1
|
Magesh V, Sekar R, AlZahrani A, Balasubramanian R, Abdelsalam SA, Rajendran P. HES1 in cancer: a key player in tumorigenesis and its prognostic significance. Mol Genet Genomics 2025; 300:49. [PMID: 40392313 DOI: 10.1007/s00438-025-02259-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Accepted: 05/07/2025] [Indexed: 05/22/2025]
Abstract
The dysregulation of transcriptional regulators is a critical feature in the progression of many malignancies. Hairy and enhancer of split homolog-1 (HES1), a member of the basic helix-loop-helix (bHLH) gene family, has emerged as a key player in tumorigenesis due to its regulatory roles in multiple cellular pathways. This review aims to systematically explore the relevance of HES1 in cancer development, emphasizing its activation through major signaling pathways such as Notch, Hedgehog, hypoxia, and Wnt, and its contribution to advanced tumor progression. Numerous studies have demonstrated that HES1 upregulates genes associated with stemness, proliferation, and metastasis, and its expression correlates with poor clinicopathological features, including enhanced tumor proliferation, self-renewal, migration, metastasis, and drug resistance. Furthermore, HES1 has been frequently identified as a downstream effector of critical oncogenic pathways, further consolidating its role in aggressive cancers. Based on current evidence, HES1 holds promise as both a prognostic biomarker and a potential therapeutic target in various lethal malignancies. A deeper understanding of HES1's molecular mechanisms could pave the way for the development of targeted interventions aimed at improving cancer outcomes.
Collapse
Affiliation(s)
| | - Ramya Sekar
- Department of Oral & Maxillofacial Pathology and Oral Microbiology, Meenakshi Ammal Dental College and Hospital, Meenakshi Academy of Higher Education and Research (Deemed to Be University), Chennai, Tamil Nadu, India
| | - Abdullah AlZahrani
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | | | - Salaheldin Abdelraouf Abdelsalam
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
- Department of Zoology, Faculty of Science, Assiut University, Assiut 71515, Egypt
| | - Peramaiyan Rajendran
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia.
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600 077, Tamil Nadu, India.
| |
Collapse
|
2
|
Huang X, Chen W, Wang Y, Shytikov D, Wang Y, Zhu W, Chen R, He Y, Yang Y, Guo W. Canonical and noncanonical NOTCH signaling in the nongenetic resistance of cancer: distinct and concerted control. Front Med 2025; 19:23-52. [PMID: 39745621 DOI: 10.1007/s11684-024-1107-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 09/18/2024] [Indexed: 02/27/2025]
Abstract
Therapeutic resistance in cancer is responsible for numerous cancer deaths in clinical practice. While target mutations are well recognized as the basis of genetic resistance to targeted therapy, nontarget mutation resistance (or nongenetic resistance) remains poorly characterized. Despite its complex and unintegrated mechanisms in the literature, nongenetic resistance is considered from our perspective to be a collective response of innate or acquired resistant subpopulations in heterogeneous tumors to therapy. These subpopulations, e.g., cancer stem-like cells, cancer cells with epithelial-to-mesenchymal transition, and drug-tolerant persisters, are protected by their resistance traits at cellular and molecular levels. This review summarizes recent advances in the research on resistant populations and their resistance traits. NOTCH signaling, as a central regulator of nongenetic resistance, is discussed with a special focus on its canonical maintenance of resistant cancer cells and noncanonical regulation of their resistance traits. This novel view of canonical and noncanonical NOTCH signaling pathways is translated into our proposal of reshaping therapeutic strategies targeting NOTCH signaling in resistant cancer cells. We hope that this review will lead researchers to study the canonical and noncanonical arms of NOTCH signaling as an integrated resistant mechanism, thus promoting the development of innovative therapeutic strategies.
Collapse
Affiliation(s)
- Xianzhe Huang
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Jiaxing, 314400, China
| | - Wenwei Chen
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Jiaxing, 314400, China
| | - Yanyan Wang
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Jiaxing, 314400, China
| | - Dmytro Shytikov
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Jiaxing, 314400, China
| | - Yanwen Wang
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Jiaxing, 314400, China
| | - Wangyi Zhu
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Jiaxing, 314400, China
| | - Ruyi Chen
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Jiaxing, 314400, China
| | - Yuwei He
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Jiaxing, 314400, China
| | - Yanjia Yang
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Jiaxing, 314400, China
| | - Wei Guo
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Jiaxing, 314400, China.
- First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.
- Biomedical and Health Translational Research Center of Zhejiang Province, Jiaxing, 314400, China.
| |
Collapse
|
3
|
Mitra M, Batista SL, Coller HA. Transcription factor networks in cellular quiescence. Nat Cell Biol 2025; 27:14-27. [PMID: 39789221 DOI: 10.1038/s41556-024-01582-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/25/2024] [Indexed: 01/12/2025]
Abstract
Many of the cells in mammalian tissues are in a reversible quiescent state; they are not dividing, but retain the ability to proliferate in response to extracellular signals. Quiescence relies on the activities of transcription factors (TFs) that orchestrate the repression of genes that promote proliferation and establish a quiescence-specific gene expression program. Here we discuss how the coordinated activities of TFs in different quiescent stem cells and differentiated cells maintain reversible cell cycle arrest and establish cell-protective signalling pathways. We further cover the emerging mechanisms governing the dysregulation of quiescence TF networks with age. We explore how recent developments in single-cell technologies have enhanced our understanding of quiescence heterogeneity and gene regulatory networks. We further discuss how TFs and their activities are themselves regulated at the RNA, protein and chromatin levels. Finally, we summarize the challenges associated with defining TF networks in quiescent cells.
Collapse
Affiliation(s)
- Mithun Mitra
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Sandra L Batista
- Department of Computer Science, University of California, Los Angeles, Los Angeles, CA, USA
| | - Hilary A Coller
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
4
|
Li C, Ren S, Yan C, Wang C, Jiang T, Kang Y, Chen J, Xiong H, Guo J, Jiang G, Liu S, Nie P, Chen Z. HES1 revitalizes the functionality of aged adipose-derived stem cells by inhibiting the transcription of STAT1. Stem Cell Res Ther 2024; 15:399. [PMID: 39501364 PMCID: PMC11539794 DOI: 10.1186/s13287-024-04002-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 10/16/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND The effectiveness of adipose-derived stem cells (ADSCs) in therapy diminishes with age. It has been reported that transcription factors (TFs) play a crucial role in the aging and functionality of stem cells. Nevertheless, there is limited understanding regarding the involvement of TFs in the aging mechanism of ADSCs. METHODS RNA sequencing (RNA-seq) was utilized to discern the differentially expressed genes in ADSCs obtained from donors of varying ages. TFs exhibiting significant variations across age groups were identified and subsequently validated. ADSCs were manipulated to exhibit either enhanced expression or reduced levels of HES1 and STAT1 via lentivirus transfection and small interfering RNA (siRNA) techniques. The impact of these genetic alterations on ADSCs' proliferation, migration, and cellular senescence was assessed using EdU, transwell, and senescence-activated β-galactosidase (SA-β-gal) staining assays. The DNA sequences bound by HES1 were investigated through the CUT & Tag assay. Lastly, the therapeutic efficacy of aged ADSCs with HES1 overexpression was evaluated in skin injury model of male Sprague-Dawley rats. RESULTS 678 genes showed differential expression between ADSCs obtained from young and old donors (Y-ADSCs and O-ADSCs), with 47 of these genes being TFs. Notably, the expression of the TF hairy and enhancer of split 1 (HES1) was notably reduced in ADSCs from old donors. Introducing HES1 overexpression in aged ADSCs resulted in improved cellular function and the suppression of cellular senescence, while reducing HES1 levels in young ADSCs had the opposite effect. Mechanistically, HES1 was found to interact with the promoter region of another TF, signal transducer and activator of transcription 1 (STAT1), to inhibit its transcription. Knocking down STAT1 could fully reverse the negative effects caused by decreased HES1 in ADSCs, leading to a reduction in the secretion of pro-inflammatory cytokines such as TNF-α, IL-6, and IL-8. Ultimately, restoring HES1 expression in aged ADSCs demonstrated enhanced therapeutic potential in promoting skin wound healing. CONCLUSION HES1 acts as an inhibitor of cellular senescence in the aging progression of ADSCs through the modulation of STAT1 expression, suggesting a promising avenue for rejuvenating senescent ADSCs and improving wound healing.
Collapse
Affiliation(s)
- Chengcheng Li
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Sen Ren
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Chengqi Yan
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Cheng Wang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Tao Jiang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Yu Kang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Jing Chen
- Department of Dermatology, Wuhan No.1 Hospital, Wuhan, Hubei, 430000, China
| | - Hewei Xiong
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiahe Guo
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Guoyong Jiang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Shuoyuan Liu
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Pengjuan Nie
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Zhenbing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China.
| |
Collapse
|
5
|
Moreira JF, Solá S. Dynamics of Neurogenic Signals as Biological Switchers of Brain Plasticity. Stem Cell Rev Rep 2024; 20:2032-2044. [PMID: 39259446 PMCID: PMC11554707 DOI: 10.1007/s12015-024-10788-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2024] [Indexed: 09/13/2024]
Abstract
The discovery of adult neurogenesis in the middle of the past century is considered one of the most important breakthroughs in neuroscience. Despite its controversial nature, this discovery shaped our concept of neural plasticity, revolutionizing the way we look at our brains. In fact, after the discovery of adult neurogenesis, we started to consider the brain as something even more dynamic and highly adaptable. In neurogenic niches, adult neurogenesis is supported by neural stem cells (NSCs). These cells possess a unique set of characteristics such as being quiescent for long periods while actively sensing and reacting to their surroundings to influence a multitude of processes, including the generation of new neurons and glial cells. Therefore, NSCs can be viewed as sentinels to our brain's homeostasis, being able to replace damaged cells and simultaneously secrete numerous factors that restore regular brain function. In addition, it is becoming increasingly evident that NSCs play a central role in memory formation and consolidation. In this review, we will dissect how NSCs influence their surroundings through paracrine and autocrine types of action. We will also depict the mechanism of action of each factor. Finally, we will describe how NSCs integrate different and often opposing signals to guide their fate.
Collapse
Affiliation(s)
- João F Moreira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal
| | - Susana Solá
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal.
| |
Collapse
|
6
|
Sharrow AC, Megill E, Chen AJ, Farooqi A, Tangudu NK, Uboveja A, McGonigal S, Hempel N, Snyder NW, Buckanovich RJ, Aird KM. Acetate drives ovarian cancer quiescence via ACSS2-mediated acetyl-CoA production. Mol Metab 2024; 89:102031. [PMID: 39304063 PMCID: PMC11462069 DOI: 10.1016/j.molmet.2024.102031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/10/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024] Open
Abstract
Quiescence is a reversible cell cycle exit traditionally thought to be associated with a metabolically inactive state. Recent work in muscle cells indicates that metabolic reprogramming is associated with quiescence. Whether metabolic changes occur in cancer to drive quiescence is unclear. Using a multi-omics approach, we found that the metabolic enzyme ACSS2, which converts acetate into acetyl-CoA, is both highly upregulated in quiescent ovarian cancer cells and required for their survival. Indeed, quiescent ovarian cancer cells have increased levels of acetate-derived acetyl-CoA, confirming increased ACSS2 activity in these cells. Furthermore, either inducing ACSS2 expression or supplementing cells with acetate was sufficient to induce a reversible quiescent cell cycle exit. RNA-Seq of acetate treated cells confirmed negative enrichment in multiple cell cycle pathways as well as enrichment of genes in a published G0 gene signature. Finally, analysis of patient data showed that ACSS2 expression is upregulated in tumor cells from ascites, which are thought to be more quiescent, compared to matched primary tumors. Additionally, high ACSS2 expression is associated with platinum resistance and worse outcomes. Together, this study points to a previously unrecognized ACSS2-mediated metabolic reprogramming that drives quiescence in ovarian cancer. As chemotherapies to treat ovarian cancer, such as platinum, have increased efficacy in highly proliferative cells, our data give rise to the intriguing question that metabolically-driven quiescence may affect therapeutic response.
