to propose better management plans and conservation efforts for these species.
Collapse
|
24
|
Hernández-Martínez LÁ, Romero-Méndez U, González-Barrios JL, García-De la Peña MC, Amézquita-Torres A. Nuevos registros y prevalencia de Batrachochytrium dendrobatidis en anuros de la cuenca Nazas-Aguanaval en la región norte-centro de México. REV MEX BIODIVERS 2019. [DOI: 10.22201/ib.20078706e.2019.90.2934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
25
|
Bates KA, Shelton JMG, Mercier VL, Hopkins KP, Harrison XA, Petrovan SO, Fisher MC. Captivity and Infection by the Fungal Pathogen Batrachochytrium salamandrivorans Perturb the Amphibian Skin Microbiome. Front Microbiol 2019; 10:1834. [PMID: 31507541 PMCID: PMC6716147 DOI: 10.3389/fmicb.2019.01834] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 07/25/2019] [Indexed: 12/13/2022] Open
Abstract
The emerging fungal pathogen, Batrachochytrium salamandrivorans (Bsal) is responsible for the catastrophic decline of European salamanders and poses a threat to amphibians globally. The amphibian skin microbiome can influence disease outcome for several host-pathogen systems, yet little is known of its role in Bsal infection. In addition, many experimental in-vivo amphibian disease studies to date have relied on specimens that have been kept in captivity for long periods without considering the influence of environment on the microbiome and how this may impact the host response to pathogen exposure. We characterized the impact of captivity and exposure to Bsal on the skin bacterial and fungal communities of two co-occurring European newt species, the smooth newt, Lissotriton vulgaris and the great-crested newt, Triturus cristatus. We show that captivity led to significant losses in bacterial and fungal diversity of amphibian skin, which may be indicative of a decline in microbe-mediated protection. We further demonstrate that in both L. vulgaris and T. cristatus, Bsal infection was associated with changes in the composition of skin bacterial communities with possible negative consequences to host health. Our findings advance current understanding of the role of host-associated microbiota in Bsal infection and highlight important considerations for ex-situ amphibian conservation programmes.
Collapse
Affiliation(s)
- Kieran A Bates
- Department of Zoology, University of Oxford, Oxford, United Kingdom.,Department of Infectious Disease Epidemiology, MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, United Kingdom.,Institute of Zoology, Zoological Society of London, London, United Kingdom
| | - Jennifer M G Shelton
- Department of Infectious Disease Epidemiology, MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, United Kingdom
| | - Victoria L Mercier
- Department of Infectious Disease Epidemiology, MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, United Kingdom
| | - Kevin P Hopkins
- Institute of Zoology, Zoological Society of London, London, United Kingdom
| | - Xavier A Harrison
- Institute of Zoology, Zoological Society of London, London, United Kingdom.,College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Silviu O Petrovan
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom.,Froglife, Peterborough, United Kingdom
| | - Matthew C Fisher
- Department of Infectious Disease Epidemiology, MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, United Kingdom
| |
Collapse
|
26
|
Frynta D, Peléšková Š, Rádlová S, Janovcová M, Landová E. Human evaluation of amphibian species: a comparison of disgust and beauty. Naturwissenschaften 2019; 106:41. [PMID: 31263997 DOI: 10.1007/s00114-019-1635-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/10/2019] [Accepted: 06/14/2019] [Indexed: 12/19/2022]
Abstract
Animals can evoke a wide range of emotions helping us to choose a quick and appropriate reaction towards them: approach or avoidance in general. This work has focused on disgust evoked by amphibians in humans as well as perceived beauty. Due to the high morphological variability of recent amphibian taxa, we examined humans' cognitive categorisation of 101 amphibian photos and the effect of stimuli characteristics on disgust evaluation or beauty perception of individual groups/species. We also explored how respondents' characteristics, e.g. gender, age and disgust sensitivity (DS-R) influence the disgust and beauty evaluation of picture stimuli on a 7-point Likert scale. The scores of disgust and beauty evaluation were strongly negatively correlated, representing the opposite ends of a single axis, further referred to as the index of preference. The most preferred amphibians belonged to anurans, whereas the least preferred ones were mostly worm-like, legless and small-eyed caecilians. Additional analyses of morphologically diverse anurans showed that species with a round body shape, short forelegs, small eyes, warts, pink and grey colouration, or dark and dull colouration were perceived as disgusting or ugly. The effect of gender and age were only marginal; however, people with higher disgust sensitivity rated amphibians as more disgusting and less beautiful, which might support the hypothesis of a possible disgust involvement in animal fears and phobias. This topic has implications not only for the nature conservation decisions of globally endangered amphibians but also for understanding the evolution of disgust and its generalisation to harmless animals.
Collapse
Affiliation(s)
- Daniel Frynta
- Department of Zoology, Faculty of Science, Charles University in Prague, Viničná 7, 128 43, Prague, Czech Republic.,National Institute of Mental Health, Topolová 748, 250 67, Klecany, Czech Republic
| | - Šárka Peléšková
- Department of Zoology, Faculty of Science, Charles University in Prague, Viničná 7, 128 43, Prague, Czech Republic.,National Institute of Mental Health, Topolová 748, 250 67, Klecany, Czech Republic
| | - Silvie Rádlová
- National Institute of Mental Health, Topolová 748, 250 67, Klecany, Czech Republic
| | - Markéta Janovcová
- Department of Zoology, Faculty of Science, Charles University in Prague, Viničná 7, 128 43, Prague, Czech Republic.,National Institute of Mental Health, Topolová 748, 250 67, Klecany, Czech Republic
| | - Eva Landová
- Department of Zoology, Faculty of Science, Charles University in Prague, Viničná 7, 128 43, Prague, Czech Republic. .,National Institute of Mental Health, Topolová 748, 250 67, Klecany, Czech Republic.
| |
Collapse
|
27
|
Campbell LJ, Garner TWJ, Hopkins K, Griffiths AGF, Harrison XA. Outbreaks of an Emerging Viral Disease Covary With Differences in the Composition of the Skin Microbiome of a Wild United Kingdom Amphibian. Front Microbiol 2019; 10:1245. [PMID: 31281291 PMCID: PMC6597677 DOI: 10.3389/fmicb.2019.01245] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 05/20/2019] [Indexed: 12/19/2022] Open
Abstract
There is growing appreciation of the important role of commensal microbes in ensuring the normal function and health of their hosts, including determining how hosts respond to pathogens. A range of infectious diseases are threatening amphibians worldwide, and evidence is accumulating that the host-associated bacteria that comprise the microbiome may be key in mediating interactions between amphibian hosts and infectious pathogens. We used 16S rRNA amplicon sequencing to quantify the skin microbial community structure of over 200 individual wild adult European common frogs (Rana temporaria), from ten populations with contrasting history of the lethal disease ranavirosis, caused by emerging viral pathogens belonging to the genus Ranavirus. All populations had similar species richness irrespective of disease history, but populations that have experienced historical outbreaks of ranavirosis have a distinct skin microbiome structure (beta diversity) when compared to sites where no outbreaks of the disease have occurred. At the individual level, neither age, body length, nor sex of the frog could predict the structure of the skin microbiota. Our data potentially support the hypothesis that variation among individuals in skin microbiome structure drive differences in susceptibility to infection and lethal outbreaks of disease. More generally, our results suggest that population-level processes are more important for driving differences in microbiome structure than variation among individuals within populations in key life history traits such as age and body size.
