1
|
Qu Y, Liang W, Yu M, Wang C, Luo M, Zhong L, Li Z, Wang F. MYO1F in neutrophils is required for the response to immune checkpoint blockade therapy. J Exp Med 2025; 222:e20241957. [PMID: 40202509 PMCID: PMC11980683 DOI: 10.1084/jem.20241957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/29/2025] [Accepted: 02/21/2025] [Indexed: 04/10/2025] Open
Abstract
Tumor-associated neutrophils (TANs) represent a significant barrier to the effectiveness of immune checkpoint blockade (ICB) therapy. A comprehensive understanding of TANs' regulatory mechanisms is therefore essential for predicting ICB efficacy and improving immunotherapy strategies. Our study reveals that MYO1F is selectively downregulated in neutrophils within both human cancers and murine tumor models, showing a negative correlation with ICB response. Mechanistically, MYO1F normally inhibits neutrophil immunosuppression and proliferation by restraining STAT3 activity. However, during tumorigenesis, tumor-derived TGF-β1 disrupts the binding of SPI1 to intron 8 of Myo1f via DNA methylation, thereby suppressing Myo1f transcription. The resultant decrease in MYO1F reprograms neutrophils into an immunosuppressive state through the STAT3-dependent signaling pathways. This immunosuppressive state further contributes to tumor microenvironment (TME) remodeling by inducing CTL exhaustion. These findings establish MYO1F as a critical regulator within TANs, highlighting its significant role in modulating ICB therapy efficacy.
Collapse
Affiliation(s)
- Yingying Qu
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Children’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Microbiota and Immunological Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenhua Liang
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Children’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingzhu Yu
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Children’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenhui Wang
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Min Luo
- Institute of Pediatrics of Children’s Hospital of Fudan University, The Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Lin Zhong
- Department of Liver Surgery and Organ Transplantation Center, Shenzhen Third People’s Hospital, Second Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhigang Li
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Wang
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Children’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Asatsuma T, Moreira ML, Lee HJ, Wanrooy BJ, Skinner OP, Li S, Rea I, Harkin T, Asad S, Williams CG, Beattie L, Haque A. Myosin 1f and Proline-rich 13 are transcriptionally upregulated yet functionally redundant in CD4+ T cells during blood-stage Plasmodium infection. PLoS One 2025; 20:e0320375. [PMID: 40132035 PMCID: PMC11936294 DOI: 10.1371/journal.pone.0320375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 02/17/2025] [Indexed: 03/27/2025] Open
Abstract
Plasmodium-specific CD4+ T cells differentiate into effector and memory subsets during experimental malaria, via mechanisms that remain incompletely characterised. By mining scRNA-seq data of CD4+ T cells during Plasmodium chabaudi chabaudi AS infection in mice, we identified two genes previously uncharacterised in T helper cells, long-tailed unconventional myosin 1f (Myo1f) and proline-rich13/taxanes-resistance 1 (Prr13/Txr1), which were upregulated during effector and memory differentiation. Myo1f is reported to regulate motility and granule exocytosis in myeloid and γδ T cells. Prr13/Txr1 is reported to transcriptionally regulate sensitivity to anti-cancer drugs. To test for cell-intrinsic gene function, we generated Plasmodium-specific TCR transgenic, PbTII cells harbouring CD4-promoter driven Cre recombinase and target genes with loxP-flanked essential exons. We validated our approach for the transcription factor Maf, formally demonstrating here that cMaf is essential for T follicular helper (Tfh) cell differentiation in experimental malaria. Next, having generated conditional knockout lines for Myo1f and Prr13, we observed that deficiency in Myo1f or Prr13 had no impact on either clonal expansion, Th1/Tfh differentiation or transit to memory. Additionally, despite continued expression during re-infection, Myo1f was unnecessary for Th1 recall in vivo. Thus, while cMaf is critical for Tfh differentiation in experimental malaria, Myo1f and Prr13, although transcriptionally upregulated, are unnecessary for effector or memory CD4+ T cell responses.
Collapse
Affiliation(s)
- Takahiro Asatsuma
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Marcela L. Moreira
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Hyun J. Lee
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Brooke J. Wanrooy
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Oliver P. Skinner
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Shihan Li
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Ivana Rea
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Taidhgin Harkin
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Saba Asad
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Cameron G. Williams
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Lynette Beattie
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Ashraful Haque
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| |
Collapse
|
3
|
Cui Z, Wang H, Feng X, Wu C, Yi M, He R, Pan T, Gao R, Feng L, Zeng B, Huang G, Wang Y, Du Y, Zhang CJ, Xiao X, Wang C. MYO1F regulates T-cell activation and glycolytic metabolism by promoting the acetylation of GAPDH. Cell Mol Immunol 2025; 22:176-190. [PMID: 39668163 PMCID: PMC11782582 DOI: 10.1038/s41423-024-01247-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/27/2024] [Indexed: 12/14/2024] Open
Abstract
Proper cellular metabolism in T cells is critical for a productive immune response. However, when dysregulated by intrinsic or extrinsic metabolic factors, T cells may contribute to a wide spectrum of diseases, such as cancers and autoimmune diseases. However, the metabolic regulation of T cells remains incompletely understood. Here, we show that MYO1F is required for human and mouse T-cell activation after TCR stimulation and that T-cell-specific Myo1f knockout mice exhibit an increased tumor burden and attenuated EAE severity due to impaired T-cell activation in vivo. Mechanistically, after TCR stimulation, MYO1F is phosphorylated by LCK at tyrosines 607 and 634, which is critical for glyceraldehyde-3-phosphate dehydrogenase (GAPDH) acetylation at Lys84, 86 and 227 mediated by α-TAT1, which is an acetyltransferase, and these processes are important for its activation, cellular glycolysis and thus the effector function of T cells. Importantly, we show that a fusion protein of VAV1-MYO1F, a recurrent peripheral T-cell lymphoma (PTCL)-associated oncogenic protein, promotes hyperacetylation of GAPDH and its activation, which leads to aberrant glycolysis and T-cell proliferation, and that inhibition of the activity of GAPDH significantly limits T-cell activation and proliferation and extends the survival of hVAV1-MYO1F knock-in mice. Moreover, hyperacetylation of GAPDH was confirmed in human PTCL patient samples containing the VAV1-MYO1F gene fusion. Overall, this study revealed not only the mechanisms by which MYO1F regulates T-cell metabolism and VAV1-MYO1F fusion-induced PTCL but also promising therapeutic targets for the treatment of PTCL.
Collapse
Affiliation(s)
- Zhihui Cui
- Key Laboratory of Molecular Biophysics of the Ministry of Education, National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074; Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Heping Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074; Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiong Feng
- Key Laboratory of Molecular Biophysics of the Ministry of Education, National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074; Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Chuyu Wu
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
- Sichuan Medical Laboratory Clinical Medical Research Center, Sichuan Provincial People's Hospital, Chengdu, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Ming Yi
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
- Sichuan Medical Laboratory Clinical Medical Research Center, Sichuan Provincial People's Hospital, Chengdu, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Ruirui He
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
- Sichuan Medical Laboratory Clinical Medical Research Center, Sichuan Provincial People's Hospital, Chengdu, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Ting Pan
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Ru Gao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074; Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Lingyun Feng
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
- Sichuan Medical Laboratory Clinical Medical Research Center, Sichuan Provincial People's Hospital, Chengdu, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Bo Zeng
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
- Sichuan Medical Laboratory Clinical Medical Research Center, Sichuan Provincial People's Hospital, Chengdu, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Guoling Huang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yuan Wang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yanyun Du
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
- Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China.
- Sichuan Medical Laboratory Clinical Medical Research Center, Sichuan Provincial People's Hospital, Chengdu, China.
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
| | - Cun-Jin Zhang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| | - Xue Xiao
- Department of Pathology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| | - Chenhui Wang
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
- Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China.
- Sichuan Medical Laboratory Clinical Medical Research Center, Sichuan Provincial People's Hospital, Chengdu, China.
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
| |
Collapse
|
4
|
Wang H, Cui Z, Sun W, Yi M, Cheng Y, Zhang Y, Du Y, Pan T, Gao R, Feng L, Zeng B, Huang G, Li Y, Wang Y, Zhang CJ, He R, Wang C. MYO1F positions cGAS on the plasma membrane to ensure full and functional signaling. Mol Cell 2025; 85:150-165.e7. [PMID: 39694035 DOI: 10.1016/j.molcel.2024.11.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/24/2024] [Accepted: 11/19/2024] [Indexed: 12/20/2024]
Abstract
Cyclic guanosine monophosphate (GMP)-adenosine monophosphate (AMP) synthase (cGAS) detects viral or endogenous DNA, activating the innate immune response to infections and autoimmune diseases. Upon binding to double-stranded DNA, cGAS synthesizes 2'3' cGMP-AMP, which triggers type I interferon production. Besides its presence in the cytosol and nucleus, cGAS is found at the plasma membrane, although its significance remains unclear. Here, we report that cGAS associates with myosin 1F (MYO1F) at the plasma membrane of human and mouse macrophages. During viral infection, phosphorylation of MYO1F by spleen-associated tyrosine kinase (SYK) facilitates the recruitment of lysine acetyltransferase 2A (KAT2A), which acetylates cGAS at lysine residues 421, 292, and 131, essential for its activation. Moreover, membrane-localized cGAS is crucial for signaling activation and type I interferon production triggered by virus-cell fusion due to Mn2+ release from organelles. Our results highlight the importance of MYO1F-mediated cGAS localization for its full activation in response to viral infection.
Collapse
Affiliation(s)
- Heping Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, China; The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 611731 Chengdu, China
| | - Zhihui Cui
- Key Laboratory of Molecular Biophysics of the Ministry of Education, National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, China; The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 611731 Chengdu, China
| | - Wanwei Sun
- Key Laboratory of Molecular Biophysics of the Ministry of Education, National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, China; The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 611731 Chengdu, China
| | - Ming Yi
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 611731 Chengdu, China; Sichuan Medical Laboratory Clinical Medical Research Center, Sichuan Provincial People's Hospital, 611731 Chengdu, China; Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China; School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Yuheng Cheng
- Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yunpeng Zhang
- Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yanyun Du
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 611731 Chengdu, China; Sichuan Medical Laboratory Clinical Medical Research Center, Sichuan Provincial People's Hospital, 611731 Chengdu, China; Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China; School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Ting Pan
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Ru Gao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, China; The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 611731 Chengdu, China
| | - Lingyun Feng
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 611731 Chengdu, China; Sichuan Medical Laboratory Clinical Medical Research Center, Sichuan Provincial People's Hospital, 611731 Chengdu, China; Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China; School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Bo Zeng
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 611731 Chengdu, China; Sichuan Medical Laboratory Clinical Medical Research Center, Sichuan Provincial People's Hospital, 611731 Chengdu, China; Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China; School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Guoling Huang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Yangyang Li
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 611731 Chengdu, China; Sichuan Medical Laboratory Clinical Medical Research Center, Sichuan Provincial People's Hospital, 611731 Chengdu, China; Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China; School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Yuan Wang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Cun-Jin Zhang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China; Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 610072 Chengdu, China
| | - Ruirui He
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 611731 Chengdu, China; Sichuan Medical Laboratory Clinical Medical Research Center, Sichuan Provincial People's Hospital, 611731 Chengdu, China; Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China; School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China.
| | - Chenhui Wang
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 611731 Chengdu, China; Sichuan Medical Laboratory Clinical Medical Research Center, Sichuan Provincial People's Hospital, 611731 Chengdu, China; Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China; School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China.
| |
Collapse
|
5
|
He Y, Wang Y, Wang X, Deng S, Wang D, Huang Q, Lyu G. Unveiling the molecular landscape of PCOS: identifying hub genes and causal relationships through bioinformatics and Mendelian randomization. Front Endocrinol (Lausanne) 2024; 15:1431200. [PMID: 39735641 PMCID: PMC11671271 DOI: 10.3389/fendo.2024.1431200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 11/20/2024] [Indexed: 12/31/2024] Open
Abstract
Background Polycystic ovary syndrome (PCOS) is a complex endocrine disorder with various contributing factors. Understanding the molecular mechanisms underlying PCOS is essential for developing effective treatments. This study aimed to identify hub genes and investigate potential molecular mechanisms associated with PCOS through a combination of bioinformatics analysis and Mendelian randomization (MR). Methods This study employed bioinformatics analysis in conjunction with MR methods using publicly available databases to identify hub genes. We employed complementary MR methods, including inverse-variance weighted (IVW), to determine the causal relationship between the hub genes and PCOS. Sensitivity analyses were performed to ensure results reliability. Enrichment analysis and immune infiltration analysis were further conducted to assess the role and mechanisms of hub genes in the development of PCOS. Additionally, we validated hub gene expression in both an animal model and serum samples from PCOS patients using qRT-PCR. Results IVW analysis revealed significant associations between 10 hub genes and the risk of PCOS: CD93 [P= 0.004; OR 95%CI= 1.150 (1.046, 1.264)], CYBB [P= 0.013; OR 95%CI= 1.650 (1.113,2.447)], DOCK8 [P= 0.048; OR 95%CI= 1.223 (1.002,1.494)], IRF1 [P= 0.036; OR 95%CI= 1.343 (1.020,1.769)], MBOAT1 [P= 0.033; OR 95%CI= 1.140 (1.011,1.285)], MYO1F [P= 0.012; OR 95%CI= 1.325 (1.065,1.649)], NLRP1 [P= 0.020; OR 95%CI= 1.143 (1.021,1.280)], NOD2 [P= 0.002; OR 95%CI= 1.139 (1.049,1.237)], PIK3R1 [P= 0.040; OR 95%CI= 1.241 (1.010,1.526)], PTER [P= 0.015; OR 95%CI= 0.923 (0.866,0.984)]. No heterogeneity and pleiotropy were observed. Hub genes mainly enriched in positive regulation of cytokine production and TNF signaling pathway, and exhibited positive or negative correlations with different immune cells in individuals with PCOS. qRT-PCR validation in both the rat model and patient serum samples confirmed hub gene expression trends consistent with our combined analysis results. Conclusions Our bioinformatics combined with MR analysis revealed that CD93, CYBB, DOCK8, IRF1, MBOAT1, MYO1F, NLRP1, NOD2, PIK3R1 increase the risk of PCOS, while PTER decreases the risk of PCOS. This discovery has implications for clinical decision-making in terms of disease diagnosis, prognosis, treatment strategies, and opens up novel avenues for drug development.
