1
|
Schultz K, Costa-Pinheiro P, Gardner L, Pinheiro LV, Ramirez-Solis J, Gardner SM, Wellen KE, Marmorstein R. Snapshots of acyl carrier protein shuttling in human fatty acid synthase. Nature 2025; 641:520-528. [PMID: 39979457 PMCID: PMC12058525 DOI: 10.1038/s41586-025-08587-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 01/02/2025] [Indexed: 02/22/2025]
Abstract
The mammalian fatty acid synthase (FASN) enzyme is a dynamic multienzyme that belongs to the megasynthase family. In mammals, a single gene encodes six catalytically active domains and a flexibly tethered acyl carrier protein (ACP) domain that shuttles intermediates between active sites for fatty acid biosynthesis1. FASN is an essential enzyme in mammalian development through the role that fatty acids have in membrane formation, energy storage, cell signalling and protein modifications. Thus, FASN is a promising target for treatment of a large variety of diseases including cancer, metabolic dysfunction-associated fatty liver disease, and viral and parasite infections2,3. The multi-faceted mechanism of FASN and the dynamic nature of the protein, in particular of the ACP, have made it challenging to understand at the molecular level. Here we report cryo-electron microscopy structures of human FASN in a multitude of conformational states with NADPH and NADP+ plus acetoacetyl-CoA present, including structures with the ACP stalled at the dehydratase (DH) and enoyl-reductase (ER) domains. We show that FASN activity in vitro and de novo lipogenesis in cells is inhibited by mutations at the ACP-DH and ACP-ER interfaces. Together, these studies provide new molecular insights into the dynamic nature of FASN and the ACP shuttling mechanism, with implications for developing improved FASN-targeted therapeutics.
Collapse
Affiliation(s)
- Kollin Schultz
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Graduate Group in Biochemistry, Biophysics and Chemical Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Pedro Costa-Pinheiro
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lauren Gardner
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Laura V Pinheiro
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Graduate Group in Biochemistry, Biophysics and Chemical Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Julio Ramirez-Solis
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sarah M Gardner
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Graduate Group in Biochemistry, Biophysics and Chemical Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kathryn E Wellen
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ronen Marmorstein
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Huang H, Wang C, Chang S, Cui T, Xu Y, Huang M, Zhang H, Zhou C, Zhang X, Feng Y. Structure and catalytic mechanism of exogenous fatty acid recycling by AasS, a versatile acyl-ACP synthetase. Nat Struct Mol Biol 2025; 32:802-817. [PMID: 39794554 PMCID: PMC12086093 DOI: 10.1038/s41594-024-01464-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/29/2024] [Indexed: 01/13/2025]
Abstract
Fatty acids (FAs) are essential building blocks for all the domains of life, of which bacterial de novo synthesis, called type II FA synthesis (FAS II), is energetically expensive. The recycling of exogenous FAs (eFAs) partially relieves the FAS II demand and, therefore, compromises the efficacy of FAS II-directed antimicrobials. The versatile acyl-acyl carrier protein (ACP) synthetase, AasS, enables bacterial channeling of diverse eFA nutrients through holo-ACP, an activated form of ACP. However, the molecular mechanism for AasS catalysis is not fully understood. Here we report a series of cryo-electron microscopy structures of AasS from the bioluminescent bacterium Vibrio harveyi to provide insights into the catalytic cycle. AasS forms a ring-shaped hexamer, with each protomer folding into two distinct domains. Biochemical and structural analysis suggests that AasS accommodates distinct eFA substrates and the conserved W230 residue has a gating role. Adenosine triphosphate and Mg2+ binding converts the AasS hexamer to a tetramer, which is likely needed for the acyl adenylate intermediate formation. Afterward, AasS reverts to the hexamer conformation in adaption to acyl-ACP production. The complete landscape for eFA scavenging lays a foundation for exploiting the versatility of AasS in biopharmaceuticals.
Collapse
Affiliation(s)
- Haomin Huang
- Key Laboratory of Multiple Organ Failure (Ministry of Education), Departments of Microbiology and General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chen Wang
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shenghai Chang
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tao Cui
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Yongchang Xu
- Key Laboratory of Multiple Organ Failure (Ministry of Education), Departments of Microbiology and General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Man Huang
- Key Laboratory of Multiple Organ Failure (Ministry of Education), Departments of Microbiology and General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huimin Zhang
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Chun Zhou
- School of Public Health, Zhejiang University School of Medicine, Hangzhou, China.
| | - Xing Zhang
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Center of Cryo-Electron Microscopy, Zhejiang University, Hangzhou, China.
| | - Youjun Feng
- Key Laboratory of Multiple Organ Failure (Ministry of Education), Departments of Microbiology and General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Department of Clinical Laboratory, Shenzhen Third People's Hospital, National Clinical Research Center for Infectious Diseases, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
3
|
Wang G, Li M, Ma M, Wu Z, Liang X, Zheng Q, Li D, An T. Increased accumulation of fatty acids in engineered Saccharomyces cerevisiae by co-overexpression of interorganelle tethering protein and lipases. N Biotechnol 2025; 85:1-8. [PMID: 39613152 DOI: 10.1016/j.nbt.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 10/27/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024]
Abstract
Fatty acids (FAs) and their derivatives are versatile chemicals widely used in various industries. Synthetic biology, using microbial cell factories, emerges as a promising alternative technology for FA production. To enhance the production capacity of these microbial chassis, additional engineering strategies are imperative. Based on the comparison of the morphological changes of lipid droplets (LDs) between oleaginous and non-oleaginous yeasts, we developed a new engineering strategy to increase the accumulation of FAs in Saccharomyces cerevisiae through manipulation of regulation factor and lipases related to LD. The increased biogenesis of LDs, achieved by overexpressing the interorganelle tethering protein Mdm1, coupled with the accelerated degradation of LDs through upregulated lipases, resulted in a 10.70-fold increase in total FAs production. Co-overexpression of Mdm1 and selected lipases significantly improved the biosynthesis of FAs and linoleic acid in the engineered S. cerevisiae. The efficient LD-based metabolic engineering strategy presented in this study holds the potential to advance the high-level production of FAs and their derivatives in microbial cell factories.
Collapse
Affiliation(s)
- Guoli Wang
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, China
| | - Mingkai Li
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, China
| | - Mengyu Ma
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, China
| | - Zhenke Wu
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, China
| | - Xiqin Liang
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, China
| | - Qiusheng Zheng
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, China.
| | - Defang Li
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, China.
| | - Tianyue An
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, China.
| |
Collapse
|
4
|
Rangan R, Feathers R, Khavnekar S, Lerer A, Johnston JD, Kelley R, Obr M, Kotecha A, Zhong ED. CryoDRGN-ET: deep reconstructing generative networks for visualizing dynamic biomolecules inside cells. Nat Methods 2024; 21:1537-1545. [PMID: 39025970 DOI: 10.1038/s41592-024-02340-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 06/06/2024] [Indexed: 07/20/2024]
Abstract
Advances in cryo-electron tomography (cryo-ET) have produced new opportunities to visualize the structures of dynamic macromolecules in native cellular environments. While cryo-ET can reveal structures at molecular resolution, image processing algorithms remain a bottleneck in resolving the heterogeneity of biomolecular structures in situ. Here, we introduce cryoDRGN-ET for heterogeneous reconstruction of cryo-ET subtomograms. CryoDRGN-ET learns a deep generative model of three-dimensional density maps directly from subtomogram tilt-series images and can capture states diverse in both composition and conformation. We validate this approach by recovering the known translational states in Mycoplasma pneumoniae ribosomes in situ. We then perform cryo-ET on cryogenic focused ion beam-milled Saccharomyces cerevisiae cells. CryoDRGN-ET reveals the structural landscape of S. cerevisiae ribosomes during translation and captures continuous motions of fatty acid synthase complexes inside cells. This method is openly available in the cryoDRGN software.
Collapse
Affiliation(s)
- Ramya Rangan
- Department of Computer Science, Princeton University, Princeton, NJ, USA
| | - Ryan Feathers
- Department of Computer Science, Princeton University, Princeton, NJ, USA
| | | | | | - Jake D Johnston
- Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA
| | - Ron Kelley
- Materials and Structural Analysis Division, Thermo Fisher Scientific, Eindhoven, the Netherlands
| | - Martin Obr
- Materials and Structural Analysis Division, Thermo Fisher Scientific, Eindhoven, the Netherlands
| | - Abhay Kotecha
- Materials and Structural Analysis Division, Thermo Fisher Scientific, Eindhoven, the Netherlands.
| | - Ellen D Zhong
- Department of Computer Science, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
5
|
Kumar A, Sharma M, Katkar HH. Peripheral Linker Mediates Acyl Carrier Protein's Recognition of Dehydratase and Stabilizes Type-I Mycobacterium tuberculosis Fatty Acid Synthase. J Chem Inf Model 2024; 64:1347-1360. [PMID: 38346863 DOI: 10.1021/acs.jcim.3c01873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Incomplete structural details of Mycobacterium tuberculosis (Mtb) fatty acid synthase-I (FAS-I) at near-atomic resolution have limited our understanding of the shuttling mechanism of its mobile acyl carrier protein (ACP). Here, we have performed atomistic molecular dynamics simulation of Mtb FAS-I with a homology-modeled structure of ACP stalled at dehydratase (DH) and identified key residues that mediate anchoring of the recognition helix of ACP near DH. The observed distance between catalytic residues of ACP and DH agrees with that reported for fungal FAS-I. Further, the conformation of the peripheral linker is found to be crucial in stabilizing ACP near DH. Correlated interdomain motion is observed between DH, enoyl reductase, and malonyl/palmitoyl transferase, consistent with prior experimental reports of fungal and Mtb FAS-I.
Collapse
Affiliation(s)
- Akhil Kumar
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Manisha Sharma
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Harshwardhan H Katkar
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| |
Collapse
|
6
|
Buyachuihan L, Stegemann F, Grininger M. How Acyl Carrier Proteins (ACPs) Direct Fatty Acid and Polyketide Biosynthesis. Angew Chem Int Ed Engl 2024; 63:e202312476. [PMID: 37856285 DOI: 10.1002/anie.202312476] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/21/2023]
Abstract
Megasynthases, such as type I fatty acid and polyketide synthases (FASs and PKSs), are multienzyme complexes responsible for producing primary metabolites and complex natural products. Fatty acids (FAs) and polyketides (PKs) are built by assembling and modifying small acyl moieties in a stepwise manner. A central aspect of FA and PK biosynthesis involves the shuttling of substrates between the domains of the multienzyme complex. This essential process is mediated by small acyl carrier proteins (ACPs). The ACPs must navigate to the different catalytic domains within the multienzyme complex in a particular order to guarantee the fidelity of the biosynthesis pathway. However, the precise mechanisms underlying ACP-mediated substrate shuttling, particularly the factors contributing to the programming of the ACP movement, still need to be fully understood. This Review illustrates the current understanding of substrate shuttling, including concepts of conformational and specificity control, and proposes a confined ACP movement within type I megasynthases.