Collapse
Affiliation(s)
- Lewis J Campbell
- Environment and Sustainability Institute, University of Exeter, Penryn, United Kingdom.,Institute of Zoology, Zoological Society of London, London, United Kingdom
| | - Trenton W J Garner
- Institute of Zoology, Zoological Society of London, London, United Kingdom
| | - Kevin Hopkins
- Institute of Zoology, Zoological Society of London, London, United Kingdom
| | | | - Xavier A Harrison
- Institute of Zoology, Zoological Society of London, London, United Kingdom.,College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
28
|
Pinelli C, Santillo A, Chieffi Baccari G, Falvo S, Di Fiore MM. Effects of chemical pollutants on reproductive and developmental processes in Italian amphibians. Mol Reprod Dev 2019; 86:1324-1332. [DOI: 10.1002/mrd.23165] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/03/2019] [Accepted: 04/18/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Claudia Pinelli
- Dipartimento di Scienze e Tecnologie AmbientaliBiologiche e Farmaceutiche, Università degli studi della Campania "Luigi Vanvitelli" Caserta Italy
| | - Alessandra Santillo
- Dipartimento di Scienze e Tecnologie AmbientaliBiologiche e Farmaceutiche, Università degli studi della Campania "Luigi Vanvitelli" Caserta Italy
| | - Gabriella Chieffi Baccari
- Dipartimento di Scienze e Tecnologie AmbientaliBiologiche e Farmaceutiche, Università degli studi della Campania "Luigi Vanvitelli" Caserta Italy
| | - Sara Falvo
- Dipartimento di Scienze e Tecnologie AmbientaliBiologiche e Farmaceutiche, Università degli studi della Campania "Luigi Vanvitelli" Caserta Italy
| | - Maria Maddalena Di Fiore
- Dipartimento di Scienze e Tecnologie AmbientaliBiologiche e Farmaceutiche, Università degli studi della Campania "Luigi Vanvitelli" Caserta Italy
| |
Collapse
|
29
|
Willoughby JR, Christie MR. Long-term demographic and genetic effects of releasing captive-born individuals into the wild. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2019; 33:377-388. [PMID: 30168872 DOI: 10.1111/cobi.13217] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 08/20/2018] [Accepted: 08/28/2018] [Indexed: 05/20/2023]
Abstract
Because of continued habitat destruction and species extirpations, the need to use captive breeding for conservation purposes has been increasing steadily. However, the long-term demographic and genetic effects associated with releasing captive-born individuals with varied life histories into the wild remain largely unknown. To address this question, we developed forward-time, agent-based models for 4 species with long-running captive-breeding and release programs: coho salmon (Oncorhynchus kisutch), golden lion tamarin (Leontopithecus rosalia), western toad (Anaxyrus boreas), and Whooping Crane (Grus americana). We measured the effects of supplementation by comparing population size and neutral genetic diversity in supplemented populations to the same characteristics in unaltered populations 100 years after supplementation ended. Releasing even slightly less fit captive-born individuals to supplement wild populations typically resulted in reductions in population sizes and genetic diversity over the long term when the fitness reductions were heritable (i.e., due to genetic adaptation to captivity) and populations continued to be regulated by density-dependent mechanisms over time. Negative effects for species with longer life spans and lower rates of population replacement were smaller than for species with shorter life spans and higher rates of population replacement. Programs that released captive-born individuals over fewer years or that avoided breeding individuals with captive ancestry had smaller reductions in population size and genetic diversity over the long term. Relying on selection in the wild to remove individuals with reduced fitness mitigated some negative demographic effects, but at a substantial cost to neutral genetic diversity. Our results suggest that conservation-focused captive-breeding programs should take measures to prevent even small amounts of genetic adaptation to captivity, quantitatively determine the minimum number of captive-born individuals to release each year, and fully account for the interactions among genetic adaptation to captivity, population regulation, and life-history variation.
Collapse
Affiliation(s)
- Janna R Willoughby
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, IN 47907-2054, U.S.A
| | - Mark R Christie
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, IN 47907-2054, U.S.A
- Department of Forestry and Natural Resources, Purdue University, 715 W. State Street, West Lafayette, IN 47907-2054, U.S.A
| |
Collapse
|
30
|
Sunny A, Duarte-deJesus L, Aguilera-Hernández A, Ramírez-Corona F, Suárez-Atilano M, Percino-Daniel R, Manjarrez J, Monroy-Vilchis O, González-Fernández A. Genetic diversity and demography of the critically endangered Roberts' false brook salamander (Pseudoeurycea robertsi) in Central Mexico. Genetica 2019; 147:149-164. [PMID: 30879155 DOI: 10.1007/s10709-019-00058-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 03/11/2019] [Indexed: 11/28/2022]
Abstract
Land use changes are threatening the maintenance of biodiversity. Genetic diversity is one of the main indicators of biological diversity and is highly important as it shapes the capability of populations to respond to environmental changes. We studied eleven populations of Pseudoeurycea robertsi, a micro-endemic and critically endangered species from the Nevado de Toluca Volcano, a mountain that is part of the Trans-Mexican Volcanic Belt, Mexico. We sequenced the mitochondrial cytochrome b gene from 71 individuals and genotyped 9 microsatellites from 150 individuals. Our results based on the cytochrome b showed two divergent lineages, with moderate levels of genetic diversity and a recently historical demographic expansion. Microsatellite-based results indicated low levels of heterozygosity for all populations and few alleles per locus, as compared with other mole salamander species. We identified two genetically differentiated subpopulations with a significant level of genetic structure. These results provide fundamental data for the development of management plans and conservation efforts for this critically endangered species.