Collapse
Affiliation(s)
- Allison C Sharrow
- Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Magee-Womens Research Institute, Pittsburgh, PA, USA
| | - Emily Megill
- Center for Metabolic Disease Research, Department of Cardiovascular Sciences, Temple University, Philadelphia, PA, USA
| | - Amanda J Chen
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Afifa Farooqi
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Naveen Kumar Tangudu
- Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Apoorva Uboveja
- Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - Nadine Hempel
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Nathaniel W Snyder
- Center for Metabolic Disease Research, Department of Cardiovascular Sciences, Temple University, Philadelphia, PA, USA
| | - Ronald J Buckanovich
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Magee-Womens Research Institute, Pittsburgh, PA, USA; Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Katherine M Aird
- Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
7
|
Özgüldez HÖ, Bulut-Karslioğlu A. Dormancy, Quiescence, and Diapause: Savings Accounts for Life. Annu Rev Cell Dev Biol 2024; 40:25-49. [PMID: 38985838 DOI: 10.1146/annurev-cellbio-112122-022528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Life on Earth has been through numerous challenges over eons and, one way or another, has always triumphed. From mass extinctions to more daily plights to find food, unpredictability is everywhere. The adaptability of life-forms to ever-changing environments is the key that confers life's robustness. Adaptability has become synonymous with Darwinian evolution mediated by heritable genetic changes. The extreme gene-centric view, while being of central significance, at times has clouded our appreciation of the cell as a self-regulating entity informed of, and informing, the genetic data. An essential element that powers adaptability is the ability to regulate cell growth. In this review, we provide an extensive overview of growth regulation spanning species, tissues, and regulatory mechanisms. We aim to highlight the commonalities, as well as differences, of these phenomena and their molecular regulators. Finally, we curate open questions and areas for further exploration.
Collapse
Affiliation(s)
- Hatice Özge Özgüldez
- Stem Cell Chromatin Group, Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany;
| | - Aydan Bulut-Karslioğlu
- Stem Cell Chromatin Group, Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany;
| |
Collapse
|
8
|
Sharrow AC, Megill E, Chen AJ, Farooqi A, McGonigal S, Hempel N, Snyder NW, Buckanovich RJ, Aird KM. Acetate drives ovarian cancer quiescence via ACSS2-mediated acetyl-CoA production. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.12.603313. [PMID: 39026889 PMCID: PMC11257583 DOI: 10.1101/2024.07.12.603313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Quiescence is a reversible cell cycle exit traditionally thought to be associated with a metabolically inactive state. Recent work in muscle cells indicates that metabolic reprogramming is associated with quiescence. Whether metabolic changes occur in cancer to drive quiescence is unclear. Using a multi-omics approach, we found that the metabolic enzyme ACSS2, which converts acetate into acetyl-CoA, is both highly upregulated in quiescent ovarian cancer cells and required for their survival. Indeed, quiescent ovarian cancer cells have increased levels of acetate-derived acetyl-CoA, confirming increased ACSS2 activity in these cells. Furthermore, either inducing ACSS2 expression or supplementing cells with acetate was sufficient to induce a reversible quiescent cell cycle exit. RNA-Seq of acetate treated cells confirmed negative enrichment in multiple cell cycle pathways as well as enrichment of genes in a published G0 gene signature. Finally, analysis of patient data showed that ACSS2 expression is upregulated in tumor cells from ascites, which are thought to be more quiescent, compared to matched primary tumors. Additionally, high ACSS2 expression is associated with platinum resistance and worse outcomes. Together, this study points to a previously unrecognized ACSS2-mediated metabolic reprogramming that drives quiescence in ovarian cancer. As chemotherapies to treat ovarian cancer, such as platinum, have increased efficacy in highly proliferative cells, our data give rise to the intriguing question that metabolically-driven quiescence may affect therapeutic response.
Collapse
Affiliation(s)
- Allison C. Sharrow
- Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Magee-Womens Research Institute, Pittsburgh, PA
| | - Emily Megill
- Center for Metabolic Disease Research, Department of Cardiovascular Sciences, Temple University, Philadelphia, PA
| | - Amanda J. Chen
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Afifa Farooqi
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | | | - Nadine Hempel
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Division of Hematology/Oncology, Department of Medicine University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Nathaniel W. Snyder
- Center for Metabolic Disease Research, Department of Cardiovascular Sciences, Temple University, Philadelphia, PA
| | - Ronald J. Buckanovich
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Magee-Womens Research Institute, Pittsburgh, PA
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Katherine M. Aird
- Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
| |
Collapse
|
9
|
Tanke NT, Liu Z, Gore MT, Bougaran P, Linares MB, Marvin A, Sharma A, Oatley M, Yu T, Quigley K, Vest S, Cook JG, Bautch VL. Endothelial Cell Flow-Mediated Quiescence Is Temporally Regulated and Utilizes the Cell Cycle Inhibitor p27. Arterioscler Thromb Vasc Biol 2024; 44:1265-1282. [PMID: 38602102 PMCID: PMC11238946 DOI: 10.1161/atvbaha.124.320671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/27/2024] [Indexed: 04/12/2024]
Abstract
BACKGROUND Endothelial cells regulate their cell cycle as blood vessels remodel and transition to quiescence downstream of blood flow-induced mechanotransduction. Laminar blood flow leads to quiescence, but how flow-mediated quiescence is established and maintained is poorly understood. METHODS Primary human endothelial cells were exposed to laminar flow regimens and gene expression manipulations, and quiescence depth was analyzed via time-to-cell cycle reentry after flow cessation. Mouse and zebrafish endothelial expression patterns were examined via scRNA-seq (single-cell RNA sequencing) analysis, and mutant or morphant fish lacking p27 were analyzed for endothelial cell cycle regulation and in vivo cellular behaviors. RESULTS Arterial flow-exposed endothelial cells had a distinct transcriptome, and they first entered a deep quiescence, then transitioned to shallow quiescence under homeostatic maintenance conditions. In contrast, venous flow-exposed endothelial cells entered deep quiescence early that did not change with homeostasis. The cell cycle inhibitor p27 (CDKN1B) was required to establish endothelial flow-mediated quiescence, and expression levels positively correlated with quiescence depth. p27 loss in vivo led to endothelial cell cycle upregulation and ectopic sprouting, consistent with loss of quiescence. HES1 and ID3, transcriptional repressors of p27 upregulated by arterial flow, were required for quiescence depth changes and the reduced p27 levels associated with shallow quiescence. CONCLUSIONS Endothelial cell flow-mediated quiescence has unique properties and temporal regulation of quiescence depth that depends on the flow stimulus. These findings are consistent with a model whereby flow-mediated endothelial cell quiescence depth is temporally regulated downstream of p27 transcriptional regulation by HES1 and ID3. The findings are important in understanding endothelial cell quiescence misregulation that leads to vascular dysfunction and disease.
Collapse
Affiliation(s)
- Natalie T Tanke
- Curriculum in Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Ziqing Liu
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Michaelanthony T Gore
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Pauline Bougaran
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Mary B Linares
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Allison Marvin
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Arya Sharma
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Morgan Oatley
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Tianji Yu
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Kaitlyn Quigley
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Sarah Vest
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Jeanette Gowen Cook
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Victoria L Bautch
- Curriculum in Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
10
|
Boulestreau J, Maumus M, Bertolino GM, Toupet K, Jorgensen C, Noël D. Extracellular vesicles from senescent mesenchymal stromal cells are defective and cannot prevent osteoarthritis. J Nanobiotechnology 2024; 22:255. [PMID: 38755672 PMCID: PMC11097483 DOI: 10.1186/s12951-024-02509-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/29/2024] [Indexed: 05/18/2024] Open
Abstract
Age is the most important risk factor in degenerative diseases such as osteoarthritis (OA), which is associated with the accumulation of senescent cells in the joints. Here, we aimed to assess the impact of senescence on the therapeutic properties of extracellular vesicles (EVs) from human fat mesenchymal stromal cells (ASCs) in OA. We generated a model of DNA damage-induced senescence in ASCs using etoposide and characterized EVs isolated from their conditioned medium (CM). Senescent ASCs (S-ASCs) produced 3-fold more EVs (S-EVs) with a slightly bigger size and that contain 2-fold less total RNA. Coculture experiments showed that S-ASCs were as efficient as healthy ASCs (H-ASCs) in improving the phenotype of OA chondrocytes cultured in resting conditions but were defective when chondrocytes were proliferating. S-EVs were also impaired in their capacity to polarize synovial macrophages towards an anti-inflammatory phenotype. A differential protein cargo mainly related to inflammation and senescence was detected in S-EVs and H-EVs. Using the collagenase-induced OA model, we found that contrary to H-EVs, S-EVs could not protect mice from cartilage damage and joint calcifications, and were less efficient in protecting subchondral bone degradation. In addition, S-EVs induced a pro-catabolic and pro-inflammatory gene signature in the joints of mice shortly after injection, while H-EVs decreased hypertrophic, catabolic and inflammatory pathways. In conclusion, S-EVs are functionally impaired and cannot protect mice from developing OA.
Collapse
Affiliation(s)
- Jérémy Boulestreau
- IRMB, University of Montpellier, INSERM U1183, Hôpital Saint-Eloi, 80 Avenue Augustin Fliche, Montpellier Cedex 5, 34295, France
| | - Marie Maumus
- IRMB, University of Montpellier, INSERM U1183, Hôpital Saint-Eloi, 80 Avenue Augustin Fliche, Montpellier Cedex 5, 34295, France
| | - Giuliana M Bertolino
- IRMB, University of Montpellier, INSERM U1183, Hôpital Saint-Eloi, 80 Avenue Augustin Fliche, Montpellier Cedex 5, 34295, France
| | - Karine Toupet
- IRMB, University of Montpellier, INSERM U1183, Hôpital Saint-Eloi, 80 Avenue Augustin Fliche, Montpellier Cedex 5, 34295, France
| | - Christian Jorgensen
- IRMB, University of Montpellier, INSERM U1183, Hôpital Saint-Eloi, 80 Avenue Augustin Fliche, Montpellier Cedex 5, 34295, France
- Clinical Immunology and Osteoarticular Disease Therapeutic Unit, Department of Rheumatology, CHU Montpellier, Montpellier, France
| | - Daniéle Noël
- IRMB, University of Montpellier, INSERM U1183, Hôpital Saint-Eloi, 80 Avenue Augustin Fliche, Montpellier Cedex 5, 34295, France.
