1
|
Lopez DM, Castro CE, Sotomayor M. In silico analyses of molecular force sensors for mechanical characterization of biological systems. Biophys J 2025; 124:829-843. [PMID: 39905731 PMCID: PMC11897771 DOI: 10.1016/j.bpj.2025.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/28/2024] [Accepted: 01/30/2025] [Indexed: 02/06/2025] Open
Abstract
Mechanical forces play key roles in biological processes such as cell migration and sensory perception. In recent years, molecular force sensors have been developed as tools for in situ force measurements. Here, we use all-atom steered molecular dynamics simulations to predict and study the relationship between design parameters and mechanical properties for three types of molecular force sensors commonly used in cellular biological research: two peptide and one DNA based. The peptide-based sensors consist of a pair of fluorescent proteins that can undergo Förster resonance energy transfer, linked by spider silk (GPGGA)n or synthetic (GGSGGS)n disordered regions. The DNA-based sensor consists of two fluorophore-labeled strands of DNA that can be unzipped or sheared upon force application with a Förster resonance energy transfer signal as readout of dissociation. We simulated nine sensors, three of each kind. After equilibration, flexible peptide linkers of three different lengths were stretched by applying forces to their N- and C-terminal Cα atoms in opposite directions. Similarly, we equilibrated a DNA-based sensor and pulled on the phosphate atom of the terminal guanine of one strand and a selected phosphate atom on the other strand for pulling in the opposite direction. These simulations were performed at constant velocity (0.01-10 nm/ns) and constant force (10-500 pN) for all versions of the sensors. Our results show how the force response of these sensors depends on their length, sequence, configuration, and loading rate. Mechanistic insights gained from simulations analyses indicate that interpretation of experimental results should consider the influence of transient formation of secondary structure in peptide-based sensors and of overstretching in DNA-based sensors. These predictions can guide optimal fluorophore choice and facilitate the rational design of new sensors for use in protein, DNA, hybrid systems, and molecular devices.
Collapse
Affiliation(s)
- Diana M Lopez
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio; Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio; Biophysics Graduate Program, The Ohio State University, Columbus, Ohio
| | - Carlos E Castro
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio; Biophysics Graduate Program, The Ohio State University, Columbus, Ohio
| | - Marcos Sotomayor
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio; Biophysics Graduate Program, The Ohio State University, Columbus, Ohio.
| |
Collapse
|
2
|
Bergal HT, Kinoshita K, Wong WP. High-Throughput Centrifuge Force Microscopy Reveals Dynamic Immune-Cell Avidity at the Single-Cell Level. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.27.640408. [PMID: 40060606 PMCID: PMC11888394 DOI: 10.1101/2025.02.27.640408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Cell-cell binding, mediated by the physical interactions of receptors and their ligands, plays a fundamental role in immune processes such as immune surveillance and T-cell activation. However, current approaches for measuring cell avidity often lack either throughput or quantitative precision. Here, we introduce a high-throughput approach for quantifying cell binding lifetimes and strength using a centrifuge force microscope (CFM)-a compact microscope operating within a standard benchtop centrifuge. The CFM enables live monitoring of single-cell interactions under force, conducting thousands of force experiments in parallel. To facilitate the real-time study of live cell interactions, we developed a next-generation CFM with multichannel fluorescence imaging capabilities. This system accommodates measurements in two modes: cell-protein binding and cell-cell avidity assays. Using this system, we investigated immune-cell binding mediated by Bispecific T-cell Engager (BiTE) molecules, a novel immunotherapy designed to enhance immune-cell targeting of cancer cells. In cell-protein assays, we quantified T- and B-cell unbinding from BiTE-functionalized surfaces, revealing receptor-specific relationships between ligand concentration and binding strength. In cell-cell assays, we examined BiTE-mediated binding of T-cells to Nalm6 B-cells, a precursor leukemia cell line, uncovering a strong, time-dependent increase in BiTE-mediated immune-cell avidity. By integrating high-throughput and quantitative single-cell force analysis, the CFM provides new insights into the dynamic nature of immunological interactions under force, with broad implications for immunotherapy and cellular mechanics.
Collapse
Affiliation(s)
- Hans T Bergal
- Program in Cellular and Molecular Medicine, Boston Children's Hospital
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute at Harvard Medical School
| | - Koji Kinoshita
- Program in Cellular and Molecular Medicine, Boston Children's Hospital
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute at Harvard Medical School
| | - Wesley P Wong
- Program in Cellular and Molecular Medicine, Boston Children's Hospital
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute at Harvard Medical School
- Department of Pediatrics, Harvard Medical School
- Wyss Institute for Biologically Inspired Engineering, Harvard University
| |
Collapse
|
3
|
Shen Y, Czajkowsky DM, Li B, Hu J, Shao Z, Sun J. Atomic Force Microscopy: Mechanosensor and Mechanotransducer for Probing Biological System from Molecules to Tissues. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408387. [PMID: 39614722 DOI: 10.1002/smll.202408387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/01/2024] [Indexed: 12/01/2024]
Abstract
Atomic Force Microscopy (AFM) is a powerful technique with widespread applications in various scientific fields, including biology. It operates by precisely detecting the interaction between a sharp tip and a sample surface, providing high-resolution topographical information and mechanical properties at a nanoscale. Through the years, a deeper understanding of this tip-sample interaction and the mechanisms by which it can be more precisely regulated have invariably led to improvements in AFM imaging. Additionally, AFM can serve not only as a sensor but also as a tool for actively manipulating the mechanical properties of biological systems. By applying controlled forces to the sample surface, AFM allows for a deeper understanding of mechanotransduction pathways, the intricate signaling cascades that convert physical cues into biochemical responses. This review, is an extensive overview of the current status of AFM working either as a mechanosensor or a mechanotransducer to probe biological systems across diverse scales, from individual molecules to entire tissues is presented. Challenges are discussed and potential future research directions are elaborated.
Collapse
Affiliation(s)
- Yi Shen
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Daniel M Czajkowsky
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Bin Li
- The Interdisciplinary Research Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China
| | - Jun Hu
- The Interdisciplinary Research Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China
- Institute of Materiobiology, Shanghai University, Shanghai, 200444, P. R. China
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, P. R. China
| | - Zhifeng Shao
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Jielin Sun
- Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
4
|
Guan X, Bian Y, Guo Z, Zhang J, Cao Y, Li W, Wang W. Bidirectional Allostery Mechanism in Catch-Bond Formation of CD44 Mediated Cell Adhesion. J Phys Chem Lett 2024; 15:10786-10794. [PMID: 39432012 DOI: 10.1021/acs.jpclett.4c02598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Catch-bonds, whereby noncovalent ligand-receptor interactions are counterintuitively reinforced by tensile forces, play a major role in cell adhesion under mechanical stress. A basic prerequisite for catch-bond formation, as implicated in classic catch-bond models, is that force-induced remodeling of the ligand binding interface occurs prior to bond rupture. However, what strategy receptor proteins utilize to meet such specific kinetic control remains elusive. Here we report a bidirectional allostery mechanism of catch-bond formation based on theoretical and molecular dynamics simulation studies. Binding of ligand allosterically reduces the threshold force for unlocking of otherwise stably folded force-sensing element (i.e., forward allostery), so that a much smaller tensile force can trigger the conformational switching of receptor protein to high binding-strength state via backward allosteric coupling before bond rupture. Such bidirectional allostery fulfills the specific kinetic control required by catch-bond formation and is likely to be commonly utilized in cell adhesion. The essential thermodynamic and kinetic features of receptor proteins essential for catch-bond formation were identified.
Collapse
Affiliation(s)
- Xingyue Guan
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
- Department of Physics, National Laboratory of Solid State Microstructure, Nanjing University, Nanjing 210093, China
| | - Yunqiang Bian
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Zilong Guo
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Jian Zhang
- Department of Physics, National Laboratory of Solid State Microstructure, Nanjing University, Nanjing 210093, China
| | - Yi Cao
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
- Department of Physics, National Laboratory of Solid State Microstructure, Nanjing University, Nanjing 210093, China
| | - Wenfei Li
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
- Department of Physics, National Laboratory of Solid State Microstructure, Nanjing University, Nanjing 210093, China
| | - Wei Wang
- Department of Physics, National Laboratory of Solid State Microstructure, Nanjing University, Nanjing 210093, China
| |
Collapse
|
5
|
Chen X, Xu S, Chu B, Guo J, Zhang H, Sun S, Song L, Feng XQ. Applying Spatiotemporal Modeling of Cell Dynamics to Accelerate Drug Development. ACS NANO 2024; 18:29311-29336. [PMID: 39420743 DOI: 10.1021/acsnano.4c12599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Cells act as physical computational programs that utilize input signals to orchestrate molecule-level protein-protein interactions (PPIs), generating and responding to forces, ultimately shaping all of the physiological and pathophysiological behaviors. Genome editing and molecule drugs targeting PPIs hold great promise for the treatments of diseases. Linking genes and molecular drugs with protein-performed cellular behaviors is a key yet challenging issue due to the wide range of spatial and temporal scales involved. Building predictive spatiotemporal modeling systems that can describe the dynamic behaviors of cells intervened by genome editing and molecular drugs at the intersection of biology, chemistry, physics, and computer science will greatly accelerate pharmaceutical advances. Here, we review the mechanical roles of cytoskeletal proteins in orchestrating cellular behaviors alongside significant advancements in biophysical modeling while also addressing the limitations in these models. Then, by integrating generative artificial intelligence (AI) with spatiotemporal multiscale biophysical modeling, we propose a computational pipeline for developing virtual cells, which can simulate and evaluate the therapeutic effects of drugs and genome editing technologies on various cell dynamic behaviors and could have broad biomedical applications. Such virtual cell modeling systems might revolutionize modern biomedical engineering by moving most of the painstaking wet-laboratory effort to computer simulations, substantially saving time and alleviating the financial burden for pharmaceutical industries.
Collapse
Affiliation(s)
- Xindong Chen
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- BioMap, Beijing 100144, China
| | - Shihao Xu
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Bizhu Chu
- School of Pharmacy, Shenzhen University, Shenzhen 518055, China
- Medical School, Shenzhen University, Shenzhen 518055, China
| | - Jing Guo
- Department of Medical Oncology, Xiamen Key Laboratory of Antitumor Drug Transformation Research, The First Affiliated Hospital of Xiamen University, Xiamen 361000, China
| | - Huikai Zhang
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Shuyi Sun
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Le Song
- BioMap, Beijing 100144, China
| | - Xi-Qiao Feng
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| |
Collapse
|
6
|
Dos Santos Natividade R, Dumitru AC, Nicoli A, Strebl M, Sutherland DM, Welsh OL, Ghulam M, Stehle T, Dermody TS, Di Pizio A, Koehler M, Alsteens D. Viral capsid structural assembly governs the reovirus binding interface to NgR1. NANOSCALE HORIZONS 2024; 9:1925-1937. [PMID: 39347978 PMCID: PMC11441417 DOI: 10.1039/d4nh00315b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/13/2024] [Indexed: 10/01/2024]
Abstract
Understanding the mechanisms underlying viral entry is crucial for controlling viral diseases. In this study, we investigated the interactions between reovirus and Nogo-receptor 1 (NgR1), a key mediator of reovirus entry into the host central nervous system. NgR1 exhibits a unique bivalent interaction with the reovirus capsid, specifically binding at the interface between adjacent heterohexamers arranged in a precise structural pattern on the curved virus surface. Using single-molecule techniques, we explored for the first time how the capsid molecular architecture and receptor polymorphism influence virus binding. We compared the binding affinities of human and mouse NgR1 to reovirus μ1/σ3 proteins in their isolated form, self-assembled in 2D capsid patches, and within the native 3D viral topology. Our results underscore the essential role of the concave side of NgR1 and emphasize that the spatial organization and curvature of the virus are critical determinants of the stability of the reovirus-NgR1 complex. This study highlights the importance of characterizing interactions in physiologically relevant spatial configurations, providing precise insights into virus-host interactions and opening new avenues for therapeutic interventions against viral infections.
Collapse
Affiliation(s)
- Rita Dos Santos Natividade
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium.
| | - Andra C Dumitru
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium.
| | - Alessandro Nicoli
- Leibniz Institute for Food Systems Biology, Technical University of Munich, Freising, Germany.
- Chemoinformatics and Protein Modelling, Department of Molecular Life Sciences, School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Michael Strebl
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Danica M Sutherland
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Institute of Infection, Inflammation, and Immunity, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Olivia L Welsh
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Institute of Infection, Inflammation, and Immunity, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mustafa Ghulam
- Leibniz Institute for Food Systems Biology, Technical University of Munich, Freising, Germany.
| | - Thilo Stehle
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Terence S Dermody
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Institute of Infection, Inflammation, and Immunity, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Antonella Di Pizio
- Leibniz Institute for Food Systems Biology, Technical University of Munich, Freising, Germany.
- Chemoinformatics and Protein Modelling, Department of Molecular Life Sciences, School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Melanie Koehler
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium.
- Leibniz Institute for Food Systems Biology, Technical University of Munich, Freising, Germany.
| | - David Alsteens
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium.