Collapse
Affiliation(s)
- Lynn Buyachuihan
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany
| | - Franziska Stegemann
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany
| | - Martin Grininger
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany
| |
Collapse
|
7
|
Samani EK, Chen AC, Lou JW, Dai DL, Keszei AFA, Tan G, Boone C, Grininger M, Mazhab-Jafari MT. Direct structural analysis of a single acyl carrier protein domain in fatty acid synthase from the fungus Saccharomyces cerevisiae. Commun Biol 2024; 7:92. [PMID: 38216676 PMCID: PMC10786820 DOI: 10.1038/s42003-024-05777-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/03/2024] [Indexed: 01/14/2024] Open
Abstract
Acyl carrier protein (ACP) is the work horse of polyketide (PKS) and fatty acid synthases (FAS) and acts as a substrate shuttling domain in these mega enzymes. In fungi, FAS forms a 2.6 MDa symmetric assembly with six identical copies of FAS1 and FAS2 polypeptides. However, ACP spatial distribution is not restricted by symmetry owing to the long and flexible loops that tether the shuttling domain to its corresponding FAS2 polypeptide. This symmetry breaking has hampered experimental investigation of substrate shuttling route in fungal FAS. Here, we develop a protein engineering and expression method to isolate asymmetric fungal FAS proteins containing odd numbers of ACP domains. Electron cryomicroscopy (cryoEM) observation of the engineered complex reveals a non-uniform distribution of the substrate shuttling domain relative to its corresponding FAS2 polypeptide at 2.9 Å resolution. This work lays the methodological foundation for experimental study of ACP shuttling route in fungi.
Collapse
Affiliation(s)
| | - Amy C Chen
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Jennifer W Lou
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - David L Dai
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Alexander F A Keszei
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Princess Margaret Cancer Center, University Health Network, Toronto, Canada
| | | | - Charles Boone
- Donnelly Centre, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Martin Grininger
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany
| | - Mohammad T Mazhab-Jafari
- Department of Medical Biophysics, University of Toronto, Toronto, Canada.
- Princess Margaret Cancer Center, University Health Network, Toronto, Canada.
| |
Collapse
|
8
|
Singh K, Bunzel G, Graf B, Yip KM, Neumann-Schaal M, Stark H, Chari A. Reconstruction of a fatty acid synthesis cycle from acyl carrier protein and cofactor structural snapshots. Cell 2023; 186:5054-5067.e16. [PMID: 37949058 DOI: 10.1016/j.cell.2023.10.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 07/21/2023] [Accepted: 10/05/2023] [Indexed: 11/12/2023]
Abstract
Fatty acids (FAs) play a central metabolic role in living cells as constituents of membranes, cellular energy reserves, and second messenger precursors. A 2.6 MDa FA synthase (FAS), where the enzymatic reactions and structures are known, is responsible for FA biosynthesis in yeast. Essential in the yeast FAS catalytic cycle is the acyl carrier protein (ACP) that actively shuttles substrates, biosynthetic intermediates, and products from one active site to another. We resolve the S. cerevisiae FAS structure at 1.9 Å, elucidating cofactors and water networks involved in their recognition. Structural snapshots of ACP domains bound to various enzymatic domains allow the reconstruction of a full yeast FA biosynthesis cycle. The structural information suggests that each FAS functional unit could accommodate exogenous proteins to incorporate various enzymatic activities, and we show proof-of-concept experiments where ectopic proteins are used to modulate FAS product profiles.
Collapse
Affiliation(s)
- Kashish Singh
- Department of Structural Dynamics, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
| | - Georg Bunzel
- Department of Structural Dynamics, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
| | - Benjamin Graf
- Department of Structural Dynamics, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany; Research Group Structural Biochemistry and Mechanisms, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
| | - Ka Man Yip
- Department of Structural Dynamics, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
| | - Meina Neumann-Schaal
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Inhoffenstrasse 7B, 38124 Braunschweig, Germany
| | - Holger Stark
- Department of Structural Dynamics, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany.
| | - Ashwin Chari
- Department of Structural Dynamics, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany; Research Group Structural Biochemistry and Mechanisms, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany.
| |
Collapse
|
9
|
Liu M, Wang Y, Jiang H, Han Y, Xia J. Synthetic Multienzyme Assemblies for Natural Product Biosynthesis. Chembiochem 2023; 24:e202200518. [PMID: 36625563 DOI: 10.1002/cbic.202200518] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 01/11/2023]
Abstract
In nature, enzymes that catalyze sequential reactions are often assembled as clusters or complexes. The formation of multienzyme complexes, or metabolons, brings the enzyme active sites into proximity to promote intermediate transfer, decrease intermediate leakage, and streamline the metabolic flux towards the desired products. We and others have developed synthetic versions of metabolons through various strategies to enhance the catalytic rates for synthesizing valuable chemicals inside microbes. Synthetic multienzyme complexes range from static enzyme nanostructures to dynamic enzyme coacervates. Enzyme complexation optimizes the metabolic fluxes inside microbes, increases the product titer, and supplies the field with high-yield microbe strains that are amenable to large-scale fermentation. Enzyme complexes constructed inside microbial cells can be separated as independent entities and catalyze biosynthetic reactions ex vivo; such a feature gains these complexes another name, "synthetic organelles" - new subcellular entities with independent structures and functions. Still, the field is seeking new strategies to better balance dynamicity and confinement and to achieve finer control of local compartmentalization in the cells, as the natural multienzyme complexes do. Industrial applications of synthetic multienzyme complexes for the large-scale production of valuable chemicals are yet to be realized. This review focuses on synthetic multienzyme complexes that are constructed and function inside microbial cells.
Collapse
Affiliation(s)
- Min Liu
- Department of Chemistry and, Center for Cell & Developmental Biology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Yue Wang
- Department of Chemistry and, Center for Cell & Developmental Biology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Hao Jiang
- Department of Chemistry and, Center for Cell & Developmental Biology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Yongxu Han
- Department of Chemistry and, Center for Cell & Developmental Biology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Jiang Xia
- Department of Chemistry and, Center for Cell & Developmental Biology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| |
Collapse
|
10
|
de Teresa-Trueba I, Goetz SK, Mattausch A, Stojanovska F, Zimmerli CE, Toro-Nahuelpan M, Cheng DWC, Tollervey F, Pape C, Beck M, Diz-Muñoz A, Kreshuk A, Mahamid J, Zaugg JB. Convolutional networks for supervised mining of molecular patterns within cellular context. Nat Methods 2023; 20:284-294. [PMID: 36690741 PMCID: PMC9911354 DOI: 10.1038/s41592-022-01746-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 12/02/2022] [Indexed: 01/24/2023]
Abstract
Cryo-electron tomograms capture a wealth of structural information on the molecular constituents of cells and tissues. We present DeePiCt (deep picker in context), an open-source deep-learning framework for supervised segmentation and macromolecular complex localization in cryo-electron tomography. To train and benchmark DeePiCt on experimental data, we comprehensively annotated 20 tomograms of Schizosaccharomyces pombe for ribosomes, fatty acid synthases, membranes, nuclear pore complexes, organelles, and cytosol. By comparing DeePiCt to state-of-the-art approaches on this dataset, we show its unique ability to identify low-abundance and low-density complexes. We use DeePiCt to study compositionally distinct subpopulations of cellular ribosomes, with emphasis on their contextual association with mitochondria and the endoplasmic reticulum. Finally, applying pre-trained networks to a HeLa cell tomogram demonstrates that DeePiCt achieves high-quality predictions in unseen datasets from different biological species in a matter of minutes. The comprehensively annotated experimental data and pre-trained networks are provided for immediate use by the community.
Collapse
Affiliation(s)
- Irene de Teresa-Trueba
- grid.4709.a0000 0004 0495 846XStructural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany ,Present Address: Computer Science and Artificial Intelligence Lab, ENGIE Lab Crigen, Stains, France
| | - Sara K. Goetz
- grid.4709.a0000 0004 0495 846XStructural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany ,grid.7700.00000 0001 2190 4373Collaboration for Joint PhD Degree between EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Alexander Mattausch
- grid.4709.a0000 0004 0495 846XStructural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany ,grid.7700.00000 0001 2190 4373Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Frosina Stojanovska
- grid.4709.a0000 0004 0495 846XStructural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany ,grid.7700.00000 0001 2190 4373Collaboration for Joint PhD Degree between EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Christian E. Zimmerli
- grid.4709.a0000 0004 0495 846XStructural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany ,grid.419494.50000 0001 1018 9466Present Address: Department of Molecular Sociology, Max Planck Institute of Biophysics, Frankfurt, Germany
| | - Mauricio Toro-Nahuelpan
- grid.4709.a0000 0004 0495 846XStructural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany ,Present Address: Santiago GmbH & Co. KG, Willich, Germany
| | - Dorothy W. C. Cheng
- grid.7700.00000 0001 2190 4373Collaboration for Joint PhD Degree between EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany ,grid.4709.a0000 0004 0495 846XCell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Fergus Tollervey
- grid.4709.a0000 0004 0495 846XStructural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany ,grid.7700.00000 0001 2190 4373Collaboration for Joint PhD Degree between EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Constantin Pape
- grid.4709.a0000 0004 0495 846XCell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany ,grid.7450.60000 0001 2364 4210Present Address: Institute for Computer Science, Universität Göttingen, Göttingen, Germany
| | - Martin Beck
- grid.4709.a0000 0004 0495 846XStructural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany ,grid.4709.a0000 0004 0495 846XCell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany ,grid.419494.50000 0001 1018 9466Present Address: Department of Molecular Sociology, Max Planck Institute of Biophysics, Frankfurt, Germany
| | - Alba Diz-Muñoz
- grid.4709.a0000 0004 0495 846XCell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Anna Kreshuk
- grid.4709.a0000 0004 0495 846XCell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Julia Mahamid
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany. .,Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
| | - Judith B. Zaugg
- grid.4709.a0000 0004 0495 846XStructural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany ,grid.4709.a0000 0004 0495 846XGenome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| |
Collapse
|
11
|
Bon C, Cabantous S, Julien S, Guillet V, Chalut C, Rima J, Brison Y, Malaga W, Sanchez-Dafun A, Gavalda S, Quémard A, Marcoux J, Waldo GS, Guilhot C, Mourey L. Solution structure of the type I polyketide synthase Pks13 from Mycobacterium tuberculosis. BMC Biol 2022; 20:147. [PMID: 35729566 PMCID: PMC9210659 DOI: 10.1186/s12915-022-01337-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/25/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Type I polyketide synthases (PKSs) are multifunctional enzymes responsible for the biosynthesis of a group of diverse natural compounds with biotechnological and pharmaceutical interest called polyketides. The diversity of polyketides is impressive despite the limited set of catalytic domains used by PKSs for biosynthesis, leading to considerable interest in deciphering their structure-function relationships, which is challenging due to high intrinsic flexibility. Among nineteen polyketide synthases encoded by the genome of Mycobacterium tuberculosis, Pks13 is the condensase required for the final condensation step of two long acyl chains in the biosynthetic pathway of mycolic acids, essential components of the cell envelope of Corynebacterineae species. It has been validated as a promising druggable target and knowledge of its structure is essential to speed up drug discovery to fight against tuberculosis. RESULTS We report here a quasi-atomic model of Pks13 obtained using small-angle X-ray scattering of the entire protein and various molecular subspecies combined with known high-resolution structures of Pks13 domains or structural homologues. As a comparison, the low-resolution structures of two other mycobacterial polyketide synthases, Mas and PpsA from Mycobacterium bovis BCG, are also presented. This study highlights a monomeric and elongated state of the enzyme with the apo- and holo-forms being identical at the resolution probed. Catalytic domains are segregated into two parts, which correspond to the condensation reaction per se and to the release of the product, a pivot for the enzyme flexibility being at the interface. The two acyl carrier protein domains are found at opposite sides of the ketosynthase domain and display distinct characteristics in terms of flexibility. CONCLUSIONS The Pks13 model reported here provides the first structural information on the molecular mechanism of this complex enzyme and opens up new perspectives to develop inhibitors that target the interactions with its enzymatic partners or between catalytic domains within Pks13 itself.