- Clinical Immunology and Osteoarticular Disease Therapeutic Unit, Department of Rheumatology, CHU Montpellier, Montpellier, France.
| |
Collapse
|
11
|
Morizet D, Foucher I, Alunni A, Bally-Cuif L. Reconstruction of macroglia and adult neurogenesis evolution through cross-species single-cell transcriptomic analyses. Nat Commun 2024; 15:3306. [PMID: 38632253 PMCID: PMC11024210 DOI: 10.1038/s41467-024-47484-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 03/29/2024] [Indexed: 04/19/2024] Open
Abstract
Macroglia fulfill essential functions in the adult vertebrate brain, producing and maintaining neurons and regulating neuronal communication. However, we still know little about their emergence and diversification. We used the zebrafish D. rerio as a distant vertebrate model with moderate glial diversity as anchor to reanalyze datasets covering over 600 million years of evolution. We identify core features of adult neurogenesis and innovations in the mammalian lineage with a potential link to the rarity of radial glia-like cells in adult humans. Our results also suggest that functions associated with astrocytes originated in a multifunctional cell type fulfilling both neural stem cell and astrocytic functions before these diverged. Finally, we identify conserved elements of macroglial cell identity and function and their time of emergence during evolution.
Collapse
Affiliation(s)
- David Morizet
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Zebrafish Neurogenetics Unit, Team supported by the Ligue Nationale Contre le Cancer, F-75015, Paris, France.
- Sorbonne Université, Collège doctoral, F-75005, Paris, France.
| | - Isabelle Foucher
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Zebrafish Neurogenetics Unit, Team supported by the Ligue Nationale Contre le Cancer, F-75015, Paris, France
| | - Alessandro Alunni
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Zebrafish Neurogenetics Unit, Team supported by the Ligue Nationale Contre le Cancer, F-75015, Paris, France
- Institut des Neurosciences Paris-Saclay, Université Paris-Saclay, CNRS UMR9197, F-91190, Gif-sur-Yvette, France
| | - Laure Bally-Cuif
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Zebrafish Neurogenetics Unit, Team supported by the Ligue Nationale Contre le Cancer, F-75015, Paris, France.
| |
Collapse
|
12
|
Reimann M, Lee S, Schmitt CA. Cellular senescence: Neither irreversible nor reversible. J Exp Med 2024; 221:e20232136. [PMID: 38385946 PMCID: PMC10883852 DOI: 10.1084/jem.20232136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/10/2024] [Accepted: 02/06/2024] [Indexed: 02/23/2024] Open
Abstract
Cellular senescence is a critical stress response program implicated in embryonic development, wound healing, aging, and immunity, and it backs up apoptosis as an ultimate cell-cycle exit mechanism. In analogy to replicative exhaustion of telomere-eroded cells, premature types of senescence-referring to oncogene-, therapy-, or virus-induced senescence-are widely considered irreversible growth arrest states as well. We discuss here that entry into full-featured senescence is not necessarily a permanent endpoint, but dependent on essential maintenance components, potentially transient. Unlike a binary state switch, we view senescence with its extensive epigenomic reorganization, profound cytomorphological remodeling, and distinctive metabolic rewiring rather as a journey toward a full-featured arrest condition of variable strength and depth. Senescence-underlying maintenance-essential molecular mechanisms may allow cell-cycle reentry if not continuously provided. Importantly, senescent cells that resumed proliferation fundamentally differ from those that never entered senescence, and hence would not reflect a reversion but a dynamic progression to a post-senescent state that comes with distinct functional and clinically relevant ramifications.
Collapse
Affiliation(s)
- Maurice Reimann
- Medical Department of Hematology, Oncology and Tumor Immunology, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, and Molekulares Krebsforschungszentrum-MKFZ, Campus Virchow Klinikum, Charité-Universitätsmedizin, Berlin, Germany
| | - Soyoung Lee
- Medical Department of Hematology, Oncology and Tumor Immunology, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, and Molekulares Krebsforschungszentrum-MKFZ, Campus Virchow Klinikum, Charité-Universitätsmedizin, Berlin, Germany
- Johannes Kepler University , Linz, Austria
| | - Clemens A Schmitt
- Medical Department of Hematology, Oncology and Tumor Immunology, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, and Molekulares Krebsforschungszentrum-MKFZ, Campus Virchow Klinikum, Charité-Universitätsmedizin, Berlin, Germany
- Johannes Kepler University , Linz, Austria
- Department of Hematology and Oncology, Kepler University Hospital, Linz, Austria
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association , Berlin, Germany
| |
Collapse
|
13
|
Tanke NT, Liu Z, Gore MT, Bougaran P, Linares MB, Marvin A, Sharma A, Oatley M, Yu T, Quigley K, Vest S, Cook JG, Bautch VL. Endothelial cell flow-mediated quiescence is temporally regulated and utilizes the cell cycle inhibitor p27. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.09.544403. [PMID: 37662222 PMCID: PMC10473767 DOI: 10.1101/2023.06.09.544403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Background Endothelial cells regulate their cell cycle as blood vessels remodel and transition to quiescence downstream of blood flow-induced mechanotransduction. Laminar blood flow leads to quiescence, but how flow-mediated quiescence is established and maintained is poorly understood. Methods Primary human endothelial cells were exposed to laminar flow regimens and gene expression manipulations, and quiescence depth was analyzed via time to cell cycle re-entry after flow cessation. Mouse and zebrafish endothelial expression patterns were examined via scRNA seq analysis, and mutant or morphant fish lacking p27 were analyzed for endothelial cell cycle regulation and in vivo cellular behaviors. Results Arterial flow-exposed endothelial cells had a distinct transcriptome, and they first entered a deep quiescence, then transitioned to shallow quiescence under homeostatic maintenance conditions. In contrast, venous-flow exposed endothelial cells entered deep quiescence early that did not change with homeostasis. The cell cycle inhibitor p27 (CDKN1B) was required to establish endothelial flow-mediated quiescence, and expression levels positively correlated with quiescence depth. p27 loss in vivo led to endothelial cell cycle upregulation and ectopic sprouting, consistent with loss of quiescence. HES1 and ID3, transcriptional repressors of p27 upregulated by arterial flow, were required for quiescence depth changes and the reduced p27 levels associated with shallow quiescence. Conclusions Endothelial cell flow-mediated quiescence has unique properties and temporal regulation of quiescence depth that depends on the flow stimulus. These findings are consistent with a model whereby flow-mediated endothelial cell quiescence depth is temporally regulated downstream of p27 transcriptional regulation by HES1 and ID3. The findings are important in understanding endothelial cell quiescence mis-regulation that leads to vascular dysfunction and disease.
Collapse
Affiliation(s)
- Natalie T Tanke
- Curriculum in Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Ziqing Liu
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Michaelanthony T Gore
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Pauline Bougaran
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Mary B Linares
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Allison Marvin
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Arya Sharma
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Morgan Oatley
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Tianji Yu
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Kaitlyn Quigley
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Sarah Vest
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Jeanette Gowen Cook
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Victoria L Bautch
- Curriculum in Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
14
|
Laurent M, Cordeddu L, Zahedi Y, Ekwall K. LEO1 Is Required for Efficient Entry into Quiescence, Control of H3K9 Methylation and Gene Expression in Human Fibroblasts. Biomolecules 2023; 13:1662. [PMID: 38002344 PMCID: PMC10668985 DOI: 10.3390/biom13111662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
(1) Background: The LEO1 (Left open reading frame 1) protein is a conserved subunit of the PAF1C complex (RNA polymerase II-associated factor 1 complex). PAF1C has well-established mechanistic functions in elongation of transcription and RNA processing. We previously showed, in fission yeast, that LEO1 controls histone H3K9 methylation levels by affecting the turnover of histone H3 in chromatin, and that it is essential for the proper regulation of gene expression during cellular quiescence. Human fibroblasts enter a reversible quiescence state upon serum deprivation in the growth media. Here we investigate the function of LEO1 in human fibroblasts. (2) Methods: We knocked out the LEO1 gene using CRISPR/Cas9 methodology in human fibroblasts and verified that the LEO1 protein was undetectable by Western blot. We characterized the phenotype of the ΔLEO1 knockout cells with FACS analysis and cell growth assays. We used RNA-sequencing using spike-in controls to measure gene expression and spike-in controlled ChIP-sequencing experiments to measure the histone modification H3K9me2 genome-wide. (3) Results: Gene expression levels are altered in quiescent cells, however factors controlling chromatin and gene expression changes in quiescent human cells are largely unknown. The ΔLEO1 knockout fibroblasts are viable but have reduced metabolic activity compared to wild-type cells. ΔLEO1 cells showed a slower entry into quiescence and a different morphology compared to wild-type cells. Gene expression was generally reduced in quiescent wild-type cells. The downregulated genes included genes involved in cell proliferation. A small number of genes were upregulated in quiescent wild-type cells including several genes involved in ERK1/ERK2 and Wnt signaling. In quiescent ΔLEO1 cells, many genes were mis-regulated compared to wild-type cells. This included genes involved in Calcium ion transport and cell morphogenesis. Finally, spike-in controlled ChIP-sequencing experiments demonstrated that the histone modification H3K9me2 levels are globally increased in quiescent ΔLEO1 cells. (4) Conclusions: Thus, LEO1 is important for proper entry into cellular quiescence, control of H3K9me2 levels, and gene expression in human fibroblasts.
Collapse
Affiliation(s)
| | | | | | - Karl Ekwall
- Department of Biosciences and Nutrition, Neo Building, Karolinska Institutet, SE-141 83 Huddinge, Sweden; (M.L.); (L.C.); (Y.Z.)
| |
Collapse
|
15
|
Weston WA, Barr AR. A cell cycle centric view of tumour dormancy. Br J Cancer 2023; 129:1535-1545. [PMID: 37608096 PMCID: PMC10645753 DOI: 10.1038/s41416-023-02401-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/31/2023] [Accepted: 08/10/2023] [Indexed: 08/24/2023] Open
Abstract
Tumour dormancy and recurrent metastatic cancer remain the greatest clinical challenge for cancer patients. Dormant tumour cells can evade treatment and detection, while retaining proliferative potential, often for years, before relapsing to tumour outgrowth. Cellular quiescence is one mechanism that promotes and maintains tumour dormancy due to its central role in reducing proliferation, elevating cyto-protective mechanisms, and retaining proliferative potential. Quiescence/proliferation decisions are dictated by intrinsic and extrinsic signals, which regulate the activity of cyclin-dependent kinases (CDKs) to modulate cell cycle gene expression. By clarifying the pathways regulating CDK activity and the signals which activate them, we can better understand how cancer cells enter, maintain, and escape from quiescence throughout the progression of dormancy and metastatic disease. Here we review how CDK activity is regulated to modulate cellular quiescence in the context of tumour dormancy and highlight the therapeutic challenges and opportunities it presents.
Collapse
Affiliation(s)
- William A Weston
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK
| | - Alexis R Barr
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK.
