1
|
Brecht M. Large brains: Big unknowns in cellular neuroscience. Curr Opin Neurobiol 2025; 91:102981. [PMID: 39978220 DOI: 10.1016/j.conb.2025.102981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 01/07/2025] [Accepted: 01/31/2025] [Indexed: 02/22/2025]
Abstract
Contemporary cellular neuroscience is strong on small but weak on large brains. Large brains have lower neuronal densities than smaller brains. We outline opposing functional interpretations of this result. Analysis of human brains supports the idea that dendritic complexity matters and might even correlate with intellectual ability. Cortical connectomics revealed an elaboration of disinhibitory motifs in human brains. There is disagreement as to whether glia-to-neuron ratios differ between small and large brains. The elaborate myeloarchitecture of the human brain has long been recognized and novel evidence indicates myelin might play nonconventional structural functions in larger brains. Three-dimensional body-part models in the cortex of tactile specialists point to the significance of the three-dimensional structure of cortical networks. The comparative assessment of brain performance remains one of the biggest challenges in neurobiology. Understanding cellular differences between small and large brains is a neglected, yet fundamental issue for neuroscience and translation.
Collapse
Affiliation(s)
- Michael Brecht
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Philippstr. 13, Haus 6, 10115 Berlin, Germany; NeuroCure Cluster of Excellence, Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
2
|
Pjanovic V, Zavatone-Veth J, Masset P, Keemink S, Nardin M. Combining Sampling Methods with Attractor Dynamics in Spiking Models of Head-Direction Systems. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.25.640158. [PMID: 40060526 PMCID: PMC11888369 DOI: 10.1101/2025.02.25.640158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Uncertainty is a fundamental aspect of the natural environment, requiring the brain to infer and integrate noisy signals to guide behavior effectively. Sampling-based inference has been proposed as a mechanism for dealing with uncertainty, particularly in early sensory processing. However, it is unclear how to reconcile sampling-based methods with operational principles of higher-order brain areas, such as attractor dynamics of persistent neural representations. In this study, we present a spiking neural network model for the head-direction (HD) system that combines sampling-based inference with attractor dynamics. To achieve this, we derive the required spiking neural network dynamics and interactions to perform sampling from a large family of probability distributions-including variables encoded with Poisson noise. We then propose a method that allows the network to update its estimate of the current head direction by integrating angular velocity samples-derived from noisy inputs-with a pull towards a circular manifold, thereby maintaining consistent attractor dynamics. This model makes specific, testable predictions about the HD system that can be examined in future neurophysiological experiments: it predicts correlated subthreshold voltage fluctuations; distinctive short- and long-term firing correlations among neurons; and characteristic statistics of the movement of the neural activity "bump" representing the head direction. Overall, our approach extends previous theories on probabilistic sampling with spiking neurons, offers a novel perspective on the computations responsible for orientation and navigation, and supports the hypothesis that sampling-based methods can be combined with attractor dynamics to provide a viable framework for studying neural dynamics across the brain.
Collapse
Affiliation(s)
- Vojko Pjanovic
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
- Department of Machine Learning and Neural Computing, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Netherlands
| | - Jacob Zavatone-Veth
- Society of Fellows and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Paul Masset
- Department of Psychology, McGill University, Montréal QC, Canada
| | - Sander Keemink
- Department of Machine Learning and Neural Computing, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Netherlands
| | - Michele Nardin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| |
Collapse
|
3
|
Collett T, Graham P, Heinze S. The neuroethology of ant navigation. Curr Biol 2025; 35:R110-R124. [PMID: 39904309 DOI: 10.1016/j.cub.2024.12.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Unlike any other group of animals, all ant species are social: individual ants share the food they gather with their nestmates and as a consequence they must repeatedly leave their nest to find food and then return home with it. These back-and-forth foraging trips have been studied for about a century and much of our growing understanding of the strategies underlying animal navigation has come from these studies. One important strategy that ants use to keep track of where they are on a foraging trip is 'path integration', in which they continuously update a 'home vector' that gives their estimated distance and direction from the nest. As path integration accumulates errors, it cannot be relied on to bring ants precisely home: such precision is accomplished by using views of the nest acquired before they start foraging. Further learning is scaffolded by home vectors or remembered food vectors, which guide a route and help in learning useful views experienced on the way. Many species rely on olfaction as well as vision for route guidance and the full details of their foraging paths have revealed how ants use a mix of innate and learnt multisensory cues. Wood ants, a species on which we focus in this review, take an oscillating path along a pheromone trail to sample odours, but acquire visual information only at the peaks and troughs of the oscillations. To provide a working model of the neural basis of the multimodal navigational strategies of ants, we outline the anatomy and functioning of major central brain areas and neural circuits - the central complex, mushroom bodies and lateral accessory lobes - that are involved in the coordination of navigational behaviour and the learning of visual and olfactory patterns. Because ant brains have not yet been well-studied, we rely on the work that has been done with other species - notably, Drosophila, silkworm moths and bees - to derive plausible neural circuitry that can deliver the ants' navigational strategies.
Collapse
Affiliation(s)
- Thomas Collett
- School of Life Sciences, University of Sussex, Brighton, UK.
| | - Paul Graham
- School of Life Sciences, University of Sussex, Brighton, UK
| | - Stanley Heinze
- Lund University, Department of Biology, Lund Vision Group, Lund, Sweden
| |
Collapse
|
4
|
Rozenfeld E, Parnas M. Neuronal circuit mechanisms of competitive interaction between action-based and coincidence learning. SCIENCE ADVANCES 2024; 10:eadq3016. [PMID: 39642217 PMCID: PMC11623277 DOI: 10.1126/sciadv.adq3016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 10/30/2024] [Indexed: 12/08/2024]
Abstract
How information is integrated across different forms of learning is crucial to understanding higher cognitive functions. Animals form classic or operant associations between cues and their outcomes. It is believed that a prerequisite for operant conditioning is the formation of a classical association. Thus, both memories coexist and are additive. However, the two memories can result in opposing behavioral responses, which can be disadvantageous. We show that Drosophila classical and operant olfactory conditioning rely on distinct neuronal pathways leading to different behavioral responses. Plasticity in both pathways cannot be formed simultaneously. If plasticity occurs at both pathways, interference between them occurs and learning is disrupted. Activity of the navigation center is required to prevent plasticity in the classical pathway and enable it in the operant pathway. These findings fundamentally challenge hierarchical views of operant and classical learning and show that active processes prevent coexistence of the two memories.
Collapse
Affiliation(s)
- Eyal Rozenfeld
- Department of Physiology and Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Moshe Parnas
- Department of Physiology and Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
5
|
Jahn S, Althaus V, Seip A, Rotella S, Heckmann J, Janning M, Kolano J, Kaufmann A, Homberg U. Neuroarchitecture of the Central Complex in the Madeira Cockroach Rhyparobia maderae: Tangential Neurons. J Comp Neurol 2024; 532:e70009. [PMID: 39658819 PMCID: PMC11632141 DOI: 10.1002/cne.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/15/2024] [Accepted: 11/25/2024] [Indexed: 12/12/2024]
Abstract
Navigating in diverse environments to find food, shelter, or mating partners is an important ability for nearly all animals. Insects have evolved diverse navigational strategies to survive in challenging and unknown environments. In the insect brain, the central complex (CX) plays an important role in spatial orientation and directed locomotion. It consists of the protocerebral bridge (PB), the central body with upper (CBU) and lower division (CBL), and the paired noduli (NO). As shown in various insect species, the CX integrates multisensory cues, including sky compass signals, wind direction, and ego-motion to provide goal-directed vector output used for steering locomotion and flight. While most of these data originate from studies on day-active insects, less is known about night-active species such as cockroaches. Following our analysis of columnar and pontine neurons, the present study complements our investigation of the cellular architecture of the CX of the Madeira cockroach by analyzing tangential neurons. Based on single-cell tracer injections, we provide further details on the internal organization of the CX and distinguished 27 types of tangential neuron, including three types of neuron innervating the PB, six types of the CBL, and 18 types of the CBU. The anterior lip, a brain area unknown in flies and highly reduced in bees, and the crepine are strongly connected to the cockroach CBU in contrast to other insect species. One tangential neuron of the CBU revealed a direct connection between the mushroom bodies and the CBU.
Collapse
Affiliation(s)
- Stefanie Jahn
- Department of Biology, Animal PhysiologyPhilipps‐University of MarburgMarburgGermany
| | - Vanessa Althaus
- Department of Biology, Animal PhysiologyPhilipps‐University of MarburgMarburgGermany
| | - Ann‐Katrin Seip
- Department of Biology, Animal PhysiologyPhilipps‐University of MarburgMarburgGermany
| | - Saron Rotella
- Department of Biology, Animal PhysiologyPhilipps‐University of MarburgMarburgGermany
| | - Jannik Heckmann
- Department of Biology, Animal PhysiologyPhilipps‐University of MarburgMarburgGermany
| | - Mona Janning
- Department of Biology, Animal PhysiologyPhilipps‐University of MarburgMarburgGermany
| | - Juliana Kolano
- Department of Biology, Animal PhysiologyPhilipps‐University of MarburgMarburgGermany
| | - Aurelia Kaufmann
- Department of Biology, Animal PhysiologyPhilipps‐University of MarburgMarburgGermany
| | - Uwe Homberg
- Department of Biology, Animal PhysiologyPhilipps‐University of MarburgMarburgGermany
- Center for Mind Brain and Behavior (CMBB)University of Marburg and Justus Liebig University of GiessenMarburgGermany
| |
Collapse
|
6
|
Pabst K, Gkanias E, Webb B, Homberg U, Endres D. A computational model for angular velocity integration in a locust heading circuit. PLoS Comput Biol 2024; 20:e1012155. [PMID: 39705331 DOI: 10.1371/journal.pcbi.1012155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 01/06/2025] [Accepted: 11/25/2024] [Indexed: 12/22/2024] Open
Abstract
Accurate navigation often requires the maintenance of a robust internal estimate of heading relative to external surroundings. We present a model for angular velocity integration in a desert locust heading circuit, applying concepts from early theoretical work on heading circuits in mammals to a novel biological context in insects. In contrast to similar models proposed for the fruit fly, this circuit model uses a single 360° heading direction representation and is updated by neuromodulatory angular velocity inputs. Our computational model was implemented using steady-state firing rate neurons with dynamical synapses. The circuit connectivity was constrained by biological data, and remaining degrees of freedom were optimised with a machine learning approach to yield physiologically plausible neuron activities. We demonstrate that the integration of heading and angular velocity in this circuit is robust to noise. The heading signal can be effectively used as input to an existing insect goal-directed steering circuit, adapted for outbound locomotion in a steady direction that resembles locust migration. Our study supports the possibility that similar computations for orientation may be implemented differently in the neural hardware of the fruit fly and the locust.