Collapse
Affiliation(s)
- Yifang He
- Department of Ultrasound, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Yanli Wang
- Department of Ultrasound, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Xiali Wang
- Department of Ultrasound, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- Departments of Medical Imaging, Quanzhou Medical College, Quanzhou, China
| | - Shuangping Deng
- Department of Ultrasound, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Dandan Wang
- Department of Ultrasound, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Qingqing Huang
- Department of Ultrasound, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Guorong Lyu
- Department of Ultrasound, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| |
Collapse
|
6
|
Liu W, Yang H, Xu Q, Lee J, Sun J, Xue S, Yang X, Sun X, Che C. Role of MYO1F in neutrophil and macrophage recruitment and pro-inflammatory cytokine production in Aspergillus fumigatus keratitis. Int Immunopharmacol 2024; 142:113094. [PMID: 39276460 DOI: 10.1016/j.intimp.2024.113094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/21/2024] [Accepted: 09/03/2024] [Indexed: 09/17/2024]
Abstract
PURPOSE Myosin 1f (Myo1f), an unconventional long-tailed class Ⅰ myosin, plays significant roles in immune cell motility and innate antifungal immunity. This study was aimed to assess the expression and role of Myo1f in Aspergillus fumigatus (AF) keratitis. METHODS Myo1f expression in the corneas of mice afflicted with AF keratitis and in AF keratitis-related cells was assessed using protein mass spectrometry, quantitative real-time polymerase chain reaction (qRT-PCR), western blotting, and immunofluorescence. Myo1f expression following pre-treatment with inhibitors of dendritic cell-associated C-type lectin-1 (Dectin-1), Toll-like receptor 4 (TLR-4), and lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) was also examined. In AF keratitis mouse models, Myo1f small interfering RNA (siRNA) was administered via subconjunctival injection to observe disease progression, inflammatory cell recruitment, and protein production using slit lamp examination, immunofluorescence, hematoxylin-eosin (HE) staining, and western blotting. RESULTS Myo1f expression was upregulated in both AF keratitis mouse models and AF keratitis-related cells. Dectin-1, TLR-4, and LOX-1 were found to be essential for the production of Myo1f in response to the infection with AF. In mice with AF keratitis, knockdown of Myo1f reduced disease severity, decreased the recruitment of neutrophils alongside macrophages to inflammatory areas, suppressed the myeloid differentiation factor 88 (MyD88)/ nuclear factor-kappaB (NF-κB) signaling pathway, and decreased the production of interleukin (IL)-1β, tumor necrosis factor (TNF)-α, along with IL-6. Additionally, Myo1f was associated with apoptosis and pyroptosis in mice with AF keratitis. CONCLUSIONS These findings demonstrated that Myo1f contributed to the recruitment of neutrophils and macrophages, the production of pro-inflammatory cytokines, and was associated with apoptosis and pyroptosis during AF keratitis.
Collapse
Affiliation(s)
- Wenting Liu
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hua Yang
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qiang Xu
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jieun Lee
- Department of Ophthalmology, School of Medicine, Pusan National University, Yangsan, Korea
| | - Jintao Sun
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shasha Xue
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xuejiao Yang
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaoyan Sun
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chengye Che
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
7
|
Akula S, Alvarado-Vazquez A, Haide Mendez Enriquez E, Bal G, Franke K, Wernersson S, Hallgren J, Pejler G, Babina M, Hellman L. Characterization of Freshly Isolated Human Peripheral Blood B Cells, Monocytes, CD4+ and CD8+ T Cells, and Skin Mast Cells by Quantitative Transcriptomics. Int J Mol Sci 2024; 25:13050. [PMID: 39684762 DOI: 10.3390/ijms252313050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 11/25/2024] [Accepted: 12/01/2024] [Indexed: 12/18/2024] Open
Abstract
Quantitative transcriptomics offers a new way to obtain a detailed picture of freshly isolated cells. By direct isolation, the cells are unaffected by in vitro culture, and the isolation at cold temperatures maintains the cells relatively unaltered in phenotype by avoiding activation through receptor cross-linking or plastic adherence. Simultaneous analysis of several cell types provides the opportunity to obtain detailed pictures of transcriptomic differences between them. Here, we present such an analysis focusing on four human blood cell populations and compare those to isolated human skin mast cells. Pure CD19+ peripheral blood B cells, CD14+ monocytes, and CD4+ and CD8+ T cells were obtained by fluorescence-activated cell sorting, and KIT+ human connective tissue mast cells (MCs) were purified by MACS sorting from healthy skin. Detailed information concerning expression levels of the different granule proteases, protease inhibitors, Fc receptors, other receptors, transcription factors, cell signaling components, cytoskeletal proteins, and many other protein families relevant to the functions of these cells were obtained and comprehensively discussed. The MC granule proteases were found exclusively in the MC samples, and the T-cell granzymes in the T cells, of which several were present in both CD4+ and CD8+ T cells. High levels of CD4 were also observed in MCs and monocytes. We found a large variation between the different cell populations in the expression of Fc receptors, as well as for lipid mediators, proteoglycan synthesis enzymes, cytokines, cytokine receptors, and transcription factors. This detailed quantitative comparative analysis of more than 780 proteins of importance for the function of these populations can now serve as a good reference material for research into how these entities shape the role of these cells in immunity and tissue homeostasis.
Collapse
Affiliation(s)
- Srinivas Akula
- Department of Cell and Molecular Biology, Uppsala University, The Biomedical Center, Box 596, SE-751 24 Uppsala, Sweden
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, Box 7023, SE-75007 Uppsala, Sweden
| | - Abigail Alvarado-Vazquez
- Department of Medical Biochemistry and Microbiology, The Biomedical Center, Box 582, SE-75123 Uppsala, Sweden
| | - Erika Haide Mendez Enriquez
- Department of Medical Biochemistry and Microbiology, The Biomedical Center, Box 582, SE-75123 Uppsala, Sweden
| | - Gürkan Bal
- Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Kristin Franke
- Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Sara Wernersson
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, Box 7023, SE-75007 Uppsala, Sweden
| | - Jenny Hallgren
- Department of Medical Biochemistry and Microbiology, The Biomedical Center, Box 582, SE-75123 Uppsala, Sweden
| | - Gunnar Pejler
- Department of Medical Biochemistry and Microbiology, The Biomedical Center, Box 582, SE-75123 Uppsala, Sweden
| | - Magda Babina
- Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Lars Hellman
- Department of Cell and Molecular Biology, Uppsala University, The Biomedical Center, Box 596, SE-751 24 Uppsala, Sweden
| |
Collapse
|
8
|
Liu PJ, Sayeeda K, Zhuang C, Krendel M. Roles of myosin 1e and the actin cytoskeleton in kidney functions and familial kidney disease. Cytoskeleton (Hoboken) 2024; 81:737-752. [PMID: 38708443 PMCID: PMC11538376 DOI: 10.1002/cm.21861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/21/2024] [Accepted: 04/04/2024] [Indexed: 05/07/2024]
Abstract
Mammalian kidneys are responsible for removing metabolic waste and maintaining fluid and electrolyte homeostasis via selective filtration. One of the proteins closely linked to selective renal filtration is myosin 1e (Myo1e), an actin-dependent molecular motor found in the specialized kidney epithelial cells involved in the assembly and maintenance of the renal filter. Point mutations in the gene encoding Myo1e, MYO1E, have been linked to familial kidney disease, and Myo1e knockout in mice leads to the disruption of selective filtration. In this review, we discuss the role of the actin cytoskeleton in renal filtration, the known and hypothesized functions of Myo1e, and the possible explanations for the impact of MYO1E mutations on renal function.
Collapse
Affiliation(s)
- Pei-Ju Liu
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Kazi Sayeeda
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Cindy Zhuang
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Mira Krendel
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| |
Collapse
|
9
|
Huang C, Zhou R, Huang X, Dai F, Zhang B. Integrative analysis of single-nucleus RNA sequencing and Mendelian randomization to explore novel risk genes for Alzheimer's disease. Medicine (Baltimore) 2024; 103:e40551. [PMID: 39560568 PMCID: PMC11575974 DOI: 10.1097/md.0000000000040551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/28/2024] [Indexed: 11/20/2024] Open
Abstract
In this study, we aimed to delineate cellular heterogeneity in Alzheimer's disease (AD) and identify genetic markers contributing to its pathogenesis using integrative analysis of single-nucleus RNA sequencing (sn-RNA-Seq) and Mendelian randomization (MR). The dorsolateral prefrontal cortex sn-RNA-Seq dataset (GSE243292) was sourced from the Gene Expression Omnibus (GEO) database. Data preprocessing was conducted using the Seurat R software package, employing principal component analysis (PCA) and uniform manifold approximation and projection (UMAP) for cell clustering and annotation. MR analysis was used to identify instrumental variables from expression quantitative trait loci (eQTL) and GWAS data by applying inverse variance weighting (IVW), weighted median (WM) and MR-Egger methods. This was complemented by leave-one-out sensitivity analysis to validate the causal relationship on AD risk genes. We identified 23 distinct cell clusters, which were annotated into eight subgroups, including oligodendrocytes, oligodendrocyte precursors, astrocytes, macrophage cells, endothelial cells, glutamatergic neurons, neural stem cells, and neurons. Notably, the number of macrophages significantly increased in the AD group. Using genome-wide association study (GWAS) summaries and eQTL data, MR analysis identified causal relationships for 7 genes with significant impacts on AD risk. Among these genes, CACNA2D3, INPP5D, RBM47, and TBXAS1 were associated with a decreased risk of AD, whereas EPB41L2, MYO1F, and SSH2 were associated with an increased risk. A leave-one-out sensitivity analysis confirmed the robustness of these findings. Expression analysis revealed that these genes were variably expressed across different cell subgroups. Except for the CACNA2D3 gene, the other 6 genes showed increased expression levels in the macrophages, particularly EPB41L2 and SSH2. Our findings highlight the potential of specific genetic markers identified through integrative analysis of sn-RNA-Seq and MR in guiding the diagnosis and therapeutic strategies for Alzheimer's disease.
Collapse
Affiliation(s)
- Chao Huang
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Ruihao Zhou
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Xingya Huang
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Fanshu Dai
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Biao Zhang
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin, China
| |
Collapse
|
10
|
Wan P, Zhong L, Yu L, Shen C, Shao X, Chen S, Zhou Z, Wang M, Zhang H, Liu B. Lysosome-related genes predict acute myeloid leukemia prognosis and response to immunotherapy. Front Immunol 2024; 15:1384633. [PMID: 38799454 PMCID: PMC11117069 DOI: 10.3389/fimmu.2024.1384633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 04/24/2024] [Indexed: 05/29/2024] Open
Abstract
Background Acute myeloid leukemia (AML) is a highly aggressive and pathogenic hematologic malignancy with consistently high mortality. Lysosomes are organelles involved in cell growth and metabolism that fuse to form specialized Auer rods in AML, and their role in AML has not been elucidated. This study aimed to identify AML subtypes centered on lysosome-related genes and to construct a prognostic model to guide individualized treatment of AML. Methods Gene expression data and clinical data from AML patients were downloaded from two high-throughput sequencing platforms. The 191 lysosomal signature genes were obtained from the database MsigDB. Lysosomal clusters were identified by unsupervised consensus clustering. The differences in molecular expression, biological processes, and the immune microenvironment among lysosomal clusters were subsequently analyzed. Based on the molecular expression differences between lysosomal clusters, lysosomal-related genes affecting AML prognosis were screened by univariate cox regression and multivariate cox regression analyses. Algorithms for LASSO regression analyses were employed to construct prognostic models. The risk factor distribution, KM survival curve, was applied to evaluate the survival distribution of the model. Time-dependent ROC curves, nomograms and calibration curves were used to evaluate the predictive performance of the prognostic models. TIDE scores and drug sensitivity analyses were used to explore the implication of the model for AML treatment. Results Our study identified two lysosomal clusters, cluster1 has longer survival time and stronger immune infiltration compared to cluster2. The differences in biological processes between the two lysosomal clusters are mainly manifested in the lysosomes, vesicles, immune cell function, and apoptosis. The prognostic model consisting of six prognosis-related genes was constructed. The prognostic model showed good predictive performance in all three data sets. Patients in the low-risk group survived significantly longer than those in the high-risk group and had higher immune infiltration and stronger response to immunotherapy. Patients in the high-risk group showed greater sensitivity to cytarabine, imatinib, and bortezomib, but lower sensitivity to ATRA compared to low -risk patients. Conclusion Our prognostic model based on lysosome-related genes can effectively predict the prognosis of AML patients and provide reference evidence for individualized immunotherapy and pharmacological chemotherapy for AML.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/diagnosis
- Lysosomes/metabolism
- Prognosis
- Female
- Male
- Immunotherapy/methods
- Biomarkers, Tumor/genetics
- Middle Aged
- Gene Expression Profiling
- Adult
- Nomograms
- Tumor Microenvironment/genetics
- Tumor Microenvironment/immunology
- Aged
- Gene Expression Regulation, Leukemic
- Transcriptome
Collapse
Affiliation(s)
- Peng Wan
- Central Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Liang Zhong
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Lihua Yu
- Clinical Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Chenlan Shen
- Central Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Xin Shao
- Central Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Shuyu Chen
- Central Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Ziwei Zhou
- Central Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Meng Wang
- Central Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Hongyan Zhang
- Central Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Beizhong Liu
- Central Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing, China
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| |
Collapse
|
11
|
Chi LH, Redfern AD, Roslan S, Street IP, Burrows AD, Anderson RL. Loss of tumor-derived SMAD4 enhances primary tumor growth but not metastasis following BMP4 signalling. Cell Commun Signal 2024; 22:248. [PMID: 38689334 PMCID: PMC11060976 DOI: 10.1186/s12964-024-01559-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/04/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Bone morphogenetic protein 4 (BMP4) is a potent inhibitor of breast cancer metastasis. However, a tumor-promoting effect of BMP4 is reported in other tumor types, especially when SMAD4 is inactive. METHODS To assess the requirement for SMAD4 in BMP4-mediated suppression of metastasis, we knocked down SMAD4 in two different breast tumors and enforced SMAD4 expression in a third line with endogenous SMAD4 deletion. In addition, we assessed the requirement for SMAD4 in tumor cell-specific BMP signalling by expression of a constitutively active BMP receptor. Delineation of genes regulated by BMP4 in the presence or absence of SMAD4 was assessed by RNA sequencing and a BMP4-induced gene, MYO1F was assessed for its role in metastasis. Genes regulated by BMP4 and/or SMAD4 were assessed in a publicly available database of gene expression profiles of breast cancer patients. RESULTS In the absence of SMAD4, BMP4 promotes primary tumor growth that is accompanied by increased expression of genes associated with DNA replication, cell cycle, and MYC signalling pathways. Despite increased primary tumor growth, BMP4 suppresses metastasis in the absence of tumor cell expression of SMAD4. Consistent with the anti-metastatic activity of BMP4, enforced signalling through the constitutively active receptor in SMAD4 positive tumors that lacked BMP4 expression still suppressed metastasis, but in the absence of SMAD4, the suppression of metastasis was largely prevented. Thus BMP4 is required for suppression of metastasis regardless of tumor SMAD4 status. The BMP4 upregulated gene, MYO1F, was shown to be a potent suppressor of breast cancer metastasis. Gene signature upregulated by BMP4 in the absence of SMAD4 was associated with poor prognosis in breast cancer patients, whereas gene signature upregulated by BMP4 in the presence of SMAD4 was associated with improved prognosis. CONCLUSIONS BMP4 expression is required for suppression of metastasis regardless of the SMAD4 status of the tumor cells. Since BMP4 is a secreted protein, we conclude that it can act both in an autocrine manner in SMAD4-expressing tumor cells and in a paracrine manner on stromal cells to suppress metastasis. Deletion of SMAD4 from tumor cells does not prevent BMP4 from suppressing metastasis via a paracrine mechanism.