- Institute of Clinical Sciences, Imperial College London, Du Cane Rd, London, W12 0NN, UK.
| |
Collapse
|
16
|
Tomasin R, Rodrigues AM, Manucci AC, Bruni-Cardoso A. A molecular landscape of quiescence and proliferation highlights the role of Pten in mammary gland acinogenesis. J Cell Sci 2023; 136:jcs261178. [PMID: 37712332 DOI: 10.1242/jcs.261178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 09/08/2023] [Indexed: 09/16/2023] Open
Abstract
Cell context is key for cell state. Using physiologically relevant models of laminin-rich extracellular matrix (lrECM) induction of mammary epithelial cell quiescence and differentiation, we provide a landscape of the key molecules for the proliferation-quiescence decision, identifying multiple layers of regulation at the mRNA and protein levels. Quiescence occurred despite activity of Fak (also known as PTK2), Src and phosphoinositide 3-kinases (PI3Ks), suggesting the existence of a disconnecting node between upstream and downstream proliferative signalling. Pten, a lipid and protein phosphatase, fulfils this role, because its inhibition increased proliferation and restored signalling via the Akt, mTORC1, mTORC2 and mitogen-activated protein kinase (MAPK) pathways. Pten and laminin levels were positively correlated in developing murine mammary epithelia, and Pten localized apicolaterally in luminal cells in ducts and near the nascent lumen in terminal end buds. Consistently, in three-dimensional acinogenesis models, Pten was required for triggering and sustaining quiescence, polarity and architecture. The multilayered regulatory circuitry that we uncovered provides an explanation for the robustness of quiescence within a growth-suppressive microenvironment, which could nonetheless be disrupted by perturbations in master regulators such as Pten.
Collapse
Affiliation(s)
- Rebeka Tomasin
- E-signal lab, Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP 05508-000, Brazil
| | - Ana Maria Rodrigues
- E-signal lab, Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP 05508-000, Brazil
| | - Antonio Carlos Manucci
- E-signal lab, Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP 05508-000, Brazil
| | - Alexandre Bruni-Cardoso
- E-signal lab, Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP 05508-000, Brazil
| |
Collapse
|
17
|
Lei Y, Shen HF, Li QW, Yang S, Xie HT, Li XF, Chen ML, Xia JW, Wang SC, Dai GQ, Zhou Y, Li YC, Huang SH, He DH, Zhou ZH, Cong JG, Lin XL, Lin TY, Wu AB, Xiao D, Xiao SJ, Zhang XK, Jia JS. Hairy gene homolog increases nasopharyngeal carcinoma cell stemness by upregulating Bmi-1. Aging (Albany NY) 2023; 15:204742. [PMID: 37219449 DOI: 10.18632/aging.204742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 05/09/2023] [Indexed: 05/24/2023]
Abstract
B-cell-specific Moloney murine leukemia virus integration site 1 (Bmi-1) is overexpressed in various cancer types. We found that Bmi-1 mRNA levels were elevated in nasopharyngeal carcinoma (NPC) cell lines. In immunohistochemical analyses, high Bmi-1 levels were observed in not only 5 of 38 non-cancerous nasopharyngeal squamous epithelial biopsies, but also in 66 of 98 NPC specimens (67.3%). High Bmi-1 levels were detected more frequently in T3-T4, N2-N3 and stage III-IV NPC biopsies than in T1-T2, N0-N1 and stage I-II NPC samples, indicating that Bmi-1 is upregulated in advanced NPC. In 5-8F and SUNE1 NPC cells, stable depletion of Bmi-1 using lentiviral RNA interference greatly suppressed cell proliferation, induced G1-phase cell cycle arrest, reduced cell stemness and suppressed cell migration and invasion. Likewise, knocking down Bmi-1 inhibited NPC cell growth in nude mice. Both chromatin immunoprecipitation and Western blotting assays demonstrated that Hairy gene homolog (HRY) upregulated Bmi-1 by binding to its promoter, thereby increasing the stemness of NPC cells. Immunohistochemistry and quantitative real-time PCR analyses revealed that HRY expression correlated positively with Bmi-1 expression in a cohort of NPC biopsies. These findings suggested that HRY promotes NPC cell stemness by upregulating Bmi-1, and that silencing Bmi-1 can suppress NPC progression.
Collapse
Affiliation(s)
- Ye Lei
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China
- Guangzhou Southern Medical Laboratory Animal Sci and Tech Co. Ltd., Guangzhou 510515, China
| | - Hong-Fen Shen
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Qi-Wen Li
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Sheng Yang
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hong-Ting Xie
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Xu-Feng Li
- School of Basic Medical Sciences, Guangxi Medical University, Nanning 530000, China
| | - Mei-Ling Chen
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Jia-Wei Xia
- The Third People’s Hospital of Kunming (The Sixth Affiliated Hospital of Dali University), Kunming 650041, China
| | - Sheng-Chun Wang
- Department of Pathology, School of Basic Medicine, Guangdong Medical University, Dongguan 523808, China
| | - Guan-Qi Dai
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ying Zhou
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ying-Chun Li
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shi-Hao Huang
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Dan-Hua He
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhi-Hao Zhou
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jin-Ge Cong
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China
- Guangzhou Southern Medical Laboratory Animal Sci and Tech Co. Ltd., Guangzhou 510515, China
| | - Xiao-Lin Lin
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China
| | - Tao-Yan Lin
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ai-Bing Wu
- Central People’s Hospital of Zhanjiang, Zhanjiang 524000, China
| | - Dong Xiao
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China
- Guangzhou Southern Medical Laboratory Animal Sci and Tech Co. Ltd., Guangzhou 510515, China
- National Demonstration Center for Experimental Education of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Sheng-Jun Xiao
- Department of Pathology, The Second Affiliated Hospital, Guilin Medical University, Guilin 541199, China
| | - Xin-Ke Zhang
- Department of Pathology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Jun-Shuang Jia
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
18
|
Maeda Y, Isomura A, Masaki T, Kageyama R. Differential cell-cycle control by oscillatory versus sustained Hes1 expression via p21. Cell Rep 2023; 42:112520. [PMID: 37200191 DOI: 10.1016/j.celrep.2023.112520] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 01/06/2023] [Accepted: 05/02/2023] [Indexed: 05/20/2023] Open
Abstract
Oscillatory Hes1 expression activates cell proliferation, while high and sustained Hes1 expression induces quiescence, but the mechanism by which Hes1 differentially controls cell proliferation depending on its expression dynamics is unclear. Here, we show that oscillatory Hes1 expression down-regulates the expression of the cyclin-dependent kinase inhibitor p21 (Cdkn1a), which delays cell-cycle progression, and thereby activates the proliferation of mouse neural stem cells (NSCs). By contrast, sustained Hes1 overexpression up-regulates p21 expression and inhibits NSC proliferation, although it initially down-regulates p21 expression. Compared with Hes1 oscillation, sustained Hes1 overexpression represses Dusp7, a phosphatase for phosphorylated Erk (p-Erk), and increases the levels of p-Erk, which can up-regulate p21 expression. These results indicate that p21 expression is directly repressed by oscillatory Hes1 expression, but indirectly up-regulated by sustained Hes1 overexpression, suggesting that depending on its expression dynamics, Hes1 differentially controls NSC proliferation via p21.
Collapse
Affiliation(s)
- Yuki Maeda
- RIKEN Center for Brain Science, Wako 351-0198, Japan; Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Akihiro Isomura
- Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan; Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto 606-8501, Japan; Japan Science and Technology Agency, PRESTO, Saitama 332-0012, Japan
| | - Taimu Masaki
- RIKEN Center for Brain Science, Wako 351-0198, Japan
| | - Ryoichiro Kageyama
- RIKEN Center for Brain Science, Wako 351-0198, Japan; Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan; Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan.
| |
Collapse
|
19
|
Kovach AR, Oristian KM, Kirsch DG, Bentley RC, Cheng C, Chen X, Chen P, Chi JA, Linardic CM. Identification and targeting of a
HES1‐YAP1‐CDKN1C
functional interaction in fusion‐negative rhabdomyosarcoma. Mol Oncol 2022; 16:3587-3605. [PMID: 36037042 PMCID: PMC9580881 DOI: 10.1002/1878-0261.13304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 04/22/2022] [Accepted: 08/11/2022] [Indexed: 11/18/2022] Open
Abstract
Rhabdomyosarcoma (RMS), a cancer characterized by features of skeletal muscle, is the most common soft‐tissue sarcoma of childhood. With 5‐year survival rates among high‐risk groups at < 30%, new therapeutics are desperately needed. Previously, using a myoblast‐based model of fusion‐negative RMS (FN‐RMS), we found that expression of the Hippo pathway effector transcriptional coactivator YAP1 (YAP1) permitted senescence bypass and subsequent transformation to malignant cells, mimicking FN‐RMS. We also found that YAP1 engages in a positive feedback loop with Notch signaling to promote FN‐RMS tumorigenesis. However, we could not identify an immediate downstream impact of this Hippo‐Notch relationship. Here, we identify a HES1‐YAP1‐CDKN1C functional interaction, and show that knockdown of the Notch effector HES1 (Hes family BHLH transcription factor 1) impairs growth of multiple FN‐RMS cell lines, with knockdown resulting in decreased YAP1 and increased CDKN1C expression. In silico mining of published proteomic and transcriptomic profiles of human RMS patient‐derived xenografts revealed the same pattern of HES1‐YAP1‐CDKN1C expression. Treatment of FN‐RMS cells in vitro with the recently described HES1 small‐molecule inhibitor, JI130, limited FN‐RMS cell growth. Inhibition of HES1 in vivo via conditional expression of a HES1‐directed shRNA or JI130 dosing impaired FN‐RMS tumor xenograft growth. Lastly, targeted transcriptomic profiling of FN‐RMS xenografts in the context of HES1 suppression identified associations between HES1 and RAS‐MAPK signaling. In summary, these in vitro and in vivo preclinical studies support the further investigation of HES1 as a therapeutic target in FN‐RMS.
