1
|
Murugesan SN, Monteiro A. Butterfly eyespots exhibit unique patterns of open chromatin. F1000Res 2023; 12:1428. [PMID: 38778811 PMCID: PMC11109672 DOI: 10.12688/f1000research.133789.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/02/2023] [Indexed: 05/25/2024] Open
Abstract
Background: How the precise spatial regulation of genes is correlated with spatial variation in chromatin accessibilities is not yet clear. Previous studies that analysed chromatin from homogenates of whole-body parts of insects found little variation in chromatin accessibility across those parts, but single-cell studies of Drosophila brains showed extensive spatial variation in chromatin accessibility across that organ. In this work we studied the chromatin accessibility of butterfly wing tissue fated to differentiate distinct colors and patterns in pupal wings of Bicyclus anynana. Methods: We dissected small eyespot and adjacent control tissues from 3h pupae and performed ATAC-Seq to identify the chromatin accessibility differences between different sections of the wings. Results: We observed that three dissected wing regions showed unique chromatin accessibilities. Open chromatin regions specific to eyespot color patterns were highly enriched for binding motifs recognized by Suppressor of Hairless (Su(H)), Krüppel (Kr), Buttonhead (Btd) and Nubbin (Nub) transcription factors. Genes in the vicinity of the eyespot-specific open chromatin regions included those involved in wound healing and SMAD signal transduction pathways, previously proposed to be involved in eyespot development. Conclusions: We conclude that eyespot and non-eyespot tissue samples taken from the same wing have distinct patterns of chromatin accessibility, possibly driven by the eyespot-restricted expression of potential pioneer factors, such as Kr.
Collapse
Affiliation(s)
| | - Antónia Monteiro
- Biological Sciences, National University of Singapore, Singapore, 117558, Singapore
| |
Collapse
|
2
|
Nazar AP, Delgado MJ, Lavore A. Empty-spiracles is maternally expressed and essential for neurodevelopment and early embryo determination in Rhodnius prolixus. Dev Biol 2022; 490:144-154. [PMID: 35988717 DOI: 10.1016/j.ydbio.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/10/2022] [Accepted: 08/04/2022] [Indexed: 11/03/2022]
Abstract
Since empty-spiracles (ems) was identified and characterized in Drosophila melanogaster as a head-gap gene, several studies have been carried out in other insect orders to confirm its evolutionary conserved function. Using the blood-sucking bug Rhodnius prolixus as biological model, we found an ems transcript with three highly conserved regions: Box-A, Box-B, and the homeodomain. R. prolixus embryos silenced by parental RNAi for two of these ems conserved regions showed both maternal and zygotic defects. Rp-emsB fragment results in early lethal embryogenesis, with eggs without any embryonic structure inside. Rp-emsB expression pattern is only maternally expressed and localized in the ovary tropharium, follicular cells, and in the unfertilized female pronucleus. Rp-emsA fragment is zygotically expressed during early blastoderm formation until late developmental stages in two main patterns: anterior in the antennal segment, and in a segmentary in the neuroblast and tracheal pits. R. prolixus knockdown embryos for Rp-emsA showed an incomplete larval hatching, reduced heads, and severe neuromotor defects. Furthermore, in situ hybridization revealed a spatial and temporal expression pattern that highly correlates with Rp-ems observed function. Here,Rp-ems function in R. prolixus development was validated, showing that empty-spiracles does not act as a true head-gap gene, but it is necessary for proper head development and crucial for early embryo determination and neurodevelopment.
Collapse
Affiliation(s)
- Ada Paula Nazar
- Hospital Interzonal de Agudos "San José" de Pergamino, Argentina.
| | - María José Delgado
- Centro de Bioinvestigaciones (CeBio) and Centro de Investigación y Transferencia del Noroeste de Buenos Aires (CITNOBA-CONICET), Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Pergamino, Argentina.
| | - Andrés Lavore
- Centro de Bioinvestigaciones (CeBio) and Centro de Investigación y Transferencia del Noroeste de Buenos Aires (CITNOBA-CONICET), Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Pergamino, Argentina.
| |
Collapse
|
3
|
Schmidt-Ott U, Yoon Y. Evolution and loss of ß-catenin and TCF-dependent axis specification in insects. CURRENT OPINION IN INSECT SCIENCE 2022; 50:100877. [PMID: 35104659 PMCID: PMC9133022 DOI: 10.1016/j.cois.2022.100877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/06/2022] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Mechanisms and evolution of primary axis specification in insects are discussed in the context of the roles of ß-catenin and TCF in polarizing metazoan embryos. Three hypotheses are presented. First, insects with sequential segmentation and posterior growth use cell-autonomous mechanisms for establishing embryo polarity via the nuclear ratio of ß-catenin and TCF. Second, TCF homologs establish competence for anterior specification. Third, the evolution of simultaneous segmentation mechanisms, also known as long-germ development, resulted in primary axis specification mechanisms that are independent of ß-catenin but reliant on TCF, a condition that preceded the frequent replacement of anterior determinants in long germ insects.
Collapse
Affiliation(s)
- Urs Schmidt-Ott
- University of Chicago, Dept. of Organismal Biology and Anatomy, 1027 East 57th Street, Chicago, IL 60637, USA.
| | - Yoseop Yoon
- University of California, Irvine, Dept. of Microbiology and Molecular Genetics, School of Medicine, 811 Health Sciences Rd., Med Sci B262, CA 92617, USA
| |
Collapse
|
4
|
Levin N, Yamakawa S, Morino Y, Wada H. Perspectives on divergence of early developmental regulatory pathways: Insight from the evolution of echinoderm double negative gate. Curr Top Dev Biol 2022; 146:1-24. [PMID: 35152980 DOI: 10.1016/bs.ctdb.2021.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Evolution of gene regulatory networks (GRN) that orchestrate the highly coordinated course of development, is made possible by the network's robust nature for incorporating change without detrimental developmental outcome. It can be considered that the upstream network regulating early development, has immense influence over succeeding pathways thus may be less subjected to evolutionary modification. However, recent studies show incorporation of novel genes in such early developmental pathways such as the echinoderm pmar1 as evidence for drastic change occurring high in the GRN hierarchy. Here we discuss the mechanisms that underlie divergence of early developmental pathways utilizing promising insights from the evolution of echinoderm early mesoderm specification pathway of Pmar1-HesC double negative gate found solely in the euechinoid sea urchin lineage, as well as examples from other groups such as Spiralia and Drosophila.
Collapse
Affiliation(s)
- Nina Levin
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Shumpei Yamakawa
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yoshiaki Morino
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hiroshi Wada
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
5
|
Ray S, Rosenberg MI, Chanut-Delalande H, Decaras A, Schwertner B, Toubiana W, Auman T, Schnellhammer I, Teuscher M, Valenti P, Khila A, Klingler M, Payre F. The mlpt/Ubr3/Svb module comprises an ancient developmental switch for embryonic patterning. eLife 2019; 8:e39748. [PMID: 30896406 PMCID: PMC6428570 DOI: 10.7554/elife.39748] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 03/07/2019] [Indexed: 12/30/2022] Open
Abstract
Small open reading frames (smORFs) encoding 'micropeptides' exhibit remarkable evolutionary complexity. Conserved peptides encoded by mille-pattes (mlpt)/polished rice (pri)/tarsal less (tal) are essential for embryo segmentation in Tribolium but, in Drosophila, function in terminal epidermal differentiation and patterning of adult legs. Here, we show that a molecular complex identified in Drosophila epidermal differentiation, comprising Mlpt peptides, ubiquitin-ligase Ubr3 and transcription factor Shavenbaby (Svb), represents an ancient developmental module required for early insect embryo patterning. We find that loss of segmentation function for this module in flies evolved concomitantly with restriction of Svb expression in early Drosophila embryos. Consistent with this observation, artificially restoring early Svb expression in flies causes segmentation defects that depend on mlpt function, demonstrating enduring potency of an ancestral developmental switch despite evolving embryonic patterning modes. These results highlight the evolutionary plasticity of conserved molecular complexes under the constraints of essential genetic networks. Editorial note This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter).