Collapse
Affiliation(s)
- Lap Hing Chi
- Olivia Newton-John Cancer Research Institute, 145 Studley Road, Heidelberg, VIC, 3084, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, Australia
| | - Andrew D Redfern
- Harry Perkins Institute of Medical Research, University of Western Australia, Perth, WA, Australia
| | - Suraya Roslan
- Department of Surgery, St. Vincent's Hospital, Fitzroy, VIC, Australia
| | - Ian P Street
- Children's Cancer Institute, University of New South Wales, New South Wales, Australia
| | - Allan D Burrows
- Olivia Newton-John Cancer Research Institute, 145 Studley Road, Heidelberg, VIC, 3084, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, Australia
| | - Robin L Anderson
- Olivia Newton-John Cancer Research Institute, 145 Studley Road, Heidelberg, VIC, 3084, Australia.
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, Australia.
- Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
12
|
Miyoshi T, Belyantseva IA, Sajeevadathan M, Friedman TB. Pathophysiology of human hearing loss associated with variants in myosins. Front Physiol 2024; 15:1374901. [PMID: 38562617 PMCID: PMC10982375 DOI: 10.3389/fphys.2024.1374901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 02/21/2024] [Indexed: 04/04/2024] Open
Abstract
Deleterious variants of more than one hundred genes are associated with hearing loss including MYO3A, MYO6, MYO7A and MYO15A and two conventional myosins MYH9 and MYH14. Variants of MYO7A also manifest as Usher syndrome associated with dysfunction of the retina and vestibule as well as hearing loss. While the functions of MYH9 and MYH14 in the inner ear are debated, MYO3A, MYO6, MYO7A and MYO15A are expressed in inner ear hair cells along with class-I myosin MYO1C and are essential for developing and maintaining functional stereocilia on the apical surface of hair cells. Stereocilia are large, cylindrical, actin-rich protrusions functioning as biological mechanosensors to detect sound, acceleration and posture. The rigidity of stereocilia is sustained by highly crosslinked unidirectionally-oriented F-actin, which also provides a scaffold for various proteins including unconventional myosins and their cargo. Typical myosin molecules consist of an ATPase head motor domain to transmit forces to F-actin, a neck containing IQ-motifs that bind regulatory light chains and a tail region with motifs recognizing partners. Instead of long coiled-coil domains characterizing conventional myosins, the tails of unconventional myosins have various motifs to anchor or transport proteins and phospholipids along the F-actin core of a stereocilium. For these myosins, decades of studies have elucidated their biochemical properties, interacting partners in hair cells and variants associated with hearing loss. However, less is known about how myosins traffic in a stereocilium using their motor function, and how each variant correlates with a clinical condition including the severity and onset of hearing loss, mode of inheritance and presence of symptoms other than hearing loss. Here, we cover the domain structures and functions of myosins associated with hearing loss together with advances, open questions about trafficking of myosins in stereocilia and correlations between hundreds of variants in myosins annotated in ClinVar and the corresponding deafness phenotypes.
Collapse
Affiliation(s)
- Takushi Miyoshi
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
- Division of Molecular and Integrative Physiology, Department of Biomedical Sciences, Southern Illinois University School of Medicine, Carbondale, IL, United States
| | - Inna A. Belyantseva
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Mrudhula Sajeevadathan
- Division of Molecular and Integrative Physiology, Department of Biomedical Sciences, Southern Illinois University School of Medicine, Carbondale, IL, United States
| | - Thomas B. Friedman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
13
|
Song C, Kong F, Nong H, Cai L, Tian Y, Hou H, Wang L, Qiu X. Ammonium Persulfate-Loaded Carboxylic Gelatin-Methacrylate Nanoparticles Promote Cardiac Repair by Activating Epicardial Epithelial-Mesenchymal Transition via Autophagy and the mTOR Pathway. ACS NANO 2023; 17:20246-20261. [PMID: 37782701 DOI: 10.1021/acsnano.3c06229] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Restoring damaged myocardial tissue with therapeutic exogenous cells still has some limitations, such as immunological rejection, immature cardiac properties, risk of tumorigenicity, and a low cell survival rate in the ischemic myocardium microenvironment. Activating the endogenous stem cells with functional biomaterials might overcome these limitations. Research has highlighted the multiple differentiation potential of epicardial cells via epithelial-mesenchymal transition (EMT) in both heart development and cardiac regeneration. In our previous research, a carboxylic gelatin-methacrylate (carbox-GelMA) nanoparticle (NP) was fabricated to carry ammonium persulfate (APS), and APS-loaded carbox-GelMA NPs (NPs/APS) could drive the EMT of MCF-7 cells in vitro and promote cancer cell migration and invasion in vivo. The present study explored the roles of functional NPs/APS in the EMT of Wilms' tumor 1-positive (WT1+) epicardial cells and in the repair of myocardial infarction (MI). The WT1+ epicardial cells transformed into endothelial-like cells after being treated with NPs/APS in vitro, and the cardiac functions were improved significantly after injecting NPs/APS into the infarcted hearts in vivo. Furthermore, simultaneous activation of both autophagy and the mTOR pathway was confirmed during the NPs/APS-induced EMT process in WT1+ epicardial cells. Together, this study highlights the function of NPs/APS in the repair of MI.
Collapse
Affiliation(s)
- Chen Song
- The Fifth Affiliated Hospital of Southern Medical University, Southern Medical University, Guangdong, Guangzhou 510900, China
| | - Fanxuan Kong
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangdong, Guangzhou 510515, China
| | - Huijia Nong
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangdong, Guangzhou 510515, China
| | - Liu Cai
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangdong, Guangzhou 510515, China
| | - Ye Tian
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangdong, Guangzhou 510515, China
| | - Honghao Hou
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangdong, Guangzhou 510515, China
| | - Leyu Wang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangdong, Guangzhou 510515, China
| | - Xiaozhong Qiu
- The Fifth Affiliated Hospital of Southern Medical University, Southern Medical University, Guangdong, Guangzhou 510900, China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangdong, Guangzhou 510515, China
| |
Collapse
|
14
|
Martínez-Vargas IU, Sánchez-Bello ME, Miguel-Rodríguez CE, Hernández-Cázares F, Santos-Argumedo L, Talamás-Rohana P. Myo1f has an essential role in γδT intraepithelial lymphocyte adhesion and migration. Front Immunol 2023; 14:1041079. [PMID: 37207213 PMCID: PMC10189005 DOI: 10.3389/fimmu.2023.1041079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 04/20/2023] [Indexed: 05/21/2023] Open
Abstract
γδT intraepithelial lymphocyte represents up to 60% of the small intestine intraepithelial compartment. They are highly migrating cells and constantly interact with the epithelial cell layer and lamina propria cells. This migratory phenotype is related to the homeostasis of the small intestine, the control of bacterial and parasitic infections, and the epithelial shedding induced by LPS. Here, we demonstrate that Myo1f participates in the adhesion and migration of intraepithelial lymphocytes. Using long-tailed class I myosins KO mice, we identified the requirement of Myo1f for their migration to the small intestine intraepithelial compartment. The absence of Myo1f affects intraepithelial lymphocytes' homing due to reduced CCR9 and α4β7 surface expression. In vitro, we confirm that adhesion to integrin ligands and CCL25-dependent and independent migration of intraepithelial lymphocytes are Myo1f-dependent. Mechanistically, Myo1f deficiency prevents correct chemokine receptor and integrin polarization, leading to reduced tyrosine phosphorylation which could impact in signal transduction. Overall, we demonstrate that Myo1f has an essential role in the adhesion and migration in γδT intraepithelial lymphocytes.
Collapse
Affiliation(s)
- Irving Ulises Martínez-Vargas
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Maria Elena Sánchez-Bello
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Carlos Emilio Miguel-Rodríguez
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Felipe Hernández-Cázares
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Leopoldo Santos-Argumedo
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
- *Correspondence: Leopoldo Santos-Argumedo, ; Patricia Talamás-Rohana,
| | - Patricia Talamás-Rohana
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
- *Correspondence: Leopoldo Santos-Argumedo, ; Patricia Talamás-Rohana,
| |
Collapse
|
15
|
Chromosome-level genome and population genomics reveal evolutionary characteristics and conservation status of Chinese indigenous geese. Commun Biol 2022; 5:1191. [DOI: 10.1038/s42003-022-04125-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 10/18/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractGeese are herbivorous birds that play an essential role in the agricultural economy. We construct the chromosome-level genome of a Chinese indigenous goose (the Xingguo gray goose, XGG; Anser cygnoides) and analyze the adaptation of fat storage capacity in the goose liver during the evolution of Anatidae. Genomic resequencing of 994 geese is used to investigate the genetic relationships of geese, which supports the dual origin of geese (Anser cygnoides and Anser anser). Chinese indigenous geese show higher genetic diversity than European geese, and a scientific conservation program can be established to preserve genetic variation for each breed. We also find that a 14-bp insertion in endothelin receptor B subtype 2 (EDNRB2) that determines the white plumage of Chinese domestic geese is a natural mutation, and the linkaged alleles rapidly increase in frequency as a result of genetic hitchhiking, leading to the formation of completely different haplotypes of white geese under strong artificial selection. These genomic resources and our findings will facilitate marker-assisted breeding of geese and provide a foundation for further research on geese genetics and evolution.
Collapse
|
16
|
Wang Y, Xu B, Xue L. Applications of CyTOF in Brain Immune Component Studies. ENGINEERING 2022; 16:187-197. [DOI: 10.1016/j.eng.2021.06.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
17
|
Pernier J, Schauer K. Does the Actin Network Architecture Leverage Myosin-I Functions? BIOLOGY 2022; 11:biology11070989. [PMID: 36101369 PMCID: PMC9311500 DOI: 10.3390/biology11070989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/24/2022] [Accepted: 06/26/2022] [Indexed: 11/16/2022]
Abstract
The actin cytoskeleton plays crucial roles in cell morphogenesis and functions. The main partners of cortical actin are molecular motors of the myosin superfamily. Although our understanding of myosin functions is heavily based on myosin-II and its ability to dimerize, the largest and most ancient class is represented by myosin-I. Class 1 myosins are monomeric, actin-based motors that regulate a wide spectrum of functions, and whose dysregulation mediates multiple human diseases. We highlight the current challenges in identifying the “pantograph” for myosin-I motors: we need to reveal how conformational changes of myosin-I motors lead to diverse cellular as well as multicellular phenotypes. We review several mechanisms for scaling, and focus on the (re-) emerging function of class 1 myosins to remodel the actin network architecture, a higher-order dynamic scaffold that has potential to leverage molecular myosin-I functions. Undoubtfully, understanding the molecular functions of myosin-I motors will reveal unexpected stories about its big partner, the dynamic actin cytoskeleton.
Collapse
Affiliation(s)
- Julien Pernier
- Institute for Integrative Biology of the Cell (I2BC), Centre National de la Recherche Scientifique (CNRS), Commissariat à L’Énergie Atomique et aux Énergies Alternatives (CEA), Université Paris-Saclay, 91198 Gif-sur-Yvette, France;
| | - Kristine Schauer
- Tumor Cell Dynamics Unit, Inserm U1279, Gustave Roussy Institute, Université Paris-Saclay, 94800 Villejuif, France
- Correspondence:
| |
Collapse
|
18
|
Matozo T, Kogachi L, de Alencar BC. Myosin motors on the pathway of viral infections. Cytoskeleton (Hoboken) 2022; 79:41-63. [PMID: 35842902 DOI: 10.1002/cm.21718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/25/2022] [Accepted: 07/07/2022] [Indexed: 01/30/2023]
Abstract
Molecular motors are microscopic machines that use energy from adenosine triphosphate (ATP) hydrolysis to generate movement. While kinesins and dynein are molecular motors associated with microtubule tracks, myosins bind to and move on actin filaments. Mammalian cells express several myosin motors. They power cellular processes such as endo- and exocytosis, intracellular trafficking, transcription, migration, and cytokinesis. As viruses navigate through cells, they may take advantage or be hindered by host components and machinery, including the cytoskeleton. This review delves into myosins' cell roles and compares them to their reported functions in viral infections. In most cases, the previously described myosin functions align with their reported role in viral infections, although not in all cases. This opens the possibility that knowledge obtained from studying myosins in viral infections might shed light on new physiological roles for myosins in cells. However, given the high number of myosins expressed and the variety of viruses investigated in the different studies, it is challenging to infer whether the interactions found are specific to a single virus or can be applied to other viruses with the same characteristics. We conclude that the participation of myosins in viral cycles is still a largely unexplored area, especially concerning unconventional myosins.