Collapse
Affiliation(s)
- Armando Sunny
- Centro de Investigación en Ciencias Biológicas Aplicadas, Universidad Autónoma del Estado de México, Instituto Literario #100, Colonia Centro, 50000, Toluca, Mexico State, Mexico.
| | - Luis Duarte-deJesus
- Centro de Investigación en Ciencias Biológicas Aplicadas, Universidad Autónoma del Estado de México, Instituto Literario #100, Colonia Centro, 50000, Toluca, Mexico State, Mexico
| | - Arlene Aguilera-Hernández
- Centro de Investigación en Ciencias Biológicas Aplicadas, Universidad Autónoma del Estado de México, Instituto Literario #100, Colonia Centro, 50000, Toluca, Mexico State, Mexico
| | - Fabiola Ramírez-Corona
- Taller de Sistemática y Biogeografía, Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Mexico City, Mexico
| | - Marco Suárez-Atilano
- Departamento de Ecología de la Biodiversidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Mexico City, Mexico
| | - Ruth Percino-Daniel
- Departamento de Ecología de la Biodiversidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Mexico City, Mexico
| | - Javier Manjarrez
- Laboratorio de Biología Evolutiva, Facultad de Ciencias, Universidad Autónoma del Estado de México, Instituto Literario #100, Colonia Centro, 50000, Toluca, Mexico State, Mexico
| | - Octavio Monroy-Vilchis
- Centro de Investigación en Ciencias Biológicas Aplicadas, Universidad Autónoma del Estado de México, Instituto Literario #100, Colonia Centro, 50000, Toluca, Mexico State, Mexico
| | - Andrea González-Fernández
- Laboratorio de Biología Evolutiva, Facultad de Ciencias, Universidad Autónoma del Estado de México, Instituto Literario #100, Colonia Centro, 50000, Toluca, Mexico State, Mexico
| |
Collapse
|
31
|
Hansen NA, Scheele BC, Driscoll DA, Lindenmayer DB. Amphibians in agricultural landscapes: the habitat value of crop areas, linear plantings and remnant woodland patches. Anim Conserv 2018. [DOI: 10.1111/acv.12437] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- N. A. Hansen
- Fenner School of Environmental and Society The Australian National University Acton ACT Australia
| | - B. C. Scheele
- Fenner School of Environmental and Society The Australian National University Acton ACT Australia
| | - D. A. Driscoll
- School of Life and Environmental Sciences Deakin University Melbourne Vic Australia
| | - D. B. Lindenmayer
- Fenner School of Environmental and Society The Australian National University Acton ACT Australia
- Sustainable Farms, Fenner School of Environmental and Society The Australian National University Acton ACT Australia
| |
Collapse
|
32
|
CAUSES OF MORTALITY IN CAPTIVE PANAMANIAN GOLDEN FROGS (ATELOPUS ZETEKI) AT THE MARYLAND ZOO IN BALTIMORE, 2001–2013. J Zoo Wildl Med 2018; 49:324-334. [DOI: 10.1638/2016-0250.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
33
|
Fisher MC, Ghosh P, Shelton JMG, Bates K, Brookes L, Wierzbicki C, Rosa GM, Farrer RA, Aanensen DM, Alvarado-Rybak M, Bataille A, Berger L, Böll S, Bosch J, Clare FC, A Courtois E, Crottini A, Cunningham AA, Doherty-Bone TM, Gebresenbet F, Gower DJ, Höglund J, James TY, Jenkinson TS, Kosch TA, Lambertini C, Laurila A, Lin CF, Loyau A, Martel A, Meurling S, Miaud C, Minting P, Ndriantsoa S, O'Hanlon SJ, Pasmans F, Rakotonanahary T, Rabemananjara FCE, Ribeiro LP, Schmeller DS, Schmidt BR, Skerratt L, Smith F, Soto-Azat C, Tessa G, Toledo LF, Valenzuela-Sánchez A, Verster R, Vörös J, Waldman B, Webb RJ, Weldon C, Wombwell E, Zamudio KR, Longcore JE, Garner TWJ. Development and worldwide use of non-lethal, and minimal population-level impact, protocols for the isolation of amphibian chytrid fungi. Sci Rep 2018; 8:7772. [PMID: 29773857 PMCID: PMC5958081 DOI: 10.1038/s41598-018-24472-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 03/23/2018] [Indexed: 11/09/2022] Open
Abstract
Parasitic chytrid fungi have emerged as a significant threat to amphibian species worldwide, necessitating the development of techniques to isolate these pathogens into culture for research purposes. However, early methods of isolating chytrids from their hosts relied on killing amphibians. We modified a pre-existing protocol for isolating chytrids from infected animals to use toe clips and biopsies from toe webbing rather than euthanizing hosts, and distributed the protocol to researchers as part of the BiodivERsA project RACE; here called the RML protocol. In tandem, we developed a lethal procedure for isolating chytrids from tadpole mouthparts. Reviewing a database of use a decade after their inception, we find that these methods have been applied across 5 continents, 23 countries and in 62 amphibian species. Isolation of chytrids by the non-lethal RML protocol occured in 18% of attempts with 207 fungal isolates and three species of chytrid being recovered. Isolation of chytrids from tadpoles occured in 43% of attempts with 334 fungal isolates of one species (Batrachochytrium dendrobatidis) being recovered. Together, these methods have resulted in a significant reduction and refinement of our use of threatened amphibian species and have improved our ability to work with this group of emerging pathogens.
Collapse
Affiliation(s)
- Matthew C Fisher
- Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine (St Mary's campus), Imperial College London, London, W2 1PG, UK.