Collapse
Affiliation(s)
- Suparna Ray
- Department of Biology, Developmental BiologyUniversity of Erlangen-NurembergErlangenGermany
| | - Miriam I Rosenberg
- Department of Ecology, Evolution and BehaviorHebrew University of JerusalemJerusalemIsrael
| | | | | | - Barbara Schwertner
- Department of Biology, Developmental BiologyUniversity of Erlangen-NurembergErlangenGermany
| | | | - Tzach Auman
- Department of Ecology, Evolution and BehaviorHebrew University of JerusalemJerusalemIsrael
| | - Irene Schnellhammer
- Department of Biology, Developmental BiologyUniversity of Erlangen-NurembergErlangenGermany
| | - Matthias Teuscher
- Department of Biology, Developmental BiologyUniversity of Erlangen-NurembergErlangenGermany
| | - Philippe Valenti
- Centre de Biologie du Développement, Université Paul Sabatier de ToulouseToulouseFrance
| | | | - Martin Klingler
- Department of Biology, Developmental BiologyUniversity of Erlangen-NurembergErlangenGermany
| | - François Payre
- Centre de Biologie du Développement, Université Paul Sabatier de ToulouseToulouseFrance
| |
Collapse
|
6
|
Lynch JA. Evolution of maternal control of axial patterning in insects. CURRENT OPINION IN INSECT SCIENCE 2019; 31:37-42. [PMID: 31109671 DOI: 10.1016/j.cois.2018.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 07/19/2018] [Accepted: 07/19/2018] [Indexed: 06/09/2023]
Abstract
Positional and cell fate cues provided maternally to eggs are important factors in the development of many animals. The insects are a model clade where maternal establishment of embryonic axes is widespread and has been a topic of intense classical and molecular embryological analysis. Recently, significant progress has been made in revealing the molecular basis of some classical embryological experiments. In addition, observations of novel forms of maternal positional cues have been made. Finally, it has become increasingly clear that no maternal source of positional information acts alone without input and feedback from zygotic target genes to ensure precise and repeatable pattern formation in the early embryo. These advances will be discussed in the context of historical experiments, our current understanding of how positional cues can be generated, stored, and transmitted in insect ovaries and eggs, and how the nature of the cues can change in evolution.
Collapse
|
7
|
Liu Q, Onal P, Datta RR, Rogers JM, Schmidt-Ott U, Bulyk ML, Small S, Thornton JW. Ancient mechanisms for the evolution of the bicoid homeodomain's function in fly development. eLife 2018; 7:e34594. [PMID: 30298815 PMCID: PMC6177261 DOI: 10.7554/elife.34594] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 07/28/2018] [Indexed: 12/14/2022] Open
Abstract
The ancient mechanisms that caused developmental gene regulatory networks to diversify among distantly related taxa are not well understood. Here we use ancestral protein reconstruction, biochemical experiments, and developmental assays of transgenic animals carrying reconstructed ancestral genes to investigate how the transcription factor Bicoid (Bcd) evolved its central role in anterior-posterior patterning in flies. We show that most of Bcd's derived functions are attributable to evolutionary changes within its homeodomain (HD) during a phylogenetic interval >140 million years ago. A single substitution from this period (Q50K) accounts almost entirely for the evolution of Bcd's derived DNA specificity in vitro. In transgenic embryos expressing the reconstructed ancestral HD, however, Q50K confers activation of only a few of Bcd's transcriptional targets and yields a very partial rescue of anterior development. Adding a second historical substitution (M54R) confers regulation of additional Bcd targets and further rescues anterior development. These results indicate that two epistatically interacting mutations played a major role in the evolution of Bcd's controlling regulatory role in early development. They also show how ancestral sequence reconstruction can be combined with in vivo characterization of transgenic animals to illuminate the historical mechanisms of developmental evolution.
Collapse
Affiliation(s)
- Qinwen Liu
- Department of Ecology and EvolutionUniversity of ChicagoChicagoUnited States
| | - Pinar Onal
- Department of BiologyNew York UniversityNew YorkUnited States
| | - Rhea R Datta
- Department of BiologyNew York UniversityNew YorkUnited States
| | - Julia M Rogers
- Committee on Higher Degrees in BiophysicsHarvard UniversityCambridgeUnited States
- Division of Genetics, Department of MedicineBrigham and Women’s Hospital and Harvard Medical SchoolBostonUnited States
| | - Urs Schmidt-Ott
- Department of Organismal Biology and AnatomyUniversity of ChicagoChicagoUnited States
| | - Martha L Bulyk
- Committee on Higher Degrees in BiophysicsHarvard UniversityCambridgeUnited States
- Division of Genetics, Department of MedicineBrigham and Women’s Hospital and Harvard Medical SchoolBostonUnited States
- Department of PathologyBrigham and Women’s Hospital and Harvard Medical SchoolBostonUnited States
| | - Stephen Small
- Department of BiologyNew York UniversityNew YorkUnited States
| | - Joseph W Thornton
- Department of Ecology and EvolutionUniversity of ChicagoChicagoUnited States
- Department of Human GeneticsUniversity of ChicagoChicagoUnited States
| |
Collapse
|
8
|
Double abdomen in a short-germ insect: Zygotic control of axis formation revealed in the beetle Tribolium castaneum. Proc Natl Acad Sci U S A 2018; 115:1819-1824. [PMID: 29432152 PMCID: PMC5828605 DOI: 10.1073/pnas.1716512115] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
One of the first crucial steps of animal development is to distinguish the anterior versus the posterior pole of the embryo, i.e., the AP axis. If this process fails, embryos may develop two mirror image tails or heads. In the fly Drosophila, the mother provides the signals required for AP axis formation, while in vertebrates, gene activity of the embryo is required as well. We identified two genes whose knockdown leads to double-tail phenotypes in the beetle Tribolium, representing the insect-typical short-germ embryogenesis. Intriguingly, embryo polarity depends on zygotic gene activities and Wnt signaling. Hence, short-germ insect axis formation is more similar to vertebrates than the mechanism employed by Drosophila. The distinction of anterior versus posterior is a crucial first step in animal embryogenesis. In the fly Drosophila, this axis is established by morphogenetic gradients contributed by the mother that regulate zygotic target genes. This principle has been considered to hold true for insects in general but is fundamentally different from vertebrates, where zygotic genes and Wnt signaling are required. We investigated symmetry breaking in the beetle Tribolium castaneum, which among insects represents the more ancestral short-germ embryogenesis. We found that maternal Tc-germ cell-less is required for anterior localization of maternal Tc-axin, which represses Wnt signaling and promotes expression of anterior zygotic genes. Both RNAi targeting Tc-germ cell-less or double RNAi knocking down the zygotic genes Tc-homeobrain and Tc-zen1 led to the formation of a second growth zone at the anterior, which resulted in double-abdomen phenotypes. Conversely, interfering with two posterior factors, Tc-caudal and Wnt, caused double-anterior phenotypes. These findings reveal that maternal and zygotic mechanisms, including Wnt signaling, are required for establishing embryo polarity and induce the segmentation clock in a short-germ insect.
Collapse
|
9
|
Schmidt-Ott U, Lynch JA. Emerging developmental genetic model systems in holometabolous insects. Curr Opin Genet Dev 2016; 39:116-128. [PMID: 27399647 DOI: 10.1016/j.gde.2016.06.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 05/25/2016] [Accepted: 06/08/2016] [Indexed: 01/08/2023]
Abstract
The number of insect species that are amenable to functional genetic studies is growing rapidly and provides many new research opportunities in developmental and evolutionary biology. The holometabolous insects represent a disproportionate percentage of animal diversity and are thus well positioned to provide model species for a wide variety of developmental processes. Here we discuss emerging holometabolous models, and review some recent breakthroughs. For example, flies and midges were found to use structurally unrelated long-range pattern organizers, butterflies and moths revealed extensive pattern formation during oogenesis, new imaging possibilities in the flour beetle Tribolium castaneum showed how embryos break free of their extraembryonic membranes, and the complex genetics governing interspecies difference in head shape were revealed in Nasonia wasps.
Collapse
Affiliation(s)
- Urs Schmidt-Ott
- Department of Organismal Biology and Anatomy, University of Chicago, United States.
| | - Jeremy A Lynch
- Department of Biological Sciences, University of Illinois at Chicago, United States.
| |
Collapse
|
10
|
Nakao H. Analyses of interactions among pair-rule genes and the gap gene Krüppel in Bombyx segmentation. Dev Biol 2015; 405:149-57. [PMID: 26102481 DOI: 10.1016/j.ydbio.2015.06.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 06/09/2015] [Accepted: 06/11/2015] [Indexed: 01/05/2023]
Abstract
In the short-germ insect Tribolium, a pair-rule gene circuit consisting of the Tribolium homologs of even-skipped, runt, and odd-skipped (Tc-eve, Tc-run and Tc-odd, respectively) has been implicated in segment formation. To examine the application of the model to other taxa, I studied the expression and function of pair-rule genes in Bombyx mori, together with a Bombyx homolog of Krüppel (Bm-Kr), a known gap gene. Knockdown embryos of Bombyx homologs of eve, run and odd (Bm-eve, Bm-run and Bm-odd) exhibited asegmental phenotypes similar to those of Tribolium knockdowns. However, pair-rule gene interactions were similar to those of both Tribolium and Drosophila, which, different from Tribolium, shows a hierarchical segmentation mode. Additionally, the Bm-odd expression pattern shares characteristics with those of Drosophila pair-rule genes that receive upstream regulatory input. On the other hand, Bm-Kr knockdowns exhibited a large posterior segment deletion as observed in short-germ insects. However, a detailed analysis of these embryos indicated that Bm-Kr modulates expression of pair-rule genes like in Drosophila, although the mechanisms appear to be different. This suggested hierarchical interactions between Bm-Kr and pair-rule genes. Based on these results, I concluded that the pair-rule gene circuit model that describes Tribolium development is not applicable to Bombyx.