Collapse
Affiliation(s)
- Alexander R Kovach
- Department of Pediatrics Duke University School of Medicine Durham NC USA
| | - Kristianne M Oristian
- Department of Pharmacology & Cancer Biology Duke University School of Medicine Durham NC USA
- Department of Radiation Oncology Duke University School of Medicine Durham NC USA
| | - David G Kirsch
- Department of Pharmacology & Cancer Biology Duke University School of Medicine Durham NC USA
- Department of Radiation Oncology Duke University School of Medicine Durham NC USA
| | - Rex C Bentley
- Department of Pathology Duke University Durham NC USA
| | - Changde Cheng
- Department of Computational Biology, St. Jude Children's Research Hospital Memphis TN USA
| | - Xiang Chen
- Department of Computational Biology, St. Jude Children's Research Hospital Memphis TN USA
| | - Po‐Han Chen
- Department of Molecular Genetics & Microbiology Duke University School of Medicine Durham NC USA
| | - Jen‐Tsan Ashley Chi
- Department of Molecular Genetics & Microbiology Duke University School of Medicine Durham NC USA
| | - Corinne M Linardic
- Department of Pediatrics Duke University School of Medicine Durham NC USA
- Department of Pharmacology & Cancer Biology Duke University School of Medicine Durham NC USA
| |
Collapse
|
20
|
Tomasin R, Bruni-Cardoso A. The role of cellular quiescence in cancer - beyond a quiet passenger. J Cell Sci 2022; 135:276213. [PMID: 35929545 DOI: 10.1242/jcs.259676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Quiescence, the ability to temporarily halt proliferation, is a conserved process that initially allowed survival of unicellular organisms during inhospitable times and later contributed to the rise of multicellular organisms, becoming key for cell differentiation, size control and tissue homeostasis. In this Review, we explore the concept of cancer as a disease that involves abnormal regulation of cellular quiescence at every step, from malignant transformation to metastatic outgrowth. Indeed, disrupted quiescence regulation can be linked to each of the so-called 'hallmarks of cancer'. As we argue here, quiescence induction contributes to immune evasion and resistance against cell death. In contrast, loss of quiescence underlies sustained proliferative signalling, evasion of growth suppressors, pro-tumorigenic inflammation, angiogenesis and genomic instability. Finally, both acquisition and loss of quiescence are involved in replicative immortality, metastasis and deregulated cellular energetics. We believe that a viewpoint that considers quiescence abnormalities that occur during oncogenesis might change the way we ask fundamental questions and the experimental approaches we take, potentially contributing to novel discoveries that might help to alter the course of cancer therapy.
Collapse
Affiliation(s)
- Rebeka Tomasin
- e-signal Lab, Department of Biochemistry, Institute of Chemistry, University of São Paulo, Ave Prof. Lineu Prestes 748, São Paulo, SP 05508-000, Brazil
| | - Alexandre Bruni-Cardoso
- e-signal Lab, Department of Biochemistry, Institute of Chemistry, University of São Paulo, Ave Prof. Lineu Prestes 748, São Paulo, SP 05508-000, Brazil
| |
Collapse
|
21
|
Rumney RMH, Robson SC, Kao AP, Barbu E, Bozycki L, Smith JR, Cragg SM, Couceiro F, Parwani R, Tozzi G, Stuer M, Barber AH, Ford AT, Górecki DC. Biomimetic generation of the strongest known biomaterial found in limpet tooth. Nat Commun 2022; 13:3753. [PMID: 35798724 PMCID: PMC9263180 DOI: 10.1038/s41467-022-31139-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 06/01/2022] [Indexed: 11/09/2022] Open
Abstract
The biomaterial with the highest known tensile strength is a unique composite of chitin and goethite (α-FeO(OH)) present in teeth from the Common Limpet (Patella vulgata). A biomimetic based on limpet tooth, with corresponding high-performance mechanical properties is highly desirable. Here we report on the replication of limpet tooth developmental processes ex vivo, where isolated limpet tissue and cells in culture generate new biomimetic structures. Transcriptomic analysis of each developmental stage of the radula, the organ from which limpet teeth originate, identifies sequential changes in expression of genes related to chitin and iron processing. We quantify iron and chitin metabolic processes in the radula and grow isolated radula cells in vitro. Bioinspired material can be developed with electrospun chitin mineralised by conditioned media from cultured radula cells. Our results inform molecular processes behind the generation of limpet tooth and establish a platform for development of a novel biomimetic with comparable properties. The highest tensile strength biomaterial known exists in limpet teeth and replicating this material is of interest. Here, the authors report on the ex vivo growth of teeth and use of isolated limpet tissue and cells providing foundations for the development of this high-tensile biomaterial.
Collapse
Affiliation(s)
- Robin M H Rumney
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth, PO1 2DT, UK
| | - Samuel C Robson
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth, PO1 2DT, UK.,Centre for Enzyme Innovation, University of Portsmouth, Portsmouth, PO1 2DT, UK.,School of Biological Sciences, University of Portsmouth, Portsmouth, PO1 2DY, UK
| | - Alexander P Kao
- Zeiss Global Centre, School of Mechanical and Design Engineering, University of Portsmouth, Portsmouth, PO1 3DJ, UK
| | - Eugen Barbu
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth, PO1 2DT, UK
| | - Lukasz Bozycki
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth, PO1 2DT, UK.,Laboratory of Biochemistry of Lipids, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - James R Smith
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth, PO1 2DT, UK
| | - Simon M Cragg
- Institute of Marine Sciences, School of Biological Sciences, University of Portsmouth, Portsmouth, PO4 9LY, UK
| | - Fay Couceiro
- School of Civil Engineering and Surveying, University of Portsmouth, Portland Building, Portland St, Portsmouth, PO3 1AH, UK
| | - Rachna Parwani
- Zeiss Global Centre, School of Mechanical and Design Engineering, University of Portsmouth, Portsmouth, PO1 3DJ, UK.,Carl Zeiss X-ray Microscopy, Pleasanton, CA, USA
| | - Gianluca Tozzi
- Zeiss Global Centre, School of Mechanical and Design Engineering, University of Portsmouth, Portsmouth, PO1 3DJ, UK
| | - Michael Stuer
- EMPA, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600, Dübendorf, Switzerland
| | - Asa H Barber
- Zeiss Global Centre, School of Mechanical and Design Engineering, University of Portsmouth, Portsmouth, PO1 3DJ, UK.,School of Engineering, London South Bank University, 103 Borough Road, London, SE10AA, UK
| | - Alex T Ford
- Institute of Marine Sciences, School of Biological Sciences, University of Portsmouth, Portsmouth, PO4 9LY, UK
| | - Dariusz C Górecki
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth, PO1 2DT, UK.
| |
Collapse
|
22
|
Nian FS, Hou PS. Evolving Roles of Notch Signaling in Cortical Development. Front Neurosci 2022; 16:844410. [PMID: 35422684 PMCID: PMC9001970 DOI: 10.3389/fnins.2022.844410] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/15/2022] [Indexed: 01/09/2023] Open
Abstract
Expansion of the neocortex is thought to pave the way toward acquisition of higher cognitive functions in mammals. The highly conserved Notch signaling pathway plays a crucial role in this process by regulating the size of the cortical progenitor pool, in part by controlling the balance between self-renewal and differentiation. In this review, we introduce the components of Notch signaling pathway as well as the different mode of molecular mechanisms, including trans- and cis-regulatory processes. We focused on the recent findings with regard to the expression pattern and levels in regulating neocortical formation in mammals and its interactions with other known signaling pathways, including Slit–Robo signaling and Shh signaling. Finally, we review the functions of Notch signaling pathway in different species as well as other developmental process, mainly somitogenesis, to discuss how modifications to the Notch signaling pathway can drive the evolution of the neocortex.
Collapse
Affiliation(s)
- Fang-Shin Nian
- Institute of Anatomy and Cell Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Pei-Shan Hou
- Institute of Anatomy and Cell Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
- *Correspondence: Pei-Shan Hou,
| |
Collapse
|
23
|
Givelet M, Firlej V, Lassalle B, Gille AS, Lapoujade C, Holtzman I, Jarysta A, Haghighirad F, Dumont F, Jacques S, Letourneur F, Pflumio F, Allemand I, Patrat C, Thiounn N, Wolf JP, Riou L, Barraud-Lange V, Fouchet P. Transcriptional profiling of β-2M -SPα-6 +THY1 + spermatogonial stem cells in human spermatogenesis. Stem Cell Reports 2022; 17:936-952. [PMID: 35334216 PMCID: PMC9023810 DOI: 10.1016/j.stemcr.2022.02.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 11/29/2022] Open
Abstract
Male infertility is responsible for approximately half of all cases of reproductive issues. Spermatogenesis originates in a small pool of spermatogonial stem cells (SSCs), which are of interest for therapy of infertility but remain not well defined in humans. Using multiparametric analysis of the side population (SP) phenotype and the α-6 integrin, THY1, and β-2 microglobulin cell markers, we identified a population of human primitive undifferentiated spermatogonia with the phenotype β-2 microglobulin (β-2M)−SPα-6+THY1+, which is highly enriched in stem cells. By analyzing the expression signatures of this SSC-enriched population along with other germinal progenitors, we established an exhaustive transcriptome of human spermatogenesis. Transcriptome profiling of the human β-2M−SPα-6+THY1+ population and comparison with the profile of mouse undifferentiated spermatogonia provide insights into the molecular networks and key transcriptional regulators regulating human SSCs, including the basic-helix-loop-helix (bHLH) transcriptional repressor HES1, which we show to be implicated in maintenance of SSCs in vitro. Human β-2M−SPα-6+THY1+ undifferentiated spermatogonia are enriched in stem cells Comparative transcriptomics analysis of human and murine spermatogonia HES1 is involved in the physiology of SSCs in vitro
Collapse
Affiliation(s)
- Maelle Givelet
- Université de Paris and Université Paris-Saclay, CEA, UMR Stabilité Génétique Cellules Souches et Radiations, iRCM/IBFJ, Laboratoire des Cellules Souches Germinales, 92265 Fontenay-aux-Roses, France; Institut Cochin, INSERM U1016, Département de Génétique, Développement et Cancer, Équipe Génomique Epigénétique et Physiopathologie de la Reproduction, 75014 Paris, France
| | - Virginie Firlej
- Université de Paris and Université Paris-Saclay, CEA, UMR Stabilité Génétique Cellules Souches et Radiations, iRCM/IBFJ, Laboratoire des Cellules Souches Germinales, 92265 Fontenay-aux-Roses, France; Institut Cochin, INSERM U1016, Département de Génétique, Développement et Cancer, Équipe Génomique Epigénétique et Physiopathologie de la Reproduction, 75014 Paris, France
| | - Bruno Lassalle
- Université de Paris and Université Paris-Saclay, CEA, UMR Stabilité Génétique Cellules Souches et Radiations, iRCM/IBFJ, Laboratoire des Cellules Souches Germinales, 92265 Fontenay-aux-Roses, France
| | - Anne Sophie Gille
- Université de Paris and Université Paris-Saclay, CEA, UMR Stabilité Génétique Cellules Souches et Radiations, iRCM/IBFJ, Laboratoire des Cellules Souches Germinales, 92265 Fontenay-aux-Roses, France; Institut Cochin, INSERM U1016, Département de Génétique, Développement et Cancer, Équipe Génomique Epigénétique et Physiopathologie de la Reproduction, 75014 Paris, France
| | - Clementine Lapoujade
- Université de Paris and Université Paris-Saclay, CEA, UMR Stabilité Génétique Cellules Souches et Radiations, iRCM/IBFJ, Laboratoire des Cellules Souches Germinales, 92265 Fontenay-aux-Roses, France
| | - Isabelle Holtzman
- Institut Cochin, INSERM U1016, Département de Génétique, Développement et Cancer, Équipe Génomique Epigénétique et Physiopathologie de la Reproduction, 75014 Paris, France
| | - Amandine Jarysta
- Université de Paris and Université Paris-Saclay, CEA, UMR Stabilité Génétique Cellules Souches et Radiations, iRCM/IBFJ, Laboratoire des Cellules Souches Germinales, 92265 Fontenay-aux-Roses, France
| | - Farahd Haghighirad
- UFR Médecine Paris Centre-Université de Paris, 15 rue de l'école de Médecine, 75006 Paris, France
| | - Florent Dumont
- Université Paris Saclay, UMS IPSIT, 92296 Châtenay-Malabry, France
| | - Sébastien Jacques
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS UMR8104, Plateforme Séquençage et Génomique, 75014 Paris, France
| | - Franck Letourneur
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS UMR8104, Plateforme Séquençage et Génomique, 75014 Paris, France
| | - Françoise Pflumio
- Université de Paris and Université Paris-Saclay, INSERM, CEA, UMR Stabilité Génétique Cellules Souches et Radiations, iRCM/IBFJ, LSHL, 92265 Fontenay-aux-Roses, France
| | - Isabelle Allemand
- Université de Paris and Université Paris-Saclay, CEA, UMR Stabilité Génétique Cellules Souches et Radiations, iRCM/IBFJ, Laboratoire des Cellules Souches Germinales, 92265 Fontenay-aux-Roses, France
| | - Catherine Patrat
- UFR Médecine Paris Centre-Université de Paris, 15 rue de l'école de Médecine, 75006 Paris, France; Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris Centre, CHU Cochin, Histologie-Embryologie-Biologie de la Reproduction, 75014 Paris, France
| | - Nicolas Thiounn
- Department of urology and transplant surgery, Hôpital européen Georges-Pompidou, AP-HP, Université de Paris, 20 rue Leblanc, 75015 Paris, France
| | - Jean Philippe Wolf
- UFR Médecine Paris Centre-Université de Paris, 15 rue de l'école de Médecine, 75006 Paris, France; Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris Centre, CHU Cochin, Histologie-Embryologie-Biologie de la Reproduction, 75014 Paris, France
| | - Lydia Riou
- Université de Paris and Université Paris-Saclay, CEA, UMR Stabilité Génétique Cellules Souches et Radiations, iRCM/IBFJ, Laboratoire des Cellules Souches Germinales, 92265 Fontenay-aux-Roses, France
| | - Virginie Barraud-Lange
- UFR Médecine Paris Centre-Université de Paris, 15 rue de l'école de Médecine, 75006 Paris, France; Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris Centre, CHU Cochin, Histologie-Embryologie-Biologie de la Reproduction, 75014 Paris, France
| | - Pierre Fouchet
- Université de Paris and Université Paris-Saclay, CEA, UMR Stabilité Génétique Cellules Souches et Radiations, iRCM/IBFJ, Laboratoire des Cellules Souches Germinales, 92265 Fontenay-aux-Roses, France.