| | - Pria Ghosh
- Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine (St Mary's campus), Imperial College London, London, W2 1PG, UK.,Unit for Environmental Sciences and Management, Private Bag x6001, North-West University, Potchefstroom, 2520, South Africa
| | - Jennifer M G Shelton
- Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine (St Mary's campus), Imperial College London, London, W2 1PG, UK
| | - Kieran Bates
- Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine (St Mary's campus), Imperial College London, London, W2 1PG, UK
| | - Lola Brookes
- Institute of Zoology, Regent's Park, London, NW1 4RY, UK
| | - Claudia Wierzbicki
- Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine (St Mary's campus), Imperial College London, London, W2 1PG, UK
| | - Gonçalo M Rosa
- Institute of Zoology, Regent's Park, London, NW1 4RY, UK.,Centre for Ecology, Evolution and Environmental Changes (CE3C), Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
| | - Rhys A Farrer
- Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine (St Mary's campus), Imperial College London, London, W2 1PG, UK
| | - David M Aanensen
- Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine (St Mary's campus), Imperial College London, London, W2 1PG, UK.,Centre for Genomic Pathogen Surveillance, Wellcome Genome Campus, Cambridgeshire, UK
| | - Mario Alvarado-Rybak
- Centro de Investigación para la Sustentabilidad, Facultad de Ecología y Recursos Naturales, Universidad Andres Bello, Republica 440, Santiago, Chile
| | - Arnaud Bataille
- Laboratory of Behavioral and Population Ecology, School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea.,CIRAD, UMR ASTRE, F-34398 Montpellier, France; ASTRE, Univ Montpellier, CIRAD, INRA, Montpellier, France
| | - Lee Berger
- One Health Research Group, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, 4811, Australia
| | - Susanne Böll
- Agency for Population Ecology and Nature Conservancy, Gerbrunn, Germany
| | - Jaime Bosch
- Museo Nacional de Ciencias Naturales, CSIC c/Jose Gutierrez Abascal 2, 28006, Madrid, Spain
| | - Frances C Clare
- Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine (St Mary's campus), Imperial College London, London, W2 1PG, UK
| | - Elodie A Courtois
- Laboratoire Ecologie, évolution, interactions des systèmes amazoniens (LEEISA), Université de Guyane, CNRS, IFREMER, 97300, Cayenne, French Guiana
| | - Angelica Crottini
- CIBIO - Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Universidade do Porto, 4485-661, Vairão, Portugal
| | | | | | - Fikirte Gebresenbet
- Department of Integrative Biology, Oklahoma State University, 113 Life Sciences West, Stillwater, OK, 74078, USA
| | - David J Gower
- Life Sciences, The Natural History Museum, London, SW7 5BD, UK
| | - Jacob Höglund
- Department of Ecology and Genetics, EBC, Uppsala University, Norbyv. 18D, SE-75236, Uppsala, Sweden
| | - Timothy Y James
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Thomas S Jenkinson
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Tiffany A Kosch
- Laboratory of Behavioral and Population Ecology, School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea.,One Health Research Group, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, 4811, Australia
| | - Carolina Lambertini
- Laboratório de História Natural de Anfíbios Brasileiros (LaHNAB), Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, 13083-862, Brazil
| | - Anssi Laurila
- Department of Ecology and Genetics, EBC, Uppsala University, Norbyv. 18D, SE-75236, Uppsala, Sweden
| | - Chun-Fu Lin
- Zoology Division, Endemic Species Research Institute, 1 Ming-shen East Road, Jiji, Nantou, 552, Taiwan
| | - Adeline Loyau
- Helmholtz Centre for Environmental Research - UFZ, Department of Conservation Biology, Permoserstrasse 15, 04318, Leipzig, Germany.,ECOLAB, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - An Martel
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium
| | - Sara Meurling
- Department of Ecology and Genetics, EBC, Uppsala University, Norbyv. 18D, SE-75236, Uppsala, Sweden
| | - Claude Miaud
- PSL Research University, CEFE UMR 5175, CNRS, Université de Montpellier, Université Paul-Valéry Montpellier, EPHE, Biogéographie et Ecologie des vertébrés, Montpellier, France
| | - Pete Minting
- Amphibian and Reptile Conservation (ARC) Trust, 655A Christchurch Road, Boscombe, Bournemouth, Dorset, BH1 4AP, UK
| | - Serge Ndriantsoa
- Durrell Wildlife Conservation Trust, Madagascar Programme, Antananarivo, Madagascar
| | - Simon J O'Hanlon
- Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine (St Mary's campus), Imperial College London, London, W2 1PG, UK.,Institute of Zoology, Regent's Park, London, NW1 4RY, UK
| | - Frank Pasmans
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium
| | | | - Falitiana C E Rabemananjara
- Durrell Wildlife Conservation Trust, Madagascar Programme, Antananarivo, Madagascar.,IUCN SSC Amphibian Specialist Group-Madagascar, 101, Antananarivo, Madagascar
| | - Luisa P Ribeiro
- Laboratório de História Natural de Anfíbios Brasileiros (LaHNAB), Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, 13083-862, Brazil
| | - Dirk S Schmeller
- Helmholtz Centre for Environmental Research - UFZ, Department of Conservation Biology, Permoserstrasse 15, 04318, Leipzig, Germany.,ECOLAB, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Benedikt R Schmidt
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.,Info Fauna Karch, Université de Neuchâtel, Bellevaux 51, UniMail Bâtiment 6, 2000, Neuchâtel, Switzerland
| | - Lee Skerratt
- One Health Research Group, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, 4811, Australia
| | - Freya Smith
- National Wildlife Management Centre, APHA, Woodchester Park, Gloucestershire, GL10 3UJ, UK
| | - Claudio Soto-Azat
- Centro de Investigación para la Sustentabilidad, Facultad de Ecología y Recursos Naturales, Universidad Andres Bello, Republica 440, Santiago, Chile
| | - Giulia Tessa
- Non-profit Association Zirichiltaggi - Sardinia Wildlife Conservation, Strada Vicinale Filigheddu 62/C, I-07100, Sassari, Italy
| | - Luís Felipe Toledo
- Laboratório de História Natural de Anfíbios Brasileiros (LaHNAB), Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, 13083-862, Brazil
| | - Andrés Valenzuela-Sánchez
- Centro de Investigación para la Sustentabilidad, Facultad de Ecología y Recursos Naturales, Universidad Andres Bello, Republica 440, Santiago, Chile.,ONG Ranita de Darwin, Nataniel Cox 152, Santiago, Chile
| | - Ruhan Verster
- Unit for Environmental Sciences and Management, Private Bag x6001, North-West University, Potchefstroom, 2520, South Africa
| | - Judit Vörös
- Collection of Amphibians and Reptiles, Department of Zoology, Hungarian Natural History Museum, Budapest, Baross u, 13., 1088, Hungary
| | - Bruce Waldman
- Laboratory of Behavioral and Population Ecology, School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Rebecca J Webb
- One Health Research Group, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, 4811, Australia
| | - Che Weldon
- Unit for Environmental Sciences and Management, Private Bag x6001, North-West University, Potchefstroom, 2520, South Africa
| | - Emma Wombwell
- Institute of Zoology, Regent's Park, London, NW1 4RY, UK
| | - Kelly R Zamudio
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, 14853, USA
| | - Joyce E Longcore
- School of Biology and Ecology, University of Maine, Orono, Maine, 04469, USA
| | - Trenton W J Garner
- Institute of Zoology, Regent's Park, London, NW1 4RY, UK.,Non-profit Association Zirichiltaggi - Sardinia Wildlife Conservation, Strada Vicinale Filigheddu 62/C, I-07100, Sassari, Italy.,Unit for Environmental Sciences and Management, Private Bag x6001, North-West University, Potchefstroom, 2520, South Africa
| |
Collapse
|
34
|
The interplay of past diversification and evolutionary isolation with present imperilment across the amphibian tree of life. Nat Ecol Evol 2018; 2:850-858. [DOI: 10.1038/s41559-018-0515-5] [Citation(s) in RCA: 301] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 02/21/2018] [Indexed: 02/02/2023]
|
35
|
Affiliation(s)
- Karen R. Lips
- University of Maryland, Department of Biology, College Park, Maryland, United States of America
- * E-mail:
| |
Collapse
|
36
|
Leary CJ, Ralicki HF, Laurencio D, Crocker-Buta S, Malone JH. Assessing the links among environmental contaminants, endocrinology, and parasites to understand amphibian declines in montane regions of Costa Rica. PLoS One 2018; 13:e0191183. [PMID: 29324824 PMCID: PMC5764372 DOI: 10.1371/journal.pone.0191183] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 12/31/2017] [Indexed: 11/24/2022] Open
Abstract
Amphibians inhabiting montane riparian zones in the Neotropics are particularly vulnerable to decline, but the reasons are poorly understood. Because environmental contaminants, endocrine disruption, and pathogens often figure prominently in amphibian declines it is imperative that we understand how these factors are potentially interrelated to affect montane populations. One possibility is that increased precipitation associated with global warming promotes the deposition of contaminants in montane regions. Increased exposure to contaminants, in turn, potentially elicits chronic elevations in circulating stress hormones that could contribute to montane population declines by compromising resistance to pathogens and/or production of sex steroids regulating reproduction. Here, we test this hypothesis by examining contaminant levels, stress and sex steroid levels, and nematode abundances in male drab treefrogs, Smilisca sordida, from lowland and montane populations in Costa Rica. We found no evidence that montane populations were more likely to possess contaminants (i.e., organochlorine, organophosphate and carbamate pesticides or benzidine and chlorophenoxy herbicides) than lowland populations. We also found no evidence of elevational differences in circulating levels of the stress hormone corticosterone, estradiol or progesterone. However, montane populations possessed lower androgen levels, hosted more nematode species, and had higher nematode abundances than lowland populations. Although these results suggested that nematodes contributed to lower androgens in montane populations, we were unable to detect a significant inverse relationship between nematode abundance and androgen level. Our results suggest that montane populations of this species are not at greater risk of exposure to contaminants or chronic stress, but implicate nematodes and compromised sex steroid levels as potential threats to montane populations.