- WELBIO department, WEL Research Institute, 1300 Wavre, Belgium
| |
Collapse
|
7
|
Li S, Yang H, Tian F, Li W, Wang H, Shi X, Cui Z, Shan Y. Unveiling the Dynamic Mechanism of SARS-CoV-2 Entry Host Cells at the Single-Particle Level. ACS NANO 2024; 18:27891-27904. [PMID: 39353173 DOI: 10.1021/acsnano.4c04212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Understanding the dynamic features of severe acute respiratory coronavirus 2 (SARS-CoV-2) binding to the cell membrane and entry cells is crucial for comprehending viral pathogenesis and transmission and facilitating the development of effective drugs against COVID-19. Herein, we employed atomic force microscopy (AFM)-based single-molecule force spectroscopy (SMFS) to study the binding dynamics between the virus and cell membrane. Our findings revealed that the Omicron variant of SARS-CoV-2 virus-like particles (VLPs) exhibited a slightly stronger affinity for the angiotensin-converting enzyme-2 (ACE2) receptor compared with the Delta variant and was significantly higher than the wild-type (WT). Using a real-time force-tracing technique, we quantified the dynamic parameters for a single SARS-CoV-2 VLP entry into cells, showing that approximately 200 ms and 60 pN are required. The parameters aligned with the analysis obtained from coarse-grained molecular dynamics (CGMD) simulations. Additionally, the Omicron variant invades cells at a higher entry cell speed, smaller force, and higher probability. Furthermore, single-particle fluorescence tracking visually demonstrated clathrin-dependent endocytosis for SARS-CoV-2 entry into A549 cells. The dynamic features of endocytosis provide valuable insights into the SARS-CoV-2 entry mechanism and possible intervention strategies targeting the viral infection process.
Collapse
Affiliation(s)
- Siying Li
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Hui Yang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Falin Tian
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Wei Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongda Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Xinghua Shi
- University of Chinese Academy of Sciences, Beijing 100049, China
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Zongqiang Cui
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuping Shan
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| |
Collapse
|
8
|
Ren Y, Yang J, Fujita B, Zhang Y, Berro J. Cross-regulations of two connected domains form a mechanical circuit for steady force transmission during clathrin-mediated endocytosis. Cell Rep 2024; 43:114725. [PMID: 39276354 PMCID: PMC11476202 DOI: 10.1016/j.celrep.2024.114725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/01/2024] [Accepted: 08/21/2024] [Indexed: 09/17/2024] Open
Abstract
Mechanical forces are transmitted from the actin cytoskeleton to the membrane during clathrin-mediated endocytosis (CME) in the fission yeast Schizosaccharomyces pombe. End4p directly transmits force in CME by binding to both the membrane (through the AP180 N-terminal homology [ANTH] domain) and F-actin (through the talin-HIP1/R/Sla2p actin-tethering C-terminal homology [THATCH] domain). We show that 7 pN force is required for stable binding between THATCH and F-actin. We also characterized a domain in End4p, Rend (rod domain in End4p), that resembles R12 of talin. Membrane localization of Rend primes the binding of THATCH to F-actin, and force-induced unfolding of Rend at 15 pN terminates the transmission of force. We show that the mechanical properties (mechanical stability, unfolding extension, hysteresis) of Rend and THATCH are tuned to form a circuit for the initiation, transmission, and termination of force between the actin cytoskeleton and membrane. The mechanical circuit by Rend and THATCH may be conserved and coopted evolutionarily in cell adhesion complexes.
Collapse
Affiliation(s)
- Yuan Ren
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA; Nanobiology Institute, Yale University, West Haven, CT 06516, USA.
| | - Jie Yang
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Barbara Fujita
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA; Nanobiology Institute, Yale University, West Haven, CT 06516, USA
| | - Yongli Zhang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA; Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Julien Berro
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA; Nanobiology Institute, Yale University, West Haven, CT 06516, USA; Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
9
|
Sala S, Caillier A, Oakes PW. Principles and regulation of mechanosensing. J Cell Sci 2024; 137:jcs261338. [PMID: 39297391 PMCID: PMC11423818 DOI: 10.1242/jcs.261338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024] Open
Abstract
Research over the past two decades has highlighted that mechanical signaling is a crucial component in regulating biological processes. Although many processes and proteins are termed 'mechanosensitive', the underlying mechanisms involved in mechanosensing can vary greatly. Recent studies have also identified mechanosensing behaviors that can be regulated independently of applied force. This important finding has major implications for our understanding of downstream mechanotransduction, the process by which mechanical signals are converted into biochemical signals, as it offers another layer of biochemical regulatory control for these crucial signaling pathways. In this Review, we discuss the different molecular and cellular mechanisms of mechanosensing, how these processes are regulated and their effects on downstream mechanotransduction. Together, these discussions provide an important perspective on how cells and tissues control the ways in which they sense and interpret mechanical signals.
Collapse
Affiliation(s)
- Stefano Sala
- Department of Cell & Molecular Physiology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL 60153, USA
| | - Alexia Caillier
- Department of Cell & Molecular Physiology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL 60153, USA
| | - Patrick W. Oakes
- Department of Cell & Molecular Physiology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL 60153, USA
| |
Collapse
|
10
|
Fritzsche M, Kruse K. Mechanical force matters in early T cell activation. Proc Natl Acad Sci U S A 2024; 121:e2404748121. [PMID: 39240966 PMCID: PMC11406235 DOI: 10.1073/pnas.2404748121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2024] Open
Abstract
Mechanical force has repeatedly been highlighted to be involved in T cell activation. However, the biological significance of mechanical force for T cell receptor signaling remains under active consideration. Here, guided by theoretical analysis, we provide a perspective on how mechanical forces between a T cell and an antigen-presenting cell can influence the bond of a single T cell receptor major histocompatibility complex during early T cell activation. We point out that the lifetime of T cell receptor bonds and thus the degree of their phosphorylation which is essential for T cell activation depends considerably on the T cell receptor rigidity and the average magnitude and frequency of an applied oscillatory force. Such forces could be, for example, produced by protrusions like microvilli during early T cell activation or invadosomes during full T cell activation. These features are suggestive of mechanical force being exploited by T cells to advance self-nonself discrimination in early T cell activation.
Collapse
Affiliation(s)
- Marco Fritzsche
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, Oxford OX37FY, United Kingdom
- Rosalind Franklin Institute, Harwell Campus, Didcot OX11 0FA, United Kingdom
| | - Karsten Kruse
- Department of Biochemistry, University of Geneva, Geneva 1205, Switzerland
- Department of Theoretical Physics, University of Geneva, Geneva 1205, Switzerland
| |
Collapse
|
11
|
Lopez DM, Castro CE, Sotomayor M. In-Silico Analyses of Molecular Force Sensors for Mechanical Characterization of Biological Systems. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.17.603923. [PMID: 39091752 PMCID: PMC11291006 DOI: 10.1101/2024.07.17.603923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Mechanical forces play key roles in biological processes such as cell migration and sensory perception. In recent years molecular force sensors have been developed as tools for in situ force measurements. Here we use all-atom steered molecular dynamics simulations to predict and study the relationship between design parameters and mechanical properties for three types of molecular force sensors commonly used in cellular biological research: two peptide- and one DNA-based. The peptide-based sensors consist of a pair of fluorescent proteins, which can undergo Förster resonance energy transfer (FRET), linked by spider silk (GPGGA)n or synthetic (GGSGGS)n disordered regions. The DNA-based sensor consists of two fluorophore-labeled strands of DNA that can be unzipped or sheared upon force application with a FRET signal as readout of dissociation. We simulated nine sensors, three of each kind. After equilibration, flexible peptide linkers of three different lengths were stretched by applying forces to their N- and C-terminal Cα atoms in opposite directions. Similarly, we equilibrated a DNA-based sensor and pulled on the phosphate atom of the terminal guanine of one strand and a selected phosphate atom on the other strand in the opposite direction. These simulations were performed at constant velocity (0.01 nm/ns - 10 nm/ns) and constant force (10 pN - 500 pN) for all versions of the sensors. Our results show how the force response of these sensors depends on their length, sequence, configuration and loading rate. Mechanistic insights gained from simulations analyses indicate that interpretation of experimental results should consider the influence of transient formation of secondary structure in peptide-based sensors and of overstretching in DNA-based sensors. These predictions can guide optimal fluorophore choice and facilitate the rational design of new sensors for use in protein, DNA, hybrid systems, and molecular devices.
Collapse
Affiliation(s)
- Diana M. Lopez
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio 43210
- Biophysics Graduate Program, The Ohio State University, Columbus, Ohio 43210
| | - Carlos E. Castro
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio 43210
- Biophysics Graduate Program, The Ohio State University, Columbus, Ohio 43210
| | - Marcos Sotomayor
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210
- Biophysics Graduate Program, The Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
12
|
Shang P, Dos Santos Natividade R, Taylor GM, Ray A, Welsh OL, Fiske KL, Sutherland DM, Alsteens D, Dermody TS. NRP1 is a receptor for mammalian orthoreovirus engaged by distinct capsid subunits. Cell Host Microbe 2024; 32:980-995.e9. [PMID: 38729153 PMCID: PMC11176008 DOI: 10.1016/j.chom.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/27/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024]
Abstract
Mammalian orthoreovirus (reovirus) is a nonenveloped virus that establishes primary infection in the intestine and disseminates to sites of secondary infection, including the CNS. Reovirus entry involves multiple engagement factors, but how the virus disseminates systemically and targets neurons remains unclear. In this study, we identified murine neuropilin 1 (mNRP1) as a receptor for reovirus. mNRP1 binds reovirus with nanomolar affinity using a unique mechanism of virus-receptor interaction, which is coordinated by multiple interactions between distinct reovirus capsid subunits and multiple NRP1 extracellular domains. By exchanging essential capsid protein-encoding gene segments, we determined that the multivalent interaction is mediated by outer-capsid protein σ3 and capsid turret protein λ2. Using capsid mutants incapable of binding NRP1, we found that NRP1 contributes to reovirus dissemination and neurovirulence in mice. Collectively, our results demonstrate that NRP1 is an entry receptor for reovirus and uncover mechanisms by which NRPs promote viral entry and pathogenesis.
Collapse
Affiliation(s)
- Pengcheng Shang
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Institute of Infection, Inflammation, and Immunity, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Rita Dos Santos Natividade
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Gwen M Taylor
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Institute of Infection, Inflammation, and Immunity, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Ankita Ray
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Olivia L Welsh
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Institute of Infection, Inflammation, and Immunity, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Kay L Fiske
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Institute of Infection, Inflammation, and Immunity, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Danica M Sutherland
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Institute of Infection, Inflammation, and Immunity, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - David Alsteens
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium; WELBIO department, WEL Research Institute, Wavre, Belgium
| | - Terence S Dermody
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Institute of Infection, Inflammation, and Immunity, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA; Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
13
|
He K, Kou G, Cai H, Tian G, Xu Z, Yang Z. Effects of Contact Surface Shape on Dynamic Lifetime and Strength of Molecular Bond Clusters under Displacement- and Force-Controlled Loading Conditions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:10947-10956. [PMID: 38752855 DOI: 10.1021/acs.langmuir.4c00329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Many experimental and theoretical studies have shown that the mechanical properties of cells and the extracellular matrix can significantly affect the lifetime and strength of the adhesion clusters of molecular bonds. However, there are few studies on how the shape of the contact surface affects the lifetime and strength of the adhesion clusters of molecular bonds, especially theoretical studies in this area. An idealized model of focal adhesion is adopted, in which two rigid media are bonded together by an array of receptor-ligand bonds modeled as Hookean springs on a complex surface topography, which is described by three parameters: the surface shape factor β, the length of a single identical surface shape L, and the amplitude of surface shapes w. In this study, systematic Monte Carlo simulations of this model are conducted to study the lifetime of the molecular bond cluster under linear incremental force loading and the strength of the molecular bond cluster under linear incremental displacement loading. We find that both small surface shape amplitudes and large surface shape factors will increase the lifetime and strength of the adhesion cluster, whereas the length of a single surface shape causes oscillations in the lifetime and strength of the cluster, and this oscillation amplitude is affected by the surface shape amplitude and the factor. At the same time, we also find that the pretension in the cluster will play a dominant role in the adhesion strength under large amplitudes and small factors of surface shapes. The physical mechanisms behind these phenomena are that the changes of the length of a single surface shape, the amplitude of surface shapes, and the surface shape factor cause the changes of stress concentration in the adhesion region, bond affinity, and the number of similar affinity bonds.