Collapse
Affiliation(s)
- Tais Matozo
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Leticia Kogachi
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Bruna Cunha de Alencar
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
19
|
Hensel A, Stahl P, Moews L, König L, Patwardhan R, Höing A, Schulze N, Nalbant P, Stauber RH, Knauer SK. The Taspase1/Myosin1f-axis regulates filopodia dynamics. iScience 2022; 25:104355. [PMID: 35601920 PMCID: PMC9121324 DOI: 10.1016/j.isci.2022.104355] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 03/04/2022] [Accepted: 04/28/2022] [Indexed: 11/15/2022] Open
Abstract
The unique threonine protease Tasp1 impacts not only ordered development and cell proliferation but also pathologies. However, its substrates and the underlying molecular mechanisms remain poorly understood. We demonstrate that the unconventional Myo1f is a Tasp1 substrate and unravel the physiological relevance of this proteolysis. We classify Myo1f as a nucleo-cytoplasmic shuttle protein, allowing its unhindered processing by nuclear Tasp1 and an association with chromatin. Moreover, we show that Myo1f induces filopodia resulting in increased cellular adhesion and migration. Importantly, filopodia formation was antagonized by Tasp1-mediated proteolysis, supported by an inverse correlation between Myo1f concentration and Tasp1 expression level. The Tasp1/Myo1f-axis might be relevant in human hematopoiesis as reduced Tasp1 expression coincided with increased Myo1f concentrations and filopodia in macrophages compared to monocytes and vice versa. In sum, we discovered Tasp1-mediated proteolysis of Myo1f as a mechanism to fine-tune filopodia formation, inter alia relevant for cells of the immune system. Myosin1f is a nucleo-cytoplasmic shuttle protein temporarily located in the nucleus Myosin1f induces filopodia resulting in increased cellular adhesion and migration The protease Taspase1 cleaves Myosin1f, thereby impairing its function Taspase1 and Myosin1f inversely correlate in immune cell differentiation
Collapse
Affiliation(s)
- Astrid Hensel
- Department of Molecular Biology II, Center of Medical Biotechnology (ZMB), University Duisburg-Essen, 45141 Essen, Germany
- Corresponding author
| | - Paul Stahl
- Department of Molecular Biology II, Center of Medical Biotechnology (ZMB), University Duisburg-Essen, 45141 Essen, Germany
| | - Lisa Moews
- Department of Molecular Biology II, Center of Medical Biotechnology (ZMB), University Duisburg-Essen, 45141 Essen, Germany
| | - Lena König
- Department of Molecular Biology II, Center of Medical Biotechnology (ZMB), University Duisburg-Essen, 45141 Essen, Germany
| | - Rutuja Patwardhan
- Department of Molecular Cell Biology, Center of Medical Biotechnology (ZMB), University Duisburg-Essen, 45141 Essen, Germany
| | - Alexander Höing
- Department of Molecular Biology II, Center of Medical Biotechnology (ZMB), University Duisburg-Essen, 45141 Essen, Germany
| | - Nina Schulze
- Imaging Center Campus Essen (ICCE), Center of Medical Biotechnology (ZMB), University Duisburg-Essen, 45141 Essen, Germany
| | - Perihan Nalbant
- Department of Molecular Cell Biology, Center of Medical Biotechnology (ZMB), University Duisburg-Essen, 45141 Essen, Germany
| | - Roland H. Stauber
- Department of Molecular and Cellular Oncology/ENT, University Mainz Medical Center, 55131 Mainz, Germany
| | - Shirley K. Knauer
- Department of Molecular Biology II, Center of Medical Biotechnology (ZMB), University Duisburg-Essen, 45141 Essen, Germany
- Corresponding author
| |
Collapse
|
20
|
Radhakrishnan R, Dronamraju VR, Leung M, Gruesen A, Solanki AK, Walterhouse S, Roehrich H, Song G, da Costa Monsanto R, Cureoglu S, Martin R, Kondkar AA, van Kuijk FJ, Montezuma SR, Knöelker HJ, Hufnagel RB, Lobo GP. The role of motor proteins in photoreceptor protein transport and visual function. Ophthalmic Genet 2022; 43:285-300. [PMID: 35470760 DOI: 10.1080/13816810.2022.2062391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND Rods and cones are photoreceptor neurons in the retina that are required for visual sensation in vertebrates, wherein the perception of vision is initiated when these neurons respond to photons in the light stimuli. The photoreceptor cell is structurally studied as outer segments (OS) and inner segments (IS) where proper protein sorting, localization, and compartmentalization are critical for phototransduction, visual function, and survival. In human retinal diseases, improper protein transport to the OS or mislocalization of proteins to the IS and other cellular compartments could lead to impaired visual responses and photoreceptor cell degeneration that ultimately cause loss of visual function. RESULTS Therefore, studying and identifying mechanisms involved in facilitating and maintaining proper protein transport in photoreceptor cells would help our understanding of pathologies involving retinal cell degeneration in inherited retinal dystrophies, age-related macular degeneration, and Usher Syndrome. CONCLUSIONS Our mini-review will discuss mechanisms of protein transport within photoreceptors and introduce a novel role for an unconventional motor protein, MYO1C, in actin-based motor transport of the visual chromophore Rhodopsin to the OS, in support of phototransduction and visual function.
Collapse
Affiliation(s)
- Rakesh Radhakrishnan
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - Venkateshwara R Dronamraju
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - Matthias Leung
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - Andrew Gruesen
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ashish K Solanki
- Department of Medicine, Drug Discovery Building, Medical University of South Carolina, South Carolina, USA
| | - Stephen Walterhouse
- Department of Medicine, Drug Discovery Building, Medical University of South Carolina, South Carolina, USA
| | - Heidi Roehrich
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - Grace Song
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - Rafael da Costa Monsanto
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - Sebahattin Cureoglu
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - René Martin
- Faculty of Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Altaf A Kondkar
- Department of Ophthalmology.,Glaucoma Research Chair in Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Frederik J van Kuijk
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - Sandra R Montezuma
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Robert B Hufnagel
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Glenn P Lobo
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, USA.,Department of Medicine, Drug Discovery Building, Medical University of South Carolina, South Carolina, USA.,Department of Ophthalmology, Medical University of South Carolina, South Carolina, USA
| |
Collapse
|
21
|
Conrad C, Yildiz D, Cleary SJ, Margraf A, Cook L, Schlomann U, Panaretou B, Bowser JL, Karmouty-Quintana H, Li J, Berg NK, Martin SC, Aljohmani A, Moussavi-Harami SF, Wang KM, Tian JJ, Magnen M, Valet C, Qiu L, Singer JP, Eltzschig HK, CAPSys Study Group, Bertrams W, Herold S, Suttorp N, Schmeck B, Ball ZT, Zarbock A, Looney MR, Bartsch JW. ADAM8 signaling drives neutrophil migration and ARDS severity. JCI Insight 2022; 7:e149870. [PMID: 35132956 PMCID: PMC8855804 DOI: 10.1172/jci.insight.149870] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 12/21/2021] [Indexed: 01/27/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) results in catastrophic lung failure and has an urgent, unmet need for improved early recognition and therapeutic development. Neutrophil influx is a hallmark of ARDS and is associated with the release of tissue-destructive immune effectors, such as matrix metalloproteinases (MMPs) and membrane-anchored metalloproteinase disintegrins (ADAMs). Here, we observed using intravital microscopy that Adam8-/- mice had impaired neutrophil transmigration. In mouse pneumonia models, both genetic deletion and pharmacologic inhibition of ADAM8 attenuated neutrophil infiltration and lung injury while improving bacterial containment. Unexpectedly, the alterations of neutrophil function were not attributable to impaired proteolysis but resulted from reduced intracellular interactions of ADAM8 with the actin-based motor molecule Myosin1f that suppressed neutrophil motility. In 2 ARDS cohorts, we analyzed lung fluid proteolytic signatures and identified that ADAM8 activity was positively correlated with disease severity. We propose that in acute inflammatory lung diseases such as pneumonia and ARDS, ADAM8 inhibition might allow fine-tuning of neutrophil responses for therapeutic gain.
Collapse
Affiliation(s)
- Catharina Conrad
- Department of Medicine, Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, School of Medicine, University of California, San Francisco, San Francisco, California, USA
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Daniela Yildiz
- Institute of Experimental and Clinical Pharmacology and Toxicology, PZMS, ZHMB, Saarland University, Homburg, Germany
| | - Simon J. Cleary
- Department of Medicine, Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, School of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Andreas Margraf
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Lena Cook
- Department of Neurosurgery/Lab, Faculty of Medicine, Philipps-University, Marburg, Germany
| | - Uwe Schlomann
- Department of Neurosurgery/Lab, Faculty of Medicine, Philipps-University, Marburg, Germany
| | - Barry Panaretou
- School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King’s College London, London, United Kingdom
| | - Jessica L. Bowser
- Department of Pathology & Laboratory Medicine, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | | | - Jiwen Li
- Department of Anesthesiology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Nathaniel K. Berg
- Department of Anesthesiology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | | | - Ahmad Aljohmani
- Institute of Experimental and Clinical Pharmacology and Toxicology, PZMS, ZHMB, Saarland University, Homburg, Germany
| | - S. Farshid Moussavi-Harami
- Department of Pediatrics, Division of Pediatric Critical Care, University of California, San Francisco, San Francisco, California, USA
| | - Kristin M. Wang
- Department of Medicine, Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, School of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Jennifer J. Tian
- Department of Medicine, Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, School of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Mélia Magnen
- Department of Medicine, Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, School of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Colin Valet
- Department of Medicine, Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, School of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Longhui Qiu
- Department of Medicine, Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, School of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Jonathan P. Singer
- Department of Medicine, Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, School of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Holger K. Eltzschig
- Department of Anesthesiology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | | | - Wilhelm Bertrams
- Institute for Lung Research (iLung), Philipps-University, Marburg, Germany
| | - Susanne Herold
- Department of Internal Medicine II, University Medical Center Giessen and Marburg, Giessen, Germany
- Deutsches Zentrum für Lungenforschung (DZL), Giessen, Germany
| | - Norbert Suttorp
- Department of Internal Medicine/Infectious Diseases and Respiratory Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Bernd Schmeck
- Deutsches Zentrum für Lungenforschung (DZL), Giessen, Germany
- Pulmonary and Critical Care Medicine, University Medical Center Giessen and Marburg, Marburg, Germany
- German Center for Infectious Disease Research (DZIF), Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Zachary T. Ball
- Department of Chemistry, Rice University, Houston, Texas, USA
| | - Alexander Zarbock
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Mark R. Looney
- Department of Medicine, Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, School of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Jörg W. Bartsch
- Department of Neurosurgery/Lab, Faculty of Medicine, Philipps-University, Marburg, Germany
| |
Collapse
|
22
|
Qiu H, Weng Q. Screening of Crucial Differentially-Methylated/Expressed Genes for Alzheimer's Disease. Am J Alzheimers Dis Other Demen 2022; 37:15333175221116220. [PMID: 35848539 PMCID: PMC10624077 DOI: 10.1177/15333175221116220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: We aimed to make an integrated analysis of published transcriptome and DNA methylation dataset to ascertain the key differentially methylated and differentially expressed genes for Alzherimer's disease (AD). Methods: Two gene expression microarrays and 1 gene methylation microarray were downloaded for identification of differentially expressed genes and differentially methylated genes. Then, we used various biological information databases to annotate the functions of the differentially-methylated/expressed genes, and screen out key genes and important signaling pathways. Finally, we validate the differentially-methylated/expressed genes in the additional online datasets and in blood from AD patients.Results: A total of 8 hub hypomethylated-high expression genes were obtained, including Rac family small GTPase 2, FGR proto-oncogene, Src family tyrosine kinase, LYN proto-oncogene, Src family tyrosine kinase, protein kinase C delta, myosin IF, integrin subunit alpha 5, semaphorin 4D, and growth arrest specific protein 7. Some enriched signaling pathways of hypomethylated-high expression genes were identified, including regulation of actin cytoskeleton, chemokine signaling pathway, Fc gamma R-mediated phagocytosis, and axon guidance. Conclusion: Differentially-methylated/expressed genes are likely to be associated with AD.
Collapse
Affiliation(s)
- Haiyuan Qiu
- Internal Medicine Department, Ningbo Psychiatric Hospital, Ningbo, China
| | - Qiuyan Weng
- Neurolog Department, Affiliated Hospital of Medical School Ningbo University, Ningbo, China
| |
Collapse
|
23
|
Cruz-Zárate D, Miguel-Rodríguez CE, Martínez-Vargas IU, Santos-Argumedo L. Myosin 1g and 1f: A Prospective Analysis in NK Cell Functions. Front Immunol 2022; 12:760290. [PMID: 34970258 PMCID: PMC8712487 DOI: 10.3389/fimmu.2021.760290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/23/2021] [Indexed: 02/05/2023] Open
Abstract
NK cells are contained in the ILC1 group; they are recognized for their antiviral and antitumor cytotoxic capacity; NK cells also participate in other immune response processes through cytokines secretion. However, the mechanisms that regulate these functions are poorly understood since NK cells are not as abundant as other lymphocytes, which has made them difficult to study. Using public databases, we identified that NK cells express mRNA encoding class I myosins, among which Myosin 1g and Myosin 1f are prominent. Therefore, this mini-review aims to generate a model of the probable participation of Myosin 1g and 1f in NK cells, based on information reported about the function of these myosins in other leukocytes.