Collapse
Affiliation(s)
- Kathrin Pabst
- Department of Psychology, Philipps-Universität Marburg, Marburg, Hesse, Germany
- Center for Mind, Brain and Behavior (CMBB), Philipps-Universität Marburg, Justus Liebig Universität Giessen, and Technische Universität Darmstadt, Hesse, Germany
| | - Evripidis Gkanias
- School of Informatics, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Barbara Webb
- School of Informatics, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Uwe Homberg
- Center for Mind, Brain and Behavior (CMBB), Philipps-Universität Marburg, Justus Liebig Universität Giessen, and Technische Universität Darmstadt, Hesse, Germany
- Department of Biology, Philipps-Universität Marburg, Marburg, Hesse, Germany
| | - Dominik Endres
- Department of Psychology, Philipps-Universität Marburg, Marburg, Hesse, Germany
- Center for Mind, Brain and Behavior (CMBB), Philipps-Universität Marburg, Justus Liebig Universität Giessen, and Technische Universität Darmstadt, Hesse, Germany
| |
Collapse
|
7
|
Basu J, Nagel K. Neural circuits for goal-directed navigation across species. Trends Neurosci 2024; 47:904-917. [PMID: 39393938 PMCID: PMC11563880 DOI: 10.1016/j.tins.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/26/2024] [Accepted: 09/17/2024] [Indexed: 10/13/2024]
Abstract
Across species, navigation is crucial for finding both resources and shelter. In vertebrates, the hippocampus supports memory-guided goal-directed navigation, whereas in arthropods the central complex supports similar functions. A growing literature is revealing similarities and differences in the organization and function of these brain regions. We review current knowledge about how each structure supports goal-directed navigation by building internal representations of the position or orientation of an animal in space, and of the location or direction of potential goals. We describe input pathways to each structure - medial and lateral entorhinal cortex in vertebrates, and columnar and tangential neurons in insects - that primarily encode spatial and non-spatial information, respectively. Finally, we highlight similarities and differences in spatial encoding across clades and suggest experimental approaches to compare coding principles and behavioral capabilities across species. Such a comparative approach can provide new insights into the neural basis of spatial navigation and neural computation.
Collapse
Affiliation(s)
- Jayeeta Basu
- Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA; Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA; Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA.
| | - Katherine Nagel
- Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA; Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA.
| |
Collapse
|
8
|
Garner D, Kind E, Lai JYH, Nern A, Zhao A, Houghton L, Sancer G, Wolff T, Rubin GM, Wernet MF, Kim SS. Connectomic reconstruction predicts visual features used for navigation. Nature 2024; 634:181-190. [PMID: 39358517 PMCID: PMC11446847 DOI: 10.1038/s41586-024-07967-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 08/20/2024] [Indexed: 10/04/2024]
Abstract
Many animals use visual information to navigate1-4, but how such information is encoded and integrated by the navigation system remains incompletely understood. In Drosophila melanogaster, EPG neurons in the central complex compute the heading direction5 by integrating visual input from ER neurons6-12, which are part of the anterior visual pathway (AVP)10,13-16. Here we densely reconstruct all neurons in the AVP using electron-microscopy data17. The AVP comprises four neuropils, sequentially linked by three major classes of neurons: MeTu neurons10,14,15, which connect the medulla in the optic lobe to the small unit of the anterior optic tubercle (AOTUsu) in the central brain; TuBu neurons9,16, which connect the AOTUsu to the bulb neuropil; and ER neurons6-12, which connect the bulb to the EPG neurons. On the basis of morphologies, connectivity between neural classes and the locations of synapses, we identify distinct information channels that originate from four types of MeTu neurons, and we further divide these into ten subtypes according to the presynaptic connections in the medulla and the postsynaptic connections in the AOTUsu. Using the connectivity of the entire AVP and the dendritic fields of the MeTu neurons in the optic lobes, we infer potential visual features and the visual area from which any ER neuron receives input. We confirm some of these predictions physiologically. These results provide a strong foundation for understanding how distinct sensory features can be extracted and transformed across multiple processing stages to construct higher-order cognitive representations.
Collapse
Affiliation(s)
- Dustin Garner
- Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Emil Kind
- Department of Biology, Freie Universität Berlin, Berlin, Germany
| | - Jennifer Yuet Ha Lai
- Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Aljoscha Nern
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Arthur Zhao
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Lucy Houghton
- Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Gizem Sancer
- Department of Biology, Freie Universität Berlin, Berlin, Germany
- Department of Neuroscience, Yale University, New Haven, CT, USA
| | - Tanya Wolff
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Gerald M Rubin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Mathias F Wernet
- Department of Biology, Freie Universität Berlin, Berlin, Germany.
| | - Sung Soo Kim
- Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA.
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, USA.
- Dynamical Neuroscience, University of California Santa Barbara, Santa Barbara, CA, USA.
| |
Collapse
|
9
|
Stentiford R, Knight JC, Nowotny T, Philippides A, Graham P. Estimating orientation in natural scenes: A spiking neural network model of the insect central complex. PLoS Comput Biol 2024; 20:e1011913. [PMID: 39146374 PMCID: PMC11349202 DOI: 10.1371/journal.pcbi.1011913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 08/27/2024] [Accepted: 07/24/2024] [Indexed: 08/17/2024] Open
Abstract
The central complex of insects contains cells, organised as a ring attractor, that encode head direction. The 'bump' of activity in the ring can be updated by idiothetic cues and external sensory information. Plasticity at the synapses between these cells and the ring neurons, that are responsible for bringing sensory information into the central complex, has been proposed to form a mapping between visual cues and the heading estimate which allows for more accurate tracking of the current heading, than if only idiothetic information were used. In Drosophila, ring neurons have well characterised non-linear receptive fields. In this work we produce synthetic versions of these visual receptive fields using a combination of excitatory inputs and mutual inhibition between ring neurons. We use these receptive fields to bring visual information into a spiking neural network model of the insect central complex based on the recently published Drosophila connectome. Previous modelling work has focused on how this circuit functions as a ring attractor using the same type of simple visual cues commonly used experimentally. While we initially test the model on these simple stimuli, we then go on to apply the model to complex natural scenes containing multiple conflicting cues. We show that this simple visual filtering provided by the ring neurons is sufficient to form a mapping between heading and visual features and maintain the heading estimate in the absence of angular velocity input. The network is successful at tracking heading even when presented with videos of natural scenes containing conflicting information from environmental changes and translation of the camera.
Collapse
Affiliation(s)
- Rachael Stentiford
- Department of Informatics, University of Sussex, Brighton, United Kingdom
| | - James C. Knight
- Department of Informatics, University of Sussex, Brighton, United Kingdom
| | - Thomas Nowotny
- Department of Informatics, University of Sussex, Brighton, United Kingdom
| | - Andrew Philippides
- Department of Informatics, University of Sussex, Brighton, United Kingdom
| | - Paul Graham
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
10
|
Shakeel M, Brockmann A. Temporal effects of sugar intake on fly local search and honey bee dance behaviour. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024; 210:415-429. [PMID: 37624392 DOI: 10.1007/s00359-023-01670-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/31/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023]
Abstract
Honey bees communicate flight navigational information of profitable food to nestmates via their dance, a small-scale walking pattern, inside the nest. Hungry flies and honey bee foragers exhibit a sugar-elicited search involving path integration that bears a resemblance to dance behaviour. This study aimed to investigate the temporal dynamics of the initiation of sugar-elicited search and dance behaviour, using a comparative approach. Passive displacement experiments showed that feeding and the initiation of search could be spatially and temporally dissociated. Sugar intake increased the probability of initiating a search but the actual onset of walking triggers the path integration system to guide the search. When prevented from walking after feeding, flies and bees maintained their motivation for a path integration-based search for a duration of 3 min. In flies, turning and associated characters were significantly reduced during this period but remained higher than in flies without sugar stimulus. These results suggest that sugar elicits two independent behavioural responses: path integration and increased turning, with the initiation and duration of path integration system being temporally restricted. Honey bee dance experiments demonstrated that the motivation of foragers to initiate dance persisted for 15 min, while the number of circuits declined after 3 min following sugar ingestion. Based on these findings, we propose that food intake during foraging increases the probability to initiate locomotor behaviours involving the path integration system in both flies and honey bees, and this ancestral connection might have been co-opted and elaborated during the evolution of dance communication by honey bees.
Collapse
Affiliation(s)
- Manal Shakeel
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, 560065, India.
- University of Trans-Disciplinary Health Science and Technology, Bangalore, 560064, India.
| | - Axel Brockmann
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, 560065, India
| |
Collapse
|
11
|
Hadjitofi A, Webb B. Dynamic antennal positioning allows honeybee followers to decode the dance. Curr Biol 2024; 34:1772-1779.e4. [PMID: 38479387 DOI: 10.1016/j.cub.2024.02.045] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 04/25/2024]
Abstract
The honeybee waggle dance has been widely studied as a communication system, yet we know little about how nestmates assimilate the information needed to navigate toward the signaled resource. They are required to detect the dancer's orientation relative to gravity and duration of the waggle phase and translate this into a flight vector with a direction relative to the sun1 and distance from the hive.2,3 Moreover, they appear capable of doing so from varied, dynamically changing positions around the dancer. Using high-speed, high-resolution video, we have uncovered a previously unremarked correlation between antennal position and the relative body axes of dancer and follower bees. Combined with new information about antennal inputs4,5 and spatial encoding in the insect central complex,6,7 we show how a neural circuit first proposed to underlie path integration could be adapted to decoding the dance and acquiring the signaled information as a flight vector that can be followed to the resource. This provides the first plausible account of how the bee brain could support the interpretation of its dance language.
Collapse
Affiliation(s)
- Anna Hadjitofi
- School of Informatics, University of Edinburgh, Edinburgh EH8 9AB, UK.
| | - Barbara Webb
- School of Informatics, University of Edinburgh, Edinburgh EH8 9AB, UK.
| |
Collapse
|
12
|
Li G, Zhang Y, Fan S, Yu F. An Improved Bio-Orientation Method Based on Direct Sunlight Compensation for Imaging Polarization Sensor. J Imaging 2024; 10:74. [PMID: 38667972 PMCID: PMC11050838 DOI: 10.3390/jimaging10040074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/11/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Direct sunlight in complex environmental conditions severely interferes with the light intensity response for imaging Polarization Sensor (PS), leading to a reduction in polarization orientation accuracy. Addressing this issue, this article analyzes the impact mechanism of direct sunlight on polarization sensor detection in a complex environment. The direct sunlight interference factor is introduced into the intensity response model of imaging polarization detection, enhancing the accuracy of the polarization detection model. Furthermore, a polarization state information analytical solution model based on direct sunlight compensation is constructed to improve the accuracy and real-time performance of the polarization state information solution. On this basis, an improved bio-orientation method based on direct sunlight compensation for imaging polarization sensor is proposed. The outdoor dynamic reorientation experiment platform is established to validate the effectiveness of the proposed method. Compared with the traditional methods, the experimental results demonstrate a 23% to 47% improvement in the polarization orientation accuracy under various solar zenith angles.
