1
|
Bomber M, Acharya P, Johnson AE, Sampathi S, Flaherty DK, Matlock BK, Ellis JD, Bartlett LN, Williams CS, Hiebert SW, Stengel KR. Mtg16 NHR1 mutations cause defects in lymphopoiesis and the response to anemia. Exp Hematol 2025:104793. [PMID: 40316246 DOI: 10.1016/j.exphem.2025.104793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 04/04/2025] [Accepted: 04/21/2025] [Indexed: 05/04/2025]
Abstract
The ETO/MTG family of transcriptional co-repressors play a key role in adult stem cell function across multiple tissues and may be affected by mutation, deletion or translocation in solid tumors and leukemia. Structural studies of the first conserved domain identified residues that make specific contacts with E proteins, such as HEB and E2A. We generated mice with a mutation in a critical phenylalanine (F210A) in Mtg16 to test the physiological significance of Mtg16 association with E proteins and compared these mice to mice containing a nearby cancer-associated mutation (P209T). We found that Mtg16-/- and Mtg16F210A/F210A mice showed impaired lymphopoiesis following competitive bone marrow transplant, suggesting that the repression of E protein-dependent transcription is critical for B- and T-cell development. While Mtg16-/-, Mtg16P209T/P209T, and Mtg16F210A/F210A animals showed significant defects in burst forming potential (BFU-E) after phenylhydrazine treatment, only Mtg16-/- mice showed overt signs of anemia. Thus, we propose that, while Mtg16 is a critical regulator of HSPC function, response to hemolytic anemia, and lymphoid development, the interaction between Mtg16 and E-proteins is particularly important for lymphopoiesis.
Collapse
Affiliation(s)
- Monica Bomber
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - Pankaj Acharya
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - Anna E Johnson
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - Shilpa Sampathi
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - David K Flaherty
- Vanderbilt Flow Cytometry Shared Resource, Vanderbilt University School of Medicine, Nashville, Tennessee 37027, USA
| | - Brittany K Matlock
- Vanderbilt Flow Cytometry Shared Resource, Vanderbilt University School of Medicine, Nashville, Tennessee 37027, USA
| | - Jacob D Ellis
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - Luke N Bartlett
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - Christopher S Williams
- Department of Medicine, Division of Gastroenterology, Vanderbilt University School of Medicine, Nashville, Tennessee 37027, USA; Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37027, USA
| | - Scott W Hiebert
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA; Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37027, USA.
| | - Kristy R Stengel
- Department of CellBiology, Albert Einstein College of Medicine and the Montefiore Einstein Comprehensive Cancer Center, Bronx, NY 10461.
| |
Collapse
|
2
|
Luo L, Yuan F, Palovcak A, Li F, Yuan Q, Calkins D, Manalo Z, Li Y, Wang D, Zhou M, Zhou C, Li M, Tan YD, Bai F, Ban Y, Mason C, Roberts E, Bilbao D, Liu ZJ, Briegel K, Welford SM, Pei XH, Daunert S, Liu W, Zhang Y. Oncogenic properties of wild-type DNA repair gene FANCA in breast cancer. Cell Rep 2025; 44:115480. [PMID: 40146775 DOI: 10.1016/j.celrep.2025.115480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 01/10/2025] [Accepted: 03/07/2025] [Indexed: 03/29/2025] Open
Abstract
FANCA is one of the 23 genes whose deficiencies lead to defective DNA interstrand crosslink repair and cancer-prone Fanconi anemia disease. Beyond its functions in DNA repair and tumor suppression, we report that high FANCA expression is strongly associated with breast cancer development. Overexpression of WT-FANCA significantly promotes breast cancer cell proliferation and tumor growth both in vitro and in vivo, while FANCA deficiency severely compromises the proliferation of breast cancer cells, but not non-tumorigenic breast epithelial cells. Heterozygous knockout of FANCA in breast cancer mouse models is sufficient to cause significant reduction of breast tumor growth in vivo. Furthermore, we have shown that high FANCA expression in breast cancer correlates with promoter hypomethylation in a TET-dependent manner, and TET inhibition recapitulates the proliferation defects caused by FANCA deficiency. Our study identifies the oncogenic properties of WT-FANCA and shows that FANCA is a promising target for breast cancer intervention.
Collapse
Affiliation(s)
- Liang Luo
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Fenghua Yuan
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Anna Palovcak
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Fang Li
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Qingqi Yuan
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Daniel Calkins
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Zoe Manalo
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Yan Li
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Dazhi Wang
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Mike Zhou
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Catherine Zhou
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Matthew Li
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Yuan-De Tan
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Feng Bai
- International Cancer Center, Shenzhen University Medical School, Shenzhen 518060, China
| | - Yuguang Ban
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Christian Mason
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Evan Roberts
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Daniel Bilbao
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Pathology & Laboratory Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Zhao-Jun Liu
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Karoline Briegel
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Scott M Welford
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Xin-Hai Pei
- International Cancer Center, Shenzhen University Medical School, Shenzhen 518060, China
| | - Sylvia Daunert
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Wenjun Liu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Yanbin Zhang
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
3
|
Hu Z, Yue H, Qiao L. ARL6IP5 in cancers: bidirectional function and therapeutic value. Cancer Gene Ther 2025:10.1038/s41417-025-00903-x. [PMID: 40253526 DOI: 10.1038/s41417-025-00903-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 03/30/2025] [Accepted: 04/02/2025] [Indexed: 04/21/2025]
Abstract
ARL6IP5 (ADP-ribosylation-like factor 6 interacting protein 5) plays an important role in a variety of physiological or pathological processes, including in cancers. However, the biological roles of ARL6IP5 in cancers are controversial. In this mini-review, we summarized the current understanding on the role of ARL6IP5 in cancers, particularly in the progression of chronic hepatitis virus-related hepatocellular carcinoma, as well as the potential values of ARL6IP5 in cancer therapy.
Collapse
Affiliation(s)
- Zenan Hu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Gansu Province Clinical Research Centre for Digestive Diseases, The First Hospital of Lanzhou University, Lanzhou, China
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Hanxun Yue
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Gansu Province Clinical Research Centre for Digestive Diseases, The First Hospital of Lanzhou University, Lanzhou, China
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Liang Qiao
- Storr Liver Centre, Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, NSW, Australia.
| |
Collapse
|
4
|
Li Q, Keskus AG, Wagner J, Izydorczyk MB, Timp W, Sedlazeck FJ, Klein AP, Zook JM, Kolmogorov M, Schatz MC. Unraveling the hidden complexity of cancer through long-read sequencing. Genome Res 2025; 35:599-620. [PMID: 40113261 PMCID: PMC12047254 DOI: 10.1101/gr.280041.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Cancer is fundamentally a disease of the genome, characterized by extensive genomic, transcriptomic, and epigenomic alterations. Most current studies predominantly use short-read sequencing, gene panels, or microarrays to explore these alterations; however, these technologies can systematically miss or misrepresent certain types of alterations, especially structural variants, complex rearrangements, and alterations within repetitive regions. Long-read sequencing is rapidly emerging as a transformative technology for cancer research by providing a comprehensive view across the genome, transcriptome, and epigenome, including the ability to detect alterations that previous technologies have overlooked. In this Perspective, we explore the current applications of long-read sequencing for both germline and somatic cancer analysis. We provide an overview of the computational methodologies tailored to long-read data and highlight key discoveries and resources within cancer genomics that were previously inaccessible with prior technologies. We also address future opportunities and persistent challenges, including the experimental and computational requirements needed to scale to larger sample sizes, the hurdles in sequencing and analyzing complex cancer genomes, and opportunities for leveraging machine learning and artificial intelligence technologies for cancer informatics. We further discuss how the telomere-to-telomere genome and the emerging human pangenome could enhance the resolution of cancer genome analysis, potentially revolutionizing early detection and disease monitoring in patients. Finally, we outline strategies for transitioning long-read sequencing from research applications to routine clinical practice.
Collapse
Affiliation(s)
- Qiuhui Li
- Department of Computer Science, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Ayse G Keskus
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Justin Wagner
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Michal B Izydorczyk
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Winston Timp
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Fritz J Sedlazeck
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Texas 77030, USA
- Department of Computer Science, Rice University, Houston, Texas 77251, USA
| | - Alison P Klein
- Sidney Kimmel Comprehensive Cancer Center, Department of Oncology, Johns Hopkins Medicine, Baltimore, Maryland 21031, USA
| | - Justin M Zook
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Mikhail Kolmogorov
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA;
| | - Michael C Schatz
- Department of Computer Science, Johns Hopkins University, Baltimore, Maryland 21218, USA;
- Sidney Kimmel Comprehensive Cancer Center, Department of Oncology, Johns Hopkins Medicine, Baltimore, Maryland 21031, USA
| |
Collapse
|
5
|
Liu Y, Dou J, Tan Q, Chen S, Li Y, Wang R, Sun N, Qi X. Aquaporin 9 downregulation in KRAS G12V colorectal cancer and associated with increased proliferation and decreased apoptosis in cancer cells. Sci Rep 2025; 15:12298. [PMID: 40210882 PMCID: PMC11986171 DOI: 10.1038/s41598-025-95513-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 03/21/2025] [Indexed: 04/12/2025] Open
Abstract
Patients with colorectal cancer (CRC) carrying KRAS mutations face a challenging prognosis, especially due to their reduced response to EGFR inhibitor therapies. Despite the use of drugs targeting the KRASG12C mutation, the KRASG12V mutation is more common in CRC, and unfortunately, there are currently no effective targeted treatments for it. Our study shows that patients harboring KRASG12V mutation often have larger tumors, increased lymph node metastasis, elevated EGFR expression, and a tendency for right-sided colon tumors. This indicates distinct clinical and pathological traits in CRC patients with KRASG12V. Cellular studies reveal increased proliferation and decreased cell apoptosis in KRASG12V CRC cells. Bioinformatics analysis revealed a notable decrease of aquaporin 9 (AQP9) in KRASG12V CRC, confirmed by immunohistochemistry and Western blot tests. These tests showed a consistent AQP9 decrease in tissue and cell samples, linked to an increased risk of lymph node metastasis in patients with low AQP9. Importantly, AQP9 overexpression was found to hinder CRC cell proliferation and encourage apoptosis, thereby implying a potential therapeutic role for AQP9 modulation. Our study finds a link between ZHX2 and AQP9 in CRC cells, confirmed by histopathological and in vitro evidence. Increased ZHX2 expression elevates AQP9 levels, reduces CRC cell growth, and boosts apoptosis. CO-IP experiments further prove the interaction between ZHX2 and AQP9 proteins. Molecular docking studies reveal that ZHX2 can form stable complexes with AQP9, involving multiple residues. This research enhances our understanding of the molecular mechanisms regulating the growth and death of KRASG12V CRC cells, paving the way for new therapeutic strategies.
Collapse
Affiliation(s)
- Yankui Liu
- Department of Pathology, Affiliated hospital of Jiangnan University, 1000, Hefeng Road, Wuxi, 214028, Jiangsu, China
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, China
| | - Jiahao Dou
- Department of Pathology, Affiliated hospital of Jiangnan University, 1000, Hefeng Road, Wuxi, 214028, Jiangsu, China
| | - Qi Tan
- Department of Pathology, Affiliated hospital of Jiangnan University, 1000, Hefeng Road, Wuxi, 214028, Jiangsu, China
- Department of Pathology, Shantou hospital of TCM, No.3, Shaoshan Road, Longhu District, Shantou, 515000, Guangdong, China
| | - Shuning Chen
- Department of Pathology, Affiliated hospital of Jiangnan University, 1000, Hefeng Road, Wuxi, 214028, Jiangsu, China
| | - Yaru Li
- Department of Pathology, Affiliated hospital of Jiangnan University, 1000, Hefeng Road, Wuxi, 214028, Jiangsu, China
| | - Rong Wang
- Department of Pathology, Affiliated hospital of Jiangnan University, 1000, Hefeng Road, Wuxi, 214028, Jiangsu, China
| | - Ning Sun
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, China.
| | - Xiaowei Qi
- Department of Pathology, Affiliated hospital of Jiangnan University, 1000, Hefeng Road, Wuxi, 214028, Jiangsu, China.
| |
Collapse
|
6
|
Vanzulli A, Sciacqua LV, Patti F, Drebot R, Montin E, Lattanzi R, Lozza LAM, Villa S, Scaramuzza D. Radiomics to predict tumor response to combination chemoradiotherapy in squamous cell carcinoma of the anal canal: a preliminary investigation. Eur Radiol Exp 2025; 9:35. [PMID: 40120019 PMCID: PMC11929663 DOI: 10.1186/s41747-025-00559-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 01/22/2025] [Indexed: 03/25/2025] Open
Abstract
BACKGROUND Upfront combination chemoradiotherapy (CRT) represents the standard of care for patients affected by stage III squamous cell carcinoma (SCC) of the anal canal, achieving satisfactory results both in terms of overall survival and local disease control. However, a non-negligible fraction of patients obtain incomplete responses, highlighting the need for innovative prognostic tools. We report the preliminary results of a customized radiomic algorithm designed to predict tumor response to CRT in patients affected by SCC of the anal canal. METHODS We manually annotated pretreatment T2-weighted turbo spin-echo images of 26 consecutive patients with stage III SCC of the anal canal treated with CRT at our institution from 2012 to 2022. Each patient was classified as complete response (CR, 17 patients), or non-complete response (non-CR, 9 patients) based on the absence or presence of residual disease at imaging and endoscopy after treatment. A total of 132 three-dimensional radiomic features were extracted for each patient and fed to a dedicated machine-learning classifier. RESULTS Models trained with gray-level co-occurrence matrix features achieved the best performances (accuracy 0.846 ± 0.064, sensitivity 0.900 ± 0.122, specificity 0.833 ± 0.175, area under receiver operating characteristics curve 0.867 ± 0.055), highlighting a more homogeneous distribution of voxel intensities and lower spatial complexity in non-CR patients. CONCLUSION Our radiomic tool accurately predicted tumor response to CRT in patients with stage III SCC of the anal canal, highlighting a more homogeneous tissue composition in poor responders. RELEVANCE STATEMENT The more homogeneous radiomic texture observed in non-CR patients may be imputable to a dominant neoplastic clone with a relatively low mitotic index (therefore, limited tissue necrosis), intrinsically more resistant to CRT than faster-proliferating tumors. KEY POINT A non-negligible fraction of patients with anal SCC respond unsatisfactorily to CRT. Our radiomic model predicted response to CRT based on pretreatment MRI. We observed a more homogeneous tissue composition in poor responders. The slow proliferation of a dominant clone may explain non-CR to CRT.
Collapse
Affiliation(s)
- Andrea Vanzulli
- Diagnostic and Interventional Radiology Residency Program, Università degli Studi di Milano, Milan, Italy
- Department of Diagnostic and Interventional Radiology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (Milan), Italy
| | - Lucilla Violetta Sciacqua
- Diagnostic and Interventional Radiology Residency Program, Università degli Studi di Milano, Milan, Italy
| | - Filippo Patti
- Department of Radiation Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.
| | - Roza Drebot
- Department of Oncology and Haemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Eros Montin
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Riccardo Lattanzi
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Laura Anna Maria Lozza
- Department of Radiation Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Sergio Villa
- Department of Radiation Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Davide Scaramuzza
- Department of Diagnostic and Interventional Radiology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
7
|
Razzaq S, Fatima I, Moafian Z, Rahdar A, Fathi-Karkan S, Kharaba Z, Shirzad M, Khan A, Pandey S. Nanomedicine innovations in colon and rectal cancer: advances in targeted drug and gene delivery systems. Med Oncol 2025; 42:113. [PMID: 40097759 DOI: 10.1007/s12032-025-02670-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Accepted: 03/04/2025] [Indexed: 03/19/2025]
Abstract
Nanotechnology has revolutionized cancer diagnostics and therapy, offering unprecedented possibilities to overcome the constraints of conventional treatments. This study provides a detailed overview of the current progress and difficulties in the creation of nanostructured materials, with a specific emphasis on their use in drug and gene delivery systems. The study examines tactics that attempt to improve the effectiveness and safety of chemotherapeutic drugs such as doxorubicin (Dox) by focusing on the potential of antibody-drug conjugates and functionalized nanoparticles. Moreover, it clarifies the challenges encountered in administering nanoparticles orally for gastrointestinal treatments, emphasizing the crucial physicochemical properties that affect their behavior in the gastrointestinal system. This study highlights the transformational potential of nanostructured materials in precision oncology by examining advanced breakthroughs such cell membrane-camouflaged nanoparticles and inorganic nanoparticles designed for gastrointestinal disorders. The text investigates the processes involved in the absorption of nanoparticles and their destruction in lysosomes, revealing the many methods in which enterocytes take up these particles. This study strongly supports the use of advanced nanoparticle-based methods to reduce the harmful effects on the whole body and improve the effectiveness of therapy, based on a thorough examination of current experiments on animals and humans. The main objective of this paper is to provide a fundamental comprehension that will stimulate more investigation and practical use in the field of cancer nanomedicine, advancing its boundaries.