Collapse
Affiliation(s)
- Hajime Nakao
- Insect Growth Regulation Research Unit, Division of Insect Sciences, National Institute of Agrobiological Sciences, 1-2 Oowashi, Tsukuba, Ibaraki 305-8634, Japan.
| |
Collapse
|
11
|
Martinson EO, Hackett JD, Machado CA, Arnold AE. Metatranscriptome Analysis of Fig Flowers Provides Insights into Potential Mechanisms for Mutualism Stability and Gall Induction. PLoS One 2015; 10:e0130745. [PMID: 26090817 PMCID: PMC4474661 DOI: 10.1371/journal.pone.0130745] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 05/23/2015] [Indexed: 12/03/2022] Open
Abstract
A striking property of the mutualism between figs and their pollinating wasps is that wasps consistently oviposit in the inner flowers of the fig syconium, which develop into galls that house developing larvae. Wasps typically do not use the outer ring of flowers, which develop into seeds. To better understand differences between gall and seed flowers, we used a metatranscriptomic approach to analyze eukaryotic gene expression within fig flowers at the time of oviposition choice and early gall development. Consistent with the unbeatable seed hypothesis, we found significant differences in gene expression between gall- and seed flowers in receptive syconia prior to oviposition. In particular, transcripts assigned to flavonoids and carbohydrate metabolism were significantly up-regulated in gall flowers relative to seed flowers. In response to oviposition, gall flowers significantly up-regulated the expression of chalcone synthase, which previously has been connected to gall formation in other plants. We propose several genes encoding proteins with signal peptides or associations with venom of other Hymenoptera as candidate genes for gall initiation or growth. This study simultaneously evaluates the gene expression profile of both mutualistic partners in a plant-insect mutualism and provides insight into a possible stability mechanism in the ancient fig-fig wasp association.
Collapse
Affiliation(s)
- Ellen O. Martinson
- Department of Ecology and Evolutionary Biology, The University of Arizona, Tucson, Arizona, United States of America
- * E-mail:
| | - Jeremiah D. Hackett
- Department of Ecology and Evolutionary Biology, The University of Arizona, Tucson, Arizona, United States of America
| | - Carlos A. Machado
- Department of Biology, University of Maryland, College Park, Maryland, United States of America
| | - A. Elizabeth Arnold
- Department of Ecology and Evolutionary Biology, The University of Arizona, Tucson, Arizona, United States of America
- School of Plant Sciences, The University of Arizona, Tucson, Arizona, United States of America
| |
Collapse
|
12
|
Klomp J, Athy D, Kwan CW, Bloch NI, Sandmann T, Lemke S, Schmidt-Ott U. Embryo development. A cysteine-clamp gene drives embryo polarity in the midge Chironomus. Science 2015; 348:1040-2. [PMID: 25953821 DOI: 10.1126/science.aaa7105] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 04/27/2015] [Indexed: 12/19/2022]
Abstract
In the fruit fly Drosophila, head formation is driven by a single gene, bicoid, which generates head-to-tail polarity of the main embryonic axis. Bicoid deficiency results in embryos with tail-to-tail polarity and no head. However, most insects lack bicoid, and the molecular mechanism for establishing head-to-tail polarity is poorly understood. We have identified a gene that establishes head-to-tail polarity of the mosquito-like midge, Chironomus riparius. This gene, named panish, encodes a cysteine-clamp DNA binding domain and operates through a different mechanism than bicoid. This finding, combined with the observation that the phylogenetic distributions of panish and bicoid are limited to specific families of flies, reveals frequent evolutionary changes of body axis determinants and a remarkable opportunity to study gene regulatory network evolution.
Collapse
Affiliation(s)
- Jeff Klomp
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
| | - Derek Athy
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
| | - Chun Wai Kwan
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
| | - Natasha I Bloch
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
| | - Thomas Sandmann
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Steffen Lemke
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
| | - Urs Schmidt-Ott
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
13
|
Lynch JA. Diversity of molecules and mechanisms in establishing insect anterior-posterior polarity. CURRENT OPINION IN INSECT SCIENCE 2014; 1:39-44. [PMID: 32846728 DOI: 10.1016/j.cois.2014.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 04/27/2014] [Accepted: 05/02/2014] [Indexed: 06/11/2023]
Abstract
Anterior-posterior (AP) patterning is an essential process that requires the generation of large amounts of positional information to properly specify many distinct cell fates along the long axis of the insect embryo. While the general molecular basis of this process has long been known in the fly Drosophila, detailed understanding of this process is still emerging in other insect species. What is now clear is that this process in extremely labile, and distinct AP patterning programs can exist even within a single species. This review presents recent progress on this topic in an attempt to synthesize the disparate data and provide an outlook on the future of the field.
Collapse
Affiliation(s)
- Jeremy A Lynch
- University of Illinois at Chicago, 4020 MBRB, 900 Ashland Ave., Chicago, IL 60607, USA.
| |
Collapse
|
14
|
Rosenberg MI, Brent AE, Payre F, Desplan C. Dual mode of embryonic development is highlighted by expression and function of Nasonia pair-rule genes. eLife 2014; 3:e01440. [PMID: 24599282 PMCID: PMC3941026 DOI: 10.7554/elife.01440] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Embryonic anterior-posterior patterning is well understood in Drosophila, which uses 'long germ' embryogenesis, in which all segments are patterned before cellularization. In contrast, most insects use 'short germ' embryogenesis, wherein only head and thorax are patterned in a syncytial environment while the remainder of the embryo is generated after cellularization. We use the wasp Nasonia (Nv) to address how the transition from short to long germ embryogenesis occurred. Maternal and gap gene expression in Nasonia suggest long germ embryogenesis. However, the Nasonia pair-rule genes even-skipped, odd-skipped, runt and hairy are all expressed as early blastoderm pair-rule stripes and late-forming posterior stripes. Knockdown of Nv eve, odd or h causes loss of alternate segments at the anterior and complete loss of abdominal segments. We propose that Nasonia uses a mixed mode of segmentation wherein pair-rule genes pattern the embryo in a manner resembling Drosophila at the anterior and ancestral Tribolium at the posterior. DOI: http://dx.doi.org/10.7554/eLife.01440.001.
Collapse
Affiliation(s)
- Miriam I Rosenberg
- Center for Developmental Genetics, Department of Biology, New York University, New York, United States
| | | | | | | |
Collapse
|
15
|
Cody NA, Iampietro C, Lécuyer E. The many functions of mRNA localization during normal development and disease: from pillar to post. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2013; 2:781-96. [DOI: 10.1002/wdev.113] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
16
|
Farooq M, Choi J, Seoane AI, Lleras RA, Tran HV, Mandal SA, Nelson CL, Soto JG. Identification of 3'UTR sequence elements and a teloplasm localization motif sufficient for the localization of Hro-twist mRNA to the zygotic animal and vegetal poles. Dev Growth Differ 2012; 54:519-34. [PMID: 22587329 DOI: 10.1111/j.1440-169x.2012.01352.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The early localization of mRNA transcripts is critical in sorting cell fate determinants in the developing embryo. In the glossiphoniid leech, Helobdella robusta, maternal mRNAs, such as Hro-twist, localize to the zygotic teloplasm. Ten seven nucleotide repeat elements (AAUAAUA) called ARE2 and a predicted secondary structural motif, called teloplasm localization motif (TLM), are present in the 3'UTR of Hro-twist mRNA. We used site-directed mutagenesis, deletions, and microinjection of labeled, exogenous transcripts to determine if ARE2 elements, and the TLM, play a role in Hro-twist mRNA localization. Deleting the poly-A tail and the cytoplasmic polyadenylation element (CPE) had no effect on Hro-twist mRNA localization. Site-directed mutagenesis of nucleotides that altered ARE2 element sequences or the TLM suggest that the ARE2 elements and the TLM are important for Hro-twist mRNA localization to the teloplasm of pre-cleavage zygotes. Hro-Twist protein expression data suggest that the localization of Hro-twist transcripts in zygotes and stage two embryos is not involved in ensuring mesoderm specification, as Hro-Twist protein is expressed uniformly in most cells before gastrulation. Our data may support a shared molecular mechanism for leech transcripts that localize to the teloplasm.