| |
Collapse
|
24
|
Liu B, Wang X, Jiang L, Xu J, Zohar Y, Yao G. Extracellular Fluid Flow Induces Shallow Quiescence Through Physical and Biochemical Cues. Front Cell Dev Biol 2022; 10:792719. [PMID: 35281101 PMCID: PMC8912726 DOI: 10.3389/fcell.2022.792719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 02/08/2022] [Indexed: 11/13/2022] Open
Abstract
The balance between cell quiescence and proliferation is fundamental to tissue physiology and homeostasis. Recent studies have shown that quiescence is not a passive and homogeneous state but actively maintained and heterogeneous. These cellular characteristics associated with quiescence were observed primarily in cultured cells under a static medium. However, cells in vivo face different microenvironmental conditions, particularly, under interstitial fluid flows distributed through extracellular matrices. Interstitial fluid flow exerts shear stress on cells and matrix strain, and results in continuous replacement of extracellular factors. In this study, we analyzed individual cells under varying fluid flow rates in microfluidic devices. We found quiescence characteristics previously identified under conventional static medium, including serum signal-dependant quiescence entry and exit and time-dependant quiescence deepening, are also present under continuous fluid flow. Furthermore, increasing the flow rate drives cells to shallower quiescence and become more likely to reenter the cell cycle upon growth stimulation. This effect is due to flow-induced physical and biochemical cues. Specifically, increasing shear stress or extracellular factor replacement individually, without altering other parameters, results in shallow quiescence. We show our experimental results can be quantitatively explained by a mathematical model connecting extracellular fluid flow to an Rb-E2f bistable switch that regulates the quiescence-to-proliferation transition. Our findings uncover a previously unappreciated mechanism that likely underlies the heterogeneous responses of quiescent cells for tissue repair and regeneration in different physiological tissue microenvironments.
Collapse
Affiliation(s)
- Bi Liu
- School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou, China
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, United States
| | - Xia Wang
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, United States
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Linan Jiang
- Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ, United States
- *Correspondence: Linan Jiang, ; Guang Yao,
| | - Jianhua Xu
- School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou, China
| | - Yitshak Zohar
- Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ, United States
| | - Guang Yao
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, United States
- *Correspondence: Linan Jiang, ; Guang Yao,
| |
Collapse
|
25
|
Ma J, Zhang Y, Yan Z, Wu P, Li C, Yang R, Lu X, Chen X, He A, Fu Y, Ma D, Tian W, Zhang T. Single‐cell transcriptomics reveals pathogenic dysregulation of previously unrecognised chondral stem/progenitor cells in children with microtia. Clin Transl Med 2022; 12:e702. [PMID: 35184397 PMCID: PMC8858629 DOI: 10.1002/ctm2.702] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/16/2021] [Accepted: 12/22/2021] [Indexed: 11/16/2022] Open
Affiliation(s)
- Jing Ma
- Department of Facial Plastic and Reconstructive Surgery ENT Institute Eye & ENT Hospital Fudan University Shanghai China
| | - Yu Zhang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development Department of Computational Biology School of Life Sciences Fudan University Shanghai China
| | - Zijun Yan
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development Department of Computational Biology School of Life Sciences Fudan University Shanghai China
| | - Peixuan Wu
- School of Basic Medical Sciences Institutes of Biomedical Sciences Fudan University Shanghai China
| | - Chenlong Li
- Department of Facial Plastic and Reconstructive Surgery ENT Institute Eye & ENT Hospital Fudan University Shanghai China
| | - Run Yang
- Department of Facial Plastic and Reconstructive Surgery ENT Institute Eye & ENT Hospital Fudan University Shanghai China
| | - Xinyu Lu
- Department of Facial Plastic and Reconstructive Surgery ENT Institute Eye & ENT Hospital Fudan University Shanghai China
| | - Xin Chen
- Department of Facial Plastic and Reconstructive Surgery ENT Institute Eye & ENT Hospital Fudan University Shanghai China
| | - Aijuan He
- Department of Facial Plastic and Reconstructive Surgery ENT Institute Eye & ENT Hospital Fudan University Shanghai China
| | - Yaoyao Fu
- Department of Facial Plastic and Reconstructive Surgery ENT Institute Eye & ENT Hospital Fudan University Shanghai China
| | - Duan Ma
- School of Basic Medical Sciences Institutes of Biomedical Sciences Fudan University Shanghai China
- Children's Hospital of Fudan University Shanghai China
| | - Weidong Tian
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development Department of Computational Biology School of Life Sciences Fudan University Shanghai China
- Children's Hospital of Fudan University Shanghai China
- Qilu Children's Hospital of Shandong University Jinan Shandong China
| | - Tianyu Zhang
- Department of Facial Plastic and Reconstructive Surgery ENT Institute Eye & ENT Hospital Fudan University Shanghai China
| |
Collapse
|
26
|
Differential phase register of Hes1 oscillations with mitoses underlies cell-cycle heterogeneity in ER + breast cancer cells. Proc Natl Acad Sci U S A 2021; 118:2113527118. [PMID: 34725165 PMCID: PMC8609326 DOI: 10.1073/pnas.2113527118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/08/2021] [Indexed: 12/14/2022] Open
Abstract
Tumors exhibit heterogeneities that are not due to mutations, including cancer stem cells with different potencies. We show that the cancer stem-cell state predisposed to dormancy in vivo has a highly variable and long cell cycle. Using single-cell live imaging for the transcriptional repressor Hes1 (a key molecule in cancer), we show a type of circadian-like oscillatory expression of Hes1 in all cells in the population. The most potent cancer stem cells tend to divide around the trough of the Hes1 oscillatory wave, a feature predictive of a long cell cycle. A concept proposed here is that the position of cell division with respect to the Hes1 wave is predictive of its prospective cell-cycle length and cancer cellular substate. Here, we study the dynamical expression of endogenously labeled Hes1, a transcriptional repressor implicated in controlling cell proliferation, to understand how cell-cycle length heterogeneity is generated in estrogen receptor (ER)+ breast cancer cells. We find that Hes1 shows oscillatory expression with ∼25 h periodicity and during each cell cycle has a variable peak in G1, a trough around G1–S transition, and a less variable second peak in G2/M. Compared to other subpopulations, the cell cycle in CD44HighCD24Low cancer stem cells is longest and most variable. Most cells divide around the peak of the Hes1 expression wave, but preceding mitoses in slow dividing CD44HighCD24Low cells appear phase-shifted, resulting in a late-onset Hes1 peak in G1. The position, duration, and shape of this peak, rather than the Hes1 expression levels, are good predictors of cell-cycle length. Diminishing Hes1 oscillations by enforcing sustained expression slows down the cell cycle, impairs proliferation, abolishes the dynamic expression of p21, and increases the percentage of CD44HighCD24Low cells. Reciprocally, blocking the cell cycle causes an elongation of Hes1 periodicity, suggesting a bidirectional interaction of the Hes1 oscillator and the cell cycle. We propose that Hes1 oscillations are functionally important for the efficient progression of the cell cycle and that the position of mitosis in relation to the Hes1 wave underlies cell-cycle length heterogeneity in cancer cell subpopulations.
Collapse
|
27
|
Fibroblast Memory in Development, Homeostasis and Disease. Cells 2021; 10:cells10112840. [PMID: 34831065 PMCID: PMC8616330 DOI: 10.3390/cells10112840] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 02/06/2023] Open
Abstract
Fibroblasts are the major cell population in the connective tissue of most organs, where they are essential for their structural integrity. They are best known for their role in remodelling the extracellular matrix, however more recently they have been recognised as a functionally highly diverse cell population that constantly responds and adapts to their environment. Biological memory is the process of a sustained altered cellular state and functions in response to a transient or persistent environmental stimulus. While it is well established that fibroblasts retain a memory of their anatomical location, how other environmental stimuli influence fibroblast behaviour and function is less clear. The ability of fibroblasts to respond and memorise different environmental stimuli is essential for tissue development and homeostasis and may become dysregulated in chronic disease conditions such as fibrosis and cancer. Here we summarise the four emerging key areas of fibroblast adaptation: positional, mechanical, inflammatory, and metabolic memory and highlight the underlying mechanisms and their implications in tissue homeostasis and disease.