Collapse
Affiliation(s)
- David Cruz-Zárate
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico.,Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Carlos Emilio Miguel-Rodríguez
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico.,Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Irving Ulises Martínez-Vargas
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico.,Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Leopoldo Santos-Argumedo
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| |
Collapse
|
24
|
Tabasi F, Hasanpour V, Sarhadi S, Kaykhaei MA, Pourzand P, Heravi M, Langari AA, Bahari G, Taheri M, Hashemi M, Ghavami S. Association of miR-499 Polymorphism and Its Regulatory Networks with Hashimoto Thyroiditis Susceptibility: A Population-Based Case-Control Study. Int J Mol Sci 2021; 22:10094. [PMID: 34576267 PMCID: PMC8470033 DOI: 10.3390/ijms221810094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 12/29/2022] Open
Abstract
Hashimoto thyroiditis (HT) is a common autoimmune disorder with a strong genetic background. Several genetic factors have been suggested, yet numerous genetic contributors remain to be fully understood in HT pathogenesis. MicroRNAs (miRs) are gene expression regulators critically involved in biological processes, of which polymorphisms can alter their function, leading to pathologic conditions, including autoimmune diseases. We examined whether miR-499 rs3746444 polymorphism is associated with susceptibility to HT in an Iranian subpopulation. Furthermore, we investigated the potential interacting regulatory network of the miR-499. This case-control study included 150 HT patients and 152 healthy subjects. Genotyping of rs3746444 was performed by the PCR-RFLP method. Also, target genomic sites of the polymorphism were predicted using bioinformatics. Our results showed that miR-499 rs3746444 was positively associated with HT risk in heterozygous (OR = 3.32, 95%CI = 2.00-5.53, p < 0.001, CT vs. TT), homozygous (OR = 2.81, 95%CI = 1.30-6.10, p = 0.014, CC vs. TT), dominant (OR = 3.22, 95%CI = 1.97-5.25, p < 0.001, CT + CC vs. TT), overdominant (OR = 2.57, 95%CI = 1.62-4.09, p < 0.001, CC + TT vs. CT), and allelic (OR = 1.92, 95%CI = 1.37-2.69, p < 0.001, C vs. T) models. Mapping predicted target genes of miR-499 on tissue-specific-, co-expression-, and miR-TF networks indicated that main hub-driver nodes are implicated in regulating immune system functions, including immunorecognition and complement activity. We demonstrated that miR-499 rs3746444 is linked to HT susceptibility in our population. However, predicted regulatory networks revealed that this polymorphism is contributing to the regulation of immune system pathways.
Collapse
Affiliation(s)
- Farhad Tabasi
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran; (F.T.); (P.P.); (M.H.); (G.B.)
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 1411713116, Iran
| | - Vahed Hasanpour
- Student Research Committee, School of Medicine, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran;
| | - Shamim Sarhadi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 5166616471, Iran;
| | - Mahmoud Ali Kaykhaei
- Genetics of Non-Communicable Disease Research Center, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran; (M.A.K.); (M.T.)
- Department of Endocrinology, School of Medicine, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran
| | - Pouria Pourzand
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran; (F.T.); (P.P.); (M.H.); (G.B.)
| | - Mehrdad Heravi
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran; (F.T.); (P.P.); (M.H.); (G.B.)
| | - Ahmad Alinaghi Langari
- Student Research Committee, School of Medicine, Kerman University of Medical Sciences, Kerman 7616913555, Iran;
| | - Gholamreza Bahari
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran; (F.T.); (P.P.); (M.H.); (G.B.)
- Children and Adolescent Health Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran
| | - Mohsen Taheri
- Genetics of Non-Communicable Disease Research Center, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran; (M.A.K.); (M.T.)
| | - Mohammad Hashemi
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran; (F.T.); (P.P.); (M.H.); (G.B.)
- Genetics of Non-Communicable Disease Research Center, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran; (M.A.K.); (M.T.)
| | - Saeid Ghavami
- Research Institute of Oncology and Hematology, Cancer Care Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
- Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
- Faculty of Medicine, Katowice School of Technology, 40-555 Katowice, Poland
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
25
|
Abstract
Each year, the global mortality rates for fungal diseases now exceed those for malaria and breast cancer and are currently comparable to those for tuberculosis and HIV. The limited scope of currently available antifungal drugs is the major factor underlying the observed high mortality rate. Here, we provide evidence that Myosin IF (MYO1F) plays a critical role in the mediating of signaling molecules “trafficking from membrane to cytoplasm,” and this process is essential for the antifungal signaling pathway activation. Moreover, we provide evidence that Sirt2 deacetylase inhibitors promote antifungal immunity and protect mice from lethal Candida albicans infection, which indicates that the Sirt2 could be a good therapeutic target for the antifungal drug development. Opportunistic fungal infections have become one of the leading causes of death among immunocompromised patients, resulting in an estimated 1.5 million deaths each year worldwide. The molecular mechanisms that promote host defense against fungal infections remain elusive. Here, we find that Myosin IF (MYO1F), an unconventional myosin, promotes the expression of genes that are critical for antifungal innate immune signaling and proinflammatory responses. Mechanistically, MYO1F is required for dectin-induced α-tubulin acetylation, acting as an adaptor that recruits both the adaptor AP2A1 and α-tubulin N-acetyltransferase 1 to α-tubulin; in turn, these events control the membrane-to-cytoplasm trafficking of spleen tyrosine kinase and caspase recruitment domain-containing protein 9. Myo1f-deficient mice are more susceptible than their wild-type counterparts to the lethal sequelae of systemic infection with Candida albicans. Notably, administration of Sirt2 deacetylase inhibitors, namely AGK2, AK-1, or AK-7, significantly increases the dectin-induced expression of proinflammatory genes in mouse bone marrow–derived macrophages and microglia, thereby protecting mice from both systemic and central nervous system C. albicans infections. AGK2 also promotes proinflammatory gene expression in human peripheral blood mononuclear cells after Dectin stimulation. Taken together, our findings describe a key role for MYO1F in promoting antifungal immunity by regulating the acetylation of α-tubulin and microtubules, and our findings suggest that Sirt2 deacetylase inhibitors may be developed as potential drugs for the treatment of fungal infections.
Collapse
|
26
|
Navinés-Ferrer A, Ainsua-Enrich E, Serrano-Candelas E, Proaño-Pérez E, Muñoz-Cano R, Gastaminza G, Olivera A, Martin M. MYO1F Regulates IgE and MRGPRX2-Dependent Mast Cell Exocytosis. THE JOURNAL OF IMMUNOLOGY 2021; 206:2277-2289. [PMID: 33941653 DOI: 10.4049/jimmunol.2001211] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 03/09/2021] [Indexed: 11/19/2022]
Abstract
The activation and degranulation of mast cells is critical in the pathogenesis of allergic inflammation and modulation of inflammation. Recently, we demonstrated that the unconventional long-tailed myosin, MYO1F, localizes with cortical F-actin and mediates adhesion and migration of mast cells. In this study, we show that knockdown of MYO1F by short hairpin RNA reduces human mast cell degranulation induced by both IgE crosslinking and by stimulation of the Mas-related G protein-coupled receptor X2 (MRGPRX2), which has been associated with allergic and pseudoallergic drug reactions, respectively. Defective degranulation was accompanied by a reduced reassembly of the cortical actin ring after activation but reversed by inhibition of actin polymerization. Our data show that MYO1F is required for full Cdc42 GTPase activation, a critical step in exocytosis. Furthermore, MYO1F knockdown resulted in less granule localization in the cell membrane and fewer fissioned mitochondria along with deficient mitochondria translocation to exocytic sites. Consistent with that, AKT and DRP1 phosphorylation are diminished in MYO1F knockdown cells. Altogether, our data point to MYO1F as an important regulator of mast cell degranulation by contributing to the dynamics of the cortical actin ring and the distribution of both the secretory granules and mitochondria.
Collapse
Affiliation(s)
- Arnau Navinés-Ferrer
- Biochemistry Unit, Biomedicine Department, University of Barcelona, Barcelona, Spain.,Laboratory of Clinic and Experimental Respiratory Immunoallergy, August Pi i Sunyer Biomedical Research Institute, Barcelona, Spain
| | - Erola Ainsua-Enrich
- Biochemistry Unit, Biomedicine Department, University of Barcelona, Barcelona, Spain.,Laboratory of Clinic and Experimental Respiratory Immunoallergy, August Pi i Sunyer Biomedical Research Institute, Barcelona, Spain
| | - Eva Serrano-Candelas
- Biochemistry Unit, Biomedicine Department, University of Barcelona, Barcelona, Spain.,Laboratory of Clinic and Experimental Respiratory Immunoallergy, August Pi i Sunyer Biomedical Research Institute, Barcelona, Spain
| | - Elizabeth Proaño-Pérez
- Biochemistry Unit, Biomedicine Department, University of Barcelona, Barcelona, Spain.,Laboratory of Clinic and Experimental Respiratory Immunoallergy, August Pi i Sunyer Biomedical Research Institute, Barcelona, Spain
| | - Rosa Muñoz-Cano
- Laboratory of Clinic and Experimental Respiratory Immunoallergy, August Pi i Sunyer Biomedical Research Institute, Barcelona, Spain.,Allergy Section, Pneumology Department, Hospital Clinic, University of Barcelona, Barcelona, Spain.,Asthma, Adverse Drug Reactions and Allergy Research Network (ARADyAL), Spain
| | - Gabriel Gastaminza
- Asthma, Adverse Drug Reactions and Allergy Research Network (ARADyAL), Spain.,Department of Allergy and Clinical Immunology, Clinical University of Navarra, Pamplona, Spain
| | - Ana Olivera
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Margarita Martin
- Biochemistry Unit, Biomedicine Department, University of Barcelona, Barcelona, Spain .,Laboratory of Clinic and Experimental Respiratory Immunoallergy, August Pi i Sunyer Biomedical Research Institute, Barcelona, Spain.,Asthma, Adverse Drug Reactions and Allergy Research Network (ARADyAL), Spain
| |
Collapse
|
27
|
Cheon SY, Koo BN, Kim SY, Kam EH, Nam J, Kim EJ. Scopolamine promotes neuroinflammation and delirium-like neuropsychiatric disorder in mice. Sci Rep 2021; 11:8376. [PMID: 33863952 PMCID: PMC8052461 DOI: 10.1038/s41598-021-87790-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 04/05/2021] [Indexed: 01/13/2023] Open
Abstract
Postoperative delirium is a common neuropsychiatric syndrome resulting a high postsurgical mortality rate and decline in postdischarge function. Extensive research has been performed on both human and animal delirium-like models due to their clinical significance, focusing on systematic inflammation and consequent neuroinflammation playing a key role in the pathogenesis of postoperative cognitive dysfunctions. Since animal models are widely utilized for pathophysiological study of neuropsychiatric disorders, this study aimed at examining the validity of the scopolamine-induced delirium-like mice model with respect to the neuroinflammatory hypothesis of delirium. Male C57BL/6 mice were treated with intraperitoneal scopolamine (2 mg/kg). Neurobehavioral tests were performed to evaluate the changes in cognitive functions, including learning and memory, and the level of anxiety after surgery or scopolamine treatment. The levels of pro-inflammatory cytokines (IL-1β, IL-18, and TNF-α) and inflammasome components (NLRP3, ASC, and caspase-1) in different brain regions were measured. Gene expression profiles were also examined using whole-genome RNA sequencing analyses to compare gene expression patterns of different mice models. Scopolamine treatment showed significant increase in the level of anxiety and impairments in memory and cognitive function associated with increased level of pro-inflammatory cytokines and NLRP3 inflammasome components. Genetic analysis confirmed the different expression patterns of genes involved in immune response and inflammation and those related with the development of the nervous system in both surgery and scopolamine-induced mice models. The scopolamine-induced delirium-like mice model successfully showed that analogous neuropsychiatric changes coincides with the neuroinflammatory hypothesis for pathogenesis of delirium.
Collapse
Affiliation(s)
- So Yeong Cheon
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, Republic of Korea
| | - Bon-Nyeo Koo
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.,Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - So Yeon Kim
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.,Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eun Hee Kam
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.,Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Junhyun Nam
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Eun Jung Kim
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea. .,Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
28
|
Lee Y, Bogdanoff D, Wang Y, Hartoularos GC, Woo JM, Mowery CT, Nisonoff HM, Lee DS, Sun Y, Lee J, Mehdizadeh S, Cantlon J, Shifrut E, Ngyuen DN, Roth TL, Song YS, Marson A, Chow ED, Ye CJ. XYZeq: Spatially resolved single-cell RNA sequencing reveals expression heterogeneity in the tumor microenvironment. SCIENCE ADVANCES 2021; 7:7/17/eabg4755. [PMID: 33883145 PMCID: PMC8059935 DOI: 10.1126/sciadv.abg4755] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/04/2021] [Indexed: 05/07/2023]
Abstract
Single-cell RNA sequencing (scRNA-seq) of tissues has revealed remarkable heterogeneity of cell types and states but does not provide information on the spatial organization of cells. To better understand how individual cells function within an anatomical space, we developed XYZeq, a workflow that encodes spatial metadata into scRNA-seq libraries. We used XYZeq to profile mouse tumor models to capture spatially barcoded transcriptomes from tens of thousands of cells. Analyses of these data revealed the spatial distribution of distinct cell types and a cell migration-associated transcriptomic program in tumor-associated mesenchymal stem cells (MSCs). Furthermore, we identify localized expression of tumor suppressor genes by MSCs that vary with proximity to the tumor core. We demonstrate that XYZeq can be used to map the transcriptome and spatial localization of individual cells in situ to reveal how cell composition and cell states can be affected by location within complex pathological tissue.
Collapse
Affiliation(s)
- Youjin Lee
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA.
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Derek Bogdanoff
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
- Center for Advanced Technology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yutong Wang
- Graduate Group in Biostatistics, University of California, Berkeley, CA 94720, USA
- Center for Computational Biology, University of California, Berkeley, CA 94720, USA
| | - George C Hartoularos
- Graduate Program in Biological and Medical Informatics, University of California, San Francisco, San Francisco, CA 94158, USA
- Division of Rheumatology, Department of Medicine, University of California, San Francisco, CA 94143, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jonathan M Woo
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Cody T Mowery
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA 94143, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Hunter M Nisonoff
- Center for Computational Biology, University of California, Berkeley, CA 94720, USA
| | - David S Lee
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
- Division of Rheumatology, Department of Medicine, University of California, San Francisco, CA 94143, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Yang Sun
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
- Division of Rheumatology, Department of Medicine, University of California, San Francisco, CA 94143, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - James Lee
- Division of Hematology and Oncology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Sadaf Mehdizadeh
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | - Eric Shifrut
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - David N Ngyuen
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Theodore L Roth
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
- Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA 94143, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Yun S Song
- Computer Science Division, University of California, Berkeley, CA 94720, USA
- Department of Statistics, University of California, Berkeley, CA 94720, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Alexander Marson
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA.
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA 94129, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA
| | - Eric D Chow
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA.
- Center for Advanced Technology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Chun Jimmie Ye
- Division of Rheumatology, Department of Medicine, University of California, San Francisco, CA 94143, USA.