Collapse
Affiliation(s)
- Mehrin Farooq
- Biological Sciences Department, San Jose State University, San Jose, CA 95192-0100, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Schmitt-Engel C, Cerny AC, Schoppmeier M. A dual role for nanos and pumilio in anterior and posterior blastodermal patterning of the short-germ beetle Tribolium castaneum. Dev Biol 2012; 364:224-35. [DOI: 10.1016/j.ydbio.2012.01.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 01/09/2012] [Accepted: 01/20/2012] [Indexed: 11/15/2022]
|
18
|
El-Sherif E, Lynch JA, Brown SJ. Comparisons of the embryonic development of Drosophila, Nasonia, and Tribolium. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2012; 1:16-39. [PMID: 23801665 PMCID: PMC5323069 DOI: 10.1002/wdev.3] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Studying the embryogenesis of diverse insect species is crucial to understanding insect evolution. Here, we review current advances in understanding the development of two emerging model organisms: the wasp Nasonia vitripennis and the beetle Tribolium castaneum in comparison with the well-studied fruit fly Drosophila melanogaster. Although Nasonia represents the most basally branching order of holometabolous insects, it employs a derived long germband mode of embryogenesis, more like that of Drosophila, whereas Tribolium undergoes an intermediate germband mode of embryogenesis, which is more similar to the ancestral mechanism. Comparing the embryonic development and genetic regulation of early patterning events in these three insects has given invaluable insights into insect evolution. The similar mode of embryogenesis of Drosophila and Nasonia is reflected in their reliance on maternal morphogenetic gradients. However, they employ different genes as maternal factors, reflecting the evolutionary distance separating them. Tribolium, on the other hand, relies heavily on self-regulatory mechanisms other than maternal cues, reflecting its sequential nature of segmentation and the need for reiterated patterning.
Collapse
Affiliation(s)
- Ezzat El-Sherif
- Program of Genetics, Kansas State University, Manhattan, Kansas
| | - Jeremy A Lynch
- Institute for Developmental Biology, University of Cologne, Cologne, Germany
| | - Susan J Brown
- Division of Biology, Kansas State University, Manhattan, Kansas
| |
Collapse
|
19
|
Abstract
The localization of mRNAs in developing animal cells is essential for establishing cellular polarity and setting up the body plan for subsequent development. Cellular and molecular mechanisms by which maternal mRNAs are localized during oogenesis have been extensively studied in Drosophila and Xenopus. In contrast, evidence for mechanisms used in the localization of mRNAs encoded by developmentally important genes has also been accumulating in several other organisms. This offers the opportunity to unravel the fundamental mechanisms of mRNA localization shared among many species, as well as unique mechanisms specifically acquired or retained by animals based on their developmental needs. In addition to maternal mRNAs, the localization of zygotically expressed mRNAs in the cells of cleaving embryos is also important for early development. In this review, mRNA localization dynamics in the oocytes/eggs of Drosophila and Xenopus are first summarized, and evidence for localized mRNAs in the oocytes/eggs and cleaving embryos of other organisms is then presented.
Collapse
Affiliation(s)
- Gaku Kumano
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan.
| |
Collapse
|
20
|
Wilson MJ, Dearden PK. Diversity in insect axis formation: two orthodenticle genes and hunchback act in anterior patterning and influence dorsoventral organization in the honeybee (Apis mellifera). Development 2011; 138:3497-507. [DOI: 10.1242/dev.067926] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Axis formation is a key step in development, but studies indicate that genes involved in insect axis formation are relatively fast evolving. Orthodenticle genes have conserved roles, often with hunchback, in maternal anterior patterning in several insect species. We show that two orthodenticle genes, otd1 and otd2, and hunchback act as maternal anterior patterning genes in the honeybee (Apis mellifera) but, unlike other insects, act to pattern the majority of the anteroposterior axis. These genes regulate the expression domains of anterior, central and posterior gap genes and may directly regulate the anterior gap gene giant. We show otd1 and hunchback also influence dorsoventral patterning by regulating zerknült (zen) as they do in Tribolium, but that zen does not regulate the expression of honeybee gap genes. This suggests that interactions between anteroposterior and dorsal-ventral patterning are ancestral in holometabolous insects. Honeybee axis formation, and the function of the conserved anterior patterning gene orthodenticle, displays unique characters that indicate that, even when conserved genes pattern the axis, their regulatory interactions differ within orders of insects, consistent with relatively fast evolution in axis formation pathways.
Collapse
Affiliation(s)
- Megan J. Wilson
- Laboratory for Evolution and Development, National Research Centre for Growth and Development and Genetics Otago, Biochemistry Department, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Peter K. Dearden
- Laboratory for Evolution and Development, National Research Centre for Growth and Development and Genetics Otago, Biochemistry Department, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
21
|
Smith J, Morgan JR, Zottoli SJ, Smith PJ, Buxbaum JD, Bloom OE. Regeneration in the era of functional genomics and gene network analysis. THE BIOLOGICAL BULLETIN 2011; 221:18-34. [PMID: 21876108 PMCID: PMC4109899 DOI: 10.1086/bblv221n1p18] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
What gives an organism the ability to regrow tissues and to recover function where another organism fails is the central problem of regenerative biology. The challenge is to describe the mechanisms of regeneration at the molecular level, delivering detailed insights into the many components that are cross-regulated. In other words, a broad, yet deep dissection of the system-wide network of molecular interactions is needed. Functional genomics has been used to elucidate gene regulatory networks (GRNs) in developing tissues, which, like regeneration, are complex systems. Therefore, we reason that the GRN approach, aided by next generation technologies, can also be applied to study the molecular mechanisms underlying the complex functions of regeneration. We ask what characteristics a model system must have to support a GRN analysis. Our discussion focuses on regeneration in the central nervous system, where loss of function has particularly devastating consequences for an organism. We examine a cohort of cells conserved across all vertebrates, the reticulospinal (RS) neurons, which lend themselves well to experimental manipulations. In the lamprey, a jawless vertebrate, there are giant RS neurons whose large size and ability to regenerate make them particularly suited for a GRN analysis. Adding to their value, a distinct subset of lamprey RS neurons reproducibly fail to regenerate, presenting an opportunity for side-by-side comparison of gene networks that promote or inhibit regeneration. Thus, determining the GRN for regeneration in RS neurons will provide a mechanistic understanding of the fundamental cues that lead to success or failure to regenerate.
Collapse
Affiliation(s)
- Joel Smith
- The Eugene Bell Center for Regenerative Biology and Tissue Engineering and The Josephine Bay Pau Center for Comparative Molecular Biology and Evolution, The Marine Biological Laboratory, 7 MBL Street, Woods Hole, Massachusetts 02543
- Co-corresponding authors: and obloom@ nshs.edu
| | - Jennifer R. Morgan
- Section of Molecular Cell and Developmental Biology, Institute for Cell and Molecular Biology, Institute for Neuroscience, University of Texas at Austin, Austin, Texas 78712
| | - Steven J. Zottoli
- Department of Biology, 59 Lab Campus Drive, Williams College, Williamstown, Massachusetts 01267 and Cellular Dynamics Program, The Marine Biological Laboratory, 7 MBL Street, Woods Hole, Massachusetts 02453
| | - Peter J. Smith
- The Biocurrents Research Center, Cellular Dynamics Program, The Marine Biological Laboratory, 7 MBL Street, Woods Hole, Massachusetts 02543
| | - Joseph D. Buxbaum
- Department of Psychiatry and the Friedman Brain Institute, Mount Sinai School of Medicine, One Gustave L Levy Plc, Box 1668, New York, New York 10029
| | - Ona E. Bloom
- The Center for Autoimmune and Musculoskeletal Disease, The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, New York 11030
- Co-corresponding authors: and obloom@ nshs.edu
| |
Collapse
|
22
|
Lavore A, Pagola L, Esponda-Behrens N, Rivera-Pomar R. The gap gene giant of Rhodnius prolixus is maternally expressed and required for proper head and abdomen formation. Dev Biol 2011; 361:147-55. [PMID: 21763688 DOI: 10.1016/j.ydbio.2011.06.038] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 06/09/2011] [Accepted: 06/11/2011] [Indexed: 01/20/2023]
Abstract
The segmentation process in insects depends on a hierarchical cascade of gene activity. The first effectors downstream of the maternal activation are the gap genes, which divide the embryo in broad fields. We discovered a sequence corresponding to the leucine-zipper domain of the orthologue of the gene giant (Rp-gt) in traces from the genome of Rhodnius prolixus, a hemipteran with intermediate germ-band development. We cloned the Rp-gt gene from a normalized cDNA library and characterized its expression and function. Bioinformatic analysis of 12.5 kbp of genomic sequence containing the Rp-gt transcriptional unit shows a cluster of bona fide regulatory binding sites, which is similar in location and structure to the predicted posterior expression domain of the Drosophila orthologue. Rp-gt is expressed in ovaries and maternally supplied in the early embryo. The maternal contribution forms a gradient of scattered patches of mRNA in the preblastoderm embryo. Zygotic Rp-gt is expressed in two domains that after germ band extension are restricted to the head and the posterior growth zone. Parental RNAi shows that Rp-gt is required for proper head and abdomen formation. The head lacks mandibulary and maxillary appendages and shows reduced clypeus-labrum, while the abdomen lacks anterior segments. We conclude that Rp-gt is a gap gene on the head and abdomen and, in addition, has a function in patterning the anterior head capsule suggesting that the function of gt in hemipterans is more similar to dipterans than expected.
