1
|
Caller T, Moore KJ, Lehmann LH, Wu SM, Leor J. Insights Into Heart-Tumor Interactions in Heart Failure. Circ Res 2025; 136:1262-1285. [PMID: 40403117 DOI: 10.1161/circresaha.124.325490] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 02/10/2025] [Accepted: 02/27/2025] [Indexed: 05/24/2025]
Abstract
Heart failure (HF) often coexists with cancer. Beyond the known cardiotoxicity of some cancer treatments, HF itself has been associated with increased cancer incidence. The 2 conditions share common risk factors, mechanisms, and interactions that can worsen patient outcomes. The bidirectional relationship between HF and cancer presents a complex interplay of factors that are not fully understood. Recent preclinical evidence suggests that HF may promote tumor growth via the release of protumorigenic factors from the injured heart, revealing HF as a potentially protumorigenic condition. Our review discusses the biological crosstalk between HF and cancer, emphasizing the impact of HF on tumor growth, with inflammation, and modulating the immune system as central mechanisms. We further explore the clinical implications of this connection and propose future research directions. Understanding the mechanistic overlap and interactions between HF and cancer could lead to new biomarkers and therapies, addressing the growing prevalence of both conditions and enhancing approaches to diagnosis, prevention, and treatment.
Collapse
Affiliation(s)
- Tal Caller
- Neufeld and Tamman Cardiovascular Research Institutes, Faculty of Medical and Health Sciences, Tel Aviv University, Israel (T.C., J.L.)
- Lev Leviev Cardiovascular and Thoracic Center, Sheba Medical Center, Tel Hashomer, Israel (T.C., J.L.)
| | - Kathryn J Moore
- Department of Medicine, Cardiovascular Research Center, New York University Grossman School of Medicine (K.J.M.)
| | - Lorenz H Lehmann
- Department of Cardiology, University Hospital Heidelberg, Germany (L.H.L.)
- German Center of Cardiovascular Research (DZHK), Partnersite Heidelberg/Mannheim, Germany (L.H.L.)
- German Cancer Research Center (DKFZ), Heidelberg, Germany (L.H.L.)
| | - Sean M Wu
- Stanford Cardiovascular Institute (S.M.W.), Stanford University School of Medicine, CA
- Division of Cardiovascular Medicine, Department of Medicine (S.M.W.), Stanford University School of Medicine, CA
| | - Jonathan Leor
- Neufeld and Tamman Cardiovascular Research Institutes, Faculty of Medical and Health Sciences, Tel Aviv University, Israel (T.C., J.L.)
- Lev Leviev Cardiovascular and Thoracic Center, Sheba Medical Center, Tel Hashomer, Israel (T.C., J.L.)
| |
Collapse
|
2
|
Zhang N, Wang L, Li X, Yang X, Tao X, Jiang H, Yu Y, Liu J, Yu S, Ma Y, Zhang B, Zhang G. Role of Sclerostin in Cardiovascular System. Int J Mol Sci 2025; 26:4552. [PMID: 40429697 PMCID: PMC12111627 DOI: 10.3390/ijms26104552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Revised: 05/03/2025] [Accepted: 05/05/2025] [Indexed: 05/29/2025] Open
Abstract
Sclerostin, encoded by the SOST gene, is a novel bone anabolic target for bone diseases. Humanized anti-sclerostin antibody, romosozumab, was approved for treatment of postmenopausal osteoporosis by the US Food and Drug Administration (FDA), but with a black-box warning on cardiovascular risk. The clinical data regarding cardiovascular events from various pre-marketing and post-marketing studies of romosozumab were inconsistent. Overall, the cardiovascular risk of sclerostin inhibition could not be excluded. The restriction of romosozumab in patients with cardiovascular disease history would be necessary. Moreover, genome-wide association study (GWAS) analyses of SOST variants revealed inconsistent results of the association between SOST variations and cardiovascular diseases. Further research incorporating larger sample sizes and functional analyses are necessary. In analyses of serum/tissue sclerostin levels in patients with cardiovascular diseases, the results were controversial but indicated an association between sclerostin and the presence/severity/outcomes of cardiovascular diseases. Nonclinical studies in rodents indicated the inhibitory effect of sclerostin on inflammation, aortic aneurysm, atherosclerosis, and vascular calcification. Sclerostin loop3 participated in the inhibitory effect of sclerostin on bone formation, while the cardiovascular protective effect of sclerostin was independent of sclerostin loop3. Macrophagic sclerostin loop2-apolipoprotein E receptor 2 (ApoER2) interaction participated in the inhibitory effect of sclerostin on inflammation in vitro. Sclerostin in human aortic smooth muscle cells participated in the reduction in calcium deposition. The role of sclerostin in cardiovascular system deserves further investigation.
Collapse
Affiliation(s)
- Ning Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong 999077, China; (N.Z.); (H.J.); (S.Y.)
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery (HKAP), Hong Kong 999077, China; (X.L.); (X.Y.); (X.T.); (Y.Y.); (J.L.); (Y.M.); (G.Z.)
| | - Luyao Wang
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery (HKAP), Hong Kong 999077, China; (X.L.); (X.Y.); (X.T.); (Y.Y.); (J.L.); (Y.M.); (G.Z.)
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases (TMBJ), Hong Kong Baptist University, Hong Kong 999077, China
| | - Xiaofei Li
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery (HKAP), Hong Kong 999077, China; (X.L.); (X.Y.); (X.T.); (Y.Y.); (J.L.); (Y.M.); (G.Z.)
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases (TMBJ), Hong Kong Baptist University, Hong Kong 999077, China
| | - Xin Yang
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery (HKAP), Hong Kong 999077, China; (X.L.); (X.Y.); (X.T.); (Y.Y.); (J.L.); (Y.M.); (G.Z.)
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases (TMBJ), Hong Kong Baptist University, Hong Kong 999077, China
| | - Xiaohui Tao
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery (HKAP), Hong Kong 999077, China; (X.L.); (X.Y.); (X.T.); (Y.Y.); (J.L.); (Y.M.); (G.Z.)
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases (TMBJ), Hong Kong Baptist University, Hong Kong 999077, China
| | - Hewen Jiang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong 999077, China; (N.Z.); (H.J.); (S.Y.)
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery (HKAP), Hong Kong 999077, China; (X.L.); (X.Y.); (X.T.); (Y.Y.); (J.L.); (Y.M.); (G.Z.)
| | - Yuanyuan Yu
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery (HKAP), Hong Kong 999077, China; (X.L.); (X.Y.); (X.T.); (Y.Y.); (J.L.); (Y.M.); (G.Z.)
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases (TMBJ), Hong Kong Baptist University, Hong Kong 999077, China
| | - Jin Liu
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery (HKAP), Hong Kong 999077, China; (X.L.); (X.Y.); (X.T.); (Y.Y.); (J.L.); (Y.M.); (G.Z.)
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases (TMBJ), Hong Kong Baptist University, Hong Kong 999077, China
| | - Sifan Yu
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong 999077, China; (N.Z.); (H.J.); (S.Y.)
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery (HKAP), Hong Kong 999077, China; (X.L.); (X.Y.); (X.T.); (Y.Y.); (J.L.); (Y.M.); (G.Z.)
| | - Yuan Ma
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery (HKAP), Hong Kong 999077, China; (X.L.); (X.Y.); (X.T.); (Y.Y.); (J.L.); (Y.M.); (G.Z.)
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases (TMBJ), Hong Kong Baptist University, Hong Kong 999077, China
| | - Baoting Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong 999077, China; (N.Z.); (H.J.); (S.Y.)
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery (HKAP), Hong Kong 999077, China; (X.L.); (X.Y.); (X.T.); (Y.Y.); (J.L.); (Y.M.); (G.Z.)
| | - Ge Zhang
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery (HKAP), Hong Kong 999077, China; (X.L.); (X.Y.); (X.T.); (Y.Y.); (J.L.); (Y.M.); (G.Z.)
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases (TMBJ), Hong Kong Baptist University, Hong Kong 999077, China
| |
Collapse
|
3
|
Zhang FY, Zhu L, Shi H, Wang F, Chen L, Zhang ZJ, Jiang ZL, Yao J, Wu XT. Lumbar localized fat distribution parameters are independent predictors of osteoporotic vertebral compression re-fractures (OVCRFs) following Percutaneous Kyphoplasty (PKP): a retrospective matched case-control study. Skeletal Radiol 2025; 54:1071-1080. [PMID: 39394355 DOI: 10.1007/s00256-024-04815-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/24/2024] [Accepted: 10/06/2024] [Indexed: 10/13/2024]
Abstract
OBJECTIVE To investigate potential risk factors for osteoporotic vertebral compression re-fractures (OVCRFs) following percutaneous kyphoplasty (PKP). MATERIALS AND METHODS Patients who underwent PKP from January 2012 to January 2020 were included in this study within the same institution. Cases were defined as patients who experienced OVCRFs, while controls were matched based on corresponding clinical characteristics from those patients without OVCRFs. The lumbar localized fat distribution parameters, including the fat infiltration ratio (FIR) in muscles [multifidus (MF), erector spinae (ES), paravertebral muscles (PVM), and psoas major (PS)] and subcutaneous fat thickness (SFT), were compared between the two groups through radiological data. And other clinical data that may be relevant were also compared. Independent risk factors for OVCRFs after PKP were identified through a binary logistic regression analysis. RESULT A total of 1391 patients who underwent PKP were included in this study. 51 patients were categorized into the re-fracture group, and 102 patients were selected as matched controls from the remaining cohort. There were statistically significant differences between the two groups in metrics including MF-FIR, ES-FIR, PVM-FIR, PS-FIR, bone mineral density (BMD), body-mass index (BMI), SFT, hemoglobin (Hb), albumin (ALB), alkaline phosphatase (ALP), and triglycerides (TG) (P < 0.05). Binary logistic regression analysis demonstrated that PVM-FIR (P = 0.003), SFT (P < 0.001), BMD (P = 0.011), and ALP (P = 0.005) were independent predictors for the occurrence of OVCRFs. CONCLUSION This study discovered that lumbar localized fat distribution parameters including PVM-FIR and SFT are independent predictors of OVCRFs. Additionally, BMD and ALP were found to be independent predictors of OVCRFs.
Collapse
Affiliation(s)
- Fu-Yu Zhang
- Southeast University Medical College, Nanjing, China
- Department of Spine Surgery, Southeast University Zhongda Hospital, Nanjing, 210009, China
| | - Lei Zhu
- Southeast University Medical College, Nanjing, China
- Department of Spine Surgery, Southeast University Zhongda Hospital, Nanjing, 210009, China
| | - Hang Shi
- Southeast University Medical College, Nanjing, China
- Department of Spine Surgery, Southeast University Zhongda Hospital, Nanjing, 210009, China
| | - Feng Wang
- Southeast University Medical College, Nanjing, China
- Department of Spine Surgery, Southeast University Zhongda Hospital, Nanjing, 210009, China
| | - Lu Chen
- Southeast University Medical College, Nanjing, China
- Department of Spine Surgery, Southeast University Zhongda Hospital, Nanjing, 210009, China
| | - Zi-Jian Zhang
- Southeast University Medical College, Nanjing, China
- Department of Spine Surgery, Southeast University Zhongda Hospital, Nanjing, 210009, China
| | - Zan-Li Jiang
- Southeast University Medical College, Nanjing, China
- Department of Spine Surgery, Southeast University Zhongda Hospital, Nanjing, 210009, China
| | - Jie Yao
- National Healthy Commission Contraceptives Adverse Reaction Surveillance Center/Jiangsu Provincial Medical Key Laboratory of Fertility Protection and Health Technology Assessment/Jiangsu Health Development Research Center, Nanjing, 210009, China.
| | - Xiao-Tao Wu
- Southeast University Medical College, Nanjing, China.
- Department of Spine Surgery, Southeast University Zhongda Hospital, Nanjing, 210009, China.
| |
Collapse
|
4
|
Zhang B, Hu P, Wu X, Zheng L, Li X, Wang K, Han X, Wang Y, Hong Y, Qiao R. Mining of candidate genes related to body size in Chinese native pig breeds based on public data. Sci Rep 2025; 15:9793. [PMID: 40118904 PMCID: PMC11928613 DOI: 10.1038/s41598-025-88583-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 01/29/2025] [Indexed: 03/24/2025] Open
Abstract
To study the key genes that influence the body size of local pig breeds in China. Genome-wide SNP chip data from a total of 129 pigs from eight breeds, consisting of four large body size breeds (MZ, HT, ST, RC) and four small body size breeds (XI, BX, WZ, DN) were analyzed. Principal Component Analysis (PCA) was employed to assess the genetic clustering of the eight breeds. Fst and XP-CLR were used to detect selective signals between the large ans small body size breeds groups. The PCA results indicated a clear clustering of small breeds and a dispersion distribution among large breeds. Fst and XP-CLR identified 142 overlapping regions within a 500 kb up & down stream of significant loci. These regions encompassed 520 annotated genes, which were enriched in 34 biological pathways. Gene network analysis highlighted nine key genes, of which five (NPR3, TNFSF11, TBC1D7, FGF2, IGF1R) are known to be associated with bone growth and body size traits in animals. Additionally, four novel candidate genes (IKBKB, SFRP1, LRP6, SPRY1) were identified that might be related to pig body size. Our findings provide a theoretical basis for further revealing the genetic mechanism of pig body size traits.
Collapse
Affiliation(s)
- Ben Zhang
- College of Animal Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Panyang Hu
- College of Animal Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xiangzhe Wu
- College of Animal Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Lixiang Zheng
- College of Animal Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xiuling Li
- College of Animal Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Kejun Wang
- College of Animal Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xuelei Han
- College of Animal Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yining Wang
- College of Animal Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yuan Hong
- College of Animal Science and Technology, FuJian Vocational College of Agriculture, FuZhou, 350119, China.
| | - Ruimin Qiao
- College of Animal Science, Henan Agricultural University, Zhengzhou, 450046, China.
| |
Collapse
|
5
|
Dehghanbanadaki N, Taghdir M, Naderi-Manesh H. Structural dynamic investigation of Wnt signalling activation through Co-receptor LRP6. J Biomol Struct Dyn 2025:1-14. [PMID: 39819348 DOI: 10.1080/07391102.2024.2446667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 10/13/2024] [Indexed: 01/19/2025]
Abstract
Cancer sparks if the components of the cellular signaling network are aberrantly activated, leading to uncontrolled cell growth and proliferation. One of the most important players of this highly regulated network is the Wnt/β-catenin signaling, with a significant role in human health and disease. The critical co-receptor of this pathway, LRP6, is overexpressed in various cancer types and is a target for therapy. Therefore, understanding the details of the LRP6 structural activation mechanism is of tremendous importance. This research intended to compare the structural-dynamics features of the E3E4 functional domain of LRP6 induced by the activator Wnt3a and the inhibitor, Dkk1_C, compared with the receptor behavior in the apo-state. Using molecular docking, molecular dynamics simulation, and G_MMPBSA calculation, we characterized overlapping binding regions of Wnt3a and Dkk1_C on E3E4. Despite their overall similar interacting regions, Dkk1_C and Wnt induce remarkably different inter-blades hydrogen bonds, structural-dynamics behavior, and conformational energy landscape in E3E4. According to our findings, Dkk1_C stabilized the interaction. between BP3 blades 2-3, 3-4, and 4-5 and BP4 blades 1-6, 1-2, 2-3, and 3-4, aligned with apo-state. However, on the other hand, Wnt distinguishably destabilized the hydrogen bond networks of these blades. Our DCCM analysis also depicted a similar correlation pattern of apo and Dkk1-bound states, and dramatic differences in Wnt-bound state, with a specific enhancement of correlated movements in EGF4. These data provide atomistic-level clues of how natural regulators of Wnt signaling manipulate LRP6 dynamics and, therefore, guide the structure-based design of efficient artificial inhibitors/activators for the pathway.
Collapse
Affiliation(s)
- N Dehghanbanadaki
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
- School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - M Taghdir
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - H Naderi-Manesh
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
6
|
An F, Jia X, Shi Y, Xiao X, Yang F, Su J, Peng X, Geng G, Yan C. The ultimate microbial composition for correcting Th17/Treg cell imbalance and lipid metabolism disorders in osteoporosis. Int Immunopharmacol 2025; 144:113613. [PMID: 39571271 DOI: 10.1016/j.intimp.2024.113613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/28/2024] [Accepted: 11/07/2024] [Indexed: 12/15/2024]
Abstract
Osteoporosis is a systemic bone disease characterised by decreased bone mass and a deteriorated bone microstructure, leading to increased bone fragility and fracture risk. Disorders of the intestinal microbiota may be key inducers of osteoporosis. Furthermore, such disorders may contribute to osteoporosis by influencing immune function and lipid metabolism. Therefore, in this review, we aimed to summarise the molecular mechanisms through which the intestinal microbiota affect the onset and development of osteoporosis by regulating Th17/Treg imbalance and lipid metabolism disorders. We also discussed the regulatory mechanisms underlying the effect of intestinal microbiota-related modulators on Th17/Treg imbalance and lipid metabolism disorders in osteoporosis, to explore new molecular targets for its treatment and provide a theoretical basis for clinical management.