Collapse
Affiliation(s)
- Sobia Razzaq
- School of Pharmacy, University of Management and Technology, Lahore, Punjab, Pakistan
| | - Iqra Fatima
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Zeinab Moafian
- Department of Chemistry and Biochemistry, University of Delaware, Newark, USA
| | - Abbas Rahdar
- Department of Physics, Faculty of Sciences, University of Zabol, Zabol, 538-98615, Iran.
| | - Sonia Fathi-Karkan
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, 94531-55166, Iran.
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, 9414974877, Iran.
| | - Zelal Kharaba
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah, UAE
| | - Maryam Shirzad
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ahmad Khan
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Sadanand Pandey
- School of Bioengineering and Food Technology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, 173229, Himachal Pradesh, India.
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| |
Collapse
|
8
|
Manasa P, Krishnapriya S, Sidhanth C, Vasudevan S, Murhekar K, Ganesan TS. Characterization of RNF144B and PPP2R2A identified by a novel approach using TCGA data in ovarian cancer. Sci Rep 2025; 15:5414. [PMID: 39948107 PMCID: PMC11825944 DOI: 10.1038/s41598-024-76801-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 10/16/2024] [Indexed: 02/16/2025] Open
Abstract
TCGA has identified predominant somatic copy number alterations (SCNA) affecting numerous genes in HGSOC. To identify cancer-driver genes from the regions of SCNA, we have devised a scoring system that integrates information from different genetic alterations. Applying this scoring system to the TCGA-HGSOC dataset (n = 316) we have identified several well-known and novel putative cancer genes in HGSOC. We functionally validated the roles of two previously unknown genes, RNF144B and PPP2R2A. RNF144B, an E3 ubiquitin-ligase is amplified and overexpressed in 16% of HGSOC (TCGA). Overexpression of RNF144B in ovarian cancer cells increased cell proliferation, colony formation, and migration. RNF144B was significantly overexpressed in 50% of primary tumors from patients with HGSOC compared to the ovary. Further, it had significantly reduced expression in tumors after chemotherapy. PPP2R2A, the regulatory subunit of PP2A is deleted and downregulated in 38% of HGSOCs (TCGA). Overexpression of PPP2R2A inhibited cell proliferation, colony-formation, migration, and invasion in ovarian cancer cells. In OVCAR-5, which expresses low levels of PPP2R2A, Niraparib inhibited cell proliferation. PPP2R2A was not expressed in 72% of HGSOCs. This report demonstrates this approach to identifying genes from the TCGA data. Further experiments are required to conclusively prove the role of these genes in the pathogenesis of ovarian cancer.
Collapse
Affiliation(s)
- P Manasa
- Laboratory for Cancer Biology, Department of Medical Oncology and Clinical Research, Cancer Institute (WIA), Chennai, India, 600036
| | - S Krishnapriya
- Laboratory for Cancer Biology, Department of Medical Oncology and Clinical Research, Cancer Institute (WIA), Chennai, India, 600036
| | - C Sidhanth
- Laboratory for Cancer Biology, Department of Medical Oncology and Clinical Research, Cancer Institute (WIA), Chennai, India, 600036
| | - S Vasudevan
- Laboratory for Cancer Biology, Department of Medical Oncology and Clinical Research, Cancer Institute (WIA), Chennai, India, 600036
| | - Kanchan Murhekar
- Department of Pathology, Cancer Institute (WIA), 38 Sardar Patel Road, Chennai, India, 600036
| | - T S Ganesan
- Laboratory for Cancer Biology, Department of Medical Oncology and Clinical Research, Cancer Institute (WIA), Chennai, India, 600036.
- Head Cancer Biology Laboratory, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, India, 600116.
| |
Collapse
|
9
|
Takeda M, Yoshida S, Inoue T, Sekido Y, Hata T, Hamabe A, Ogino T, Miyoshi N, Uemura M, Yamamoto H, Doki Y, Eguchi H. The Role of KRAS Mutations in Colorectal Cancer: Biological Insights, Clinical Implications, and Future Therapeutic Perspectives. Cancers (Basel) 2025; 17:428. [PMID: 39941797 PMCID: PMC11816235 DOI: 10.3390/cancers17030428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/17/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
Background/Objectives: Colorectal cancer (CRC) remains a leading cause of cancer mortality globally, with KRAS mutations occurring in 30-40% of cases, contributing to poor prognosis and resistance to anti-EGFR therapy. This review explores the biological significance, clinical implications, and therapeutic targeting of KRAS mutations in CRC. Methods: A comprehensive analysis of the existing literature and clinical trials was performed, highlighting the role of KRAS mutations in CRC pathogenesis, their impact on prognosis, and recent advancements in targeted therapies. Specific attention was given to emerging therapeutic strategies and resistance mechanisms. Results: KRAS mutations drive tumor progression through persistent activation of MAPK/ERK and PI3K/AKT signaling pathways. These mutations influence the tumor microenvironment, cancer stem cell formation, macropinocytosis, and cell competition. KRAS-mutant CRC exhibits poor responsiveness to anti-EGFR monoclonal antibodies and demonstrates primary and acquired resistance to KRAS inhibitors. Recent breakthroughs include the development of KRAS G12C inhibitors (sotorasib and adagrasib) and promising agents targeting G12D mutations. However, response rates in CRC remain suboptimal compared to other cancers, necessitating combination therapies and novel approaches, such as vaccines, nucleic acid-based therapeutics, and macropinocytosis inhibitors. Conclusions: KRAS mutations are central to CRC pathogenesis and present a significant therapeutic challenge. Advances in KRAS-targeted therapies offer hope for improved outcomes, but resistance mechanisms and organ-specific differences limit efficacy. Continued efforts in personalized treatment strategies and translational research are critical for overcoming these challenges and improving patient survival.
Collapse
Affiliation(s)
- Mitsunobu Takeda
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Yonezawa A, Shimomura K, Okamoto K, Takeda H. Inhibition of BRD4 attenuated IFNγ-induced apoptosis in colorectal cancer organoids. BMC Cancer 2025; 25:136. [PMID: 39849410 PMCID: PMC11759431 DOI: 10.1186/s12885-025-13544-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/16/2025] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND This study aimed to analyze the functional role of Brd4 in colorectal cancer (CRC) organoids. Brd4 was identified as a CRC-related gene by our previous Sleeping Beauty mutagenesis transposon screening in mice. Brd4 is a transcriptional regulator that recognizes acetylated histones and is known to be involved in inflammatory responses. The role of Brd4 in CRC development remains largely unknown. METHODS We knocked out Brd4 in tumor organoids carrying mutations in Apc and Kras to generate Brd4KO organoids, and performed RNA-seq. The response of Brd4KO organoids to IFNγ was analyzed via a cell viability assay, an apoptosis assay, and RNAseq. The results were validated by pharmacological inhibition experiments with JQ1 in human CRC organoids. RESULTS In Brd4KO organoids, the IFNγ signaling genes Il33 and Myc target genes were downregulated. The addition of IFNγ to the colon organoids induced apoptosis, but IFNγ-induced apoptosis was attenuated in the Brd4KO organoids compared with the control organoids (two-sided t-test, P < 0.05). Similar results were obtained from pharmacological inhibition with JQ1 in human CRC organoids; IL33 expression was decreased, and IFNγ-induced apoptosis was attenuated in the presence of JQ1. CONCLUSIONS Our results showed that the inhibition of Brd4 suppressed IFNγ-induced cytotoxicity by modulating the Jak-Stat pathway. These data suggested that the inhibition of Brd4 could increase cell viability in the cancer microenvironment where IFNγ is abundant, revealing a new aspect of the molecular mechanism of CRC development. Our results may help in evaluating the application of Bet inhibitors in treating CRC. Additionally, our RNA-seq data sets will be helpful for clarifying the relationship between Brd4 and immunomodulators, such as Il33, or for studying the responses of colonic epithelial cells to IFNγ.
Collapse
Affiliation(s)
- Akimi Yonezawa
- Laboratory of Molecular Genetics, National Cancer Center Research Institute, Tokyo, Japan
| | - Kana Shimomura
- Laboratory of Molecular Genetics, National Cancer Center Research Institute, Tokyo, Japan
| | - Koji Okamoto
- Advanced Comprehensive Research Organization, Teikyo University, Tokyo, Japan
| | - Haruna Takeda
- Laboratory of Molecular Genetics, National Cancer Center Research Institute, Tokyo, Japan.
| |
Collapse
|
11
|
Bagde PH, Kandpal M, Rani A, Kumar S, Mishra A, Jha HC. Proteasomal Dysfunction in Cancer: Mechanistic Pathways and Targeted Therapies. J Cell Biochem 2025; 126:e70000. [PMID: 39887732 DOI: 10.1002/jcb.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/09/2024] [Accepted: 01/10/2025] [Indexed: 02/01/2025]
Abstract
Proteasomes are the catalytic complexes in eukaryotic cells that decide the fate of proteins involved in various cellular processes in an energy-dependent manner. The proteasomal system performs its function by selectively destroying the proteins labelled with the small protein ubiquitin. Dysfunctional proteasomal activity is allegedly involved in various clinical disorders such as cancer, neurodegenerative disorders, ageing, and so forth, making it an important therapeutic target. Notably, compared to healthy cells, cancer cells have a higher protein homeostasis requirement and a faster protein turnover rate. The ubiquitin-proteasome system (UPS) helps cancer cells increase rapidly and experience less apoptotic cell death. Therefore, understanding UPS is essential to design and discover some effective inhibitors for cancer therapy. Hereby, we have focused on the role of the 26S proteasome complex, mainly the UPS, in carcinogenesis and seeking potential therapeutic targets in treating numerous cancers.
Collapse
Affiliation(s)
- Pranit Hemant Bagde
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Madhya Pradesh, India
| | - Meenakshi Kandpal
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Madhya Pradesh, India
| | - Annu Rani
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Madhya Pradesh, India
| | - Sachin Kumar
- Himalayan School of Biosciences, Swami Rama Himalayan University, Dehradun, Uttarakhand, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology, Jodhpur, Rajasthan, India
| | - Hem Chandra Jha
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Madhya Pradesh, India
| |
Collapse
|
12
|
Das S, Pattnaik G, Pattanaik S, Jena BR, Satapathy BS, Pradhan A. Envisioning Clinical Management of Breast Cancer: a Comprehensive Review. Curr Drug Discov Technol 2025; 22:e290424229495. [PMID: 38685777 DOI: 10.2174/0115701638300812240417055802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/29/2024] [Accepted: 03/12/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND Background: Coming to the edge of disease manufacturing in the twenty-- first-century, breast cancer occupies a terrifying scenario in the globe, especially in adult women. Its curiosity endeavours remarkable advances made during the past decennaries for cancer treatment and diagnosis. OBJECTIVE It accounts for the fifth leading cause of transience, killing approximately 570,000 people per annum. To reduce the prognosis of clinical oncological development with the application of a new chemical entity, some of the critical challenges, like active pharmaceutical ingredients with high chemical resistance, extreme side effects, and high treatment costs are some of the limitations in the curbing aspects of breast melanoma. METHODS In cancer research, hence, the development of drugs that are safe, efficient, and cost-effective remains a 'Holy Grail' that may be considered as a boon to target the malignant tissues with novel therapeutics devices. RESULTS Through the findings on overcoming the drawbacks of traditional methods, researchers have given special attention to cancer-preventive and theranostic approaches based on some novel drug delivery systems. CONCLUSION The present study forecasts the wide-ranging modern applications, and on developing some novel liposomal drug delivery therapy against breast cancer.
Collapse
Affiliation(s)
- Shubhashree Das
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Jatani, 752050, Odisha, India
| | - Gurudutta Pattnaik
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Jatani, 752050, Odisha, India
| | - Sovan Pattanaik
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Jatani, 752050, Odisha, India
| | - Bikash Ranjan Jena
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Jatani, 752050, Odisha, India
| | - Bhabani Sankar Satapathy
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Jatani, 752050, Odisha, India
| | - Ayushi Pradhan
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Jatani, 752050, Odisha, India
| |
Collapse
|
13
|
Sha Z, Freda PJ, Bhandary P, Ghosh A, Matsumoto N, Moore JH, Hu T. Distinct network patterns emerge from Cartesian and XOR epistasis models: a comparative network science analysis. BioData Min 2024; 17:61. [PMID: 39732697 DOI: 10.1186/s13040-024-00413-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 12/09/2024] [Indexed: 12/30/2024] Open
Abstract
BACKGROUND Epistasis, the phenomenon where the effect of one gene (or variant) is masked or modified by one or more other genes, significantly contributes to the phenotypic variance of complex traits. Traditionally, epistasis has been modeled using the Cartesian epistatic model, a multiplicative approach based on standard statistical regression. However, a recent study investigating epistasis in obesity-related traits has identified potential limitations of the Cartesian epistatic model, revealing that it likely only detects a fraction of the genetic interactions occurring in natural systems. In contrast, the exclusive-or (XOR) epistatic model has shown promise in detecting a broader range of epistatic interactions and revealing more biologically relevant functions associated with interacting variants. To investigate whether the XOR epistatic model also forms distinct network structures compared to the Cartesian model, we applied network science to examine genetic interactions underlying body mass index (BMI) in rats (Rattus norvegicus). RESULTS Our comparative analysis of XOR and Cartesian epistatic models in rats reveals distinct topological characteristics. The XOR model exhibits enhanced sensitivity to epistatic interactions between the network communities found in the Cartesian epistatic network, facilitating the identification of novel trait-related biological functions via community-based enrichment analysis. Additionally, the XOR network features triangle network motifs, indicative of higher-order epistatic interactions. This research also evaluates the impact of linkage disequilibrium (LD)-based edge pruning on network-based epistasis analysis, finding that LD-based edge pruning may lead to increased network fragmentation, which may hinder the effectiveness of network analysis for the investigation of epistasis. We confirmed through network permutation analysis that most XOR and Cartesian epistatic networks derived from the data display distinct structural properties compared to randomly shuffled networks. CONCLUSIONS Collectively, these findings highlight the XOR model's ability to uncover meaningful biological associations and higher-order epistasis derived from lower-order network topologies. The introduction of community-based enrichment analysis and motif-based epistatic discovery emphasize network science as a critical approach for advancing epistasis research and understanding complex genetic architectures.