Collapse
Affiliation(s)
- Andrés Lavore
- Laboratorio de Genética y Genómica Funcional, Centro Regional de Estudios Genómicos, Universidad Nacional de La Plata, Florencio Varela, Argentina
| | | | | | | |
Collapse
|
23
|
Peel AD, Averof M. Early asymmetries in maternal transcript distribution associated with a cortical microtubule network and a polar body in the beetle Tribolium castaneum. Dev Dyn 2011; 239:2875-87. [PMID: 20857499 DOI: 10.1002/dvdy.22423] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The localization of maternal mRNAs during oogenesis plays a central role in axial specification in some insects. Here we describe a polar body-associated asymmetry in maternal transcript distribution in pre-blastoderm eggs of the beetle Tribolium castaneum. Since the position of the polar body marks the future dorsal side of the embryo, we have investigated whether this asymmetry in mRNA distribution plays a role in dorsal-ventral axis specification. Whilst our results suggest polar body-associated transcripts do not play a significant role in specifying the DV axis, at least during early embryogenesis, we do find that the polar body is closely associated with a cortical microtubule network (CMN), which may play a role in the localization of transcripts during oogenesis. Transcripts of the gene T.c.pangolin co-localize with the CMN at the time of their anterior localization during oogenesis and their anterior localization is disrupted by the microtubule-depolymerizing agent colcemid.
Collapse
Affiliation(s)
- Andrew D Peel
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Crete, Greece.
| | | |
Collapse
|
24
|
Abstract
The gene regulatory network (GRN) underpinning dorsal-ventral (DV) patterning of the Drosophila embryo is among the most thoroughly understood GRNs, making it an ideal system for comparative studies seeking to understand the evolution of development. With the emergence of widely applicable techniques for testing gene function, species with sequenced genomes, and multiple tractable species with diverse developmental modes, a phylogenetically broad and molecularly deep understanding of the evolution of DV axis formation in insects is feasible. Here, we review recent progress made in this field, compare our emerging molecular understanding to classical embryological experiments, and suggest future directions of inquiry.
Collapse
Affiliation(s)
- Jeremy A. Lynch
- Institute for Developmental Biology, University of Cologne, 50674 Cologne, Germany
| | - Siegfried Roth
- Institute for Developmental Biology, University of Cologne, 50674 Cologne, Germany
| |
Collapse
|
25
|
Abstract
Gap genes are involved in segment determination during the early development of the fruit fly Drosophila melanogaster as well as in other insects. This review attempts to synthesize the current knowledge of the gap gene network through a comprehensive survey of the experimental literature. I focus on genetic and molecular evidence, which provides us with an almost-complete picture of the regulatory interactions responsible for trunk gap gene expression. I discuss the regulatory mechanisms involved, and highlight the remaining ambiguities and gaps in the evidence. This is followed by a brief discussion of molecular regulatory mechanisms for transcriptional regulation, as well as precision and size-regulation provided by the system. Finally, I discuss evidence on the evolution of gap gene expression from species other than Drosophila. My survey concludes that studies of the gap gene system continue to reveal interesting and important new insights into the role of gene regulatory networks in development and evolution.
Collapse
Affiliation(s)
- Johannes Jaeger
- Centre de Regulació Genòmica, Universtitat Pompeu Fabra, Barcelona, Spain.
| |
Collapse
|
26
|
Lynch JA, Desplan C. Novel modes of localization and function of nanos in the wasp Nasonia. Development 2010; 137:3813-21. [PMID: 20929949 DOI: 10.1242/dev.054213] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Abdominal patterning in Drosophila requires the function of nanos (nos) to prevent translation of hunchback (hb) mRNA in the posterior of the embryo. nos function is restricted to the posterior by the translational repression of mRNA that is not incorporated into the posteriorly localized germ plasm during oogenesis. The wasp Nasonia vitripennis (Nv) undergoes a long germ mode of development very similar to Drosophila, although the molecular patterning mechanisms employed in these two organisms have diverged significantly, reflecting the independent evolution of this mode of development. Here, we report that although Nv nanos (Nv-nos) has a conserved function in embryonic patterning through translational repression of hb, the timing and mechanisms of this repression are significantly delayed in the wasp compared with the fly. This delay in Nv-nos function appears to be related to the dynamic behavior of the germ plasm in Nasonia, as well as to the maternal provision of Nv-Hb protein during oogenesis. Unlike in flies, there appears to be two functional populations of Nv-nos mRNA: one that is concentrated in the oosome and is taken up into the pole cells before evidence of Nv-hb repression is observed; another that forms a gradient at the posterior and plays a role in Nv-hb translational repression. Altogether, our results show that, although the embryonic patterning function of nos orthologs is broadly conserved, the mechanisms employed to achieve this function are distinct.
Collapse
Affiliation(s)
- Jeremy A Lynch
- Center for Developmental Genetics, Department of Biology, New York University, New York, NY 10003, USA.
| | | |
Collapse
|
27
|
García-Solache M, Jaeger J, Akam M. A systematic analysis of the gap gene system in the moth midge Clogmia albipunctata. Dev Biol 2010; 344:306-18. [DOI: 10.1016/j.ydbio.2010.04.019] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2009] [Revised: 04/19/2010] [Accepted: 04/21/2010] [Indexed: 02/04/2023]
|
28
|
Abstract
RNA interference (RNAi) provides a powerful reverse genetics approach to analyze gene functions both in tissue culture and in vivo. Because of its widespread applicability and effectiveness it has become an essential part of the tool box kits of model organisms such as Caenorhabditis elegans, Drosophila, and the mouse. In addition, the use of RNAi in animals in which genetic tools are either poorly developed or nonexistent enables a myriad of fundamental questions to be asked. Here, we review the methods and applications of in vivo RNAi to characterize gene functions in model organisms and discuss their impact to the study of developmental as well as evolutionary questions. Further, we discuss the applications of RNAi technologies to crop improvement, pest control and RNAi therapeutics, thus providing an appreciation of the potential for phenomenal applications of RNAi to agriculture and medicine.
Collapse
Affiliation(s)
- Norbert Perrimon
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | |
Collapse
|
29
|
Lemke S, Busch SE, Antonopoulos DA, Meyer F, Domanus MH, Schmidt-Ott U. Maternal activation of gap genes in the hover fly Episyrphus. Development 2010; 137:1709-19. [DOI: 10.1242/dev.046649] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The metameric organization of the insect body plan is initiated with the activation of gap genes, a set of transcription-factor-encoding genes that are zygotically expressed in broad and partially overlapping domains along the anteroposterior (AP) axis of the early embryo. The spatial pattern of gap gene expression domains along the AP axis is generally conserved, but the maternal genes that regulate their expression are not. Building on the comprehensive knowledge of maternal gap gene activation in Drosophila, we used loss- and gain-of-function experiments in the hover fly Episyrphus balteatus (Syrphidae) to address the question of how the maternal regulation of gap genes evolved. We find that, in Episyrphus, a highly diverged bicoid ortholog is solely responsible for the AP polarity of the embryo. Episyrphus bicoid represses anterior zygotic expression of caudal and activates the anterior and central gap genes orthodenticle, hunchback and Krüppel. In bicoid-deficient Episyrphus embryos, nanos is insufficient to generate morphological asymmetry along the AP axis. Furthermore, we find that torso transiently regulates anterior repression of caudal and is required for the activation of orthodenticle, whereas all posterior gap gene domains of knirps, giant, hunchback, tailless and huckebein depend on caudal. We conclude that all maternal coordinate genes have altered their specific functions during the radiation of higher flies (Cyclorrhapha).
Collapse
Affiliation(s)
- Steffen Lemke
- University of Chicago, Department of Organismal Biology and Anatomy, CLSC 921B, 920 E. 58th Street, Chicago, IL 60637, USA
| | - Stephanie E. Busch
- University of Chicago, Department of Organismal Biology and Anatomy, CLSC 921B, 920 E. 58th Street, Chicago, IL 60637, USA
| | - Dionysios A. Antonopoulos
- Argonne National Laboratory, Institute for Genomics & Systems Biology, 9700 S. Cass Avenue, Argonne, IL 60439, USA
| | - Folker Meyer
- Argonne National Laboratory, Institute for Genomics & Systems Biology, 9700 S. Cass Avenue, Argonne, IL 60439, USA
| | - Marc H. Domanus
- Argonne National Laboratory, Institute for Genomics & Systems Biology, 9700 S. Cass Avenue, Argonne, IL 60439, USA
| | - Urs Schmidt-Ott
- University of Chicago, Department of Organismal Biology and Anatomy, CLSC 921B, 920 E. 58th Street, Chicago, IL 60637, USA
| |
Collapse
|
30
|
Kotkamp K, Klingler M, Schoppmeier M. Apparent role of Tribolium orthodenticle in anteroposterior blastoderm patterning largely reflects novel functions in dorsoventral axis formation and cell survival. Development 2010; 137:1853-62. [PMID: 20431120 DOI: 10.1242/dev.047043] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the short-germ beetle Tribolium castaneum, the head gap gene orthodenticle (Tc-otd) has been proposed to functionally substitute for bicoid, the anterior morphogen unique to higher dipterans. In this study we reanalyzed the function of Tc-otd. We obtained a similar range of cuticle phenotypes as in previously described RNAi experiments; however, we noticed unexpected effects on blastodermal cell fates. First, we found that Tc-otd is essential for dorsoventral patterning. RNAi depletion results in lateralized embryos, a fate map change that by itself can explain the observed loss of the anterior head, which is a ventral anlage in Tribolium. We find that this effect is due to diminished expression of short gastrulation (sog), a gene essential for establishment of the Decapentaplegic (Dpp) gradient in this species. Second, we found that gnathal segment primordia in Tc-otd RNAi embryos are shifted anteriorly but otherwise appear patterned normally. This anteroposterior (AP) fate map shift might largely be due to diminished zen-1 expression and is not responsible for the severe segmentation defects observed in some Tc-otd RNAi embryos. As neither Tc-sog nor Tc-zen-1 probably requires Otd gradient-mediated positional information, we posit that the blastoderm function of Tc-Otd depends on its initial homogeneous maternal expression and that this maternal factor does not provide significant positional information for Tribolium blastoderm embryos.