Collapse
Affiliation(s)
- Cécile Bon
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France.
| | - Stéphanie Cabantous
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
- Los Alamos National Laboratory, Bioscience Division B-N2, Los Alamos, NM, 87545, USA
- Present address: Centre de Recherche en Cancérologie de Toulouse (CRCT), Inserm, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Sylviane Julien
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Valérie Guillet
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Christian Chalut
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Julie Rima
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Yoann Brison
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
- Present address: Toulouse White Biotechnology, 31400, Toulouse, France
| | - Wladimir Malaga
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Angelique Sanchez-Dafun
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Sabine Gavalda
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
- Present address: Carbios, Biopole Clermont Limagne, 63360, Saint-Beauzire, France
| | - Annaïk Quémard
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Julien Marcoux
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Geoffrey S Waldo
- Los Alamos National Laboratory, Bioscience Division B-N2, Los Alamos, NM, 87545, USA
| | - Christophe Guilhot
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Lionel Mourey
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
12
|
Tsybovsky Y, Sereda V, Golczak M, Krupenko NI, Krupenko SA. Structure of putative tumor suppressor ALDH1L1. Commun Biol 2022; 5:3. [PMID: 35013550 PMCID: PMC8748788 DOI: 10.1038/s42003-021-02963-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 12/10/2021] [Indexed: 11/08/2022] Open
Abstract
Putative tumor suppressor ALDH1L1, the product of natural fusion of three unrelated genes, regulates folate metabolism by catalyzing NADP+-dependent conversion of 10-formyltetrahydrofolate to tetrahydrofolate and CO2. Cryo-EM structures of tetrameric rat ALDH1L1 revealed the architecture and functional domain interactions of this complex enzyme. Highly mobile N-terminal domains, which remove formyl from 10-formyltetrahydrofolate, undergo multiple transient inter-domain interactions. The C-terminal aldehyde dehydrogenase domains, which convert formyl to CO2, form unusually large interfaces with the intermediate domains, homologs of acyl/peptidyl carrier proteins (A/PCPs), which transfer the formyl group between the catalytic domains. The 4'-phosphopantetheine arm of the intermediate domain is fully extended and reaches deep into the catalytic pocket of the C-terminal domain. Remarkably, the tetrameric state of ALDH1L1 is indispensable for catalysis because the intermediate domain transfers formyl between the catalytic domains of different protomers. These findings emphasize the versatility of A/PCPs in complex, highly dynamic enzymatic systems.
Collapse
Affiliation(s)
- Yaroslav Tsybovsky
- Cancer Research Technology Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, 8560 Progress Drive, Frederick, MD, 21701, USA.
| | - Valentin Sereda
- Nutrition Research Institute, University of North Carolina at Chapel Hill, 500 Laureate Way, Kannapolis, NC, 28081, USA
| | - Marcin Golczak
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH, 44106, USA
| | - Natalia I Krupenko
- Nutrition Research Institute, University of North Carolina at Chapel Hill, 500 Laureate Way, Kannapolis, NC, 28081, USA
- Department of Nutrition, University of North Carolina at Chapel Hill, 135 Dauer Drive, Chapel Hill, NC, 27599, USA
| | - Sergey A Krupenko
- Nutrition Research Institute, University of North Carolina at Chapel Hill, 500 Laureate Way, Kannapolis, NC, 28081, USA.
- Department of Nutrition, University of North Carolina at Chapel Hill, 135 Dauer Drive, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
13
|
Abstract
Fatty acid (FA) biosynthesis plays a central role in the metabolism of living cells as building blocks of biological membranes, energy reserves of the cell, and precursors to second messenger molecules. In keeping with its central metabolic role, FA biosynthesis impacts several cellular functions and its misfunction is linked to disease, such as cancer, obesity, and non-alcoholic fatty liver disease. Cellular FA biosynthesis is conducted by fatty acid synthases (FAS). All FAS enzymes catalyze similar biosynthetic reactions, but the functional architectures adopted by these cellular catalysts can differ substantially. This variability in FAS structure amongst various organisms and the essential role played by FA biosynthetic pathways makes this metabolic route a valuable target for the development of antibiotics. Beyond cellular FA biosynthesis, the quest for renewable energy sources has piqued interest in FA biosynthetic pathway engineering to generate biofuels and fatty acid derived chemicals. For these applications, based on FA biosynthetic pathways, to succeed, detailed metabolic, functional and structural insights into FAS are required, along with an intimate knowledge into the regulation of FAS. In this review, we summarize our present knowledge about the functional, structural, and regulatory aspects of FAS.
Collapse
Affiliation(s)
- Aybeg N Günenc
- Research Group for Structural Biochemistry and Mechanisms, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Benjamin Graf
- Research Group for Structural Biochemistry and Mechanisms, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Holger Stark
- Department of Structural Dynamics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Ashwin Chari
- Research Group for Structural Biochemistry and Mechanisms, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
14
|
A GX 2GX 3G motif facilitates acyl chain sequestration by Saccharomyces cerevisiae acyl carrier protein. J Biol Chem 2021; 297:101394. [PMID: 34767798 PMCID: PMC8683515 DOI: 10.1016/j.jbc.2021.101394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 11/21/2022] Open
Abstract
Saccharomyces cerevisiae acyl carrier protein (ScACP) is a component of the large fungal fatty acid synthase I (FAS I) complex. ScACP comprises two subdomains: a conserved ACP domain that shares extensive structural homology with other ACPs and a unique structural domain. Unlike the metazoan type I ACP that does not sequester the acyl chain, ScACP can partially sequester the growing acyl chain within its hydrophobic core by a mechanism that remains elusive. Our studies on the acyl-ScACP intermediates disclose a unique 188GX2GX3G195 sequence in helix II important for ACP function. Complete loss of sequestration was observed upon mutation of the three glycines in this sequence to valine (G188V/G191V/G195V), while G191V and G188V/G191V double mutants displayed a faster rate of acyl chain hydrolysis. Likewise, mutation of Thr216 to Ala altered the size of the hydrophobic cavity, resulting in loss of C12- chain sequestration. Combining NMR studies with insights from the crystal structure, we show that three glycines in helix II and a threonine in helix IV favor conformational change, which in turn generate space for acyl chain sequestration. Furthermore, we identified the primary hydrophobic cavity of ScACP, present between the carboxyl end of helix II and IV. The opening of the cavity lies between the second and third turns of helix II and loop II. Overall, the study highlights a novel role of the GX2GX3G motif in regulating acyl chain sequestration, vital for ScACP function.
Collapse
|
15
|
Patil GS, Kinatukara P, Mondal S, Shambhavi S, Patel KD, Pramanik S, Dubey N, Narasimhan S, Madduri MK, Pal B, Gokhale RS, Sankaranarayanan R. A universal pocket in fatty acyl-AMP ligases ensures redirection of fatty acid pool away from coenzyme A-based activation. eLife 2021; 10:70067. [PMID: 34490847 PMCID: PMC8460268 DOI: 10.7554/elife.70067] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 09/06/2021] [Indexed: 12/29/2022] Open
Abstract
Fatty acyl-AMP ligases (FAALs) channelize fatty acids towards biosynthesis of virulent lipids in mycobacteria and other pharmaceutically or ecologically important polyketides and lipopeptides in other microbes. They do so by bypassing the ubiquitous coenzyme A-dependent activation and rely on the acyl carrier protein-tethered 4′-phosphopantetheine (holo-ACP). The molecular basis of how FAALs strictly reject chemically identical and abundant acceptors like coenzyme A (CoA) and accept holo-ACP unlike other members of the ANL superfamily remains elusive. We show that FAALs have plugged the promiscuous canonical CoA-binding pockets and utilize highly selective alternative binding sites. These alternative pockets can distinguish adenosine 3′,5′-bisphosphate-containing CoA from holo-ACP and thus FAALs can distinguish between CoA and holo-ACP. These exclusive features helped identify the omnipresence of FAAL-like proteins and their emergence in plants, fungi, and animals with unconventional domain organizations. The universal distribution of FAALs suggests that they are parallelly evolved with FACLs for ensuring a CoA-independent activation and redirection of fatty acids towards lipidic metabolites.
Collapse
Affiliation(s)
- Gajanan S Patil
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | | | - Sudipta Mondal
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Sakshi Shambhavi
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ketan D Patel
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Surabhi Pramanik
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Noopur Dubey
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | | | | | - Biswajit Pal
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | | | - Rajan Sankaranarayanan
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
16
|
Dietl A, Barends TRM. Dynamics in an unusual acyl carrier protein from a ladderane lipid-synthesizing organism. Proteins 2021; 90:73-82. [PMID: 34310758 DOI: 10.1002/prot.26187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 07/16/2021] [Indexed: 11/09/2022]
Abstract
Anaerobic ammonium-oxidizing (anammox) bacteria express a distinct acyl carrier protein implicated in the biosynthesis of the highly unusual "ladderane" lipids these organisms produce. This "anammox-specific" ACP, or amxACP, shows several unique features such as a conserved FF motif and an unusual sequence in the functionally important helix III. Investigation of the protein's structure and dynamics, both in the crystal by ensemble refinement and by MD simulations, reveals that helix III adopts a rare six-residue-long 310 -helical conformation that confers a large degree of conformational and positional variability on this part of the protein. This way of introducing structural flexibility by using the inherent properties of 310 -helices appears unique among ACPs. Moreover, the structure suggests a role for the FF motif in shielding the thioester linkage between the protein's prosthetic group and its acyl cargo from hydrolysis.