Collapse
Affiliation(s)
- Zhendong Sha
- School of Computing, Queen's University, 557 Goodwin Hall, 21-25 Union St, Kingston, K7L 2N8, Ontario, Canada
| | - Philip J Freda
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, 700 N. San Vicente Blvd., Pacific Design Center, Suite G540, West Hollywood, 90069, CA, USA
| | - Priyanka Bhandary
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, 700 N. San Vicente Blvd., Pacific Design Center, Suite G540, West Hollywood, 90069, CA, USA
| | - Attri Ghosh
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, 700 N. San Vicente Blvd., Pacific Design Center, Suite G540, West Hollywood, 90069, CA, USA
| | - Nicholas Matsumoto
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, 700 N. San Vicente Blvd., Pacific Design Center, Suite G540, West Hollywood, 90069, CA, USA
| | - Jason H Moore
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, 700 N. San Vicente Blvd., Pacific Design Center, Suite G540, West Hollywood, 90069, CA, USA.
| | - Ting Hu
- School of Computing, Queen's University, 557 Goodwin Hall, 21-25 Union St, Kingston, K7L 2N8, Ontario, Canada.
| |
Collapse
|
14
|
Wang J, Ye F, Chai H, Jiang Y, Wang T, Ran X, Xia Q, Xu Z, Fu Y, Zhang G, Wu H, Guo G, Guo H, Ruan Y, Wang Y, Xing D, Xu X, Zhang Z. Advances and applications in single-cell and spatial genomics. SCIENCE CHINA. LIFE SCIENCES 2024:10.1007/s11427-024-2770-x. [PMID: 39792333 DOI: 10.1007/s11427-024-2770-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/10/2024] [Indexed: 01/12/2025]
Abstract
The applications of single-cell and spatial technologies in recent times have revolutionized the present understanding of cellular states and the cellular heterogeneity inherent in complex biological systems. These advancements offer unprecedented resolution in the examination of the functional genomics of individual cells and their spatial context within tissues. In this review, we have comprehensively discussed the historical development and recent progress in the field of single-cell and spatial genomics. We have reviewed the breakthroughs in single-cell multi-omics technologies, spatial genomics methods, and the computational strategies employed toward the analyses of single-cell atlas data. Furthermore, we have highlighted the advances made in constructing cellular atlases and their clinical applications, particularly in the context of disease. Finally, we have discussed the emerging trends, challenges, and opportunities in this rapidly evolving field.
Collapse
Affiliation(s)
- Jingjing Wang
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Fang Ye
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Haoxi Chai
- Life Sciences Institute and The Second Affiliated Hospital, Zhejiang University, Hangzhou, 310058, China
| | - Yujia Jiang
- BGI Research, Shenzhen, 518083, China
- BGI Research, Hangzhou, 310030, China
| | - Teng Wang
- Biomedical Pioneering Innovation Center (BIOPIC) and School of Life Sciences, Peking University, Beijing, 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Xia Ran
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Institute of Hematology, Zhejiang University, Hangzhou, 310000, China
| | - Qimin Xia
- Biomedical Pioneering Innovation Center (BIOPIC) and School of Life Sciences, Peking University, Beijing, 100871, China
| | - Ziye Xu
- Department of Laboratory Medicine of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yuting Fu
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Guodong Zhang
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Hanyu Wu
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Guoji Guo
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Zhejiang Provincial Key Lab for Tissue Engineering and Regenerative Medicine, Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Hangzhou, 310058, China.
- Institute of Hematology, Zhejiang University, Hangzhou, 310000, China.
| | - Hongshan Guo
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Institute of Hematology, Zhejiang University, Hangzhou, 310000, China.
| | - Yijun Ruan
- Life Sciences Institute and The Second Affiliated Hospital, Zhejiang University, Hangzhou, 310058, China.
| | - Yongcheng Wang
- Department of Laboratory Medicine of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Dong Xing
- Biomedical Pioneering Innovation Center (BIOPIC) and School of Life Sciences, Peking University, Beijing, 100871, China.
- Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing, 100871, China.
| | - Xun Xu
- BGI Research, Shenzhen, 518083, China.
- BGI Research, Hangzhou, 310030, China.
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI Research, Shenzhen, 518083, China.
| | - Zemin Zhang
- Biomedical Pioneering Innovation Center (BIOPIC) and School of Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
15
|
Wang Y, Liu L, Graff SL, Cheng L. Recent advancements in biomarkers and molecular diagnostics in hormonal receptor-positive breast cancer. Histopathology 2024. [PMID: 39687977 DOI: 10.1111/his.15395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Molecular applications have limited use in breast cancer compared to other cancer types. In recent years, with an improving appreciation of the molecular genetics of breast cancer and innovative novel targeted and immune-mediated therapeutics, opportunities have arisen for more biomarker analysis and molecular applications in the diagnosis and treatment of both locally advanced and metastatic breast cancers. In hormone receptor-positive, HER2-negative breast cancers, a growing number of revolutionized personalized therapies are in clinical use or on trials, such as CDK4/6 inhibitors and immune checkpoint inhibitors in adjuvant and neoadjuvant settings, and PIK3CA inhibitors in metastatic disease. In this review, we focus on biomarkers associated with those new therapeutic targets and molecular applications for genetic alterations associated with drug resistance or interaction from a pathology perspective for selecting and optimizing breast cancer treatment.
Collapse
Affiliation(s)
- Yihong Wang
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital and Lifespan Medical Center, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Liu Liu
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital and Lifespan Medical Center, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Stephanie L Graff
- Division of Medical Oncology, Rhode Island Hospital and Lifespan Medical Center, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Liang Cheng
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital and Lifespan Medical Center, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| |
Collapse
|
16
|
Ahmad O, Ahmad T, Pfister SM. IDH mutation, glioma immunogenicity, and therapeutic challenge of primary mismatch repair deficient IDH-mutant astrocytoma PMMRDIA: a systematic review. Mol Oncol 2024; 18:2822-2841. [PMID: 38339779 PMCID: PMC11619801 DOI: 10.1002/1878-0261.13598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/28/2023] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
In 2021, Suwala et al. described Primary Mismatch Repair Deficient IDH-mutant Astrocytoma (PMMRDIA) as a distinct group of gliomas. In unsupervised clustering, PMMRDIA forms distinct cluster, separate from other IDH-mutant gliomas, including IDH-mutant gliomas with secondary mismatch repair (MMR) deficiency. In the published cohort, three patients received treatment with an immune checkpoint blocker (ICB), yet none exhibited a response, which aligns with existing knowledge about the decreased immunogenicity of IDH-mutant gliomas in comparison to IDH-wildtype. In the case of PMMRDIA, the inherent resistance to the standard-of-care temozolomide caused by MMR deficiency is an additional challenge. It is known that a gain-of-function mutation of IDH1/2 genes produces the oncometabolite R-2-hydroxyglutarate (R-2-HG), which increases DNA and histone methylation contributing to the characteristic glioma-associated CpG island methylator phenotype (G-CIMP). While other factors could be involved in remodeling the tumor microenvironment (TME) of IDH-mutant gliomas, this systematic review emphasizes the role of R-2-HG and the subsequent G-CIMP in immune suppression. This highlights a potential actionable pathway to enhance the response of ICB, which might be relevant for addressing the unmet therapeutic challenge of PMMRDIA.
Collapse
Affiliation(s)
- Olfat Ahmad
- Division of Pediatric NeurooncologyHopp Children's Cancer Center (KiTZ)HeidelbergGermany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ)German Cancer Consortium (DKTK)HeidelbergGermany
- Institute of Human GeneticsUniversity Hospital HeidelbergHeidelbergGermany
- University of OxfordOxfordUK
- King Hussein Cancer Center (KHCC)AmmanJordan
| | - Tahani Ahmad
- Department of Pediatric NeuroradiologyIWK Health CenterHalifaxCanada
- Dalhousie UniversityHalifaxCanada
| | - Stefan M. Pfister
- Division of Pediatric NeurooncologyHopp Children's Cancer Center (KiTZ)HeidelbergGermany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ)German Cancer Consortium (DKTK)HeidelbergGermany
- Department of Pediatric Hematology and OncologyHeidelberg University HospitalHeidelbergGermany
| |
Collapse
|
17
|
Ye WL, Huang L, Yang XQ, Wan S, Gan WJ, Yang Y, He XS, Liu F, Guo X, Liu YX, Hu G, Li XM, Shi WY, He K, Wu YY, Wu WX, Lu JH, Song Y, Qu CJ, Wu H. TRIM21 induces selective autophagic degradation of c-Myc and sensitizes regorafenib therapy in colorectal cancer. Proc Natl Acad Sci U S A 2024; 121:e2406936121. [PMID: 39388269 PMCID: PMC11494295 DOI: 10.1073/pnas.2406936121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/27/2024] [Indexed: 10/12/2024] Open
Abstract
Kirsten rat sarcoma virus (KRAS) mutation is associated with malignant tumor transformation and drug resistance. However, the development of clinically effective targeted therapies for KRAS-mutant cancer has proven to be a formidable challenge. Here, we report that tripartite motif-containing protein 21 (TRIM21) functions as a target of extracellular signal-regulated kinase 2 (ERK2) in KRAS-mutant colorectal cancer (CRC), contributing to regorafenib therapy resistance. Mechanistically, TRIM21 directly interacts with and ubiquitinates v-myc avian myelocytomatosis viral oncogene homolog (c-Myc) at lysine 148 (K148) via K63-linkage, enabling c-Myc to be targeted to the autophagy machinery for degradation, ultimately resulting in the downregulation of enolase 2 expression and inhibition of glycolysis. However, mutant KRAS (KRAS/MT)-driven mitogen-activated protein kinase (MAPK) signaling leads to the phosphorylation of TRIM21 (p-TRIM21) at Threonine 396 (T396) by ERK2, disrupting the interaction between TRIM21 and c-Myc and thereby preventing c-Myc from targeting autophagy for degradation. This enhances glycolysis and contributes to regorafenib resistance. Clinically, high p-TRIM21 (T396) is associated with an unfavorable prognosis. Targeting TRIM21 to disrupt KRAS/MT-driven phosphorylation using the antidepressant vilazodone shows potential for enhancing the efficacy of regorafenib in treating KRAS-mutant CRC in preclinical models. These findings are instrumental for KRAS-mutant CRC treatment aiming at activating TRIM21-mediated selective autophagic degradation of c-Myc.
Collapse
Affiliation(s)
- Wen-Long Ye
- Department of Pathology, Suzhou Medical College of Soochow University, Soochow University, Suzhou215123, China
- Department of Pathology, The Fourth Affiliated Hospital of Soochow University, Soochow University, Suzhou215000, China
| | - Long Huang
- Department of General Surgery, The Affiliated Zhangjiagang Hospital of Soochow University, Soochow University, Suzhou215600, China
| | - Xiao-Qin Yang
- Department of Bioinformatics, Suzhou Medical College of Soochow University, Soochow University, Suzhou215123, China
| | - Shan Wan
- Department of Pathology, Suzhou Medical College of Soochow University, Soochow University, Suzhou215123, China
- Department of General Surgery, The Affiliated Zhangjiagang Hospital of Soochow University, Soochow University, Suzhou215600, China
| | - Wen-Juan Gan
- Department of Pathology, Suzhou Medical College of Soochow University, Soochow University, Suzhou215123, China
- Department of Pathology, The Fourth Affiliated Hospital of Soochow University, Soochow University, Suzhou215000, China
| | - Yun Yang
- Department of Pathology, Suzhou Medical College of Soochow University, Soochow University, Suzhou215123, China
| | - Xiao-Shun He
- Department of Pathology, Suzhou Medical College of Soochow University, Soochow University, Suzhou215123, China
| | - Feng Liu
- Department of Pathology, Suzhou Medical College of Soochow University, Soochow University, Suzhou215123, China
| | - Xin Guo
- Department of Pathology, Suzhou Medical College of Soochow University, Soochow University, Suzhou215123, China
| | - Yi-Xuan Liu
- Department of Pathology, Suzhou Medical College of Soochow University, Soochow University, Suzhou215123, China
| | - Guang Hu
- Department of Bioinformatics, Suzhou Medical College of Soochow University, Soochow University, Suzhou215123, China
| | - Xiu-Ming Li
- Department of Pathology, Suzhou Medical College of Soochow University, Soochow University, Suzhou215123, China
| | - Wei-Yi Shi
- Department of Pathology, Suzhou Medical College of Soochow University, Soochow University, Suzhou215123, China
| | - Kuang He
- Department of Pathology, Suzhou Medical College of Soochow University, Soochow University, Suzhou215123, China
- Department of Pathology, The Fourth Affiliated Hospital of Soochow University, Soochow University, Suzhou215000, China
| | - Yue-Yue Wu
- Department of Pathology, Suzhou Medical College of Soochow University, Soochow University, Suzhou215123, China
| | - Wen-Xin Wu
- Department of Pathology, Suzhou Medical College of Soochow University, Soochow University, Suzhou215123, China
| | - Jun-Hou Lu
- Department of Pathology, Suzhou Medical College of Soochow University, Soochow University, Suzhou215123, China
| | - Yu Song
- Department of General Surgery, The Affiliated Zhangjiagang Hospital of Soochow University, Soochow University, Suzhou215600, China
| | - Chen-Jiang Qu
- Department of General Surgery, The Affiliated Zhangjiagang Hospital of Soochow University, Soochow University, Suzhou215600, China
| | - Hua Wu
- Department of Pathology, Suzhou Medical College of Soochow University, Soochow University, Suzhou215123, China
- Department of Pathology, The Fourth Affiliated Hospital of Soochow University, Soochow University, Suzhou215000, China
- Department of General Surgery, The Affiliated Zhangjiagang Hospital of Soochow University, Soochow University, Suzhou215600, China
- Cancer Institute, Suzhou Medical College of Soochow University, Soochow University, Suzhou215123, China
| |
Collapse
|
18
|
Li Q, Geng S, Luo H, Wang W, Mo YQ, Luo Q, Wang L, Song GB, Sheng JP, Xu B. Signaling pathways involved in colorectal cancer: pathogenesis and targeted therapy. Signal Transduct Target Ther 2024; 9:266. [PMID: 39370455 PMCID: PMC11456611 DOI: 10.1038/s41392-024-01953-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/25/2024] [Accepted: 08/16/2024] [Indexed: 10/08/2024] Open
Abstract
Colorectal cancer (CRC) remains one of the leading causes of cancer-related mortality worldwide. Its complexity is influenced by various signal transduction networks that govern cellular proliferation, survival, differentiation, and apoptosis. The pathogenesis of CRC is a testament to the dysregulation of these signaling cascades, which culminates in the malignant transformation of colonic epithelium. This review aims to dissect the foundational signaling mechanisms implicated in CRC, to elucidate the generalized principles underpinning neoplastic evolution and progression. We discuss the molecular hallmarks of CRC, including the genomic, epigenomic and microbial features of CRC to highlight the role of signal transduction in the orchestration of the tumorigenic process. Concurrently, we review the advent of targeted and immune therapies in CRC, assessing their impact on the current clinical landscape. The development of these therapies has been informed by a deepening understanding of oncogenic signaling, leading to the identification of key nodes within these networks that can be exploited pharmacologically. Furthermore, we explore the potential of integrating AI to enhance the precision of therapeutic targeting and patient stratification, emphasizing their role in personalized medicine. In summary, our review captures the dynamic interplay between aberrant signaling in CRC pathogenesis and the concerted efforts to counteract these changes through targeted therapeutic strategies, ultimately aiming to pave the way for improved prognosis and personalized treatment modalities in colorectal cancer.
Collapse
Affiliation(s)
- Qing Li
- The Shapingba Hospital, Chongqing University, Chongqing, China
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and School of Medicine, Chongqing University, Chongqing, China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Shan Geng
- Central Laboratory, The Affiliated Dazu Hospital of Chongqing Medical University, Chongqing, China
| | - Hao Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- Cancer Center, Daping Hospital, Army Medical University, Chongqing, China
| | - Wei Wang
- Chongqing Municipal Health and Health Committee, Chongqing, China
| | - Ya-Qi Mo
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and School of Medicine, Chongqing University, Chongqing, China
| | - Qing Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Lu Wang
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and School of Medicine, Chongqing University, Chongqing, China
| | - Guan-Bin Song
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.
| | - Jian-Peng Sheng
- College of Artificial Intelligence, Nanjing University of Aeronautics and Astronautics, Nanjing, China.
| | - Bo Xu
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and School of Medicine, Chongqing University, Chongqing, China.
| |
Collapse
|
19
|
Rodvold JJ, Grimmer M, Ruiz K, Marsters SA, Oikonomidi I, Tan-Aristy E, Pham VC, Sarkar T, Harnoss JM, Shatz-Binder W, Modrusan ZD, Wu TD, Lill JR, Villemure E, Rudolph J, de Sousa e Melo F, Ashkenazi A. ATF6 Promotes Colorectal Cancer Growth and Stemness by Regulating the Wnt Pathway. CANCER RESEARCH COMMUNICATIONS 2024; 4:2734-2755. [PMID: 39324706 PMCID: PMC11492184 DOI: 10.1158/2767-9764.crc-24-0268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/07/2024] [Accepted: 09/24/2024] [Indexed: 09/27/2024]
Abstract
SIGNIFICANCE ATF6 intervention reduces colorectal cancer cell and organoid viability by interrupting dysregulated Wnt signaling, identifying a novel facilitator and potential therapeutic target in colorectal cancer.