Collapse
Affiliation(s)
- Christopher J. Leary
- University of Mississippi, Department of Biology, University, Mississippi, United States of America
| | - Hannah F. Ralicki
- University of Connecticut, Department of Ecology & Evolutionary Biology, Storrs, Connecticut, United States of America
| | - David Laurencio
- Auburn University Museum of Natural History, Department of Biological Sciences, Auburn, Alabama, United States of America
| | - Sarah Crocker-Buta
- University of Mississippi, Department of Biology, University, Mississippi, United States of America
| | - John H. Malone
- University of Connecticut, Institute of Systems Genomics and Department of Molecular and Cell Biology, Storrs, Connecticut, United States of America
| |
Collapse
|
37
|
Kueneman JG, Woodhams DC, Harris R, Archer HM, Knight R, McKenzie VJ. Probiotic treatment restores protection against lethal fungal infection lost during amphibian captivity. Proc Biol Sci 2017; 283:rspb.2016.1553. [PMID: 27655769 DOI: 10.1098/rspb.2016.1553] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 08/25/2016] [Indexed: 01/04/2023] Open
Abstract
Host-associated microbiomes perform many beneficial functions including resisting pathogens and training the immune system. Here, we show that amphibians developing in captivity lose substantial skin bacterial diversity, primarily due to reduced ongoing input from environmental sources. We combined studies of wild and captive amphibians with a database of over 1 000 strains that allows us to examine antifungal function of the skin microbiome. We tracked skin bacterial communities of 62 endangered boreal toads, Anaxyrus boreas, across 18 time points, four probiotic treatments, and two exposures to the lethal fungal pathogen Batrachochytrium dendrobatidis (Bd) in captivity, and compared these to 33 samples collected from wild populations at the same life stage. As the amphibians in captivity lost the Bd-inhibitory bacteria through time, the proportion of individuals exposed to Bd that became infected rose from 33% to 100% in subsequent exposures. Inoculations of the Bd-inhibitory probiotic Janthinobacterium lividum resulted in a 40% increase in survival during the second Bd challenge, indicating that the effect of microbiome depletion was reversible by restoring Bd-inhibitory bacteria. Taken together, this study highlights the functional role of ongoing environmental inputs of skin-associated bacteria in mitigating a devastating amphibian pathogen, and that long-term captivity decreases this defensive function.
Collapse
Affiliation(s)
- Jordan G Kueneman
- Department of Ecology and Evolutionary Biology, University of Colorado, Ramaley N122, UCB 334, Boulder, CO 80309, USA
| | - Douglas C Woodhams
- Department of Ecology and Evolutionary Biology, University of Colorado, Ramaley N122, UCB 334, Boulder, CO 80309, USA
| | - Reid Harris
- Department of Biology, James Madison University, MSC 7801, Harrisonburg, VI 22807, USA
| | - Holly M Archer
- Department of Ecology and Evolutionary Biology, University of Colorado, Ramaley N122, UCB 334, Boulder, CO 80309, USA
| | - Rob Knight
- BioFrontiers Institute, University of Colorado, 3415 Colorado Avenue, UCB 596, Boulder, CO 80309, USA
| | - Valerie J McKenzie
- Department of Ecology and Evolutionary Biology, University of Colorado, Ramaley N122, UCB 334, Boulder, CO 80309, USA
| |
Collapse
|
38
|
Greenberg DA, Palen WJ, Mooers AØ. Amphibian species traits, evolutionary history and environment predict Batrachochytrium dendrobatidis infection patterns, but not extinction risk. Evol Appl 2017; 10:1130-1145. [PMID: 29151866 PMCID: PMC5680631 DOI: 10.1111/eva.12520] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 07/18/2017] [Indexed: 12/17/2022] Open
Abstract
The fungal pathogen Batrachochytrium dendrobatidis (B. dendrobatidis) has emerged as a major agent of amphibian extinction, requiring conservation intervention for many susceptible species. Identifying susceptible species is challenging, but many aspects of species biology are predicted to influence the evolution of host resistance, tolerance, or avoidance strategies towards disease. In turn, we may expect species exhibiting these distinct strategies to differ in their ability to survive epizootic disease outbreaks. Here, we test for phylogenetic and trait-based patterns of B. dendrobatidis infection risk and infection intensity among 302 amphibian species by compiling a global data set of B. dendrobatidis infection surveys across 95 sites. We then use best-fit models that associate traits, taxonomy and environment with B. dendrobatidis infection risk and intensity to predict host disease mitigation strategies (tolerance, resistance, avoidance) for 122 Neotropical amphibian species that experienced epizootic B. dendrobatidis outbreaks, and noted species persistence or extinction from these events. Aspects of amphibian species life history, habitat use and climatic niche were consistently linked to variation in B. dendrobatidis infection patterns across sites around the world. However, predicted B. dendrobatidis infection risk and intensity based on site environment and species traits did not reveal a consistent pattern between the predicted host disease mitigation strategy and extinction outcome. This suggests that either tolerant or resistant species may have no advantage in ameliorating disease during epizootic events, or that other factors drive the persistence of amphibian populations during chytridiomycosis outbreaks. These results suggest that using a trait-based approach may allow us to identify species with resistance or tolerance to endemic B. dendrobatidis infections, but that this approach may be insufficient to ultimately identify species at risk of extinction from epizootics.