Collapse
Affiliation(s)
- Fangyu An
- Teaching Experiment Training Center, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China.
| | - Xueru Jia
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Yangyang Shi
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Xiaolong Xiao
- School of Tradional Chinese and Werstern Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Fan Yang
- School of Tradional Chinese and Werstern Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Junchang Su
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Xia Peng
- School of Tradional Chinese and Werstern Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Guangqin Geng
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Chunlu Yan
- School of Tradional Chinese and Werstern Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China.
| |
Collapse
|
7
|
Badralmaa Y, Natarajan V. Aberrant Wnt/β-catenin signaling in the mesenchymal stem cells of LZTFL1-depleted mice leads to increased adipogenesis, with implications for obesity. J Biol Chem 2025; 301:108057. [PMID: 39662832 PMCID: PMC11770550 DOI: 10.1016/j.jbc.2024.108057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 11/05/2024] [Accepted: 11/18/2024] [Indexed: 12/13/2024] Open
Abstract
Obesity is one of the main clinical characteristics associated with the heterogeneous genetic disorder Bardet-Biedl syndrome (BBS). Leucine zipper transcription factor like 1 (LZTFL1) is a member of the BBS gene family. Our work showed that Lztfl1knockout (LZKO) mice display the obesity phenotype as early as 3 months of age. Mesenchymal stem cells (MSCs) are multipotent stem cells that can differentiate into various cell types, including adipocytes. To understand the role of LZTFL1 in adipogenesis, we analyzed MSCs isolated from LZKO mouse compact bones (CB-MSCs). Compared to wildtype (WT), LZKO CB-MSCs had elongated primary cilia with tapered tips and increased levels of peroxisome proliferator-activated receptor γ (PPARγ), a key transcription factor that favors adipogenesis, and nuclear glucocorticoid receptor (GR), a transcription factor involved in Pparg activation. Also, LZKO CB-MSCs had a lower level of total β-catenin, a core factor of the antiadipogenic canonical Wnt/b-catenin signaling pathway involved in limiting the nuclear localization of GR. Interaction between caveolin1 (CAV1) and LRP6, the main receptor for canonical Wnt signaling, is known to be critical for Wnt pathway activation and β-catenin stabilization. Compared to WT cells, LZKO cells had elevated total, cell-surface, and lipid-raft-associated LRP6 and reduced CAV1, strongly indicating alterations in the components of the Wnt-signaling pathway. We show that in the absence of LZTFL1, adipogenesis-restraining Wnt/β-catenin signaling is inhibited, and adipogenesis-favorable factors are stimulated in CB-MSCs, leading to enhanced adipogenesis. Evidence provided here could help in understanding the mechanism and molecular basis of obesity in LZTFL1-defective patients.
Collapse
Affiliation(s)
- Yunden Badralmaa
- Laboratory of Molecular Cell Biology, Leidos Biomedical Research Inc, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Ven Natarajan
- Laboratory of Molecular Cell Biology, Leidos Biomedical Research Inc, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA.
| |
Collapse
|
8
|
Takeuchi Y. Cardiovascular safety of osteoanabolic agents. J Bone Miner Metab 2025; 43:26-32. [PMID: 39825110 PMCID: PMC11954844 DOI: 10.1007/s00774-025-01580-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 01/03/2025] [Indexed: 01/20/2025]
Abstract
PURPOSE Several osteoanabolic agents have been developed to build new bone more efficiently than anti-resorptive drugs. Among them, romosozumab, an anti-sclerostin antibody, is a potent pharmacological tool to prevent fractures in osteoporosis patients. The efficacy of romosozumab in preventing osteoporotic fractures is robust. However, there remains a concern about increased cardiovascular (CV) adverse events related to romosozumab. Available data have been reviewed to address this concern. METHODS Published articles on romosozumab of which pivotal randomized controlled trials (RCTs), meta-analyses of RCTs, pharmacovigilance investigations, and retrospective observational clinical studies using real-world data were collected through PubMed and other available tools. RESULTS Meta-analyses of RCTs of romosozumab compared to placebo and other anti-osteoporosis drugs have left room for controversy in the CV safety of romosozumab. Investigations of the real-world data also provide no conclusive evidence in this issue. CONCLUSION We need more robust evidence to establish an appropriate and reasonable guide to prescribe romosozumab in our clinical practice.
Collapse
Affiliation(s)
- Yasuhiro Takeuchi
- Toranomon Hospital Endocrine Center, 2-2-2 Toranomon, Minato-ku, Tokyo, 105-8470, Japan.
- Okinaka Memorial Institute for Medical Research, Tokyo, Japan.
| |
Collapse
|
9
|
Molnár AÁ, Birgés K, Surman A, Merkely B. The Complex Connection Between Myocardial Dysfunction and Cancer Beyond Cardiotoxicity: Shared Risk Factors and Common Molecular Pathways. Int J Mol Sci 2024; 25:13185. [PMID: 39684895 DOI: 10.3390/ijms252313185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/03/2024] [Accepted: 12/06/2024] [Indexed: 12/18/2024] Open
Abstract
Cardiovascular diseases and cancer represent the largest disease burden worldwide. Previously, these two conditions were considered independent, except in terms of cardiotoxicity, which links cancer treatment to subsequent cardiovascular issues. However, recent studies suggest that there are further connections between cancer and heart disease beyond cardiotoxicity. It has been revealed that myocardial dysfunction may promote carcinogenesis, indicating that additional common pathophysiological mechanisms might be involved in the relationship between cardiology and oncology, rather than simply a connection through cardiotoxic effects. These mechanisms may include shared risk factors and common molecular pathways, such as persistent inflammation and neurohormonal activation. This review explores the connection between myocardial dysfunction and cancer, emphasizing their shared risk factors, similar biological mechanisms, and causative factors like cardiotoxicity, along with their clinical implications.
Collapse
Affiliation(s)
| | - Kristóf Birgés
- Heart and Vascular Center, Semmelweis University, 1122 Budapest, Hungary
| | - Adrienn Surman
- Heart and Vascular Center, Semmelweis University, 1122 Budapest, Hungary
| | - Béla Merkely
- Heart and Vascular Center, Semmelweis University, 1122 Budapest, Hungary
| |
Collapse
|
10
|
Mancini M, Chapurlat R, Isidor B, Desjonqueres M, Couture G, Guggenbuhl P, Coutant R, El Chehadeh S, Fradin M, Frazier A, Goldenberg A, Guillot P, Koumakis E, Mehsen-Cêtre N, Rossi M, Schaefer É, Sigaudy S, Porquet-Bordes V, Fontanges É, Letard P, Edouard T, Javier RM, Cohen-Solal M, Funck-Brentano T, Collet C. Early-Onset Osteoporosis: Molecular Analysis in Large Cohort and Focus on the PLS3 Gene. Calcif Tissue Int 2024; 115:591-598. [PMID: 39316135 DOI: 10.1007/s00223-024-01288-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/01/2024] [Indexed: 09/25/2024]
Abstract
Osteoporosis is a skeletal disorder characterized by abnormal bone microarchitecture and low bone mineral density (BMD), responsible for an increased risk of fractures and skeletal fragility. It is a common pathology of the aging population. However, when osteoporosis occurs in children or young adults, it strongly suggests an underlying genetic etiology. Over the past two decades, several genes have been identified as responsible for this particular kind of considered monogenic early-onset osteoporosis (EOOP) or juvenile osteoporosis, the main ones being COL1A1, COL1A2, LRP5, LRP6, WNT1, and more recently PLS3. In this study, the objective was to characterize a large cohort of patients diagnosed with primary osteoporosis and to establish its diagnosis yield. The study included 577 patients diagnosed with primary osteoporosis and its diagnosis yield was established. To this end, next-generation sequencing (NGS) of a panel of 21 genes known to play a role in bone fragility was carried out. A genetic etiology was explained in about 18% of cases, while the others remain unexplained. The most frequently identified gene associated with EOOP is LRP5, which was responsible for 8.2% of the positive results (47 patients). As unexpected, 17 patients (2.9%) had a variant in PLS3 which encodes plastin 3. Alterations of PLS3 are associated with dominant X-linked osteoporosis, an extremely rare disease. Given the rarity of this disease, we focused on it. It was observed that males were more affected than females, but it is noteworthy that three females with a particularly severe phenotype were identified. Of these three, two had a variant in an additional gene involved in EOP, illustrating the probable existence of digenism. We significantly increase the number of variants potentially associated with EOOP, especially in PLS3. The results of our study demonstrate that molecular analysis in EOOP is beneficial and useful.
Collapse
Affiliation(s)
- Maxence Mancini
- Biochemistry and Molecular Genetics Department, Lariboisière Hospital, AP-HP, Paris, France
| | - Roland Chapurlat
- Rheumatology and Bone Pathology Department, Inserm UMR 1033, Université de Lyon, Edouard Herriot Hospital, HCL, Lyon, France
| | - Bertrand Isidor
- Medical Genetics Department, CHU de Nantes, Hôtel Dieu Hospital, Nantes, France
| | - Marine Desjonqueres
- Nephrology - Rheumatology - Dermatology Paediatric Department, Edouard Herriot Hospital, HCL, Lyon, France
| | - Guillaume Couture
- Endocrine, Bone Diseases and Genetics Unit, Rheumatology Department, Reference Centre for Rare Diseases of Calcium and Phosphate Metabolism, ERN BOND, OSCAR Network, University Hospital, RESTORE, INSERM U1301, Toulouse, France
| | | | - Régis Coutant
- Department of Paediatrics and Endocrinology, CHU d'Angers, Angers, France
| | - Salima El Chehadeh
- Medical Genetics Department, Institut de Génétique Médicale d'alsace, CHU de Strasbourg, Strasbourg, France
| | - Mélanie Fradin
- Clinical Genetics Department, CHU Rennes, Sud Hospital, Rennes, France
| | - Aline Frazier
- Rheumatology Department, Inserm 1132, Univsersité Paris-Cité, Lariboisière Hospital, AP-HP, Paris, France
| | - Alice Goldenberg
- Medical Genetics Department, Charles- Nicolle Hospital, CHU de Rouen, Rouen, France
| | - Pascaline Guillot
- Rheumatology Department, CHU de Nantes, Hôpital Hôtel Dieu, Nantes, France
| | | | | | - Massimiliano Rossi
- Medical Genetics Department, Edouard Herriot Hospital, HCL, Lyon, France
| | - Élise Schaefer
- Medical Genetics Department, Institut de Génétique Médicale d'alsace, CHU de Strasbourg, Strasbourg, France
| | - Sabine Sigaudy
- Medical Genetics Department, CHU de Marseille, Timone Hospital, Marseille, France
| | - Valérie Porquet-Bordes
- Endocrine, Bone Diseases and Genetics Unit, Reference Centre for Rare Diseases of Calcium and Phosphate Metabolism, ERN BOND, OSCAR Network, Paediatric Research Unit, Children's Hospital, Toulouse University Hospital, RESTORE, INSERM U1301, Toulouse, France
| | - Élisabeth Fontanges
- Rheumatology and Bone Pathology Department, Inserm UMR 1033, Université de Lyon, Edouard Herriot Hospital, HCL, Lyon, France
| | - Pauline Letard
- Medical Genetics Department, CHU de Poitiers, Poitiers, France
| | - Thomas Edouard
- Endocrine, Bone Diseases and Genetics Unit, Reference Centre for Rare Diseases of Calcium and Phosphate Metabolism, ERN BOND, OSCAR Network, Paediatric Research Unit, Children's Hospital, Toulouse University Hospital, RESTORE, INSERM U1301, Toulouse, France
| | - Rose-Marie Javier
- Rheumatology Department, CHU de Strasbourg, Hautepierre Hospital, Strasbourg, France
| | - Martine Cohen-Solal
- Rheumatology Department, Inserm 1132, Univsersité Paris-Cité, Lariboisière Hospital, AP-HP, Paris, France
| | - Thomas Funck-Brentano
- Rheumatology Department, Inserm 1132, Univsersité Paris-Cité, Lariboisière Hospital, AP-HP, Paris, France
| | - Corinne Collet
- Rare Disease Genomic Medicine Department, CHU Necker-Enfants Malades, INSERM UMR1163, Institut Imagine, Université Paris-Cité, Paris, France.
| |
Collapse
|
11
|
Wu D, van de Graaf SFJ. Maladaptive regeneration and metabolic dysfunction associated steatotic liver disease: Common mechanisms and potential therapeutic targets. Biochem Pharmacol 2024; 227:116437. [PMID: 39025410 DOI: 10.1016/j.bcp.2024.116437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
The normal liver has an extraordinary capacity of regeneration. However, this capacity is significantly impaired in steatotic livers. Emerging evidence indicates that metabolic dysfunction associated steatotic liver disease (MASLD) and liver regeneration share several key mechanisms. Some classical liver regeneration pathways, such as HGF/c-Met, EGFR, Wnt/β-catenin and Hippo/YAP-TAZ are affected in MASLD. Some recently established therapeutic targets for MASH such as the Thyroid Hormone (TH) receptors, Glucagon-like protein 1 (GLP1), Farnesoid X receptor (FXR), Peroxisome Proliferator-Activated Receptors (PPARs) as well as Fibroblast Growth Factor 21 (FGF21) are also reported to affect hepatocyte proliferation. With this review we aim to provide insight into common molecular pathways, that may ultimately enable therapeutic strategies that synergistically ameliorate steatohepatitis and improve the regenerating capacity of steatotic livers. With the recent rise of prolonged ex-vivo normothermic liver perfusion prior to organ transplantation such treatment is no longer restricted to patients undergoing major liver resection or transplantation, but may eventually include perfused (steatotic) donor livers or even liver segments, opening hitherto unexplored therapeutic avenues.
Collapse
Affiliation(s)
- Dandan Wu
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Gastroenterology, Endocrinology and Metabolism (AGEM), Amsterdam University Medical Centers, the Netherlands
| | - Stan F J van de Graaf
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Gastroenterology, Endocrinology and Metabolism (AGEM), Amsterdam University Medical Centers, the Netherlands.
| |
Collapse
|
12
|
Krause C, Britsemmer JH, Bernecker M, Molenaar A, Taege N, Lopez-Alcantara N, Geißler C, Kaehler M, Iben K, Judycka A, Wagner J, Wolter S, Mann O, Pfluger P, Cascorbi I, Lehnert H, Stemmer K, Schriever SC, Kirchner H. Liver microRNA transcriptome reveals miR-182 as link between type 2 diabetes and fatty liver disease in obesity. eLife 2024; 12:RP92075. [PMID: 39037913 PMCID: PMC11262792 DOI: 10.7554/elife.92075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024] Open
Abstract
Background The development of obesity-associated comorbidities such as type 2 diabetes (T2D) and hepatic steatosis has been linked to selected microRNAs in individual studies; however, an unbiased genome-wide approach to map T2D induced changes in the miRNAs landscape in human liver samples, and a subsequent robust identification and validation of target genes are still missing. Methods Liver biopsies from age- and gender-matched obese individuals with (n=20) or without (n=20) T2D were used for microRNA microarray analysis. The candidate microRNA and target genes were validated in 85 human liver samples, and subsequently mechanistically characterized in hepatic cells as well as by dietary interventions and hepatic overexpression in mice. Results Here, we present the human hepatic microRNA transcriptome of type 2 diabetes in liver biopsies and use a novel seed prediction tool to robustly identify microRNA target genes, which were then validated in a unique cohort of 85 human livers. Subsequent mouse studies identified a distinct signature of T2D-associated miRNAs, partly conserved in both species. Of those, human-murine miR-182-5 p was the most associated with whole-body glucose homeostasis and hepatic lipid metabolism. Its target gene LRP6 was consistently lower expressed in livers of obese T2D humans and mice as well as under conditions of miR-182-5 p overexpression. Weight loss in obese mice decreased hepatic miR-182-5 p and restored Lrp6 expression and other miR-182-5 p target genes. Hepatic overexpression of miR-182-5 p in mice rapidly decreased LRP6 protein levels and increased liver triglycerides and fasting insulin under obesogenic conditions after only seven days. Conclusions By mapping the hepatic miRNA-transcriptome of type 2 diabetic obese subjects, validating conserved miRNAs in diet-induced mice, and establishing a novel miRNA prediction tool, we provide a robust and unique resource that will pave the way for future studies in the field. As proof of concept, we revealed that the repression of LRP6 by miR-182-5 p, which promotes lipogenesis and impairs glucose homeostasis, provides a novel mechanistic link between T2D and non-alcoholic fatty liver disease, and demonstrate in vivo that miR-182-5 p can serve as a future drug target for the treatment of obesity-driven hepatic steatosis. Funding This work was supported by research funding from the Deutsche Forschungsgemeinschaft (KI 1887/2-1, KI 1887/2-2, KI 1887/3-1 and CRC-TR296), the European Research Council (ERC, CoG Yoyo LepReSens no. 101002247; PTP), the Helmholtz Association (Initiative and Networking Fund International Helmholtz Research School for Diabetes; MB) and the German Center for Diabetes Research (DZD Next Grant 82DZD09D1G).