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA 94129, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA
- Institute of Computational Health Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
29
|
Abstract
Myosins constitute a superfamily of actin-based molecular motor proteins that mediates a variety of cellular activities including muscle contraction, cell migration, intracellular transport, the formation of membrane projections, cell adhesion, and cell signaling. The 12 myosin classes that are expressed in humans share sequence similarities especially in the N-terminal motor domain; however, their enzymatic activities, regulation, ability to dimerize, binding partners, and cellular functions differ. It is becoming increasingly apparent that defects in myosins are associated with diseases including cardiomyopathies, colitis, glomerulosclerosis, neurological defects, cancer, blindness, and deafness. Here, we review the current state of knowledge regarding myosins and disease.
Collapse
|
30
|
Guo CC, Majewski T, Zhang L, Yao H, Bondaruk J, Wang Y, Zhang S, Wang Z, Lee JG, Lee S, Cogdell D, Zhang M, Wei P, Grossman HB, Kamat A, Duplisea JJ, Ferguson JE, Huang H, Dadhania V, Gao J, Dinney C, Weinstein JN, Baggerly K, McConkey D, Czerniak B. Dysregulation of EMT Drives the Progression to Clinically Aggressive Sarcomatoid Bladder Cancer. Cell Rep 2020; 27:1781-1793.e4. [PMID: 31067463 DOI: 10.1016/j.celrep.2019.04.048] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 02/28/2019] [Accepted: 04/10/2019] [Indexed: 12/17/2022] Open
Abstract
Sarcomatoid urothelial bladder cancer (SARC) displays a high propensity for distant metastasis and is associated with short survival. We report a comprehensive genomic analysis of 28 cases of SARC and 84 cases of conventional urothelial carcinoma (UC), with the TCGA cohort of 408 muscle-invasive bladder cancers serving as the reference. SARCs show a distinct mutational landscape, with enrichment of TP53, RB1, and PIK3CA mutations. They are related to the basal molecular subtype of conventional UCs and could be divided into epithelial-basal and more clinically aggressive mesenchymal subsets on the basis of TP63 and its target gene expression levels. Other analyses reveal that SARCs are driven by downregulation of homotypic adherence genes and dysregulation of the EMT network, and nearly half exhibit a heavily infiltrated immune phenotype. Our observations have important implications for prognostication and the development of more effective therapies for this highly lethal variant of bladder cancer.
Collapse
Affiliation(s)
- Charles C Guo
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tadeusz Majewski
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Li Zhang
- Department of Environmental Health, University of Cincinnati, Cincinnati, OH, USA
| | - Hui Yao
- Department of Bioinformatics & Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jolanta Bondaruk
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yan Wang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shizhen Zhang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ziqiao Wang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - June Goo Lee
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sangkyou Lee
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David Cogdell
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Miao Zhang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Peng Wei
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - H Barton Grossman
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ashish Kamat
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - James Edward Ferguson
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - He Huang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vipulkumar Dadhania
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jianjun Gao
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Colin Dinney
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John N Weinstein
- Department of Bioinformatics & Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Keith Baggerly
- Department of Bioinformatics & Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David McConkey
- Johns Hopkins Greenberg Bladder Cancer Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Bogdan Czerniak
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
31
|
Navinés-Ferrer A, Martín M. Long-Tailed Unconventional Class I Myosins in Health and Disease. Int J Mol Sci 2020; 21:ijms21072555. [PMID: 32272642 PMCID: PMC7177449 DOI: 10.3390/ijms21072555] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/03/2020] [Accepted: 04/04/2020] [Indexed: 01/21/2023] Open
Abstract
Long-tailed unconventional class I myosin, Myosin 1E (MYO1E) and Myosin 1F (MYO1F) are motor proteins that use chemical energy from the hydrolysis of adenosine triphosphate (ATP) to produce mechanical work along the actin cytoskeleton. On the basis of their motor properties and structural features, myosins perform a variety of essential roles in physiological processes such as endocytosis, exocytosis, cell adhesion, and migration. The long tailed unconventional class I myosins are characterized by having a conserved motor head domain, which binds actin and hydrolyzes ATP, followed by a short neck with an isoleucine-glutamine (IQ) motif, which binds calmodulin and is sensitive to calcium, and a tail that contains a pleckstrin homology domain (PH), a tail homology 1 domain (TH1), wherein these domains allow membrane binding, a tail homology 2 domain (TH2), an ATP-insensitive actin-binding site domain, and a single Src homology 3 domain (SH3) susceptible to binding proline rich regions in other proteins. Therefore, these motor proteins are able to bind actin, plasma membrane, and other molecules (adaptor, kinases, membrane proteins) that contribute to their function, ranging from increasing membrane tension to molecular trafficking and cellular adhesion. MYO1E and MYO1F function in host self-defense, with a better defined role in innate immunity in cell migration and phagocytosis. Impairments of their function have been identified in patients suffering pathologies ranging from tumoral processes to kidney diseases. In this review, we summarize our current knowledge of specific features and functions of MYO1E and MYO1F in various tissues, as well as their involvement in disease.
Collapse
Affiliation(s)
- A. Navinés-Ferrer
- Biochemistry and Molecular Biology Unit, Biomedicine Department, Faculty of Medicine, University of Barcelona, 08036 Barcelona, Spain
- Laboratory of Clinic and Experimental Respiratory Immunoallergy, IDIBAPS, 08036 Barcelona, Spain
| | - M. Martín
- Biochemistry and Molecular Biology Unit, Biomedicine Department, Faculty of Medicine, University of Barcelona, 08036 Barcelona, Spain
- Laboratory of Clinic and Experimental Respiratory Immunoallergy, IDIBAPS, 08036 Barcelona, Spain
- ARADyAL research network, Carlos III Health Institute, 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-93-4024541; Fax: +34-93-4035882
| |
Collapse
|
32
|
Girón-Pérez DA, Vadillo E, Schnoor M, Santos-Argumedo L. Myo1e modulates the recruitment of activated B cells to inguinal lymph nodes. J Cell Sci 2020; 133:jcs.235275. [PMID: 31964710 DOI: 10.1242/jcs.235275] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 01/06/2020] [Indexed: 12/31/2022] Open
Abstract
The inclusion of lymphocytes in high endothelial venules and their migration to the lymph nodes are critical steps in the immune response. Cell migration is regulated by the actin cytoskeleton and myosins. Myo1e is a long-tailed class I myosin and is highly expressed in B cells, which have not been studied in the context of cell migration. By using intravital microscopy in an in vivo model and performing in vitro experiments, we studied the relevance of Myo1e for the adhesion and inclusion of activated B cells in high endothelial venules. We observed reduced expression of integrins and F-actin in the membrane protrusions of B lymphocytes, which might be explained by deficiencies in vesicular trafficking. Interestingly, the lack of Myo1e reduced the phosphorylation of focal adhesion kinase (FAK; also known as PTK2), AKT (also known as AKT1) and RAC-1, disturbing the FAK-PI3K-RAC-1 signaling pathway. Taken together, our results indicate a critical role of Myo1e in the mechanism of B-cell adhesion and migration.
Collapse
Affiliation(s)
- Daniel A Girón-Pérez
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, CP 07360, Mexico City, Mexico
| | - Eduardo Vadillo
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, CP 07360, Mexico City, Mexico
| | - Michael Schnoor
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, CP 07360, Mexico City, Mexico
| | - Leopoldo Santos-Argumedo
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, CP 07360, Mexico City, Mexico
| |
Collapse
|
33
|
Intermittent rolling is a defect of the extravasation cascade caused by Myosin1e-deficiency in neutrophils. Proc Natl Acad Sci U S A 2019; 116:26752-26758. [PMID: 31811025 DOI: 10.1073/pnas.1902502116] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Neutrophil extravasation is a migratory event in response to inflammation that depends on cytoskeletal dynamics regulated by myosins. Myosin-1e (Myo1e) is a long-tailed class-I myosin that has not yet been studied in the context of neutrophil-endothelial interactions and neutrophil extravasation. Intravital microscopy of TNFα-inflamed cremaster muscles in Myo1e-deficient mice revealed that Myo1e is required for efficient neutrophil extravasation. Specifically, Myo1e deficiency caused increased rolling velocity, decreased firm adhesion, aberrant crawling, and strongly reduced transmigration. Interestingly, we observed a striking discontinuous rolling behavior termed "intermittent rolling," during which Myo1e-deficient neutrophils showed alternating rolling and jumping movements. Surprisingly, chimeric mice revealed that these effects were due to Myo1e deficiency in leukocytes. Vascular permeability was not significantly altered in Myo1e KO mice. Myo1e-deficient neutrophils showed diminished arrest, spreading, uropod formation, and chemotaxis due to defective actin polymerization and integrin activation. In conclusion, Myo1e critically regulates adhesive interactions of neutrophils with the vascular endothelium and neutrophil extravasation. Myo1e may therefore be an interesting target in chronic inflammatory diseases characterized by excessive neutrophil recruitment.
Collapse
|
34
|
Mo X, Liu W, Yang Y, Imani S, Lu S, Dan G, Nie X, Yan J, Zhan R, Li X, Deng Y, Chen B, Cai Y. NCF2, MYO1F, S1PR4, and FCN1 as potential noninvasive diagnostic biomarkers in patients with obstructive coronary artery: A weighted gene co-expression network analysis. J Cell Biochem 2019; 120:18219-18235. [PMID: 31245869 PMCID: PMC6771964 DOI: 10.1002/jcb.29128] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 05/05/2019] [Accepted: 05/07/2019] [Indexed: 12/11/2022]
Abstract
This study aims to explore the predictive noninvasive biomarker for obstructive coronary artery disease (CAD). By using the data set GSE90074, weighted gene co-expression network analysis (WGCNA), and protein-protein interactive network, construction of differentially expressed genes in peripheral blood mononuclear cells was conducted to identify the most significant gene clusters associated with obstructive CAD. Univariate and multivariate stepwise logistic regression analyses and receiver operating characteristic analysis were used to predicate the diagnostic accuracy of biomarker candidates in the detection of obstructive CAD. Furthermore, functional prediction of candidate gene biomarkers was further confirmed in ST-segment elevation myocardial infarction (STEMI) patients or stable CAD patients by using the datasets of GSE62646 and GSE59867. We found that the blue module discriminated by WGCNA contained 13 hub-genes that could be independent risk factors for obstructive CAD (P < .05). Among these 13 hub-genes, a four-gene signature including neutrophil cytosol factor 2 (NCF2, P = .025), myosin-If (MYO1F, P = .001), sphingosine-1-phosphate receptor 4 (S1PR4, P = .015), and ficolin-1 (FCN1, P = .012) alone or combined with two risk factors (male sex and hyperlipidemia) may represent potential diagnostic biomarkers in obstructive CAD. Furthermore, the messenger RNA levels of NCF2, MYO1F, S1PR4, and FCN1 were higher in STEMI patients than that in stable CAD patients, although S1PR4 showed no statistical difference (P > .05). This four-gene signature could also act as a prognostic biomarker to discriminate STEMI patients from stable CAD patients. These findings suggest a four-gene signature (NCF2, MYO1F, S1PR4, and FCN1) alone or combined with two risk factors (male sex and hyperlipidemia) as a promising prognostic biomarker in the diagnosis of STEMI. Well-designed cohort studies should be implemented to warrant the diagnostic value of these genes in clinical purpose.
Collapse
Affiliation(s)
- Xian‐Gang Mo
- Department of GeriatricsThe Affiliated Hospital of Guizhou Medical UniversityGuiyangGuizhouChina
| | - Wei Liu
- Health Physical Examination CenterThe Affiliated Hospital of Qingdao UniversityQingdaoShandongChina
| | - Yao Yang
- Institute of Materia Medica, College of PharmacyArmy Medical University (Third Military Medical University)ChongqingChina
| | - Saber Imani
- Department of OncologyThe Affiliated Hospital of Southwest Medical UniversityLuzhouSichuanChina
| | - Shan Lu
- Institute of Materia Medica, College of PharmacyArmy Medical University (Third Military Medical University)ChongqingChina
| | - Guorong Dan
- Institute of Materia Medica, College of PharmacyArmy Medical University (Third Military Medical University)ChongqingChina
| | - Xuqiang Nie
- Institute of Materia Medica, College of PharmacyArmy Medical University (Third Military Medical University)ChongqingChina
| | - Jun Yan
- Center of Hepatobiliary Pancreatic DiseaseBeijing Tsinghua Changgung HospitalBeijingChina
| | - Rixing Zhan
- Institute of Burn Research, Southwest HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Xiaohui Li
- Institute of Materia Medica, College of PharmacyArmy Medical University (Third Military Medical University)ChongqingChina
| | - Youcai Deng
- Institute of Materia Medica, College of PharmacyArmy Medical University (Third Military Medical University)ChongqingChina
| | - Bingbo Chen
- Laboratory Animal CenterArmy Medical University (Third Military Medical University)ChongqingChina
| | - Yue Cai
- Department of Cardiology, Xijing HospitalFourth Military Medical UniversityXi'anShaanxiChina
| |
Collapse
|
35
|
Crawford L, Flaxman SR, Runcie DE, West M. VARIABLE PRIORITIZATION IN NONLINEAR BLACK BOX METHODS: A GENETIC ASSOCIATION CASE STUDY 1. Ann Appl Stat 2019; 13:958-989. [PMID: 32542104 PMCID: PMC7295151 DOI: 10.1214/18-aoas1222] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The central aim in this paper is to address variable selection questions in nonlinear and nonparametric regression. Motivated by statistical genetics, where nonlinear interactions are of particular interest, we introduce a novel and interpretable way to summarize the relative importance of predictor variables. Methodologically, we develop the "RelATive cEntrality" (RATE) measure to prioritize candidate genetic variants that are not just marginally important, but whose associations also stem from significant covarying relationships with other variants in the data. We illustrate RATE through Bayesian Gaussian process regression, but the methodological innovations apply to other "black box" methods. It is known that nonlinear models often exhibit greater predictive accuracy than linear models, particularly for phenotypes generated by complex genetic architectures. With detailed simulations and two real data association mapping studies, we show that applying RATE enables an explanation for this improved performance.