Collapse
Affiliation(s)
- Dan A. Greenberg
- Department of Biological Sciences and Crawford Laboratory of Evolutionary StudiesSimon Fraser UniversityBurnabyBCCanada
- Department of Biological Sciences and Earth to Ocean Research GroupSimon Fraser UniversityBurnabyBCCanada
| | - Wendy J. Palen
- Department of Biological Sciences and Earth to Ocean Research GroupSimon Fraser UniversityBurnabyBCCanada
| | - Arne Ø. Mooers
- Department of Biological Sciences and Crawford Laboratory of Evolutionary StudiesSimon Fraser UniversityBurnabyBCCanada
| |
Collapse
|
39
|
Ariel E, Freeman AB, Elliott E, Wirth W, Mashkour N, Scott J. An unusual mortality event in Johnstone River snapping turtles Elseya irwini (Johnstone) in Far North Queensland, Australia. Aust Vet J 2017; 95:355-361. [PMID: 28948624 DOI: 10.1111/avj.12627] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 10/21/2016] [Accepted: 10/27/2016] [Indexed: 11/29/2022]
Abstract
BACKGROUND An unusual mortality event in Johnstone River snapping turtles (Elseya irwini) in Far North Queensland, Australia, occurred during the summer months of December 2014 and January 2015. We report the data collected during the mortality event, including counts of sick and dead animals, clinical appearance and one necropsy. OUTBREAK DESCRIPTION Moribund animals appeared lethargic with variable degrees of necrotising dermatitis. Postmortem investigation of one freshly dead animal revealed bacterial and fungal involvement in the skin lesions as well as multifocal fibrinous hepatitis and splenitis and necrotising enteritis with vascular thrombosis. Aeromonas hydrophila was isolated from liver, spleen and skin lesions. All samples tested negative for ranavirus, and water and soil testing for environmental contaminants were negative. All affected E. irwini either died or were euthanased and no other species of animals in the river were affected. CONCLUSION Aeromonas hydrophila is ubiquitous in the freshwater environment and although it caused septicaemia in the one individual that was submitted for laboratory diagnosis, the primary aetiology of the outbreak may not have been identified.
Collapse
Affiliation(s)
- E Ariel
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland 4811, Australia
| | - A B Freeman
- Threatened Species Unit, Queensland Department of Environment and Heritage Protection, Atherton, Queensland, Australia
| | - E Elliott
- AusPhage, Rasmussen, Queensland, Australia
| | - W Wirth
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland 4811, Australia
| | - N Mashkour
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland 4811, Australia
| | - J Scott
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland 4811, Australia
| |
Collapse
|
40
|
Bernard RF, Willcox EV, Parise KL, Foster JT, McCracken GF. White-nose syndrome fungus, Pseudogymnoascus destructans, on bats captured emerging from caves during winter in the southeastern United States. BMC ZOOL 2017. [DOI: 10.1186/s40850-017-0021-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
41
|
Flechas SV, Blasco-Zúñiga A, Merino-Viteri A, Ramírez-Castañeda V, Rivera M, Amézquita A. The effect of captivity on the skin microbial symbionts in three Atelopus species from the lowlands of Colombia and Ecuador. PeerJ 2017; 5:e3594. [PMID: 28785515 PMCID: PMC5541920 DOI: 10.7717/peerj.3594] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 06/29/2017] [Indexed: 12/19/2022] Open
Abstract
Many amphibian species are at risk of extinction in their natural habitats due to the presence of the fungal pathogen Batrachochytrium dendrobatidis (Bd). For the most highly endangered species, captive assurance colonies have been established as an emergency measure to avoid extinction. Experimental research has suggested that symbiotic microorganisms in the skin of amphibians play a key role against Bd. While previous studies have addressed the effects of captivity on the cutaneous bacterial community, it remains poorly studied whether and how captive conditions affect the proportion of beneficial bacteria or their anti-Bd performance on amphibian hosts. In this study we sampled three amphibian species of the highly threatened genus, Atelopus, that remain in the wild but are also part of ex situ breeding programs in Colombia and Ecuador. Our goals were to (1) estimate the diversity of culturable bacterial assemblages in these three species of Atelopus, (2) describe the effect of captivity on the composition of skin microbiota, and (3) examine how captivity affects the bacterial ability to inhibit Bd growth. Using challenge assays we tested each bacterial isolate against Bd, and through sequencing of the 16S rRNA gene, we identified species from thirteen genera of bacteria that inhibited Bd growth. Surprisingly, we did not detect a reduction in skin bacteria diversity in captive frogs. Moreover, we found that frogs in captivity still harbor bacteria with anti-Bd activity. Although the scope of our study is limited to a few species and to the culturable portion of the bacterial community, our results indicate that captive programs do not necessarily change bacterial communities of the toad skins in a way that impedes the control of Bd in case of an eventual reintroduction.
Collapse
Affiliation(s)
- Sandra V Flechas
- Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
| | - Ailin Blasco-Zúñiga
- Laboratorio de Investigación en Citogenética y Biomoléculas de Anfibios (LICBA), Centro de Investigación para la Salud en América Latina (CISeAL), Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Andrés Merino-Viteri
- Museo de Zoología (QCAZ), Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | | | - Miryan Rivera
- Laboratorio de Investigación en Citogenética y Biomoléculas de Anfibios (LICBA), Centro de Investigación para la Salud en América Latina (CISeAL), Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Adolfo Amézquita
- Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
| |
Collapse
|
42
|
Tapia EE, Coloma LA, Pazmiño-Otamendi G, Peñafiel N. Rediscovery of the nearly extinct longnose harlequin frog Atelopus longirostris (Bufonidae) in Junín, Imbabura, Ecuador. NEOTROPICAL BIODIVERSITY 2017. [DOI: 10.1080/23766808.2017.1327000] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Elicio Eladio Tapia
- Centro Jambatu de Investigación y Conservación de Anfibios, Fundación Otonga, Quito, Ecuador
| | - Luis Aurelio Coloma
- Centro Jambatu de Investigación y Conservación de Anfibios, Fundación Otonga, Quito, Ecuador
- Universidad Regional Amazónica IKIAM, Tena, Ecuador
| | | | - Nicolás Peñafiel
- Laboratorio de Biología Molecular, Centro de Investigación de la Biodiversidad y Cambio Climático, Universidad Tecnológica Indoamérica, Machala y Sabanilla, Quito, Ecuador
| |
Collapse
|
43
|
Ilg C, Oertli B. Effectiveness of amphibians as biodiversity surrogates in pond conservation. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2017; 31:437-445. [PMID: 27503782 DOI: 10.1111/cobi.12802] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 07/18/2016] [Indexed: 06/06/2023]
Abstract
Amphibian decline has led to worldwide conservation efforts, including the identification and designation of sites for their protection. These sites could also play an important role in the conservation of other freshwater taxa. In 89 ponds in Switzerland, we assessed the effectiveness of amphibians as a surrogate for 4 taxonomic groups that occur in the same freshwater ecosystems as amphibians: dragonflies, aquatic beetles, aquatic gastropods, and aquatic plants. The ponds were all of high value for amphibian conservation. Cross-taxon correlations were tested for species richness and conservation value, and Mantel tests were used to investigate community congruence. Species richness, conservation value, and community composition of amphibians were weakly congruent with these measures for the other taxonomic groups. Paired comparisons for the 5 groups considered showed that for each metric, amphibians had the lowest degree of congruence. Our results imply that site designation for amphibian conservation will not necessarily provide protection for freshwater biodiversity as a whole. To provide adequate protection for freshwater species, we recommend other taxonomic groups be considered in addition to amphibians in the prioritization and site designation process.