Collapse
Affiliation(s)
| | - Ya Zhang
- School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin 150001, China; (G.L.); (S.F.); (F.Y.)
| | | | | |
Collapse
|
13
|
Westeinde EA, Kellogg E, Dawson PM, Lu J, Hamburg L, Midler B, Druckmann S, Wilson RI. Transforming a head direction signal into a goal-oriented steering command. Nature 2024; 626:819-826. [PMID: 38326621 PMCID: PMC10881397 DOI: 10.1038/s41586-024-07039-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/05/2024] [Indexed: 02/09/2024]
Abstract
To navigate, we must continuously estimate the direction we are headed in, and we must correct deviations from our goal1. Direction estimation is accomplished by ring attractor networks in the head direction system2,3. However, we do not fully understand how the sense of direction is used to guide action. Drosophila connectome analyses4,5 reveal three cell populations (PFL3R, PFL3L and PFL2) that connect the head direction system to the locomotor system. Here we use imaging, electrophysiology and chemogenetic stimulation during navigation to show how these populations function. Each population receives a shifted copy of the head direction vector, such that their three reference frames are shifted approximately 120° relative to each other. Each cell type then compares its own head direction vector with a common goal vector; specifically, it evaluates the congruence of these vectors via a nonlinear transformation. The output of all three cell populations is then combined to generate locomotor commands. PFL3R cells are recruited when the fly is oriented to the left of its goal, and their activity drives rightward turning; the reverse is true for PFL3L. Meanwhile, PFL2 cells increase steering speed, and are recruited when the fly is oriented far from its goal. PFL2 cells adaptively increase the strength of steering as directional error increases, effectively managing the tradeoff between speed and accuracy. Together, our results show how a map of space in the brain can be combined with an internal goal to generate action commands, via a transformation from world-centric coordinates to body-centric coordinates.
Collapse
Affiliation(s)
| | - Emily Kellogg
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Paul M Dawson
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Jenny Lu
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Lydia Hamburg
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Benjamin Midler
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Shaul Druckmann
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Rachel I Wilson
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
14
|
Mussells Pires P, Zhang L, Parache V, Abbott LF, Maimon G. Converting an allocentric goal into an egocentric steering signal. Nature 2024; 626:808-818. [PMID: 38326612 PMCID: PMC10881393 DOI: 10.1038/s41586-023-07006-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/19/2023] [Indexed: 02/09/2024]
Abstract
Neuronal signals that are relevant for spatial navigation have been described in many species1-10. However, a circuit-level understanding of how such signals interact to guide navigational behaviour is lacking. Here we characterize a neuronal circuit in the Drosophila central complex that compares internally generated estimates of the heading and goal angles of the fly-both of which are encoded in world-centred (allocentric) coordinates-to generate a body-centred (egocentric) steering signal. Past work has suggested that the activity of EPG neurons represents the fly's moment-to-moment angular orientation, or heading angle, during navigation2,11. An animal's moment-to-moment heading angle, however, is not always aligned with its goal angle-that is, the allocentric direction in which it wishes to progress forward. We describe FC2 cells12, a second set of neurons in the Drosophila brain with activity that correlates with the fly's goal angle. Focal optogenetic activation of FC2 neurons induces flies to orient along experimenter-defined directions as they walk forward. EPG and FC2 neurons connect monosynaptically to a third neuronal class, PFL3 cells12,13. We found that individual PFL3 cells show conjunctive, spike-rate tuning to both the heading angle and the goal angle during goal-directed navigation. Informed by the anatomy and physiology of these three cell classes, we develop a model that explains how this circuit compares allocentric heading and goal angles to build an egocentric steering signal in the PFL3 output terminals. Quantitative analyses and optogenetic manipulations of PFL3 activity support the model. Finally, using a new navigational memory task, we show that flies expressing disruptors of synaptic transmission in subsets of PFL3 cells have a reduced ability to orient along arbitrary goal directions, with an effect size in quantitative accordance with the prediction of our model. The biological circuit described here reveals how two population-level allocentric signals are compared in the brain to produce an egocentric output signal that is appropriate for motor control.
Collapse
Affiliation(s)
- Peter Mussells Pires
- Laboratory of Integrative Brain Function and Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Lingwei Zhang
- Laboratory of Integrative Brain Function and Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Victoria Parache
- Laboratory of Integrative Brain Function and Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - L F Abbott
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY, USA
| | - Gaby Maimon
- Laboratory of Integrative Brain Function and Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
15
|
Garner D, Kind E, Nern A, Houghton L, Zhao A, Sancer G, Rubin GM, Wernet MF, Kim SS. Connectomic reconstruction predicts the functional organization of visual inputs to the navigation center of the Drosophila brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.29.569241. [PMID: 38076786 PMCID: PMC10705420 DOI: 10.1101/2023.11.29.569241] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Many animals, including humans, navigate their surroundings by visual input, yet we understand little about how visual information is transformed and integrated by the navigation system. In Drosophila melanogaster, compass neurons in the donut-shaped ellipsoid body of the central complex generate a sense of direction by integrating visual input from ring neurons, a part of the anterior visual pathway (AVP). Here, we densely reconstruct all neurons in the AVP using FlyWire, an AI-assisted tool for analyzing electron-microscopy data. The AVP comprises four neuropils, sequentially linked by three major classes of neurons: MeTu neurons, which connect the medulla in the optic lobe to the small unit of anterior optic tubercle (AOTUsu) in the central brain; TuBu neurons, which connect the anterior optic tubercle to the bulb neuropil; and ring neurons, which connect the bulb to the ellipsoid body. Based on neuronal morphologies, connectivity between different neural classes, and the locations of synapses, we identified non-overlapping channels originating from four types of MeTu neurons, which we further divided into ten subtypes based on the presynaptic connections in medulla and postsynaptic connections in AOTUsu. To gain an objective measure of the natural variation within the pathway, we quantified the differences between anterior visual pathways from both hemispheres and between two electron-microscopy datasets. Furthermore, we infer potential visual features and the visual area from which any given ring neuron receives input by combining the connectivity of the entire AVP, the MeTu neurons' dendritic fields, and presynaptic connectivity in the optic lobes. These results provide a strong foundation for understanding how distinct visual features are extracted and transformed across multiple processing stages to provide critical information for computing the fly's sense of direction.
Collapse
Affiliation(s)
- Dustin Garner
- Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Emil Kind
- Department of Biology, Freie Universität Berlin, Berlin, Germany
| | - Aljoscha Nern
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Lucy Houghton
- Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Arthur Zhao
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Gizem Sancer
- Department of Biology, Freie Universität Berlin, Berlin, Germany
| | - Gerald M. Rubin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | | | - Sung Soo Kim
- Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| |
Collapse
|
16
|
Kendzel MJ, Parlin AF, Guerra PA. Gravisensation and modulation of gravitactic responses by other sensory cues in the monarch butterfly (Danaus plexippus). J Exp Biol 2023; 226:jeb245451. [PMID: 37818736 PMCID: PMC10651108 DOI: 10.1242/jeb.245451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 10/03/2023] [Indexed: 10/13/2023]
Abstract
Using the monarch butterfly (Danaus plexippus), we studied how animals can use cues from multiple sensory modalities for deriving directional information from their environment to display oriented movement. Our work focused on determining how monarchs use gravity as a cue for oriented movement and determined how cues from other sensory modalities, cues that by themselves also produce oriented movement (visual and magnetic directional cues), might modulate gravisensation. In two tests of gravisensation (movement in a vertical tube; righting behavior), we found that monarchs display negative gravitaxis only (movement opposite to the direction of gravity). Negative gravitaxis can be modulated by either visual (light) or magnetic field cues (inclination angle) that provide directional information. The modulation of gravity-mediated responses, however, depends on the relationship between cues when presented during trials, such as when cues are in accord or in conflict. For example, when light cues that elicit positive phototaxis conflicted with negative gravitaxis (light from below the monarch), monarch gravisensation was unaffected by directional light cues. We also found that the antennae play a role in gravity-mediated movement (righting), as, with antennae removed, monarch movement behavior was no longer the same as when the antennae were intact. Our results demonstrate that monarchs can use and integrate multiple, multimodal cues for oriented movement, but that the use of such cues can be hierarchical (that is, one cue dominant for movement), and the hierarchy of cues, and the responses towards them when found together, depends on the physical relationships between cues during movement.
Collapse
Affiliation(s)
- Mitchell J. Kendzel
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Adam F. Parlin
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Patrick A. Guerra
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| |
Collapse
|
17
|
Jahn S, Althaus V, Heckmann J, Janning M, Seip AK, Takahashi N, Grigoriev C, Kolano J, Homberg U. Neuroarchitecture of the central complex in the Madeira cockroach Rhyparobia maderae: Pontine and columnar neuronal cell types. J Comp Neurol 2023; 531:1689-1714. [PMID: 37608556 DOI: 10.1002/cne.25535] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/27/2023] [Accepted: 08/03/2023] [Indexed: 08/24/2023]
Abstract
Insects have evolved remarkable abilities to navigate over short distances and during long-range seasonal migrations. The central complex (CX) is a navigation center in the insect brain that controls spatial orientation and directed locomotion. It is composed of the protocerebral bridge (PB), the upper (CBU) and lower (CBL) division of the central body, and a pair of noduli. While most of its functional organization and involvement in head-direction coding has been obtained from work on flies, bees, and locusts that largely rely on vision for navigation, little contribution has been provided by work on nocturnal species. To close this gap, we have investigated the columnar organization of the CX in the cockroach Rhyparobia maderae. Rhyparobia maderae is a highly agile nocturnal insect that relies largely but not exclusively on antennal information for navigation. A particular feature of the cockroach CX is an organization of the CBU and CBL into interleaved series of eight and nine columns. Single-cell tracer injections combined with imaging and 3D analysis revealed five systems of pontine neurons connecting columns along the vertical and horizontal axis and 18 systems of columnar neurons with topographically organized projection patterns. Among these are six types of neurons with no correspondence in other species. Many neurons send processes into the anterior lip, a brain area highly reduced in bees and unknown in flies. While sharing many features with the CX in other species, the cockroach CX shows some unique attributes that may be related to the ecological niche of this insect.