Collapse
Affiliation(s)
- Jeffrey J. Rodvold
- Department of Research Oncology, Genentech, Inc., South San Francisco, California
| | - Matthew Grimmer
- Department of Computational Science, Genentech, Inc., South San Francisco, California
| | - Karen Ruiz
- Department of Discovery Oncology, Genentech, Inc., South San Francisco, California
| | - Scot A. Marsters
- Department of Research Oncology, Genentech, Inc., South San Francisco, California
| | - Ioanna Oikonomidi
- Department of Research Oncology, Genentech, Inc., South San Francisco, California
| | - Eileen Tan-Aristy
- Department of Research Oncology, Genentech, Inc., South San Francisco, California
| | - Victoria C. Pham
- Department of Microchemistry, Proteomics, and Lipidomics, Genentech, Inc., South San Francisco, California
| | - Tamal Sarkar
- Department of General, Visceral, Thoracic, and Transplantation Surgery, University Hospital Giessen, Giessen, Germany
| | - Jonathan M. Harnoss
- Department of General, Visceral, Thoracic, and Transplantation Surgery, University Hospital Giessen, Giessen, Germany
| | - Whitney Shatz-Binder
- Department of Pharmaceutical Development, Genentech, Inc., South San Francisco, California
| | - Zora D. Modrusan
- Department of Microchemistry, Proteomics, and Lipidomics, Genentech, Inc., South San Francisco, California
| | - Thomas D. Wu
- Department of Computational Science, Genentech, Inc., South San Francisco, California
| | - Jennie R. Lill
- Department of Microchemistry, Proteomics, and Lipidomics, Genentech, Inc., South San Francisco, California
| | - Elisia Villemure
- Department of Discovery Chemistry, Genentech, Inc., South San Francisco, California
| | - Joachim Rudolph
- Department of Discovery Chemistry, Genentech, Inc., South San Francisco, California
| | | | - Avi Ashkenazi
- Department of Research Oncology, Genentech, Inc., South San Francisco, California
| |
Collapse
|
20
|
Galili U. Self-Tumor Antigens in Solid Tumors Turned into Vaccines by α-gal Micelle Immunotherapy. Pharmaceutics 2024; 16:1263. [PMID: 39458595 PMCID: PMC11510312 DOI: 10.3390/pharmaceutics16101263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/02/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
A major reason for the failure of the immune system to detect tumor antigens (TAs) is the insufficient uptake, processing, and presentation of TAs by antigen-presenting cells (APCs). The immunogenicity of TAs in the individual patient can be markedly increased by the in situ targeting of tumor cells for robust uptake by APCs, without the need to identify and characterize the TAs. This is feasible by the intra-tumoral injection of α-gal micelles comprised of glycolipids presenting the carbohydrate-antigen "α-gal epitope" (Galα1-3Galβ1-4GlcNAc-R). Humans produce a natural antibody called "anti-Gal" (constituting ~1% of immunoglobulins), which binds to α-gal epitopes. Tumor-injected α-gal micelles spontaneously insert into tumor cell membranes, so that multiple α-gal epitopes are presented on tumor cells. Anti-Gal binding to these epitopes activates the complement system, resulting in the killing of tumor cells, and the recruitment of multiple APCs (dendritic cells and macrophages) into treated tumors by the chemotactic complement cleavage peptides C5a and C3a. In this process of converting the treated tumor into a personalized TA vaccine, the recruited APC phagocytose anti-Gal opsonized tumor cells and cell membranes, process the internalized TAs and transport them to regional lymph-nodes. TA peptides presented on APCs activate TA-specific T cells to proliferate and destroy the metastatic tumor cells presenting the TAs. Studies in anti-Gal-producing mice demonstrated the induction of effective protection against distant metastases of the highly tumorigenic B16 melanoma following injection of natural and synthetic α-gal micelles into primary tumors. This treatment was further found to synergize with checkpoint inhibitor therapy by the anti-PD1 antibody. Phase-1 clinical trials indicated that α-gal micelle immunotherapy is safe and can induce the infiltration of CD4+ and CD8+ T cells into untreated distant metastases. It is suggested that, in addition to converting treated metastases into an autologous TA vaccine, this treatment should be considered as a neoadjuvant therapy, administering α-gal micelles into primary tumors immediately following their detection. Such an immunotherapy will convert tumors into a personalized anti-TA vaccine for the period prior to their resection.
Collapse
Affiliation(s)
- Uri Galili
- Department of Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
21
|
Hrudka J, Kalinová M, Fišerová H, Jelínková K, Nikov A, Waldauf P, Matěj R. Molecular genetic analysis of colorectal carcinoma with an aggressive extraintestinal immunohistochemical phenotype. Sci Rep 2024; 14:22241. [PMID: 39333321 PMCID: PMC11437151 DOI: 10.1038/s41598-024-72687-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 09/10/2024] [Indexed: 09/29/2024] Open
Abstract
Colorectal cancer (CRC) is a leading global cause of illness and death. There is a need for identification of better prognostic markers beyond traditional clinical variables like grade and stage. Previous research revealed that abnormal expression of cytokeratin 7 (CK7) and loss of the intestinal-specific Special AT-rich sequence-binding protein 2 (SATB2) are linked to poor CRC prognosis. This study aimed to explore these markers' prognostic significance alongside two extraintestinal mucins (MUC5AC, MUC6), claudin 18, and MUC4 in 285 CRC cases using immunohistochemistry on tissue microarrays (TMAs). CK7 expression and SATB2-loss were associated with MUC5AC, MUC6, and claudin 18 positivity. These findings suggest a distinct "non-intestinal" immunohistochemical profile in CRC, often right-sided, SATB2-low, with atypical expression of CK7 and non-colorectal mucins (MUC5AC, MUC6). Strong MUC4 expression negatively impacted cancer-specific survival (hazard ratio = 2.7, p = 0.044). Genetic analysis via next-generation sequencing (NGS) in CK7 + CRCs and those with high MUC4 expression revealed prevalent mutations in TP53, APC, BRAF, KRAS, PIK3CA, FBXW7, and SMAD4, consistent with known CRC mutation patterns. NGS also identified druggable variants in BRAF, PIK3CA, and KRAS. CK7 + tumors showed intriguingly common (31.6%) BRAF V600E mutations corelating with poor prognosis, compared to the frequency described in the literature and databases. Further research on larger cohorts with a non-colorectal immunophenotype and high MUC4 expression is needed.
Collapse
Affiliation(s)
- Jan Hrudka
- Department of Pathology, 3rd Faculty of Medicine, Charles University, University Hospital Kralovske Vinohrady, Šrobárova 1150/50, Praha 10, 10034, Prague, Czech Republic.
| | - Markéta Kalinová
- Department of Pathology, 3rd Faculty of Medicine, Charles University, University Hospital Kralovske Vinohrady, Šrobárova 1150/50, Praha 10, 10034, Prague, Czech Republic
- Central Laboratories, University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Hana Fišerová
- Department of Pathology, 3rd Faculty of Medicine, Charles University, University Hospital Kralovske Vinohrady, Šrobárova 1150/50, Praha 10, 10034, Prague, Czech Republic
| | - Karolína Jelínková
- Department of Pathology, 3rd Faculty of Medicine, Charles University, University Hospital Kralovske Vinohrady, Šrobárova 1150/50, Praha 10, 10034, Prague, Czech Republic
| | - Andrej Nikov
- Department of General Surgery, 3rd Faculty of Medicine, Charles University, University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Petr Waldauf
- Department of Anaesthesia and Intensive Care Medicine, 3rd Faculty of Medicine, Charles University, University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Radoslav Matěj
- Department of Pathology, 3rd Faculty of Medicine, Charles University, University Hospital Kralovske Vinohrady, Šrobárova 1150/50, Praha 10, 10034, Prague, Czech Republic
- Department of Pathology, 1st Faculty of Medicine, Charles University, General University Hospital, Prague, Czech Republic
- Department of Pathology and Molecular Medicine, 3rd Faculty of Medicine, Charles University, Thomayer University Hospital, Prague, Czech Republic
| |
Collapse
|
22
|
Li Z, Zhang B, Chan JJ, Tabatabaeian H, Tong QY, Chew XH, Fan X, Driguez P, Chan C, Cheong F, Wang S, Siew BE, Tan IJW, Lee KY, Lieske B, Cheong WK, Kappei D, Tan KK, Gao X, Tay Y. An isoform-resolution transcriptomic atlas of colorectal cancer from long-read single-cell sequencing. CELL GENOMICS 2024; 4:100641. [PMID: 39216476 PMCID: PMC11480860 DOI: 10.1016/j.xgen.2024.100641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 06/06/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
Colorectal cancer (CRC) ranks as the second leading cause of cancer deaths globally. In recent years, short-read single-cell RNA sequencing (scRNA-seq) has been instrumental in deciphering tumor heterogeneities. However, these studies only enable gene-level quantification but neglect alterations in transcript structures arising from alternative end processing or splicing. In this study, we integrated short- and long-read scRNA-seq of CRC samples to build an isoform-resolution CRC transcriptomic atlas. We identified 394 dysregulated transcript structures in tumor epithelial cells, including 299 resulting from various combinations of splicing events. Second, we characterized genes and isoforms associated with epithelial lineages and subpopulations exhibiting distinct prognoses. Among 31,935 isoforms with novel junctions, 330 were supported by The Cancer Genome Atlas RNA-seq and mass spectrometry data. Finally, we built an algorithm that integrated novel peptides derived from open reading frames of recurrent tumor-specific transcripts with mass spectrometry data and identified recurring neoepitopes that may aid the development of cancer vaccines.
Collapse
Affiliation(s)
- Zhongxiao Li
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia; Center of Excellence for Smart Health (KCSH), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia; Center of Excellence on Generative AI, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Bin Zhang
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia; Center of Excellence for Smart Health (KCSH), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia; Center of Excellence on Generative AI, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.
| | - Jia Jia Chan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Hossein Tabatabaeian
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Qing Yun Tong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Xiao Hong Chew
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Xiaonan Fan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Patrick Driguez
- Core Labs, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Charlene Chan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Faith Cheong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Shi Wang
- Department of Pathology, National University Health System, Singapore 119228, Singapore
| | - Bei En Siew
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Ian Jse-Wei Tan
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; Division of Colorectal Surgery, University Surgical Cluster, National University Health System, Singapore 119228, Singapore
| | - Kai-Yin Lee
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; Division of Colorectal Surgery, University Surgical Cluster, National University Health System, Singapore 119228, Singapore
| | - Bettina Lieske
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; Division of Colorectal Surgery, University Surgical Cluster, National University Health System, Singapore 119228, Singapore
| | - Wai-Kit Cheong
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; Division of Colorectal Surgery, University Surgical Cluster, National University Health System, Singapore 119228, Singapore
| | - Dennis Kappei
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Ker-Kan Tan
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; Division of Colorectal Surgery, University Surgical Cluster, National University Health System, Singapore 119228, Singapore
| | - Xin Gao
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia; Center of Excellence for Smart Health (KCSH), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia; Center of Excellence on Generative AI, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.
| | - Yvonne Tay
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.
| |
Collapse
|
23
|
Wang L, Sun H, Yue Z, Xia J, Li X. CDMPred: a tool for predicting cancer driver missense mutations with high-quality passenger mutations. PeerJ 2024; 12:e17991. [PMID: 39253604 PMCID: PMC11382650 DOI: 10.7717/peerj.17991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/07/2024] [Indexed: 09/11/2024] Open
Abstract
Most computational methods for predicting driver mutations have been trained using positive samples, while negative samples are typically derived from statistical methods or putative samples. The representativeness of these negative samples in capturing the diversity of passenger mutations remains to be determined. To tackle these issues, we curated a balanced dataset comprising driver mutations sourced from the COSMIC database and high-quality passenger mutations obtained from the Cancer Passenger Mutation database. Subsequently, we encoded the distinctive features of these mutations. Utilizing feature correlation analysis, we developed a cancer driver missense mutation predictor called CDMPred employing feature selection through the ensemble learning technique XGBoost. The proposed CDMPred method, utilizing the top 10 features and XGBoost, achieved an area under the receiver operating characteristic curve (AUC) value of 0.83 and 0.80 on the training and independent test sets, respectively. Furthermore, CDMPred demonstrated superior performance compared to existing state-of-the-art methods for cancer-specific and general diseases, as measured by AUC and area under the precision-recall curve. Including high-quality passenger mutations in the training data proves advantageous for CDMPred's prediction performance. We anticipate that CDMPred will be a valuable tool for predicting cancer driver mutations, furthering our understanding of personalized therapy.
Collapse
Affiliation(s)
- Lihua Wang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, China
- School of Information Engineering, Huangshan University, Huangshan, Anhui, China
| | - Haiyang Sun
- State Key Laboratory of Medicinal Chemical Biology, NanKai University, Tianjin, Tianjin, China
| | - Zhenyu Yue
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, Anhui, China
| | - Junfeng Xia
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, China
| | - Xiaoyan Li
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, China
| |
Collapse
|
24
|
Al-Ruwishan A, Amer B, Salem A, Abdi A, Chimpandu N, Esa A, Melemenis A, Saleem MZ, Mathew R, Gamallat Y. Advancements in Understanding the Hide-and-Seek Strategy of Hibernating Breast Cancer Cells and Their Implications in Oncology from a Broader Perspective: A Comprehensive Overview. Curr Issues Mol Biol 2024; 46:8340-8367. [PMID: 39194709 DOI: 10.3390/cimb46080492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024] Open
Abstract
Despite recent advancements in technology, breast cancer still poses a significant threat, often resulting in fatal consequences. While early detection and treatments have shown some promise, many breast cancer patients continue to struggle with the persistent fear of the disease returning. This fear is valid, as breast cancer cells can lay dormant for years before remerging, evading traditional treatments like a game of hide and seek. The biology of these dormant breast cancer cells presents a crucial yet poorly understood challenge in clinical settings. In this review, we aim to explore the mysterious world of dormant breast cancer cells and their significant impact on patient outcomes and prognosis. We shed light on the elusive role of the G9a enzyme and many other epigenetic factors in breast cancer recurrence, highlighting its potential as a target for eliminating dormant cancer cells and preventing disease relapse. Through this comprehensive review, we not only emphasise the urgency of unravelling the dynamics of dormant breast cancer cells to improve patient outcomes and advance personalised oncology but also provide a guide for fellow researchers. By clearly outlining the clinical and research gaps surrounding dormant breast cancer cells from a molecular perspective, we aim to inspire further exploration of this critical area, ultimately leading to improved patient care and treatment strategies.