Collapse
|
28
|
Spurlock B, Parker D, Basu MK, Hjelmeland A, GC S, Liu S, Siegal GP, Gunter A, Moran A, Mitra K. Fine-tuned repression of Drp1-driven mitochondrial fission primes a 'stem/progenitor-like state' to support neoplastic transformation. eLife 2021; 10:e68394. [PMID: 34545812 PMCID: PMC8497058 DOI: 10.7554/elife.68394] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 09/08/2021] [Indexed: 12/13/2022] Open
Abstract
Gene knockout of the master regulator of mitochondrial fission, Drp1, prevents neoplastic transformation. Also, mitochondrial fission and its opposing process of mitochondrial fusion are emerging as crucial regulators of stemness. Intriguingly, stem/progenitor cells maintaining repressed mitochondrial fission are primed for self-renewal and proliferation. Using our newly derived carcinogen transformed human cell model, we demonstrate that fine-tuned Drp1 repression primes a slow cycling 'stem/progenitor-like state', which is characterized by small networks of fused mitochondria and a gene-expression profile with elevated functional stem/progenitor markers (Krt15, Sox2 etc) and their regulators (Cyclin E). Fine tuning Drp1 protein by reducing its activating phosphorylation sustains the neoplastic stem/progenitor cell markers. Whereas, fine-tuned reduction of Drp1 protein maintains the characteristic mitochondrial shape and gene-expression of the primed 'stem/progenitor-like state' to accelerate neoplastic transformation, and more complete reduction of Drp1 protein prevents it. Therefore, our data highlights a 'goldilocks' level of Drp1 repression supporting stem/progenitor state dependent neoplastic transformation.
Collapse
Affiliation(s)
- Brian Spurlock
- Department of Genetics, University of Alabama at BirminghamBirminghamUnited States
| | - Danitra Parker
- Department of Genetics, University of Alabama at BirminghamBirminghamUnited States
| | - Malay Kumar Basu
- Departments of Pathology, University of Alabama at BirminghamBirminghamUnited States
| | - Anita Hjelmeland
- Department of Cell Development and Integrative Biology, University of Alabama at BirminghamBirminghamUnited States
| | - Sajina GC
- Department of Cell Development and Integrative Biology, University of Alabama at BirminghamBirminghamUnited States
| | - Shanrun Liu
- Department of Genetics, University of Alabama at BirminghamBirminghamUnited States
| | - Gene P Siegal
- Departments of Pathology, Surgery, Genetics and Cell and Developmental Biology, University of Alabama at BirminghamBirminghamUnited States
| | - Alan Gunter
- Department of Genetics, University of Alabama at BirminghamBirminghamUnited States
| | - Aida Moran
- Department of Genetics, University of Alabama at BirminghamBirminghamUnited States
| | - Kasturi Mitra
- Department of Genetics, University of Alabama at BirminghamBirminghamUnited States
| |
Collapse
|
29
|
García-Chávez JN, Vásquez-Garzón VR, López MG, Villa-Treviño S, Montiel R. Integration of chronological omics data reveals mitochondrial regulatory mechanisms during the development of hepatocellular carcinoma. PLoS One 2021; 16:e0256016. [PMID: 34383828 PMCID: PMC8360386 DOI: 10.1371/journal.pone.0256016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 07/28/2021] [Indexed: 12/13/2022] Open
Abstract
Mitochondria participate in multiple functions in eukaryotic cells. Although disruption of mitochondrial function has been associated with energetic deregulation in cancer, the chronological changes in mitochondria during cancer development remain unclear. With the aim to assess the role of mitochondria throughout cancer development, we analyzed samples chronologically obtained from induced hepatocellular carcinoma (HCC) in rats. In our analyses, we integrated mitochondrial proteomic data, mitochondrial metabolomic data and nuclear genome transcriptomic data. We used pathway over-representation and weighted gene co-expression network analysis (WGCNA) to integrate expression profiles of genes, miRNAs, proteins and metabolite levels throughout HCC development. Our results show that mitochondria are dynamic organelles presenting specific modifications in different stages of HCC development. We also found that mitochondrial proteomic profiles from tissues adjacent to nodules or tumor are determined more by the stage of HCC development than by tissue type, and we evaluated two models to predict HCC stage of the samples using proteomic profiles. Finally, we propose an omics integration pipeline to massively identify molecular features that could be further evaluated as key regulators, biomarkers or therapeutic targets. As an example, we show a group of miRNAs and transcription factors as candidates, responsible for mitochondrial metabolic modification in HCC.
Collapse
Affiliation(s)
- J. Noé García-Chávez
- Langebio, Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Mexico
| | | | - Mercedes G. López
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Mexico
| | - Saúl Villa-Treviño
- Department of Cell Biology, Center for Research and Advanced Studies (CINVESTAV-IPN), Ciudad de México, Mexico
| | - Rafael Montiel
- Langebio, Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Mexico
| |
Collapse
|
30
|
Lee K, Gusella GL, He JC. Epithelial proliferation and cell cycle dysregulation in kidney injury and disease. Kidney Int 2021; 100:67-78. [PMID: 33831367 PMCID: PMC8855879 DOI: 10.1016/j.kint.2021.03.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 03/05/2021] [Accepted: 03/11/2021] [Indexed: 02/08/2023]
Abstract
Various cellular insults and injury to renal epithelial cells stimulate repair mechanisms to adapt and restore the organ homeostasis. Renal tubular epithelial cells are endowed with regenerative capacity, which allows for a restoration of nephron function after acute kidney injury. However, recent evidence indicates that the repair is often incomplete, leading to maladaptive responses that promote the progression to chronic kidney disease. The dysregulated cell cycle and proliferation is also a key feature of renal tubular epithelial cells in polycystic kidney disease and HIV-associated nephropathy. Therefore, in this review, we provide an overview of cell cycle regulation and the consequences of dysregulated cell proliferation in acute kidney injury, polycystic kidney disease, and HIV-associated nephropathy. An increased understanding of these processes may help define better targets for kidney repair and combat chronic kidney disease progression.
Collapse
Affiliation(s)
- Kyung Lee
- Department of Medicine, Nephrology Division, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| | - G Luca Gusella
- Department of Medicine, Nephrology Division, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - John Cijiang He
- Department of Medicine, Nephrology Division, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Renal Program, James J. Peters Veterans Affairs Medical Center, Bronx, New York, USA.
| |
Collapse
|
31
|
Cellular senescence and its role in white adipose tissue. Int J Obes (Lond) 2021; 45:934-943. [PMID: 33510393 DOI: 10.1038/s41366-021-00757-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/19/2020] [Accepted: 01/12/2021] [Indexed: 01/30/2023]
Abstract
Cell senescence is defined as a state of irreversible cell cycle arrest combined with DNA damage and the induction of a senescence-associated secretory phenotype (SASP). This includes increased secretion of many inflammatory agents, proteases, miRNA's, and others. Cell senescence has been widely studied in oncogenesis and has generally been considered to be protective, due to cell cycle arrest and the inhibition of proliferation. Cell senescence is also associated with ageing and extensive experimental data support its role in generating the ageing-associated phenotype. Senescent cells can also influence proximal "healthy" cells through SASPs and, e.g., inhibit normal development of progenitor/stem cells, thereby preventing tissue replacement of dying cells and reducing organ functions. Recent evidence demonstrates that SASPs may also play important roles in several chronic diseases including diabetes and cardiovascular disease. White adipose tissue (WAT) cells are highly susceptible to becoming senescent both with ageing but also with obesity and type 2 diabetes, independently of chronological age. WAT senescence is associated with inappropriate expansion (hypertrophy) of adipocytes, insulin resistance, and dyslipidemia. Major efforts have been made to identify approaches to delete senescent cells including the use of "senolytic" compounds. The most established senolytic treatment to date is the combination of dasatinib, an antagonist of the SRC family of kinases, and the antioxidant quercetin. This combination reduces cell senescence and improves chronic disorders in experimental animal models. Although only small and short-term studies have been performed in man, no severe adverse effects have been reported. Hopefully, these or other senolytic agents may provide novel ways to prevent and treat different chronic diseases in man. Here we review the current knowledge on cellular senescence in both murine and human studies. We also discuss the pathophysiological role of this process and the potential therapeutic relevance of targeting senescence selectively in WAT.
Collapse
|
32
|
Dias IB, Bouma HR, Henning RH. Unraveling the Big Sleep: Molecular Aspects of Stem Cell Dormancy and Hibernation. Front Physiol 2021; 12:624950. [PMID: 33867999 PMCID: PMC8047423 DOI: 10.3389/fphys.2021.624950] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 03/11/2021] [Indexed: 12/14/2022] Open
Abstract
Tissue-resident stem cells may enter a dormant state, also known as quiescence, which allows them to withstand metabolic stress and unfavorable conditions. Similarly, hibernating mammals can also enter a state of dormancy used to evade hostile circumstances, such as food shortage and low ambient temperatures. In hibernation, the dormant state of the individual and its cells is commonly known as torpor, and is characterized by metabolic suppression in individual cells. Given that both conditions represent cell survival strategies, we here compare the molecular aspects of cellular quiescence, particularly of well-studied hematopoietic stem cells, and torpor at the cellular level. Critical processes of dormancy are reviewed, including the suppression of the cell cycle, changes in metabolic characteristics, and cellular mechanisms of dealing with damage. Key factors shared by hematopoietic stem cell quiescence and torpor include a reversible activation of factors inhibiting the cell cycle, a shift in metabolism from glucose to fatty acid oxidation, downregulation of mitochondrial activity, key changes in hypoxia-inducible factor one alpha (HIF-1α), mTOR, reversible protein phosphorylation and autophagy, and increased radiation resistance. This similarity is remarkable in view of the difference in cell populations, as stem cell quiescence regards proliferating cells, while torpor mainly involves terminally differentiated cells. A future perspective is provided how to advance our understanding of the crucial pathways that allow stem cells and hibernating animals to engage in their 'great slumbers.'
Collapse
Affiliation(s)
- Itamar B. Dias
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Hjalmar R. Bouma
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Robert H. Henning
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
33
|
McCaw TR, Inga E, Chen H, Jaskula‐Sztul R, Dudeja V, Bibb JA, Ren B, Rose JB. Gamma Secretase Inhibitors in Cancer: A Current Perspective on Clinical Performance. Oncologist 2021; 26:e608-e621. [PMID: 33284507 PMCID: PMC8018325 DOI: 10.1002/onco.13627] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/13/2020] [Indexed: 01/01/2023] Open
Abstract
Gamma secretase inhibitors (GSIs), initially developed as Alzheimer's therapies, have been repurposed as anticancer agents given their inhibition of Notch receptor cleavage. The success of GSIs in preclinical models has been ascribed to induction of cancer stem-like cell differentiation and apoptosis, while also impairing epithelial-to-mesenchymal transition and sensitizing cells to traditional chemoradiotherapies. The promise of these agents has yet to be realized in the clinic, however, as GSIs have failed to demonstrate clinical benefit in most solid tumors with the notable exceptions of CNS malignancies and desmoid tumors. Disappointing clinical performance to date reflects important questions that remain to be answered. For example, what is the net impact of these agents on antitumor immune responses, and will they require concurrent targeting of tumor-intrinsic compensatory pathways? Addressing these limitations in our current understanding of GSI mechanisms will undoubtedly facilitate their rational incorporation into combinatorial strategies and provide a valuable tool with which to combat Notch-dependent cancers. In the present review, we provide a current understanding of GSI mechanisms, discuss clinical performance to date, and suggest areas for future investigation that might maximize the utility of these agents. IMPLICATIONS FOR PRACTICE: The performance of gamma secretase inhibitors (GSIs) in clinical trials generally has not reflected their encouraging performance in preclinical studies. This review provides a current perspective on the clinical performance of GSIs across various solid tumor types alongside putative mechanisms of antitumor activity. Through exploration of outstanding gaps in knowledge as well as reasons for success in certain cancer types, the authors identify areas for future investigation that will likely enable incorporation of GSIs into rational combinatorial strategies for superior tumor control and patient outcomes.