Collapse
Affiliation(s)
- Andreas Dietl
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Thomas R M Barends
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Heidelberg, Germany
| |
Collapse
|
17
|
Paiva P, Medina FE, Viegas M, Ferreira P, Neves RPP, Sousa JPM, Ramos MJ, Fernandes PA. Animal Fatty Acid Synthase: A Chemical Nanofactory. Chem Rev 2021; 121:9502-9553. [PMID: 34156235 DOI: 10.1021/acs.chemrev.1c00147] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Fatty acids are crucial molecules for most living beings, very well spread and conserved across species. These molecules play a role in energy storage, cell membrane architecture, and cell signaling, the latter through their derivative metabolites. De novo synthesis of fatty acids is a complex chemical process that can be achieved either by a metabolic pathway built by a sequence of individual enzymes, such as in most bacteria, or by a single, large multi-enzyme, which incorporates all the chemical capabilities of the metabolic pathway, such as in animals and fungi, and in some bacteria. Here we focus on the multi-enzymes, specifically in the animal fatty acid synthase (FAS). We start by providing a historical overview of this vast field of research. We follow by describing the extraordinary architecture of animal FAS, a homodimeric multi-enzyme with seven different active sites per dimer, including a carrier protein that carries the intermediates from one active site to the next. We then delve into this multi-enzyme's detailed chemistry and critically discuss the current knowledge on the chemical mechanism of each of the steps necessary to synthesize a single fatty acid molecule with atomic detail. In line with this, we discuss the potential and achieved FAS applications in biotechnology, as biosynthetic machines, and compare them with their homologous polyketide synthases, which are also finding wide applications in the same field. Finally, we discuss some open questions on the architecture of FAS, such as their peculiar substrate-shuttling arm, and describe possible reasons for the emergence of large megasynthases during evolution, questions that have fascinated biochemists from long ago but are still far from answered and understood.
Collapse
Affiliation(s)
- Pedro Paiva
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Fabiola E Medina
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Autopista Concepción-Talcahuano, 7100 Talcahuano, Chile
| | - Matilde Viegas
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Pedro Ferreira
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Rui P P Neves
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - João P M Sousa
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Maria J Ramos
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Pedro A Fernandes
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| |
Collapse
|
18
|
Mindrebo JT, Chen A, Kim WE, Re RN, Davis TD, Noel JP, Burkart MD. Structure and Mechanistic Analyses of the Gating Mechanism of Elongating Ketosynthases. ACS Catal 2021; 11:6787-6799. [DOI: 10.1021/acscatal.1c00745] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Jeffrey T. Mindrebo
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
- Jack H. Skirball Center for Chemical Biology and Proteomics, Salk Institute for Biological Studies, La Jolla, California 92037, United States
| | - Aochiu Chen
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - Woojoo E. Kim
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - Rebecca N. Re
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - Tony D. Davis
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - Joseph P. Noel
- Jack H. Skirball Center for Chemical Biology and Proteomics, Salk Institute for Biological Studies, La Jolla, California 92037, United States
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, California 92037, United States
| | - Michael D. Burkart
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| |
Collapse
|
19
|
Snowden JS, Alzahrani J, Sherry L, Stacey M, Rowlands DJ, Ranson NA, Stonehouse NJ. Structural insight into Pichia pastoris fatty acid synthase. Sci Rep 2021; 11:9773. [PMID: 33963233 PMCID: PMC8105331 DOI: 10.1038/s41598-021-89196-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/19/2021] [Indexed: 11/24/2022] Open
Abstract
Type I fatty acid synthases (FASs) are critical metabolic enzymes which are common targets for bioengineering in the production of biofuels and other products. Serendipitously, we identified FAS as a contaminant in a cryoEM dataset of virus-like particles (VLPs) purified from P. pastoris, an important model organism and common expression system used in protein production. From these data, we determined the structure of P. pastoris FAS to 3.1 Å resolution. While the overall organisation of the complex was typical of type I FASs, we identified several differences in both structural and enzymatic domains through comparison with the prototypical yeast FAS from S. cerevisiae. Using focussed classification, we were also able to resolve and model the mobile acyl-carrier protein (ACP) domain, which is key for function. Ultimately, the structure reported here will be a useful resource for further efforts to engineer yeast FAS for synthesis of alternate products.
Collapse
Affiliation(s)
- Joseph S Snowden
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Jehad Alzahrani
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Lee Sherry
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Martin Stacey
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - David J Rowlands
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Neil A Ranson
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| | - Nicola J Stonehouse
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
20
|
Hirsch M, Kumru K, Desai RR, Fitzgerald BJ, Miyazawa T, Ray KA, Saif N, Spears S, Keatinge-Clay AT. Insights into modular polyketide synthase loops aided by repetitive sequences. Proteins 2021; 89:1099-1110. [PMID: 33843112 DOI: 10.1002/prot.26083] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 02/05/2021] [Accepted: 04/02/2021] [Indexed: 11/08/2022]
Abstract
The loops of modular polyketide synthases (PKSs) serve diverse functions but are largely uncharacterized. They frequently contain amino acid repeats resulting from genetic events such as slipped-strand mispairing. Determining the tolerance of loops to amino acid changes would aid in understanding and engineering these multidomain molecule factories. Here, tandem repeats in the DNA encoding 949 modules within 129 cis-acyltransferase PKSs were cataloged, and the locations of the corresponding amino acids within the module were identified. The most frequently inserted interdomain loop corresponds with the updated module boundary immediately downstream of the ketosynthase (KS), while the loops bordering the dehydratase are nearly intolerant to such insertions. From the 949 modules, no repetitive sequence loop insertions are located within ACP, and only 2 reside within KS, indicating the sensitivity of these domains to alteration.
Collapse
Affiliation(s)
- Melissa Hirsch
- Department of Chemistry, The University of Texas at Austin, Austin, Texas, USA
| | - Kaan Kumru
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Ronak R Desai
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Brendan J Fitzgerald
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Takeshi Miyazawa
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Katherine A Ray
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Nisha Saif
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Samantha Spears
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Adrian T Keatinge-Clay
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
21
|
Rittner A, Paithankar KS, Himmler A, Grininger M. Type I fatty acid synthase trapped in the octanoyl-bound state. Protein Sci 2020; 29:589-605. [PMID: 31811668 PMCID: PMC6954729 DOI: 10.1002/pro.3797] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/07/2019] [Accepted: 11/29/2019] [Indexed: 01/22/2023]
Abstract
De novo fatty acid biosynthesis in humans is accomplished by a multidomain protein, the Type I fatty acid synthase (FAS). Although ubiquitously expressed in all tissues, fatty acid synthesis is not essential in normal healthy cells due to sufficient supply with fatty acids by the diet. However, FAS is overexpressed in cancer cells and correlates with tumor malignancy, which makes FAS an attractive selective therapeutic target in tumorigenesis. Herein, we present a crystal structure of the condensing part of murine FAS, highly homologous to human FAS, with octanoyl moieties covalently bound to the transferase (MAT—malonyl‐/acetyltransferase) and the condensation (KS—β‐ketoacyl synthase) domain. The MAT domain binds the octanoyl moiety in a novel (unique) conformation, which reflects the pronounced conformational dynamics of the substrate‐binding site responsible for the MAT substrate promiscuity. In contrast, the KS binding pocket just subtly adapts to the octanoyl moiety upon substrate binding. Besides the rigid domain structure, we found a positive cooperative effect in the substrate binding of the KS domain by a comprehensive enzyme kinetic study. These structural and mechanistic findings contribute significantly to our understanding of the mode of action of FAS and may guide future rational inhibitor designs.
Collapse
Affiliation(s)
- Alexander Rittner
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Karthik S Paithankar
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Aaron Himmler
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Martin Grininger
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
22
|
Mindrebo JT, Misson LE, Johnson C, Noel JP, Burkart MD. Activity Mapping the Acyl Carrier Protein: Elongating Ketosynthase Interaction in Fatty Acid Biosynthesis. Biochemistry 2020; 59:3626-3638. [PMID: 32857494 DOI: 10.1021/acs.biochem.0c00605] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Elongating ketosynthases (KSs) catalyze carbon-carbon bond-forming reactions during the committed step for each round of chain extension in both fatty acid synthases (FASs) and polyketide synthases (PKSs). A small α-helical acyl carrier protein (ACP) shuttles fatty acyl intermediates between enzyme active sites. To accomplish this task, the ACP relies on a series of dynamic interactions with multiple partner enzymes of FAS and associated FAS-dependent pathways. Recent structures of the Escherichia coli FAS ACP, AcpP, in covalent complexes with its two cognate elongating KSs, FabF and FabB, provide high-resolution details of these interfaces, but a systematic analysis of specific interfacial interactions responsible for stabilizing these complexes has not yet been undertaken. Here, we use site-directed mutagenesis with both in vitro and in vivo activity analyses to quantitatively evaluate these contacting surfaces between AcpP and FabF. We delineate the FabF interface into three interacting regions and demonstrate the effects of point mutants, double mutants, and region deletion variants. Results from these analyses reveal a robust and modular FabF interface capable of tolerating seemingly critical interface mutations with only the deletion of an entire region significantly compromising activity. Structure and sequence analyses of FabF orthologs from related type II FAS pathways indicate significant conservation of type II FAS KS interface residues and, overall, support its delineation into interaction regions. These findings strengthen our mechanistic understanding of molecular recognition events between ACPs and FAS enzymes and provide a blueprint for engineering ACP-dependent biosynthetic pathways.
Collapse
Affiliation(s)
- Jeffrey T Mindrebo
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States.,Jack H. Skirball Center for Chemical Biology and Proteomics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Laetitia E Misson
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - Caitlin Johnson
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - Joseph P Noel
- Jack H. Skirball Center for Chemical Biology and Proteomics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Michael D Burkart
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| |
Collapse
|
23
|
Skalidis I, Tüting C, Kastritis PL. Unstructured regions of large enzymatic complexes control the availability of metabolites with signaling functions. Cell Commun Signal 2020; 18:136. [PMID: 32843078 PMCID: PMC7448341 DOI: 10.1186/s12964-020-00631-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/17/2020] [Indexed: 12/23/2022] Open
Abstract
Metabolites produced via traditional biochemical processes affect intracellular communication, inflammation, and malignancy. Unexpectedly, acetyl-CoA, α-ketoglutarate and palmitic acid, which are chemical species of reactions catalyzed by highly abundant, gigantic enzymatic complexes, dubbed as "metabolons", have broad "nonmetabolic" signaling functions. Conserved unstructured regions within metabolons determine the yield of these metabolites. Unstructured regions tether functional protein domains, act as spatial constraints to confine constituent enzyme communication, and, in the case of acetyl-CoA production, tend to be regulated by intricate phosphorylation patterns. This review presents the multifaceted roles of these three significant metabolites and describes how their perturbation leads to altered or transformed cellular function. Their dedicated enzymatic systems are then introduced, namely, the pyruvate dehydrogenase (PDH) and oxoglutarate dehydrogenase (OGDH) complexes, and the fatty acid synthase (FAS), with a particular focus on their structural characterization and the localization of unstructured regions. Finally, upstream metabolite regulation, in which spatial occupancy of unstructured regions within dedicated metabolons may affect metabolite availability and subsequently alter cell functions, is discussed. Video abstract.