Collapse
Affiliation(s)
- Kuncheng He
- Xi'an Research Institute of High Technology, Xi'an 710025, China
| | - Guangjie Kou
- Xi'an Research Institute of High Technology, Xi'an 710025, China
| | - Hui Cai
- Xi'an Research Institute of High Technology, Xi'an 710025, China
| | - Gan Tian
- Xi'an Research Institute of High Technology, Xi'an 710025, China
| | - Zhigao Xu
- Xi'an Research Institute of High Technology, Xi'an 710025, China
| | - Zhengwei Yang
- Xi'an Research Institute of High Technology, Xi'an 710025, China
| |
Collapse
|
14
|
Marinaro G, Bruno L, Pirillo N, Coluccio ML, Nanni M, Malara N, Battista E, Bruno G, De Angelis F, Cancedda L, Di Mascolo D, Gentile F. The role of elasticity on adhesion and clustering of neurons on soft surfaces. Commun Biol 2024; 7:617. [PMID: 38778159 PMCID: PMC11111731 DOI: 10.1038/s42003-024-06329-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
The question of whether material stiffness enhances cell adhesion and clustering is still open to debate. Results from the literature are seemingly contradictory, with some reports illustrating that adhesion increases with surface stiffness and others suggesting that the performance of a system of cells is curbed by high values of elasticity. To address the role of elasticity as a regulator in neuronal cell adhesion and clustering, we investigated the topological characteristics of networks of neurons on polydimethylsiloxane (PDMS) surfaces - with values of elasticity (E) varying in the 0.55-2.65 MPa range. Results illustrate that, as elasticity increases, the number of neurons adhering on the surface decreases. Notably, the small-world coefficient - a topological measure of networks - also decreases. Numerical simulations and functional multi-calcium imaging experiments further indicated that the activity of neuronal cells on soft surfaces improves for decreasing E. Experimental findings are supported by a mathematical model, that explains adhesion and clustering of cells on soft materials as a function of few parameters - including the Young's modulus and roughness of the material. Overall, results indicate that - in the considered elasticity interval - increasing the compliance of a material improves adhesion, improves clustering, and enhances communication of neurons.
Collapse
Affiliation(s)
- Giovanni Marinaro
- Center for Interdisciplinary Research on Medicines (CIRM), University of Liège, Quartier Hôpital, 4000, Liège, Belgium
| | - Luigi Bruno
- Department of Mechanical, Energy and Management Engineering, University of Calabria, 87036, Rende, Italy
| | - Noemi Pirillo
- Nanotechnology Research Center, Department of Experimental and Clinical Medicine, University of "Magna Graecia" of Catanzaro, 88100, Catanzaro, Italy
| | - Maria Laura Coluccio
- Nanotechnology Research Center, Department of Experimental and Clinical Medicine, University of "Magna Graecia" of Catanzaro, 88100, Catanzaro, Italy
| | - Marina Nanni
- Department of Neuroscience and Brain Technologies, Italian Institute of Technology, Via Morego 30, 16163, Genoa, Italy
| | - Natalia Malara
- Department of Health Science, University of "Magna Graecia" of Catanzaro, 88100, Catanzaro, Italy
| | - Edmondo Battista
- Department of Innovative Technologies in Medicine & Dentistry, University "G. d'Annunzio" Chieti-Pescara, 66100, Chieti, Italy
| | - Giulia Bruno
- Plasmon Nanotechnologies, Italian Institute of Technology, Via Morego 30, 16163, Genoa, Italy
| | - Francesco De Angelis
- Plasmon Nanotechnologies, Italian Institute of Technology, Via Morego 30, 16163, Genoa, Italy
| | - Laura Cancedda
- Department of Neuroscience and Brain Technologies, Italian Institute of Technology, Via Morego 30, 16163, Genoa, Italy
| | - Daniele Di Mascolo
- Laboratory of Nanotechnology for Precision Medicine, Italian Institute of Technology, 16163, Genoa, Italy.
- Department of Electrical and Information Engineering, Polytechnic University of Bari, 70126, Bari, Italy.
| | - Francesco Gentile
- Nanotechnology Research Center, Department of Experimental and Clinical Medicine, University of "Magna Graecia" of Catanzaro, 88100, Catanzaro, Italy.
| |
Collapse
|
15
|
Asar M, Newton-Northup J, Soendergaard M. Improving Pharmacokinetics of Peptides Using Phage Display. Viruses 2024; 16:570. [PMID: 38675913 PMCID: PMC11055145 DOI: 10.3390/v16040570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Phage display is a versatile method often used in the discovery of peptides that targets disease-related biomarkers. A major advantage of this technology is the ease and cost efficiency of affinity selection, also known as biopanning, to identify novel peptides. While it is relatively straightforward to identify peptides with optimal binding affinity, the pharmacokinetics of the selected peptides often prove to be suboptimal. Therefore, careful consideration of the experimental conditions, including the choice of using in vitro, in situ, or in vivo affinity selections, is essential in generating peptides with high affinity and specificity that also demonstrate desirable pharmacokinetics. Specifically, in vivo biopanning, or the combination of in vitro, in situ, and in vivo affinity selections, has been proven to influence the biodistribution and clearance of peptides and peptide-conjugated nanoparticles. Additionally, the marked difference in properties between peptides and nanoparticles must be considered. While peptide biodistribution depends primarily on physiochemical properties and can be modified by amino acid modifications, the size and shape of nanoparticles also affect both absorption and distribution. Thus, optimization of the desired pharmacokinetic properties should be an important consideration in biopanning strategies to enable the selection of peptides and peptide-conjugated nanoparticles that effectively target biomarkers in vivo.
Collapse
Affiliation(s)
- Mallika Asar
- College of Osteopathic Medicine, Kansas City University, Kansas City, MO 64106, USA;
| | | | - Mette Soendergaard
- Cell Origins LLC, 1601 South Providence Road Columbia, Columbia, MO 65203, USA;
- Department of Chemistry, Western Illinois University, Macomb, IL 61455, USA
| |
Collapse
|
16
|
Flommersfeld J, Stöberl S, Shah O, Rädler JO, Broedersz CP. Geometry-Sensitive Protrusion Growth Directs Confined Cell Migration. PHYSICAL REVIEW LETTERS 2024; 132:098401. [PMID: 38489624 DOI: 10.1103/physrevlett.132.098401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/30/2024] [Indexed: 03/17/2024]
Abstract
The migratory dynamics of cells can be influenced by the complex microenvironment through which they move. It remains unclear how the motility machinery of confined cells responds and adapts to their microenvironment. Here, we propose a biophysical mechanism for a geometry-dependent coupling between cellular protrusions and the nucleus that leads to directed migration. We apply our model to geometry-guided cell migration to obtain insights into the origin of directed migration on asymmetric adhesive micropatterns and the polarization enhancement of cells observed under strong confinement. Remarkably, for cells that can choose between channels of different size, our model predicts an intricate dependence for cellular decision making as a function of the two channel widths, which we confirm experimentally.
Collapse
Affiliation(s)
- Johannes Flommersfeld
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081HV Amsterdam, Netherlands
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilian-University Munich, Theresienstraße 37, D-80333 Munich, Germany
| | - Stefan Stöberl
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilian-University, Geschwister-Scholl-Platz 1, D-80539 Munich, Germany
| | - Omar Shah
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081HV Amsterdam, Netherlands
| | - Joachim O Rädler
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilian-University, Geschwister-Scholl-Platz 1, D-80539 Munich, Germany
| | - Chase P Broedersz
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081HV Amsterdam, Netherlands
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilian-University Munich, Theresienstraße 37, D-80333 Munich, Germany
| |
Collapse
|
17
|
Pitha I, Du L, Nguyen TD, Quigley H. IOP and glaucoma damage: The essential role of optic nerve head and retinal mechanosensors. Prog Retin Eye Res 2024; 99:101232. [PMID: 38110030 PMCID: PMC10960268 DOI: 10.1016/j.preteyeres.2023.101232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/10/2023] [Accepted: 12/11/2023] [Indexed: 12/20/2023]
Abstract
There are many unanswered questions on the relation of intraocular pressure to glaucoma development and progression. IOP itself cannot be distilled to a single, unifying value, because IOP level varies over time, differs depending on ocular location, and can be affected by method of measurement. Ultimately, IOP level creates mechanical strain that affects axonal function at the optic nerve head which causes local extracellular matrix remodeling and retinal ganglion cell death - hallmarks of glaucoma and the cause of glaucomatous vision loss. Extracellular tissue strain at the ONH and lamina cribrosa is regionally variable and differs in magnitude and location between healthy and glaucomatous eyes. The ultimate targets of IOP-induced tissue strain in glaucoma are retinal ganglion cell axons at the optic nerve head and the cells that support axonal function (astrocytes, the neurovascular unit, microglia, and fibroblasts). These cells sense tissue strain through a series of signals that originate at the cell membrane and alter cytoskeletal organization, migration, differentiation, gene transcription, and proliferation. The proteins that translate mechanical stimuli into molecular signals act as band-pass filters - sensing some stimuli while ignoring others - and cellular responses to stimuli can differ based on cell type and differentiation state. Therefore, to fully understand the IOP signals that are relevant to glaucoma, it is necessary to understand the ultimate cellular targets of IOP-induced mechanical stimuli and their ability to sense, ignore, and translate these signals into cellular actions.
Collapse
Affiliation(s)
- Ian Pitha
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Center for Nanomedicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Glaucoma Center of Excellence, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Liya Du
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thao D Nguyen
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, MD, USA
| | - Harry Quigley
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Glaucoma Center of Excellence, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
18
|
Cao R, Tian H, Tian Y, Fu X. A Hierarchical Mechanotransduction System: From Macro to Micro. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2302327. [PMID: 38145330 PMCID: PMC10953595 DOI: 10.1002/advs.202302327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 10/27/2023] [Indexed: 12/26/2023]
Abstract
Mechanotransduction is a strictly regulated process whereby mechanical stimuli, including mechanical forces and properties, are sensed and translated into biochemical signals. Increasing data demonstrate that mechanotransduction is crucial for regulating macroscopic and microscopic dynamics and functionalities. However, the actions and mechanisms of mechanotransduction across multiple hierarchies, from molecules, subcellular structures, cells, tissues/organs, to the whole-body level, have not been yet comprehensively documented. Herein, the biological roles and operational mechanisms of mechanotransduction from macro to micro are revisited, with a focus on the orchestrations across diverse hierarchies. The implications, applications, and challenges of mechanotransduction in human diseases are also summarized and discussed. Together, this knowledge from a hierarchical perspective has the potential to refresh insights into mechanotransduction regulation and disease pathogenesis and therapy, and ultimately revolutionize the prevention, diagnosis, and treatment of human diseases.
Collapse
Affiliation(s)
- Rong Cao
- Department of Endocrinology and MetabolismCenter for Diabetes Metabolism ResearchState Key Laboratory of Biotherapy and Cancer CenterWest China Medical SchoolWest China HospitalSichuan University and Collaborative Innovation CenterChengduSichuan610041China
| | - Huimin Tian
- Department of Endocrinology and MetabolismCenter for Diabetes Metabolism ResearchState Key Laboratory of Biotherapy and Cancer CenterWest China Medical SchoolWest China HospitalSichuan University and Collaborative Innovation CenterChengduSichuan610041China
| | - Yan Tian
- Department of Endocrinology and MetabolismCenter for Diabetes Metabolism ResearchState Key Laboratory of Biotherapy and Cancer CenterWest China Medical SchoolWest China HospitalSichuan University and Collaborative Innovation CenterChengduSichuan610041China
| | - Xianghui Fu
- Department of Endocrinology and MetabolismCenter for Diabetes Metabolism ResearchState Key Laboratory of Biotherapy and Cancer CenterWest China Medical SchoolWest China HospitalSichuan University and Collaborative Innovation CenterChengduSichuan610041China
| |
Collapse
|
19
|
Gentile F. The free energy landscape of small-world networks of cells. J Biomech 2024; 162:111909. [PMID: 38118308 DOI: 10.1016/j.jbiomech.2023.111909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/22/2023] [Accepted: 12/14/2023] [Indexed: 12/22/2023]
Abstract
The properties of organs, tissues, organoids, and other systems of cells, are influenced by the spatial localization and distribution of their elements. Here, we used networks to describe distributions of cells on a surface where the small-world coefficient (SW) of the networks was varied between SW~1 (random uniform distributions) and SW~10 (clustered distributions). The small-world coefficient is a topological measure of graphs: networks with SW>1 are topologically biased to transmit information. For each system configuration, we then determined the total energy U as the sum of the energies that describe cell-cell interactions - approximated by a harmonic potential. The graph of energy (U) across the configuration space of the networks (SW) is the energy landscape: it indicates which configuration a system of cells will likely assume over time. We found that, depending on the model parameters, the energy landscapes of 2D distributions of cells may be of different types: from type I to type IV. Type I and type II systems have high probability to evolve into random distributions. Type III and type IV systems have a higher probability to form clustered architectures. A great many of simulations indicated that cultures of cells with high initial density and limited sensing range could evolve into clustered configurations with enhanced topological characteristics. Moreover, the strongest the binding between cells, the greater the likelihood that they will assume configurations characterized by finite values of SW. Results of the work are relevant for those working the field of tissue engineering, regenerative medicine, the formation of in-vitro-models, the analysis of neuro-degenerative diseases.