Collapse
|
36
|
Navinés-Ferrer A, Ainsua-Enrich E, Serrano-Candelas E, Sayós J, Martin M. Myo1f, an Unconventional Long-Tailed Myosin, Is a New Partner for the Adaptor 3BP2 Involved in Mast Cell Migration. Front Immunol 2019; 10:1058. [PMID: 31143189 PMCID: PMC6521229 DOI: 10.3389/fimmu.2019.01058] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 04/25/2019] [Indexed: 01/11/2023] Open
Abstract
Mast cell chemotaxis is essential for cell recruitment to target tissues, where these cells play an important role in adaptive and innate immunity. Stem cell factor (SCF) is a major chemoattractant for mast cells. SCF binds to the KIT receptor, thereby triggering tyrosine phosphorylation in the cytoplasmic domain and resulting in docking sites for SH2 domain-containing molecules, such as Lyn and Fyn, and the subsequent activation of the small GTPases Rac that are responsible for cytoskeletal reorganization and mast cell migration. In previous works we have reported the role of 3BP2, an adaptor molecule, in mast cells. 3BP2 silencing reduces FcεRI-dependent degranulation, by targeting Lyn and Syk phosphorylation, as well as SCF-dependent cell survival. This study examines its role in SCF-dependent migration and reveals that 3BP2 silencing in human mast cell line (LAD2) impairs cell migration due to SCF and IgE. In that context we found that 3BP2 silencing decreases Rac-2 and Cdc42 GTPase activity. Furthermore, we identified Myo1f, an unconventional type-I myosin, as a new partner for 3BP2. This protein, whose functions have been described as critical for neutrophil migration, remained elusive in mast cells. Myo1f is expressed in mast cells and colocalizes with cortical actin ring. Interestingly, Myo1f-3BP2 interaction is modulated by KIT signaling. Moreover, SCF dependent adhesion and migration through fibronectin is decreased after Myo1f silencing. Furthermore, Myo1f silencing leads to downregulation of β1 and β7 integrins on the mast cell membrane. Overall, Myo1f is a new 3BP2 ligand that connects the adaptor to actin cytoskeleton and both molecules are involved in SCF dependent mast cell migration.
Collapse
Affiliation(s)
- Arnau Navinés-Ferrer
- Biochemistry Unit, Biomedicine Department, Faculty of Medicine, University of Barcelona, Barcelona, Spain
- Laboratory of Clinic and Experimental Immunoallergy, IDIBAPS, Barcelona, Spain
| | - Erola Ainsua-Enrich
- Biochemistry Unit, Biomedicine Department, Faculty of Medicine, University of Barcelona, Barcelona, Spain
- Laboratory of Clinic and Experimental Immunoallergy, IDIBAPS, Barcelona, Spain
| | - Eva Serrano-Candelas
- Biochemistry Unit, Biomedicine Department, Faculty of Medicine, University of Barcelona, Barcelona, Spain
- Laboratory of Clinic and Experimental Immunoallergy, IDIBAPS, Barcelona, Spain
| | - Joan Sayós
- Immune Regulation and Immunotherapy Group, CIBBIM-Nanomedicine, Vall d'Hebron University Hospital, Research Institute (VHIR), Autonomous University of Barcelona, Barcelona, Spain
| | - Margarita Martin
- Biochemistry Unit, Biomedicine Department, Faculty of Medicine, University of Barcelona, Barcelona, Spain
- Laboratory of Clinic and Experimental Immunoallergy, IDIBAPS, Barcelona, Spain
| |
Collapse
|
37
|
|
38
|
Wang Y, Jin H, Wang W, Wang F, Zhao H. Myosin1f-mediated neutrophil migration contributes to acute neuroinflammation and brain injury after stroke in mice. J Neuroinflammation 2019; 16:77. [PMID: 30971272 PMCID: PMC6456973 DOI: 10.1186/s12974-019-1465-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/26/2019] [Indexed: 01/06/2023] Open
Abstract
Background During the acute stroke phase, neutrophils from the peripheral blood are first to arrive in the ischemic brain, which then attracts other immune cells that exacerbate neuroinflammation in the ischemic tissue. Myosin1f was reported to specifically mediate neutrophil migration in the peripheral tissues, but whether it plays a critical role in the neuroinflammatory response after ischemic stroke remains unknown. In this study, we aim to test the hypothesis that myosin1f-mediated neutrophil migration is critical in acute neuroinflammation induced by ischemic stroke. Methods Myosin1f −/− and wild type (WT) mice were subjected to transient middle cerebral artery occlusion (MCAO). To determine which cells determine myosin1f’s transmigration ability, bone marrow transplantation, neutrophil depletion, and adoptive neutrophil transfer were performed. The myosin1f RNA level was assessed in peripheral neutrophils by reverse transcription polymerase chain reaction (RT-PCR) at 1 day and 3 days after stroke. The infiltrating neutrophils were quantified by immunofluorescence staining and FACS at 72 h after reperfusion. Results The myosin1f −/− mice had significantly smaller infarctions than the myosin1f +/+ mice. Bone marrow transplantation from myosin1f −/− mice to recipient mice also had smaller infarctions compared to animals receiving bone marrow from myosin1f +/+ mice. By performing neutrophil depletion and adoptive transfer, we confirmed that myosin1f acts mainly in circulating neutrophils. RT-PCR showed that myosin1f gene expression was increased in the circulating blood neutrophils at 3 days after ischemia. The confocal immunostaining and FACS results confirmed that fewer neutrophils infiltrated into the ischemic brain in myosin1f −/− mice compared to WT mice. Conclusions Myosin1f determines neutrophil migration into the ischemic hemisphere, which directly affects stroke outcome. Electronic supplementary material The online version of this article (10.1186/s12974-019-1465-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yan Wang
- Department of Neurosurgery, Stanford University School of Medicine, 1201 Welch Road, MSLS Building, Room P306, Stanford, CA, 94305, USA
| | - Haojie Jin
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| | - Weifang Wang
- Center for Microbiota and Immunological Diseases, Shanghai General Hospital, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Building 5#, Room 807#, Shanghai, 200025, China
| | - Feng Wang
- Center for Microbiota and Immunological Diseases, Shanghai General Hospital, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Building 5#, Room 807#, Shanghai, 200025, China.
| | - Heng Zhao
- Department of Neurosurgery, Stanford University School of Medicine, 1201 Welch Road, MSLS Building, Room P306, Stanford, CA, 94305, USA.
| |
Collapse
|
39
|
Barger SR, Reilly NS, Shutova MS, Li Q, Maiuri P, Heddleston JM, Mooseker MS, Flavell RA, Svitkina T, Oakes PW, Krendel M, Gauthier NC. Membrane-cytoskeletal crosstalk mediated by myosin-I regulates adhesion turnover during phagocytosis. Nat Commun 2019; 10:1249. [PMID: 30890704 PMCID: PMC6425032 DOI: 10.1038/s41467-019-09104-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 02/21/2019] [Indexed: 11/09/2022] Open
Abstract
Phagocytosis of invading pathogens or cellular debris requires a dramatic change in cell shape driven by actin polymerization. For antibody-covered targets, phagocytosis is thought to proceed through the sequential engagement of Fc-receptors on the phagocyte with antibodies on the target surface, leading to the extension and closure of the phagocytic cup around the target. We find that two actin-dependent molecular motors, class 1 myosins myosin 1e and myosin 1f, are specifically localized to Fc-receptor adhesions and required for efficient phagocytosis of antibody-opsonized targets. Using primary macrophages lacking both myosin 1e and myosin 1f, we find that without the actin-membrane linkage mediated by these myosins, the organization of individual adhesions is compromised, leading to excessive actin polymerization, slower adhesion turnover, and deficient phagocytic internalization. This work identifies a role for class 1 myosins in coordinated adhesion turnover during phagocytosis and supports a mechanism involving membrane-cytoskeletal crosstalk for phagocytic cup closure.
Collapse
Affiliation(s)
- Sarah R Barger
- Cell and Developmental Biology Department, State University of New York Upstate Medical University, Syracuse, 13210, NY, USA
| | - Nicholas S Reilly
- Department of Physics, University of Rochester, Rochester, 14627, NY, USA
| | - Maria S Shutova
- Department of Biology, University of Pennsylvania, Philadelphia, 19104, PA, USA
| | - Qingsen Li
- IFOM, FIRC Institute of Molecular Oncology, Milan, 20139, Italy
| | - Paolo Maiuri
- IFOM, FIRC Institute of Molecular Oncology, Milan, 20139, Italy
| | - John M Heddleston
- Advanced Imaging Center, Howard Hughes Medical Institute Janelia Research Campus, Ashburn, 20147, VA, USA
| | - Mark S Mooseker
- Molecular, Cellular and Developmental Biology, Yale University, New Haven, 06520, CT, USA
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, 06519, CT, USA
- Howard Hughes Medical Institute, Yale University, New Haven, 06519, CT, USA
| | - Tatyana Svitkina
- Department of Biology, University of Pennsylvania, Philadelphia, 19104, PA, USA
| | - Patrick W Oakes
- Department of Physics, University of Rochester, Rochester, 14627, NY, USA
- Department of Biology, University of Rochester, Rochester, 14627, NY, USA
| | - Mira Krendel
- Cell and Developmental Biology Department, State University of New York Upstate Medical University, Syracuse, 13210, NY, USA.
| | - Nils C Gauthier
- IFOM, FIRC Institute of Molecular Oncology, Milan, 20139, Italy.
| |
Collapse
|
40
|
Girón-Pérez DA, Piedra-Quintero ZL, Santos-Argumedo L. Class I myosins: Highly versatile proteins with specific functions in the immune system. J Leukoc Biol 2019; 105:973-981. [PMID: 30821871 DOI: 10.1002/jlb.1mr0918-350rrr] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 02/04/2019] [Accepted: 02/06/2019] [Indexed: 12/20/2022] Open
Abstract
Connections established between cytoskeleton and plasma membrane are essential in cellular processes such as cell migration, vesicular trafficking, and cytokinesis. Class I myosins are motor proteins linking the actin-cytoskeleton with membrane phospholipids. Previous studies have implicated these molecules in cell functions including endocytosis, exocytosis, release of extracellular vesicles and the regulation of cell shape and membrane elasticity. In immune cells, those proteins also are involved in the formation and maintenance of immunological synapse-related signaling. Thus, these proteins are master regulators of actin cytoskeleton dynamics in different scenarios. Although the localization of class I myosins has been described in vertebrates, their functions, regulation, and mechanical properties are not very well understood. In this review, we focused on and summarized the current understanding of class I myosins in vertebrates with particular emphasis in leukocytes.
Collapse
Affiliation(s)
- Daniel Alberto Girón-Pérez
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| | - Zayda Lizbeth Piedra-Quintero
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| | - Leopoldo Santos-Argumedo
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| |
Collapse
|
41
|
Piedra-Quintero ZL, Serrano C, Villegas-Sepúlveda N, Maravillas-Montero JL, Romero-Ramírez S, Shibayama M, Medina-Contreras O, Nava P, Santos-Argumedo L. Myosin 1F Regulates M1-Polarization by Stimulating Intercellular Adhesion in Macrophages. Front Immunol 2019; 9:3118. [PMID: 30687322 PMCID: PMC6335276 DOI: 10.3389/fimmu.2018.03118] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 12/17/2018] [Indexed: 12/13/2022] Open
Abstract
Intestinal macrophages are highly mobile cells with extraordinary plasticity and actively contribute to cytokine-mediated epithelial cell damage. The mechanisms triggering macrophage polarization into a proinflammatory phenotype are unknown. Here, we report that during inflammation macrophages enhance its intercellular adhesion properties in order to acquire a M1-phenotype. Using in vitro and in vivo models we demonstrate that intercellular adhesion is mediated by integrin-αVβ3 and relies in the presence of the unconventional class I myosin 1F (Myo1F). Intercellular adhesion mediated by αVβ3 stimulates M1-like phenotype in macrophages through hyperactivation of STAT1 and STAT3 downstream of ILK/Akt/mTOR signaling. Inhibition of integrin-αVβ3, Akt/mTOR, or lack of Myo1F attenuated the commitment of macrophages into a pro-inflammatory phenotype. In a model of colitis, Myo1F deficiency strongly reduces the secretion of proinflammatory cytokines, decreases epithelial damage, ameliorates disease activity, and enhances tissue repair. Together our findings uncover an unknown role for Myo1F as part of the machinery that regulates intercellular adhesion and polarization in macrophages.
Collapse
Affiliation(s)
| | - Carolina Serrano
- Department of Physiology, Biophysics and Neurosciences, Cinvestav Zacatenco, Mexico City, Mexico
| | | | - José L Maravillas-Montero
- Research Support Network, Universidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Mexico City, Mexico
| | - Sandra Romero-Ramírez
- Research Support Network, Universidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Mexico City, Mexico
| | - Mineko Shibayama
- Department of Infectomics and Molecular Pathogenesis, Cinvestav Zacatenco, Mexico City, Mexico
| | - Oscar Medina-Contreras
- Immunology and Proteomics Laboratory, Mexico Children's Hospital Federico Gómez, Mexico City, Mexico
| | - Porfirio Nava
- Department of Physiology, Biophysics and Neurosciences, Cinvestav Zacatenco, Mexico City, Mexico
| | | |
Collapse
|
42
|
Diquigiovanni C, Bergamini C, Evangelisti C, Isidori F, Vettori A, Tiso N, Argenton F, Costanzini A, Iommarini L, Anbunathan H, Pagotto U, Repaci A, Babbi G, Casadio R, Lenaz G, Rhoden KJ, Porcelli AM, Fato R, Bowcock A, Seri M, Romeo G, Bonora E. Mutant MYO1F alters the mitochondrial network and induces tumor proliferation in thyroid cancer. Int J Cancer 2018; 143:1706-1719. [PMID: 29672841 DOI: 10.1002/ijc.31548] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 03/21/2018] [Accepted: 04/11/2018] [Indexed: 12/26/2022]
Abstract
Familial aggregation is a significant risk factor for the development of thyroid cancer and familial non-medullary thyroid cancer (FNMTC) accounts for 5-7% of all NMTC. Whole exome sequencing analysis in the family affected by FNMTC with oncocytic features where our group previously identified a predisposing locus on chromosome 19p13.2, revealed a novel heterozygous mutation (c.400G > A, NM_012335; p.Gly134Ser) in exon 5 of MYO1F, mapping to the linkage locus. In the thyroid FRTL-5 cell model stably expressing the mutant MYO1F p.Gly134Ser protein, we observed an altered mitochondrial network, with increased mitochondrial mass and a significant increase in both intracellular and extracellular reactive oxygen species, compared to cells expressing the wild-type (wt) protein or carrying the empty vector. The mutation conferred a significant advantage in colony formation, invasion and anchorage-independent growth. These data were corroborated by in vivo studies in zebrafish, since we demonstrated that the mutant MYO1F p.Gly134Ser, when overexpressed, can induce proliferation in whole vertebrate embryos, compared to the wt one. MYO1F screening in additional 192 FNMTC families identified another variant in exon 7, which leads to exon skipping, and is predicted to alter the ATP-binding domain in MYO1F. Our study identified for the first time a role for MYO1F in NMTC.