Collapse
Affiliation(s)
- Stefanie Jahn
- Animal Physiology, Department of Biology, Philipps University of Marburg, Marburg, Germany
| | - Vanessa Althaus
- Animal Physiology, Department of Biology, Philipps University of Marburg, Marburg, Germany
| | - Jannik Heckmann
- Animal Physiology, Department of Biology, Philipps University of Marburg, Marburg, Germany
| | - Mona Janning
- Animal Physiology, Department of Biology, Philipps University of Marburg, Marburg, Germany
| | - Ann-Katrin Seip
- Animal Physiology, Department of Biology, Philipps University of Marburg, Marburg, Germany
| | - Naomi Takahashi
- Animal Physiology, Department of Biology, Philipps University of Marburg, Marburg, Germany
| | - Clara Grigoriev
- Animal Physiology, Department of Biology, Philipps University of Marburg, Marburg, Germany
| | - Juliana Kolano
- Animal Physiology, Department of Biology, Philipps University of Marburg, Marburg, Germany
| | - Uwe Homberg
- Animal Physiology, Department of Biology, Philipps University of Marburg, Marburg, Germany
- Center for Mind Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany
| |
Collapse
|
18
|
Beck M, Althaus V, Pegel U, Homberg U. Neurons sensitive to non-celestial polarized light in the brain of the desert locust. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2023; 209:907-928. [PMID: 36809566 PMCID: PMC10643347 DOI: 10.1007/s00359-023-01618-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 01/20/2023] [Accepted: 02/04/2023] [Indexed: 02/23/2023]
Abstract
Owing to alignment of rhodopsin in microvillar photoreceptors, insects are sensitive to the oscillation plane of polarized light. This property is used by many species to navigate with respect to the polarization pattern of light from the blue sky. In addition, the polarization angle of light reflected from shiny surfaces such as bodies of water, animal skin, leaves, or other objects can enhance contrast and visibility. Whereas photoreceptors and central mechanisms involved in celestial polarization vision have been investigated in great detail, little is known about peripheral and central mechanisms of sensing the polarization angle of light reflected from objects and surfaces. Desert locusts, like other insects, use a polarization-dependent sky compass for navigation but are also sensitive to polarization angles from horizontal directions. In order to further analyze the processing of polarized light reflected from objects or water surfaces, we tested the sensitivity of brain interneurons to the angle of polarized blue light presented from ventral direction in locusts that had their dorsal eye regions painted black. Neurons encountered interconnect the optic lobes, invade the central body, or send descending axons to the ventral nerve cord but are not part of the polarization vision pathway involved in sky-compass coding.
Collapse
Affiliation(s)
- Marius Beck
- Department of Biology, Animal Physiology, Philipps University of Marburg, 35032, Marburg, Germany
- Institute of Biology, University of Siegen, 57068, Siegen, Germany
| | - Vanessa Althaus
- Department of Biology, Animal Physiology, Philipps University of Marburg, 35032, Marburg, Germany
| | - Uta Pegel
- Department of Biology, Animal Physiology, Philipps University of Marburg, 35032, Marburg, Germany
| | - Uwe Homberg
- Department of Biology, Animal Physiology, Philipps University of Marburg, 35032, Marburg, Germany.
- Center for Mind Brain and Behavior (CMBB), Philipps-University of Marburg and Justus Liebig University of Giessen, 35032, Marburg, Germany.
| |
Collapse
|
19
|
Wang X, Zhou Y, Gao J. Modeling the celestial distribution of skylight polarization patterns by incorporating the influence of both the sun and the moon through an analytical model. APPLIED OPTICS 2023; 62:6993-6999. [PMID: 37707039 DOI: 10.1364/ao.494843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/21/2023] [Indexed: 09/15/2023]
Abstract
The orientation of many polarization-sensitive animals and the hypothetical sky-polarimetric Viking navigation both rely on the polarization pattern of skylight. For 40 years, scientists have attempted to construct various models to simulate this pattern. However, existing theoretical models have only analyzed the polarization pattern of skylight that is influenced separately by the sun or the moon and have built their modeling frameworks based on the position of one light source. This approach fails to account for the combined influence of the sun and the moon on the distribution of skylight polarization patterns at certain times. In fact, ignoring the influence of the moon during the dawn and dusk periods in clear weather conditions may lead to significant errors in the simulation results compared to the measured data. In this paper, we present an analytical model that considers various factors, including skylight intensity, horizon correction factor, atmospheric turbidity condition, and combined influence of both the sun and moon on the distribution of polarized skylight. We believe our model demonstrates enhanced agreement with measured data and will further our understanding of how animals use the celestial polarization pattern for navigation, particularly when both the sun and the moon appear in the sky. Moreover, the findings of this study may facilitate the advancement of bio-inspired navigation systems.
Collapse
|
20
|
Homberg U, Kirchner M, Kowalewski K, Pitz V, Kinoshita M, Kern M, Seyfarth J. Comparative morphology of serotonin-immunoreactive neurons innervating the central complex in the brain of dicondylian insects. J Comp Neurol 2023. [PMID: 37478205 DOI: 10.1002/cne.25529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/28/2023] [Accepted: 07/08/2023] [Indexed: 07/23/2023]
Abstract
Serotonin (5-hydroxytryptamine) acts as a widespread neuromodulator in the nervous system of vertebrates and invertebrates. In insects, it promotes feeding, enhances olfactory sensitivity, modulates aggressive behavior, and, in the central complex of Drosophila, serves a role in sleep homeostasis. In addition to a role in sleep-wake regulation, the central complex has a prominent role in spatial orientation, goal-directed locomotion, and navigation vector memory. To further understand the role of serotonergic signaling in this brain area, we analyzed the distribution and identity of serotonin-immunoreactive neurons across a wide range of insect species. While one bilateral pair of tangential neurons innervating the central body was present in all species studied, a second type was labeled in all neopterans but not in dragonflies and firebrats. Both cell types show conserved major fiber trajectories but taxon-specific differences in dendritic targets outside the central body and axonal terminals in the central body, noduli, and lateral accessory lobes. In addition, numerous tangential neurons of the protocerebral bridge were labeled in all studied polyneopteran species except for Phasmatodea, but not in Holometabola. Lepidoptera and Diptera showed additional labeling of two bilateral pairs of neurons of a third type. The presence of serotonin in systems of columnar neurons apparently evolved independently in dragonflies and desert locusts. The data suggest distinct evolutionary changes in the composition of serotonin-immunolabeled neurons of the central complex and provides a promising basis for a phylogenetic study in a wider range of arthropod species.
Collapse
Affiliation(s)
- Uwe Homberg
- Department of Biology, Animal Physiology, Philipps-Universität Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany
| | - Michelle Kirchner
- Department of Biology, Animal Physiology, Philipps-Universität Marburg, Marburg, Germany
| | - Kevin Kowalewski
- Department of Biology, Animal Physiology, Philipps-Universität Marburg, Marburg, Germany
| | - Vanessa Pitz
- Department of Biology, Animal Physiology, Philipps-Universität Marburg, Marburg, Germany
| | - Michiyo Kinoshita
- Laboratory of Neuroethology, SOKENDAI, The Graduate University for Advanced Studies, Hayama, Japan
| | - Martina Kern
- Department of Biology, Animal Physiology, Philipps-Universität Marburg, Marburg, Germany
| | - Jutta Seyfarth
- Department of Biology, Animal Physiology, Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
21
|
Wilson RI. Neural Networks for Navigation: From Connections to Computations. Annu Rev Neurosci 2023; 46:403-423. [PMID: 37428603 DOI: 10.1146/annurev-neuro-110920-032645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Many animals can navigate toward a goal they cannot see based on an internal representation of that goal in the brain's spatial maps. These maps are organized around networks with stable fixed-point dynamics (attractors), anchored to landmarks, and reciprocally connected to motor control. This review summarizes recent progress in understanding these networks, focusing on studies in arthropods. One factor driving recent progress is the availability of the Drosophila connectome; however, it is increasingly clear that navigation depends on ongoing synaptic plasticity in these networks. Functional synapses appear to be continually reselected from the set of anatomical potential synapses based on the interaction of Hebbian learning rules, sensory feedback, attractor dynamics, and neuromodulation. This can explain how the brain's maps of space are rapidly updated; it may also explain how the brain can initialize goals as stable fixed points for navigation.
Collapse
Affiliation(s)
- Rachel I Wilson
- Department of Neurobiology, Harvard Medical School, Cambridge, Massachusetts, USA;
| |
Collapse
|
22
|
Kandimalla P, Omoto JJ, Hong EJ, Hartenstein V. Lineages to circuits: the developmental and evolutionary architecture of information channels into the central complex. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2023; 209:679-720. [PMID: 36932234 PMCID: PMC10354165 DOI: 10.1007/s00359-023-01616-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 03/19/2023]
Abstract
The representation and integration of internal and external cues is crucial for any organism to execute appropriate behaviors. In insects, a highly conserved region of the brain, the central complex (CX), functions in the representation of spatial information and behavioral states, as well as the transformation of this information into desired navigational commands. How does this relatively invariant structure enable the incorporation of information from the diversity of anatomical, behavioral, and ecological niches occupied by insects? Here, we examine the input channels to the CX in the context of their development and evolution. Insect brains develop from ~ 100 neuroblasts per hemisphere that divide systematically to form "lineages" of sister neurons, that project to their target neuropils along anatomically characteristic tracts. Overlaying this developmental tract information onto the recently generated Drosophila "hemibrain" connectome and integrating this information with the anatomical and physiological recording of neurons in other species, we observe neuropil and lineage-specific innervation, connectivity, and activity profiles in CX input channels. We posit that the proliferative potential of neuroblasts and the lineage-based architecture of information channels enable the modification of neural networks across existing, novel, and deprecated modalities in a species-specific manner, thus forming the substrate for the evolution and diversification of insect navigational circuits.
Collapse
Affiliation(s)
- Pratyush Kandimalla
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA.
| | - Jaison Jiro Omoto
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
| | - Elizabeth J Hong
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Volker Hartenstein
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
| |
Collapse
|
23
|
Steele TJ, Lanz AJ, Nagel KI. Olfactory navigation in arthropods. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2023; 209:467-488. [PMID: 36658447 PMCID: PMC10354148 DOI: 10.1007/s00359-022-01611-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/26/2022] [Accepted: 12/31/2022] [Indexed: 01/21/2023]
Abstract
Using odors to find food and mates is one of the most ancient and highly conserved behaviors. Arthropods from flies to moths to crabs use broadly similar strategies to navigate toward odor sources-such as integrating flow information with odor information, comparing odor concentration across sensors, and integrating odor information over time. Because arthropods share many homologous brain structures-antennal lobes for processing olfactory information, mechanosensors for processing flow, mushroom bodies (or hemi-ellipsoid bodies) for associative learning, and central complexes for navigation, it is likely that these closely related behaviors are mediated by conserved neural circuits. However, differences in the types of odors they seek, the physics of odor dispersal, and the physics of locomotion in water, air, and on substrates mean that these circuits must have adapted to generate a wide diversity of odor-seeking behaviors. In this review, we discuss common strategies and specializations observed in olfactory navigation behavior across arthropods, and review our current knowledge about the neural circuits subserving this behavior. We propose that a comparative study of arthropod nervous systems may provide insight into how a set of basic circuit structures has diversified to generate behavior adapted to different environments.