Collapse
Affiliation(s)
- Kay Kotkamp
- Department of Biology, Developmental Biology Unit, Erlangen University, 90158 Erlangen, Germany.
| | | | | |
Collapse
|
31
|
Liu PZ, Patel NH. giant is a bona fide gap gene in the intermediate germband insect, Oncopeltus fasciatus. Development 2010; 137:835-44. [PMID: 20147384 DOI: 10.1242/dev.045948] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Drosophila undergoes a form of development termed long germ segmentation, where all segments are specified nearly simultaneously so that by the blastoderm stage, the entire body plan has been determined. This mode of segmentation is evolutionarily derived. Most insects undergo short or intermediate germ segmentation, where only anterior segments are specified early, and posterior segments are sequentially specified during germband elongation. These embryological differences imply that anterior and posterior segments might rely upon different molecular mechanisms. In Drosophila, embryos mutant for giant show a gap in the anterior as well fusions of several abdominal segments. In Tribolium, a short germ beetle, giant is required for segmental identity, but not formation, in gnathal segments and also for segmentation of the entire abdomen. This raises the possibility that giant might not act as a gap gene in short and intermediate germ insects. Oncopeltus fasciatus is an intermediate germ insect that is an outgroup to the clade containing Drosophila and Tribolium. We cloned the Oncopeltus homolog of giant and determined its expression and function during segmentation. We find that Oncopeltus giant is a canonical gap gene in the maxillary and labial segments and also plays a gap-like role in the first four abdominal segments. Our results suggest that giant was a bona fide gap gene in the ancestor of these insects with this role being lost in the lineage leading towards Tribolium. This highlights the conservation of anterior patterning and evolutionary plasticity of the genetic regulation controlling posterior segmentation, even in short and intermediate germ insects.
Collapse
Affiliation(s)
- Paul Z Liu
- Howard Hughes Medical Institute, Department of Molecular and Cell Biology, and Department of Integrative Biology, University of California, Berkeley, CA 94702, USA.
| | | |
Collapse
|
32
|
Wilson MJ, Havler M, Dearden PK. Giant, Krüppel, and caudal act as gap genes with extensive roles in patterning the honeybee embryo. Dev Biol 2010; 339:200-11. [DOI: 10.1016/j.ydbio.2009.12.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Revised: 12/08/2009] [Accepted: 12/10/2009] [Indexed: 01/26/2023]
|
33
|
Keller RG, Desplan C, Rosenberg MI. Identification and characterization of Nasonia Pax genes. INSECT MOLECULAR BIOLOGY 2010; 19 Suppl 1:109-120. [PMID: 20167022 PMCID: PMC2852259 DOI: 10.1111/j.1365-2583.2009.00921.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Pax genes are a group of critical developmental transcriptional regulators in both invertebrates and vertebrates, characterized by the presence of a paired DNA-binding domain. Pax proteins also often contain an octapeptide motif and a C-terminal homeodomain. The genome of Nasonia vitripennis (Hymenoptera) has recently become available, and analysis of this genome alongside Apis mellifera allowed us to contribute to the phylogeny of this gene family in insects. Nasonia, a parasitic wasp, has independently evolved a similar mode of development to that of the well-studied Drosophila, making it an excellent model system for comparative studies of developmental gene networks. We report the characterization of the seven Nasonia Pax genes. We describe their genomic organization, and the embryonic expression of three of them, and uncover wider conservation of the octapeptide motif than previously described.
Collapse
Affiliation(s)
- R G Keller
- Center for Developmental Genetics, Department of Biology, New York University, New York, NY 10003, USA
| | | | | |
Collapse
|
34
|
Pannebakker BA, Niehuis O, Hedley A, Gadau J, Shuker DM. The distribution of microsatellites in the Nasonia parasitoid wasp genome. INSECT MOLECULAR BIOLOGY 2010; 19 Suppl 1:91-8. [PMID: 20167020 DOI: 10.1111/j.1365-2583.2009.00915.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Microsatellites are important molecular markers used in numerous genetic contexts. Despite this widespread use, the evolutionary processes governing microsatellite distribution and diversity remain controversial. Here, we present results on the distribution of microsatellites of three species in the parasitic wasp genus Nasonia generated by an in silico data-mining approach. Our results show that the overall microsatellite density in Nasonia is comparable to that of the honey bee, but much higher than in eight non-Hymenopteran arthropods. Across the Nasonia vitripennis genome, microsatellite density varied both within and amongst chromosomes. In contrast to other taxa, dinucleotides are the most abundant repeat type in all four species of Hymenoptera studied. Whether the differences between the Hymenoptera and other taxa are of functional significance remains to be determined.
Collapse
Affiliation(s)
- B A Pannebakker
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.
| | | | | | | | | |
Collapse
|
35
|
Werren JH, Richards S, Desjardins CA, Niehuis O, Gadau J, Colbourne JK, Werren JH, Richards S, Desjardins CA, Niehuis O, Gadau J, Colbourne JK, Beukeboom LW, Desplan C, Elsik CG, Grimmelikhuijzen CJP, Kitts P, Lynch JA, Murphy T, Oliveira DCSG, Smith CD, van de Zande L, Worley KC, Zdobnov EM, Aerts M, Albert S, Anaya VH, Anzola JM, Barchuk AR, Behura SK, Bera AN, Berenbaum MR, Bertossa RC, Bitondi MMG, Bordenstein SR, Bork P, Bornberg-Bauer E, Brunain M, Cazzamali G, Chaboub L, Chacko J, Chavez D, Childers CP, Choi JH, Clark ME, Claudianos C, Clinton RA, Cree AG, Cristino AS, Dang PM, Darby AC, de Graaf DC, Devreese B, Dinh HH, Edwards R, Elango N, Elhaik E, Ermolaeva O, Evans JD, Foret S, Fowler GR, Gerlach D, Gibson JD, Gilbert DG, Graur D, Gründer S, Hagen DE, Han Y, Hauser F, Hultmark D, Hunter HC, Hurst GDD, Jhangian SN, Jiang H, Johnson RM, Jones AK, Junier T, Kadowaki T, Kamping A, Kapustin Y, Kechavarzi B, Kim J, Kim J, Kiryutin B, Koevoets T, Kovar CL, Kriventseva EV, Kucharski R, Lee H, Lee SL, Lees K, Lewis LR, Loehlin DW, Logsdon JM, Lopez JA, Lozado RJ, Maglott D, Maleszka R, Mayampurath A, Mazur DJ, et alWerren JH, Richards S, Desjardins CA, Niehuis O, Gadau J, Colbourne JK, Werren JH, Richards S, Desjardins CA, Niehuis O, Gadau J, Colbourne JK, Beukeboom LW, Desplan C, Elsik CG, Grimmelikhuijzen CJP, Kitts P, Lynch JA, Murphy T, Oliveira DCSG, Smith CD, van de Zande L, Worley KC, Zdobnov EM, Aerts M, Albert S, Anaya VH, Anzola JM, Barchuk AR, Behura SK, Bera AN, Berenbaum MR, Bertossa RC, Bitondi MMG, Bordenstein SR, Bork P, Bornberg-Bauer E, Brunain M, Cazzamali G, Chaboub L, Chacko J, Chavez D, Childers CP, Choi JH, Clark ME, Claudianos C, Clinton RA, Cree AG, Cristino AS, Dang PM, Darby AC, de Graaf DC, Devreese B, Dinh HH, Edwards R, Elango N, Elhaik E, Ermolaeva O, Evans JD, Foret S, Fowler GR, Gerlach D, Gibson JD, Gilbert DG, Graur D, Gründer S, Hagen DE, Han Y, Hauser F, Hultmark D, Hunter HC, Hurst GDD, Jhangian SN, Jiang H, Johnson RM, Jones AK, Junier T, Kadowaki T, Kamping A, Kapustin Y, Kechavarzi B, Kim J, Kim J, Kiryutin B, Koevoets T, Kovar CL, Kriventseva EV, Kucharski R, Lee H, Lee SL, Lees K, Lewis LR, Loehlin DW, Logsdon JM, Lopez JA, Lozado RJ, Maglott D, Maleszka R, Mayampurath A, Mazur DJ, McClure MA, Moore AD, Morgan MB, Muller J, Munoz-Torres MC, Muzny DM, Nazareth LV, Neupert S, Nguyen NB, Nunes FMF, Oakeshott JG, Okwuonu GO, Pannebakker BA, Pejaver VR, Peng Z, Pratt SC, Predel R, Pu LL, Ranson H, Raychoudhury R, Rechtsteiner A, Reese JT, Reid JG, Riddle M, Robertson HM, Romero-Severson J, Rosenberg M, Sackton TB, Sattelle DB, Schlüns H, Schmitt T, Schneider M, Schüler A, Schurko AM, Shuker DM, Simões ZLP, Sinha S, Smith Z, Solovyev V, Souvorov A, Springauf A, Stafflinger E, Stage DE, Stanke M, Tanaka Y, Telschow A, Trent C, Vattathil S, Verhulst EC, Viljakainen L, Wanner KW, Waterhouse RM, Whitfield JB, Wilkes TE, Williamson M, Willis JH, Wolschin F, Wyder S, Yamada T, Yi SV, Zecher CN, Zhang L, Gibbs RA. Functional and evolutionary insights from the genomes of three parasitoid Nasonia species. Science 2010; 327:343-8. [PMID: 20075255 PMCID: PMC2849982 DOI: 10.1126/science.1178028] [Show More Authors] [Citation(s) in RCA: 636] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We report here genome sequences and comparative analyses of three closely related parasitoid wasps: Nasonia vitripennis, N. giraulti, and N. longicornis. Parasitoids are important regulators of arthropod populations, including major agricultural pests and disease vectors, and Nasonia is an emerging genetic model, particularly for evolutionary and developmental genetics. Key findings include the identification of a functional DNA methylation tool kit; hymenopteran-specific genes including diverse venoms; lateral gene transfers among Pox viruses, Wolbachia, and Nasonia; and the rapid evolution of genes involved in nuclear-mitochondrial interactions that are implicated in speciation. Newly developed genome resources advance Nasonia for genetic research, accelerate mapping and cloning of quantitative trait loci, and will ultimately provide tools and knowledge for further increasing the utility of parasitoids as pest insect-control agents.