Collapse
Affiliation(s)
- Ioannis Skalidis
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3a, Halle/Saale, Germany.,Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3, Halle/Saale, Germany
| | - Christian Tüting
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3a, Halle/Saale, Germany.,Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3, Halle/Saale, Germany
| | - Panagiotis L Kastritis
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3a, Halle/Saale, Germany. .,Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3, Halle/Saale, Germany. .,ZIK HALOmem, Martin Luther University Halle-Wittenberg, Biozentrum, Room A.2.14, Weinbergweg 22, 06120, Halle/Saale, Germany.
| |
Collapse
|
24
|
Comparative structure, dynamics and evolution of acyl-carrier proteins from Borrelia burgdorferi, Brucella melitensis and Rickettsia prowazekii. Biochem J 2020; 477:491-508. [PMID: 31922183 DOI: 10.1042/bcj20190797] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 12/11/2022]
Abstract
Acyl carrier proteins (ACPs) are small helical proteins found in all kingdoms of life, primarily involved in fatty acid and polyketide biosynthesis. In eukaryotes, ACPs are part of the fatty acid synthase (FAS) complex, where they act as flexible tethers for the growing lipid chain, enabling access to the distinct active sites in FAS. In the type II synthesis systems found in bacteria and plastids, these proteins exist as monomers and perform various processes, from being a donor for synthesis of various products such as endotoxins, to supplying acyl chains for lipid A and lipoic acid FAS (quorum sensing), but also as signaling molecules, in bioluminescence and activation of toxins. The essential and diverse nature of their functions makes ACP an attractive target for antimicrobial drug discovery. Here, we report the structure, dynamics and evolution of ACPs from three human pathogens: Borrelia burgdorferi, Brucella melitensis and Rickettsia prowazekii, which could facilitate the discovery of new inhibitors of ACP function in pathogenic bacteria.
Collapse
|
25
|
Steric occlusion regulates proximal interactions of acyl carrier protein domain in fungal fatty acid synthase. Commun Biol 2020; 3:274. [PMID: 32471977 PMCID: PMC7260205 DOI: 10.1038/s42003-020-0997-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 05/06/2020] [Indexed: 11/26/2022] Open
Abstract
The acyl carrier protein (ACP) domain shuttles substrates and reaction intermediates in type I fungal fatty acid synthases via transient protein-protein interactions. Here, using electron cryo-microscopy (cryoEM), we report the structure of a fungal FAS stalled at the dehydration reaction, which precedes the final enoyl reduction in the fatty acid biosynthesis cycle. This conformation revealed multiple contact sites between ACP and the dehydratase (DH) and enoyl reductase (ER) domains that occluded the ACP binding to the adjacent ER domain. Our data suggests a minimal path from the DH to the ER reaction site that requires minute changes in the coordinates of the structured N- and C- termini of the ACP domain. Lou and Mazhab-Jafari report the structure of a fungal fatty acid synthase stalled at the dehydration reaction, which precedes the final enoyl reduction in the fatty acid biosynthesis cycle. This study suggests that the binding of acyl carrier protein domain to its proximal dehydratase and enoyl reductase domains in fatty acid synthase is mutually exclusive.
Collapse
|
26
|
Discovery of a Regulatory Subunit of the Yeast Fatty Acid Synthase. Cell 2020; 180:1130-1143.e20. [DOI: 10.1016/j.cell.2020.02.034] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/23/2019] [Accepted: 02/12/2020] [Indexed: 11/23/2022]
|
27
|
Joppe M, D’Imprima E, Salustros N, Paithankar KS, Vonck J, Grininger M, Kühlbrandt W. The resolution revolution in cryoEM requires high-quality sample preparation: a rapid pipeline to a high-resolution map of yeast fatty acid synthase. IUCRJ 2020; 7:220-227. [PMID: 32148850 PMCID: PMC7055384 DOI: 10.1107/s2052252519017366] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 12/31/2019] [Indexed: 06/10/2023]
Abstract
Single-particle electron cryo-microscopy (cryoEM) has undergone a 'resolution revolution' that makes it possible to characterize megadalton (MDa) complexes at atomic resolution without crystals. To fully exploit the new opportunities in molecular microscopy, new procedures for the cloning, expression and purification of macromolecular complexes need to be explored. Macromolecular assemblies are often unstable, and invasive construct design or inadequate purification conditions and sample-preparation methods can result in disassembly or denaturation. The structure of the 2.6 MDa yeast fatty acid synthase (FAS) has been studied by electron microscopy since the 1960s. Here, a new, streamlined protocol for the rapid production of purified yeast FAS for structure determination by high-resolution cryoEM is reported. Together with a companion protocol for preparing cryoEM specimens on a hydrophilized graphene layer, the new protocol yielded a 3.1 Å resolution map of yeast FAS from 15 000 automatically picked particles within a day. The high map quality enabled a complete atomic model of an intact fungal FAS to be built.
Collapse
Affiliation(s)
- Mirko Joppe
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Strasse 15, 60438 Frankfurt am Main, Germany
| | - Edoardo D’Imprima
- Department of Structural Biology, Max Planck Institute of Biophysics, Max-von-Laue Strasse 3, 60438 Frankfurt am Main, Germany
| | - Nina Salustros
- Department of Structural Biology, Max Planck Institute of Biophysics, Max-von-Laue Strasse 3, 60438 Frankfurt am Main, Germany
| | - Karthik S. Paithankar
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Strasse 15, 60438 Frankfurt am Main, Germany
| | - Janet Vonck
- Department of Structural Biology, Max Planck Institute of Biophysics, Max-von-Laue Strasse 3, 60438 Frankfurt am Main, Germany
| | - Martin Grininger
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Strasse 15, 60438 Frankfurt am Main, Germany
| | - Werner Kühlbrandt
- Department of Structural Biology, Max Planck Institute of Biophysics, Max-von-Laue Strasse 3, 60438 Frankfurt am Main, Germany
| |
Collapse
|
28
|
Analysis of the co-translational assembly of the fungal fatty acid synthase (FAS). Sci Rep 2020; 10:895. [PMID: 31964902 PMCID: PMC6972935 DOI: 10.1038/s41598-020-57418-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 12/28/2019] [Indexed: 11/16/2022] Open
Abstract
The yeast fatty acid synthase (FAS) is a barrel-shaped 2.6 MDa complex. Upon barrel-formation, two multidomain subunits, each more than 200 kDa large, intertwine to form a heterododecameric complex that buries 170,000 Å2 of protein surface. In spite of the rich knowledge about yeast FAS in structure and function, its assembly remained elusive until recently, when co-translational interaction of the β-subunit with the nascent α-subunit was found to initiate assembly. Here, we characterize the co-translational assembly of yeast FAS at a molecular level. We show that the co-translationally formed interface is sensitive to subtle perturbations, so that the exchange of two amino acids located in the emerging interface can prevent assembly. On the other hand, assembly can also be initiated via the co-translational interaction of the subunits at other sites, which implies that this process is not strictly site or sequence specific. We further highlight additional steps in the biogenesis of yeast FAS, as the formation of a dimeric subunit that orchestrates complex formation and acts as platform for post-translational phosphopantetheinylation. The presented data supports the understanding of the recently discovered prevalence of eukaryotic complexes for co-translational assembly, and is valuable for further harnessing FAS in the biotechnological production of aliphatic compounds.
Collapse
|
29
|
Qiu S, Liu S, Zaoti ZF, Wang X, Cai G. Modulation of fatty acid synthase by ATR checkpoint kinase Rad3. J Mol Cell Biol 2019; 11:1098-1100. [PMID: 31509190 PMCID: PMC6934155 DOI: 10.1093/jmcb/mjz096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 08/21/2019] [Accepted: 09/04/2019] [Indexed: 12/04/2022] Open
Affiliation(s)
- Shuwan Qiu
- First Affiliated Hospital of USTC, School of Life Sciences, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230027, China
| | - Sheng Liu
- First Affiliated Hospital of USTC, School of Life Sciences, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230027, China
| | - Zannati Ferdous Zaoti
- First Affiliated Hospital of USTC, School of Life Sciences, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230027, China
| | - Xuejuan Wang
- First Affiliated Hospital of USTC, School of Life Sciences, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230027, China
| | - Gang Cai
- First Affiliated Hospital of USTC, School of Life Sciences, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230027, China.,CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Hefei 230026, China
| |
Collapse
|
30
|
The Benefits of Cotranslational Assembly: A Structural Perspective. Trends Cell Biol 2019; 29:791-803. [DOI: 10.1016/j.tcb.2019.07.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 07/13/2019] [Accepted: 07/15/2019] [Indexed: 12/20/2022]
|
31
|
Electron cryomicroscopy observation of acyl carrier protein translocation in type I fungal fatty acid synthase. Sci Rep 2019; 9:12987. [PMID: 31506493 PMCID: PMC6736866 DOI: 10.1038/s41598-019-49261-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 08/22/2019] [Indexed: 12/17/2022] Open
Abstract
During fatty acid biosynthesis, acyl carrier proteins (ACPs) from type I fungal fatty acid synthase (FAS) shuttle substrates and intermediates within a reaction chamber that hosts multiple spatially-fixed catalytic centers. A major challenge in understanding the mechanism of ACP-mediated substrate shuttling is experimental observation of its transient interaction landscape within the reaction chamber. Here, we have shown that ACP spatial distribution is sensitive to the presence of substrates in a catalytically inhibited state, which enables high-resolution investigation of the ACP-dependent conformational transitions within the enoyl reductase (ER) reaction site. In two fungal FASs with distinct ACP localization, the shuttling domain is targeted to the ketoacyl-synthase (KS) domain and away from other catalytic centers, such as acetyl-transferase (AT) and ER domains by steric blockage of the KS active site followed by addition of substrates. These studies strongly suggest that acylation of phosphopantetheine arm of ACP may be an integral part of the substrate shuttling mechanism in type I fungal FAS.