Collapse
Affiliation(s)
- Theresa J Steele
- Neuroscience Institute, NYU School of Medicine, 435 E 30th St., New York, NY, 10016, USA
| | - Aaron J Lanz
- Neuroscience Institute, NYU School of Medicine, 435 E 30th St., New York, NY, 10016, USA
| | - Katherine I Nagel
- Neuroscience Institute, NYU School of Medicine, 435 E 30th St., New York, NY, 10016, USA.
| |
Collapse
|
24
|
Ai H, Farina WM. In search of behavioral and brain processes involved in honey bee dance communication. Front Behav Neurosci 2023; 17:1140657. [PMID: 37456809 PMCID: PMC10342208 DOI: 10.3389/fnbeh.2023.1140657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 06/16/2023] [Indexed: 07/18/2023] Open
Abstract
Honey bees represent an iconic model animal for studying the underlying mechanisms affecting advanced sensory and cognitive abilities during communication among colony mates. After von Frisch discovered the functional value of the waggle dance, this complex motor pattern led ethologists and neuroscientists to study its neural mechanism, behavioral significance, and implications for a collective organization. Recent studies have revealed some of the mechanisms involved in this symbolic form of communication by using conventional behavioral and pharmacological assays, neurobiological studies, comprehensive molecular and connectome analyses, and computational models. This review summarizes several critical behavioral and brain processes and mechanisms involved in waggle dance communication. We focus on the role of neuromodulators in the dancer and the recruited follower, the interneurons and their related processing in the first mechano-processing, and the computational navigation centers of insect brains.
Collapse
Affiliation(s)
- Hiroyuki Ai
- Department of Earth System Science, Fukuoka University, Fukuoka, Japan
| | - Walter M. Farina
- Laboratorio de Insectos Sociales, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias, CONICET-UBA, Buenos Aires, Argentina
| |
Collapse
|
25
|
Abstract
Using functional imaging and neural circuit reconstructions, a recent study reveals head direction neurons in the anterior hindbrain of zebrafish that resemble insect head-direction cells to a surprising degree.
Collapse
Affiliation(s)
- Stanley Heinze
- Lund University, Lund Vision Group and NanoLund, Lund, Sweden.
| |
Collapse
|
26
|
Homberg U, Pfeiffer K. Unraveling the neural basis of spatial orientation in arthropods. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2023:10.1007/s00359-023-01635-9. [PMID: 37198448 DOI: 10.1007/s00359-023-01635-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/19/2023]
Abstract
The neural basis underlying spatial orientation in arthropods, in particular insects, has received considerable interest in recent years. This special issue of the Journal of Comparative Physiology A seeks to take account of these developments by presenting a collection of eight review articles and eight original research articles highlighting hotspots of research on spatial orientation in arthropods ranging from flies to spiders and the underlying neural circuits. The contributions impressively illustrate the wide range of tools available to arthropods extending from specific sensory channels to highly sophisticated neural computations for mastering complex navigational challenges.
Collapse
Affiliation(s)
- Uwe Homberg
- Department of Biology, Animal Physiology, Philipps University Marburg, 35032, Marburg, Germany.
- Center for Mind Brain and Behavior (CMBB), Philipps-University Marburg and Justus Liebig University Giessen, 35032, Marburg, Germany.
| | - Keram Pfeiffer
- Behavioral Physiology and Sociobiology (Zoology II), Biocenter, University of Würzburg, 97074, Würzburg, Germany
| |
Collapse
|
27
|
Beetz MJ, El Jundi B. The influence of stimulus history on directional coding in the monarch butterfly brain. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2023:10.1007/s00359-023-01633-x. [PMID: 37095358 DOI: 10.1007/s00359-023-01633-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 04/26/2023]
Abstract
The central complex is a brain region in the insect brain that houses a neural network specialized to encode directional information. Directional coding has traditionally been investigated with compass cues that revolve in full rotations and at constant angular velocities around the insect's head. However, these stimulus conditions do not fully simulate an insect's sensory perception of compass cues during navigation. In nature, an insect flight is characterized by abrupt changes in moving direction as well as constant changes in velocity. The influence of such varying cue dynamics on compass coding remains unclear. We performed long-term tetrode recordings from the brain of monarch butterflies to study how central complex neurons respond to different stimulus velocities and directions. As these butterflies derive directional information from the sun during migration, we measured the neural response to a virtual sun. The virtual sun was either presented as a spot that appeared at random angular positions or was rotated around the butterfly at different angular velocities and directions. By specifically manipulating the stimulus velocity and trajectory, we dissociated the influence of angular velocity and direction on compass coding. While the angular velocity substantially affected the tuning directedness, the stimulus trajectory influenced the shape of the angular tuning curve. Taken together, our results suggest that the central complex flexibly adjusts its directional coding to the current stimulus dynamics ensuring a precise compass even under highly demanding conditions such as during rapid flight maneuvers.
Collapse
Affiliation(s)
- M Jerome Beetz
- Zoology II, Biocenter, University of Würzburg, Würzburg, Germany.
| | - Basil El Jundi
- Zoology II, Biocenter, University of Würzburg, Würzburg, Germany
- Animal Physiology, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
28
|
Mangan M, Floreano D, Yasui K, Trimmer BA, Gravish N, Hauert S, Webb B, Manoonpong P, Szczecinski N. A virtuous cycle between invertebrate and robotics research: perspective on a decade of Living Machines research. BIOINSPIRATION & BIOMIMETICS 2023; 18:035005. [PMID: 36881919 DOI: 10.1088/1748-3190/acc223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Many invertebrates are ideal model systems on which to base robot design principles due to their success in solving seemingly complex tasks across domains while possessing smaller nervous systems than vertebrates. Three areas are particularly relevant for robot designers: Research on flying and crawling invertebrates has inspired new materials and geometries from which robot bodies (their morphologies) can be constructed, enabling a new generation of softer, smaller, and lighter robots. Research on walking insects has informed the design of new systems for controlling robot bodies (their motion control) and adapting their motion to their environment without costly computational methods. And research combining wet and computational neuroscience with robotic validation methods has revealed the structure and function of core circuits in the insect brain responsible for the navigation and swarming capabilities (their mental faculties) displayed by foraging insects. The last decade has seen significant progress in the application of principles extracted from invertebrates, as well as the application of biomimetic robots to model and better understand how animals function. This Perspectives paper on the past 10 years of the Living Machines conference outlines some of the most exciting recent advances in each of these fields before outlining lessons gleaned and the outlook for the next decade of invertebrate robotic research.
Collapse
Affiliation(s)
- Michael Mangan
- The University of Sheffield, Mappin St, Sheffield S10 2TN, United Kingdom
| | - Dario Floreano
- Ecole Polytechnique Federale de Lausanne, Laboratory of Intelligent Systems, Station 9, Lausanne CH-1015, Switzerland
| | - Kotaro Yasui
- Tohoku University, Frontier Research Institute for Interdisciplinary Sciences, 6-3 Aramaki aza Aoba, Aoba-ku, Sendai 980-8578, Japan
| | - Barry A Trimmer
- Tufts University, Biology, 200 Boston Av, Boston, MA 02111, United States of America
| | - Nick Gravish
- University of California San Diego, Mechanical and Aerospace Engineering, Building EBU II, La Jolla, CA 92093, United States of America
| | - Sabine Hauert
- University of Bristol, Engineering Mathematics, Bristol BS8 1QU, United Kingdom
| | - Barbara Webb
- University of Edinburgh, School of Informatics, 10 Crichton St, Edinburgh EH8 9AB, United Kingdom
| | - Poramate Manoonpong
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, People's Republic of China
- Bio-Inspired Robotics and Neural Engineering Laboratory, School of Information Science and Technology, Vidyasirimedhi Institute of Science and Technology, Wangchan Valley, Rayong 21210, Thailand
| | - Nicholas Szczecinski
- West Virginia University, Mechanical and Aerospace Engineering, Morgantown, WV 26506-6201, United States of America
| |
Collapse
|
29
|
Global inhibition in head-direction neural circuits: a systematic comparison between connectome-based spiking neural circuit models. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2023:10.1007/s00359-023-01615-z. [PMID: 36781446 DOI: 10.1007/s00359-023-01615-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 01/16/2023] [Accepted: 01/27/2023] [Indexed: 02/15/2023]
Abstract
The recent discovery of the head-direction (HD) system in fruit flies has provided unprecedented insights into the neural mechanisms of spatial orientation. Despite the progress, the neural substance of global inhibition, an essential component of the HD circuits, remains controversial. Some studies suggested that the ring neurons provide global inhibition, while others suggested the Δ7 neurons. In the present study, we provide evaluations from the theoretical perspective by performing systematic analyses on the computational models based on the ring-neuron (R models) and Δ7-neurons (Delta models) hypotheses with modifications according to the latest connectomic data. We conducted four tests: robustness, persistency, speed, and dynamical characteristics. We discovered that the two models led to a comparable performance in general, but each excelled in different tests. The R Models were more robust, while the Delta models were better in the persistency test. We also tested a hybrid model that combines both inhibitory mechanisms. While the performances of the R and Delta models in each test are highly parameter-dependent, the Hybrid model performed well in all tests with the same set of parameters. Our results suggest the possibility of combined inhibitory mechanisms in the HD circuits of fruit flies.
Collapse
|
30
|
Rana A, Adams ME, Libersat F. Parasitoid wasp venom re-programs host behavior through downmodulation of brain central complex activity and motor output. J Exp Biol 2023; 226:286758. [PMID: 36700409 PMCID: PMC10088415 DOI: 10.1242/jeb.245252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/12/2023] [Indexed: 01/27/2023]
Abstract
The parasitoid wasp Ampulex compressa hunts down its host, the American cockroach (Periplaneta americana), and envenomates its brain to make it a behaviorally compliant food supply for its offspring. The primary target of the wasp sting is a locomotory command center called the central complex (CX). In the present study, we employ, for the first time, chronic recordings of patterned cockroach CX activity in real time as the brain is infused with wasp venom. CX envenomation is followed by sequential changes in the pattern of neuronal firing that can be divided into three distinct temporal phases during the 2 h interval after venom injection: (1) reduction in neuronal activity for roughly 10 min immediately after venom injection; (2) rebound of activity lasting up to 25 min; (3) reduction of ongoing activity for up to 2 h. Long-term reduction of CX activity after venom injection is accompanied by decreased activity of both descending interneurons projecting to thoracic locomotory circuitry (DINs) and motor output. Thus, in this study, we provide a plausible chain of events starting in the CX that leads to decreased host locomotion following brain envenomation. We propose that these events account for the onset and maintenance of the prolonged hypokinetic state observed in stung cockroaches.
Collapse
Affiliation(s)
- Amit Rana
- Department of Life Sciences and Zlotowski Center for Neurosciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Michael E Adams
- Departments of Entomology and Molecular, Cell, and Systems Biology, University of California, Riverside, CA 92521, USA
| | - Frederic Libersat
- Department of Life Sciences and Zlotowski Center for Neurosciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
31
|
Pfeiffer K. The neuronal building blocks of the navigational toolkit in the central complex of insects. CURRENT OPINION IN INSECT SCIENCE 2023; 55:100972. [PMID: 36126877 DOI: 10.1016/j.cois.2022.100972] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/03/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
The central complex in the brain of insects is a group of midline-spanning neuropils at the interface between sensory and premotor tasks of the brain. It is involved in sleep control, decision-making and most prominently in goal-directed locomotion behaviors. The recently published connectome of the central complex of Drosophila melanogaster is a milestone in understanding the intricacies of the central-complex circuits and will provide inspiration for testable hypotheses for the coming years. Here, I provide a basic neuroanatomical description of the central complex of Drosophila and other species and discuss some recent advancements, some of which, such as the discovery of coordinate transformation through vector math, have been predicted from connectomics data.