Collapse
|
36
|
Abstract
The increasing availability of insect genomes has revealed a large number of genes with unknown functions and the resulting problem of how to discover these functions. The RNA interference (RNAi) technique, which generates loss-of-function phenotypes by depletion of a chosen transcript, can help to overcome this challenge. RNAi can unveil the functions of new genes, lead to the discovery of new functions for old genes, and find the genes for old functions. Moreover, the possibility of studying the functions of homologous genes in different species can allow comparisons of the genetic networks regulating a given function in different insect groups, thereby facilitating an evolutionary insight into developmental processes. RNAi also has drawbacks and obscure points, however, such as those related to differences in species sensitivity. Disentangling these differences is one of the main challenges in the RNAi field.
Collapse
Affiliation(s)
- Xavier Bellés
- Institut de Biologia Evolutiva (CSIC-UPF), Barcelona, Spain.
| |
Collapse
|
37
|
Evolution of axis formation: mRNA localization, regulatory circuits and posterior specification in non-model arthropods. Curr Opin Genet Dev 2009; 19:404-11. [DOI: 10.1016/j.gde.2009.04.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Accepted: 04/09/2009] [Indexed: 11/18/2022]
|
38
|
Lemke S, Schmidt-Ott U. Evidence for a composite anterior determinant in the hover fly Episyrphus balteatus (Syrphidae), a cyclorrhaphan fly with an anterodorsal serosa anlage. Development 2009; 136:117-27. [PMID: 19060334 DOI: 10.1242/dev.030270] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Most insect embryos develop from a monolayer of cells around the yolk, but only part of this blastoderm forms the embryonic rudiment. Another part forms extra-embryonic serosa. Size and position of the serosa anlage vary between species, and previous work raises the issue of whether such differences co-evolve with the mechanisms that establish anteroposterior (AP) polarity of the embryo. AP polarity of the Drosophila embryo depends on bicoid, which is necessary and sufficient to determine the anterior body plan. Orthologs of bicoid have been identified in various cyclorrhaphan flies and their occurrence seems to correlate with a mid-dorsal serosa or amnioserosa anlage. Here, we introduce with Episyrphus balteatus (Syrphidae) a cyclorrhaphan model for embryonic AP axis specification that features an anterodorsal serosa anlage. Current phylogenies place Episyrphus within the clade that uses bicoid mRNA as anterior determinant, but no bicoid-like sequence could be identified in this species. Using RNA interference (RNAi) and ectopic mRNA injection, we obtained evidence that pattern formation along the entire AP axis of the Episyrphus embryo relies heavily on the precise regulation of caudal, and that anterior pattern formation in particular depends on two localized factors rather than one. Early zygotic activation of orthodenticle is separated from anterior repression of caudal, two distinct functions which in Drosophila are performed jointly by bicoid, whereas hunchback appears to be regulated by both factors. Furthermore, we found that overexpression of orthodenticle is sufficient to confine the serosa anlage of Episyrphus to dorsal blastoderm. We discuss our findings in a phylogenetic context and propose that Episyrphus employs a primitive cyclorrhaphan mechanism of AP axis specification.
Collapse
Affiliation(s)
- Steffen Lemke
- University of Chicago, Department of Organismal Biology and Anatomy, CLSC 921B, 920 E. 58th Street, Chicago, IL 60637, USA
| | | |
Collapse
|
39
|
Abstract
A joint meeting of the Japanese and French societies for Developmental Biology, entitled `Frontiers in Developmental Biology', was recently held in Giens, France. The organizers, Patrick Lemaire and Shinichi Aizawa, showcased some of the rapid progress in the field that has been made possible through the use of modern large-scale network analyses, and of an increasingly sophisticated array of tools and ideas from microscopy, mathematics and computer science.
Collapse
Affiliation(s)
| | - Edwin Munro
- Center for Cell Dynamics, Friday Harbor Labs, University of Washington, 620 University Road, Friday Harbor, WA 98250, USA
| |
Collapse
|
40
|
Schetelig MF, Schmid BGM, Zimowska G, Wimmer EA. Plasticity in mRNA expression and localization of orthodenticle within higher Diptera. Evol Dev 2009; 10:700-4. [PMID: 19021740 DOI: 10.1111/j.1525-142x.2008.00283.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
orthodenticle (otd) genes are found throughout the animal kingdom and encode well-studied homeodomain transcription factors that share conserved functions in cephalization, head segmentation, brain patterning, and the differentiation of photoreceptors. Otd proteins have been proposed as ancestral key players in anterior determination despite a high level of variation in gene expression at early developmental stages: otd is expressed strictly zygotically in the dipteran Drosophila melanogaster, while otd1 mRNA is contributed maternally to the embryo in the coleopteran Tribolium castaneum and maternal otd1 mRNA is localized to the anterior and posterior pole of the oocyte in the hymopteran Nasonia vitripennis. Here we demonstrate that such changes in otd mRNA expression and localization do not need to represent large phylogenetic distances but can occur even within closely related taxa. We show maternal otd expression in the medfly Ceratitis capitata and maternally localized otd mRNA in the caribfly Anastrepha suspensa, two cyclorrhaphan species closely related to Drosophila. This indicates considerable plasticity in expression and mRNA localization of key developmental genes even within short evolutionary distances.
Collapse
Affiliation(s)
- Marc F Schetelig
- Department of Developmental Biology, Göttingen Center for Molecular Biosciences, Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology, Georg-August-University Göttingen, 37077 Göttingen, Germany
| | | | | | | |
Collapse
|
41
|
Rosenberg MI, Lynch JA, Desplan C. Heads and tails: evolution of antero-posterior patterning in insects. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2008; 1789:333-42. [PMID: 18976722 DOI: 10.1016/j.bbagrm.2008.09.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Revised: 09/23/2008] [Accepted: 09/30/2008] [Indexed: 01/30/2023]
Abstract
In spite of their varied appearances, insects share a common body plan whose layout is established by patterning genes during embryogenesis. We understand in great molecular detail how the Drosophila embryo patterns its segments. However, Drosophila has a type of embryogenesis that is highly derived and varies extensively as compared to most insects. Therefore, the study of other insects is invaluable for piecing together how the ancestor of all insects established its segmented body plan, and how this process can be plastic during evolution. In this review, we discuss the evolution of Antero-Posterior (A-P) patterning mechanisms in insects. We first describe two distinct modes of insect development - long and short germ development - and how these two modes of patterning are achieved. We then summarize how A-P patterning occurs in the long-germ Drosophila, where most of our knowledge comes from, and in the well-studied short-germ insect, Tribolium. Finally, using examples from other insects, we highlight differences in patterns of expression, which suggest foci of evolutionary change.