Collapse
Affiliation(s)
- Christin Krause
- Institute for Human Genetics, Division Epigenetics & Metabolism, University of LübeckLübeckGermany
- Center of Brain, Behaviour and Metabolism (CBBM), University of LübeckLübeckGermany
- German Center for Diabetes Research (DZD)MunichGermany
| | - Jan H Britsemmer
- Institute for Human Genetics, Division Epigenetics & Metabolism, University of LübeckLübeckGermany
- Center of Brain, Behaviour and Metabolism (CBBM), University of LübeckLübeckGermany
- German Center for Diabetes Research (DZD)MunichGermany
| | - Miriam Bernecker
- German Center for Diabetes Research (DZD)MunichGermany
- Research Unit NeuroBiology of Diabetes, Institute for Diabetes and Obesity, Helmholtz CentreMunichGermany
| | - Anna Molenaar
- German Center for Diabetes Research (DZD)MunichGermany
- Research Unit NeuroBiology of Diabetes, Institute for Diabetes and Obesity, Helmholtz CentreMunichGermany
| | - Natalie Taege
- Institute for Human Genetics, Division Epigenetics & Metabolism, University of LübeckLübeckGermany
- Center of Brain, Behaviour and Metabolism (CBBM), University of LübeckLübeckGermany
- German Center for Diabetes Research (DZD)MunichGermany
| | - Nuria Lopez-Alcantara
- Center of Brain, Behaviour and Metabolism (CBBM), University of LübeckLübeckGermany
- Institute for Experimental Endocrinology, University of LübeckLübeckGermany
| | - Cathleen Geißler
- Institute for Human Genetics, Division Epigenetics & Metabolism, University of LübeckLübeckGermany
- Center of Brain, Behaviour and Metabolism (CBBM), University of LübeckLübeckGermany
| | - Meike Kaehler
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus KielKielGermany
| | - Katharina Iben
- Institute for Human Genetics, Division Epigenetics & Metabolism, University of LübeckLübeckGermany
- Center of Brain, Behaviour and Metabolism (CBBM), University of LübeckLübeckGermany
| | - Anna Judycka
- Institute for Human Genetics, Division Epigenetics & Metabolism, University of LübeckLübeckGermany
- Center of Brain, Behaviour and Metabolism (CBBM), University of LübeckLübeckGermany
| | - Jonas Wagner
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-EppendorfHamburgGermany
| | - Stefan Wolter
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-EppendorfHamburgGermany
| | - Oliver Mann
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-EppendorfHamburgGermany
| | - Paul Pfluger
- German Center for Diabetes Research (DZD)MunichGermany
- Research Unit NeuroBiology of Diabetes, Institute for Diabetes and Obesity, Helmholtz CentreMunichGermany
- Chair of Neurobiology of Diabetes, TUM School of Medicine, Technical University of MunichMunichGermany
| | - Ingolf Cascorbi
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus KielKielGermany
| | - Hendrik Lehnert
- Center of Brain, Behaviour and Metabolism (CBBM), University of LübeckLübeckGermany
- German Center for Diabetes Research (DZD)MunichGermany
- University Hospital of Coventry and WarwickshireCoventryUnited Kingdom
| | - Kerstin Stemmer
- German Center for Diabetes Research (DZD)MunichGermany
- Molecular Cell Biology, Institute of Theoretical Medicine, Faculty of Medicine, University of AugsburgAugsburgGermany
| | - Sonja C Schriever
- German Center for Diabetes Research (DZD)MunichGermany
- Research Unit NeuroBiology of Diabetes, Institute for Diabetes and Obesity, Helmholtz CentreMunichGermany
| | - Henriette Kirchner
- Institute for Human Genetics, Division Epigenetics & Metabolism, University of LübeckLübeckGermany
- Center of Brain, Behaviour and Metabolism (CBBM), University of LübeckLübeckGermany
- German Center for Diabetes Research (DZD)MunichGermany
| |
Collapse
|
13
|
Le A, Peng H, Golinsky D, Di Scipio M, Lali R, Paré G. What Causes Premature Coronary Artery Disease? Curr Atheroscler Rep 2024; 26:189-203. [PMID: 38573470 DOI: 10.1007/s11883-024-01200-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2024] [Indexed: 04/05/2024]
Abstract
PURPOSE OF REVIEW This review provides an overview of genetic and non-genetic causes of premature coronary artery disease (pCAD). RECENT FINDINGS pCAD refers to coronary artery disease (CAD) occurring before the age of 65 years in women and 55 years in men. Both genetic and non-genetic risk factors may contribute to the onset of pCAD. Recent advances in the genetic epidemiology of pCAD have revealed the importance of both monogenic and polygenic contributions to pCAD. Familial hypercholesterolemia (FH) is the most common monogenic disorder associated with atherosclerotic pCAD. However, clinical overreliance on monogenic genes can result in overlooked genetic causes of pCAD, especially polygenic contributions. Non-genetic factors, notably smoking and drug use, are also important contributors to pCAD. Cigarette smoking has been observed in 25.5% of pCAD patients relative to 12.2% of non-pCAD patients. Finally, myocardial infarction (MI) associated with spontaneous coronary artery dissection (SCAD) may result in similar clinical presentations as atherosclerotic pCAD. Recognizing the genetic and non-genetic causes underlying pCAD is important for appropriate prevention and treatment. Despite recent progress, pCAD remains incompletely understood, highlighting the need for both awareness and research.
Collapse
Affiliation(s)
- Ann Le
- Population Health Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, 237 Barton Street East, Hamilton, ON, L8L 2X2, Canada
- Department of Medical Sciences, Faculty of Health Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Helen Peng
- Population Health Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, 237 Barton Street East, Hamilton, ON, L8L 2X2, Canada
- Faculty of Health Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8L 4K1, Canada
| | - Danielle Golinsky
- Population Health Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, 237 Barton Street East, Hamilton, ON, L8L 2X2, Canada
- School of Nursing, Faculty of Health Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8L 4K1, Canada
| | - Matteo Di Scipio
- Population Health Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, 237 Barton Street East, Hamilton, ON, L8L 2X2, Canada
- Department of Medical Sciences, Faculty of Health Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
- Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, ON, L8L 4K1, Canada
| | - Ricky Lali
- Population Health Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, 237 Barton Street East, Hamilton, ON, L8L 2X2, Canada
- Department of Health Research Methods, Evidence, and Impact, McMaster University, 1280 Main Street West, Hamilton, ON, L8L 4K1, Canada
| | - Guillaume Paré
- Population Health Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, 237 Barton Street East, Hamilton, ON, L8L 2X2, Canada.
- Department of Medical Sciences, Faculty of Health Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada.
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada.
- Thrombosis and Atherosclerosis Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, 237 Barton Street East, Hamilton, ON, L8L 2X2, Canada.
- Department of Pathology and Molecular Medicine, Michael G. DeGroote School of Medicine, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada.
- Department of Health Research Methods, Evidence, and Impact, McMaster University, 1280 Main Street West, Hamilton, ON, L8L 4K1, Canada.
| |
Collapse
|
14
|
Previdi A, Dubourg C, Cormier Daire V, Fradin M, Collet C. Novel variant in LRP6 associated with unusual and severe clinical presentation: Case report. Clin Genet 2024; 105:666-670. [PMID: 38385987 DOI: 10.1111/cge.14501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/22/2024] [Accepted: 02/01/2024] [Indexed: 02/23/2024]
Abstract
Low-density lipoprotein receptor-related protein 6 (LRP6) is a co-receptor of the Wnt signaling pathway, which plays an essential role in various biological activities during embryonic and postnatal development. LRP6 is exceptionally associated with rare diseases and always with autosomal dominant inheritance. Here we report a familial phenotype of high bone mass associated with skeletal anomalies and oligodontia but also persistent left superior vena cava, inguinal hernia, hepatic cysts, abnormal posterior fossa and genital malformations. Molecular analysis revealed a novel heterozygous variant, NM_002336.2: c.724T>C, p.(Trp242Arg), in affected individuals. This variant is located in the first β-propellant motif of LRP6, to which sclerostin (SOST) and dickkopf1 (DKK1), two LRP6 co-receptor inhibitors and various Wnt ligands bind. According to the literature and integrating data from structural analysis, this variant distorts the binding of SOST and DKK1, thus leading to overactivation of Wnt signaling pathways involved in osteoblast differentiation. This novel heterozygous variant in LRP6 underlies the role of LRP6 in skeletal and dental disorders as well as, probably, cardiac, cerebral and genital developments.
Collapse
Affiliation(s)
- Anaïk Previdi
- UFR de Pharmacie, Université Paris Cité, Paris, France
| | - Christèle Dubourg
- Service de Génétique Moléculaire, CHU Rennes, Hôpital Sud, CLAD Ouest, Rennes, France
- Laboratoire de Biologie Médicale Multisites Seqoia-FMG2025, Paris, France
| | - Valérie Cormier Daire
- Département de Génomique, INSERM UMR1163, Institut Imagine, CHU Necker-Enfants Malades, Paris, France
| | - Mélanie Fradin
- Service de Génétique Clinique, CHU Rennes, Hôpital Sud, CLAD Ouest, Rennes, France
| | - Corinne Collet
- UFR de Pharmacie, Université Paris Cité, Paris, France
- Laboratoire de Biologie Médicale Multisites Seqoia-FMG2025, Paris, France
- Département de Génomique, INSERM UMR1163, Institut Imagine, CHU Necker-Enfants Malades, Paris, France
| |
Collapse
|
15
|
Mehvari S, Karimian Fathi N, Saki S, Asadnezhad M, Arzhangi S, Ghodratpour F, Mohseni M, Zare Ashrafi F, Sadeghian S, Boroumand M, Shokohizadeh F, Rostami E, Boroumand R, Najafipour R, Malekzadeh R, Riazalhosseini Y, Akbari M, Lathrop M, Najmabadi H, Hosseini K, Kahrizi K. Contribution of genetic variants in the development of familial premature coronary artery disease in a cohort of cardiac patients. Clin Genet 2024; 105:611-619. [PMID: 38308583 DOI: 10.1111/cge.14491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/04/2024] [Accepted: 01/18/2024] [Indexed: 02/05/2024]
Abstract
Coronary artery disease (CAD), the most prevalent cardiovascular disease, is the leading cause of death worldwide. Heritable factors play a significant role in the pathogenesis of CAD. It has been proposed that approximately one-third of patients with CAD have a positive family history, and individuals with such history are at ~1.5-fold increased risk of CAD in their lifespans. Accordingly, the long-recognized familial clustering of CAD is a strong risk factor for this disease. Our study aimed to identify candidate genetic variants contributing to CAD by studying a cohort of 60 large Iranian families with at least two members in different generations afflicted with premature CAD (PCAD), defined as established disease at ≤45 years in men and ≤55 years in women. Exome sequencing was performed for a subset of the affected individuals, followed by prioritization and Sanger sequencing of candidate variants in all available family members. Subsequently, apparently healthy carriers of potential risk variants underwent coronary computed tomography angiography (CCTA), followed by co-segregation analysis of the combined data. Putative causal variants were identified in seven genes, ABCG8, CD36, CYP27A1, PIK3C2G, RASSF9, RYR2, and ZFYVE21, co-segregating with familial PCAD in seven unrelated families. Among these, PIK3C2G, RASSF9, and ZFYVE21 are novel candidate CAD susceptibility genes. Our findings indicate that rare variants in genes identified in this study are involved in CAD development.
Collapse
Affiliation(s)
- Sepideh Mehvari
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Nahid Karimian Fathi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Sara Saki
- Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Asadnezhad
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Sanaz Arzhangi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Fatemeh Ghodratpour
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Marzieh Mohseni
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Farzane Zare Ashrafi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Saeed Sadeghian
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammadali Boroumand
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Shokohizadeh
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Rostami
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Rahnama Boroumand
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Najafipour
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Reza Malekzadeh
- Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mohammadreza Akbari
- Women's College Research Institute, University of Toronto, Toronto, Ontario, Canada
| | | | - Hossein Najmabadi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Kaveh Hosseini
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Kimia Kahrizi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
- McGill Genome Centre, Montreal, Quebec, Canada
| |
Collapse
|
16
|
Belenkov YN, Iusupova AO, Slepova OA, Pakhtusov NN, Popova LV, Lishuta AS, Krivova AV, Khabarova NV, Abidaev MY, Privalova EV. WNT Signaling Cascade Proteins and LRP6 in the Formation of Various Types of Coronary Lesions in Patients With Coronary Artery Disease. KARDIOLOGIIA 2024; 64:3-10. [PMID: 38841783 DOI: 10.18087/cardio.2024.5.n2626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 06/07/2024]
Abstract
AIM Assessment of WNT1, WNT3a, and LRP6 concentrations in patients with ischemic heart disease (IHD) and obstructive and non-obstructive coronary artery (CA) disease. MATERIAL AND METHODS This cross-sectional observational study included 50 IHD patients (verified by coronary angiography, CAG), of which 25 (50%) were men, mean age 64.9±8.1 years; 20 patients had non-obstructive CA disease (stenosis <50%), and 30 patients had hemodynamically significant stenosis. Concentrations of WNT1, WNT3a and LRP6 were measured in all patients. RESULTS The concentrations of WNT1 and WNT3a proteins were significantly higher in patients with IHD and obstructive CA disease (p < 0.001), while the concentration of LRP6 was higher in the group with non-obstructive CA disease (p = 0.016). Data analysis of the group with obstructive CA disease showed a moderate correlation between WNT1 and LRP6 (ρ=0.374; p=0.042). Correlation analysis of all groups of patients with CA disease revealed a moderate association between the concentrations of WNT1 and uric acid (ρ=0.416; p=0.007). Regression analysis showed that risk factors for the development of IHD, such as increased body mass index, age, smoking, dyslipidemia, and hypertension, did not significantly influence the type of CA disease in IHD patients. According to ROC analysis, the obstructive form of IHD was predicted by a WNT3a concentration higher than 0.155 ng/ml and a LRP6 concentration lower than 12.94 ng/ml. CONCLUSION IHD patients with non-obstructive CA disease had the greatest increase in LRP6, while patients with obstructive CA disease had significantly higher concentrations of the canonical WNT cascade proteins, WNT1 and WNT3a. According to the ROC analysis, a WNT3a concentration >0.155 ng/ml can serve as a predictor for the presence of hemodynamically significant CA stenosis in IHD patients (sensitivity 96.7%; specificity 70%), whereas a LRP6 concentration >12.94 ng/ml can predict the development of non-obstructive CA disease (sensitivity 76.7%; specificity 65%).
Collapse
Affiliation(s)
- Yu N Belenkov
- Sechenov First Moscow State Medical University, Moscow
| | - A O Iusupova
- Sechenov First Moscow State Medical University, Moscow
| | - O A Slepova
- Sechenov First Moscow State Medical University, Moscow
| | - N N Pakhtusov
- Sechenov First Moscow State Medical University, Moscow
| | - L V Popova
- Sechenov First Moscow State Medical University, Moscow
| | - A S Lishuta
- Sechenov First Moscow State Medical University, Moscow
| | - A V Krivova
- Sechenov First Moscow State Medical University, Moscow
| | - N V Khabarova
- Sechenov First Moscow State Medical University, Moscow
| | - M Yu Abidaev
- Sechenov First Moscow State Medical University, Moscow
| | - E V Privalova
- Sechenov First Moscow State Medical University, Moscow
| |
Collapse
|
17
|
Reppe S, Gundersen S, Sandve GK, Wang Y, Andreassen OA, Medina-Gomez C, Rivadeneira F, Utheim TP, Hovig E, Gautvik KM. Identification of Transcripts with Shared Roles in the Pathogenesis of Postmenopausal Osteoporosis and Cardiovascular Disease. Int J Mol Sci 2024; 25:5554. [PMID: 38791593 PMCID: PMC11121938 DOI: 10.3390/ijms25105554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Epidemiological evidence suggests existing comorbidity between postmenopausal osteoporosis (OP) and cardiovascular disease (CVD), but identification of possible shared genes is lacking. The skeletal global transcriptomes were analyzed in trans-iliac bone biopsies (n = 84) from clinically well-characterized postmenopausal women (50 to 86 years) without clinical CVD using microchips and RNA sequencing. One thousand transcripts highly correlated with areal bone mineral density (aBMD) were further analyzed using bioinformatics, and common genes overlapping with CVD and associated biological mechanisms, pathways and functions were identified. Fifty genes (45 mRNAs, 5 miRNAs) were discovered with established roles in oxidative stress, inflammatory response, endothelial function, fibrosis, dyslipidemia and osteoblastogenesis/calcification. These pleiotropic genes with possible CVD comorbidity functions were also present in transcriptomes of microvascular endothelial cells and cardiomyocytes and were differentially expressed between healthy and osteoporotic women with fragility fractures. The results were supported by a genetic pleiotropy-informed conditional False Discovery Rate approach identifying any overlap in single nucleotide polymorphisms (SNPs) within several genes encoding aBMD- and CVD-associated transcripts. The study provides transcriptional and genomic evidence for genes of importance for both BMD regulation and CVD risk in a large collection of postmenopausal bone biopsies. Most of the transcripts identified in the CVD risk categories have no previously recognized roles in OP pathogenesis and provide novel avenues for exploring the mechanistic basis for the biological association between CVD and OP.
Collapse
Affiliation(s)
- Sjur Reppe
- Department of Medical Biochemistry, Oslo University Hospital, 0450 Oslo, Norway
- Unger-Vetlesen Institute, Lovisenberg Diaconal Hospital, 0440 Oslo, Norway
- Department of Plastic and Reconstructive Surgery, Oslo University Hospital, 0424 Oslo, Norway
| | - Sveinung Gundersen
- Center for Bioinformatics, Department of Informatics, University of Oslo, 0313 Oslo, Norway
| | - Geir K. Sandve
- Department of Informatics, University of Oslo, 0373 Oslo, Norway; (G.K.S.)
| | - Yunpeng Wang
- NORMENT, Institute of Clinical Medicine, University of Oslo, 0450 Oslo, Norway; (Y.W.); (O.A.A.)
- Division of Mental Health and Addiction, Oslo University Hospital, 0424 Oslo, Norway
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Ole A. Andreassen
- NORMENT, Institute of Clinical Medicine, University of Oslo, 0450 Oslo, Norway; (Y.W.); (O.A.A.)