Collapse
Affiliation(s)
- Aiman Al-Ruwishan
- Space for Research Initiative, Research Horizons, London NW10 2PU, UK
| | - Bushra Amer
- Department of Family Medicine, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Ahmed Salem
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, 53210 Pardubice, Czech Republic
| | - Ahmed Abdi
- Independent Researcher, Uxbridge UB9 6JH, UK
| | | | | | | | - Muhammad Zubair Saleem
- Department of Pharmacology and Systems Physiology, College of Medicine, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Roselit Mathew
- Department of Oncology, Biochemistry and Molecular Biology, and Laboratory Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Yaser Gamallat
- Department of Oncology, Biochemistry and Molecular Biology, and Laboratory Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
25
|
Zhou X, Wang G, Tian C, Du L, Prochownik EV, Li Y. Inhibition of DUSP18 impairs cholesterol biosynthesis and promotes anti-tumor immunity in colorectal cancer. Nat Commun 2024; 15:5851. [PMID: 38992029 PMCID: PMC11239938 DOI: 10.1038/s41467-024-50138-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/02/2024] [Indexed: 07/13/2024] Open
Abstract
Tumor cells reprogram their metabolism to produce specialized metabolites that both fuel their own growth and license tumor immune evasion. However, the relationships between these functions remain poorly understood. Here, we report CRISPR screens in a mouse model of colo-rectal cancer (CRC) that implicates the dual specificity phosphatase 18 (DUSP18) in the establishment of tumor-directed immune evasion. Dusp18 inhibition reduces CRC growth rates, which correlate with high levels of CD8+ T cell activation. Mechanistically, DUSP18 dephosphorylates and stabilizes the USF1 bHLH-ZIP transcription factor. In turn, USF1 induces the SREBF2 gene, which allows cells to accumulate the cholesterol biosynthesis intermediate lanosterol and release it into the tumor microenvironment (TME). There, lanosterol uptake by CD8+ T cells suppresses the mevalonate pathway and reduces KRAS protein prenylation and function, which in turn inhibits their activation and establishes a molecular basis for tumor cell immune escape. Finally, the combination of an anti-PD-1 antibody and Lumacaftor, an FDA-approved small molecule inhibitor of DUSP18, inhibits CRC growth in mice and synergistically enhances anti-tumor immunity. Collectively, our findings support the idea that a combination of immune checkpoint and metabolic blockade represents a rationally-designed, mechanistically-based and potential therapy for CRC.
Collapse
Affiliation(s)
- Xiaojun Zhou
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, 430071, China
| | - Genxin Wang
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, 430071, China
| | - Chenhui Tian
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, 430071, China
| | - Lin Du
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, 430071, China
| | - Edward V Prochownik
- Division of Hematology/Oncology, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, 15224, USA
- Department of Microbiology and Molecular Genetics of UPMC, Pittsburgh, PA, 15224, USA
- The Pittsburgh Liver Research Center, The Hillman Cancer Institute of UPMC, Pittsburgh, PA, 15224, USA
| | - Youjun Li
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China.
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, 430071, China.
| |
Collapse
|
26
|
Ma Y, Li Y, Wen Z, Lai Y, Kamila K, Gao J, Xu WY, Gong C, Chen F, Shi L, Zhang Y, Chen H, Zhu M. Genome wide identification of novel DNA methylation driven prognostic markers in colorectal cancer. Sci Rep 2024; 14:15654. [PMID: 38977698 PMCID: PMC11231291 DOI: 10.1038/s41598-024-60351-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/22/2024] [Indexed: 07/10/2024] Open
Abstract
Colorectal cancer (CRC) stands as a major contributor to cancer-related fatalities within China. There is an urgent need to identify accurate biomarkers for recurrence predicting in CRC. Reduced representation bisulfite sequencing was used to perform a comparative analysis of methylation profiles in tissue samples from 30 recurrence to 30 non-recurrence patients with CRC. Least absolute shrinkage and selection operator method was performed to select the differential methylation regions (DMRs) and built a DNA methylation classifier for predicting recurrence. Based on the identified top DMRs, a methylation classifier was built and consisted of eight hypermethylated DMRs in CRC. The DNA methylation classifier showed high accuracy for predicting recurrence with an area under the receiver operator characteristic curve of 0.825 (95% CI 0.680-0.970). The Kaplan-Meier survival analysis demonstrated that CRC patients with high methylation risk score, evaluated by the DNA methylation classifier, had poorer survival than low risk score (Hazard Ratio 4.349; 95% CI 1.783-10.61, P = 0.002). And only CRC patients with low methylation risk score could acquire benefit from adjuvant therapy. The DNA methylation classifier has been proved as crucial biomarkers for predicting recurrence and exhibited promising prognostic value after curative surgery in patients with CRC.
Collapse
Affiliation(s)
- Yuhua Ma
- Xinjiang Key Laboratory of Clinical Genetic Testing and Biomedical Information, Karamay Central Hospital, Karamay, 834099, Xin Jiang, China
- Department of Pathology, Karamay Central Hospital, No. 67, Junggar Road, Karamay, 834099, Xin Jiang, China
| | - Yuanxin Li
- Xinjiang Key Laboratory of Clinical Genetic Testing and Biomedical Information, Karamay Central Hospital, Karamay, 834099, Xin Jiang, China
- Department of Pathology, Karamay Central Hospital, No. 67, Junggar Road, Karamay, 834099, Xin Jiang, China
| | - Zhahong Wen
- Singlera Genomics (Shanghai) Ltd., Shanghai, 201318, China
| | - Yining Lai
- Xinjiang Key Laboratory of Clinical Genetic Testing and Biomedical Information, Karamay Central Hospital, Karamay, 834099, Xin Jiang, China
- Department of Pathology, Karamay Central Hospital, No. 67, Junggar Road, Karamay, 834099, Xin Jiang, China
| | - Kulaixijiang Kamila
- Xinjiang Key Laboratory of Clinical Genetic Testing and Biomedical Information, Karamay Central Hospital, Karamay, 834099, Xin Jiang, China
- Department of Pathology, Karamay Central Hospital, No. 67, Junggar Road, Karamay, 834099, Xin Jiang, China
| | - Jing Gao
- Xinjiang Key Laboratory of Clinical Genetic Testing and Biomedical Information, Karamay Central Hospital, Karamay, 834099, Xin Jiang, China
- Department of Pathology, Karamay Central Hospital, No. 67, Junggar Road, Karamay, 834099, Xin Jiang, China
| | - Wang-Yang Xu
- Singlera Genomics (Shanghai) Ltd., Shanghai, 201318, China
| | | | - Feifan Chen
- Singlera Genomics (Shanghai) Ltd., Shanghai, 201318, China
| | - Liuqing Shi
- Singlera Genomics (Shanghai) Ltd., Shanghai, 201318, China
| | - Yunzhi Zhang
- Singlera Genomics (Shanghai) Ltd., Shanghai, 201318, China
| | - Hanzhang Chen
- Department of Pathology, Zhabei Central Hospital of Shanghai, No. 619, Zhonghua New Road, Jing'an District, Shanghai, 200070, China.
| | - Min Zhu
- Xinjiang Key Laboratory of Clinical Genetic Testing and Biomedical Information, Karamay Central Hospital, Karamay, 834099, Xin Jiang, China.
- Department of Pathology, Karamay Central Hospital, No. 67, Junggar Road, Karamay, 834099, Xin Jiang, China.
| |
Collapse
|
27
|
Li H, Wu J, Xu Q, Pang Y, Gu Y, Wang M, Cheng X. Functional genetic variants of GEN1 predict overall survival of Chinese epithelial ovarian cancer patients. J Transl Med 2024; 22:577. [PMID: 38890669 PMCID: PMC11184878 DOI: 10.1186/s12967-024-05236-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/24/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Inherited variations in DNA double-strand break (DSB) repair pathway are known to influence ovarian cancer occurrence, progression and treatment response. Despite its significance, survival-associated genetic variants within the DSB pathway remain underexplored. METHODS In the present study, we performed a two-phase analysis of 19,290 single-nucleotide polymorphisms (SNPs) in 199 genes in the DSB repair pathway from a genome-wide association study (GWAS) dataset and explored their associations with overall survival (OS) in 1039 Han Chinese epithelial ovarian carcinoma (EOC) patients. After utilizing multivariate Cox regression analysis with bayesian false-discovery probability for multiple test correction, significant genetic variations were identified and subsequently underwent functional prediction and validation. RESULTS We discovered a significant association between poor overall survival and the functional variant GEN1 rs56070363 C > T (CT + TT vs. TT, adjusted hazard ratio (HR) = 2.50, P < 0.001). And the impact of GEN1 rs56070363 C > T on survival was attributed to its reduced binding affinity to hsa-miR-1287-5p and the resultant upregulation of GEN1 mRNA expression. Overexpression of GEN1 aggregated EOC cell proliferation, invasion and migration presumably by influencing the expression of immune inhibitory factors, thereby elevating the proportion of polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) and then constructing an immunosuppressive tumor microenvironment. CONCLUSIONS In conclusion, GEN1 rs56070363 variant could serve as a potential predictive biomarker and chemotherapeutic target for improving the survival of EOC patients.
Collapse
Affiliation(s)
- Haoran Li
- Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong'an Road, Shanghai, 200032, China
| | - Jiao Wu
- Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong'an Road, Shanghai, 200032, China
| | - Qing Xu
- Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong'an Road, Shanghai, 200032, China
| | - Yangyang Pang
- Department of Urology, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, China
| | - Yanzi Gu
- Department of Biobank, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Mengyun Wang
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong'an Road, Shanghai, 200032, China.
- Cancer Institute, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, 200032, China.
| | - Xi Cheng
- Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong'an Road, Shanghai, 200032, China.
- Department of Gynecological Oncology, Minhang Branch, Fudan University Shanghai Cancer Center, Shanghai, China.
| |
Collapse
|
28
|
Kuo YP, Carja O. Evolutionary graph theory beyond single mutation dynamics: on how network-structured populations cross fitness landscapes. Genetics 2024; 227:iyae055. [PMID: 38639307 PMCID: PMC11151934 DOI: 10.1093/genetics/iyae055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 04/20/2024] Open
Abstract
Spatially resolved datasets are revolutionizing knowledge in molecular biology, yet are under-utilized for questions in evolutionary biology. To gain insight from these large-scale datasets of spatial organization, we need mathematical representations and modeling techniques that can both capture their complexity, but also allow for mathematical tractability. Evolutionary graph theory utilizes the mathematical representation of networks as a proxy for heterogeneous population structure and has started to reshape our understanding of how spatial structure can direct evolutionary dynamics. However, previous results are derived for the case of a single new mutation appearing in the population and the role of network structure in shaping fitness landscape crossing is still poorly understood. Here we study how network-structured populations cross fitness landscapes and show that even a simple extension to a two-mutational landscape can exhibit complex evolutionary dynamics that cannot be predicted using previous single-mutation results. We show how our results can be intuitively understood through the lens of how the two main evolutionary properties of a network, the amplification and acceleration factors, change the expected fate of the intermediate mutant in the population and further discuss how to link these models to spatially resolved datasets of cellular organization.
Collapse
Affiliation(s)
- Yang Ping Kuo
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15232, USA
| | - Oana Carja
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15232, USA
| |
Collapse
|
29
|
Yan Y, Dai T, Guo M, Zhao X, Chen C, Zhou Y, Qin M, Xu L, Zhao J. A review of non-classical MAPK family member, MAPK4: A pivotal player in cancer development and therapeutic intervention. Int J Biol Macromol 2024; 271:132686. [PMID: 38801852 DOI: 10.1016/j.ijbiomac.2024.132686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/17/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
Mitogen-Activated Protein Kinases (MAPKs) are serine/threonine protein kinases that play a crucial role in transmitting extracellular signals to the intracellular environment, influencing a wide range of cellular processes including proliferation, differentiation, apoptosis, metabolic activities, immune function and stress response. MAPK4, a non-classical MAPK, is frequently overexpressed in various malignancies, including prostate, breast, cervix, thyroid, and gliomas. It orchestrates cell proliferation, migration, and apoptosis via the AKT/mTOR and/or PDK1 signaling pathways, thus facilitating tumor cell growth. Furthermore, MAPK4 expression is closely associated with the effectiveness of specific inhibitors like PI3K and PARP1, and also correlate with the survival rates of cancer patients. Increasing evidence highlights MAPK4's involvement in the tumor microenvironment, modulating immune response and inflammation-related diseases. This review comprehensively explores the structure, function, and oncogenic role of MAPK4, providing a deeper understanding of its activation and mechanisms of action in tumorigenesis, which might be helpful for the development of innovative therapeutic strategies for cancer management.
Collapse
Affiliation(s)
- Yaping Yan
- Department of Immunology, Zunyi Medical University, Guizhou 563000, China; Key Laboratory of Gene Detection and Treatment of Guizhou province, Zunyi 563000, China
| | - Tengkun Dai
- Department of Immunology, Zunyi Medical University, Guizhou 563000, China; Key Laboratory of Gene Detection and Treatment of Guizhou province, Zunyi 563000, China
| | - Mengmeng Guo
- Department of Immunology, Zunyi Medical University, Guizhou 563000, China; Key Laboratory of Gene Detection and Treatment of Guizhou province, Zunyi 563000, China
| | - Xu Zhao
- Key Laboratory of Gene Detection and Treatment of Guizhou province, Zunyi 563000, China; School of Medicine, Guizhou University, Guiyang 550025, Guizhou, China
| | - Chao Chen
- Key Laboratory of Gene Detection and Treatment of Guizhou province, Zunyi 563000, China; School of Medicine, Guizhou University, Guiyang 550025, Guizhou, China
| | - Ya Zhou
- Key Laboratory of Gene Detection and Treatment of Guizhou province, Zunyi 563000, China; Department of Medical physics, Zunyi Medical University, Guizhou 563000, China
| | - Ming Qin
- Department of Immunology, Zunyi Medical University, Guizhou 563000, China; Key Laboratory of Gene Detection and Treatment of Guizhou province, Zunyi 563000, China
| | - Lin Xu
- Department of Immunology, Zunyi Medical University, Guizhou 563000, China; Key Laboratory of Gene Detection and Treatment of Guizhou province, Zunyi 563000, China.
| | - Juanjuan Zhao
- Department of Immunology, Zunyi Medical University, Guizhou 563000, China; Key Laboratory of Gene Detection and Treatment of Guizhou province, Zunyi 563000, China.
| |
Collapse
|
30
|
Dakal TC, Dhabhai B, Pant A, Moar K, Chaudhary K, Yadav V, Ranga V, Sharma NK, Kumar A, Maurya PK, Maciaczyk J, Schmidt‐Wolf IGH, Sharma A. Oncogenes and tumor suppressor genes: functions and roles in cancers. MedComm (Beijing) 2024; 5:e582. [PMID: 38827026 PMCID: PMC11141506 DOI: 10.1002/mco2.582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 04/21/2024] [Accepted: 04/26/2024] [Indexed: 06/04/2024] Open
Abstract
Cancer, being the most formidable ailment, has had a profound impact on the human health. The disease is primarily associated with genetic mutations that impact oncogenes and tumor suppressor genes (TSGs). Recently, growing evidence have shown that X-linked TSGs have specific role in cancer progression and metastasis as well. Interestingly, our genome harbors around substantial portion of genes that function as tumor suppressors, and the X chromosome alone harbors a considerable number of TSGs. The scenario becomes even more compelling as X-linked TSGs are adaptive to key epigenetic processes such as X chromosome inactivation. Therefore, delineating the new paradigm related to X-linked TSGs, for instance, their crosstalk with autosome and involvement in cancer initiation, progression, and metastasis becomes utmost importance. Considering this, herein, we present a comprehensive discussion of X-linked TSG dysregulation in various cancers as a consequence of genetic variations and epigenetic alterations. In addition, the dynamic role of X-linked TSGs in sex chromosome-autosome crosstalk in cancer genome remodeling is being explored thoroughly. Besides, the functional roles of ncRNAs, role of X-linked TSG in immunomodulation and in gender-based cancer disparities has also been highlighted. Overall, the focal idea of the present article is to recapitulate the findings on X-linked TSG regulation in the cancer landscape and to redefine their role toward improving cancer treatment strategies.