Collapse
Affiliation(s)
- Francesco Gentile
- Nanotechnology Research Center, Department of Experimental and Clinical Medicine, University of Magna Graecia, 88100 Catanzaro, Italy.
| |
Collapse
|
20
|
McLaughlin MR, Weaver SA, Syed F, Evans-Molina C. Advanced Imaging Techniques for the Characterization of Subcellular Organelle Structure in Pancreatic Islet β Cells. Compr Physiol 2023; 14:5243-5267. [PMID: 38158370 PMCID: PMC11490899 DOI: 10.1002/cphy.c230002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Type 2 diabetes (T2D) affects more than 32.3 million individuals in the United States, creating an economic burden of nearly $966 billion in 2021. T2D results from a combination of insulin resistance and inadequate insulin secretion from the pancreatic β cell. However, genetic and physiologic data indicate that defects in β cell function are the chief determinant of whether an individual with insulin resistance will progress to a diagnosis of T2D. The subcellular organelles of the insulin secretory pathway, including the endoplasmic reticulum, Golgi apparatus, and secretory granules, play a critical role in maintaining the heavy biosynthetic burden of insulin production, processing, and secretion. In addition, the mitochondria enable the process of insulin release by integrating the metabolism of nutrients into energy output. Advanced imaging techniques are needed to determine how changes in the structure and composition of these organelles contribute to the loss of insulin secretory capacity in the β cell during T2D. Several microscopy techniques, including electron microscopy, fluorescence microscopy, and soft X-ray tomography, have been utilized to investigate the structure-function relationship within the β cell. In this overview article, we will detail the methodology, strengths, and weaknesses of each approach. © 2024 American Physiological Society. Compr Physiol 14:5243-5267, 2024.
Collapse
Affiliation(s)
- Madeline R. McLaughlin
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Staci A. Weaver
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- The Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Farooq Syed
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
- The Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Carmella Evans-Molina
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- The Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Roudebush VA Medical Center, Indianapolis, Indiana, USA
| |
Collapse
|
21
|
Hajiali H, Rotherham M, El Haj AJ. Remote Activation of Mechanotransduction via Integrin Alpha-5 via Aptamer-Conjugated Magnetic Nanoparticles Promotes Osteogenesis. Pharmaceutics 2023; 16:21. [PMID: 38258032 PMCID: PMC10821094 DOI: 10.3390/pharmaceutics16010021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Bone regeneration and repair are complex processes in the adult skeleton, and current research has focused on understanding and controlling these processes. Magnetic nanoparticle (MNP)-based platforms have shown potential in tissue engineering and regenerative medicine through the use of magnetic nanomaterials combined with remotely applied dynamic fields. Previous studies have demonstrated the ability of MNP-induced mechanoactivation to trigger downstream signaling and promote new bone formation. In this study, we aimed to compare the osteogenic induction achieved using the mechanoreceptor targets, Piezo1, Fzd1, Fzd2, and integrin alpha-5. We compared the binding efficacy of different types of agonists (antibodies vs. aptamers) to these receptors. Moreover, we optimized the aptamer concentration (2.5, 5, and 10 μg/mg) for the selected receptor to determine the optimum concentration for promoting bone formation. Our data demonstrated that the mechanoactivation of integrins (CD49e) significantly upregulated the RUNX2 and LEF1 genes compared to other selected receptors. Furthermore, comparing the mechanoactivation of cells using MNPs conjugated with CD49e antibodies and aptamers revealed that MNP-aptamers significantly enhanced the upregulation of LEF1 genes. This suggests that aptamer-mediated mechanoactivation is a promising alternative to antibody-mediated activation. Finally, our results showed that the concentration of the aptamer loaded onto the MNPs strongly influenced the mechanoactivation of the cells. These findings provide valuable insights into the use of MNP platforms for bone regeneration and highlight the potential of aptamers in promoting signaling pathways related to bone formation. The novelty of our study lies in elucidating the unique advantages of aptamers in mediating mechanoactivation, presenting a promising avenue for advancing bone regenerative strategies.
Collapse
Affiliation(s)
- Hadi Hajiali
- Healthcare Technologies Institute, Institute of Translational Medicine, School of Chemical Engineering, University of Birmingham, Birmingham B15 2TH, UK
| | | | - Alicia J. El Haj
- Healthcare Technologies Institute, Institute of Translational Medicine, School of Chemical Engineering, University of Birmingham, Birmingham B15 2TH, UK
| |
Collapse
|
22
|
Holuigue H, Nacci L, Di Chiaro P, Chighizola M, Locatelli I, Schulte C, Alfano M, Diaferia GR, Podestà A. Native extracellular matrix probes to target patient- and tissue-specific cell-microenvironment interactions by force spectroscopy. NANOSCALE 2023; 15:15382-15395. [PMID: 37700706 DOI: 10.1039/d3nr01568h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Atomic Force Microscopy (AFM) is successfully used for the quantitative investigation of the cellular mechanosensing of the microenvironment. To this purpose, several force spectroscopy approaches aim at measuring the adhesive forces between two living cells and also between a cell and an appropriate reproduction of the extracellular matrix (ECM), typically exploiting tips suitably functionalised with single components (e.g. collagen, fibronectin) of the ECM. However, these probes only poorly reproduce the complexity of the native cellular microenvironment and consequently of the biological interactions. We developed a novel approach to produce AFM probes that faithfully retain the structural and biochemical complexity of the ECM; this was achieved by attaching to an AFM cantilever a micrometric slice of native decellularised ECM, which was cut by laser microdissection. We demonstrate that these probes preserve the morphological, mechanical, and chemical heterogeneity of the ECM. Native ECM probes can be used in force spectroscopy experiments aimed at targeting cell-microenvironment interactions. Here, we demonstrate the feasibility of dissecting mechanotransductive cell-ECM interactions in the 10 pN range. As proof-of-principle, we tested a rat bladder ECM probe against the AY-27 rat bladder cancer cell line. On the one hand, we obtained reproducible results using different probes derived from the same ECM regions; on the other hand, we detected differences in the adhesion patterns of distinct bladder ECM regions (submucosa, detrusor, and adventitia), in line with the disparities in composition and biophysical properties of these ECM regions. Our results demonstrate that native ECM probes, produced from patient-specific regions of organs and tissues, can be used to investigate cell-microenvironment interactions and early mechanotransductive processes by force spectroscopy. This opens new possibilities in the field of personalised medicine.
Collapse
Affiliation(s)
- H Holuigue
- CIMAINA and Dipartimento di Fisica "Aldo Pontremoli", Università degli Studi di Milano, Milano, Italy.
| | - L Nacci
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy.
| | - P Di Chiaro
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy.
| | - M Chighizola
- CIMAINA and Dipartimento di Fisica "Aldo Pontremoli", Università degli Studi di Milano, Milano, Italy.
| | - I Locatelli
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS San Raffaele Hospital, Milan, Italy.
| | - C Schulte
- CIMAINA and Dipartimento di Fisica "Aldo Pontremoli", Università degli Studi di Milano, Milano, Italy.
- Department of Biomedical and Clinical Sciences "L. Sacco", Università degli Studi di Milano, Milano, Italy
| | - M Alfano
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS San Raffaele Hospital, Milan, Italy.
| | - G R Diaferia
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy.
| | - A Podestà
- CIMAINA and Dipartimento di Fisica "Aldo Pontremoli", Università degli Studi di Milano, Milano, Italy.
| |
Collapse
|
23
|
Ayres CM, Corcelli SA, Baker BM. The Energetic Landscape of Catch Bonds in TCR Interfaces. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:325-332. [PMID: 37459192 PMCID: PMC10361606 DOI: 10.4049/jimmunol.2300121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/14/2023] [Indexed: 07/20/2023]
Abstract
Recognition of peptide/MHC complexes by αβ TCRs has traditionally been viewed through the lens of conventional receptor-ligand theory. Recent work, however, has shown that TCR recognition and T cell signaling can be profoundly influenced and tuned by mechanical forces. One outcome of applied force is the catch bond, where TCR dissociation rates decrease (half-lives increase) when limited force is applied. Although catch bond behavior is believed to be widespread in biology, its counterintuitive nature coupled with the difficulties of describing mechanisms at the structural level have resulted in considerable mystique. In this review, we demonstrate that viewing catch bonds through the lens of energy landscapes, barriers, and the ensuing reaction rates can help demystify catch bonding and provide a foundation on which atomic-level TCR catch bond mechanisms can be built.
Collapse
Affiliation(s)
- Cory M Ayres
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN
- The Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN
| | - Steve A Corcelli
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN
| | - Brian M Baker
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN
- The Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN
| |
Collapse
|
24
|
Tsingos E, Bakker BH, Keijzer KAE, Hupkes HJ, Merks RMH. Hybrid cellular Potts and bead-spring modeling of cells in fibrous extracellular matrix. Biophys J 2023; 122:2609-2622. [PMID: 37183398 PMCID: PMC10397577 DOI: 10.1016/j.bpj.2023.05.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 02/17/2023] [Accepted: 05/10/2023] [Indexed: 05/16/2023] Open
Abstract
The mechanical interaction between cells and the extracellular matrix (ECM) is fundamental to coordinate collective cell behavior in tissues. Relating individual cell-level mechanics to tissue-scale collective behavior is a challenge that cell-based models such as the cellular Potts model (CPM) are well-positioned to address. These models generally represent the ECM with mean-field approaches, which assume substrate homogeneity. This assumption breaks down with fibrous ECM, which has nontrivial structure and mechanics. Here, we extend the CPM with a bead-spring model of ECM fiber networks modeled using molecular dynamics. We model a contractile cell pulling with discrete focal adhesion-like sites on the fiber network and demonstrate agreement with experimental spatiotemporal fiber densification and displacement. We show that at high network cross-linking, contractile cell forces propagate over at least eight cell diameters, decaying with distance with power law exponent n= 0.35 - 0.65 typical of viscoelastic ECMs. Further, we use in silico atomic force microscopy to measure local cell-induced network stiffening consistent with experiments. Our model lays the foundation for investigating how local and long-ranged cell-ECM mechanobiology contributes to multicellular morphogenesis.
Collapse
Affiliation(s)
- Erika Tsingos
- Mathematical Institute, Leiden University, Leiden, the Netherlands.
| | | | - Koen A E Keijzer
- Mathematical Institute, Leiden University, Leiden, the Netherlands
| | | | - Roeland M H Merks
- Mathematical Institute, Leiden University, Leiden, the Netherlands; Institute for Biology Leiden, Leiden University, Leiden, the Netherlands.
| |
Collapse
|
25
|
Wang YJ, Valotteau C, Aimard A, Villanueva L, Kostrz D, Follenfant M, Strick T, Chames P, Rico F, Gosse C, Limozin L. Combining DNA scaffolds and acoustic force spectroscopy to characterize individual protein bonds. Biophys J 2023; 122:2518-2530. [PMID: 37290437 PMCID: PMC10323022 DOI: 10.1016/j.bpj.2023.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 12/13/2022] [Accepted: 05/03/2023] [Indexed: 06/10/2023] Open
Abstract
Single-molecule data are of great significance in biology, chemistry, and medicine. However, new experimental tools to characterize, in a multiplexed manner, protein bond rupture under force are still needed. Acoustic force spectroscopy is an emerging manipulation technique which generates acoustic waves to apply force in parallel on multiple microbeads tethered to a surface. We here exploit this configuration in combination with the recently developed modular junctured-DNA scaffold that has been designed to study protein-protein interactions at the single-molecule level. By applying repetitive constant force steps on the FKBP12-rapamycin-FRB complex, we measure its unbinding kinetics under force at the single-bond level. Special efforts are made in analyzing the data to identify potential pitfalls. We propose a calibration method allowing in situ force determination during the course of the unbinding measurement. We compare our results with well-established techniques, such as magnetic tweezers, to ensure their accuracy. We also apply our strategy to study the force-dependent rupture of a single-domain antibody with its antigen. Overall, we get a good agreement with the published parameters that have been obtained at zero force and population level. Thus, our technique offers single-molecule precision for multiplexed measurements of interactions of biotechnological and medical interest.