Collapse
Affiliation(s)
- Keram Pfeiffer
- Behavioural Physiology and Sociobiology (Zoology II), Biocenter, University of Würzburg, 97074 Würzburg, Germany.
| |
Collapse
|
32
|
Egelhaaf M. Optic flow based spatial vision in insects. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2023:10.1007/s00359-022-01610-w. [PMID: 36609568 DOI: 10.1007/s00359-022-01610-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/06/2022] [Accepted: 12/24/2022] [Indexed: 01/09/2023]
Abstract
The optic flow, i.e., the displacement of retinal images of objects in the environment induced by self-motion, is an important source of spatial information, especially for fast-flying insects. Spatial information over a wide range of distances, from the animal's immediate surroundings over several hundred metres to kilometres, is necessary for mediating behaviours, such as landing manoeuvres, collision avoidance in spatially complex environments, learning environmental object constellations and path integration in spatial navigation. To facilitate the processing of spatial information, the complexity of the optic flow is often reduced by active vision strategies. These result in translations and rotations being largely separated by a saccadic flight and gaze mode. Only the translational components of the optic flow contain spatial information. In the first step of optic flow processing, an array of local motion detectors provides a retinotopic spatial proximity map of the environment. This local motion information is then processed in parallel neural pathways in a task-specific manner and used to control the different components of spatial behaviour. A particular challenge here is that the distance information extracted from the optic flow does not represent the distances unambiguously, but these are scaled by the animal's speed of locomotion. Possible ways of coping with this ambiguity are discussed.
Collapse
Affiliation(s)
- Martin Egelhaaf
- Neurobiology and Center for Cognitive Interaction Technology (CITEC), Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany.
| |
Collapse
|
33
|
Freas CA, Spetch ML. Varieties of visual navigation in insects. Anim Cogn 2023; 26:319-342. [PMID: 36441435 PMCID: PMC9877076 DOI: 10.1007/s10071-022-01720-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022]
Abstract
The behaviours and cognitive mechanisms animals use to orient, navigate, and remember spatial locations exemplify how cognitive abilities have evolved to suit a number of different mobile lifestyles and habitats. While spatial cognition observed in vertebrates has been well characterised in recent decades, of no less interest are the great strides that have also been made in characterizing and understanding the behavioural and cognitive basis of orientation and navigation in invertebrate models and in particular insects. Insects are known to exhibit remarkable spatial cognitive abilities and are able to successfully migrate over long distances or pinpoint known locations relying on multiple navigational strategies similar to those found in vertebrate models-all while operating under the constraint of relatively limited neural architectures. Insect orientation and navigation systems are often tailored to each species' ecology, yet common mechanistic principles can be observed repeatedly. Of these, reliance on visual cues is observed across a wide number of insect groups. In this review, we characterise some of the behavioural strategies used by insects to solve navigational problems, including orientation over short-distances, migratory heading maintenance over long distances, and homing behaviours to known locations. We describe behavioural research using examples from a few well-studied insect species to illustrate how visual cues are used in navigation and how they interact with non-visual cues and strategies.
Collapse
Affiliation(s)
- Cody A. Freas
- Department of Psychology, University of Alberta, Edmonton, AB Canada ,School of Natural Sciences, Macquarie University, Sydney, NSW Australia
| | - Marcia L. Spetch
- Department of Psychology, University of Alberta, Edmonton, AB Canada
| |
Collapse
|
34
|
Zittrell F, Pabst K, Carlomagno E, Rosner R, Pegel U, Endres DM, Homberg U. Integration of optic flow into the sky compass network in the brain of the desert locust. Front Neural Circuits 2023; 17:1111310. [PMID: 37187914 PMCID: PMC10175609 DOI: 10.3389/fncir.2023.1111310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/30/2023] [Indexed: 05/17/2023] Open
Abstract
Flexible orientation through any environment requires a sense of current relative heading that is updated based on self-motion. Global external cues originating from the sky or the earth's magnetic field and local cues provide a reference frame for the sense of direction. Locally, optic flow may inform about turning maneuvers, travel speed and covered distance. The central complex in the insect brain is associated with orientation behavior and largely acts as a navigation center. Visual information from global celestial cues and local landmarks are integrated in the central complex to form an internal representation of current heading. However, it is less clear how optic flow is integrated into the central-complex network. We recorded intracellularly from neurons in the locust central complex while presenting lateral grating patterns that simulated translational and rotational motion to identify these sites of integration. Certain types of central-complex neurons were sensitive to optic-flow stimulation independent of the type and direction of simulated motion. Columnar neurons innervating the noduli, paired central-complex substructures, were tuned to the direction of simulated horizontal turns. Modeling the connectivity of these neurons with a system of proposed compass neurons can account for rotation-direction specific shifts in the activity profile in the central complex corresponding to turn direction. Our model is similar but not identical to the mechanisms proposed for angular velocity integration in the navigation compass of the fly Drosophila.
Collapse
Affiliation(s)
- Frederick Zittrell
- Department of Biology, Philipps-Universität Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University, Marburg, Germany
| | - Kathrin Pabst
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University, Marburg, Germany
- Department of Psychology, Philipps-Universität Marburg, Marburg, Germany
| | - Elena Carlomagno
- Department of Biology, Philipps-Universität Marburg, Marburg, Germany
| | - Ronny Rosner
- Department of Biology, Philipps-Universität Marburg, Marburg, Germany
| | - Uta Pegel
- Department of Biology, Philipps-Universität Marburg, Marburg, Germany
| | - Dominik M. Endres
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University, Marburg, Germany
- Department of Psychology, Philipps-Universität Marburg, Marburg, Germany
| | - Uwe Homberg
- Department of Biology, Philipps-Universität Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University, Marburg, Germany
- *Correspondence: Uwe Homberg
| |
Collapse
|
35
|
The sky compass network in the brain of the desert locust. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2022:10.1007/s00359-022-01601-x. [PMID: 36550368 DOI: 10.1007/s00359-022-01601-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/24/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022]
Abstract
Many arthropods and vertebrates use celestial signals such as the position of the sun during the day or stars at night as compass cues for spatial orientation. The neural network underlying sky compass coding in the brain has been studied in great detail in the desert locust Schistocerca gregaria. These insects perform long-range migrations in Northern Africa and the Middle East following seasonal changes in rainfall. Highly specialized photoreceptors in a dorsal rim area of their compound eyes are sensitive to the polarization of the sky, generated by scattered sunlight. These signals are combined with direct information on the sun position in the optic lobe and anterior optic tubercle and converge from both eyes in a midline crossing brain structure, the central complex. Here, head direction coding is achieved by a compass-like arrangement of columns signaling solar azimuth through a 360° range of space by combining direct brightness cues from the sun with polarization cues matching the polarization pattern of the sky. Other directional cues derived from wind direction and internal self-rotation input are likely integrated. Signals are transmitted as coherent steering commands to descending neurons for directional control of locomotion and flight.
Collapse
|
36
|
Rössler W, Grob R, Fleischmann PN. The role of learning-walk related multisensory experience in rewiring visual circuits in the desert ant brain. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2022:10.1007/s00359-022-01600-y. [DOI: 10.1007/s00359-022-01600-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/21/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022]
Abstract
AbstractEfficient spatial orientation in the natural environment is crucial for the survival of most animal species. Cataglyphis desert ants possess excellent navigational skills. After far-ranging foraging excursions, the ants return to their inconspicuous nest entrance using celestial and panoramic cues. This review focuses on the question about how naïve ants acquire the necessary spatial information and adjust their visual compass systems. Naïve ants perform structured learning walks during their transition from the dark nest interior to foraging under bright sunlight. During initial learning walks, the ants perform rotational movements with nest-directed views using the earth’s magnetic field as an earthbound compass reference. Experimental manipulations demonstrate that specific sky compass cues trigger structural neuronal plasticity in visual circuits to integration centers in the central complex and mushroom bodies. During learning walks, rotation of the sky-polarization pattern is required for an increase in volume and synaptic complexes in both integration centers. In contrast, passive light exposure triggers light-spectrum (especially UV light) dependent changes in synaptic complexes upstream of the central complex. We discuss a multisensory circuit model in the ant brain for pathways mediating structural neuroplasticity at different levels following passive light exposure and multisensory experience during the performance of learning walks.
Collapse
|
37
|
Fisher YE, Marquis M, D'Alessandro I, Wilson RI. Dopamine promotes head direction plasticity during orienting movements. Nature 2022; 612:316-322. [PMID: 36450986 PMCID: PMC9729112 DOI: 10.1038/s41586-022-05485-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 10/25/2022] [Indexed: 12/05/2022]
Abstract
In neural networks that store information in their connection weights, there is a tradeoff between sensitivity and stability1,2. Connections must be plastic to incorporate new information, but if they are too plastic, stored information can be corrupted. A potential solution is to allow plasticity only during epochs when task-specific information is rich, on the basis of a 'when-to-learn' signal3. We reasoned that dopamine provides a when-to-learn signal that allows the brain's spatial maps to update when new spatial information is available-that is, when an animal is moving. Here we show that the dopamine neurons innervating the Drosophila head direction network are specifically active when the fly turns to change its head direction. Moreover, their activity scales with moment-to-moment fluctuations in rotational speed. Pairing dopamine release with a visual cue persistently strengthens the cue's influence on head direction cells. Conversely, inhibiting these dopamine neurons decreases the influence of the cue. This mechanism should accelerate learning during moments when orienting movements are providing a rich stream of head direction information, allowing learning rates to be low at other times to protect stored information. Our results show how spatial learning in the brain can be compressed into discrete epochs in which high learning rates are matched to high rates of information intake.
Collapse
Affiliation(s)
- Yvette E Fisher
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- Department of Molecular and Cellular Biology, University of California Berkeley, Berkeley, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Michael Marquis
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | | | - Rachel I Wilson
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
38
|
Ding H, Yan S. Physiological Signatures of Changes in Honeybee's Central Complex During Wing Flapping. JOURNAL OF INSECT SCIENCE (ONLINE) 2022; 22:10. [PMID: 36222481 PMCID: PMC9554949 DOI: 10.1093/jisesa/ieac060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Indexed: 06/16/2023]
Abstract
Many kinds of locomotion abilities of insects-including flight control, spatial orientation memory, position memory, angle information integration, and polarized light guidance are considered to be related to the central complex. However, evidence was still not sufficient to support those conclusions from the aspect of neural basis. For the locomotion form of wing flapping, little is known about the patterns of changes in brain activity of the central complex during movement. Here, we analyze the changes in honeybees' neuronal population firing activity of central complex and optic lobes with the perspectives of energy and nonlinear changes. Although the specific function of the central complex remains unknown, evidence suggests that its neural activities change remarkably during wing flapping and its delta rhythm is dominative. Together, our data reveal that the firing activity of some of the neuronal populations of the optic lobe shows reduction in complexity during wing flapping. Elucidating the brain activity changes during a flapping period of insects promotes our understanding of the neuro-mechanisms of insect locomotor control, thus can inspire the fine control of insect cyborgs.