Collapse
Affiliation(s)
- Tikam Chand Dakal
- Department of BiotechnologyGenome and Computational Biology LabMohanlal Sukhadia UniversityUdaipurRajasthanIndia
| | - Bhanupriya Dhabhai
- Department of BiotechnologyGenome and Computational Biology LabMohanlal Sukhadia UniversityUdaipurRajasthanIndia
| | - Anuja Pant
- Department of BiochemistryCentral University of HaryanaMahendergarhHaryanaIndia
| | - Kareena Moar
- Department of BiochemistryCentral University of HaryanaMahendergarhHaryanaIndia
| | - Kanika Chaudhary
- School of Life Sciences. Jawaharlal Nehru UniversityNew DelhiIndia
| | - Vikas Yadav
- School of Life Sciences. Jawaharlal Nehru UniversityNew DelhiIndia
| | - Vipin Ranga
- Dearptment of Agricultural BiotechnologyDBT‐NECAB, Assam Agricultural UniversityJorhatAssamIndia
| | | | - Abhishek Kumar
- Manipal Academy of Higher EducationManipalKarnatakaIndia
- Institute of Bioinformatics, International Technology ParkBangaloreIndia
| | - Pawan Kumar Maurya
- Department of BiochemistryCentral University of HaryanaMahendergarhHaryanaIndia
| | - Jarek Maciaczyk
- Department of Stereotactic and Functional NeurosurgeryUniversity Hospital of BonnBonnGermany
| | - Ingo G. H. Schmidt‐Wolf
- Department of Integrated OncologyCenter for Integrated Oncology (CIO)University Hospital BonnBonnGermany
| | - Amit Sharma
- Department of Stereotactic and Functional NeurosurgeryUniversity Hospital of BonnBonnGermany
- Department of Integrated OncologyCenter for Integrated Oncology (CIO)University Hospital BonnBonnGermany
| |
Collapse
|
31
|
Long SA, Amparo AM, Goodhart G, Ahmad SA, Waters AM. Evaluation of KRAS inhibitor-directed therapies for pancreatic cancer treatment. Front Oncol 2024; 14:1402128. [PMID: 38800401 PMCID: PMC11116577 DOI: 10.3389/fonc.2024.1402128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 04/25/2024] [Indexed: 05/29/2024] Open
Abstract
Despite significant advancements in the treatment of other cancers, pancreatic ductal adenocarcinoma (PDAC) remains one of the world's deadliest cancers. More than 90% of PDAC patients harbor a Kirsten rat sarcoma (KRAS) gene mutation. Although the clinical potential of anti-KRAS therapies has long been realized, all initial efforts to target KRAS were unsuccessful. However, with the recent development of a new generation of KRAS-targeting drugs, multiple KRAS-targeted treatment options for patients with PDAC have entered clinical trials. In this review, we provide an overview of current standard of care treatment, describe RAS signaling and the relevance of KRAS mutations, and discuss RAS isoform- and mutation-specific differences. We also evaluate the clinical efficacy and safety of mutation-selective and multi-selective inhibitors, in the context of PDAC. We then provide a comparison of clinically relevant KRAS inhibitors to second-line PDAC treatment options. Finally, we discuss putative resistance mechanisms that may limit the clinical effectiveness of KRAS-targeted therapies and provide a brief overview of promising therapeutic approaches in development that are focused on mitigating these resistance mechanisms.
Collapse
Affiliation(s)
- Szu-Aun Long
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Amber M. Amparo
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Grace Goodhart
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Syed A. Ahmad
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Andrew M. Waters
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
32
|
Zhou Y, Chen X, Chen J, Kendrick CD, Ramanathan RK, Graham RP, Kossick KF, Boardman LA, Barrett MT. Genomic landscape of diploid and aneuploid microsatellite stable early onset colorectal cancer. Sci Rep 2024; 14:9368. [PMID: 38654044 DOI: 10.1038/s41598-024-59398-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/10/2024] [Indexed: 04/25/2024] Open
Abstract
Although colorectal cancer (CRC) remains the second leading cause of cancer-related death in the United States, the overall incidence and mortality from the disease have declined in recent decades. In contrast, there has been a steady increase in the incidence of CRC in individuals under 50 years of age. Hereditary syndromes contribute disproportionately to early onset CRC (EOCRC). These include microsatellite instability high (MSI+) tumors arising in patients with Lynch Syndrome. However, most EOCRCs are not associated with familial syndromes or MSI+ genotypes. Comprehensive genomic profiling has provided the basis of improved more personalized treatments for older CRC patients. However, less is known about the basis of sporadic EOCRC. To define the genomic landscape of EOCRC we used DNA content flow sorting to isolate diploid and aneuploid tumor fractions from 21 non-hereditary cases. We then generated whole exome mutational profiles for each case and whole genome copy number, telomere length, and EGFR immunohistochemistry (IHC) analyses on subsets of samples. These results discriminate the molecular features of diploid and aneuploid EOCRC and provide a basis for larger population-based studies and the development of effective strategies to monitor and treat this emerging disease.
Collapse
Affiliation(s)
- Yumei Zhou
- Department of Research, Mayo Clinic in Arizona, Scottsdale, AZ, USA
| | - Xianfeng Chen
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jun Chen
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, 55905, USA
| | - Conner D Kendrick
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Ramesh K Ramanathan
- Mayo Clinic Cancer Center, Phoenix, AZ, 85054, USA
- Ironwood Cancer and Research Center, Scottsdale, AZ, 85260, USA
| | | | - Kimberlee F Kossick
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Lisa A Boardman
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Michael T Barrett
- Department of Research, Mayo Clinic in Arizona, Scottsdale, AZ, USA.
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic in Arizona, Scottsdale, AZ, USA.
| |
Collapse
|
33
|
Tucker SA, Hu SH, Vyas S, Park A, Joshi S, Inal A, Lam T, Tan E, Haigis KM, Haigis MC. SIRT4 loss reprograms intestinal nucleotide metabolism to support proliferation following perturbation of homeostasis. Cell Rep 2024; 43:113975. [PMID: 38507411 PMCID: PMC11639042 DOI: 10.1016/j.celrep.2024.113975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 11/03/2023] [Accepted: 03/04/2024] [Indexed: 03/22/2024] Open
Abstract
The intestine is a highly metabolic tissue, but the metabolic programs that influence intestinal crypt proliferation, differentiation, and regeneration are still emerging. Here, we investigate how mitochondrial sirtuin 4 (SIRT4) affects intestinal homeostasis. Intestinal SIRT4 loss promotes cell proliferation in the intestine following ionizing radiation (IR). SIRT4 functions as a tumor suppressor in a mouse model of intestinal cancer, and SIRT4 loss drives dysregulated glutamine and nucleotide metabolism in intestinal adenomas. Intestinal organoids lacking SIRT4 display increased proliferation after IR stress, along with increased glutamine uptake and a shift toward de novo nucleotide biosynthesis over salvage pathways. Inhibition of de novo nucleotide biosynthesis diminishes the growth advantage of SIRT4-deficient organoids after IR stress. This work establishes SIRT4 as a modulator of intestinal metabolism and homeostasis in the setting of DNA-damaging stress.
Collapse
Affiliation(s)
- Sarah A Tucker
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Song-Hua Hu
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Sejal Vyas
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Albert Park
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Shakchhi Joshi
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Aslihan Inal
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Tiffany Lam
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Emily Tan
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Kevin M Haigis
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Marcia C Haigis
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
34
|
Martinez P, Baghli I, Gourjon G, Seyfried TN. Mitochondrial-Stem Cell Connection: Providing Additional Explanations for Understanding Cancer. Metabolites 2024; 14:229. [PMID: 38668357 PMCID: PMC11051897 DOI: 10.3390/metabo14040229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/29/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
The cancer paradigm is generally based on the somatic mutation model, asserting that cancer is a disease of genetic origin. The mitochondrial-stem cell connection (MSCC) proposes that tumorigenesis may result from an alteration of the mitochondria, specifically a chronic oxidative phosphorylation (OxPhos) insufficiency in stem cells, which forms cancer stem cells (CSCs) and leads to malignancy. Reviewed evidence suggests that the MSCC could provide a comprehensive understanding of all the different stages of cancer. The metabolism of cancer cells is altered (OxPhos insufficiency) and must be compensated by using the glycolysis and the glutaminolysis pathways, which are essential to their growth. The altered mitochondria regulate the tumor microenvironment, which is also necessary for cancer evolution. Therefore, the MSCC could help improve our understanding of tumorigenesis, metastases, the efficiency of standard treatments, and relapses.
Collapse
Affiliation(s)
- Pierrick Martinez
- Scientific and Osteopathic Research Department, Institut de Formation en Ostéopathie du Grand Avignon, 84140 Montfavet, France;
| | - Ilyes Baghli
- International Society for Orthomolecular Medicine, Toronto, ON M4B 3M9, Canada;
| | - Géraud Gourjon
- Scientific and Osteopathic Research Department, Institut de Formation en Ostéopathie du Grand Avignon, 84140 Montfavet, France;
| | | |
Collapse
|
35
|
Balaji E V, Satarker S, Kumar BH, Pandey S, Birangal SR, Nayak UY, Pai KSR. In-silico lead identification of the pan-mutant IDH1 and IDH2 inhibitors to target glioblastoma. J Biomol Struct Dyn 2024; 42:3764-3789. [PMID: 37227789 DOI: 10.1080/07391102.2023.2215884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023]
Abstract
Glioblastoma (GBM) is an aggressive malignant type of brain tumor. Targeting one single intracellular pathway might not alleviate the disease, rather it activates the other molecular pathways that lead to the worsening of the disease condition. Therefore, in this study, we attempted to target both isocitrate dehydrogenase 1 (IDH1) and IDH2, which are one of the most commonly mutated proteins in GBM and other cancer types. Here, standard precision and extra precision docking, IFD, MM-GBSA, QikProp, and molecular dynamics (MD) simulation were performed to identify the potential dual inhibitor for IDH1 and IDH2 from the enamine database containing 59,161 ligands. Upon docking the ligands with IDH1 (PDB: 6VEI) and IDH2 (PDB: 6VFZ), the top eight ligands were selected, based on the XP Glide score. These ligands produced favourable MMGBSA scores and ADME characteristics. Finally, the top four ligands 12953, 44825, 51295, and 53210 were subjected to MD analysis. Interestingly, 53210 showed maximum interaction with Gln 277 for 99% in IDH1 and Gln 316 for 100% in IDH2, which are the crucial amino acids for the inhibitory function of IDH1 and IDH2 to target GBM. Therefore, the present study attempts to identify the novel molecules which could possess a pan-inhibitory action on both IDH1 and IDH that could be crucial in the management of GBM. Yet further evaluation involving in vitro and in vivo studies is warranted to support the data in our current study.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Vignesh Balaji E
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sairaj Satarker
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - B Harish Kumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Samyak Pandey
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sumit Raosaheb Birangal
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Usha Y Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - K Sreedhara Ranganath Pai
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
36
|
Cobleigh MA, Layng KV, Mauer E, Mahon B, Hockenberry AJ, Abukhdeir AM. Comparative genomic analysis of PIK3R1-mutated and wild-type breast cancers. Breast Cancer Res Treat 2024; 204:407-414. [PMID: 38153569 DOI: 10.1007/s10549-023-07196-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 11/22/2023] [Indexed: 12/29/2023]
Abstract
PURPOSE The PIK3R1 gene encodes the regulatory subunit-p85a-of the PI3K signaling complex. Prior studies have found that pathogenic somatic alterations in PIK3R1 are enriched in human breast cancers but the genomic landscape of breast cancer patients harboring PIK3R1 mutations has not been extensively characterized. METHODS We retrospectively analyzed 6,009 patient records that underwent next-generation sequencing (NGS) using the Tempus xT solid tumor assay. All patients had breast cancer with known HER2 (+/-) and hormone receptor (HR; +/-) status and were classified according to the presence of PIK3R1 mutations including short variants and copy number alterations. RESULTS The frequency of PIK3R1 mutations varied according to subtype: 6% in triple negative (TNBC, 89/1,475), 2% in HER2-/HR+ (80/3,893) and 2.3% in HER2+ (15/641) (p < 0.001). Co-mutations in PTEN, TP53 and NF1 were significantly enriched, co-mutations in PIK3CA were significantly less prevalent, and tumor mutational burden was significantly higher in PIK3R1-mutated HER2- samples relative to PIK3R1 wild-type. At the transcriptional-level, PIK3R1 RNA expression in HER2- disease was significantly higher in PIK3R1-mutated (excluding copy number loss) samples, regardless of subtype. CONCLUSION This is the largest investigation of the PIK3R1 mutational landscape in breast cancer patients (n = 6,009). PIK3R1 mutations were more common in triple-negative breast cancer (~ 6%) than in HER2 + or HER2-/HR + disease (approximately 2%). While alterations in the PI3K/AKT pathway are often actionable in HER2-/HR + breast cancer, our study suggests that PIK3R1 could be an important target in TNBC as well.
Collapse
Affiliation(s)
- Melody A Cobleigh
- Rush University Medical Center, 1620 W Harrison St, Chicago, IL, 60612, USA.
| | | | | | - Brett Mahon
- Tempus Labs Inc, 600 W Chicago, Chicago, IL, 60654, USA
| | | | - Abde M Abukhdeir
- Rush University Medical Center, 1620 W Harrison St, Chicago, IL, 60612, USA
| |
Collapse
|
37
|
Matejcic M, Teer JK, Hoehn HJ, Diaz DB, Shankar K, Gong J, Nguyen NT, Lorona N, Coppola D, Fulmer C, Saglam O, Jiang K, Cress D, Muñoz-Antonia T, Flores I, Gordian E, Oliveras Torres JA, Felder SI, Sanchez JA, Fleming J, Siegel EM, Freedman JA, Dutil J, Stern MC, Fridley BL, Figueiredo JC, Schmit SL. Spectrum of somatic mutational features of colorectal tumors in ancestrally diverse populations. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.11.24303880. [PMID: 38558992 PMCID: PMC10980113 DOI: 10.1101/2024.03.11.24303880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Ancestrally diverse and admixed populations, including the Hispanic/Latino/a/x/e community, are underrepresented in cancer genetic and genomic studies. Leveraging the Latino Colorectal Cancer Consortium, we analyzed whole exome sequencing data on tumor/normal pairs from 718 individuals with colorectal cancer (128 Latino, 469 non-Latino) to map somatic mutational features by ethnicity and genetic ancestry. Global proportions of African, East Asian, European, and Native American ancestries were estimated using ADMIXTURE. Associations between global genetic ancestry and somatic mutational features across genes were examined using logistic regression. TP53 , APC , and KRAS were the most recurrently mutated genes. Compared to non-Latino individuals, tumors from Latino individuals had fewer KRAS (OR=0.64, 95%CI=0.41-0.97, p=0.037) and PIK3CA mutations (OR=0.55, 95%CI=0.31-0.98, p=0.043). Genetic ancestry was associated with presence of somatic mutations in 39 genes (FDR-adjusted LRT p<0.05). Among these genes, a 10% increase in African ancestry was associated with significantly higher odds of mutation in KNCN (OR=1.34, 95%CI=1.09-1.66, p=5.74×10 -3 ) and TMEM184B (OR=1.53, 95%CI=1.10-2.12, p=0.011). Among RMGs, we found evidence of association between genetic ancestry and mutation status in CDC27 (LRT p=0.0084) and between SMAD2 mutation status and AFR ancestry (OR=1.14, 95%CI=1.00-1.30, p=0.046). Ancestry was not associated with tumor mutational burden. Individuals with above-average Native American ancestry had a lower frequency of microsatellite instable (MSI-H) vs microsatellite stable tumors (OR=0.45, 95%CI=0.21-0.99, p=0.048). Our findings provide new knowledge about the relationship between ancestral haplotypes and somatic mutational profiles that may be useful in developing precision medicine approaches and provide additional insight into genomic contributions to cancer disparities. Significance Our data in ancestrally diverse populations adds essential information to characterize mutational features in the colorectal cancer genome. These results will help enhance equity in the development of precision medicine strategies.