Collapse
|
32
|
Heil CS, Wehrheim SS, Paithankar KS, Grininger M. Fatty Acid Biosynthesis: Chain‐Length Regulation and Control. Chembiochem 2019; 20:2298-2321. [DOI: 10.1002/cbic.201800809] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/20/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Christina S. Heil
- Institute of Organic Chemistry and Chemical BiologyBuchmann Institute for Molecular Life ScienceGoethe University Frankfurt Max-von-Laue-Strasse 15 60438 Frankfurt am Main Germany
| | - S. Sophia Wehrheim
- Institute of Organic Chemistry and Chemical BiologyBuchmann Institute for Molecular Life ScienceGoethe University Frankfurt Max-von-Laue-Strasse 15 60438 Frankfurt am Main Germany
| | - Karthik S. Paithankar
- Institute of Organic Chemistry and Chemical BiologyBuchmann Institute for Molecular Life ScienceGoethe University Frankfurt Max-von-Laue-Strasse 15 60438 Frankfurt am Main Germany
| | - Martin Grininger
- Institute of Organic Chemistry and Chemical BiologyBuchmann Institute for Molecular Life ScienceGoethe University Frankfurt Max-von-Laue-Strasse 15 60438 Frankfurt am Main Germany
| |
Collapse
|
33
|
Liu J, Zhang C, Lu W. Biosynthesis of Long-Chain ω-Hydroxy Fatty Acids by Engineered Saccharomyces cerevisiae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:4545-4552. [PMID: 30929440 DOI: 10.1021/acs.jafc.9b00109] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Long-chain hydroxy fatty acids (HFAs) are rare in nature but have many promising industrial applications. In this study, we developed a biosynthesis method to produce long-chain ω-hydroxy fatty acids. Through disruption of the acyl-CoA synthetases FAA1 and FAA4 and the fatty acyl-CoA oxidase POX1, a Saccharomyces cerevisiae strain was engineered to accumulate free fatty acids (FFAs). Subsequently, the cytochrome P450 monooxygenase CYP52M1 from Starmerella bombicola was introduced to convert FFAs to HFAs, leading to the production of C16 and C18 HFAs at the ω or ω-1 positions. Next, CYP52M1 was reconstituted with the homologous reductase S. bombicola CPR and the heterologous reductase Arabidopsis thaliana cytochrome P450 reductase. The results showed that the CYP52M1-AtCPR1 system significantly increased the hydroxylation in FFA. Moreover, a self-sufficient P450 enzyme system was constructed to achieve higher transformation efficiency. Finally, fed-batch fermentation yielded as much as 347 ± 9.2 mg/L ω-HFAs.
Collapse
Affiliation(s)
- Jingjing Liu
- School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , P. R. China
| | - Chuanbo Zhang
- School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , P. R. China
| | - Wenyu Lu
- School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , P. R. China
- Key Laboratory of System Bioengineering (Tianjin University) , Ministry of Education , Tianjin , 300072 , P. R. China
- SynBio Research Platform , Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin , 300350 , P. R. China
| |
Collapse
|
34
|
Moretto L, Heylen R, Holroyd N, Vance S, Broadhurst RW. Modular type I polyketide synthase acyl carrier protein domains share a common N-terminally extended fold. Sci Rep 2019; 9:2325. [PMID: 30787330 PMCID: PMC6382882 DOI: 10.1038/s41598-019-38747-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 11/15/2018] [Indexed: 11/09/2022] Open
Abstract
Acyl carrier protein (ACP) domains act as interaction hubs within modular polyketide synthase (PKS) systems, employing specific protein-protein interactions to present acyl substrates to a series of enzyme active sites. Many domains from the multimodular PKS that generates the toxin mycolactone display an unusually high degree of sequence similarity, implying that the few sites which vary may do so for functional reasons. When domain boundaries based on prior studies were used to prepare two isolated ACP segments from this system for studies of their interaction properties, one fragment adopted the expected tertiary structure, but the other failed to fold, despite sharing a sequence identity of 49%. Secondary structure prediction uncovered a previously undetected helical region (H0) that precedes the canonical helix-bundle ACP topology in both cases. This article reports the NMR solution structures of two N-terminally extended mycolactone mACP constructs, mH0ACPa and mH0ACPb, both of which possess an additional α-helix that behaves like a rigid component of the domain. The interactions of these species with a phosphopantetheinyl transferase and a ketoreductase domain are unaffected by the presence of H0, but a shorter construct that lacks the H0 region is shown to be substantially less thermostable than mH0ACPb. Bioinformatics analysis suggests that the extended H0-ACP motif is present in 98% of type I cis-acyltransferase PKS chain-extension modules. The polypeptide linker that connects an H0-ACP motif to the preceding domain must therefore be ~12 residues shorter than previously thought, imposing strict limits on ACP-mediated substrate delivery within and between PKS modules.
Collapse
Affiliation(s)
- Luisa Moretto
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Smålandsgatan-24, 392 34, Kalmar, Sweden
| | - Rachel Heylen
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Natalie Holroyd
- Department of Medical Physics and Bioengineering, University College London, London, WC1E 6BT, UK
| | - Steven Vance
- Crescendo Biologics Ltd, Meditrina Building 260, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - R William Broadhurst
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK.
| |
Collapse
|
35
|
Rossini E, Gajewski J, Klaus M, Hummer G, Grininger M. Analysis and engineering of substrate shuttling by the acyl carrier protein (ACP) in fatty acid synthases (FASs). Chem Commun (Camb) 2018; 54:11606-11609. [PMID: 30264077 DOI: 10.1039/c8cc06838k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Perturbations of domain-domain interactions impact the function of type I fatty acid synthases. We identify interface point mutations that modulate fatty acid chain lengths, and explain their effect in changes of domain-domain binding energetics. Engineering of similar interfaces in related megasynthases may be exploited for custom synthesis of natural products.
Collapse
Affiliation(s)
- Emanuele Rossini
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany.
| | | | | | | | | |
Collapse
|
36
|
Abstract
Covering: up to mid of 2018 Type I fatty acid synthases (FASs) are giant multienzymes catalyzing all steps of the biosynthesis of fatty acids from acetyl- and malonyl-CoA by iterative precursor extension. Two strikingly different architectures of FAS evolved in yeast (as well as in other fungi and some bacteria) and metazoans. Yeast-type FAS (yFAS) assembles into a barrel-shaped structure of more than 2 MDa molecular weight. Catalytic domains of yFAS are embedded in an extensive scaffolding matrix and arranged around two enclosed reaction chambers. Metazoan FAS (mFAS) is a 540 kDa X-shaped dimer, with lateral reaction clefts, minimal scaffolding and pronounced conformational variability. All naturally occurring yFAS are strictly specialized for the production of saturated fatty acids. The yFAS architecture is not used for the biosynthesis of any other secondary metabolite. On the contrary, mFAS is related at the domain organization level to major classes of polyketide synthases (PKSs). PKSs produce a variety of complex and potent secondary metabolites; they either act iteratively (iPKS), or are linked via directed substrate transfer into modular assembly lines (modPKSs). Here, we review the architectures of yFAS, mFAS, and iPKSs. We rationalize the evolution of the yFAS assembly, and provide examples for re-engineering of yFAS. Recent studies have provided novel insights into the organization of iPKS. A hybrid crystallographic model of a mycocerosic acid synthase-like Pks5 yielded a comprehensive visualization of the organization and dynamics of fully-reducing iPKS. Deconstruction experiments, structural and functional studies of specialized enzymatic domains, such as the product template (PT) and the starter-unit acyltransferase (SAT) domain have revealed functional principles of non-reducing iterative PKS (NR-PKSs). Most recently, a six-domain loading region of an NR-PKS has been visualized at high-resolution together with cryo-EM studies of a trapped loading intermediate. Altogether, these data reveal the related, yet divergent architectures of mFAS, iPKS and also modPKSs. The new insights highlight extensive dynamics, and conformational coupling as key features of mFAS and iPKS and are an important step towards collection of a comprehensive series of snapshots of PKS action.
Collapse
Affiliation(s)
- Dominik A Herbst
- Department Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland.
| | | | | |
Collapse
|
37
|
Baron S, Peleg Y, Grunwald J, Morgenstern D, Elad N, Peretz M, Albeck S, Levin Y, Welch JT, DeWeerd KA, Schwarz A, Burstein Y, Diskin R, Shakked Z, Zimhony O. Expression of a recombinant, 4'-Phosphopantetheinylated, active M. tuberculosis fatty acid synthase I in E. coli. PLoS One 2018; 13:e0204457. [PMID: 30248156 PMCID: PMC6152951 DOI: 10.1371/journal.pone.0204457] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 09/07/2018] [Indexed: 11/18/2022] Open
Abstract
Background Fatty acid synthase 1 (FAS I) from Mycobacterium tuberculosis (Mtb) is an essential protein and a promising drug target. FAS I is a multi-functional, multi-domain protein that is organized as a large (1.9 MDa) homohexameric complex. Acyl intermediates produced during fatty acid elongation are attached covalently to an acyl carrier protein (ACP) domain. This domain is activated by the transfer of a 4'-Phosphopantetheine (4'-PP, also termed P-pant) group from CoA to ACP catalyzed by a 4'-PP transferase, termed acyl carrier protein synthase (AcpS). Methods In order to obtain an activated FAS I in E. coli, we transformed E. coli with tagged Mtb fas1 and acpS genes encoded by a separate plasmid. We induced the expression of Mtb FAS I following induction of AcpS expression. FAS I was purified by Strep-Tactin affinity chromatography. Results Activation of Mtb FAS I was confirmed by the identification of a bound P-pant group on serine at position 1808 by mass spectrometry. The purified FAS I displayed biochemical activity shown by spectrophotometric analysis of NADPH oxidation and by CoA production, using the Ellman reaction. The purified Mtb FAS I forms a hexameric complex shown by negative staining and cryo-EM. Conclusion Purified hexameric and active Mtb FAS I is required for binding and drug inhibition studies and for structure-function analysis of this enzyme. This relatively simple and short procedure for Mtb FAS I production should facilitate studies of this enzyme.
Collapse
Affiliation(s)
- Szilvia Baron
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Yoav Peleg
- Structural Proteomics Unit (SPU), Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Jacob Grunwald
- Structural Proteomics Unit (SPU), Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - David Morgenstern
- De Botton Institute for Protein Profiling, Weizmann Institute of Science, Rehovot, Israel
| | - Nadav Elad
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Moshe Peretz
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Shira Albeck
- Structural Proteomics Unit (SPU), Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Yishai Levin
- De Botton Institute for Protein Profiling, Weizmann Institute of Science, Rehovot, Israel
| | - John T. Welch
- Department of Chemistry, College of Arts and Sciences University at Albany, New York, United States of America
| | - Kim A. DeWeerd
- Molecular Core Facility College of Arts and Sciences University at Albany, New York, United States of America
| | - Alon Schwarz
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Yigal Burstein
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Ron Diskin
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Zippora Shakked
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Oren Zimhony
- Kaplan Medical Center, Rehovot, affiliated to the School of Medicine, Hebrew University and Hadassah, Jerusalem, Israel
- * E-mail: ,
| |
Collapse
|
38
|
Structure of Type-I Mycobacterium tuberculosis fatty acid synthase at 3.3 Å resolution. Nat Commun 2018; 9:3886. [PMID: 30250274 PMCID: PMC6155276 DOI: 10.1038/s41467-018-06440-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 09/05/2018] [Indexed: 01/21/2023] Open
Abstract
Tuberculosis (TB) is a devastating and rapidly spreading disease caused by Mycobacterium tuberculosis (Mtb). Therapy requires prolonged treatment with a combination of multiple agents and interruptions in the treatment regimen result in emergence and spread of multi-drug resistant (MDR) Mtb strains. MDR Mtb poses a significant global health problem, calling for urgent development of novel drugs to combat TB. Here, we report the 3.3 Å resolution structure of the ~2 MDa type-I fatty acid synthase (FAS-I) from Mtb, determined by single particle cryo-EM. Mtb FAS-I is an essential enzymatic complex that contributes to the virulence of Mtb, and thus a prime target for anti-TB drugs. The structural information for Mtb FAS-I we have obtained enables computer-based drug discovery approaches, and the resolution achieved by cryo-EM is sufficient for elucidating inhibition mechanisms by putative small molecular weight inhibitors. The type-I fatty acid synthase (FAS-I) complex is essential for Mycobacterium tuberculosis (Mtb) and mediates the production of C26 fatty acids that are precursors for the synthesis of mycolic acids. Here the authors present the 3.3 Å resolution cryo-EM structure of Mtb FAS-I, which is of interest for tuberculosis drug development.