Collapse
Affiliation(s)
- Haojia Ding
- State Key Laboratory of Tribology in Advanced Equipment (SKLT), Division of Intelligent and Biomechanical Systems, Department of Mechanical Engineering, Tsinghua University, 100084 Beijing, China
| | | |
Collapse
|
39
|
Rana A, Emanuel S, Adams ME, Libersat F. Suppression of host nocifensive behavior by parasitoid wasp venom. Front Physiol 2022; 13:907041. [PMID: 36035493 PMCID: PMC9411936 DOI: 10.3389/fphys.2022.907041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/04/2022] [Indexed: 11/15/2022] Open
Abstract
The parasitoid wasp Ampulex compressa envenomates the brain of its host the American cockroach (Periplaneta americana), thereby making it a behaviorally compliant food supply for its offspring. The target of venom injection is a locomotory command center in the brain called the central complex. In this study, we investigate why stung cockroaches do not respond to injuries incurred during the manipulation process by the wasp. In particular, we examine how envenomation compromises nociceptive signaling pathways in the host. Noxious stimuli applied to the cuticle of stung cockroaches fail to evoke escape responses, even though nociceptive interneurons projecting to the brain respond normally. Hence, while nociceptive signals are carried forward to the brain, they fail to trigger robust nocifensive behavior. Electrophysiological recordings from the central complex of stung animals demonstrate decreases in peak firing rate, total firing, and duration of noxious-evoked activity. The single parameter best correlated with altered noxious-evoked behavioral responses of stung cockroaches is reduced duration of the evoked response in the central complex. Our findings demonstrate how the reproductive strategy of a parasitoid wasp is served by venom-mediated elimination of aversive, nocifensive behavior in its host.
Collapse
Affiliation(s)
- Amit Rana
- Department of Life Sciences and Zlotowski Center for Neurosciences, Ben Gurion University of the Negev, Be’er Sheva, Israel
| | - Stav Emanuel
- Department of Life Sciences and Zlotowski Center for Neurosciences, Ben Gurion University of the Negev, Be’er Sheva, Israel
| | - Michael E. Adams
- Department of Molecular, Cell, and Systems Biology, University of California, Riverside, Riverside, CA, United States
- Department of Entomology, University of California, Riverside, Riverside, CA, United States
| | - Frederic Libersat
- Department of Life Sciences and Zlotowski Center for Neurosciences, Ben Gurion University of the Negev, Be’er Sheva, Israel
- *Correspondence: Frederic Libersat,
| |
Collapse
|
40
|
Supple JA, Varennes-Phillit L, Gajjar-Reid D, Cerkvenik U, Belušič G, Krapp HG. Generating spatiotemporal patterns of linearly polarised light at high frame rates for insect vision research. J Exp Biol 2022; 225:275926. [PMID: 35708202 PMCID: PMC9339910 DOI: 10.1242/jeb.244087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/13/2022] [Indexed: 11/30/2022]
Abstract
Polarisation vision is commonplace among invertebrates; however, most experiments focus on determining behavioural and/or neurophysiological responses to static polarised light sources rather than moving patterns of polarised light. To address the latter, we designed a polarisation stimulation device based on superimposing polarised and non-polarised images from two projectors, which can display moving patterns at frame rates exceeding invertebrate flicker fusion frequencies. A linear polariser fitted to one projector enables moving patterns of polarised light to be displayed, whilst the other projector contributes arbitrary intensities of non-polarised light to yield moving patterns with a defined polarisation and intensity contrast. To test the device, we measured receptive fields of polarisation-sensitive Argynnis paphia butterfly photoreceptors for both non-polarised and polarised light. We then measured local motion sensitivities of the optic flow-sensitive lobula plate tangential cell H1 in Calliphora vicina blowflies under both polarised and non-polarised light, finding no polarisation sensitivity in this neuron. Summary: Design of a versatile visual stimulation device for presenting moving patterns of polarised light, and demonstration of its use to characterise polarisation sensitivity in butterfly photoreceptors and blowfly motion-sensitive interneurons.
Collapse
Affiliation(s)
- Jack A Supple
- Department of Bioengineering, Imperial College London, Royal School of Mines, Exhibition Road, London, SW7 2AZ, UK
| | - Léandre Varennes-Phillit
- Department of Bioengineering, Imperial College London, Royal School of Mines, Exhibition Road, London, SW7 2AZ, UK
| | - Dexter Gajjar-Reid
- Department of Bioengineering, Imperial College London, Royal School of Mines, Exhibition Road, London, SW7 2AZ, UK
| | - Uroš Cerkvenik
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Gregor Belušič
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Holger G Krapp
- Department of Bioengineering, Imperial College London, Royal School of Mines, Exhibition Road, London, SW7 2AZ, UK
| |
Collapse
|
41
|
Wosnitza A, Martin JP, Pollack AJ, Svenson GJ, Ritzmann RE. The Role of Central Complex Neurons in Prey Detection and Tracking in the Freely Moving Praying Mantis (Tenodera sinensis). Front Neural Circuits 2022; 16:893004. [PMID: 35769200 PMCID: PMC9234402 DOI: 10.3389/fncir.2022.893004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/12/2022] [Indexed: 11/24/2022] Open
Abstract
Complex tasks like hunting moving prey in an unpredictable environment require high levels of motor and sensory integration. An animal needs to detect and track suitable prey objects, measure their distance and orientation relative to its own position, and finally produce the correct motor output to approach and capture the prey. In the insect brain, the central complex (CX) is one target area where integration is likely to take place. In this study, we performed extracellular multi-unit recordings on the CX of freely hunting praying mantises (Tenodera sinensis). Initially, we recorded the neural activity of freely moving mantises as they hunted live prey. The recordings showed activity in cells that either reflected the mantis's own movements or the actions of a prey individual, which the mantises focused on. In the latter case, the activity increased as the prey moved and decreased when it stopped. Interestingly, cells ignored the movement of the other prey than the one to which the mantis attended. To obtain quantitative data, we generated simulated prey targets presented on an LCD screen positioned below the clear floor of the arena. The simulated target oscillated back and forth at various angles and distances. We identified populations of cells whose activity patterns were strongly linked to the appearance, movement, and relative position of the virtual prey. We refer to these as sensory responses. We also found cells whose activity preceded orientation movement toward the prey. We call these motor responses. Some cells showed both sensory and motor properties. Stimulation through tetrodes in some of the preparations could also generate similar movements. These results suggest the crucial importance of the CX to prey-capture behavior in predatory insects like the praying mantis and, hence, further emphasize its role in behaviorally and ecologically relevant contexts.
Collapse
Affiliation(s)
- Anne Wosnitza
- Department of Biology, College of Arts and Sciences, Case Western Reserve University, Cleveland, OH, United States
| | - Joshua P. Martin
- Department of Biology, Colby College, Waterville, ME, United States
- *Correspondence: Joshua P. Martin
| | - Alan J. Pollack
- Department of Biology, College of Arts and Sciences, Case Western Reserve University, Cleveland, OH, United States
| | - Gavin J. Svenson
- Cleveland Museum of Natural History, Cleveland, OH, United States
| | - Roy E. Ritzmann
- Department of Biology, College of Arts and Sciences, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
42
|
Kaiser A, Hensgen R, Tschirner K, Beetz E, Wüstenberg H, Pfaff M, Mota T, Pfeiffer K. A three-dimensional atlas of the honeybee central complex, associated neuropils and peptidergic layers of the central body. J Comp Neurol 2022; 530:2416-2438. [PMID: 35593178 DOI: 10.1002/cne.25339] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/15/2022] [Accepted: 04/26/2022] [Indexed: 11/11/2022]
Abstract
The central complex (CX) in the brain of insects is a highly conserved group of midline-spanning neuropils consisting of the upper and lower division of the central body, the protocerebral bridge, and the paired noduli. These neuropils are the substrate for a number of behaviors, most prominently goal-oriented locomotion. Honeybees have been a model organism for sky-compass orientation for more than 70 years, but there is still very limited knowledge about the structure and function of their CX. To advance and facilitate research on this brain area, we created a high-resolution three-dimensional atlas of the honeybee's CX and associated neuropils, including the posterior optic tubercles, the bulbs, and the anterior optic tubercles. To this end, we developed a modified version of the iterative shape averaging technique, which allowed us to achieve high volumetric accuracy of the neuropil models. For a finer definition of spatial locations within the central body, we defined layers based on immunostaining against the neuropeptides locustatachykinin, FMRFamide, gastrin/cholecystokinin, and allatostatin and included them into the atlas by elastic registration. Our honeybee CX atlas provides a platform for future neuroanatomical work.
Collapse
Affiliation(s)
- Andreas Kaiser
- Department of Biology/Animal Physiology, Philipps-University Marburg, Marburg, Germany
| | - Ronja Hensgen
- Department of Biology/Animal Physiology, Philipps-University Marburg, Marburg, Germany
| | - Katja Tschirner
- Behavioural Physiology and Sociobiology (Zoology II), Biocenter, University of Würzburg, Würzburg, Germany
| | - Evelyn Beetz
- Behavioural Physiology and Sociobiology (Zoology II), Biocenter, University of Würzburg, Würzburg, Germany
| | - Hauke Wüstenberg
- Department of Biology/Animal Physiology, Philipps-University Marburg, Marburg, Germany
| | - Marcel Pfaff
- Behavioural Physiology and Sociobiology (Zoology II), Biocenter, University of Würzburg, Würzburg, Germany
| | - Theo Mota
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Keram Pfeiffer
- Department of Biology/Animal Physiology, Philipps-University Marburg, Marburg, Germany.,Behavioural Physiology and Sociobiology (Zoology II), Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
43
|
Patel RN, Kempenaers J, Heinze S. Vector navigation in walking bumblebees. Curr Biol 2022; 32:2871-2883.e4. [DOI: 10.1016/j.cub.2022.05.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/04/2022] [Accepted: 05/05/2022] [Indexed: 01/20/2023]
|
44
|
Performance of polarization-sensitive neurons of the locust central complex at different degrees of polarization. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2022; 208:387-403. [PMID: 35157117 PMCID: PMC9123078 DOI: 10.1007/s00359-022-01545-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/18/2022] [Accepted: 01/25/2022] [Indexed: 10/29/2022]
Abstract
The polarization pattern of the sky is exploited by many insects for spatial orientation and navigation. It derives from Rayleigh scattering in the atmosphere and depends directly on the position of the sun. In the insect brain, the central complex (CX) houses neurons tuned to the angle of polarization (AoP), that together constitute an internal compass for celestial navigation. Polarized light is not only characterized by the AoP, but also by the degree of polarization (DoP), which can be highly variable, depending on sky conditions. Under a clear sky, the DoP of polarized sky light may reach up to 0.75 but is usually much lower especially when light is scattered by clouds or haze. To investigate how the polarization-processing network of the CX copes with low DoPs, we recorded intracellularly from neurons of the locust CX at different stages of processing, while stimulating with light of different DoPs. Significant responses to polarized light occurred down to DoPs of 0.05 indicating reliable coding of the AoP even at unfavorable sky conditions. Moreover, we found that the activity of neurons at the CX input stage may be strongly influenced by nearly unpolarized light, while the activity of downstream neurons appears less affected.