Collapse
|
38
|
Wei PJ, Zhu AD, Cao R, Zheng C. Personalized Driver Gene Prediction Using Graph Convolutional Networks with Conditional Random Fields. BIOLOGY 2024; 13:184. [PMID: 38534453 DOI: 10.3390/biology13030184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/03/2024] [Accepted: 03/10/2024] [Indexed: 03/28/2024]
Abstract
Cancer is a complex and evolutionary disease mainly driven by the accumulation of genetic variations in genes. Identifying cancer driver genes is important. However, most related studies have focused on the population level. Cancer is a disease with high heterogeneity. Thus, the discovery of driver genes at the individual level is becoming more valuable but is a great challenge. Although there have been some computational methods proposed to tackle this challenge, few can cover all patient samples well, and there is still room for performance improvement. In this study, to identify individual-level driver genes more efficiently, we propose the PDGCN method. PDGCN integrates multiple types of data features, including mutation, expression, methylation, copy number data, and system-level gene features, along with network structural features extracted using Node2vec in order to construct a sample-gene interaction network. Prediction is performed using a graphical convolutional neural network model with a conditional random field layer, which is able to better combine the network structural features with biological attribute features. Experiments on the ACC (Adrenocortical Cancer) and KICH (Kidney Chromophobe) datasets from TCGA (The Cancer Genome Atlas) demonstrated that the method performs better compared to other similar methods. It can identify not only frequently mutated driver genes, but also rare candidate driver genes and novel biomarker genes. The results of the survival and enrichment analyses of these detected genes demonstrate that the method can identify important driver genes at the individual level.
Collapse
Affiliation(s)
- Pi-Jing Wei
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, 111 Jiulong Road, Hefei 230601, China
| | - An-Dong Zhu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, 111 Jiulong Road, Hefei 230601, China
| | - Ruifen Cao
- School of Computer Science and Technology, Anhui University, 111 Jiulong Road, Hefei 230601, China
| | - Chunhou Zheng
- School of Artificial Intelligence, Anhui University, 111 Jiulong Road, Hefei 230601, China
| |
Collapse
|
39
|
Annapragada AV, Niknafs N, White JR, Bruhm DC, Cherry C, Medina JE, Adleff V, Hruban C, Mathios D, Foda ZH, Phallen J, Scharpf RB, Velculescu VE. Genome-wide repeat landscapes in cancer and cell-free DNA. Sci Transl Med 2024; 16:eadj9283. [PMID: 38478628 PMCID: PMC11323656 DOI: 10.1126/scitranslmed.adj9283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 02/16/2024] [Indexed: 03/22/2024]
Abstract
Genetic changes in repetitive sequences are a hallmark of cancer and other diseases, but characterizing these has been challenging using standard sequencing approaches. We developed a de novo kmer finding approach, called ARTEMIS (Analysis of RepeaT EleMents in dISease), to identify repeat elements from whole-genome sequencing. Using this method, we analyzed 1.2 billion kmers in 2837 tissue and plasma samples from 1975 patients, including those with lung, breast, colorectal, ovarian, liver, gastric, head and neck, bladder, cervical, thyroid, or prostate cancer. We identified tumor-specific changes in these patients in 1280 repeat element types from the LINE, SINE, LTR, transposable element, and human satellite families. These included changes to known repeats and 820 elements that were not previously known to be altered in human cancer. Repeat elements were enriched in regions of driver genes, and their representation was altered by structural changes and epigenetic states. Machine learning analyses of genome-wide repeat landscapes and fragmentation profiles in cfDNA detected patients with early-stage lung or liver cancer in cross-validated and externally validated cohorts. In addition, these repeat landscapes could be used to noninvasively identify the tissue of origin of tumors. These analyses reveal widespread changes in repeat landscapes of human cancers and provide an approach for their detection and characterization that could benefit early detection and disease monitoring of patients with cancer.
Collapse
Affiliation(s)
- Akshaya V. Annapragada
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Noushin Niknafs
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - James R. White
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Daniel C. Bruhm
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Christopher Cherry
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jamie E. Medina
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Vilmos Adleff
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Carolyn Hruban
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Dimitrios Mathios
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Zachariah H. Foda
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jillian Phallen
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Robert B. Scharpf
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Victor E. Velculescu
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
40
|
Cho JW, Cao J, Hemberg M. Joint analysis of mutational and transcriptional landscapes in human cancer reveals key perturbations during cancer evolution. Genome Biol 2024; 25:65. [PMID: 38459554 PMCID: PMC10921788 DOI: 10.1186/s13059-024-03201-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/19/2024] [Indexed: 03/10/2024] Open
Abstract
BACKGROUND Tumors are able to acquire new capabilities, including traits such as drug resistance and metastasis that are associated with unfavorable clinical outcomes. Single-cell technologies have made it possible to study both mutational and transcriptomic profiles, but as most studies have been conducted on model systems, little is known about cancer evolution in human patients. Hence, a better understanding of cancer evolution could have important implications for treatment strategies. RESULTS Here, we analyze cancer evolution and clonal selection by jointly considering mutational and transcriptomic profiles of single cells acquired from tumor biopsies from 49 lung cancer samples and 51 samples with chronic myeloid leukemia. Comparing the two profiles, we find that each clone is associated with a preferred transcriptional state. For metastasis and drug resistance, we find that the number of mutations affecting related genes increases as the clone evolves, while changes in gene expression profiles are limited. Surprisingly, we find that mutations affecting ligand-receptor interactions with the tumor microenvironment frequently emerge as clones acquire drug resistance. CONCLUSIONS Our results show that lung cancer and chronic myeloid leukemia maintain a high clonal and transcriptional diversity, and we find little evidence in favor of clonal sweeps. This suggests that for these cancers selection based solely on growth rate is unlikely to be the dominating driving force during cancer evolution.
Collapse
Affiliation(s)
- Jae-Won Cho
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jingyi Cao
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Martin Hemberg
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
41
|
Bhat GR, Sethi I, Sadida HQ, Rah B, Mir R, Algehainy N, Albalawi IA, Masoodi T, Subbaraj GK, Jamal F, Singh M, Kumar R, Macha MA, Uddin S, Akil ASAS, Haris M, Bhat AA. Cancer cell plasticity: from cellular, molecular, and genetic mechanisms to tumor heterogeneity and drug resistance. Cancer Metastasis Rev 2024; 43:197-228. [PMID: 38329598 PMCID: PMC11016008 DOI: 10.1007/s10555-024-10172-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 01/24/2024] [Indexed: 02/09/2024]
Abstract
Cancer is a complex disease displaying a variety of cell states and phenotypes. This diversity, known as cancer cell plasticity, confers cancer cells the ability to change in response to their environment, leading to increased tumor diversity and drug resistance. This review explores the intricate landscape of cancer cell plasticity, offering a deep dive into the cellular, molecular, and genetic mechanisms that underlie this phenomenon. Cancer cell plasticity is intertwined with processes such as epithelial-mesenchymal transition and the acquisition of stem cell-like features. These processes are pivotal in the development and progression of tumors, contributing to the multifaceted nature of cancer and the challenges associated with its treatment. Despite significant advancements in targeted therapies, cancer cell adaptability and subsequent therapy-induced resistance remain persistent obstacles in achieving consistent, successful cancer treatment outcomes. Our review delves into the array of mechanisms cancer cells exploit to maintain plasticity, including epigenetic modifications, alterations in signaling pathways, and environmental interactions. We discuss strategies to counteract cancer cell plasticity, such as targeting specific cellular pathways and employing combination therapies. These strategies promise to enhance the efficacy of cancer treatments and mitigate therapy resistance. In conclusion, this review offers a holistic, detailed exploration of cancer cell plasticity, aiming to bolster the understanding and approach toward tackling the challenges posed by tumor heterogeneity and drug resistance. As articulated in this review, the delineation of cellular, molecular, and genetic mechanisms underlying tumor heterogeneity and drug resistance seeks to contribute substantially to the progress in cancer therapeutics and the advancement of precision medicine, ultimately enhancing the prospects for effective cancer treatment and patient outcomes.
Collapse
Affiliation(s)
- Gh Rasool Bhat
- Advanced Centre for Human Genetics, Sher-I-Kashmir Institute of Medical Sciences, Soura, Srinagar, Jammu and Kashmir, India
| | - Itty Sethi
- Institute of Human Genetics, University of Jammu, Jammu, Jammu and Kashmir, India
| | - Hana Q Sadida
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Bilal Rah
- Iron Biology Group, Research Institute of Medical and Health Science, University of Sharjah, Sharjah, UAE
| | - Rashid Mir
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Prince Fahad Bin Sultan Chair for Biomedical Research, University of Tabuk, Tabuk, Saudi Arabia
| | - Naseh Algehainy
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Prince Fahad Bin Sultan Chair for Biomedical Research, University of Tabuk, Tabuk, Saudi Arabia
| | | | - Tariq Masoodi
- Laboratory of Cancer Immunology and Genetics, Sidra Medicine, Doha, Qatar
| | | | - Farrukh Jamal
- Dr. Rammanohar, Lohia Avadh University, Ayodhya, India
| | - Mayank Singh
- Department of Medical Oncology (Lab.), Institute of Medical Sciences (AIIMS), Dr. BRAIRCH, All India, New Delhi, India
| | - Rakesh Kumar
- School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, India
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Jammu and Kashmir, India
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Laboratory Animal Research Centre, Qatar University, Doha, Qatar
| | - Ammira S Al-Shabeeb Akil
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Mohammad Haris
- Laboratory Animal Research Centre, Qatar University, Doha, Qatar.
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA.
| | - Ajaz A Bhat
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar.
| |
Collapse
|
42
|
Dehghani-Ghahnaviyeh S, Soylu C, Furet P, Velez-Vega C. Dissecting the Interaction Fingerprints and Binding Affinity of BYL719 Analogs Targeting PI3Kα. J Phys Chem B 2024; 128:1819-1829. [PMID: 38373112 DOI: 10.1021/acs.jpcb.3c06766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Phosphatidylinositol-3-kinase Alpha (PI3Kα) is a lipid kinase which regulates signaling pathways involved in cell proliferation. Dysregulation of these pathways promotes several human cancers, pushing for the development of anticancer drugs to target PI3Kα. One such medicinal chemistry campaign at Novartis led to the discovery of BYL719 (Piqray, Alpelicib), a PI3Kα inhibitor approved by the FDA in 2019 for treatment of HR+/HER2-advanced breast cancer with a PIK3CA mutation. Structure-based drug design played a key role in compound design and optimization throughout the discovery process. However, further characterization of potency drivers via structural dynamics and energetic analyses can be advantageous for ensuing PI3Kα programs. Here, our goal is to employ various in-silico techniques, including molecular simulations and machine learning, to characterize 14 ligands from the BYL719 analogs and predict their binding affinities. The structural insights from molecular simulations suggest that although the ligand-hinge interaction is the primary driver of ligand stability at the pocket, the R group positioning at C2 or C6 of pyridine/pyrimidine also plays a major role. Binding affinities predicted via thermodynamic integration (TI) are in good agreement with previously reported IC50s. Yet, computationally demanding techniques such as TI might not always be the most efficient approach for affinity prediction, as in our case study, fast high-throughput techniques were capable of classifying compounds as active or inactive, and one docking approach showed accuracy comparable to TI.
Collapse
Affiliation(s)
- Sepehr Dehghani-Ghahnaviyeh
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Cihan Soylu
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Pascal Furet
- Novartis Institutes for BioMedical Research, CH4002 Basel, Switzerland
| | - Camilo Velez-Vega
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
43
|
Scholl JN, Weber AF, Dias CK, Lima VP, Grun LK, Zambonin D, Anzolin E, Dos Santos Dias WW, Kus WP, Barbé-Tuana F, Battastini AMO, Worm PV, Figueiró F. Characterization of purinergic signaling in tumor-infiltrating lymphocytes from lower- and high-grade gliomas. Purinergic Signal 2024; 20:47-64. [PMID: 36964277 PMCID: PMC10828327 DOI: 10.1007/s11302-023-09931-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/06/2023] [Indexed: 03/26/2023] Open
Abstract
Malignant gliomas are highly heterogeneous glia-derived tumors that present an aggressive and invasive nature, with a dismal prognosis. The multi-dimensional interactions between glioma cells and other tumor microenvironment (TME) non-tumoral components constitute a challenge to finding successful treatment strategies. Several molecules, such as extracellular purines, participate in signaling events and support the immunosuppressive TME of glioma patients. The purinergic signaling and the ectoenzymes network involved in the metabolism of these extracellular nucleotides are still unexplored in the glioma TME, especially in lower-grade gliomas (LGG). Also, differences between IDH-mutant (IDH-Mut) versus wild-type (IDH-WT) gliomas are still unknown in this context. For the first time, to our knowledge, this study characterizes the TME of LGG, high-grade gliomas (HGG) IDH-Mut, and HGG IDH-WT patients regarding purinergic ectoenzymes and P1 receptors, focusing on tumor-infiltrating lymphocytes. Here, we show that ectoenzymes from both canonical and non-canonical pathways are increased in the TME when compared to the peripheral blood. We hypothesize this enhancement supports extracellular adenosine generation, hence increasing TME immunosuppression.
Collapse
Affiliation(s)
- Juliete Nathali Scholl
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil
| | - Augusto Ferreira Weber
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil
| | - Camila Kehl Dias
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil
| | - Vinícius Pierdoná Lima
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil
| | - Lucas Kich Grun
- Programa de Pós-Graduação Em Pediatria E Saúde da Criança, Escola de Medicina, PUCRS, Porto Alegre, RS, Brazil
| | - Diego Zambonin
- Departamento de Neurocirurgia, Hospital Cristo Redentor, Porto Alegre, Brazil
| | - Eduardo Anzolin
- Departamento de Neurocirurgia, Hospital Cristo Redentor, Porto Alegre, Brazil
| | | | | | - Florencia Barbé-Tuana
- Programa de Pós-Graduação Em Biologia Celular E Molecular, Escola de Ciências da Saúde E da Vida, PUCRS, Porto Alegre, RS, Brazil
| | - Ana Maria Oliveira Battastini
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil
| | - Paulo Valdeci Worm
- Departamento de Neurocirurgia, Hospital Cristo Redentor, Porto Alegre, Brazil
- Departmento de Cirurgia, Universidade Federal de Ciências da Saúde de Porto Alegre, Rio Grande Do Sul, Porto Alegre, Brazil
| | - Fabrício Figueiró
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil.
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil.
| |
Collapse
|
44
|
Li RQ, Yang Y, Qiao L, Yang L, Shen DD, Zhao XJ. KIF2C: An important factor involved in signaling pathways, immune infiltration, and DNA damage repair in tumorigenesis. Biomed Pharmacother 2024; 171:116173. [PMID: 38237349 DOI: 10.1016/j.biopha.2024.116173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/02/2024] [Accepted: 01/13/2024] [Indexed: 02/08/2024] Open
Abstract
BACKGROUNDS Poorly regulated mitosis and chromosomal instability are common characteristics in malignant tumor cells. Kinesin family member 2 C (KIF2C), also known as mitotic centromere-associated kinesin (MCAK) is an essential component during mitotic regulation. In recent years, KIF2C was shown to be dysregulated in several tumors and was involved in many aspects of tumor self-regulation. Research on KIF2C may be a new direction and target for anti-tumor therapy. OBJECT The article aims at reviewing current literatures and summarizing the research status of KIF2C in malignant tumors as well as the oncogenic signaling pathways associated with KIF2C and its role in immune infiltration. RESULT In this review, we summarize the KIF2C mechanisms and signaling pathways in different malignant tumors, and briefly describe its involvement in pathways related to classical chemotherapeutic drug resistance, such as MEK/ERK, mTOR, Wnt/β-catenin, P53 and TGF-β1/Smad pathways. KIF2C upregulation was shown to promote tumor cell migration, invasion, chemotherapy resistance and inhibit DNA damage repair. It was also highly correlated with microRNAs, and CD4 +T cell and CD8 +T cell tumor immune infiltration. CONCLUSION This review shows that KIF2C may function as a new anticancer drug target with great potential for malignant tumor treatment and the mitigation of chemotherapy resistance.