Collapse
Affiliation(s)
- Yong Jian Wang
- Aix-Marseille Université, CNRS, INSERM, Laboratoire Adhesion et Inflammation, Turing Centre for Living systems, Marseille, France.
| | - Claire Valotteau
- Aix-Marseille Université, CNRS, INSERM, Laboratoire Adhesion et Inflammation, Turing Centre for Living systems, Marseille, France
| | - Adrien Aimard
- Aix-Marseille Université, CNRS, INSERM, Institut Paoli-Calmettes, Centre de Recherche en Cancerologie de Marseille, Marseille, France
| | - Lorenzo Villanueva
- Aix-Marseille Université, CNRS, INSERM, Laboratoire Adhesion et Inflammation, Turing Centre for Living systems, Marseille, France
| | - Dorota Kostrz
- Institut de Biologie de l'Ecole Normale Supérieure, ENS, CNRS, INSERM, PSL Research University, Paris, France
| | - Maryne Follenfant
- Institut de Biologie de l'Ecole Normale Supérieure, ENS, CNRS, INSERM, PSL Research University, Paris, France
| | - Terence Strick
- Institut de Biologie de l'Ecole Normale Supérieure, ENS, CNRS, INSERM, PSL Research University, Paris, France
| | - Patrick Chames
- Aix-Marseille Université, CNRS, INSERM, Institut Paoli-Calmettes, Centre de Recherche en Cancerologie de Marseille, Marseille, France
| | - Felix Rico
- Aix-Marseille Université, CNRS, INSERM, Laboratoire Adhesion et Inflammation, Turing Centre for Living systems, Marseille, France
| | - Charlie Gosse
- Institut de Biologie de l'Ecole Normale Supérieure, ENS, CNRS, INSERM, PSL Research University, Paris, France.
| | - Laurent Limozin
- Aix-Marseille Université, CNRS, INSERM, Laboratoire Adhesion et Inflammation, Turing Centre for Living systems, Marseille, France.
| |
Collapse
|
26
|
Fernandez M, Shkumatov AV, Liu Y, Stulemeijer C, Derclaye S, Efremov R, Hallet B, Alsteens D. AFM-based force spectroscopy unravels stepwise formation of the DNA transposition complex in the widespread Tn3 family mobile genetic elements. Nucleic Acids Res 2023; 51:4929-4941. [PMID: 37026471 PMCID: PMC10250215 DOI: 10.1093/nar/gkad241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/03/2023] [Accepted: 03/23/2023] [Indexed: 04/08/2023] Open
Abstract
Transposon Tn4430 belongs to a widespread family of bacterial transposons, the Tn3 family, which plays a prevalent role in the dissemination of antibiotic resistance among pathogens. Despite recent data on the structural architecture of the transposition complex, the molecular mechanisms underlying the replicative transposition of these elements are still poorly understood. Here, we use force-distance curve-based atomic force microscopy to probe the binding of the TnpA transposase of Tn4430 to DNA molecules containing one or two transposon ends and to extract the thermodynamic and kinetic parameters of transposition complex assembly. Comparing wild-type TnpA with previously isolated deregulated TnpA mutants supports a stepwise pathway for transposition complex formation and activation during which TnpA first binds as a dimer to a single transposon end and then undergoes a structural transition that enables it to bind the second end cooperatively and to become activated for transposition catalysis, the latter step occurring at a much faster rate for the TnpA mutants. Our study thus provides an unprecedented approach to probe the dynamic of a complex DNA processing machinery at the single-particle level.
Collapse
Affiliation(s)
- Maricruz Fernandez
- NanoBioPhysics lab, Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
- Biochemistry and Genetics of Microorganisms, Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Alexander V Shkumatov
- Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium
- Structural Biology Brussels, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Yun Liu
- Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium
- Structural Biology Brussels, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Claire Stulemeijer
- Biochemistry and Genetics of Microorganisms, Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Sylvie Derclaye
- NanoBioPhysics lab, Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Rouslan G Efremov
- Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium
- Structural Biology Brussels, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Bernard Hallet
- Biochemistry and Genetics of Microorganisms, Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - David Alsteens
- NanoBioPhysics lab, Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
27
|
dos Santos Natividade R, Koehler M, Gomes PSFC, Simpson JD, Smith SC, Gomes DEB, de Lhoneux J, Yang J, Ray A, Dermody TS, Bernardi RC, Ogden KM, Alsteens D. Deciphering molecular mechanisms stabilizing the reovirus-binding complex. Proc Natl Acad Sci U S A 2023; 120:e2220741120. [PMID: 37186838 PMCID: PMC10214207 DOI: 10.1073/pnas.2220741120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
Mammalian orthoreoviruses (reoviruses) serve as potential triggers of celiac disease and have oncolytic properties, making these viruses potential cancer therapeutics. Primary attachment of reovirus to host cells is mainly mediated by the trimeric viral protein, σ1, which engages cell-surface glycans, followed by high-affinity binding to junctional adhesion molecule-A (JAM-A). This multistep process is thought to be accompanied by major conformational changes in σ1, but direct evidence is lacking. By combining biophysical, molecular, and simulation approaches, we define how viral capsid protein mechanics influence virus-binding capacity and infectivity. Single-virus force spectroscopy experiments corroborated by in silico simulations show that GM2 increases the affinity of σ1 for JAM-A by providing a more stable contact interface. We demonstrate that conformational changes in σ1 that lead to an extended rigid conformation also significantly increase avidity for JAM-A. Although its associated lower flexibility impairs multivalent cell attachment, our findings suggest that diminished σ1 flexibility enhances infectivity, indicating that fine-tuning of σ1 conformational changes is required to successfully initiate infection. Understanding properties underlying the nanomechanics of viral attachment proteins offers perspectives in the development of antiviral drugs and improved oncolytic vectors.
Collapse
Affiliation(s)
- Rita dos Santos Natividade
- Louvain Institute of Biomolecular Science and Technology, NanoBiophysics lab, Université catholique de Louvain, 1348Louvain-la-Neuve, Belgium
| | - Melanie Koehler
- Louvain Institute of Biomolecular Science and Technology, NanoBiophysics lab, Université catholique de Louvain, 1348Louvain-la-Neuve, Belgium
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, 85354Freising, Germany
| | | | - Joshua D. Simpson
- Louvain Institute of Biomolecular Science and Technology, NanoBiophysics lab, Université catholique de Louvain, 1348Louvain-la-Neuve, Belgium
| | - Sydni Caet Smith
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, 37232Nashville, TN
| | | | - Juliette de Lhoneux
- Louvain Institute of Biomolecular Science and Technology, NanoBiophysics lab, Université catholique de Louvain, 1348Louvain-la-Neuve, Belgium
| | - Jinsung Yang
- Louvain Institute of Biomolecular Science and Technology, NanoBiophysics lab, Université catholique de Louvain, 1348Louvain-la-Neuve, Belgium
| | - Ankita Ray
- Louvain Institute of Biomolecular Science and Technology, NanoBiophysics lab, Université catholique de Louvain, 1348Louvain-la-Neuve, Belgium
| | - Terence S. Dermody
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA15213
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA15213
- Institute of Infection, Inflammation, and Immunity, University of Pittsburgh Medical Center, Children’s Hospital of Pittsburgh, Pittsburgh, PA15213
| | | | - Kristen M. Ogden
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, 37232Nashville, TN
- Department of Pediatrics, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN37232
| | - David Alsteens
- Louvain Institute of Biomolecular Science and Technology, NanoBiophysics lab, Université catholique de Louvain, 1348Louvain-la-Neuve, Belgium
- Walloon Excellence in Life sciences and Biotechnology, Walloon Excellence Research Institute, 1300Wavre, Belgium
| |
Collapse
|
28
|
Szydlak R, Øvreeide IH, Luty M, Zieliński T, Prot VE, Zemła J, Stokke BT, Lekka M. Bladder Cancer Cells Interaction with Lectin-Coated Surfaces under Static and Flow Conditions. Int J Mol Sci 2023; 24:ijms24098213. [PMID: 37175920 PMCID: PMC10179195 DOI: 10.3390/ijms24098213] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/21/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023] Open
Abstract
Aberrant expression of glycans, i.e., oligosaccharide moiety covalently attached to proteins or lipids, is characteristic of various cancers, including urothelial ones. The binding of lectins to glycans is classified as molecular recognition, which makes lectins a strong tool for understanding their role in developing diseases. Here, we present a quantitative approach to tracing glycan-lectin interactions in cells, from the initial to the steady phase of adhesion. The cell adhesion was measured between urothelial cell lines (non-malignant HCV29 and carcinoma HT1376 and T24 cells) and lectin-coated surfaces. Depending on the timescale, single-cell force spectroscopy, and adhesion assays conducted in static and flow conditions were applied. The obtained results reveal that the adhesion of urothelial cells to two specific lectins, i.e., phytohemagglutinin-L and wheat germ agglutinin, was specific and selective. Thus, these lectins can be applied to selectively capture, identify, and differentiate between cancer types in a label-free manner. These results open up the possibility of designing lectin-based biosensors for diagnostic or prognostic purposes and developing strategies for drug delivery that could target cancer-associated glycans.
Collapse
Affiliation(s)
- Renata Szydlak
- Department of Biophysical Microstructures, Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Kraków, Poland
| | - Ingrid H Øvreeide
- Biophysics and Medical Technology, Department of Physics, The Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Marcin Luty
- Department of Biophysical Microstructures, Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Kraków, Poland
| | - Tomasz Zieliński
- Department of Biophysical Microstructures, Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Kraków, Poland
| | - Victorien E Prot
- Biomechanics, Department of Structural Engineering, The Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Joanna Zemła
- Department of Biophysical Microstructures, Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Kraków, Poland
| | - Bjørn T Stokke
- Biophysics and Medical Technology, Department of Physics, The Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Małgorzata Lekka
- Department of Biophysical Microstructures, Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Kraków, Poland
| |
Collapse
|
29
|
Wang P, Sheriff J, Zhang P, Deng Y, Bluestein D. A Multiscale Model for Shear-Mediated Platelet Adhesion Dynamics: Correlating In Silico with In Vitro Results. Ann Biomed Eng 2023; 51:1094-1105. [PMID: 37020171 DOI: 10.1007/s10439-023-03193-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/22/2023] [Indexed: 04/07/2023]
Abstract
Platelet adhesion to blood vessel walls is a key initial event in thrombus formation in both vascular disease processes and prosthetic cardiovascular devices. We extended a deformable multiscale model (MSM) of flowing platelets, incorporating Dissipative Particle Dynamics (DPD) and Coarse-Grained Molecular Dynamics (CGMD) describing molecular-scale intraplatelet constituents and their interaction with surrounding flow, to predict platelet adhesion dynamics under physiological flow shear stresses. Binding of platelet glycoprotein receptor Ibα (GPIbα) to von Willebrand factor (vWF) on the blood vessel wall was modeled by a molecular-level hybrid force field and validated with in vitro microchannel experiments of flowing platelets at 30 dyne/cm2. High frame rate videos of flipping platelets were analyzed with a Semi-Unsupervised Learning System (SULS) machine learning-guided imaging approach to segment platelet geometries and quantify adhesion dynamics parameters. In silico flipping dynamics followed in vitro measurements at 15 and 45 dyne/cm2 with high fidelity, predicting GPIbα-vWF bonding and debonding processes, distribution of bonds strength, and providing a biomechanical insight into initiation of the complex platelet adhesion process. The adhesion model and simulation framework can be further integrated with our established MSMs of platelet activation and aggregation to simulate initial mural thrombus formation on blood vessel walls.
Collapse
Affiliation(s)
- Peineng Wang
- Department of Biomedical Engineering, T08-50 Health Sciences Center, Stony Brook University, Stony Brook, NY, 11794-8084, USA
| | - Jawaad Sheriff
- Department of Biomedical Engineering, T08-50 Health Sciences Center, Stony Brook University, Stony Brook, NY, 11794-8084, USA
| | - Peng Zhang
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, USA
| | - Yuefan Deng
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, USA
| | - Danny Bluestein
- Department of Biomedical Engineering, T08-50 Health Sciences Center, Stony Brook University, Stony Brook, NY, 11794-8084, USA.
| |
Collapse
|
30
|
Stachowicz K. Physicochemical Principles of Adhesion Mechanisms in the Brain. Int J Mol Sci 2023; 24:ijms24065070. [PMID: 36982145 PMCID: PMC10048821 DOI: 10.3390/ijms24065070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/01/2023] [Accepted: 03/05/2023] [Indexed: 03/09/2023] Open
Abstract
The brain functions through neuronal circuits and networks that are synaptically connected. This type of connection can exist due to physical forces that interact to stabilize local contacts in the brain. Adhesion is a fundamental physical phenomenon that allows different layers, phases, and tissues to connect. Similarly, synaptic connections are stabilized by specialized adhesion proteins. This review discusses the basic physical and chemical properties of adhesion. Cell adhesion molecules (CAMs) such as cadherins, integrins, selectins, and immunoglobulin family of cell adhesion molecules (IgSF) will be discussed, and their role in physiological and pathological brain function. Finally, the role of CAMs at the synapse will be described. In addition, methods for studying adhesion in the brain will be presented.
Collapse
Affiliation(s)
- Katarzyna Stachowicz
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| |
Collapse
|
31
|
Amatu JB, Baudouin C, Trinh L, Labbé A, Buffault J. [Corneal epithelial biomechanics: Resistance to stress and role in healing and remodeling]. J Fr Ophtalmol 2023; 46:287-299. [PMID: 36759249 DOI: 10.1016/j.jfo.2022.09.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 09/29/2022] [Accepted: 09/29/2022] [Indexed: 02/10/2023]
Abstract
The corneal epithelium is one of the first tissue barriers of the eye against the environment. In recent years, many studies provided better knowledge of its healing, its behavior and its essential role in the optical system of the eye. At the crossroads of basic science and clinical medicine, the study of the mechanical stresses applied to the cornea makes it possible to learn the behavior of epithelial cells and better understand ocular surface disease. We describe herein the current knowledge about the adhesion systems of the corneal epithelium and their resistance to mechanical stress. We will also describe the involvement of these mechanisms in corneal healing and their role in epithelial dynamics. Adhesion molecules of the epithelial cells, especially hemidesmosomes, allow the tissue cohesion required to maintain the integrity of the corneal epithelium against the shearing forces of the eyelids as well as external forces. Their regeneration after a corneal injury is mandatory for the restoration of a healthy epithelium. Mechanotransduction plays a significant role in regulating epithelial cell behavior, and the study of the epithelium's response to mechanical forces helps to better understand the evolution of epithelial profiles after refractive surgery. A better understanding of corneal epithelial biomechanics could also help improve future therapies, particularly in the field of tissue engineering.