Collapse
|
42
|
Peel AD. The evolution of developmental gene networks: lessons from comparative studies on holometabolous insects. Philos Trans R Soc Lond B Biol Sci 2008; 363:1539-47. [PMID: 18192180 DOI: 10.1098/rstb.2007.2244] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Recent comparative studies have revealed significant differences in the developmental gene networks operating in three holometabolous insects: the beetle Tribolium castaneum, the parasitic wasp Nasonia vitripennis and the fruitfly Drosophila melanogaster. I discuss these differences in relation to divergent and convergent changes in cellular embryology. I speculate on how segmentation gene networks have evolved to operate in divergent embryological contexts, and highlight the role that co-option might have played in this process. I argue that insects represent an important example of how diversification in life-history strategies between lineages can lead to divergence in the genetic and cellular mechanisms controlling the development of homologous adult structures.
Collapse
Affiliation(s)
- Andrew D Peel
- Institute for Molecular Biology and Biotechnology , Vassilika Vouton, 711 10 Iraklio, Crete, Greece.
| |
Collapse
|
43
|
Yu D, Small S. Precise registration of gene expression boundaries by a repressive morphogen in Drosophila. Curr Biol 2008; 18:868-76. [PMID: 18571415 PMCID: PMC2481289 DOI: 10.1016/j.cub.2008.05.050] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Revised: 05/16/2008] [Accepted: 05/19/2008] [Indexed: 12/23/2022]
Abstract
BACKGROUND Morphogen gradients are thought to create concentration thresholds that differentially position the expression boundaries of multiple target genes. Despite intensive study, it is still unclear how the concentration profiles within gradients are spatially related to the critical patterning thresholds they generate. RESULTS Here we use a combination of quantitative measurements and ectopic-misexpression experiments to examine the transcriptional-repression activities of the Hunchback (Hb) protein gradient in Drosophila embryos. Our results define five expression boundaries that are set primarily by differences in Hb concentration and two boundaries that are set by combinatorial mechanisms involving Hb and at least one other repressor. CONCLUSIONS Hb functions as a repressive morphogen, but only within a specific range of concentrations ( approximately 40% to approximately 4.4% of maximum Hb concentration), within which there are at least four distinct concentration thresholds. The lower limit of the range reflects a position where the slope of the gradient becomes too shallow for resolution by specific target genes. Concentrations above the upper limit do not contribute directly to differential-repression mechanisms, but they provide a robust source that permits proper functioning of the gradient in heterozygous embryos that contain only one functional hb gene.
Collapse
Affiliation(s)
- Danyang Yu
- Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA
| | | |
Collapse
|
44
|
Wilson MJ, Dearden PK. Evolution of the insect Sox genes. BMC Evol Biol 2008; 8:120. [PMID: 18439299 PMCID: PMC2386450 DOI: 10.1186/1471-2148-8-120] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Accepted: 04/26/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Sox gene family of transcriptional regulators have essential roles during development and have been extensively studied in vertebrates. The mouse, human and fugu genomes contain at least 20 Sox genes, which are subdivided into groups based on sequence similarity of the highly conserved HMG domain. In the well-studied insect Drosophila melanogaster, eight Sox genes have been identified and are involved in processes such as neurogenesis, dorsal-ventral patterning and segmentation. RESULTS We examined the available genome sequences of Apis mellifera, Nasonia vitripennis, Tribolium castaneum, Anopheles gambiae and identified Sox family members which were classified by phylogenetics using the HMG domains. Using in situ hybridisation we determined the expression patterns of eight honeybee Sox genes in honeybee embryo, adult brain and queen ovary. AmSoxB group genes were expressed in the nervous system, brain and Malphigian tubules. The restricted localization of AmSox21b and AmSoxB1 mRNAs within the oocyte, suggested a role in, or that they are regulated by, dorsal-ventral patterning. AmSoxC, D and F were expressed ubiquitously in late embryos and in the follicle cells of the queen ovary. Expression of AmSoxF and two AmSoxE genes was detected in the drone testis. CONCLUSION Insect genomes contain between eight and nine Sox genes, with at least four members belonging to Sox group B and other Sox subgroups each being represented by a single Sox gene. Hymenopteran insects have an additional SoxE gene, which may have arisen by gene duplication. Expression analyses of honeybee SoxB genes implies that this group of genes may be able to rapidly evolve new functions and expression domains, while the combined expression pattern of all the SoxB genes is maintained.
Collapse
Affiliation(s)
- Megan J Wilson
- Laboratory for Evolution and Development, National Research Centre for Growth and Development, Department of Biochemistry, University of Otago, PO Box 56, Dunedin, New Zealand.
| | | |
Collapse
|
45
|
Schinko JB, Kreuzer N, Offen N, Posnien N, Wimmer EA, Bucher G. Divergent functions of orthodenticle, empty spiracles and buttonhead in early head patterning of the beetle Tribolium castaneum (Coleoptera). Dev Biol 2008; 317:600-13. [PMID: 18407258 DOI: 10.1016/j.ydbio.2008.03.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Revised: 03/03/2008] [Accepted: 03/04/2008] [Indexed: 01/08/2023]
Abstract
The head gap genes orthodenticle (otd), empty spiracles (ems) and buttonhead (btd) are required for metamerization and segment specification in Drosophila. We asked whether the function of their orthologs is conserved in the red flour beetle Tribolium castaneum which in contrast to Drosophila develops its larval head in a way typical for insects. We find that depending on dsRNA injection time, two functions of Tc-orthodenticle1 (Tc-otd1) can be identified. The early regionalization function affects all segments formed during the blastoderm stage while the later head patterning function is similar to Drosophila. In contrast, both expression and function of Tc-empty spiracles (Tc-ems) are restricted to the posterior part of the ocular and the anterior part of the antennal segment and Tc-buttonhead (Tc-btd) is not required for head cuticle formation at all. We conclude that the gap gene like roles of ems and btd are not conserved while at least the head patterning function of otd appears to be similar in fly and beetle. Hence, the ancestral mode of insect head segmentation remains to be discovered. With this work, we establish Tribolium as a model system for arthropod head development that does not suffer from the Drosophila specific problems like head involution and strongly reduced head structures.
Collapse
Affiliation(s)
- Johannes B Schinko
- Department of Developmental Biology, Johann Friedrich Blumenbach Institute of Zoology and Anthropology, Georg-August-University Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
46
|
Abstract
The regulation of segmentation gene expression is investigated by computational modeling using quantitative expression data. Previous tissue culture assays and transgene analyses raised the possibility that Hunchback (Hb) might function as both an activator and repressor of transcription. At low concentrations, Hb activates gene expression, whereas at high concentrations it mediates repression. Under the same experimental conditions, transcription factors encoded by other gap genes appear to function as dedicated repressors. Models based on dual regulation suggest that the Hb gradient can be sufficient for establishing the initial Kruppel (Kr) expression pattern in central regions of the precellular embryo. The subsequent refinement of the Kr pattern depends on the combination of Hb and the Giant (Gt) repressor. The dual-regulation models developed for Kr also explain some of the properties of the even-skipped (eve) stripe 3+7 enhancer. Computational simulations suggest that repression results from the dimerization of Hb monomers on the DNA template.
Collapse
|
47
|
McGregor AP, Hilbrant M, Pechmann M, Schwager EE, Prpic NM, Damen WG. Cupiennius salei andAchaearanea tepidariorum: Spider models for investigating evolution and development. Bioessays 2008; 30:487-98. [DOI: 10.1002/bies.20744] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
48
|
Olesnicky EC, Desplan C. Distinct mechanisms for mRNA localization during embryonic axis specification in the wasp Nasonia. Dev Biol 2007; 306:134-42. [PMID: 17434472 PMCID: PMC1973164 DOI: 10.1016/j.ydbio.2007.03.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Accepted: 03/07/2007] [Indexed: 10/23/2022]
Abstract
mRNA localization is a powerful mechanism for targeting factors to different regions of the cell and is used in Drosophila to pattern the early embryo. During oogenesis of the wasp Nasonia, mRNA localization is used extensively to replace the function of the Drosophila bicoid gene for the initiation of patterning along the antero-posterior axis. Nasonia localizes both caudal and nanos to the posterior pole, whereas giant mRNA is localized to the anterior pole of the oocyte; orthodenticle1 (otd1) is localized to both the anterior and posterior poles. The abundance of differentially localized mRNAs during Nasonia oogenesis provided a unique opportunity to study the different mechanisms involved in mRNA localization. Through pharmacological disruption of the microtubule network, we found that both anterior otd1 and giant, as well as posterior caudal mRNA localization was microtubule-dependent. Conversely, posterior otd1 and nanos mRNA localized correctly to the posterior upon microtubule disruption. However, actin is important in anchoring these two posteriorly localized mRNAs to the oosome, the structure containing the pole plasm. Moreover, we find that knocking down the functions of the genes tudor and Bicaudal-D mimics disruption of microtubules, suggesting that tudor's function in Nasonia is different from flies, where it is involved in formation of the pole plasm.
Collapse
Affiliation(s)
- Eugenia C Olesnicky
- Center for Developmental Genetics, Department of Biology, New York University, New York, NY 10003, USA
| | | |
Collapse
|