Collapse
Affiliation(s)
- Rui-Qing Li
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yan Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Lin Qiao
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Li Yang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Zhengzhou Key Laboratory of Endometrial Disease Prevention and Treatment, Zhengzhou, China.
| | - Dan-Dan Shen
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiao-Jing Zhao
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
45
|
Lucena-Padros H, Bravo-Gil N, Tous C, Rojano E, Seoane-Zonjic P, Fernández RM, Ranea JAG, Antiñolo G, Borrego S. Bioinformatics Prediction for Network-Based Integrative Multi-Omics Expression Data Analysis in Hirschsprung Disease. Biomolecules 2024; 14:164. [PMID: 38397401 PMCID: PMC10886964 DOI: 10.3390/biom14020164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/15/2024] [Accepted: 01/27/2024] [Indexed: 02/25/2024] Open
Abstract
Hirschsprung's disease (HSCR) is a rare developmental disorder in which enteric ganglia are missing along a portion of the intestine. HSCR has a complex inheritance, with RET as the major disease-causing gene. However, the pathogenesis of HSCR is still not completely understood. Therefore, we applied a computational approach based on multi-omics network characterization and clustering analysis for HSCR-related gene/miRNA identification and biomarker discovery. Protein-protein interaction (PPI) and miRNA-target interaction (MTI) networks were analyzed by DPClusO and BiClusO, respectively, and finally, the biomarker potential of miRNAs was computationally screened by miRNA-BD. In this study, a total of 55 significant gene-disease modules were identified, allowing us to propose 178 new HSCR candidate genes and two biological pathways. Moreover, we identified 12 key miRNAs with biomarker potential among 137 predicted HSCR-associated miRNAs. Functional analysis of new candidates showed that enrichment terms related to gene ontology (GO) and pathways were associated with HSCR. In conclusion, this approach has allowed us to decipher new clues of the etiopathogenesis of HSCR, although molecular experiments are further needed for clinical validations.
Collapse
Affiliation(s)
- Helena Lucena-Padros
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain
| | - Nereida Bravo-Gil
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
| | - Cristina Tous
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
| | - Elena Rojano
- Department of Molecular Biology and Biochemistry, University of Malaga, 29010 Malaga, Spain
- Biomedical Research Institute of Malaga, IBIMA, 29010 Malaga, Spain
| | - Pedro Seoane-Zonjic
- Department of Molecular Biology and Biochemistry, University of Malaga, 29010 Malaga, Spain
- Biomedical Research Institute of Malaga, IBIMA, 29010 Malaga, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), 29071 Malaga, Spain
| | - Raquel María Fernández
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
| | - Juan A. G. Ranea
- Department of Molecular Biology and Biochemistry, University of Malaga, 29010 Malaga, Spain
- Biomedical Research Institute of Malaga, IBIMA, 29010 Malaga, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), 29071 Malaga, Spain
- Spanish National Bioinformatics Institute (INB/ELIXIR-ES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Guillermo Antiñolo
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
| | - Salud Borrego
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
| |
Collapse
|
46
|
Tzenaki N, Xenou L, Goulielmaki E, Tsapara A, Voudouri I, Antoniou A, Valianatos G, Tzardi M, De Bree E, Berdiaki A, Makrigiannakis A, Papakonstanti EA. A combined opposite targeting of p110δ PI3K and RhoA abrogates skin cancer. Commun Biol 2024; 7:26. [PMID: 38182748 PMCID: PMC10770346 DOI: 10.1038/s42003-023-05639-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 11/27/2023] [Indexed: 01/07/2024] Open
Abstract
Malignant melanoma is the most aggressive and deadly skin cancer with an increasing incidence worldwide whereas SCC is the second most common non-melanoma human skin cancer with limited treatment options. Here we show that the development and metastasis of melanoma and SCC cancers can be blocked by a combined opposite targeting of RhoA and p110δ PI3K. We found that a targeted induction of RhoA activity into tumours by deletion of p190RhoGAP-a potent inhibitor of RhoA GTPase-in tumour cells together with adoptive macrophages transfer from δD910A/D910A mice in mice bearing tumours with active RhoA abrogated growth progression of melanoma and SCC tumours. Τhe efficacy of this combined treatment is the same in tumours lacking activating mutations in BRAF and in tumours harbouring the most frequent BRAF(V600E) mutation. Furthermore, the efficiency of this combined treatment is associated with decreased ATX expression in tumour cells and tumour stroma bypassing a positive feedback expression of ATX induced by direct ATX pharmacological inactivation. Together, our findings highlight the importance of targeting cancer cells and macrophages for skin cancer therapy, emerge a reverse link between ATX and RhoA and illustrate the benefit of p110δ PI3K inhibition as a combinatorial regimen for the treatment of skin cancers.
Collapse
Affiliation(s)
- Niki Tzenaki
- Department of Biochemistry, School of Medicine, University of Crete, Heraklion, Greece
| | - Lydia Xenou
- Department of Biochemistry, School of Medicine, University of Crete, Heraklion, Greece
| | - Evangelia Goulielmaki
- Department of Biochemistry, School of Medicine, University of Crete, Heraklion, Greece
| | - Anna Tsapara
- Department of Biochemistry, School of Medicine, University of Crete, Heraklion, Greece
| | - Irene Voudouri
- Department of Biochemistry, School of Medicine, University of Crete, Heraklion, Greece
| | - Angelika Antoniou
- Department of Biochemistry, School of Medicine, University of Crete, Heraklion, Greece
| | - George Valianatos
- Department of Biochemistry, School of Medicine, University of Crete, Heraklion, Greece
| | - Maria Tzardi
- Department of Pathology, School of Medicine, University of Crete, University Hospital, Heraklion, Greece
| | - Eelco De Bree
- Department of Surgical Oncology, School of Medicine, University of Crete, University Hospital, Heraklion, Greece
| | - Aikaterini Berdiaki
- Department of Obstetrics and Gynaecology, School of Medicine, University of Crete, University Hospital, Heraklion, Greece
| | - Antonios Makrigiannakis
- Department of Obstetrics and Gynaecology, School of Medicine, University of Crete, University Hospital, Heraklion, Greece
| | | |
Collapse
|
47
|
Lin C, Schoenherr RM, Voytovich UJ, Ivey RG, Kennedy JJ, Whiteaker JR, Wang P, Paulovich AG. RNA and phosphoprotein profiles of TP53- and PTEN-knockouts in MCF10A at baseline and responding to DNA damage. Sci Data 2024; 11:27. [PMID: 38177134 PMCID: PMC10766633 DOI: 10.1038/s41597-023-02829-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/06/2023] [Indexed: 01/06/2024] Open
Abstract
A wealth of proteogenomic data has been generated using cancer samples to deepen our understanding of the mechanisms of cancer and how biological networks are altered in association with somatic mutation of tumor suppressor genes, such as TP53 and PTEN. To generate functional signatures of TP53 or PTEN loss, we profiled the RNA and phosphoproteomes of the MCF10A epithelial cell line, along with its congenic TP53- or PTEN-knockout derivatives, upon perturbation with the monofunctional DNA alkylating agent methyl methanesulfonate (MMS) vs. mock treatment. To enable quantitative and reproducible mass spectrometry data generation, the cell lines were SILAC-labeled (stable isotope labeling with amino acids in cell culture), and the experimental design included label swapping and biological replicates. All data are publicly available and may be used to advance our understanding of the TP53 and PTEN tumor suppressor genes and to provide functional signatures for bioinformatic analyses of proteogenomic datasets.
Collapse
Affiliation(s)
- ChenWei Lin
- Fred Hutchinson Cancer Center, Seattle, WA, USA
| | | | | | | | | | | | - Pei Wang
- Department of Genetic and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | |
Collapse
|
48
|
Chakraborty B, Agarwal S, Kori S, Das R, Kashaw V, Iyer AK, Kashaw SK. Multiple Protein Biomarkers and Different Treatment Strategies for Colorectal Carcinoma: A Comprehensive Prospective. Curr Med Chem 2024; 31:3286-3326. [PMID: 37151060 DOI: 10.2174/0929867330666230505165031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 05/09/2023]
Abstract
In this review, we emphasized important biomarkers, pathogenesis, and newly developed therapeutic approaches in the treatment of colorectal cancer (CRC). This includes a complete description of small-molecule inhibitors, phytopharmaceuticals with antiproliferative potential, monoclonal antibodies for targeted therapy, vaccinations as immunotherapeutic agents, and many innovative strategies to intervene in the interaction of oncogenic proteins. Many factors combine to determine the clinical behavior of colorectal cancer and it is still difficult to comprehend the molecular causes of a person's vulnerability to CRC. It is also challenging to identify the causes of the tumor's onset, progression, and responsiveness or resistance to antitumor treatment. Current recommendations for targeted medications are being updated by guidelines throughout the world in light of the growing number of high-quality clinical studies. So, being concerned about the aforementioned aspects, we have tried to present a summarized pathogenic view, including a brief description of biomarkers and an update of compounds with their underlying mechanisms that are currently under various stages of clinical testing. This will help to identify gaps or shortfalls that can be addressed in upcoming colorectal cancer research.
Collapse
Affiliation(s)
- Biswadip Chakraborty
- Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| | - Shivangi Agarwal
- Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| | - Shivam Kori
- Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| | - Ratnesh Das
- Department of Chemistry, ISF College of Pharmacy, Moga-Punjab, India
| | - Varsha Kashaw
- Sagar Institute of Pharmaceutical Sciences, Sagar (M.P.), India
| | - Arun K Iyer
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan, USA
- Molecular Imaging Program, Karmanos Cancer Institute, Detroit, Michigan, USA
| | - Sushil Kumar Kashaw
- Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| |
Collapse
|
49
|
Kina BG, Topbas Selcuki NF, Bahat PY, Usta T, Aydin S, Rahmioglu N, Tuncer FN, Oral E. Whole exome sequencing reveals novel candidate variants for endometriosis utilizing multiple affected members in a single family. Mol Genet Genomic Med 2024; 12:e2312. [PMID: 38013616 PMCID: PMC10767589 DOI: 10.1002/mgg3.2312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/25/2023] [Accepted: 10/13/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Endometriosis is an estrogen-dependent, chronic inflammatory disease that affects 10% of women during the reproductive ages. Despite the estimated 50% heritability for the condition, only 26% was associated with common genetic variants. Thus, necessity of identifying rare variants for the missing heritability is implicated in the literature. Therefore, our study aimed to identify novel rare genetic variants involved in the pathogenesis of endometriosis utilizing a family of multiple affected members. METHODS A family composed of four affected women along with their two unaffected mothers were recruited at a single gynecology and infertility clinic specialized in endometriosis. All patients presented with endometriomas, which was visualized by transvaginal ultrasonography. Two affected individuals had received laparoscopic endometrioma excision and therefore were diagnosed with recurrent disease. One mother had a history of endometrial serous adenocarcinoma (ESC) for which she underwent hysterectomy with bilateral oophorectomy. Three endometriosis cases were whole exome sequenced on Illumina NextSeq 550 platform with an average of 90% coverage. Candidate genes were confirmed by Sanger sequencing and followed-up with family segregation. RESULTS Novel rare variants were identified in TNFRSF1B (NM_001066.3: c.1072G>A, p.(Ala358Thr)) and GEN1 (NM_001130009.3: c.1574C>T, p.(Ser525Leu)) as possible genetic causes of endometriosis. A third novel rare variant was identified in CRABP1 (NM_004378.3:c.54G>C, p.(Glu18Asp)) only on the mother with ESC history and her daughters. CONCLUSION Novel candidate genetic variants that might contribute to endometriosis were suggested that need replication through independent cohorts or validation by functional studies. The family has also received genetic counseling and that the affected daughters are on clinical follow-up, accordingly.
Collapse
Affiliation(s)
- Busra Gizem Kina
- Department of Genetics, Aziz Sancar Institute of Experimental MedicineIstanbul UniversityIstanbulTurkey
- Graduate School of Health SciencesIstanbul UniversityIstanbulTurkey
| | - Nura Fitnat Topbas Selcuki
- Department of Obstetrics and Gynecology, Istanbul Sisli Hamidiye Etfal Training and Research HospitalUniversity of Health Sciences TurkiyeIstanbulTurkey
| | - Pinar Yalcin Bahat
- Department of Obstetrics and Gynecology, Istanbul Kanuni Sultan Suleyman Training and Research HospitalUniversity of Health Sciences TurkiyeIstanbulTurkey
| | - Taner Usta
- Department of Obstetrics and Gynecology, Acibadem Altunizade HospitalMehmet Ali Aydinlar UniversityIstanbulTurkey
| | - Sevcan Aydin
- Department of Genetics, Aziz Sancar Institute of Experimental MedicineIstanbul UniversityIstanbulTurkey
- Graduate School of Health SciencesIstanbul UniversityIstanbulTurkey
| | - Nilufer Rahmioglu
- Oxford Endometriosis Care Centre, Nuffield Department of Women's and Reproductive HealthUniversity of Oxford, Women's Centre, John Radcliffe HospitalOxfordUK
- Wellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
| | - Feyza Nur Tuncer
- Department of Genetics, Aziz Sancar Institute of Experimental MedicineIstanbul UniversityIstanbulTurkey
| | - Engin Oral
- Department of Obstetrics and GynecologyBezmialem Vakif UniversityIstanbulTurkey
| |
Collapse
|
50
|
Steele EJ, Franklin A, Lindley RA. Somatic mutation patterns at Ig and Non-Ig Loci. DNA Repair (Amst) 2024; 133:103607. [PMID: 38056368 DOI: 10.1016/j.dnarep.2023.103607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/08/2023]
Abstract
The reverse transcriptase (RT) model of immunoglobulin (Ig) somatic hypermutation (SHM) has received insufficient scientific attention. This is understandable given that DNA deamination mediated by activation-induced deaminase (AID), the initiating step of Ig SHM, has dominated experiments since 2002. We summarise some key history of the RT Ig SHM model dating to 1987. For example, it is now established that DNA polymerase η, the sole DNA repair polymerase involved in post-replication short-patch repair, is an efficient cellular RT. This implies that it is potentially able to initiate target site reverse transcription by RNA-directed DNA repair at AID-induced lesions. Recently, DNA polymerase θ has also been shown to be an efficient cellular RT. Since DNA polymerase θ plays no significant role in Ig SHM, it could serve a similar RNA-dependent DNA polymerase role as DNA polymerase η at non-Ig loci in the putative RNA-templated nucleotide excision repair of bulky adducts and other mutagenic lesions on the transcribed strand. A major yet still poorly recognised consequence of the proposed RT process in Ig SHM is the generation of significant and characteristic strand-biased mutation signatures at both deoxyadenosine/deoxythymidine and deoxyguanosine/deoxycytidine base pairs. In this historical perspective, we highlight how diagnostic strand-biased mutation signatures are detected in vivo during SHM at both Ig loci in germinal centre B lymphocytes and non-Ig loci in cancer genomes. These strand-biased signatures have been significantly obscured by technical issues created by improper use of the polymerase chain reaction technique. A heightened awareness of this fact should contribute to better data interpretation and somatic mutation pattern recognition both at Ig and non-Ig loci.
Collapse
Affiliation(s)
- Edward J Steele
- Melville Analytics Pty Ltd, 2/102 Duke St, Kangaroo Point, Brisbane 4169, Qld, Australia.
| | - Andrew Franklin
- Novartis Pharmaceuticals UK Limited, The WestWorks Building, White City Place, 195 Wood Lane, W12 7FQ London, United Kingdom
| | - Robyn A Lindley
- GMDxgenomics, Suite 201, 697 Burke Rd, Camberwell, Melbourne 3124, Vic, Australia; Department of Clinical Pathology, Faculty of Medicine, Dentistry & Health Sciences, University of Melbourne, Vic, Australia
| |
Collapse
|