- Division of Mental Health and Addiction, Oslo University Hospital, 0424 Oslo, Norway
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
| | - Carolina Medina-Gomez
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (C.M.-G.); (F.R.)
| | - Fernando Rivadeneira
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (C.M.-G.); (F.R.)
| | - Tor P. Utheim
- Department of Medical Biochemistry, Oslo University Hospital, 0450 Oslo, Norway
- Department of Plastic and Reconstructive Surgery, Oslo University Hospital, 0424 Oslo, Norway
| | - Eivind Hovig
- Department of Informatics, University of Oslo, 0373 Oslo, Norway; (G.K.S.)
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway
| | - Kaare M. Gautvik
- Unger-Vetlesen Institute, Lovisenberg Diaconal Hospital, 0440 Oslo, Norway
| |
Collapse
|
18
|
Yu M, Qin K, Fan J, Zhao G, Zhao P, Zeng W, Chen C, Wang A, Wang Y, Zhong J, Zhu Y, Wagstaff W, Haydon RC, Luu HH, Ho S, Lee MJ, Strelzow J, Reid RR, He TC. The evolving roles of Wnt signaling in stem cell proliferation and differentiation, the development of human diseases, and therapeutic opportunities. Genes Dis 2024; 11:101026. [PMID: 38292186 PMCID: PMC10825312 DOI: 10.1016/j.gendis.2023.04.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 03/18/2023] [Accepted: 04/12/2023] [Indexed: 02/01/2024] Open
Abstract
The evolutionarily conserved Wnt signaling pathway plays a central role in development and adult tissue homeostasis across species. Wnt proteins are secreted, lipid-modified signaling molecules that activate the canonical (β-catenin dependent) and non-canonical (β-catenin independent) Wnt signaling pathways. Cellular behaviors such as proliferation, differentiation, maturation, and proper body-axis specification are carried out by the canonical pathway, which is the best characterized of the known Wnt signaling paths. Wnt signaling has emerged as an important factor in stem cell biology and is known to affect the self-renewal of stem cells in various tissues. This includes but is not limited to embryonic, hematopoietic, mesenchymal, gut, neural, and epidermal stem cells. Wnt signaling has also been implicated in tumor cells that exhibit stem cell-like properties. Wnt signaling is crucial for bone formation and presents a potential target for the development of therapeutics for bone disorders. Not surprisingly, aberrant Wnt signaling is also associated with a wide variety of diseases, including cancer. Mutations of Wnt pathway members in cancer can lead to unchecked cell proliferation, epithelial-mesenchymal transition, and metastasis. Altogether, advances in the understanding of dysregulated Wnt signaling in disease have paved the way for the development of novel therapeutics that target components of the Wnt pathway. Beginning with a brief overview of the mechanisms of canonical and non-canonical Wnt, this review aims to summarize the current knowledge of Wnt signaling in stem cells, aberrations to the Wnt pathway associated with diseases, and novel therapeutics targeting the Wnt pathway in preclinical and clinical studies.
Collapse
Affiliation(s)
- Michael Yu
- School of Medicine, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Kevin Qin
- School of Medicine, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jiaming Fan
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, The School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Guozhi Zhao
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Piao Zhao
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wei Zeng
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Neurology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong 523475, China
| | - Connie Chen
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Annie Wang
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Yonghui Wang
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Clinical Laboratory Medicine, Shanghai Jiaotong University School of Medicine, Shanghai 200000, China
| | - Jiamin Zhong
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, The School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yi Zhu
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopaedic Surgery, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Rex C. Haydon
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Sherwin Ho
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Michael J. Lee
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jason Strelzow
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Russell R. Reid
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Suture Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Suture Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| |
Collapse
|
19
|
Mani A. Update in genetic and epigenetic causes of hypertension. Cell Mol Life Sci 2024; 81:201. [PMID: 38691164 PMCID: PMC11062952 DOI: 10.1007/s00018-024-05220-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 05/03/2024]
Abstract
Hypertension is a heritable disease that affects one-fourth of the population and accounts for about 50% of cardiovascular deaths. The genetic basis of hypertension is multifaceted, involving both monogenic and most commonly complex polygenic forms. With the advent of the human genome project, genome-wide association studies (GWAS) have identified a plethora of loci linked to hypertension by examining common genetic variations. It's notable, however, that the majority of these genetic variants do not affect the protein-coding sequences, posing a considerable obstacle in pinpointing the actual genes responsible for hypertension. Despite these challenges, precise mapping of GWAS-identified loci is emerging as a promising strategy to reveal novel genes and potential targets for the pharmacological management of blood pressure. This review provides insight into the monogenic and polygenic causes of hypertension. Special attention is given to PRDM6, among the earliest functionally characterized GWAS-identified genes. Moreover, this review delves into the roles of genes contributing to renal and vascular forms of hypertension, offering insights into their genetic and epigenetic mechanisms of action.
Collapse
Affiliation(s)
- Arya Mani
- Department of Internal Medicine, Yale University School of Medicine, Yale Cardiovascular Research Center, 300 George Street, New Haven, CT, 06511, USA.
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
20
|
Sandforth L, Brachs S, Reinke J, Willmes D, Sancar G, Seigner J, Juarez-Lopez D, Sandforth A, McBride JD, Ma JX, Haufe S, Jordan J, Birkenfeld AL. Role of human Kallistatin in glucose and energy homeostasis in mice. Mol Metab 2024; 82:101905. [PMID: 38431218 PMCID: PMC10937158 DOI: 10.1016/j.molmet.2024.101905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/05/2024] Open
Abstract
OBJECTIVE Kallistatin (KST), also known as SERPIN A4, is a circulating, broadly acting human plasma protein with pleiotropic properties. Clinical studies in humans revealed reduced KST levels in obesity. The exact role of KST in glucose and energy homeostasis in the setting of insulin resistance and type 2 diabetes is currently unknown. METHODS Kallistatin mRNA expression in human subcutaneous white adipose tissue (sWAT) of 47 people with overweight to obesity of the clinical trial "Comparison of Low Fat and Low Carbohydrate Diets With Respect to Weight Loss and Metabolic Effects (B-SMART)" was measured. Moreover, we studied transgenic mice systemically overexpressing human KST (hKST-TG) and wild type littermate control mice (WT) under normal chow (NCD) and high-fat diet (HFD) conditions. RESULTS In sWAT of people with overweight to obesity, KST mRNA increased after diet-induced weight loss. On NCD, we did not observe differences between hKST-TG and WT mice. Under HFD conditions, body weight, body fat and liver fat content did not differ between genotypes. Yet, during intraperitoneal glucose tolerance tests (ipGTT) insulin excursions and HOMA-IR were lower in hKST-TG (4.42 ± 0.87 AU, WT vs. 2.20 ± 0.27 AU, hKST-TG, p < 0.05). Hyperinsulinemic euglycemic clamp studies with tracer-labeled glucose infusion confirmed improved insulin sensitivity by higher glucose infusion rates in hKST-TG mice (31.5 ± 1.78 mg/kg/min, hKST-TG vs. 18.1 ± 1.67 mg/kg/min, WT, p < 0.05). Improved insulin sensitivity was driven by reduced hepatic insulin resistance (clamp hepatic glucose output: 7.7 ± 1.9 mg/kg/min, hKST-TG vs 12.2 ± 0.8 mg/kg/min, WT, p < 0.05), providing evidence for direct insulin sensitizing effects of KST for the first time. Insulin sensitivity was differentially affected in skeletal muscle and adipose tissue. Mechanistically, we observed reduced Wnt signaling in the liver but not in skeletal muscle, which may explain the effect. CONCLUSIONS KST expression increases after weight loss in sWAT from people with obesity. Furthermore, human KST ameliorates diet-induced hepatic insulin resistance in mice, while differentially affecting skeletal muscle and adipose tissue insulin sensitivity. Thus, KST may be an interesting, yet challenging, therapeutic target for patients with obesity and insulin resistance.
Collapse
Affiliation(s)
- Leontine Sandforth
- Internal Medicine IV, Endocrinology, Diabetology and Nephrology, University Hospital of Tuebingen, Tuebingen, Germany; Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich, Tuebingen, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Sebastian Brachs
- Department of Endocrinology and Metabolism, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany
| | - Julia Reinke
- Department of Endocrinology and Metabolism, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Section of Metabolic Vascular Medicine, Department of Medicine III, University Clinic Dresden, TU Dresden, Germany
| | - Diana Willmes
- Department of Endocrinology and Metabolism, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Section of Metabolic Vascular Medicine, Department of Medicine III, University Clinic Dresden, TU Dresden, Germany
| | - Gencer Sancar
- Internal Medicine IV, Endocrinology, Diabetology and Nephrology, University Hospital of Tuebingen, Tuebingen, Germany; Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich, Tuebingen, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Judith Seigner
- Internal Medicine IV, Endocrinology, Diabetology and Nephrology, University Hospital of Tuebingen, Tuebingen, Germany; Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich, Tuebingen, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - David Juarez-Lopez
- Internal Medicine IV, Endocrinology, Diabetology and Nephrology, University Hospital of Tuebingen, Tuebingen, Germany; Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich, Tuebingen, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Arvid Sandforth
- Internal Medicine IV, Endocrinology, Diabetology and Nephrology, University Hospital of Tuebingen, Tuebingen, Germany; Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich, Tuebingen, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Jeffrey D McBride
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jian-Xing Ma
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Sven Haufe
- Department of Rehabilitation and Sports Medicine, Hannover Medical School (MHH), Hannover, Germany
| | - Jens Jordan
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany; Medical Faculty, University of Cologne, Cologne, Germany
| | - Andreas L Birkenfeld
- Internal Medicine IV, Endocrinology, Diabetology and Nephrology, University Hospital of Tuebingen, Tuebingen, Germany; Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich, Tuebingen, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Section of Metabolic Vascular Medicine, Department of Medicine III, University Clinic Dresden, TU Dresden, Germany; Department of Diabetes, Life Sciences & Medicine, Cardiovascular Medicine & Life Sciences, King's College London, UK.
| |
Collapse
|
21
|
Afroz R, Goodwin JE. Wnt Signaling in Atherosclerosis: Mechanisms to Therapeutic Implications. Biomedicines 2024; 12:276. [PMID: 38397878 PMCID: PMC10886882 DOI: 10.3390/biomedicines12020276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 02/25/2024] Open
Abstract
Atherosclerosis is a vascular disease in which inflammation plays a pivotal role. Receptor-mediated signaling pathways regulate vascular inflammation and the pathophysiology of atherosclerosis. Emerging evidence has revealed the role of the Wnt pathway in atherosclerosis progression. The Wnt pathway influences almost all stages of atherosclerosis progression, including endothelial dysfunction, monocyte infiltration, smooth muscle cell proliferation and migration, and plaque formation. Targeting the Wnt pathway to treat atherosclerosis represents a promising therapeutic approach that remains understudied. Blocking Wnt signaling utilizing small molecule inhibitors, recombinant proteins, and/or neutralizing antibodies ameliorates atherosclerosis in preclinical models. The Wnt pathway can be potentially manipulated through targeting Wnt ligands, receptors, co-receptors, and downstream signaling molecules. However, there are challenges associated with developing a real world therapeutic compound that targets the Wnt pathway. This review focuses on the role of Wnt signaling in atherosclerosis development, and the rationale for targeting this pathway for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Rizwana Afroz
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA;
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Julie E. Goodwin
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA;
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
22
|
Behrmann A, Zhong D, Li L, Xie S, Mead M, Sabaeifard P, Goodarzi M, Lemoff A, Kozlitina J, Towler DA. Wnt16 Promotes Vascular Smooth Muscle Contractile Phenotype and Function via Taz (Wwtr1) Activation in Male LDLR-/- Mice. Endocrinology 2023; 165:bqad192. [PMID: 38123514 PMCID: PMC10765280 DOI: 10.1210/endocr/bqad192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/30/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
Wnt16 is expressed in bone and arteries, and maintains bone mass in mice and humans, but its role in cardiovascular physiology is unknown. We show that Wnt16 protein accumulates in murine and human vascular smooth muscle (VSM). WNT16 genotypes that convey risk for bone frailty also convey risk for cardiovascular events in the Dallas Heart Study. Murine Wnt16 deficiency, which causes postnatal bone loss, also reduced systolic blood pressure. Electron microscopy demonstrated abnormal VSM mitochondrial morphology in Wnt16-null mice, with reductions in mitochondrial respiration. Following angiotensin-II (AngII) infusion, thoracic ascending aorta (TAA) dilatation was greater in Wnt16-/- vs Wnt16+/+ mice (LDLR-/- background). Acta2 (vascular smooth muscle alpha actin) deficiency has been shown to impair contractile phenotype and worsen TAA aneurysm with concomitant reductions in blood pressure. Wnt16 deficiency reduced expression of Acta2, SM22 (transgelin), and other contractile genes, and reduced VSM contraction induced by TGFβ. Acta2 and SM22 proteins were reduced in Wnt16-/- VSM as was Ankrd1, a prototypic contractile target of Yap1 and Taz activation via TEA domain (TEAD)-directed transcription. Wnt16-/- VSM exhibited reduced nuclear Taz and Yap1 protein accumulation. SiRNA targeting Wnt16 or Taz, but not Yap1, phenocopied Wnt16 deficiency, and Taz siRNA inhibited contractile gene upregulation by Wnt16. Wnt16 incubation stimulated mitochondrial respiration and contraction (reversed by verteporfin, a Yap/Taz inhibitor). SiRNA targeting Taz inhibitors Ccm2 and Lats1/2 mimicked Wnt16 treatment. Wnt16 stimulated Taz binding to Acta2 chromatin and H3K4me3 methylation. TEAD cognates in the Acta2 promoter conveyed transcriptional responses to Wnt16 and Taz. Wnt16 regulates cardiovascular physiology and VSM contractile phenotype, mediated via Taz signaling.
Collapse
Affiliation(s)
- Abraham Behrmann
- Internal Medicine—Endocrine Division and the Pak Center for Mineral Metabolism and Clinical Research, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Dalian Zhong
- Internal Medicine—Endocrine Division and the Pak Center for Mineral Metabolism and Clinical Research, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Li Li
- Internal Medicine—Endocrine Division and the Pak Center for Mineral Metabolism and Clinical Research, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shangkui Xie
- Internal Medicine—Endocrine Division and the Pak Center for Mineral Metabolism and Clinical Research, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Megan Mead
- Internal Medicine—Endocrine Division and the Pak Center for Mineral Metabolism and Clinical Research, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Parastoo Sabaeifard
- Internal Medicine—Endocrine Division and the Pak Center for Mineral Metabolism and Clinical Research, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | | | - Andrew Lemoff
- Biochemistry, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Julia Kozlitina
- McDermott Center for Human Development, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Dwight A Towler
- Internal Medicine—Endocrine Division and the Pak Center for Mineral Metabolism and Clinical Research, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
23
|
Bragg RM, Coffey SR, Cantle JP, Hu S, Singh S, Legg SR, McHugh CA, Toor A, Zeitlin SO, Kwak S, Howland D, Vogt TF, Monga SP, Carroll JB. Huntingtin loss in hepatocytes is associated with altered metabolism, adhesion, and liver zonation. Life Sci Alliance 2023; 6:e202302098. [PMID: 37684045 PMCID: PMC10488683 DOI: 10.26508/lsa.202302098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Huntington's disease arises from a toxic gain of function in the huntingtin (HTT) gene. As a result, many HTT-lowering therapies are being pursued in clinical studies, including those that reduce HTT RNA and protein expression in the liver. To investigate potential impacts, we characterized molecular, cellular, and metabolic impacts of chronic HTT lowering in mouse hepatocytes. Lifelong hepatocyte HTT loss is associated with multiple physiological changes, including increased circulating bile acids, cholesterol and urea, hypoglycemia, and impaired adhesion. HTT loss causes a clear shift in the normal zonal patterns of liver gene expression, such that pericentral gene expression is reduced. These alterations in liver zonation in livers lacking HTT are observed at the transcriptional, histological, and plasma metabolite levels. We have extended these phenotypes physiologically with a metabolic challenge of acetaminophen, for which the HTT loss results in toxicity resistance. Our data reveal an unexpected role for HTT in regulating hepatic zonation, and we find that loss of HTT in hepatocytes mimics the phenotypes caused by impaired hepatic β-catenin function.