Collapse
Affiliation(s)
- J-B Amatu
- Department of Ophthalmology III, CHNO des Quinze-Vingts, IHU FOReSIGHT, 28, rue de Charenton, 75012 Paris, France.
| | - C Baudouin
- Department of Ophthalmology III, CHNO des Quinze-Vingts, IHU FOReSIGHT, 28, rue de Charenton, 75012 Paris, France; Institut de La Vision, Sorbonne Université, Inserm, CNRS, IHU FOReSIGHT, 17, rue Moreau, 75012 Paris, France; Department of Ophthalmology, Ambroise Paré Hospital, AP-HP, University of Versailles Saint-Quentin-en-Yvelines, Boulogne-Billancourt, France
| | - L Trinh
- Department of Ophthalmology III, CHNO des Quinze-Vingts, IHU FOReSIGHT, 28, rue de Charenton, 75012 Paris, France
| | - A Labbé
- Department of Ophthalmology III, CHNO des Quinze-Vingts, IHU FOReSIGHT, 28, rue de Charenton, 75012 Paris, France; Institut de La Vision, Sorbonne Université, Inserm, CNRS, IHU FOReSIGHT, 17, rue Moreau, 75012 Paris, France; Department of Ophthalmology, Ambroise Paré Hospital, AP-HP, University of Versailles Saint-Quentin-en-Yvelines, Boulogne-Billancourt, France
| | - J Buffault
- Department of Ophthalmology III, CHNO des Quinze-Vingts, IHU FOReSIGHT, 28, rue de Charenton, 75012 Paris, France; Institut de La Vision, Sorbonne Université, Inserm, CNRS, IHU FOReSIGHT, 17, rue Moreau, 75012 Paris, France; Department of Ophthalmology, Ambroise Paré Hospital, AP-HP, University of Versailles Saint-Quentin-en-Yvelines, Boulogne-Billancourt, France
| |
Collapse
|
32
|
Kim SH, Li ITS. Super-Resolution Tension PAINT Imaging with a Molecular Beacon. Angew Chem Int Ed Engl 2023; 62:e202217028. [PMID: 36534951 DOI: 10.1002/anie.202217028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 12/23/2022]
Abstract
DNA-PAINT enabled super-resolution imaging through the transient binding of fluorescently-labelled single-stranded DNA (ssDNA) imagers to target ssDNA. However, its performance is constrained by imager background fluorescence, resulting in relatively long image acquisition and potential artifacts. We designed a molecular beacon (MB) as the PAINT imager. Unbound MB in solution reduces the background fluorescence due to its natively quenched state. They are fluorogenic upon binding to target DNA to create individual fluorescence events. We demonstrate that MB-PAINT provides localization precision similar to traditional linear imager DNA-PAINT. We also show that MB-PAINT is ideally suited for fast super-resolution imaging of molecular tension probes in living cells, eliminating the potential of artifacts from free-diffusing imagers in traditional DNA-PAINT at the cell-substrate interface.
Collapse
Affiliation(s)
- Seong Ho Kim
- Department of Chemistry, The University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | - Isaac T S Li
- Department of Chemistry, The University of British Columbia, Kelowna, BC V1V 1V7, Canada
| |
Collapse
|
33
|
Ihog proteins contribute to integrin-mediated focal adhesions. SCIENCE CHINA. LIFE SCIENCES 2023; 66:366-375. [PMID: 36103028 DOI: 10.1007/s11427-022-2154-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 06/27/2022] [Indexed: 10/14/2022]
Abstract
Integrin expression forms focal adhesions, but how this process is physiologically regulated is unclear. Ihog proteins are evolutionarily conserved, playing roles in Hedgehog signaling and serving as trans-homophilic adhesion molecules to mediate cell-cell interactions. Whether these proteins are also engaged in other cell adhesion processes remains unknown. Here, we report that Drosophila Ihog proteins function in the integrin-mediated adhesions. Removal of Ihog proteins causes blister and spheroidal muscle in wings and embryos, respectively. We demonstrate that Ihog proteins interact with integrin via the extracellular portion and that their removal perturbs integrin distribution. Finally, we show that Boc, a mammalian Ihog protein, rescues the embryonic defects caused by removing its Drosophila homologs. We thus propose that Ihog proteins contribute to integrin-mediated focal adhesions.
Collapse
|
34
|
Austin J, Tu Y, Pal K, Wang X. Vinculin transmits high-level integrin tensions that are dispensable for focal adhesion formation. Biophys J 2023; 122:156-167. [PMID: 36352785 PMCID: PMC9822790 DOI: 10.1016/j.bpj.2022.11.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/08/2022] [Accepted: 11/07/2022] [Indexed: 11/10/2022] Open
Abstract
Focal adhesions (FAs) transmit force and mediate mechanotransduction between cells and the matrix. Previous studies revealed that integrin-transmitted force is critical to regulate FA formation. As vinculin is a prominent FA protein implicated in integrin tension transmission, this work studies the relation among integrin tensions (force), vinculin (protein), and FA formation (structure) by integrin tension manipulation, force visualization and vinculin knockout (KO). Two DNA-based integrin tension tools are adopted: tension gauge tether (TGT) and integrative tension sensor (ITS), with TGT restricting integrin tensions under a designed Ttol (tension tolerance) value and ITS visualizing integrin tensions above the Ttol value by fluorescence. Results show that large FAs (area >1 μm2) were formed on the TGT surface with Ttol of 54 pN but not on those with lower Ttol values. Time-series analysis of FA formation shows that focal complexes (area <0.5 μm2) appeared on all TGT surfaces 20 min after cell plating, but only matured to large FAs on TGT with Ttol of 54 pN. Next, we tested FA formation in vinculin KO cells on TGT surfaces. Surprisingly, the Ttol value of TGT required for large FA formation is drastically decreased to 23 pN. To explore the cause, we visualized integrin tensions in both wild-type and vinculin KO cells using ITS. The results showed that integrin tensions in FAs of wild-type cells frequently activate ITS with Ttol of 54 pN. With vinculin KO, however, integrin tensions in FAs became lower and unable to activate 54 pN ITS. Force signal intensities of integrin tensions reported by 33 and 43 pN ITS were also significantly reduced with vinculin KO, suggesting that vinculin is essential to transmit high-level integrin tensions and involved in transmitting intermediate-level integrin tensions in FAs. However, the high-level integrin tensions transmitted by vinculin are not required by FA formation.
Collapse
Affiliation(s)
- Jacob Austin
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa
| | - Ying Tu
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa
| | - Kaushik Pal
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa
| | - Xuefeng Wang
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa; Department of Biochemistry, Biophysics and Molecular Biology, Ames, Iowa.
| |
Collapse
|
35
|
Li R, Frangogiannis NG. Integrins in cardiac fibrosis. J Mol Cell Cardiol 2022; 172:1-13. [PMID: 35872324 DOI: 10.1016/j.yjmcc.2022.07.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/10/2022] [Accepted: 07/18/2022] [Indexed: 12/14/2022]
Abstract
Cells sense mechanical stress and changes in their matrix environment through the integrins, a family of heterodimeric surface receptors that bind to extracellular matrix ligands and trigger cytoskeletal remodeling, while transducing a wide range of intracellular signals. Integrins have been extensively implicated in regulation of inflammation, repair and fibrosis in many different tissues. This review manuscript discusses the role of integrin-mediated cascades in myocardial fibrosis. In vitro studies have demonstrated that β1 and αv integrins play an important role in fibrogenic conversion of cardiac fibroblast, acting through direct stimulation of FAK/Src cascades, or via accentuation of growth factor signaling. Fibrogenic actions of αv integrins may be mediated, at least in part, through pericellular activation of latent TGF-β stores. In vivo evidence supporting the role of integrin heterodimers in fibrotic cardiac remodeling is limited to associative evidence, and to experiments using pharmacologic inhibitors, or global loss-of-function approaches. Studies documenting in vivo actions of integrins on fibroblasts using cell-specific strategies are lacking. Integrin effects on leukocytes may also contribute to the pathogenesis of fibrotic myocardial responses by mediating recruitment and activation of fibrogenic macrophages. The profile and role of integrins in cardiac fibrosis may be dependent on the underlying pathologic condition. Considering their cell surface localization and the availability of small molecule inhibitors, integrins may be attractive therapeutic targets for patients with heart failure associated with prominent fibrotic remodeling.
Collapse
Affiliation(s)
- Ruoshui Li
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, United States of America.
| |
Collapse
|
36
|
Xie X, Li Y, Lian S, Lu Y, Jia L. Cancer metastasis chemoprevention prevents circulating tumour cells from germination. Signal Transduct Target Ther 2022; 7:341. [PMID: 36184654 PMCID: PMC9526788 DOI: 10.1038/s41392-022-01174-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 04/19/2022] [Accepted: 08/31/2022] [Indexed: 11/09/2022] Open
Abstract
The war against cancer traces back to the signature event half-a-century ago when the US National Cancer Act was signed into law. The cancer crusade costs trillions with disappointing returns, teasing the possibility of a new breakthrough. Cure for cancer post-metastases still seems tantalisingly out of reach. Once metastasized, cancer-related death is extremely difficult, if not impossible, to be reversed. Here we present cancer pre-metastasis chemoprevention strategy that can prevent circulating tumour cells (CTCs) from initiating metastases safely and effectively, and is disparate from the traditional cancer chemotherapy and cancer chemoprevention. Deep learning of the biology of CTCs and their disseminating organotropism, complexity of their adhesion to endothelial niche reveals that if the adhesion of CTCs to their metastasis niche (the first and the most important part in cancer metastatic cascade) can be pharmaceutically interrupted, the lethal metastatic cascade could be prevented from getting initiated. We analyse the key inflammatory and adhesive factors contributing to CTC adhesion/germination, provide pharmacological fundamentals for abortifacients to intervene CTC adhesion to the distant metastasis sites. The adhesion/inhibition ratio (AIR) is defined for selecting the best cancer metastasis chemopreventive candidates. The successful development of such new therapeutic modalities for cancer metastasis chemoprevention has great potential to revolutionise the current ineffective post-metastasis treatments.
Collapse
Affiliation(s)
- Xiaodong Xie
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian, 350108, China
| | - Yumei Li
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Shu Lian
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian, 350108, China
| | - Yusheng Lu
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian, 350108, China
| | - Lee Jia
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian, 350108, China. .,Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian, 350116, China.
| |
Collapse
|
37
|
Akhunzada MJ, Yoon HJ, Deb I, Braka A, Wu S. Bell-Evans model and steered molecular dynamics in uncovering the dissociation kinetics of ligands targeting G-protein-coupled receptors. Sci Rep 2022; 12:15972. [PMID: 36153364 PMCID: PMC9509322 DOI: 10.1038/s41598-022-20065-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 09/08/2022] [Indexed: 11/10/2022] Open
Abstract
AbstractRecently, academic and industrial scientific communities involved in kinetics-based drug development have become immensely interested in predicting the drug target residence time. Screening drug candidates in terms of their computationally predicted residence times, which is a measure of drug efficacy in vivo, and simultaneously assessing computational binding affinities are becoming inevitable. Non-equilibrium molecular simulation approaches are proven to be useful in this purpose. Here, we have implemented an optimized approach of combining the data derived from steered molecular dynamics simulations and the Bell-Evans model to predict the absolute residence times of the antagonist ZMA241385 and agonist NECA that target the A2A adenosine receptor of the G-protein-coupled receptor (GPCR) protein family. We have predicted the absolute ligand residence times on the timescale of seconds. However, our predictions were many folds shorter than those determined experimentally. Additionally, we calculated the thermodynamics of ligand binding in terms of ligand binding energies and the per-residue contribution of the receptor. Subsequently, binding pocket hotspot residues that would be important for further computational mutagenesis studies were identified. In the experiment, similar sets of residues were found to be in significant contact with both ligands under study. Our results build a strong foundation for further improvement of our approach by rationalizing the kinetics of ligand unbinding with the thermodynamics of ligand binding.