Collapse
|
39
|
Cotranslational assembly of protein complexes in eukaryotes revealed by ribosome profiling. Nature 2018; 561:268-272. [PMID: 30158700 PMCID: PMC6372068 DOI: 10.1038/s41586-018-0462-y] [Citation(s) in RCA: 205] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 08/02/2018] [Indexed: 02/07/2023]
Abstract
The folding of newly synthesized proteins to the native state is a major
challenge within the crowded cellular environment, as non-productive
interactions can lead to misfolding, aggregation and degradation1. Cells cope with this challenge by
coupling synthesis with polypeptide folding and by using molecular chaperones to
safeguard folding cotranslationally2.
However, although most of the cellular proteome forms oligomeric assemblies3, little is known about the final step of
folding: the assembly of polypeptides into complexes. In prokaryotes, a
proof-of-concept study showed that the assembly of heterodimeric luciferase is
an organized cotranslational process that is facilitated by spatially confined
translation of the subunits encoded on a polycistronic mRNA4. In eukaryotes, however, fundamental
differences—such as the rarity of polycistronic mRNAs and different
chaperone constellations—raise the question of whether assembly is also
coordinated with translation. Here we provide a systematic and mechanistic
analysis of the assembly of protein complexes in eukaryotes using ribosome
profiling. We determined the in vivo interactions of the
nascent subunits from twelve hetero-oligomeric protein complexes of
Saccharomyces cerevisiae at near-residue resolution. We
find nine complexes assemble cotranslationally; the three complexes that do not
show cotranslational interactions are regulated by dedicated assembly
chaperones5–7. Cotranslational assembly often occurs
uni-directionally, with one fully synthesized subunit engaging its nascent
partner subunit, thereby counteracting its propensity for aggregation. The onset
of cotranslational subunit association coincides directly with the full exposure
of the nascent interaction domain at the ribosomal tunnel exit. The
ribosome-associated Hsp70 chaperone Ssb8
is coordinated with assembly. Ssb transiently engages partially synthesized
interaction domains and then dissociates before the onset of partner subunit
association, presumably to prevent premature assembly interactions. Our study
shows that cotranslational subunit association is a prevalent mechanism for the
assembly of hetero-oligomers in yeast and indicates that translation, folding
and assembly of protein complexes are integrated processes in eukaryotes.
Collapse
|
40
|
Henritzi S, Fischer M, Grininger M, Oreb M, Boles E. An engineered fatty acid synthase combined with a carboxylic acid reductase enables de novo production of 1-octanol in Saccharomyces cerevisiae. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:150. [PMID: 29881455 PMCID: PMC5984327 DOI: 10.1186/s13068-018-1149-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 05/23/2018] [Indexed: 05/05/2023]
Abstract
BACKGROUND The ideal biofuel should not only be a regenerative fuel from renewable feedstocks, but should also be compatible with the existing fuel distribution infrastructure and with normal car engines. As the so-called drop-in biofuel, the fatty alcohol 1-octanol has been described as a valuable substitute for diesel and jet fuels and has already been produced fermentatively from sugars in small amounts with engineered bacteria via reduction of thioesterase-mediated premature release of octanoic acid from fatty acid synthase or via a reversal of the β-oxidation pathway. RESULTS The previously engineered short-chain acyl-CoA producing yeast Fas1R1834K/Fas2 fatty acid synthase variant was expressed together with carboxylic acid reductase from Mycobacterium marinum and phosphopantetheinyl transferase Sfp from Bacillus subtilis in a Saccharomyces cerevisiae Δfas1 Δfas2 Δfaa2 mutant strain. With the involvement of endogenous thioesterases, alcohol dehydrogenases, and aldehyde reductases, the synthesized octanoyl-CoA was converted to 1-octanol up to a titer of 26.0 mg L-1 in a 72-h fermentation. The additional accumulation of 90 mg L-1 octanoic acid in the medium indicated a bottleneck in 1-octanol production. When octanoic acid was supplied externally to the yeast cells, it could be efficiently converted to 1-octanol indicating that re-uptake of octanoic acid across the plasma membrane is not limiting. Additional overexpression of aldehyde reductase Ahr from Escherichia coli nearly completely prevented accumulation of octanoic acid and increased 1-octanol titers up to 49.5 mg L-1. However, in growth tests concentrations even lower than 50.0 mg L-1 turned out to be inhibitory to yeast growth. In situ extraction in a two-phase fermentation with dodecane as second phase did not improve growth, indicating that 1-octanol acts inhibitive before secretion. Furthermore, 1-octanol production was even reduced, which results from extraction of the intermediate octanoic acid to the organic phase, preventing its re-uptake. CONCLUSIONS By providing chain length control via an engineered octanoyl-CoA producing fatty acid synthase, we were able to specifically produce 1-octanol with S. cerevisiae. Before metabolic engineering can be used to further increase product titers and yields, strategies must be developed that cope with the toxic effects of 1-octanol on the yeast cells.
Collapse
Affiliation(s)
- Sandra Henritzi
- Faculty of Biological Sciences, Institute of Molecular Bioscience, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Manuel Fischer
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Cluster of Excellence “Macromolecular Complexes”, Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt, Germany
| | - Martin Grininger
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Cluster of Excellence “Macromolecular Complexes”, Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt, Germany
| | - Mislav Oreb
- Faculty of Biological Sciences, Institute of Molecular Bioscience, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Eckhard Boles
- Faculty of Biological Sciences, Institute of Molecular Bioscience, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| |
Collapse
|
41
|
Herbst DA, Huitt-Roehl CR, Jakob RP, Kravetz JM, Storm PA, Alley JR, Townsend CA, Maier T. The structural organization of substrate loading in iterative polyketide synthases. Nat Chem Biol 2018; 14:474-479. [PMID: 29610486 DOI: 10.1038/s41589-018-0026-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 02/07/2018] [Indexed: 11/09/2022]
Abstract
Polyketide synthases (PKSs) are microbial multienzymes for the biosynthesis of biologically potent secondary metabolites. Polyketide production is initiated by the loading of a starter unit onto an integral acyl carrier protein (ACP) and its subsequent transfer to the ketosynthase (KS). Initial substrate loading is achieved either by multidomain loading modules or by the integration of designated loading domains, such as starter unit acyltransferases (SAT), whose structural integration into PKS remains unresolved. A crystal structure of the loading/condensing region of the nonreducing PKS CTB1 demonstrates the ordered insertion of a pseudodimeric SAT into the condensing region, which is aided by the SAT-KS linker. Cryo-electron microscopy of the post-loading state trapped by mechanism-based crosslinking of ACP to KS reveals asymmetry across the CTB1 loading/-condensing region, in accord with preferential 1:2 binding stoichiometry. These results are critical for re-engineering the loading step in polyketide biosynthesis and support functional relevance of asymmetric conformations of PKSs.
Collapse
Affiliation(s)
- Dominik A Herbst
- Department of Biozentrum, University of Basel, Basel, Switzerland
| | | | - Roman P Jakob
- Department of Biozentrum, University of Basel, Basel, Switzerland
| | - Jacob M Kravetz
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, USA
| | - Philip A Storm
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, USA
| | - Jamie R Alley
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, USA
| | - Craig A Townsend
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, USA
| | - Timm Maier
- Department of Biozentrum, University of Basel, Basel, Switzerland.
| |
Collapse
|
42
|
Rittner A, Paithankar KS, Huu KV, Grininger M. Characterization of the Polyspecific Transferase of Murine Type I Fatty Acid Synthase (FAS) and Implications for Polyketide Synthase (PKS) Engineering. ACS Chem Biol 2018; 13:723-732. [PMID: 29328619 DOI: 10.1021/acschembio.7b00718] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fatty acid synthases (FASs) and polyketide synthases (PKSs) condense acyl compounds to fatty acids and polyketides, respectively. Both, FASs and PKSs, harbor acyltransferases (ATs), which select substrates for condensation by β-ketoacyl synthases (KSs). Here, we present the structural and functional characterization of the polyspecific malonyl/acetyltransferase (MAT) of murine FAS. We assign kinetic constants for the transacylation of the native substrates, acetyl- and malonyl-CoA, and demonstrate the promiscuity of FAS to accept structurally and chemically diverse CoA-esters. X-ray structural data of the KS-MAT didomain in a malonyl-loaded state suggests a MAT-specific role of an active site arginine in transacylation. Owing to its enzymatic properties and its accessibility as a separate domain, MAT of murine FAS may serve as versatile tool for engineering PKSs to provide custom-tailored access to new polyketides that can be applied in antibiotic and antineoplastic therapy.
Collapse
Affiliation(s)
- Alexander Rittner
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Cluster of Excellence for Macromolecular Complexes, Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Karthik S. Paithankar
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Cluster of Excellence for Macromolecular Complexes, Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Khanh Vu Huu
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Cluster of Excellence for Macromolecular Complexes, Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Martin Grininger
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Cluster of Excellence for Macromolecular Complexes, Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| |
Collapse
|
43
|
Kastritis PL, O'Reilly FJ, Bock T, Li Y, Rogon MZ, Buczak K, Romanov N, Betts MJ, Bui KH, Hagen WJ, Hennrich ML, Mackmull MT, Rappsilber J, Russell RB, Bork P, Beck M, Gavin AC. Capturing protein communities by structural proteomics in a thermophilic eukaryote. Mol Syst Biol 2017; 13:936. [PMID: 28743795 PMCID: PMC5527848 DOI: 10.15252/msb.20167412] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The arrangement of proteins into complexes is a key organizational principle for many cellular functions. Although the topology of many complexes has been systematically analyzed in isolation, their molecular sociology in situ remains elusive. Here, we show that crude cellular extracts of a eukaryotic thermophile, Chaetomium thermophilum, retain basic principles of cellular organization. Using a structural proteomics approach, we simultaneously characterized the abundance, interactions, and structure of a third of the C. thermophilum proteome within these extracts. We identified 27 distinct protein communities that include 108 interconnected complexes, which dynamically associate with each other and functionally benefit from being in close proximity in the cell. Furthermore, we investigated the structure of fatty acid synthase within these extracts by cryoEM and this revealed multiple, flexible states of the enzyme in adaptation to its association with other complexes, thus exemplifying the need for in situ studies. As the components of the captured protein communities are known—at both the protein and complex levels—this study constitutes another step forward toward a molecular understanding of subcellular organization.