Collapse
Affiliation(s)
- Robert M Bragg
- Behavioral Neuroscience Program, Department of Psychology, Western Washington University, Bellingham, WA, USA
| | - Sydney R Coffey
- Behavioral Neuroscience Program, Department of Psychology, Western Washington University, Bellingham, WA, USA
| | - Jeffrey P Cantle
- Behavioral Neuroscience Program, Department of Psychology, Western Washington University, Bellingham, WA, USA
| | - Shikai Hu
- School of Medicine, Tsinghua University, Beijing, China
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sucha Singh
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Samuel Rw Legg
- Behavioral Neuroscience Program, Department of Psychology, Western Washington University, Bellingham, WA, USA
| | - Cassandra A McHugh
- Behavioral Neuroscience Program, Department of Psychology, Western Washington University, Bellingham, WA, USA
| | - Amreen Toor
- Behavioral Neuroscience Program, Department of Psychology, Western Washington University, Bellingham, WA, USA
| | - Scott O Zeitlin
- Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
| | | | | | | | - Satdarshan P Monga
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jeffrey B Carroll
- Behavioral Neuroscience Program, Department of Psychology, Western Washington University, Bellingham, WA, USA
- Department of Neurology, University of Washington, Seattle, WA, USA
| |
Collapse
|
24
|
Benberin V, Karabaeva R, Kulmyrzaeva N, Bigarinova R, Vochshenkova T. Evolution of the search for a common mechanism of congenital risk of coronary heart disease and type 2 diabetes mellitus in the chromosomal locus 9p21.3. Medicine (Baltimore) 2023; 102:e35074. [PMID: 37832109 PMCID: PMC10578751 DOI: 10.1097/md.0000000000035074] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/14/2023] [Indexed: 10/15/2023] Open
Abstract
9.21.3 chromosomal locus predisposes to coronary heart disease (CHD) and type 2 diabetes mellitus (DM2), but their overall pathological mechanism and clinical applicability remain unclear. The review uses publications of the study results of 9.21.3 chromosomal locus in association with CHD and DM2, which are important for changing the focus of clinical practice. The eligibility criteria are full-text articles published in the PubMed database (MEDLINE) up to December 31, 2022. A total of 56 publications were found that met the inclusion criteria. Using the examples of the progressive stages in understanding the role of the chromosomal locus 9p.21.3, scientific ideas were grouped, from a fragmentary study of independent pathological processes to a systematic study of the overall development of CHD and DM2. The presented review can become a source of new scientific hypotheses for further studies, the results of which can determine the general mechanism of the congenital risk of CHD and DM2 and change the focus of clinical practice.
Collapse
Affiliation(s)
- Valeriy Benberin
- Centre of Gerontology, Medical Center Hospital of the President’s Affairs Administration of the Republic of Kazakhstan, Astana, Kazakhstan
| | - Raushan Karabaeva
- Centre of Gerontology, Medical Center Hospital of the President’s Affairs Administration of the Republic of Kazakhstan, Astana, Kazakhstan
| | - Nazgul Kulmyrzaeva
- Centre of Gerontology, Medical Center Hospital of the President’s Affairs Administration of the Republic of Kazakhstan, Astana, Kazakhstan
| | - Rauza Bigarinova
- Centre of Gerontology, Medical Center Hospital of the President’s Affairs Administration of the Republic of Kazakhstan, Astana, Kazakhstan
| | - Tamara Vochshenkova
- Centre of Gerontology, Medical Center Hospital of the President’s Affairs Administration of the Republic of Kazakhstan, Astana, Kazakhstan
| |
Collapse
|
25
|
Erden E, Turk AC, Fidan N, Erden E. Relationship Between Blood Monocyte-HDL Ratio and Carotid Intima Media Thickness in with Postmenopausal Women. J Clin Densitom 2023; 26:101428. [PMID: 37549600 DOI: 10.1016/j.jocd.2023.101428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/26/2023] [Indexed: 08/09/2023]
Abstract
INTRODUCTION/BACKGROUND The monocyte-to-high-density lipoprotein (HDL) ratio (MHR) and carotid intima media thickness may be used as a marker of inflammation and oxidative stres. This study is aimed to investigate the role of MHR in etiopathogenesis and to determine the association between MHR and carotid intima media thickness, fracture risk, and quality of life (QoL) in postmenopausal osteoporosis patients without comorbidities. METHODOLOGY Sixty osteoporosis, sixty osteopenia and sixty control groups were included in the prospective study evaluating postmenapausal women. The monocyte, HDL, and MHR values of all patients were evaluated. The bone mineral density of the participants was determined using the dual energy X-ray absorptiometry device. The fracture risk was assessed using the Turkish model of the Fracture Risk Assessment Tool. The QoL was determined using the Quality of Life Questionnaire of the European Foundation for Osteoporosis (QUALEFFO-41) scale, and carotid intima media thickness ultrasonography was used. RESULTS The age, body mass index, duration of menopause, monocyte, HDL, and MHR were similar in all three groups. carotid intima media thickness was higher in the osteoporosis group than in the normal group (p=0.015). A positive correlation was found between L1-4 total T score and monocytes, major osteoporotic fracture risk and physical function from QUALEFFO-41 sub-headings, MHR and QUALEFFO-41 total score (p<0.05). When all participants were evaluated, a positive correlation was found between femoral neck T score and MHR, L1-4 total T score and monocytes, while a negative correlation was found between L1-4 total T score and CIMT (p<0.05). CONCLUSION Among postmenopausal women without comorbidities, MHR in the osteoporosis group was similar to that of the osteopenia and normal groups. Monocyte and MHR correlate with femoral neck T score and L1-4 total T score. CIMT was associated with a decreased L1-4 total T-score and an increased fracture risk, but not with MHR.
Collapse
Affiliation(s)
- Ender Erden
- Faculty of Medicine, Department of Physical Medicine and Rehabilitation, Hitit University, Corum 19200, Turkey.
| | - Ayla Cagliyan Turk
- Faculty of Medicine, Department of Physical Medicine and Rehabilitation, Hitit University, Corum 19200, Turkey
| | - Nurdan Fidan
- Faculty of Medicine, Department of Radiology, Hitit University Faculty of Medicine, Hitit University, Corum, Turkey
| | - Ebru Erden
- Department of Physical Medicine and Rehabilitation, Hitit University Erol Olçok Education and Research Hospital, Corum, Turkey
| |
Collapse
|
26
|
Terhal P, Venhuizen AJ, Lessel D, Tan WH, Alswaid A, Grün R, Alzaidan HI, von Kroge S, Ragab N, Hempel M, Kubisch C, Novais E, Cristobal A, Tripolszki K, Bauer P, Fischer-Zirnsak B, Nievelstein RAJ, van Dijk A, Nikkels P, Oheim R, Hahn H, Bertoli-Avella A, Maurice MM, Kornak U. AXIN1 bi-allelic variants disrupting the C-terminal DIX domain cause craniometadiaphyseal osteosclerosis with hip dysplasia. Am J Hum Genet 2023; 110:1470-1481. [PMID: 37582359 PMCID: PMC10502735 DOI: 10.1016/j.ajhg.2023.07.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/17/2023] Open
Abstract
Sclerosing skeletal dysplasias result from an imbalance between bone formation and resorption. We identified three homozygous, C-terminally truncating AXIN1 variants in seven individuals from four families affected by macrocephaly, cranial hyperostosis, and vertebral endplate sclerosis. Other frequent findings included hip dysplasia, heart malformations, variable developmental delay, and hematological anomalies. In line with AXIN1 being a central component of the β-catenin destruction complex, analyses of primary and genome-edited cells harboring the truncating variants revealed enhanced basal canonical Wnt pathway activity. All three AXIN1-truncating variants resulted in reduced protein levels and impaired AXIN1 polymerization mediated by its C-terminal DIX domain but partially retained Wnt-inhibitory function upon overexpression. Addition of a tankyrase inhibitor attenuated Wnt overactivity in the AXIN1-mutant model systems. Our data suggest that AXIN1 coordinates the action of osteoblasts and osteoclasts and that tankyrase inhibitors can attenuate the effects of AXIN1 hypomorphic variants.
Collapse
Affiliation(s)
- Paulien Terhal
- Division of Laboratories, Pharmacy and Biomedical Genetics, University Medical Centre Utrecht, 3584EA Utrecht, the Netherlands.
| | - Anton J Venhuizen
- Center for Molecular Medicine and Oncode Institute, University Medical Centre Utrecht, 3584CG Utrecht, the Netherlands
| | - Davor Lessel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; Institute of Human Genetics, University Hospital Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Wen-Hann Tan
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Abdulrahman Alswaid
- Department of Pediatrics, King Abdullah Specialized Children's Hospital, Riyadh 14611, Saudi Arabia; King Saud Bin Abdulaziz University For Health Sciences, Riyadh 22490, Saudi Arabia
| | - Regina Grün
- Institute of Human Genetics, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Hamad I Alzaidan
- Medical Genetics Department, King Faisal Specialist Hospital and Research Center, Alfaisal University, Riyadh 11211, Saudi Arabia
| | - Simon von Kroge
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany
| | - Nada Ragab
- Institute of Human Genetics, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Maja Hempel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; Institute of Human Genetics, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Christian Kubisch
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Eduardo Novais
- Department of Orthopedic Surgery, Boston Children's Hospital, Boston, MA 02115, USA
| | - Alba Cristobal
- Center for Molecular Medicine and Oncode Institute, University Medical Centre Utrecht, 3584CG Utrecht, the Netherlands
| | | | - Peter Bauer
- Centogene GmbH, 18055 Rostock, Germany; University Hospital Rostock, Internal Medicine, Hemato-oncology, 18057 Rostock, Germany
| | - Björn Fischer-Zirnsak
- Institute of Medical Genetics and Human Genetics, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Rutger A J Nievelstein
- Department of Radiology & Nuclear Medicine, University Medical Centre Utrecht, 3584CX Utrecht, the Netherlands
| | - Atty van Dijk
- Expert Center for Skeletal Dysplasia, Wilhelmina Children's Hospital, University Medical Center Utrecht, 3584EA Utrecht, the Netherlands
| | - Peter Nikkels
- Department of Pathology, University Medical Centre Utrecht, 3584CX Utrecht, the Netherlands
| | - Ralf Oheim
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany
| | - Heidi Hahn
- Institute of Human Genetics, University Medical Center Göttingen, 37073 Göttingen, Germany
| | | | - Madelon M Maurice
- Center for Molecular Medicine and Oncode Institute, University Medical Centre Utrecht, 3584CG Utrecht, the Netherlands
| | - Uwe Kornak
- Institute of Human Genetics, University Medical Center Göttingen, 37073 Göttingen, Germany; Institute of Medical Genetics and Human Genetics, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany.
| |
Collapse
|
27
|
Kim Y, Kim HK, Kang S, Kim H, Go GW. Rottlerin suppresses lipid accumulation by inhibiting de novo lipogenesis and adipogenesis via LRP6/mTOR/SREBP1C in 3T3-L1 adipocytes. Food Sci Biotechnol 2023; 32:1445-1452. [PMID: 37457404 PMCID: PMC10349001 DOI: 10.1007/s10068-023-01339-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/24/2023] [Accepted: 05/12/2023] [Indexed: 07/18/2023] Open
Abstract
Rottlerin is isolated from Mallotus japonicus, a plant rich in polyphenols. Rottlerin is a selective PKCδ-inhibitor and is also known as an uncoupler of oxidative phosphorylation and anti-neoplastic agent. However, its anti-obesity effect is yet to be established. Therefore, this study tested whether rottlerin inhibits adipogenesis and de novo lipogenesis via the LRP6/mTOR/SREBP1C pathway in 3T3-L1 adipocytes. Rottlerin dramatically decreased lipid accumulation assessed by Oil Red O as evidence to support the cellular phenotype (p < 0.001). Pivotal messenger RNA and protein expressions associated with de novo lipogenesis (SREBP1C, ACC1, FAS, and SCD1) and adipogenesis (PPARγ and C/EBPα) were subsequentially verified by rottlerin in a dose-dependent manner (p < 0.05). Further investigation revealed that rottlerin reduced the AKT/mTOR pathway via diminished total protein of LRP6 (p < 0.05). Collectively, these findings establish a causal link between rottlerin, LRP6, and the altered nutrient-sensing mTOR pathway, in which rottlerin regulates de novo lipogenesis and adipogenesis in white adipocytes.
Collapse
Affiliation(s)
- Yejin Kim
- Department of Food and Nutrition, Hanyang University, Seoul, 04763 Republic of Korea
| | - Hyun Kyung Kim
- Department of Food and Nutrition, Hanyang University, Seoul, 04763 Republic of Korea
| | - Sumin Kang
- Department of Food and Nutrition, Hanyang University, Seoul, 04763 Republic of Korea
| | - Hayoon Kim
- Department of Food and Nutrition, Hanyang University, Seoul, 04763 Republic of Korea
| | - Gwang-woong Go
- Department of Food and Nutrition, Hanyang University, Seoul, 04763 Republic of Korea
| |
Collapse
|
28
|
Jiang H, Li D, Han Y, Li N, Tao X, Liu J, Zhang Z, Yu Y, Wang L, Yu S, Zhang N, Xiao H, Yang X, Zhang Y, Zhang G, Zhang BT. The role of sclerostin in lipid and glucose metabolism disorders. Biochem Pharmacol 2023; 215:115694. [PMID: 37481136 DOI: 10.1016/j.bcp.2023.115694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/01/2023] [Accepted: 07/11/2023] [Indexed: 07/24/2023]
Abstract
Lipid and glucose metabolism are critical for human activities, and their disorders can cause diabetes and obesity, two prevalent metabolic diseases. Studies suggest that the bone involved in lipid and glucose metabolism is emerging as an endocrine organ that regulates systemic metabolism through bone-derived molecules. Sclerostin, a protein mainly produced by osteocytes, has been therapeutically targeted by antibodies for treating osteoporosis owing to its ability to inhibit bone formation. Moreover, recent evidence indicates that sclerostin plays a role in lipid and glucose metabolism disorders. Although the effects of sclerostin on bone have been extensively examined and reviewed, its effects on systemic metabolism have not yet been well summarized. In this paper, we provide a systemic review of the effects of sclerostin on lipid and glucose metabolism based on in vitro and in vivo evidence, summarize the research progress on sclerostin, and prospect its potential manipulation for obesity and diabetes treatment.
Collapse
Affiliation(s)
- Hewen Jiang
- School of Chinese Medicine, Chinese University of Hong Kong, Hong Kong, China; Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China
| | - Dijie Li
- Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China; Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Ying Han
- Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China; Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Nanxi Li
- Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China; Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Xiaohui Tao
- Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China; Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Jin Liu
- Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China; Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Zongkang Zhang
- School of Chinese Medicine, Chinese University of Hong Kong, Hong Kong, China; Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China
| | - Yuanyuan Yu
- Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China; Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Luyao Wang
- Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China; Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Sifan Yu
- School of Chinese Medicine, Chinese University of Hong Kong, Hong Kong, China; Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China
| | - Ning Zhang
- School of Chinese Medicine, Chinese University of Hong Kong, Hong Kong, China; Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China
| | - Huan Xiao
- School of Chinese Medicine, Chinese University of Hong Kong, Hong Kong, China; Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China
| | - Xin Yang
- School of Chinese Medicine, Chinese University of Hong Kong, Hong Kong, China; Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China
| | - Yihao Zhang
- School of Chinese Medicine, Chinese University of Hong Kong, Hong Kong, China; Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China
| | - Ge Zhang
- Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China; Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
| | - Bao-Ting Zhang
- School of Chinese Medicine, Chinese University of Hong Kong, Hong Kong, China; Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China.
| |
Collapse
|
29
|
Wu TT, Zheng YY, Ma X, Xiu WJ, Yang HT, Hou XG, Yang Y, Chen Y, Ma YT, Xie X. Mutated CYP17A1 promotes atherosclerosis and early-onset coronary artery disease. Cell Commun Signal 2023; 21:155. [PMID: 37370070 PMCID: PMC10294473 DOI: 10.1186/s12964-023-01061-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/29/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Coronary artery disease (CAD) is a multi-factor complex trait and is heritable, especially in early-onset families. However, the genetic factors affecting the susceptibility of early-onset CAD are not fully characterized. METHODS In the present study, we identified a rare nonsense variant in the CYP17A1 gene from a Chinese Han family with CAD. To validate the effect of this variation on atherosclerosis and early-onset coronary artery disease, we conducted studies on population, cells, and mice. RESULTS The mutation precisely congregated with the clinical syndrome in all the affected family members and was absent in unaffected family members and unrelated controls. Similar to the human phenotype, the CYP17A1-deficient mice present the phenotype of metabolic syndrome with hypertension, increased serum glucose concentration, and presentation of central obesity and fatty liver. Furthermore, CYP17A1 knockout mice or CYP17A1 + ApoE double knockout mice developed more atherosclerotic lesions than wild type (WT) with high fat diary. In cell models, CYP17A1 was found to be involved in glucose metabolism by increasing glucose intake and utilization, through activating IGF1/mTOR/HIF1-α signaling way, which was consistent in CYP17A1 knockout mice with impaired glucose tolerance and insulin resistance. CONCLUSIONS Through our study of cells, mice and humans, we identified CYP17A1 as a key protein participating in the pathophysiology of the atherosclerotic process and the possible mechanism of CYP17A1 C987X mutation induced atherosclerosis and early-onset CAD involving glucose homeostasis regulation was revealed. Video Abstract.