Collapse
|
38
|
Chighizola M, Dini T, Marcotti S, D'Urso M, Piazzoni C, Borghi F, Previdi A, Ceriani L, Folliero C, Stramer B, Lenardi C, Milani P, Podestà A, Schulte C. The glycocalyx affects the mechanotransductive perception of the topographical microenvironment. J Nanobiotechnology 2022; 20:418. [PMID: 36123687 PMCID: PMC9484177 DOI: 10.1186/s12951-022-01585-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/29/2022] [Indexed: 11/10/2022] Open
Abstract
The cell/microenvironment interface is the starting point of integrin-mediated mechanotransduction, but many details of mechanotransductive signal integration remain elusive due to the complexity of the involved (extra)cellular structures, such as the glycocalyx. We used nano-bio-interfaces reproducing the complex nanotopographical features of the extracellular matrix to analyse the glycocalyx impact on PC12 cell mechanosensing at the nanoscale (e.g., by force spectroscopy with functionalised probes). Our data demonstrates that the glycocalyx configuration affects spatio-temporal nanotopography-sensitive mechanotransductive events at the cell/microenvironment interface. Opposing effects of major glycocalyx removal were observed, when comparing flat and specific nanotopographical conditions. The excessive retrograde actin flow speed and force loading are strongly reduced on certain nanotopographies upon strong reduction of the native glycocalyx, while on the flat substrate we observe the opposite trend. Our results highlight the importance of the glycocalyx configuration in a molecular clutch force loading-dependent cellular mechanism for mechanosensing of microenvironmental nanotopographical features.
Collapse
Affiliation(s)
- Matteo Chighizola
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics "Aldo Pontremoli", University of Milan, Milan, Italy
| | - Tania Dini
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics "Aldo Pontremoli", University of Milan, Milan, Italy.,The FIRC Institute of Molecular Oncology (IFOM), Milan, Italy
| | - Stefania Marcotti
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
| | - Mirko D'Urso
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics "Aldo Pontremoli", University of Milan, Milan, Italy.,Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Claudio Piazzoni
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics "Aldo Pontremoli", University of Milan, Milan, Italy
| | - Francesca Borghi
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics "Aldo Pontremoli", University of Milan, Milan, Italy
| | - Anita Previdi
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics "Aldo Pontremoli", University of Milan, Milan, Italy
| | - Laura Ceriani
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics "Aldo Pontremoli", University of Milan, Milan, Italy
| | - Claudia Folliero
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics "Aldo Pontremoli", University of Milan, Milan, Italy.,The FIRC Institute of Molecular Oncology (IFOM), Milan, Italy
| | - Brian Stramer
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
| | - Cristina Lenardi
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics "Aldo Pontremoli", University of Milan, Milan, Italy
| | - Paolo Milani
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics "Aldo Pontremoli", University of Milan, Milan, Italy
| | - Alessandro Podestà
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics "Aldo Pontremoli", University of Milan, Milan, Italy.
| | - Carsten Schulte
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics "Aldo Pontremoli", University of Milan, Milan, Italy.
| |
Collapse
|
39
|
Hu B, Rotherham M, Farrow N, Roach P, Dobson J, El Haj AJ. Immobilization of Wnt Fragment Peptides on Magnetic Nanoparticles or Synthetic Surfaces Regulate Wnt Signaling Kinetics. Int J Mol Sci 2022; 23:10164. [PMID: 36077561 PMCID: PMC9456016 DOI: 10.3390/ijms231710164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/18/2022] Open
Abstract
Wnt signaling plays an important role in embryogenesis and adult stem cell homeostasis. Its diminished activation is implicated in osteoporosis and degenerative neural diseases. However, systematic administration of Wnt-signaling agonists carries risk, as aberrantly activated Wnt/β-catenin signaling is linked to cancer. Therefore, technologies for local modulation and control of Wnt signaling targeted to specific sites of disease or degeneration have potential therapeutic value in the treatment of degenerative diseases. We reported a facile approach to locally activate the canonical Wnt signaling cascade using nanomagnetic actuation or ligand immobilized platforms. Using a human embryonic kidney (HEK293) Luc-TCF/LEF reporter cell line, we demonstrated that targeting the cell membrane Wnt receptor, Frizzled 2, with peptide-tagged magnetic nanoparticles (MNPs) triggered canonical Wnt signaling transduction when exposed to a high-gradient, time-varying magnetic field, and the induced TCF/LEF signal transduction was shown to be avidity-dependent. We also demonstrated that the peptide retained signaling activity after functionalization onto glass surfaces, providing a versatile platform for drug discovery or recreation of the cell niche. In conclusion, these results showed that peptide-mediated Wnt signaling kinetics depended not only on ligand concentration but also on the presentation method of the ligand, which may be further modulated by magnetic actuation. This has important implications when designing future therapeutic platforms involving Wnt mimetics.
Collapse
Affiliation(s)
- Bin Hu
- School of Pharmacy and Bioengineering, Guy Hilton Research Center, Keele University, Thornburrow Drive, Hartshill, Stoke-on-Trent, Staffordshire ST4 7QB, UK
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Michael Rotherham
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Heritage Building, Mindelsohn Way, Birmingham B15 2TH, UK
| | - Neil Farrow
- School of Pharmacy and Bioengineering, Guy Hilton Research Center, Keele University, Thornburrow Drive, Hartshill, Stoke-on-Trent, Staffordshire ST4 7QB, UK
| | - Paul Roach
- School of Pharmacy and Bioengineering, Guy Hilton Research Center, Keele University, Thornburrow Drive, Hartshill, Stoke-on-Trent, Staffordshire ST4 7QB, UK
- Department of Chemistry, Loughborough University, Leicestershire, Loughborough LE11 3TU, UK
| | - Jon Dobson
- J Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Alicia J. El Haj
- School of Pharmacy and Bioengineering, Guy Hilton Research Center, Keele University, Thornburrow Drive, Hartshill, Stoke-on-Trent, Staffordshire ST4 7QB, UK
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Heritage Building, Mindelsohn Way, Birmingham B15 2TH, UK
| |
Collapse
|
40
|
Català-Castro F, Schäffer E, Krieg M. Exploring cell and tissue mechanics with optical tweezers. J Cell Sci 2022; 135:jcs259355. [PMID: 35942913 DOI: 10.1242/jcs.259355] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cellular and tissue biosystems emerge from the assembly of their constituent molecules and obtain a set of specific material properties. To measure these properties and understand how they influence cellular function is a central goal of mechanobiology. From a bottoms-up, physics or engineering point-of-view, such systems are a composition of basic mechanical elements. However, the sheer number and dynamic complexity of them, including active molecular machines and their emergent properties, makes it currently intractable to calculate how biosystems respond to forces. Because many diseases result from an aberrant mechanotransduction, it is thus essential to measure this response. Recent advances in the technology of optical tweezers have broadened their scope from single-molecule applications to measurements inside complex cellular environments, even within tissues and animals. Here, we summarize the basic optical trapping principles, implementations and calibration procedures that enable force measurements using optical tweezers directly inside cells of living animals, in combination with complementary techniques. We review their versatility to manipulate subcellular organelles and measure cellular frequency-dependent mechanics in the piconewton force range from microseconds to hours. As an outlook, we address future challenges to fully unlock the potential of optical tweezers for mechanobiology.
Collapse
Affiliation(s)
- Frederic Català-Castro
- Neurophotonics and Mechanical Systems Biology, ICFO, Institut de Ciències Fotòniques, 08860 Castelldefels, Spain
| | - Erik Schäffer
- Cellular Nanoscience, ZMBP, University of Tübingen, 72076 Tübingen, Germany
| | - Michael Krieg
- Neurophotonics and Mechanical Systems Biology, ICFO, Institut de Ciències Fotòniques, 08860 Castelldefels, Spain
| |
Collapse
|
41
|
Qiu J, Xing M, Zhang L, Zhang H, Liu L, Wang D, Qian W, Liu X. A superlattice composite of Zn-Fe layered double hydroxide and graphene oxide for antitumor application. J Mater Chem B 2022; 10:5556-5560. [PMID: 35848466 DOI: 10.1039/d2tb00976e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A superlattice composite of Zn-Fe layered double hydroxide and graphene oxide was fabricated on the titanium surface and showed lamellar morphology. It was found for the first time that this superlattice composite could inhibit cell adhesion and proliferation, and cause cell death of the cholangiocarcinoma cell line RBE cells in vitro and show tumor inhibition effect in vivo.
Collapse
Affiliation(s)
- Jiajun Qiu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China.
| | - Min Xing
- Shanghai Xuhui District Dental Center, Shanghai, 200032, China.
| | - Ling Zhang
- Shanghai Xuhui District Dental Center, Shanghai, 200032, China.
| | - Haifeng Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China.
| | - Lu Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China.
| | - Donghui Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China. .,School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Wenhao Qian
- Shanghai Xuhui District Dental Center, Shanghai, 200032, China.
| | - Xuanyong Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China. .,School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
| |
Collapse
|
42
|
How torque on formins is relaxed strongly affects cellular swirling. Biophys J 2022; 121:2952-2961. [PMID: 35773996 PMCID: PMC9388394 DOI: 10.1016/j.bpj.2022.06.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/05/2022] [Accepted: 06/24/2022] [Indexed: 11/23/2022] Open
Abstract
Chirality is a common and essential characteristic at varied scales of living organisms. By adapting the rotational clutch-filament model we previously developed, we investigate the effect of torque relaxation of a formin on cellular chiral swirling. Since it is still unclear how the torque on a formin is exactly relaxed, we probe three types of torque relaxation, as suggested in the literature. Our analysis indicates that, when a formin periodically undergoes positive and negative rotation during processive capping to relax the torque, cells hardly rotate. When the switch between the positive and the negative rotation during the processive capping is randomly regulated by the torque, our analysis indicates that cells can only slightly rotate either counterclockwise or clockwise. When a formin relaxes the torque by transiently loosening its contact either with the membrane at its anchored site or with the actin filament, we find that cells can prominently rotate either counterclockwise or clockwise, in good consistency with the experiment. Thus, our studies indicate that how the torque on a formin is relaxed strongly affects cellular swirling and suggest an efficient type of torque relaxation in switching cellular swirling.
Collapse
|
43
|
Kausar S, Abbas MN, Gul I, Liu Y, Tang BP, Maqsood I, Liu QN, Dai LS. Integrins in the Immunity of Insects: A Review. Front Immunol 2022; 13:906294. [PMID: 35757717 PMCID: PMC9218073 DOI: 10.3389/fimmu.2022.906294] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/02/2022] [Indexed: 12/30/2022] Open
Abstract
Integrins are a large group of cell-surface proteins that are classified as transmembrane proteins. Integrins are classified into different types based on sequence variations, leading to structural and functional diversity. They are broadly distributed in animals and have a wide range of biological functions such as cell-to-cell communication, intracellular cytoskeleton organization, cellular signaling, immune responses, etc. Integrins are among the most abundant cell surface proteins in insects, exhibiting their indispensability in insect physiology. Because of their critical biological involvement in physiological processes, they appear to be a novel target for designing effective pest control strategies. In the current literature review, we first discuss the discovery and expression responses of integrins against various types of pathogens. Secondly, we examine the specific biological roles of integrins in controlling microbial pathogens, such as phagocytosis, encapsulation, nodulation, immune signaling, and so on. Finally, we describe the possible uses of integrins to control agricultural insect pests.
Collapse
Affiliation(s)
- Saima Kausar
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Muhammad Nadeem Abbas
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Isma Gul
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Yu Liu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Bo-Ping Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng, China
| | - Iram Maqsood
- Department of Zoology, Shaheed Benazir Bhutto Woman University, Peshawar, Pakistan
| | - Qiu-Ning Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng, China.,Key Laboratory of Insect Developmental and Evolutionary Biology, Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Li-Shang Dai
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
44
|
Al-madani H, Du H, Yao J, Peng H, Yao C, Jiang B, Wu A, Yang F. Living Sample Viability Measurement Methods from Traditional Assays to Nanomotion. BIOSENSORS 2022; 12:453. [PMID: 35884256 PMCID: PMC9313330 DOI: 10.3390/bios12070453] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 12/18/2022]
Abstract
Living sample viability measurement is an extremely common process in medical, pharmaceutical, and biological fields, especially drug pharmacology and toxicology detection. Nowadays, there are a number of chemical, optical, and mechanical methods that have been developed in response to the growing demand for simple, rapid, accurate, and reliable real-time living sample viability assessment. In parallel, the development trend of viability measurement methods (VMMs) has increasingly shifted from traditional assays towards the innovative atomic force microscope (AFM) oscillating sensor method (referred to as nanomotion), which takes advantage of the adhesion of living samples to an oscillating surface. Herein, we provide a comprehensive review of the common VMMs, laying emphasis on their benefits and drawbacks, as well as evaluating the potential utility of VMMs. In addition, we discuss the nanomotion technique, focusing on its applications, sample attachment protocols, and result display methods. Furthermore, the challenges and future perspectives on nanomotion are commented on, mainly emphasizing scientific restrictions and development orientations.
Collapse
Affiliation(s)
- Hamzah Al-madani
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS), Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China; (H.A.-m.); (H.D.); (J.Y.); (H.P.); (C.Y.); (B.J.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Du
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS), Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China; (H.A.-m.); (H.D.); (J.Y.); (H.P.); (C.Y.); (B.J.)
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junlie Yao
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS), Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China; (H.A.-m.); (H.D.); (J.Y.); (H.P.); (C.Y.); (B.J.)
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao Peng
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS), Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China; (H.A.-m.); (H.D.); (J.Y.); (H.P.); (C.Y.); (B.J.)
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenyang Yao
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS), Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China; (H.A.-m.); (H.D.); (J.Y.); (H.P.); (C.Y.); (B.J.)