Collapse
Affiliation(s)
- Panagiotis L Kastritis
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Francis J O'Reilly
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany.,Chair of Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Thomas Bock
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Yuanyue Li
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Matt Z Rogon
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Katarzyna Buczak
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Natalie Romanov
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Matthew J Betts
- Cell Networks, Bioquant & Biochemie Zentrum Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Khanh Huy Bui
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany.,Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - Wim J Hagen
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Marco L Hennrich
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Marie-Therese Mackmull
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Juri Rappsilber
- Chair of Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany.,Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Robert B Russell
- Cell Networks, Bioquant & Biochemie Zentrum Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Peer Bork
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Martin Beck
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Anne-Claude Gavin
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| |
Collapse
|
44
|
Fischer M, Grininger M. Strategies in megasynthase engineering - fatty acid synthases (FAS) as model proteins. Beilstein J Org Chem 2017; 13:1204-1211. [PMID: 28694866 PMCID: PMC5496573 DOI: 10.3762/bjoc.13.119] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 05/26/2017] [Indexed: 12/11/2022] Open
Abstract
Megasynthases are large multienzyme proteins that produce a plethora of important natural compounds by catalyzing the successive condensation and modification of precursor units. Within the class of megasynthases, polyketide synthases (PKS) are responsible for the production of a large spectrum of bioactive polyketides (PK), which have frequently found their way into therapeutic applications. Rational engineering approaches have been performed during the last 25 years that seek to employ the "assembly-line synthetic concept" of megasynthases in order to deliver new bioactive compounds. Here, we highlight PKS engineering strategies in the light of the newly emerging structural information on megasynthases, and argue that fatty acid synthases (FAS) are and will be valuable objects for further developing this field.
Collapse
Affiliation(s)
- Manuel Fischer
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Cluster of Excellence for Macromolecular Complexes, Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Martin Grininger
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Cluster of Excellence for Macromolecular Complexes, Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| |
Collapse
|
45
|
Gajewski J, Pavlovic R, Fischer M, Boles E, Grininger M. Engineering fungal de novo fatty acid synthesis for short chain fatty acid production. Nat Commun 2017; 8:14650. [PMID: 28281527 PMCID: PMC5353594 DOI: 10.1038/ncomms14650] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 01/19/2017] [Indexed: 01/19/2023] Open
Abstract
Fatty acids (FAs) are considered strategically important platform compounds that can be accessed by sustainable microbial approaches. Here we report the reprogramming of chain-length control of Saccharomyces cerevisiae fatty acid synthase (FAS). Aiming for short-chain FAs (SCFAs) producing baker's yeast, we perform a highly rational and minimally invasive protein engineering approach that leaves the molecular mechanisms of FASs unchanged. Finally, we identify five mutations that can turn baker's yeast into a SCFA producing system. Without any further pathway engineering, we achieve yields in extracellular concentrations of SCFAs, mainly hexanoic acid (C6-FA) and octanoic acid (C8-FA), of 464 mg l−1 in total. Furthermore, we succeed in the specific production of C6- or C8-FA in extracellular concentrations of 72 and 245 mg l−1, respectively. The presented technology is applicable far beyond baker's yeast, and can be plugged into essentially all currently available FA overproducing microorganisms. The production of short chain fatty acids by microorganisms has numerous industrial and biofuel applications. Here the authors reprogramme S. cerevisiae fatty acid synthase with five mutations to produce C6- and C8-fatty acids and identify thioesterases responsible for hydrolysis of short chain acyl-CoA hydrolysis.
Collapse
Affiliation(s)
- Jan Gajewski
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Cluster of Excellence 'Macromolecular Complexes', Goethe University Frankfurt, Max-von-Laue-Strasse 15, 60438 Frankfurt, Germany
| | - Renata Pavlovic
- Institute of Molecular Biosciences, Department of Biological Sciences, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| | - Manuel Fischer
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Cluster of Excellence 'Macromolecular Complexes', Goethe University Frankfurt, Max-von-Laue-Strasse 15, 60438 Frankfurt, Germany
| | - Eckhard Boles
- Institute of Molecular Biosciences, Department of Biological Sciences, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| | - Martin Grininger
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Cluster of Excellence 'Macromolecular Complexes', Goethe University Frankfurt, Max-von-Laue-Strasse 15, 60438 Frankfurt, Germany
| |
Collapse
|
46
|
Engineering fatty acid synthases for directed polyketide production. Nat Chem Biol 2017; 13:363-365. [PMID: 28218912 DOI: 10.1038/nchembio.2314] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 01/10/2017] [Indexed: 01/13/2023]
Abstract
In this study, we engineered fatty acid synthases (FAS) for the biosynthesis of short-chain fatty acids and polyketides, guided by a combined in vitro and in silico approach. Along with exploring the synthetic capability of FAS, we aim to build a foundation for efficient protein engineering, with the specific goal of harnessing evolutionarily related megadalton-scale polyketide synthases (PKS) for the tailored production of bioactive natural compounds.
Collapse
|
47
|
Structural definition of the lysine swing in Arabidopsis thaliana PDX1: Intermediate channeling facilitating vitamin B6 biosynthesis. Proc Natl Acad Sci U S A 2016; 113:E5821-E5829. [PMID: 27647886 DOI: 10.1073/pnas.1608125113] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Vitamin B6 is indispensible for all organisms, notably as the coenzyme form pyridoxal 5'-phosphate. Plants make the compound de novo using a relatively simple pathway comprising pyridoxine synthase (PDX1) and pyridoxine glutaminase (PDX2). PDX1 is remarkable given its multifaceted synthetic ability to carry out isomerization, imine formation, ammonia addition, aldol-type condensation, cyclization, and aromatization, all in the absence of coenzymes or recruitment of specialized domains. Two active sites (P1 and P2) facilitate the plethora of reactions, but it is not known how the two are coordinated and, moreover, if intermediates are tunneled between active sites. Here we present X-ray structures of PDX1.3 from Arabidopsis thaliana, the overall architecture of which is a dodecamer of (β/α)8 barrels, similar to the majority of its homologs. An apoenzyme structure revealed that features around the P1 active site in PDX1.3 have adopted inward conformations consistent with a catalytically primed state and delineated a substrate accessible cavity above this active site, not noted in other reported structures. Comparison with the structure of PDX1.3 with an intermediate along the catalytic trajectory demonstrated that a lysine residue swings from the distinct P2 site to the P1 site at this stage of catalysis and is held in place by a molecular catch and pin, positioning it for transfer of serviced substrate back to P2. The study shows that a simple lysine swinging arm coordinates use of chemically disparate sites, dispensing with the need for additional factors, and provides an elegant example of solving complex chemistry to generate an essential metabolite.
Collapse
|
48
|
Production of 1-decanol by metabolically engineered Yarrowia lipolytica. Metab Eng 2016; 38:139-147. [PMID: 27471068 DOI: 10.1016/j.ymben.2016.07.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 05/24/2016] [Accepted: 07/25/2016] [Indexed: 12/14/2022]
Abstract
Medium-chain alcohols are used to produce solvents, surfactants, lubricants, waxes, creams, and cosmetics. In this study, we engineered the oleaginous yeast Yarrowia lipolytica to produce 1-decanol from glucose. Expression of a fatty acyl-CoA reductase from Arabidopsis thaliana in strains of Y. lipolytica previously engineered to produce medium-chain fatty acids resulted in the production of 1-decanol. However, the resulting titers were very low (<10mg/mL), most likely due to product catabolism. In addition, these strains produced small quantities of 1-hexadecanol and 1-octadecanol. Deleting the major peroxisome assembly factor Pex10 was found to significantly increase 1-decanol production, resulting in titers exceeding 500mg/L. It also increased 1-hexadecanoland and 1-octadecanol titers, though the resulting increases were less than those for 1-decanol. These results demonstrate that Y. lipolytica can potentially be used for the industrial production of 1-decanol and other fatty alcohols from simple sugars.
Collapse
|
49
|
Zhou YJ, Buijs NA, Zhu Z, Qin J, Siewers V, Nielsen J. Production of fatty acid-derived oleochemicals and biofuels by synthetic yeast cell factories. Nat Commun 2016; 7:11709. [PMID: 27222209 PMCID: PMC4894961 DOI: 10.1038/ncomms11709] [Citation(s) in RCA: 264] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 04/21/2016] [Indexed: 12/18/2022] Open
Abstract
Sustainable production of oleochemicals requires establishment of cell factory platform strains. The yeast Saccharomyces cerevisiae is an attractive cell factory as new strains can be rapidly implemented into existing infrastructures such as bioethanol production plants. Here we show high-level production of free fatty acids (FFAs) in a yeast cell factory, and the production of alkanes and fatty alcohols from its descendants. The engineered strain produces up to 10.4 g l(-1) of FFAs, which is the highest reported titre to date. Furthermore, through screening of specific pathway enzymes, endogenous alcohol dehydrogenases and aldehyde reductases, we reconstruct efficient pathways for conversion of fatty acids to alkanes (0.8 mg l(-1)) and fatty alcohols (1.5 g l(-1)), to our knowledge the highest titres reported in S. cerevisiae. This should facilitate the construction of yeast cell factories for production of fatty acids derived products and even aldehyde-derived chemicals of high value.
Collapse
Affiliation(s)
- Yongjin J Zhou
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, Gothenburg SE-41296, Sweden.,Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg SE41296, Sweden
| | - Nicolaas A Buijs
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, Gothenburg SE-41296, Sweden
| | - Zhiwei Zhu
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, Gothenburg SE-41296, Sweden.,Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg SE41296, Sweden
| | - Jiufu Qin
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, Gothenburg SE-41296, Sweden
| | - Verena Siewers
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, Gothenburg SE-41296, Sweden.,Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg SE41296, Sweden
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, Gothenburg SE-41296, Sweden.,Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg SE41296, Sweden.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm DK2970, Denmark.,Science for Life Laboratory, Royal Institute of Technology, Stockholm SE-17121, Sweden
| |
Collapse
|
50
|
Chen L, Lee J, Ning Chen W. The use of metabolic engineering to produce fatty acid-derived biofuel and chemicals in Saccharomyces cerevisiae: a review. AIMS BIOENGINEERING 2016. [DOI: 10.3934/bioeng.2016.4.468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|