Collapse
Affiliation(s)
- Ting-Ting Wu
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, No. 137, Liyushan Road, Urumqi, 830011, People's Republic of China
| | - Ying-Ying Zheng
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, No. 137, Liyushan Road, Urumqi, 830011, People's Republic of China
| | - Xiang Ma
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, No. 137, Liyushan Road, Urumqi, 830011, People's Republic of China
| | - Wen-Juan Xiu
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, No. 137, Liyushan Road, Urumqi, 830011, People's Republic of China
| | - Hai-Tao Yang
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, No. 137, Liyushan Road, Urumqi, 830011, People's Republic of China
| | - Xian-Geng Hou
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, No. 137, Liyushan Road, Urumqi, 830011, People's Republic of China
| | - Yi Yang
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, No. 137, Liyushan Road, Urumqi, 830011, People's Republic of China
| | - You Chen
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, No. 137, Liyushan Road, Urumqi, 830011, People's Republic of China
| | - Yi-Tong Ma
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, No. 137, Liyushan Road, Urumqi, 830011, People's Republic of China.
| | - Xiang Xie
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, No. 137, Liyushan Road, Urumqi, 830011, People's Republic of China.
| |
Collapse
|
30
|
Bragg RM, Coffey SR, Cantle JP, Hu S, Singh S, Legg SR, McHugh CA, Toor A, Zeitlin SO, Kwak S, Howland D, Vogt TF, Monga SP, Carroll JB. Huntingtin loss in hepatocytes is associated with altered metabolism, adhesion, and liver zonation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.24.546334. [PMID: 37425835 PMCID: PMC10327156 DOI: 10.1101/2023.06.24.546334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Huntington's disease arises from a toxic gain of function in the huntingtin ( HTT ) gene. As a result, many HTT-lowering therapies are being pursued in clinical studies, including those that reduce HTT RNA and protein expression in the liver. To investigate potential impacts, we characterized molecular, cellular, and metabolic impacts of chronic HTT lowering in mouse hepatocytes. Lifelong hepatocyte HTT loss is associated with multiple physiological changes, including increased circulating bile acids, cholesterol and urea, hypoglycemia, and impaired adhesion. HTT loss causes a clear shift in the normal zonal patterns of liver gene expression, such that pericentral gene expression is reduced. These alterations in liver zonation in livers lacking HTT are observed at the transcriptional, histological and plasma metabolite level. We have extended these phenotypes physiologically with a metabolic challenge of acetaminophen, for which the HTT loss results in toxicity resistance. Our data reveal an unexpected role for HTT in regulating hepatic zonation, and we find that loss of HTT in hepatocytes mimics the phenotypes caused by impaired hepatic β-catenin function.
Collapse
Affiliation(s)
- Robert M. Bragg
- Behavioral Neuroscience Program, Department of Psychology, Western Washington University, Bellingham WA 98225
| | - Sydney R. Coffey
- Behavioral Neuroscience Program, Department of Psychology, Western Washington University, Bellingham WA 98225
| | - Jeffrey P. Cantle
- Behavioral Neuroscience Program, Department of Psychology, Western Washington University, Bellingham WA 98225
| | - Shikai Hu
- School of Medicine, Tsinghua University, Beijing, China
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sucha Singh
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Samuel R.W. Legg
- Behavioral Neuroscience Program, Department of Psychology, Western Washington University, Bellingham WA 98225
| | - Cassandra A. McHugh
- Behavioral Neuroscience Program, Department of Psychology, Western Washington University, Bellingham WA 98225
| | - Amreen Toor
- Behavioral Neuroscience Program, Department of Psychology, Western Washington University, Bellingham WA 98225
| | - Scott O. Zeitlin
- Department of Neuroscience, University of Virginia, Charlottesville, VA 22908
| | | | | | | | - Satdarshan P. Monga
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, PA USA; Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Jeffrey B. Carroll
- Behavioral Neuroscience Program, Department of Psychology, Western Washington University, Bellingham WA 98225
- Department of Neurology, University of Washington, Seattle, WA 98104-2499
| |
Collapse
|
31
|
Sun Y, Zhang J, Hong J, Zhang Z, Lu P, Gao A, Ni M, Zhang Z, Yang H, Shen J, Lu J, Xue W, Lv Q, Bi Y, Zeng YA, Gu W, Ning G, Wang W, Liu R, Wang J. Human RSPO1 Mutation Represses Beige Adipocyte Thermogenesis and Contributes to Diet-Induced Adiposity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207152. [PMID: 36755192 PMCID: PMC10131814 DOI: 10.1002/advs.202207152] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/15/2023] [Indexed: 06/18/2023]
Abstract
Recent genetic evidence has linked WNT downstream mutations to fat distribution. However, the roles of WNTs in human obesity remain unclear. Here, the authors screen all Wnt-related paracrine factors in 1994 obese cases and 2161 controls using whole-exome sequencing (WES) and identify that 12 obese patients harbor the same mutations in RSPO1 (p.R219W/Q) predisposing to human obesity. RSPO1 is predominantly expressed in visceral fat, primarily in the fibroblast cluster, and is increased with adiposity. Mice overexpressing human RSPO1 in adipose tissues develop obesity under a high-fat diet (HFD) due to reduced brown/beige fat thermogenesis. In contrast, Rspo1 ablation resists HFD-induced adiposity by increasing thermogenesis. Mechanistically, RSPO1 overexpression or administration significantly inhibits adipocyte mitochondrial respiration and thermogenesis via LGR4-Wnt/β-catenin signaling pathway. Importantly, humanized knockin mice carrying the hotspot mutation (p.R219W) display suppressed thermogenesis and recapitulate the adiposity feature of obese carriers. The mutation disrupts RSPO1's electrostatic interaction with the extracellular matrix, leading to excessive RSPO1 release that activates LGR4-Wnt/β-catenin signaling and attenuates thermogenic capacity in differentiated beige adipocytes. Therefore, these findings identify that gain-of-function mutations and excessive expression of RSPO1, acting as a paracrine Wnt activator, suppress fat thermogenesis and contribute to obesity in humans.
Collapse
Affiliation(s)
- Yingkai Sun
- Department of Endocrine and Metabolic DiseasesShanghai Institute of Endocrine and Metabolic DiseasesRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
- Shanghai National Clinical Research Center for Metabolic DiseasesKey Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR ChinaShanghai National Center for Translational MedicineShanghai200025P. R. China
| | - Juan Zhang
- Department of Endocrine and Metabolic DiseasesShanghai Institute of Endocrine and Metabolic DiseasesRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
- Shanghai National Clinical Research Center for Metabolic DiseasesKey Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR ChinaShanghai National Center for Translational MedicineShanghai200025P. R. China
| | - Jie Hong
- Department of Endocrine and Metabolic DiseasesShanghai Institute of Endocrine and Metabolic DiseasesRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
- Shanghai National Clinical Research Center for Metabolic DiseasesKey Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR ChinaShanghai National Center for Translational MedicineShanghai200025P. R. China
| | - Zhongyun Zhang
- Department of Endocrine and Metabolic DiseasesShanghai Institute of Endocrine and Metabolic DiseasesRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
- Shanghai National Clinical Research Center for Metabolic DiseasesKey Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR ChinaShanghai National Center for Translational MedicineShanghai200025P. R. China
| | - Peng Lu
- Department of Endocrine and Metabolic DiseasesShanghai Institute of Endocrine and Metabolic DiseasesRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
- Shanghai National Clinical Research Center for Metabolic DiseasesKey Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR ChinaShanghai National Center for Translational MedicineShanghai200025P. R. China
| | - Aibo Gao
- Department of Endocrine and Metabolic DiseasesShanghai Institute of Endocrine and Metabolic DiseasesRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
- Shanghai National Clinical Research Center for Metabolic DiseasesKey Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR ChinaShanghai National Center for Translational MedicineShanghai200025P. R. China
| | - Mengshan Ni
- Department of Endocrine and Metabolic DiseasesShanghai Institute of Endocrine and Metabolic DiseasesRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
- Shanghai National Clinical Research Center for Metabolic DiseasesKey Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR ChinaShanghai National Center for Translational MedicineShanghai200025P. R. China
| | - Zhiyin Zhang
- Department of Endocrine and Metabolic DiseasesShanghai Institute of Endocrine and Metabolic DiseasesRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
- Shanghai National Clinical Research Center for Metabolic DiseasesKey Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR ChinaShanghai National Center for Translational MedicineShanghai200025P. R. China
| | - Huanjie Yang
- BGI GenomicsBGI‐ShenzhenShenzhen860755P. R. China
| | - Juan Shen
- BGI GenomicsBGI‐ShenzhenShenzhen860755P. R. China
| | - Jieli Lu
- Department of Endocrine and Metabolic DiseasesShanghai Institute of Endocrine and Metabolic DiseasesRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
- Shanghai National Clinical Research Center for Metabolic DiseasesKey Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR ChinaShanghai National Center for Translational MedicineShanghai200025P. R. China
| | - Wenzhi Xue
- Department of Endocrine and Metabolic DiseasesShanghai Institute of Endocrine and Metabolic DiseasesRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
- Shanghai National Clinical Research Center for Metabolic DiseasesKey Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR ChinaShanghai National Center for Translational MedicineShanghai200025P. R. China
| | - Qianqian Lv
- Department of Endocrine and Metabolic DiseasesShanghai Institute of Endocrine and Metabolic DiseasesRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
- Shanghai National Clinical Research Center for Metabolic DiseasesKey Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR ChinaShanghai National Center for Translational MedicineShanghai200025P. R. China
| | - Yufang Bi
- Department of Endocrine and Metabolic DiseasesShanghai Institute of Endocrine and Metabolic DiseasesRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
- Shanghai National Clinical Research Center for Metabolic DiseasesKey Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR ChinaShanghai National Center for Translational MedicineShanghai200025P. R. China
| | - Yi Arial Zeng
- State Key Laboratory of Cell BiologyCAS Center for Excellence in Molecular Cell ScienceInstitute of Biochemistry and Cell BiologyChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai200031P. R. China
| | - Weiqiong Gu
- Department of Endocrine and Metabolic DiseasesShanghai Institute of Endocrine and Metabolic DiseasesRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
- Shanghai National Clinical Research Center for Metabolic DiseasesKey Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR ChinaShanghai National Center for Translational MedicineShanghai200025P. R. China
| | - Guang Ning
- Department of Endocrine and Metabolic DiseasesShanghai Institute of Endocrine and Metabolic DiseasesRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
- Shanghai National Clinical Research Center for Metabolic DiseasesKey Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR ChinaShanghai National Center for Translational MedicineShanghai200025P. R. China
| | - Weiqing Wang
- Department of Endocrine and Metabolic DiseasesShanghai Institute of Endocrine and Metabolic DiseasesRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
- Shanghai National Clinical Research Center for Metabolic DiseasesKey Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR ChinaShanghai National Center for Translational MedicineShanghai200025P. R. China
| | - Ruixin Liu
- Department of Endocrine and Metabolic DiseasesShanghai Institute of Endocrine and Metabolic DiseasesRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
- Shanghai National Clinical Research Center for Metabolic DiseasesKey Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR ChinaShanghai National Center for Translational MedicineShanghai200025P. R. China
| | - Jiqiu Wang
- Department of Endocrine and Metabolic DiseasesShanghai Institute of Endocrine and Metabolic DiseasesRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
- Shanghai National Clinical Research Center for Metabolic DiseasesKey Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR ChinaShanghai National Center for Translational MedicineShanghai200025P. R. China
| |
Collapse
|
32
|
Xie XM, Cao QL, Sun YJ, Zhang J, Liu KL, Qin YF, Long WJ, Luo ZJ, Li XW, Liang XH, Yuan GD, Luo XP, Xuan XP. LRP6 Bidirectionally Regulates Insulin Sensitivity through Insulin Receptor and S6K Signaling in Rats with CG-IUGR. Curr Med Sci 2023; 43:274-283. [PMID: 36913109 DOI: 10.1007/s11596-022-2683-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 10/27/2022] [Indexed: 03/14/2023]
Abstract
OBJECTIVE Intrauterine growth restriction followed by postnatal catch-up growth (CG-IUGR) increases the risk of insulin resistance-related diseases. Low-density lipoprotein receptor-related protein 6 (LRP6) plays a substantial role in glucose metabolism. However, whether LRP6 is involved in the insulin resistance of CG-IUGR is unclear. This study aimed to explore the role of LRP6 in insulin signaling in response to CG-IUGR. METHODS The CG-IUGR rat model was established via a maternal gestational nutritional restriction followed by postnatal litter size reduction. The mRNA and protein expression of the components in the insulin pathway, LRP6/β-catenin and mammalian target of rapamycin (mTOR)/S6 kinase (S6K) signaling, was determined. Liver tissues were immunostained for the expression of LRP6 and β-catenin. LRP6 was overexpressed or silenced in primary hepatocytes to explore its role in insulin signaling. RESULTS Compared with the control rats, CG-IUGR rats showed higher homeostasis model assessment for insulin resistance (HOMA-IR) index and fasting insulin level, decreased insulin signaling, reduced mTOR/S6K/ insulin receptor substrate-1 (IRS-1) serine307 activity, and decreased LRP6/β-catenin in the liver tissue. The knockdown of LRP6 in hepatocytes from appropriate-for-gestational-age (AGA) rats led to reductions in insulin receptor (IR) signaling and mTOR/S6K/IRS-1 serine307 activity. In contrast, LRP6 overexpression in hepatocytes of CG-IUGR rats resulted in elevated IR signaling and mTOR/S6K/IRS-1 serine307 activity. CONCLUSION LRP6 regulated the insulin signaling in the CG-IUGR rats via two distinct pathways, IR and mTOR-S6K signaling. LRP6 may be a potential therapeutic target for insulin resistance in CG-IUGR individuals.
Collapse
Affiliation(s)
- Xue-Mei Xie
- Department of Endocrinology, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Qiu-Li Cao
- Department of Endocrinology, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Yu-Jie Sun
- Department of Endocrinology, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Jie Zhang
- Department of Endocrinology, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
| | - Kai-Li Liu
- Department of Endocrinology, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Ying-Fen Qin
- Department of Endocrinology, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Wen-Jun Long
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zuo-Jie Luo
- Department of Endocrinology, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Xiao-Wei Li
- Department of Endocrinology, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Xing-Huan Liang
- Department of Endocrinology, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Guan-Dou Yuan
- Division of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Xiao-Ping Luo
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiu-Ping Xuan
- Department of Endocrinology, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
33
|
LRP6-mediated phosphorylation of connexin43 in myocardial infarction. iScience 2023; 26:106160. [PMID: 36879803 PMCID: PMC9985046 DOI: 10.1016/j.isci.2023.106160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/30/2022] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Ventricular tachycardia (VT) and ventricular fibrillation are most causes of early death in patients with acute myocardial infarction (AMI). Conditional cardiac-specific low-density lipoprotein receptor-related protein 6 (LRP6)-knockout mice with connexin 43 (Cx43) reduction triggered the lethal ventricular arrhythmias. Thus, it is necessary for exploring whether LRP6 and its upstream genes circRNA1615 mediate the phosphorylation of Cx43 in VT of AMI. Here, we showed that circRNA1615 regulated the expression of LRP6 mRNA through sponge adsorption of miR-152-3p. Importantly, LRP6 interference fragments aggravated hypoxia injury of Cx43, while overexpression of LRP6 improved the phosphorylation of Cx43. Subsequently, interference with G-protein alpha subunit (Gαs) downstream of LRP6 further inhibited the phosphorylation of Cx43, along with increasing VT. Our results demonstrated that LRP6 upstream genes circRNA1615 controlled the damage effect and VT in AMI, and LRP6 mediated the phosphorylation of Cx43 via Gαs which played a role in VT of AMI.
Collapse
|
34
|
Jung SY, Cho EB, Han KD, Jung JH, Yeo Y, Kong SH, Shin DW, Min JH. Risk of fracture in neuromyelitis optica spectrum disorder and multiple sclerosis: a nationwide cohort study in South Korea. Osteoporos Int 2023; 34:925-933. [PMID: 36854747 DOI: 10.1007/s00198-023-06715-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 02/21/2023] [Indexed: 03/02/2023]
Abstract
PURPOSE Interest in fractures in patients with multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD) has considerably increased in the last decade. However, few studies have compared the incidence of fractures between patients with MS and NMOSD using a nationwide database. This study aimed to evaluate the differences in the risk of fracture between patients with NMOSD and MS compared to that in healthy controls using cohort data from a Korean nationwide database. METHODS In this retrospective cohort study, data from the National Health Insurance Service (NHIS) database from January 2010 to December 2017 were analyzed. A total of 1,217/1,329 patients with MS/NMOSD free of fractures at the index date were included. Matched controls were selected based on age, sex, and the presence of hypertension, diabetes mellitus, and dyslipidemia. The mean follow-up durations after the index date were 4.40/4.08 years for patients with MS/NMOSD and 4.73/4.28 for their matched controls. RESULTS The adjusted hazard ratios (aHRs) with 95% confidence intervals of any, hip, and vertebral fractures were 1.81 (1.43-2.28), 3.36 (1.81-6.24), and 2.01 (1.42-2.99) times higher for patients with MS than for controls, respectively, and they were 1.85 (1.47-2.34), 3.82 (2.05-7.11), and 2.84 (1.92-4.21) times higher for patients with NMOSD than for controls, respectively. No significant differences were observed in the incidence of fractures between the MS and NMOSD groups. Patients with MS/NMOSD had a 1.8-fold higher risk of fracture than matched controls, and the risk of hip fracture was especially high (3- to 4-fold higher). CONCLUSIONS Clinicians need to regularly assess patients with MS/NMOSD for the risk of fractures and take preventative measures to reduce it.
Collapse
Affiliation(s)
- Se Young Jung
- Department of Family Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
- Department of Digital Healthcare, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Eun Bin Cho
- Department of Neurology, College of Medicine, Gyeongsang Institute of Health Science, Gyeongsang National University, Jinju, South Korea
| | - Kyung-Do Han
- Department of Statistics and Actuarial Science, Soongsil University, Seoul, Korea
| | - Jin Hyung Jung
- Department of Biostatics, The Catholic University of Korea, Seoul, South Korea
| | - Yohwan Yeo
- Department of Family Medicine & Supportive Care Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Sung Hye Kong
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Dong Wook Shin
- Department of Family Medicine & Supportive Care Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.
- Department of Clinical Research Design and Evaluation/Department of Digital Health, Samsung Advanced Institute of Health Science and Technology (SAIHST), Sungkyunkwan University, 50 Irwon-Dong, Gangnam-Gu, Seoul, 135-710, South Korea.