Collapse
Affiliation(s)
- Christiane Ilg
- hepia Geneva Member of the HES-SO University of Applied Sciences and Arts Western Switzerland, 150 route de Presinge, 1254, Jussy-Geneva, Switzerland
| | - Beat Oertli
- hepia Geneva Member of the HES-SO University of Applied Sciences and Arts Western Switzerland, 150 route de Presinge, 1254, Jussy-Geneva, Switzerland
| |
Collapse
|
44
|
Della Togna G, Trudeau VL, Gratwicke B, Evans M, Augustine L, Chia H, Bronikowski EJ, Murphy JB, Comizzoli P. Effects of hormonal stimulation on the concentration and quality of excreted spermatozoa in the critically endangered Panamanian golden frog (Atelopus zeteki). Theriogenology 2017; 91:27-35. [DOI: 10.1016/j.theriogenology.2016.12.033] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 12/26/2016] [Accepted: 12/26/2016] [Indexed: 11/29/2022]
|
45
|
Gervasi SS, Stephens PR, Hua J, Searle CL, Xie GY, Urbina J, Olson DH, Bancroft BA, Weis V, Hammond JI, Relyea RA, Blaustein AR. Linking Ecology and Epidemiology to Understand Predictors of Multi-Host Responses to an Emerging Pathogen, the Amphibian Chytrid Fungus. PLoS One 2017; 12:e0167882. [PMID: 28095428 PMCID: PMC5240985 DOI: 10.1371/journal.pone.0167882] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 11/22/2016] [Indexed: 12/12/2022] Open
Abstract
Variation in host responses to pathogens can have cascading effects on populations and communities when some individuals or groups of individuals display disproportionate vulnerability to infection or differ in their competence to transmit infection. The fungal pathogen, Batrachochytrium dendrobatidis (Bd) has been detected in almost 700 different amphibian species and is implicated in numerous global amphibian population declines. Identifying key hosts in the amphibian-Bd system–those who are at greatest risk or who pose the greatest risk for others–is challenging due in part to many extrinsic environmental factors driving spatiotemporal Bd distribution and context-dependent host responses to Bd in the wild. One way to improve predictive risk models and generate testable mechanistic hypotheses about vulnerability is to complement what we know about the spatial epidemiology of Bd with data collected through comparative experimental studies. We used standardized pathogen challenges to quantify amphibian survival and infection trajectories across 20 post-metamorphic North American species raised from eggs. We then incorporated trait-based models to investigate the predictive power of phylogenetic history, habitat use, and ecological and life history traits in explaining responses to Bd. True frogs (Ranidae) displayed the lowest infection intensities, whereas toads (Bufonidae) generally displayed the greatest levels of mortality after Bd exposure. Affiliation with ephemeral aquatic habitat and breadth of habitat use were strong predictors of vulnerability to and intensity of infection and several other traits including body size, lifespan, age at sexual maturity, and geographic range also appeared in top models explaining host responses to Bd. Several of the species examined are highly understudied with respect to Bd such that this study represents the first experimental susceptibility data. Combining insights gained from experimental studies with observations of landscape-level disease prevalence may help explain current and predict future pathogen dynamics in the Bd system.
Collapse
Affiliation(s)
- Stephanie S. Gervasi
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| | - Patrick R. Stephens
- Odum School of Ecology, University of Georgia, Athens, Georgia, United States of America
| | - Jessica Hua
- Biological Sciences Department, Binghamton University, Binghamton, New York, United States of America
| | - Catherine L. Searle
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Gisselle Yang Xie
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, United States of America
| | - Jenny Urbina
- Environmental Sciences Graduate Program, Oregon State University, Corvallis, Oregon, United States of America
| | - Deanna H. Olson
- United States Forest Service, Pacific Northwest Research Station, Corvallis, Oregon, United States of America
| | - Betsy A. Bancroft
- Biology Department, Gonzaga University, Spokane, Washington, United States of America
| | - Virginia Weis
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, United States of America
| | - John I. Hammond
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Rick A. Relyea
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York, United States of America
| | - Andrew R. Blaustein
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, United States of America
| |
Collapse
|
46
|
van Grunsven RH, Creemers R, Joosten K, Donners M, Veenendaal E. Behaviour of migrating toads under artificial lights differs from other phases of their life cycle. AMPHIBIA-REPTILIA 2017. [DOI: 10.1163/15685381-00003081] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
During annual spring migration in Western Europe many amphibians are killed by traffic when they cross roads moving to reproduction sites. Especially in urban settings these roads are often equipped with street lighting. The response of amphibians to this light during migration is however poorly known. Street lighting may attract migrating amphibians increasing the risk of being struck by traffic. Using experimental illumination we tested whether light affected the migration and if adjustment of the spectral composition could mitigate effects. Barriers used to catch toads and help them cross roads safely were divided in 25 meter long sections and these were illuminated with white, green or red light or kept dark. The number of toads caught in each section was counted. Common toads avoided sections of roads that were illuminated with white or green light but not red light. Street light thus affects migrating toads but not as expected and red light with low levels of short wavelength can be used to mitigate effects.