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Jiang
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS), Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China; (H.A.-m.); (H.D.); (J.Y.); (H.P.); (C.Y.); (B.J.)
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS), Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China; (H.A.-m.); (H.D.); (J.Y.); (H.P.); (C.Y.); (B.J.)
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, China
| | - Fang Yang
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS), Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China; (H.A.-m.); (H.D.); (J.Y.); (H.P.); (C.Y.); (B.J.)
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, China
| |
Collapse
|
45
|
Elasticity-associated rebinding rate of molecular bonds between soft elastic media. Biophys J 2022; 121:2297-2311. [PMID: 35610970 DOI: 10.1016/j.bpj.2022.05.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 04/04/2022] [Accepted: 05/18/2022] [Indexed: 11/22/2022] Open
Abstract
A quantitative understanding of how cells interact with their extracellular matrix via molecular bonds is fundamental for many important processes in cell biology and engineering. In these interactions, the deformability of cells and matrix are usually comparable with that of the bonds, making their rebinding events globally coupled with the deformation states of whole systems. Unfortunately, this important principle is not realized or adopted in most conventional theoretical models for analyzing cellular adhesions. In this study, we considered a new theoretical model of a cluster of ligand-receptor bonds between two soft elastic bodies, in which the rebinding rates of ligands to receptors are described, by considering the deformation of the overall system under the influence of bond distributions. On the basis of theory of continuum mechanics and statistical mechanics, we obtained an elasticity-associated rebinding rate of open bonds in a closed analytical form that highly depends on the binding states and distributions of all other bonds, as well as on the overall deformation energy stored in the elastic bodies and all closed bonds. On the basis of this elasticity-associated rebinding rate and by performing Monte Carlo simulations, we uncovered new mechanisms underlying the adhesion stability of molecular bond clusters associated with deformable elastic bodies. Moreover, we revealed that the rebinding processes of molecular bonds is not only dependent on interfacial separation but is related to overall energy. This newly proposed rebinding rate may substantially improve our understanding of how cells adapt to their microenvironments by adjusting their mechanical properties through cytoskeleton remodeling.
Collapse
|
46
|
Guo Y, Yan R, Wang X, Liang G, Yang A, Li J. Near-Infrared Light-Controlled Activation of Adhesive Peptides Regulates Cell Adhesion and Multidifferentiation in Mesenchymal Stem Cells on an Up-Conversion Substrate. NANO LETTERS 2022; 22:2293-2302. [PMID: 35238578 DOI: 10.1021/acs.nanolett.1c04534] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cell adhesion and differentiation can be regulated through material engineering, but current methods have low temporal and spatial accuracy to control invivo. Here, we developed an up-conversion nanoparticle (UCNP) substrate to regulate cell adhesion and multidifferentiation in mesenchymal stem cells (MSCs) by near-infrared (NIR) light. First, the cell-adhesive peptide Arg-Gly-Asp (RGD) was conjugated on the surface of UCNPs, and the photocleavage 4-(hydroxymethyl)-3-nitrobenzoic acid (ONA) was connected to RGD. Then, the photoactivated UCNPs were linked to cover glass to form UCNP-substrate. Under the NIR, the up-convert UV from UCNPs triggered the release of ONA and exposed RGD to change the cell-matrix interactions dynamically for cell adhesion and spreading. Moreover, MSCs cultured on UCNP-substrate could be specifically induced to multidifferentiate adipocytes or osteoblasts via different power and periods of NIR irradiation in vitro and in vivo. Our work demonstrates a new way to control cell adhesion and multidifferentiation by light for regeneration medicine.
Collapse
Affiliation(s)
- Yujiao Guo
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Rui Yan
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Xichao Wang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
- Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Guohai Liang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
- Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Anli Yang
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Jinming Li
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
- Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
47
|
Neel BL, Nisler CR, Walujkar S, Araya-Secchi R, Sotomayor M. Elastic versus brittle mechanical responses predicted for dimeric cadherin complexes. Biophys J 2022; 121:1013-1028. [PMID: 35151631 PMCID: PMC8943749 DOI: 10.1016/j.bpj.2022.02.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 01/02/2022] [Accepted: 02/07/2022] [Indexed: 12/15/2022] Open
Abstract
Cadherins are a superfamily of adhesion proteins involved in a variety of biological processes that include the formation of intercellular contacts, the maintenance of tissue integrity, and the development of neuronal circuits. These transmembrane proteins are characterized by ectodomains composed of a variable number of extracellular cadherin (EC) repeats that are similar but not identical in sequence and fold. E-cadherin, along with desmoglein and desmocollin proteins, are three classical-type cadherins that have slightly curved ectodomains and engage in homophilic and heterophilic interactions through an exchange of conserved tryptophan residues in their N-terminal EC1 repeat. In contrast, clustered protocadherins are straighter than classical cadherins and interact through an antiparallel homophilic binding interface that involves overlapped EC1 to EC4 repeats. Here we present molecular dynamics simulations that model the adhesive domains of these cadherins using available crystal structures, with systems encompassing up to 2.8 million atoms. Simulations of complete classical cadherin ectodomain dimers predict a two-phased elastic response to force in which these complexes first softly unbend and then stiffen to unbind without unfolding. Simulated α, β, and γ clustered protocadherin homodimers lack a two-phased elastic response, are brittle and stiffer than classical cadherins and exhibit complex unbinding pathways that in some cases involve transient intermediates. We propose that these distinct mechanical responses are important for function, with classical cadherin ectodomains acting as molecular shock absorbers and with stiffer clustered protocadherin ectodomains facilitating overlap that favors binding specificity over mechanical resilience. Overall, our simulations provide insights into the molecular mechanics of single cadherin dimers relevant in the formation of cellular junctions essential for tissue function.
Collapse
Affiliation(s)
- Brandon L Neel
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio; The Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio
| | - Collin R Nisler
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio; Biophysics Graduate Program, The Ohio State University, Columbus, Ohio
| | - Sanket Walujkar
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio; Chemical Physics Graduate Program, The Ohio State University, Columbus, Ohio
| | - Raul Araya-Secchi
- Facultad de Ingeniería y Tecnología, Universidad San Sebastián, Santiago, Chile
| | - Marcos Sotomayor
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio; The Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio; Biophysics Graduate Program, The Ohio State University, Columbus, Ohio; Chemical Physics Graduate Program, The Ohio State University, Columbus, Ohio.
| |
Collapse
|
48
|
Neel BL, Nisler CR, Walujkar S, Araya-Secchi R, Sotomayor M. Collective mechanical responses of cadherin-based adhesive junctions as predicted by simulations. Biophys J 2022; 121:991-1012. [PMID: 35150618 PMCID: PMC8943820 DOI: 10.1016/j.bpj.2022.02.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 01/02/2022] [Accepted: 02/07/2022] [Indexed: 12/13/2022] Open
Abstract
Cadherin-based adherens junctions and desmosomes help stabilize cell-cell contacts with additional function in mechano-signaling, while clustered protocadherin junctions are responsible for directing neuronal circuits assembly. Structural models for adherens junctions formed by epithelial cadherin (CDH1) proteins indicate that their long, curved ectodomains arrange to form a periodic, two-dimensional lattice stabilized by tip-to-tip trans interactions (across junction) and lateral cis contacts. Less is known about the exact architecture of desmosomes, but desmoglein (DSG) and desmocollin (DSC) cadherin proteins are also thought to form ordered junctions. In contrast, clustered protocadherin (PCDH)-based cell-cell contacts in neuronal tissues are thought to be responsible for self-recognition and avoidance, and structural models for clustered PCDH junctions show a linear arrangement in which their long and straight ectodomains form antiparallel overlapped trans complexes. Here, we report all-atom molecular dynamics simulations testing the mechanics of minimalistic adhesive junctions formed by CDH1, DSG2 coupled to DSC1, and PCDHγB4, with systems encompassing up to 3.7 million atoms. Simulations generally predict a favored shearing pathway for the adherens junction model and a two-phased elastic response to tensile forces for the adhesive adherens junction and the desmosome models. Complexes within these junctions first unbend at low tensile force and then become stiff to unbind without unfolding. However, cis interactions in both the CDH1 and DSG2-DSC1 systems dictate varied mechanical responses of individual dimers within the junctions. Conversely, the clustered protocadherin PCDHγB4 junction lacks a distinct two-phased elastic response. Instead, applied tensile force strains trans interactions directly, as there is little unbending of monomers within the junction. Transient intermediates, influenced by new cis interactions, are observed after the main rupture event. We suggest that these collective, complex mechanical responses mediated by cis contacts facilitate distinct functions in robust cell-cell adhesion for classical cadherins and in self-avoidance signaling for clustered PCDHs.
Collapse
Affiliation(s)
- Brandon L Neel
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio; The Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio
| | - Collin R Nisler
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio; Biophysics Graduate Program, The Ohio State University, Columbus, Ohio
| | - Sanket Walujkar
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio; Chemical Physics Graduate Program, The Ohio State University, Columbus, Ohio
| | - Raul Araya-Secchi
- Facultad de Ingenieria y Tecnologia, Universidad San Sebastian, Santiago, Chile
| | - Marcos Sotomayor
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio; The Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio; Biophysics Graduate Program, The Ohio State University, Columbus, Ohio; Chemical Physics Graduate Program, The Ohio State University, Columbus, Ohio.
| |
Collapse
|
49
|
Qian L, Zhang K, Guo X, Zhou J, Yu M. Single-Chain Mechanical Properties of Gelatin: A Single-Molecule Study. Polymers (Basel) 2022; 14:869. [PMID: 35267692 PMCID: PMC8912665 DOI: 10.3390/polym14050869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 01/27/2023] Open
Abstract
Gelatin is an important natural biological resource with a wide range of applications in the pharmaceutical, industrial and food industries. We investigated the single-chain behaviors of gelatin by atomic force microscopy (AFM)-based single-molecule force spectroscopy (SMFS), and found that gelatin exists as long chains by fitting with the M-FJC model. By comparing the single-chain elasticity in a nonpolar organic solvent (nonane) and DI water, it was surprising to find that there was almost no difference in the single-chain elasticity of gelatin in nonane and DI water. Considering the specificity of gelatin solubility and the solvent size effect of nonane molecules, when a single gelatin chain is pulled into loose nonane, dehydration does not occur due to strong binding water interactions. Gelatin chains can only interact with water molecules at high temperatures; therefore, no further interaction of single gelatin chains with water molecules occurred at the experimental temperature. This eventually led to almost no difference in the single-chain F-E curves under the two conditions. It is expected that our study will enable the deep exploration of the interaction between water molecules and gelatin and provide a theoretical basis and experimental foundation for the design of gelatin-based materials with more functionalities.
Collapse
Affiliation(s)
- Lu Qian
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510000, China;
| | - Kai Zhang
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China; (K.Z.); (X.G.); (J.Z.)
| | - Xin Guo
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China; (K.Z.); (X.G.); (J.Z.)
| | - Junyu Zhou
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China; (K.Z.); (X.G.); (J.Z.)
| | - Miao Yu
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China; (K.Z.); (X.G.); (J.Z.)
| |
Collapse
|
50
|
Zhang Q, Yang J, Tillieux S, Guo Z, Natividade RDS, Koehler M, Petitjean S, Cui Z, Alsteens D. Stepwise Enzymatic-Dependent Mechanism of Ebola Virus Binding to Cell Surface Receptors Monitored by AFM. NANO LETTERS 2022; 22:1641-1648. [PMID: 35108019 DOI: 10.1021/acs.nanolett.1c04677] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ebola virus (EBOV) is responsible for several outbreaks of hemorrhagic fever with high mortality, raising great public concern. Several cell surface receptors have been identified to mediate EBOV binding and internalization, including phosphatidylserine (PS) receptors (TIM-1) and C-type lectin receptors (DC-SIGNR). However, the role of TIM-1 during early cell surface binding remains elusive and in particular whether TIM-1 acts as a specific receptor for EBOV. Here, we used force-distance curve-based atomic force microscopy (FD-based AFM) to quantify the binding between TIM-1/DC-SIGNR and EBOV glycoprotein (GP) and observed that both receptors specifically bind to GP with high-affinity. Since TIM-1 can also directly interact with PS at the single-molecule level, we also confirmed that TIM-1 acts as dual-function receptors of EBOV. These results highlight the direct involvement of multiple high-affinity receptors in the first steps of binding to cell surfaces, thus offering new perspectives for the development of anti-EBOV therapeutic molecules.
Collapse
Affiliation(s)
- Qingrong Zhang
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-la-Neuve 1348, Belgium
| | - Jinsung Yang
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-la-Neuve 1348, Belgium
| | - Sueli Tillieux
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-la-Neuve 1348, Belgium
| | - Zhengyuan Guo
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Rita Dos Santos Natividade
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-la-Neuve 1348, Belgium
| | - Melanie Koehler
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-la-Neuve 1348, Belgium
| | - Simon Petitjean
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-la-Neuve 1348, Belgium
| | - Zongqiang Cui
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - David Alsteens
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-la-Neuve 1348, Belgium
- Walloon Excellence in Life sciences and Biotechnology (WELBIO), Wavre 1300, Belgium
| |
Collapse
|