Collapse
|
45
|
Takahashi N, Zittrell F, Hensgen R, Homberg U. Receptive field structures for two celestial compass cues at the input stage of the central complex in the locust brain. J Exp Biol 2022; 225:274503. [DOI: 10.1242/jeb.243858] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/14/2022] [Indexed: 11/20/2022]
Abstract
Successful navigation depends on an animal's ability to perceive its spatial orientation relative to visual surroundings. Heading direction in insects is represented in the central complex (CX), a navigation center in the brain, to generate steering commands. In insects that navigate relative to sky compass signals, CX neurons are tuned to celestial cues indicating the location of the sun. The desert locust CX contains a compass-like representation of two related celestial cues: the direction of unpolarized direct sunlight and the pattern of polarized light, which depends on the sun position. Whether congruent tuning to these two compass cues emerges within the CX network or is inherited from CX input neurons is unclear. To address this question, we intracellularly recorded from GABA-immunoreactive TL neurons, input elements to the locust CX (corresponding to R neurons in Drosophila), while applying visual stimuli simulating unpolarized sunlight and polarized light across the hemisphere above the animal. We show that TL neurons have large receptive fields for both types of stimuli. However, faithful integration of polarization angles across the dorsal hemisphere, or matched-filter ability to encode particular sun positions, was found in only two out of 22 recordings. Those two neurons also showed a good match in sun position coding through polarized and unpolarized light signaling, whereas 20 neurons showed substantial mismatch in signaling of the two compass cues. The data, therefore, suggest that considerable refinement of azimuth coding based on sky compass signals occurs at the synapses from TL neurons to postsynaptic CX compass neurons.
Collapse
Affiliation(s)
- Naomi Takahashi
- Department of Biology, Animal Physiology, Philipps-Universität Marburg, D-35032 Marburg, Germany
| | - Frederick Zittrell
- Department of Biology, Animal Physiology, Philipps-Universität Marburg, D-35032 Marburg, Germany
| | - Ronja Hensgen
- Department of Biology, Animal Physiology, Philipps-Universität Marburg, D-35032 Marburg, Germany
| | - Uwe Homberg
- Department of Biology, Animal Physiology, Philipps-Universität Marburg, D-35032 Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Germany
| |
Collapse
|
46
|
Hulse BK, Haberkern H, Franconville R, Turner-Evans D, Takemura SY, Wolff T, Noorman M, Dreher M, Dan C, Parekh R, Hermundstad AM, Rubin GM, Jayaraman V. A connectome of the Drosophila central complex reveals network motifs suitable for flexible navigation and context-dependent action selection. eLife 2021; 10:e66039. [PMID: 34696823 PMCID: PMC9477501 DOI: 10.7554/elife.66039] [Citation(s) in RCA: 171] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 09/07/2021] [Indexed: 11/13/2022] Open
Abstract
Flexible behaviors over long timescales are thought to engage recurrent neural networks in deep brain regions, which are experimentally challenging to study. In insects, recurrent circuit dynamics in a brain region called the central complex (CX) enable directed locomotion, sleep, and context- and experience-dependent spatial navigation. We describe the first complete electron microscopy-based connectome of the Drosophila CX, including all its neurons and circuits at synaptic resolution. We identified new CX neuron types, novel sensory and motor pathways, and network motifs that likely enable the CX to extract the fly's head direction, maintain it with attractor dynamics, and combine it with other sensorimotor information to perform vector-based navigational computations. We also identified numerous pathways that may facilitate the selection of CX-driven behavioral patterns by context and internal state. The CX connectome provides a comprehensive blueprint necessary for a detailed understanding of network dynamics underlying sleep, flexible navigation, and state-dependent action selection.
Collapse
Affiliation(s)
- Brad K Hulse
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Hannah Haberkern
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Romain Franconville
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Daniel Turner-Evans
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Shin-ya Takemura
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Tanya Wolff
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Marcella Noorman
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Marisa Dreher
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Chuntao Dan
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Ruchi Parekh
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Ann M Hermundstad
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Gerald M Rubin
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Vivek Jayaraman
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| |
Collapse
|
47
|
Abstract
Studying neurons and their connections in the central complex of the fruit fly reveals new insights into how their structure and function shape perception and behavior.
Collapse
|
48
|
Sayre ME, Templin R, Chavez J, Kempenaers J, Heinze S. A projectome of the bumblebee central complex. eLife 2021; 10:e68911. [PMID: 34523418 PMCID: PMC8504972 DOI: 10.7554/elife.68911] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 09/14/2021] [Indexed: 12/29/2022] Open
Abstract
Insects have evolved diverse and remarkable strategies for navigating in various ecologies all over the world. Regardless of species, insects share the presence of a group of morphologically conserved neuropils known collectively as the central complex (CX). The CX is a navigational center, involved in sensory integration and coordinated motor activity. Despite the fact that our understanding of navigational behavior comes predominantly from ants and bees, most of what we know about the underlying neural circuitry of such behavior comes from work in fruit flies. Here, we aim to close this gap, by providing the first comprehensive map of all major columnar neurons and their projection patterns in the CX of a bee. We find numerous components of the circuit that appear to be highly conserved between the fly and the bee, but also highlight several key differences which are likely to have important functional ramifications.
Collapse
Affiliation(s)
- Marcel Ethan Sayre
- Lund University, Lund Vision Group, Department of BiologyLundSweden
- Macquarie University, Department of Biological SciencesSydneyAustralia
| | - Rachel Templin
- Queensland Brain Institute, University of QueenslandBrisbaneSweden
| | - Johanna Chavez
- Lund University, Lund Vision Group, Department of BiologyLundSweden
| | | | - Stanley Heinze
- Lund University, Lund Vision Group, Department of BiologyLundSweden
- Lund University, NanoLundLundSweden
| |
Collapse
|
49
|
Rozanski AN, Cini A, Lopreto TE, Gandia KM, Hauber ME, Cervo R, Uy FMK. Differential investment in visual and olfactory brain regions is linked to the sensory needs of a wasp social parasite and its host. J Comp Neurol 2021; 530:756-767. [PMID: 34473851 DOI: 10.1002/cne.25242] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 08/03/2021] [Accepted: 08/31/2021] [Indexed: 01/30/2023]
Abstract
Obligate insect social parasites evolve traits to effectively locate and then exploit their hosts, whereas hosts have complex social behavioral repertoires, which include sensory recognition to reject potential conspecific intruders and heterospecific parasites. While social parasites and host behaviors have been studied extensively, less is known about how their sensory systems function to meet their specific selective pressures. Here, we compare investment in visual and olfactory brain regions in the paper wasp Polistes dominula, and its obligate social parasite P. sulcifer, to explore the links among sensory systems,brain and behavior. Our results show significant relative volumetric differences between these two closely related species, consistent with their very different life histories. Social parasites show proportionally larger optic lobes and central complex to likely navigate long-distance migrations and unfamiliar landscapes to locate the specific species of hosts they usurp. Contrastingly, hosts have larger antennal lobes and calyces of the mushroom bodies compared with social parasites, as predicted by their sensory means to maintain social cohesion via olfactory signals, allocate colony tasks, forage, and recognize conspecific and heterospecific intruders. Our work suggests how this tradeoff between visual and olfactory brain regions may facilitate different sensory adaptations needed to perform social and foraging tasks by the host, including recognition of parasites, or to fly long distances and successful host localizing by the social parasite.
Collapse
Affiliation(s)
| | - Alessandro Cini
- Department of Biology, University of Florence, Sesto Fiorentino, Firenze, Italy.,Centre for Biodiversity and Environment Research, University College London, London, UK
| | - Taylor E Lopreto
- Department of Biology, University of Miami, Coral Gables, Florida, USA
| | - Kristine M Gandia
- Department of Biology, University of Miami, Coral Gables, Florida, USA
| | - Mark E Hauber
- Department of Evolution, Ecology and Behavior, School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Rita Cervo
- Department of Biology, University of Florence, Sesto Fiorentino, Firenze, Italy
| | - Floria M K Uy
- Department of Biology, University of Miami, Coral Gables, Florida, USA.,Department of Biology, University of Rochester, Rochester, New York, USA
| |
Collapse
|
50
|
Matsubara N, Okada R, Sakura M. Possible Role of Polarized Light Information in Spatial Recognition in the Cricket Gryllus bimaculatus. Zoolog Sci 2021; 38:297-304. [PMID: 34342949 DOI: 10.2108/zs200081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 04/20/2021] [Indexed: 11/17/2022]
Abstract
Many insects are able to use skylight e-vector patterns to deduce their heading direction. Crickets have been well known to orient themselves to certain e-vector orientations to keep their walking direction. However, it is still unknown if crickets are able to utilize polarized light information for spatial recognition. Using an experimental paradigm similar to the Morris water maze for rodents, here we examine the possibility that the cricket Gryllus bimaculatus can utilize polarized light information to find the target place. Crickets were placed in a round arena with a heated floor, a portion of which was cooled, and a cross-shaped e-vector pattern was presented from the top of the arena so that the cricket could find the cool spot by walking along the e-vector direction. When the arrangement of the e-vector pattern and the cool spot were fixed throughout the experiments, the time and the walking distance to find the cool spot were significantly decreased with increasing trials, but not when the e-vector pattern was rotated between each trial. Moreover, a model selection indicated that the visual stimulus contributed to the decrease in time and distance. To investigate the cricket's exploration patterns in the arena, a test trial in which the whole floor was uniformly heated was performed before and after the training trials. In the test trial, the crickets trained with the positionally fixed e-vector pattern showed wall-following behavior for a significantly longer time than those untrained and those trained with random e-vector patterns.
Collapse
Affiliation(s)
- Nobuaki Matsubara
- Department of Biology, Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Ryuichi Okada
- Department of Biology, Graduate School of Science, Kobe University, Kobe 657-8501, Japan.,School of Human Science and Environment, University of Hyogo, Himeji 670-0092, Japan
| | - Midori Sakura
- Department of Biology, Graduate School of Science, Kobe University, Kobe 657-8501, Japan,
| |
Collapse
|