Collapse
Affiliation(s)
- Chiara Diquigiovanni
- Department of Medical and Surgical Sciences, DIMEC, St. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Christian Bergamini
- Department of Pharmacy and Biotechnology, FABIT, University of Bologna, Bologna, Italy
| | - Cecilia Evangelisti
- Department of Biomedical and Neuromotor Sciences, DIBINEM, University of Bologna, Bologna, Italy
| | - Federica Isidori
- Department of Medical and Surgical Sciences, DIMEC, St. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Andrea Vettori
- Department of Biology, University of Padova, Padova, Italy
| | - Natascia Tiso
- Department of Biology, University of Padova, Padova, Italy
| | | | - Anna Costanzini
- Department of Medical and Surgical Sciences, DIMEC, St. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy.,Department of Pharmacy and Biotechnology, FABIT, University of Bologna, Bologna, Italy
| | - Luisa Iommarini
- Department of Pharmacy and Biotechnology, FABIT, University of Bologna, Bologna, Italy
| | - Hima Anbunathan
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Uberto Pagotto
- Department of Medical and Surgical Sciences, DIMEC, St. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Andrea Repaci
- Endocrinology Unit, St. Orsola-Malpighi Hospital, Bologna, Italy
| | - Giulia Babbi
- Department of Pharmacy and Biotechnology, FABIT, University of Bologna, Bologna, Italy
| | - Rita Casadio
- Department of Pharmacy and Biotechnology, FABIT, University of Bologna, Bologna, Italy
| | - Giorgio Lenaz
- Department of Biomedical and Neuromotor Sciences, DIBINEM, University of Bologna, Bologna, Italy
| | - Kerry J Rhoden
- Department of Medical and Surgical Sciences, DIMEC, St. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Anna Maria Porcelli
- Department of Pharmacy and Biotechnology, FABIT, University of Bologna, Bologna, Italy
| | - Romana Fato
- Department of Pharmacy and Biotechnology, FABIT, University of Bologna, Bologna, Italy
| | - Anne Bowcock
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Marco Seri
- Department of Medical and Surgical Sciences, DIMEC, St. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Giovanni Romeo
- Department of Medical and Surgical Sciences, DIMEC, St. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Elena Bonora
- Department of Medical and Surgical Sciences, DIMEC, St. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| |
Collapse
|
43
|
Myosin 1f is specifically required for neutrophil migration in 3D environments during acute inflammation. Blood 2018; 131:1887-1898. [PMID: 29487067 DOI: 10.1182/blood-2017-10-811851] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 02/21/2018] [Indexed: 01/13/2023] Open
Abstract
Neutrophil extravasation and interstitial migration are important steps during the recruitment of neutrophils to sites of inflammation. In the present study, we addressed the functional importance of the unconventional class I myosin 1f (Myo1f) for neutrophil trafficking during acute inflammation. In contrast to leukocyte rolling and adhesion, the genetic absence of Myo1f severely compromised neutrophil extravasation into the inflamed mouse cremaster tissue when compared with Myo1f+/+ mice as studied by intravital microscopy. Similar results were obtained in experimental models of acute peritonitis and acute lung injury. In contrast to 2-dimensional migration, which occurred independently of Myo1f, Myo1f was indispensable for neutrophil migration in 3-dimensional (3D) environments, that is, transmigration and migration in collagen networks as it regulated squeezing and dynamic deformation of the neutrophil nucleus during migration through physical barriers. Thus, we provide evidence for an important role of Myo1f in neutrophil trafficking during inflammation by specifically regulating neutrophil extravasation and migration in 3D environments.
Collapse
|
44
|
Myosin 1e promotes breast cancer malignancy by enhancing tumor cell proliferation and stimulating tumor cell de-differentiation. Oncotarget 2018; 7:46419-46432. [PMID: 27329840 PMCID: PMC5216807 DOI: 10.18632/oncotarget.10139] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 06/01/2016] [Indexed: 01/23/2023] Open
Abstract
Despite advancing therapies, thousands of women die every year of breast cancer. Myosins, actin-dependent molecular motors, are likely to contribute to tumor formation and metastasis via their effects on cell adhesion and migration and may provide promising new targets for cancer therapies. Using the MMTV-PyMT murine model of breast cancer, we identified Myosin 1e (MYO1E) as a novel tumor promoter. Tumor latency in mice lacking MYO1E was significantly increased, and tumors formed in the absence of MYO1E displayed unusual papillary morphology, with well-differentiated layers of epithelial cells covering fibrovascular cores, rather than solid sheets of tumor cells typically observed in this cancer model. These tumors were reminiscent of papillary breast cancer in humans that is typically non-invasive and often cured by tumor excision. MYO1E-null tumors exhibited decreased expression of the markers of cell proliferation, which was recapitulated in primary tumor cells derived from MYO1E-null mice. In agreement with our findings, meta-analysis of patient survival data indicated that MYO1E expression level was associated with reduced recurrence-free survival in basal-like breast cancer. Overall, our data suggests that MYO1E contributes to breast tumor malignancy and regulates the differentiation and proliferation state of breast tumor cells.
Collapse
|
45
|
López-Ortega O, Santos-Argumedo L. Myosin 1g Contributes to CD44 Adhesion Protein and Lipid Rafts Recycling and Controls CD44 Capping and Cell Migration in B Lymphocytes. Front Immunol 2017; 8:1731. [PMID: 29321775 PMCID: PMC5732150 DOI: 10.3389/fimmu.2017.01731] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/23/2017] [Indexed: 12/30/2022] Open
Abstract
Cell migration and adhesion are critical for immune system function and involve many proteins, which must be continuously transported and recycled in the cell. Recycling of adhesion molecules requires the participation of several proteins, including actin, tubulin, and GTPases, and of membrane components such as sphingolipids and cholesterol. However, roles of actin motor proteins in adhesion molecule recycling are poorly understood. In this study, we identified myosin 1g as one of the important motor proteins that drives recycling of the adhesion protein CD44 in B lymphocytes. We demonstrate that the lack of Myo1g decreases the cell-surface levels of CD44 and of the lipid raft surrogate GM1. In cells depleted of Myo1g, the recycling of CD44 was delayed, the delay seems to be caused at the level of formation of recycling complex and entry into recycling endosomes. Moreover, a defective lipid raft recycling in Myo1g-deficient cells had an impact both on the capping of CD44 and on cell migration. Both processes required the transportation of lipid rafts to the cell surface to deliver signaling components. Furthermore, the extramembrane was essential for cell expansion and remodeling of the plasma membrane topology. Therefore, Myo1g is important during the recycling of lipid rafts to the membrane and to the accompanied proteins that regulate plasma membrane plasticity. Thus, Myosin 1g contributes to cell adhesion and cell migration through CD44 recycling in B lymphocytes.
Collapse
Affiliation(s)
- Orestes López-Ortega
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| | - Leopoldo Santos-Argumedo
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| |
Collapse
|
46
|
Genetic Architecture and Candidate Genes Identified for Follicle Number in Chicken. Sci Rep 2017; 7:16412. [PMID: 29180824 PMCID: PMC5703906 DOI: 10.1038/s41598-017-16557-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 11/14/2017] [Indexed: 11/08/2022] Open
Abstract
Follicular development has a major impact on reproductive performance. Most previous researchers focused on molecular mechanisms of follicular development. The genetic architecture underlying the number of follicle, however, has yet not to be thoroughly defined in chicken. Here we report a genome-wide association study for the genetic architecture determining the numbers of follicles in a large F2 resource population. The results showed heritability were low to moderate (0.05-0.28) for number of pre-ovulatory follicles (POF), small yellow follicles (SYF) and atresia follicles (AF). The highly significant SNPs associated with SYF were mainly located on GGA17 and GGA28. Only four significant SNPs were identified for POF on GGA1. The variance partitioned across chromosomes and chromosome lengths had a linear relationship for SYF (R2 = 0.58). The enriched genes created by the closest correspondent significant SNPs were found to be involved in biological pathways related to cell proliferation, cell cycle and cell survival. Two promising candidate genes, AMH and RGS3, were suggested to be prognostic biomarkers for SYF. In conclusion, this study offers the first evidence of genetic variance and positional candidate genes which influence the number of SYF in chicken. These identified informative SNPs may facilitate selection for an improved reproductive performance of laying hens.
Collapse
|
47
|
Maass PG, Glažar P, Memczak S, Dittmar G, Hollfinger I, Schreyer L, Sauer AV, Toka O, Aiuti A, Luft FC, Rajewsky N. A map of human circular RNAs in clinically relevant tissues. J Mol Med (Berl) 2017; 95:1179-1189. [PMID: 28842720 PMCID: PMC5660143 DOI: 10.1007/s00109-017-1582-9] [Citation(s) in RCA: 269] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 08/03/2017] [Accepted: 08/18/2017] [Indexed: 01/09/2023]
Abstract
Abstract Cellular circular RNAs (circRNAs) are generated by head-to-tail splicing and are present in all multicellular organisms studied so far. Recently, circRNAs have emerged as a large class of RNA which can function as post-transcriptional regulators. It has also been shown that many circRNAs are tissue- and stage-specifically expressed. Moreover, the unusual stability and expression specificity make circRNAs important candidates for clinical biomarker research. Here, we present a circRNA expression resource of 20 human tissues highly relevant to disease-related research: vascular smooth muscle cells (VSMCs), human umbilical vein cells (HUVECs), artery endothelial cells (HUAECs), atrium, vena cava, neutrophils, platelets, cerebral cortex, placenta, and samples from mesenchymal stem cell differentiation. In eight different samples from a single donor, we found highly tissue-specific circRNA expression. Circular-to-linear RNA ratios revealed that many circRNAs were expressed higher than their linear host transcripts. Among the 71 validated circRNAs, we noticed potential biomarkers. In adenosine deaminase-deficient, severe combined immunodeficiency (ADA-SCID) patients and in Wiskott-Aldrich-Syndrome (WAS) patients’ samples, we found evidence for differential circRNA expression of genes that are involved in the molecular pathogenesis of both phenotypes. Our findings underscore the need to assess circRNAs in mechanisms of human disease. Key messages circRNA resource catalog of 20 clinically relevant tissues. circRNA expression is highly tissue-specific. circRNA transcripts are often more abundant than their linear host RNAs. circRNAs can be differentially expressed in disease-associated genes.
Electronic supplementary material The online version of this article (10.1007/s00109-017-1582-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Philipp G Maass
- Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC), Lindenberger Weg 80, 13125, Berlin, Germany. .,Max Delbrück Center for Molecular Medicine (MDC), Robert-Rössle-Strasse 10, 13125, Berlin, Germany. .,Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave, Cambridge, MA, 02138, USA.
| | - Petar Glažar
- Max Delbrück Center for Molecular Medicine (MDC), Robert-Rössle-Strasse 10, 13125, Berlin, Germany
| | - Sebastian Memczak
- Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC), Lindenberger Weg 80, 13125, Berlin, Germany.,Max Delbrück Center for Molecular Medicine (MDC), Robert-Rössle-Strasse 10, 13125, Berlin, Germany
| | - Gunnar Dittmar
- Max Delbrück Center for Molecular Medicine (MDC), Robert-Rössle-Strasse 10, 13125, Berlin, Germany
| | - Irene Hollfinger
- Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC), Lindenberger Weg 80, 13125, Berlin, Germany.,Max Delbrück Center for Molecular Medicine (MDC), Robert-Rössle-Strasse 10, 13125, Berlin, Germany
| | - Luisa Schreyer
- Max Delbrück Center for Molecular Medicine (MDC), Robert-Rössle-Strasse 10, 13125, Berlin, Germany
| | - Aisha V Sauer
- Scientific Institute HS Raffaele, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), 20132, Milan, Italy
| | - Okan Toka
- Department of Pediatric Cardiology, Children's Hospital, Friedrich-Alexander University Erlangen, Loschge Strasse 15, 91054, Erlangen, Germany.,The German Registry for Congenital Heart Defects, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Alessandro Aiuti
- Scientific Institute HS Raffaele, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), 20132, Milan, Italy.,Vita Salute San Raffaele University, Milan, Italy
| | - Friedrich C Luft
- Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC), Lindenberger Weg 80, 13125, Berlin, Germany.,Max Delbrück Center for Molecular Medicine (MDC), Robert-Rössle-Strasse 10, 13125, Berlin, Germany.,Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, 37235, USA
| | - Nikolaus Rajewsky
- Max Delbrück Center for Molecular Medicine (MDC), Robert-Rössle-Strasse 10, 13125, Berlin, Germany.
| |
Collapse
|
48
|
How myosin organization of the actin cytoskeleton contributes to the cancer phenotype. Biochem Soc Trans 2017; 44:1026-34. [PMID: 27528748 DOI: 10.1042/bst20160034] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Indexed: 12/29/2022]
Abstract
The human genome contains 39 genes that encode myosin heavy chains, classified on the basis of their sequence similarity into 12 classes. Most cells express at least 12 different genes, from at least 8 different classes, which are typically composed of several class 1 genes, at least one class 2 gene and classes 5, 6, 9, 10, 18 and 19. Although the different myosin isoforms all have specific and non-overlapping roles in the cell, in combination they all contribute to the organization of the actin cytoskeleton, and the shape and phenotype of the cell. Over (or under) expression of these different myosin isoforms can have strong effects on actin organization, cell shape and contribute to the cancer phenotype as discussed in this review.
Collapse
|
49
|
Label-free Analysis of CD8+ T Cell Subset Proteomes Supports a Progressive Differentiation Model of Human-Virus-Specific T Cells. Cell Rep 2017; 19:1068-1079. [DOI: 10.1016/j.celrep.2017.04.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 03/05/2017] [Accepted: 04/04/2017] [Indexed: 02/08/2023] Open
|
50
|
Effects of concave and convex substrate curvature on cell mechanics and the cytoskeleton. CHINESE CHEM LETT 2017. [DOI: 10.1016/j.cclet.2016.10.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|