Collapse
Affiliation(s)
- Roy H.A. van Grunsven
- PEN, Wageningen University, Wageningen, the Netherlands
- Netherlands Institute of Ecology, Wageningen, the Netherlands
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Raymond Creemers
- RAVON Reptile, Amphibian & Fish Conservation Netherlands, Nijmegen, the Netherlands
| | - Kris Joosten
- RAVON Reptile, Amphibian & Fish Conservation Netherlands, Nijmegen, the Netherlands
| | | | | |
Collapse
|
47
|
Méndez M, Obando P, Pinnock-Branford M, Ruepert C, Castillo LE, Mena F, Alvarado G. Acute, chronic and biochemical effects of chlorothalonil on Agalychnis callidryas, Isthmohyla pseudopuma and Smilisca baudinii tadpoles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:21238-21248. [PMID: 27495920 DOI: 10.1007/s11356-016-7301-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 07/20/2016] [Indexed: 06/06/2023]
Abstract
Declines of amphibian populations have been a worldwide issue of concern for the scientific community during the last several decades. Efforts are being carried out to elucidate factors related to this phenomenon. Among these factors, pathogens, climate change, and environmental pollution have been suggested as possible causes. Regarding environmental pollutants, some pesticides are persistent in the environment and capable of being transported long distances from their release point. In Costa Rica, some pesticides have been detected in protected areas, at locations where amphibian populations have declined. Information about toxicity of pesticides used in Costa Rican agriculture to amphibians is still scarce, particularly for native species.Toxicity tests with chlorothalonil, a fungicide intensively used in Costa Rica, were carried out exposing tadpoles of three Costa Rican native species: Agalychnis callidryas, Isthmohyla pseudopuma, and Smilisca baudinii in order to evaluate acute and chronic toxicity as well as the biomarkers cholinesterase activity (ChE), glutathione-S transferase activity (GST), and lipid peroxidation (LPO).96-h LC50: 26.6 (18.9-35.8) μg/L to A. callidryas, 25.5 (21.3-29.7) μg/L to I pseudopuma and 32.3 (26.3-39.7) μg/L to S. baudinii were determined for chlorothalonil. These three species of anurans are among the most sensitive to chlorothalonil according to the literature. Besides, GST was induced in S. baudinii after exposure to sub-lethal concentrations of chlorothalonil while evisceration occurred in S. baudinii and A. callidryas tadpoles exposed to lethal concentrations of the fungicide. Chronic exposure to sub-lethal concentrations accelerated development in S. baudinii and caused lesions in tail of S. baudinii and I. pseudopuma tadpoles. Our results demonstrate that chlorothalonil is highly toxic to native amphibian species and that low concentrations can cause biochemical responses related to phase II of biotransformation and effects on development.
Collapse
Affiliation(s)
- Michael Méndez
- Central American Institute for Studies on Toxic Substances/Instituto Regional de Estudios en Sustancias Toxicas (IRET), Universidad Nacional, Heredia, Costa Rica.
| | - Priscilla Obando
- Central American Institute for Studies on Toxic Substances/Instituto Regional de Estudios en Sustancias Toxicas (IRET), Universidad Nacional, Heredia, Costa Rica
| | - Margaret Pinnock-Branford
- Central American Institute for Studies on Toxic Substances/Instituto Regional de Estudios en Sustancias Toxicas (IRET), Universidad Nacional, Heredia, Costa Rica
| | - Clemens Ruepert
- Central American Institute for Studies on Toxic Substances/Instituto Regional de Estudios en Sustancias Toxicas (IRET), Universidad Nacional, Heredia, Costa Rica
| | - Luisa E Castillo
- Central American Institute for Studies on Toxic Substances/Instituto Regional de Estudios en Sustancias Toxicas (IRET), Universidad Nacional, Heredia, Costa Rica
| | - Freylan Mena
- Central American Institute for Studies on Toxic Substances/Instituto Regional de Estudios en Sustancias Toxicas (IRET), Universidad Nacional, Heredia, Costa Rica.
| | - Gilbert Alvarado
- School of Biology, Universidad de Costa Rica, San Pedro, Costa Rica
- Centro de Investigación en Estructuras Microscópicas (CIEMIC), Universidad de Costa Rica, San Pedro, Costa Rica
- Department of Pathology, Laboratory of Comparative Wildlife Pathology (LAPCOM), School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
48
|
Projecting the Global Distribution of the Emerging Amphibian Fungal Pathogen, Batrachochytrium dendrobatidis, Based on IPCC Climate Futures. PLoS One 2016; 11:e0160746. [PMID: 27513565 PMCID: PMC4981458 DOI: 10.1371/journal.pone.0160746] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 07/25/2016] [Indexed: 11/19/2022] Open
Abstract
Projected changes in climate conditions are emerging as significant risk factors to numerous species, affecting habitat conditions and community interactions. Projections suggest species range shifts in response to climate change modifying environmental suitability and is supported by observational evidence. Both pathogens and their hosts can shift ranges with climate change. We consider how climate change may influence the distribution of the emerging infectious amphibian chytrid fungus, Batrachochytrium dendrobatidis (Bd), a pathogen associated with worldwide amphibian population losses. Using an expanded global Bd database and a novel modeling approach, we examined a broad set of climate metrics to model the Bd-climate niche globally and regionally, then project how climate change may influence Bd distributions. Previous research showed that Bd distribution is dependent on climatic variables, in particular temperature. We trained a machine-learning model (random forest) with the most comprehensive global compilation of Bd sampling records (~5,000 site-level records, mid-2014 summary), including 13 climatic variables. We projected future Bd environmental suitability under IPCC scenarios. The learning model was trained with combined worldwide data (non-region specific) and also separately per region (region-specific). One goal of our study was to estimate of how Bd spatial risks may change under climate change based on the best available data. Our models supported differences in Bd-climate relationships among geographic regions. We projected that Bd ranges will shift into higher latitudes and altitudes due to increased environmental suitability in those regions under predicted climate change. Specifically, our model showed a broad expansion of areas environmentally suitable for establishment of Bd on amphibian hosts in the temperate zones of the Northern Hemisphere. Our projections are useful for the development of monitoring designs in these areas, especially for sensitive species and those vulnerable to multiple threats.
Collapse
|
49
|
Whitfield SM, Lips KR, Donnelly MA. Amphibian Decline and Conservation in Central America. COPEIA 2016. [DOI: 10.1643/ch-15-300] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
50
|
Quantitative evidence for the effects of multiple drivers on continental-scale amphibian declines. Sci Rep 2016; 6:25625. [PMID: 27212145 PMCID: PMC4876446 DOI: 10.1038/srep25625] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 04/20/2016] [Indexed: 11/20/2022] Open
Abstract
Since amphibian declines were first proposed as a global phenomenon over a quarter century ago, the conservation community has made little progress in halting or reversing these trends. The early search for a “smoking gun” was replaced with the expectation that declines are caused by multiple drivers. While field observations and experiments have identified factors leading to increased local extinction risk, evidence for effects of these drivers is lacking at large spatial scales. Here, we use observations of 389 time-series of 83 species and complexes from 61 study areas across North America to test the effects of 4 of the major hypothesized drivers of declines. While we find that local amphibian populations are being lost from metapopulations at an average rate of 3.79% per year, these declines are not related to any particular threat at the continental scale; likewise the effect of each stressor is variable at regional scales. This result - that exposure to threats varies spatially, and populations vary in their response - provides little generality in the development of conservation strategies. Greater emphasis on local solutions to this globally shared phenomenon is needed.
Collapse
|