- Center for Wireless and Population Health Systems, University of California, San Diego, La Jolla, CA, USA.
| | - Ju-Hong Min
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-Dong, Gangnam-Gu, Seoul, 135-710, South Korea.
- Neuroscience Center, Samsung Medical Center, Seoul, South Korea.
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul, South Korea.
| |
Collapse
|
35
|
Saponara E, Penno C, Orsini V, Wang ZY, Fischer A, Aebi A, Matadamas-Guzman ML, Brun V, Fischer B, Brousseau M, O'Donnell P, Turner J, Graff Meyer A, Bollepalli L, d'Ario G, Roma G, Carbone W, Annunziato S, Obrecht M, Beckmann N, Saravanan C, Osmont A, Tropberger P, Richards SM, Genoud C, Ley S, Ksiazek I, Nigsch F, Terracciano LM, Schadt HS, Bouwmeester T, Tchorz JS, Ruffner H. Loss of Hepatic Leucine-Rich Repeat-Containing G-Protein Coupled Receptors 4 and 5 Promotes Nonalcoholic Fatty Liver Disease. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:161-181. [PMID: 36410420 DOI: 10.1016/j.ajpath.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 10/06/2022] [Accepted: 10/19/2022] [Indexed: 11/19/2022]
Abstract
The roof plate-specific spondin-leucine-rich repeat-containing G-protein coupled receptor 4/5 (LGR4/5)-zinc and ring finger 3 (ZNRF3)/ring finger protein 43 (RNF43) module is a master regulator of hepatic Wnt/β-catenin signaling and metabolic zonation. However, its impact on nonalcoholic fatty liver disease (NAFLD) remains unclear. The current study investigated whether hepatic epithelial cell-specific loss of the Wnt/β-catenin modulator Lgr4/5 promoted NAFLD. The 3- and 6-month-old mice with hepatic epithelial cell-specific deletion of both receptors Lgr4/5 (Lgr4/5dLKO) were compared with control mice fed with normal diet (ND) or high-fat diet (HFD). Six-month-old HFD-fed Lgr4/5dLKO mice developed hepatic steatosis and fibrosis but the control mice did not. Serum cholesterol-high-density lipoprotein and total cholesterol levels in 3- and 6-month-old HFD-fed Lgr4/5dLKO mice were decreased compared with those in control mice. An ex vivo primary hepatocyte culture assay and a comprehensive bile acid (BA) characterization in liver, plasma, bile, and feces demonstrated that ND-fed Lgr4/5dLKO mice had impaired BA secretion, predisposing them to develop cholestatic characteristics. Lipidome and RNA-sequencing analyses demonstrated severe alterations in several lipid species and pathways controlling lipid metabolism in the livers of Lgr4/5dLKO mice. In conclusion, loss of hepatic Wnt/β-catenin activity by Lgr4/5 deletion led to loss of BA secretion, cholestatic features, altered lipid homeostasis, and deregulation of lipoprotein pathways. Both BA and intrinsic lipid alterations contributed to the onset of NAFLD.
Collapse
Affiliation(s)
- Enrica Saponara
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Carlos Penno
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Vanessa Orsini
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Zhong-Yi Wang
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Audrey Fischer
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Alexandra Aebi
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Meztli L Matadamas-Guzman
- Instituto Nacional de Medicina Genómica-Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Virginie Brun
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Benoit Fischer
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Margaret Brousseau
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Cambridge, Massachusetts
| | - Peter O'Donnell
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Cambridge, Massachusetts
| | - Jonathan Turner
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Alexandra Graff Meyer
- Friedrich Miescher Institute for BioMedical Research, Facility for Advanced Imaging and Microscopy, Basel, Switzerland
| | - Laura Bollepalli
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Giovanni d'Ario
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Guglielmo Roma
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Walter Carbone
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Stefano Annunziato
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Michael Obrecht
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Nicolau Beckmann
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Chandra Saravanan
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Cambridge, Massachusetts
| | - Arnaud Osmont
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Philipp Tropberger
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Shola M Richards
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Christel Genoud
- Electron Microscopy Facility, University of Lausanne, Lausanne, Switzerland
| | - Svenja Ley
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Iwona Ksiazek
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Florian Nigsch
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Luigi M Terracciano
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy; Istituto di Ricovero e Cura a Carattere Scientifico, Humanitas Research Hospital, Anatomia Patologica, Rozzano, Milan, Italy
| | - Heiko S Schadt
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Tewis Bouwmeester
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Jan S Tchorz
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Heinz Ruffner
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland.
| |
Collapse
|
36
|
Xu M, Chen X, Yu Z, Li X. Receptors that bind to PEDF and their therapeutic roles in retinal diseases. Front Endocrinol (Lausanne) 2023; 14:1116136. [PMID: 37139333 PMCID: PMC10149954 DOI: 10.3389/fendo.2023.1116136] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/04/2023] [Indexed: 05/05/2023] Open
Abstract
Retinal neovascular, neurodegenerative, and inflammatory diseases represented by diabetic retinopathy are the main types of blinding eye disorders that continually cause the increased burden worldwide. Pigment epithelium-derived factor (PEDF) is an endogenous factor with multiple effects including neurotrophic activity, anti-angiogenesis, anti-tumorigenesis, and anti-inflammatory activity. PEDF activity depends on the interaction with the proteins on the cell surface. At present, seven independent receptors, including adipose triglyceride lipase, laminin receptor, lipoprotein receptor-related protein, plexin domain-containing 1, plexin domain-containing 2, F1-ATP synthase, and vascular endothelial growth factor receptor 2, have been demonstrated and confirmed to be high affinity receptors for PEDF. Understanding the interactions between PEDF and PEDF receptors, their roles in normal cellular metabolism and the response the initiate in disease will be accommodating for elucidating the ways in which inflammation, angiogenesis, and neurodegeneration exacerbate disease pathology. In this review, we firstly introduce PEDF receptors comprehensively, focusing particularly on their expression pattern, ligands, related diseases, and signal transduction pathways, respectively. We also discuss the interactive ways of PEDF and receptors to expand the prospective understanding of PEDF receptors in the diagnosis and treatment of retinal diseases.
Collapse
|
37
|
Sutton NR, Malhotra R, Hilaire C, Aikawa E, Blumenthal RS, Gackenbach G, Goyal P, Johnson A, Nigwekar SU, Shanahan CM, Towler DA, Wolford BN, Chen Y. Molecular Mechanisms of Vascular Health: Insights From Vascular Aging and Calcification. Arterioscler Thromb Vasc Biol 2023; 43:15-29. [PMID: 36412195 PMCID: PMC9793888 DOI: 10.1161/atvbaha.122.317332] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/11/2022] [Indexed: 11/23/2022]
Abstract
Cardiovascular disease is the most common cause of death worldwide, especially beyond the age of 65 years, with the vast majority of morbidity and mortality due to myocardial infarction and stroke. Vascular pathology stems from a combination of genetic risk, environmental factors, and the biologic changes associated with aging. The pathogenesis underlying the development of vascular aging, and vascular calcification with aging, in particular, is still not fully understood. Accumulating data suggests that genetic risk, likely compounded by epigenetic modifications, environmental factors, including diabetes and chronic kidney disease, and the plasticity of vascular smooth muscle cells to acquire an osteogenic phenotype are major determinants of age-associated vascular calcification. Understanding the molecular mechanisms underlying genetic and modifiable risk factors in regulating age-associated vascular pathology may inspire strategies to promote healthy vascular aging. This article summarizes current knowledge of concepts and mechanisms of age-associated vascular disease, with an emphasis on vascular calcification.
Collapse
Affiliation(s)
- Nadia R. Sutton
- Division of Cardiovascular Medicine, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Rajeev Malhotra
- Cardiology Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| | - Cynthia Hilaire
- Division of Cardiology, Departments of Medicine and Bioengineering, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, 1744 BSTWR, 200 Lothrop St, Pittsburgh, PA, 15260 USA
| | - Elena Aikawa
- Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Roger S. Blumenthal
- Johns Hopkins Ciccarone Center for the Prevention of Cardiovascular Disease; Baltimore, MD
| | - Grace Gackenbach
- Division of Cardiovascular Medicine, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Parag Goyal
- Department of Medicine, Weill Cornell Medicine, New York, NY
| | - Adam Johnson
- Cardiology Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| | - Sagar U. Nigwekar
- Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| | - Catherine M. Shanahan
- School of Cardiovascular and Metabolic Medicine and Sciences, King’s College London, London, UK
| | - Dwight A. Towler
- Department of Medicine | Endocrine Division and Pak Center for Mineral Metabolism Research, UT Southwestern Medical Center, Dallas, TX USA
| | - Brooke N. Wolford
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, Norway
| | - Yabing Chen
- Department of Pathology, University of Alabama at Birmingham and Research Department, Veterans Affairs Birmingham Medical Center, Birmingham, AL, USA
| |
Collapse
|
38
|
Xu H, Ding Z, Chen J, Zhang Y, Shan W, Chen X, Liu X, Gao Y, Han G. Correlation between serum Dickkopf-1 (DKK1) levels and coronary artery stenosis. Nutr Metab Cardiovasc Dis 2023; 33:168-176. [PMID: 36411225 DOI: 10.1016/j.numecd.2022.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND AND AIMS To study the correlation between the level of serum Dickkopf-1 (DKK1) and the degree of coronary artery stenosis in patients with coronary atherosclerotic heart disease. METHODS AND RESULTS In 2018, general data and biochemical indexes of 311 patients who underwent coronary angiography were recorded. Before procedure, arterial blood was drawn and the concentrations of DKK1, retinol binding protein 4 (RBP4), plasminogen activator inhibitor (PAI-1) were measured. Based on coronary angiography results, subjects were divided into a coronary heart disease (CHD) group; and a non-coronary heart disease (non-CHD)group. The CHD group was divided into three subgroups: the low Gensini score; the middle Gensini score; and the high Gensini score subgroups. Compared with those of the non-CHD group, DKK1, RBP4 and PAI-1 of the CHD group were significantly higher, while the OC was lower. DKK1,RBP4 and PAI-1 levels of the middle and high Gensini subgroups were significantly higher, compared with that of the low Gensini subgroup. Differences between osteocalcin (OC), beta-isomerized C-terminal telopeptidase (β-CTX), and 25(OH)2D3 of the three subgroups were not significant. Correlation between DKK1 and the inflammatory factors, RBP4 and PAI-1, was positive. Correlation between DKK1 and β - CTX, 25(OH)2D3 and OC was not significant. DKK1 was a risk factor for CHD. The degree of coronary artery stenosis was related to DKK1 concentration. CONCLUSIONS Serum DKK1 levels in coronary heart disease patients were significantly higher, and positively correlated with the degree of coronary artery stenosis. DKK1 level is an independent risk factor for coronary heart disease.
Collapse
Affiliation(s)
- Hongxiu Xu
- Development of Endocrinology, The Affiliated Hospital of Chengde Medical University, Chengde, Hebei 067000, PR China; The First Hospital of Qinghuangdao, PR China
| | - Zhenjiang Ding
- Development of Cardiology, The Affiliated Hospital of Chengde Medical University, Chengde, Hebei 067000, PR China
| | - Jiaoyue Chen
- Development of Endocrinology, The Affiliated Hospital of Chengde Medical University, Chengde, Hebei 067000, PR China
| | - Ying Zhang
- Development of Cardiology, The Affiliated Hospital of Chengde Medical University, Chengde, Hebei 067000, PR China
| | - Weichao Shan
- Development of Cardiology, The Affiliated Hospital of Chengde Medical University, Chengde, Hebei 067000, PR China
| | - Xiaoyu Chen
- Development of Endocrinology, The Affiliated Hospital of Chengde Medical University, Chengde, Hebei 067000, PR China
| | - Xiaoyan Liu
- Development of Endocrinology, The Affiliated Hospital of Chengde Medical University, Chengde, Hebei 067000, PR China
| | - Yu Gao
- Development of Endocrinology, The Affiliated Hospital of Chengde Medical University, Chengde, Hebei 067000, PR China
| | - Guiyan Han
- Development of Endocrinology, The Affiliated Hospital of Chengde Medical University, Chengde, Hebei 067000, PR China.
| |
Collapse
|
39
|
Akoumianakis I, Polkinghorne M, Antoniades C. Non-canonical WNT signalling in cardiovascular disease: mechanisms and therapeutic implications. Nat Rev Cardiol 2022; 19:783-797. [PMID: 35697779 PMCID: PMC9191761 DOI: 10.1038/s41569-022-00718-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/25/2022] [Indexed: 12/15/2022]
Abstract
WNT signalling comprises a diverse spectrum of receptor-mediated pathways activated by a large family of WNT ligands and influencing fundamental biological processes. WNT signalling includes the β-catenin canonical pathway and the non-canonical pathways, namely the planar cell polarity and the calcium-dependent pathways. Advances over the past decade have linked non-canonical WNT signalling with key mechanisms of atherosclerosis, including oxidative stress, endothelial dysfunction, macrophage activation and vascular smooth muscle cell phenotype regulation. In addition, non-canonical WNT signalling is involved in crucial aspects of myocardial biology, from fibrosis to hypertrophy and oxidative stress. Importantly, non-canonical WNT signalling activation has complex effects in adipose tissue in the context of obesity, thereby potentially linking metabolic and vascular diseases. Tissue-specific targeting of non-canonical WNT signalling might be associated with substantial risks of off-target tumorigenesis, challenging its therapeutic potential. However, novel technologies, such as monoclonal antibodies, recombinant decoy receptors, tissue-specific gene silencing with small interfering RNAs and gene editing with CRISPR-Cas9, might enable more efficient therapeutic targeting of WNT signalling in the cardiovascular system. In this Review, we summarize the components of non-canonical WNT signalling, their links with the main mechanisms of atherosclerosis, heart failure and arrhythmias, and the rationale for targeting individual components of non-canonical WNT signalling for the treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Ioannis Akoumianakis
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Murray Polkinghorne
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Charalambos Antoniades
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
- Acute Vascular Imaging Centre, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
40
|
Osteoblast/osteocyte-derived interleukin-11 regulates osteogenesis and systemic adipogenesis. Nat Commun 2022; 13:7194. [PMID: 36424386 PMCID: PMC9691688 DOI: 10.1038/s41467-022-34869-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/09/2022] [Indexed: 11/27/2022] Open
Abstract
Exercise results in mechanical loading of the bone and stimulates energy expenditure in the adipose tissue. It is therefore likely that the bone secretes factors to communicate with adipose tissue in response to mechanical loading. Interleukin (IL)-11 is known to be expressed in the bone, it is upregulated by mechanical loading, enhances osteogenesis and suppresses adipogenesis. Here, we show that systemic IL-11 deletion (IL-11-/-) results in reduced bone mass, suppressed bone formation response to mechanical loading, enhanced expression of Wnt inhibitors, and suppressed Wnt signaling. At the same time, the enhancement of bone resorption by mechanical unloading was unaffected. Unexpectedly, IL-11-/- mice have increased systemic adiposity and glucose intolerance. Osteoblast/osteocyte-specific IL-11 deletion in osteocalcin-Cre;IL-11fl/fl mice have reduced serum IL-11 levels, blunted bone formation under mechanical loading, and increased systemic adiposity similar to IL-11-/- mice. Adipocyte-specific IL-11 deletion in adiponectin-Cre;IL-11fl/fl did not exhibit any abnormalities. We demonstrate that osteoblast/osteocyte-derived IL-11 controls both osteogenesis and systemic adiposity in response to mechanical loading, an important insight for our understanding of osteoporosis and metabolic syndromes.
Collapse
|
41
|
Functional Association of miR-133b and miR-21 Through Novel Gene Targets ATG5, LRP6 and SGPP1 in Coronary Artery Disease. Mol Diagn Ther 2022; 26:655-664. [PMID: 36197604 DOI: 10.1007/s40291-022-00615-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND Atherosclerosis, a progressive manifestation of coronary artery disease, has been observed to be regulated by microRNAs (miRNAs) targeting various protein-coding genes involved in several pathophysiological events of coronary artery disease. OBJECTIVE In our previous report, we identified differential expression profiles of candidate miRNAs, miR-133b and miR-21, in patients with coronary artery disease as compared with controls, suggesting their possible implication in the pathophysiology of coronary artery disease. To better understand the functional role of these miRNAs, we sought to predict and validate their target genes while assessing the expression pattern of these genes in patients with coronary artery disease, as well as in macrophages. METHODS Potential target genes of miR-133b and miR-21 were predicted bioinformatically followed by validation through the identification of their expression at the protein level in patients with coronary artery disease (n-30), as well as in macrophages treated with respective miRNA inhibitors (antagomiRs), through immunoblotting. RESULTS SGPP1, a gene associated with the sphingolipid pathway, was predicted to be a potential target gene of miR-133b while ATG5 and LRP6 were target genes of miR-21 while being associated with autophagy and Wnt signalling pathways, respectively. SGPP1 was observed to be upregulated significantly (p = 0.019) by 2.07-fold, whereas ATG5 and LRP6 were found to be downregulated (p = 0.026 and 0.007, respectively) by 3.28-fold and 8.46-fold, respectively, in patients with coronary artery disease as compared with controls. Expression patterns of all the genes were also found to be modulated when cells were treated with respective miRNA inhibitors. CONCLUSIONS Results from the present study suggest that SGPP1, ATG5 and LRP6, target genes of miR-133b and miR-21, may serve as potential therapeutic hotspots in the management of coronary artery disease, which undoubtedly merit further experimental confirmation.
Collapse
|
42
|
Coronary artery disease and cancer: a significant resemblance. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:187. [PMID: 36071253 DOI: 10.1007/s12032-022-01789-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 07/01/2022] [Indexed: 10/14/2022]
Abstract
Cancer and coronary artery disease (CAD) are two of the most common causes of death, and they frequently coexist, especially as the world's population ages. CAD can develop prior to or following cancer diagnosis, as well as a side effect of cancer treatment. CAD develops as complex interactions of lifestyle and hereditary variables, just like the development of the most complex and non-communicable diseases. Cancer is caused by both external/acquired factors (tobacco, food, physical activity, alcohol consumption, epigenetic alterations) and internal/inherited factors (genetic mutations, hormones, and immunological diseases). The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated protein 9 (Cas9) system has recently emerged as a strong tool for gene therapy for both cancer as well as CAD treatment due to its great accuracy and efficiency. A deeper understanding of the complex link between CAD and cancer should lead to better prevention, faster detection, and safer treatment strategies.
Collapse
|
43
|
Desita SR, Hariftyani AS, Jannah AR, Setyobudi AK, Oktaviono YH. PCSK9 and LRP6: potential combination targets to prevent and reduce atherosclerosis. J Basic Clin Physiol Pharmacol 2022; 33:529-534. [PMID: 35429418 DOI: 10.1515/jbcpp-2021-0291] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Coronary artery disease (CAD) is a disease characterized by atherosclerosis formation which causes sudden cardiac death. The prevalence of CAD is expected to increase by 2030. Atherosclerosis started from accumulation of LDL in the blood vessels, followed by endothelial cell activation and dysfunction. PCSK9 is a gene that plays an important role in the creation of atherosclerotic plaque through induced degradation of LDLRs. Inhibition of PCSK9 gene resulted in a decrease of LDLRs degradation and reduction in LDL-C levels. LRP6, as well as its mutation, is a coreceptor that contributes to atherosclerosis through the canonical Wnt/β-catenin pathway. By employing EMPs mediated miRNA-126, third-generation antisense against miR-494-3p (3 GA-494), and recombinant Wnt mouse Wnt3a (rmWnt3a), the inhibition of LRP6 could reduce VSMCs proliferation, enhancing anti-inflammatory macrophages, and diminished bioactive lipids component, respectively. Those mechanisms lead to the stabilization and reduction of atherosclerosis plaques.
Collapse
Affiliation(s)
- Saskia R Desita
- Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | | | - Ayik R Jannah
- Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | | | - Yudi H Oktaviono
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Airlangga, Dr. Soetomo General Hospital, Surabaya, Indonesia
| |
Collapse
|
44
|
Phenotypic and Genetic Evidence for a More Prominent Role of Blood Glucose than Cholesterol in Atherosclerosis of Hyperlipidemic Mice. Cells 2022; 11:cells11172669. [PMID: 36078077 PMCID: PMC9455034 DOI: 10.3390/cells11172669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/16/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
Hyperlipidemia and type 2 diabetes (T2D) are major risk factors for atherosclerosis. Apoe-deficient (Apoe−/−) mice on certain genetic backgrounds develop hyperlipidemia, atherosclerosis, and T2D when fed a Western diet. Here, we sought to dissect phenotypic and genetic relationships of blood lipids and glucose with atherosclerotic plaque formation when the vasculature is exposed to high levels of cholesterol and glucose. Male F2 mice were generated from LP/J and BALB/cJ Apoe−/− mice and fed a Western diet for 12 weeks. Three significant QTL Ath51, Ath52 and Ath53 on chromosomes (Chr) 3 and 15 were mapped for atherosclerotic lesions. Ath52 on proximal Chr15 overlapped with QTL for plasma glucose, non-HDL cholesterol, and triglyceride. Atherosclerotic lesion sizes showed significant correlations with fasting, non-fasting glucose, non-fasting triglyceride, and body weight but no correlation with HDL, non-HDL cholesterol, and fasting triglyceride levels. Ath52 for atherosclerosis was down-graded from significant to suggestive level after adjustment for fasting, non-fasting glucose, and non-fasting triglyceride but minimally affected by HDL, non-HDL cholesterol, and fasting triglyceride. Adjustment for body weight suppressed Ath52 but elevated Ath53 on distal Chr15. These results demonstrate phenotypic and genetic connections of blood glucose and triglyceride with atherosclerosis, and suggest a more prominent role for blood glucose than cholesterol in atherosclerotic plaque formation of hyperlipidemic mice.
Collapse
|
45
|
Yue H, Liang J, Song G, Cheng J, Li J, Zhi Y, Bian Z, He M. Mutation analysis in patients with nonsyndromic tooth agenesis using exome sequencing. Mol Genet Genomic Med 2022; 10:e2045. [PMID: 36017684 PMCID: PMC9544223 DOI: 10.1002/mgg3.2045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/05/2022] [Accepted: 08/15/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Tooth agenesis (TA) is a congenital abnormality that may present as syndromic or nonsyndromic. Considering its complex genetic aetiology, the aim of this study was to uncover the pathogenic mutants in patients with nonsyndromic TA and analyse the characteristics of these mutants. METHODS Exome sequencing was performed to detect pathogenic variants in 72 patients from 43 unrelated families with nonsyndromic TA. All candidate variants were validated using Sanger sequencing. Bioinformatics and conformational analyses were performed to determine the pathogenic mechanisms of the mutants. RESULTS The following eight mutations (six novel and two known) in six genes were identified in eight families: WNT10A [c.742C > T (p.R248*)], LRP6 [c.1518G > A (p.W506*), c.2791 + 1G > T], AXIN2 [c.133_134insGCCAGG (p.44_45insGQ)], PAX9 [c.439C > T (p.Q147*), c.453_454insCCAGC (p.L154QfsTer60)], MSX1 [c.603_604del (p.A203GfsTer10)] and PITX2 [c.522C > G (p.Y174*)]. Bioinformatics and conformational analyses showed that the protein structures were severely altered in these mutants, and indicated that these structural abnormalities may cause functional disabilities. CONCLUSIONS Our study extends the mutation spectrum in patients with nonsyndromic TA and provides valuable data for genetic counselling. The pathogenic mechanisms of TA in patients/families with unknown causative variants need to be explored further.
Collapse
Affiliation(s)
- Haitang Yue
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jia Liang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Guangtai Song
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jing Cheng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jiahui Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yusheng Zhi
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhuan Bian
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Miao He
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
46
|
Shaw S, Jana A, Kundu S. An analytical pathway of consumption expenditure with neighborhood deprivation and depression on cognitive health among elderly in India: A moderated mediation approach. J Affect Disord 2022; 308:249-258. [PMID: 35429519 DOI: 10.1016/j.jad.2022.04.060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 01/22/2022] [Accepted: 04/10/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND This study aims to find the linkage between neighborhood deprivation and cognition with depression as a mediating factor while economic condition as a moderator. METHODS We have used the recent baseline wave-1 data of Longitudinal Aging Study in India (LASI), 2017-2018. The study was restricted to 60 and above population, consisting of males (14,931) and females (16,533). We have used moderated mediating model to understand the relationship between deprivation (X), cognition (Y) mediated through depression (M), moderated by economic condition (W), while controlling all possible confounders. RESULTS Neighborhood deprivation was positively associated with depression (β: 0.12; SE: 0.01) and inversely linked to cognition (β: -0.4; SE: 0.02). Deprivation had a strong indirect effect on cognition that was mediated by depression. Further, interaction of depression (M) and economic condition (W) was negatively associated (β = -0.03; SE: 0.01) with cognition (Y), indicating that lower economic section being more depressed with lower cognitive function. LIMITATIONS The study failed to capture other mental health aspects like stress and anxiety using the Depression, Anxiety and Stress Scale-21 items (DASS-21). CONCLUSIONS This study has found a link between higher economic condition with low deprivation and depression. Older individuals with better financial situation have improved cognitive level than their counterparts, who are also depressed. This study provides an opportunity to conduct future research on cognitive health in the face of population aging in India.
Collapse
Affiliation(s)
- Subhojit Shaw
- Department of Population and Development, International Institute for Population Sciences, Deonar, Mumbai 400088, India
| | - Arup Jana
- Department of Population and Development, International Institute for Population Sciences, Deonar, Mumbai 400088, India
| | - Sampurna Kundu
- Center of Social Medicine and Community Health, Jawaharlal Nehru University, Delhi 110067, India.
| |
Collapse
|
47
|
Kantaputra P, Jatooratthawichot P, Jintakanon K, Intachai W, Pradermdutsadeeporn P, Adisornkanj P, Tongsima S, Ngamphiw C, Olsen B, Tucker AS, Cairns JRK. Mutations in LRP6 highlight the role of WNT signalling in oral exostoses and dental anomalies. Arch Oral Biol 2022; 142:105514. [DOI: 10.1016/j.archoralbio.2022.105514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/15/2022] [Accepted: 07/28/2022] [Indexed: 02/07/2023]
|
48
|
Oheim R, Tsourdi E, Seefried L, Beller G, Schubach M, Vettorazzi E, Stürznickel J, Rolvien T, Ehmke N, Delsmann A, Genest F, Krüger U, Zemojtel T, Barvencik F, Schinke T, Jakob F, Hofbauer LC, Mundlos S, Kornak U. Genetic Diagnostics in Routine Osteological Assessment of Adult Low Bone Mass Disorders. J Clin Endocrinol Metab 2022; 107:e3048-e3057. [PMID: 35276006 PMCID: PMC9202726 DOI: 10.1210/clinem/dgac147] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Indexed: 12/17/2022]
Abstract
CONTEXT Many different inherited and acquired conditions can result in premature bone fragility/low bone mass disorders (LBMDs). OBJECTIVE We aimed to elucidate the impact of genetic testing on differential diagnosis of adult LBMDs and at defining clinical criteria for predicting monogenic forms. METHODS Four clinical centers broadly recruited a cohort of 394 unrelated adult women before menopause and men younger than 55 years with a bone mineral density (BMD) Z-score < -2.0 and/or pathological fractures. After exclusion of secondary causes or unequivocal clinical/biochemical hallmarks of monogenic LBMDs, all participants were genotyped by targeted next-generation sequencing. RESULTS In total, 20.8% of the participants carried rare disease-causing variants (DCVs) in genes known to cause osteogenesis imperfecta (COL1A1, COL1A2), hypophosphatasia (ALPL), and early-onset osteoporosis (LRP5, PLS3, and WNT1). In addition, we identified rare DCVs in ENPP1, LMNA, NOTCH2, and ZNF469. Three individuals had autosomal recessive, 75 autosomal dominant, and 4 X-linked disorders. A total of 9.7% of the participants harbored variants of unknown significance. A regression analysis revealed that the likelihood of detecting a DCV correlated with a positive family history of osteoporosis, peripheral fractures (> 2), and a high normal body mass index (BMI). In contrast, mutation frequencies did not correlate with age, prevalent vertebral fractures, BMD, or biochemical parameters. In individuals without monogenic disease-causing rare variants, common variants predisposing for low BMD (eg, in LRP5) were overrepresented. CONCLUSION The overlapping spectra of monogenic adult LBMD can be easily disentangled by genetic testing and the proposed clinical criteria can help to maximize the diagnostic yield.
Collapse
Affiliation(s)
- Ralf Oheim
- Ralf Oheim, MD, Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestraße 59, 22529 Hamburg, Germany.
| | - Elena Tsourdi
- Department of Medicine III, Technische Universität Dresden Medical Center, 01307 Dresden, Germany
- Center for Healthy Aging, Technische Universität Dresden Medical Center, 01307 Dresden, Germany
| | - Lothar Seefried
- Orthopedic Center for Musculoskeletal Research, Orthopedic Department, University of Würzburg, 97070 Würzburg, Germany
| | - Gisela Beller
- Centre of Muscle and Bone Research, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Max Schubach
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Eik Vettorazzi
- Department of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Julian Stürznickel
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany
- Department of Orthopaedics and Trauma Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Tim Rolvien
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany
- Department of Orthopaedics and Trauma Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Nadja Ehmke
- Institute of Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany
| | - Alena Delsmann
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany
| | - Franca Genest
- Orthopedic Center for Musculoskeletal Research, Orthopedic Department, University of Würzburg, 97070 Würzburg, Germany
| | - Ulrike Krüger
- Core Facility Genomics, Berlin Institute of Health (BIH), 10178 Berlin, Germany
| | - Tomasz Zemojtel
- Core Facility Genomics, Berlin Institute of Health (BIH), 10178 Berlin, Germany
| | - Florian Barvencik
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany
| | - Franz Jakob
- Orthopedic Center for Musculoskeletal Research, Orthopedic Department, University of Würzburg, 97070 Würzburg, Germany
| | - Lorenz C Hofbauer
- Department of Medicine III, Technische Universität Dresden Medical Center, 01307 Dresden, Germany
- Center for Healthy Aging, Technische Universität Dresden Medical Center, 01307 Dresden, Germany
| | - Stefan Mundlos
- Institute of Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany
- BIH Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10178 Berlin, Germany
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Uwe Kornak
- Correspondence: Uwe Kornak, PhD, Institute of Human Genetics, Universitätsmedizin Göttingen, Heinrich-Düker-Weg 12, 37073 Göttingen, Germany.
| |
Collapse
|
49
|
Butnariu LI, Florea L, Badescu MC, Țarcă E, Costache II, Gorduza EV. Etiologic Puzzle of Coronary Artery Disease: How Important Is Genetic Component? LIFE (BASEL, SWITZERLAND) 2022; 12:life12060865. [PMID: 35743896 PMCID: PMC9225091 DOI: 10.3390/life12060865] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/05/2022] [Accepted: 06/08/2022] [Indexed: 12/11/2022]
Abstract
In the modern era, coronary artery disease (CAD) has become the most common form of heart disease and, due to the severity of its clinical manifestations and its acute complications, is a major cause of morbidity and mortality worldwide. The phenotypic variability of CAD is correlated with the complex etiology, multifactorial (caused by the interaction of genetic and environmental factors) but also monogenic. The purpose of this review is to present the genetic factors involved in the etiology of CAD and their relationship to the pathogenic mechanisms of the disease. Method: we analyzed data from the literature, starting with candidate gene-based association studies, then continuing with extensive association studies such as Genome-Wide Association Studies (GWAS) and Whole Exome Sequencing (WES). The results of these studies revealed that the number of genetic factors involved in CAD etiology is impressive. The identification of new genetic factors through GWASs offers new perspectives on understanding the complex pathophysiological mechanisms that determine CAD. In conclusion, deciphering the genetic architecture of CAD by extended genomic analysis (GWAS/WES) will establish new therapeutic targets and lead to the development of new treatments. The identification of individuals at high risk for CAD using polygenic risk scores (PRS) will allow early prophylactic measures and personalized therapy to improve their prognosis.
Collapse
Affiliation(s)
- Lăcrămioara Ionela Butnariu
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (L.I.B.); (E.V.G.)
| | - Laura Florea
- Department of Nefrology—Internal Medicine, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania;
| | - Minerva Codruta Badescu
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iași, Romania
- III Internal Medicine Clinic, “St. Spiridon” County Emergency Clinical Hospital, 1 Independence Boulevard, 700111 Iași, Romania
- Correspondence: (M.C.B.); (E.Ț.)
| | - Elena Țarcă
- Department of Surgery II—Pediatric Surgery, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
- Correspondence: (M.C.B.); (E.Ț.)
| | - Irina-Iuliana Costache
- Department of Internal Medicine (Cardiology), “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iași, Romania;
| | - Eusebiu Vlad Gorduza
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (L.I.B.); (E.V.G.)
| |
Collapse
|
50
|
Franco CN, Noe MM, Albrecht LV. Metabolism and Endocrine Disorders: What Wnt Wrong? Front Endocrinol (Lausanne) 2022; 13:887037. [PMID: 35600583 PMCID: PMC9120667 DOI: 10.3389/fendo.2022.887037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/07/2022] [Indexed: 12/12/2022] Open
Abstract
A fundamental question in cell biology underlies how nutrients are regenerated to maintain and renew tissues. Physiologically, the canonical Wnt signaling is a vital pathway for cell growth, tissue remodeling, and organ formation; pathologically, Wnt signaling contributes to the development of myriad human diseases such as cancer. Despite being the focus of intense research, how Wnt intersects with the metabolic networks to promote tissue growth and remodeling has remained mysterious. Our understanding of metabolism has been revolutionized by technological advances in the fields of chemical biology, metabolomics, and live microscopy that have now made it possible to visualize and manipulate metabolism in living cells and tissues. The application of these toolsets to innovative model systems have propelled the Wnt field into new realms at the forefront answering the most pressing paradigms of cell metabolism in health and disease states. Elucidating the basis of Wnt signaling and metabolism in a cell-type and tissue-specific manner will provide a powerful base of knowledge for both basic biomedical fields and clinician scientists, and has the promise to generate new, transformative therapies in disease and even processes of aging.
Collapse
Affiliation(s)
- Carolina N. Franco
- Department of Pharmaceutical Sciences, School of Pharmacy, University of California Irvine, Irvine, CA, United States
| | - May M. Noe
- Department of Pharmaceutical Sciences, School of Pharmacy, University of California Irvine, Irvine, CA, United States
| | - Lauren V. Albrecht
- Department of Pharmaceutical Sciences, School of Pharmacy, University of California Irvine, Irvine, CA, United States
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California Irvine, Irvine, CA, United States
| |
Collapse
|