Collapse
Affiliation(s)
- Tyler R. McCaw
- Divisions of Surgical Oncology, The University of Alabama at BirminghamBirminghamAlabamaUSA
| | - Evelyn Inga
- Divisions of Surgical Oncology, The University of Alabama at BirminghamBirminghamAlabamaUSA
| | - Herbert Chen
- Breast & Endocrine Surgery, The University of Alabama at BirminghamBirminghamAlabamaUSA
| | - Renata Jaskula‐Sztul
- Breast & Endocrine Surgery, The University of Alabama at BirminghamBirminghamAlabamaUSA
| | - Vikas Dudeja
- Divisions of Surgical Oncology, The University of Alabama at BirminghamBirminghamAlabamaUSA
| | - James A. Bibb
- Gastrointestinal Surgery, The University of Alabama at BirminghamBirminghamAlabamaUSA
| | - Bin Ren
- Vascular Surgery & Endovascular Therapy, Department of Surgery, The University of Alabama at BirminghamBirminghamAlabamaUSA
| | - J. Bart Rose
- Divisions of Surgical Oncology, The University of Alabama at BirminghamBirminghamAlabamaUSA
| |
Collapse
|
34
|
Domínguez-Bautista JA, Acevo-Rodríguez PS, Castro-Obregón S. Programmed Cell Senescence in the Mouse Developing Spinal Cord and Notochord. Front Cell Dev Biol 2021; 9:587096. [PMID: 33575260 PMCID: PMC7870793 DOI: 10.3389/fcell.2021.587096] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 01/05/2021] [Indexed: 01/10/2023] Open
Abstract
Programmed cell senescence is a cellular process that seems to contribute to embryo development, in addition to cell proliferation, migration, differentiation and programmed cell death, and has been observed in evolutionary distant organisms such as mammals, amphibians, birds and fish. Programmed cell senescence is a phenotype similar to stress-induced cellular senescence, characterized by the expression of the cell cycle inhibitors p21CIP1/WAF and p16INK4A, increased activity of a lysosomal enzyme with beta-galactosidase activity (coined senescence-associated beta-galactosidase) and secretion of growth factors, interleukins, chemokines, metalloproteases, etc., collectively known as a senescent-associated secretory phenotype that instructs surrounding tissue. How wide is the distribution of programmed cell senescence during mouse development and its specific mechanisms to shape the embryo are still poorly understood. Here, we investigated whether markers of programmed cell senescence are found in the developing mouse spinal cord and notochord. We found discrete areas and developmental windows with high senescence-associated beta galactosidase in both spinal cord and notochord, which was reduced in mice embryos developed ex-utero in the presence of the senolytic ABT-263. Expression of p21CIP1/WAF was documented in epithelial cells of the spinal cord and the notochord, while p16INK4A was observed in motoneurons. Treatment with the senolytic ABT-263 decreased the number of motoneurons, supporting their senescent phenotype. Our data suggest that a subpopulation of motoneurons in the developing spinal cord, as well as some notochord cells undergo programmed cell senescence.
Collapse
Affiliation(s)
| | | | - Susana Castro-Obregón
- División de Neurociencias, Instituto de Fisiología Celular, UNAM, Mexico City, Mexico
| |
Collapse
|
35
|
Sun S, Gresham D. Cellular quiescence in budding yeast. Yeast 2021; 38:12-29. [PMID: 33350503 DOI: 10.1002/yea.3545] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 12/20/2022] Open
Abstract
Cellular quiescence, the temporary and reversible exit from proliferative growth, is the predominant state of all cells. However, our understanding of the biological processes and molecular mechanisms that underlie cell quiescence remains incomplete. As with the mitotic cell cycle, budding and fission yeast are preeminent model systems for studying cellular quiescence owing to their rich experimental toolboxes and the evolutionary conservation across eukaryotes of pathways and processes that control quiescence. Here, we review current knowledge of cell quiescence in budding yeast and how it pertains to cellular quiescence in other organisms, including multicellular animals. Quiescence entails large-scale remodeling of virtually every cellular process, organelle, gene expression, and metabolic state that is executed dynamically as cells undergo the initiation, maintenance, and exit from quiescence. We review these major transitions, our current understanding of their molecular bases, and highlight unresolved questions. We summarize the primary methods employed for quiescence studies in yeast and discuss their relative merits. Understanding cell quiescence has important consequences for human disease as quiescent single-celled microbes are notoriously difficult to kill and quiescent human cells play important roles in diseases such as cancer. We argue that research on cellular quiescence will be accelerated through the adoption of common criteria, and methods, for defining cell quiescence. An integrated approach to studying cell quiescence, and a focus on the behavior of individual cells, will yield new insights into the pathways and processes that underlie cell quiescence leading to a more complete understanding of the life cycle of cells. TAKE AWAY: Quiescent cells are viable cells that have reversibly exited the cell cycle Quiescence is induced in response to a variety of nutrient starvation signals Quiescence is executed dynamically through three phases: initiation, maintenance, and exit Quiescence entails large-scale remodeling of gene expression, organelles, and metabolism Single-cell approaches are required to address heterogeneity among quiescent cells.
Collapse
Affiliation(s)
- Siyu Sun
- Center for Genomics and Systems Biology, New York University, New York, New York, 10003, USA.,Department of Biology, New York University, New York, New York, 10003, USA
| | - David Gresham
- Center for Genomics and Systems Biology, New York University, New York, New York, 10003, USA.,Department of Biology, New York University, New York, New York, 10003, USA
| |
Collapse
|
36
|
Richard V, Kumar TRS, Pillai RM. Transitional dynamics of cancer stem cells in invasion and metastasis. Transl Oncol 2021; 14:100909. [PMID: 33049522 PMCID: PMC7557893 DOI: 10.1016/j.tranon.2020.100909] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/15/2020] [Accepted: 09/30/2020] [Indexed: 02/07/2023] Open
Abstract
At the onset, few cancer cells amidst the tumor bulk, identified as cancer stem cells (CSCs) or early disseminated cancer cells (eDCCs) are capable of survival post conventional therapy and persist as minimal residual disease (MRD). Metastatic subclones emerge both early and late in the life of primary tumor ensuing an ongoing regional clonal evolution of progenitor cells in metastatic and primary tumors. In the last decade, multiple studies proposed various identities of stem-like cells that undergo transitions to adapt to the changing microenvironment as the disease progresses. This review advocates with substantial evidence the dynamic model of tumor propagation by exploring the specific cell types, reversible phenotypic plasticity between the tumorigenic leader seeds and the supporting follower cancer cells both in circulation and in solid tissue to accurately decipher tumor promoting clones and its role in metastatic dissemination and tumor re-growth. (142 words).
Collapse
Affiliation(s)
- Vinitha Richard
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, Kerala State, India
| | - T R Santhosh Kumar
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, Kerala State, India
| | - Radhakrishna M Pillai
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, Kerala State, India.
| |
Collapse
|
37
|
Mühleder S, Fernández-Chacón M, Garcia-Gonzalez I, Benedito R. Endothelial sprouting, proliferation, or senescence: tipping the balance from physiology to pathology. Cell Mol Life Sci 2020; 78:1329-1354. [PMID: 33078209 PMCID: PMC7904752 DOI: 10.1007/s00018-020-03664-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/05/2020] [Accepted: 10/01/2020] [Indexed: 12/11/2022]
Abstract
Therapeutic modulation of vascular cell proliferation and migration is essential for the effective inhibition of angiogenesis in cancer or its induction in cardiovascular disease. The general view is that an increase in vascular growth factor levels or mitogenic stimulation is beneficial for angiogenesis, since it leads to an increase in both endothelial proliferation and sprouting. However, several recent studies showed that an increase in mitogenic stimuli can also lead to the arrest of angiogenesis. This is due to the existence of intrinsic signaling feedback loops and cell cycle checkpoints that work in synchrony to maintain a balance between endothelial proliferation and sprouting. This balance is tightly and effectively regulated during tissue growth and is often deregulated or impaired in disease. Most therapeutic strategies used so far to promote vascular growth simply increase mitogenic stimuli, without taking into account its deleterious effects on this balance and on vascular cells. Here, we review the main findings on the mechanisms controlling physiological vascular sprouting, proliferation, and senescence and how those mechanisms are often deregulated in acquired or congenital cardiovascular disease leading to a diverse range of pathologies. We also discuss alternative approaches to increase the effectiveness of pro-angiogenic therapies in cardiovascular regenerative medicine.
Collapse
Affiliation(s)
- Severin Mühleder
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Macarena Fernández-Chacón
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Irene Garcia-Gonzalez
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Rui Benedito
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain.
| |
Collapse
|
38
|
Fujimaki K, Yao G. Cell dormancy plasticity: quiescence deepens into senescence through a dimmer switch. Physiol Genomics 2020; 52:558-562. [PMID: 32986540 DOI: 10.1152/physiolgenomics.00068.2020] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Both being dormant cellular states, quiescence and senescence are traditionally considered distinct. Quiescence is reversible to proliferation upon growth signals, whereas senescence is irreversible in physiological conditions. Recent findings, however, suggest that quiescence deepening with a decreased proliferative tendency, but not capability, is a common transition path toward senescence in many cell and tissue types. This transition is associated with the continuously increased activation threshold of an RB-E2F-CDK gene network switch.
Collapse
Affiliation(s)
- Kotaro Fujimaki
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona
| | - Guang Yao
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona.,Arizona Cancer Center, University of Arizona, Tucson, Arizona
| |
Collapse
|
39
|
Clinical Relevance of BRAF V600E Mutation Status in Brain Tumors with a Focus on a Novel Management Algorithm. Target Oncol 2020; 15:531-540. [PMID: 32648041 PMCID: PMC7434793 DOI: 10.1007/s11523-020-00735-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The possible application of BRAF-targeted therapy in brain tumors is growing continuously. We have analyzed clinical strategies that address BRAF activation in primary brain tumors and verified current recommendations regarding screening for BRAF mutations. There is preliminary evidence for a range of positive responses in certain brain tumor types harboring the BRAF V600E mutation. National Comprehensive Cancer Network Guidelines for central nervous system cancers recommend screening for the BRAF V600E mutation in pilocytic astrocytoma, pleomorphic xanthoastrocytoma, and ganglioglioma. We suggest additional testing in glioblastomas WHO grade IV below the age of 30 years, especially those with epithelioid features, papillary craniopharyngiomas, and pediatric low-grade astrocytomas. BRAF-targeted therapy should be limited to the setting of a clinical trial. If the patient harboring a V600E mutation does not qualify for a trial, multimodality treatment is recommended. Dual inhibition of both RAF and MEK is expected to provide more potent and durable effects than anti-BRAF monotherapy. First-generation RAF inhibitors should be avoided. Gain-of-function mutations of EGFR and KIAA fusions may compromise BRAF-targeted therapy. BRAF alterations that result in MAPK pathway activation are common events in several types of brain tumors. BRAF V600E mutation emerges as a promising molecular target. The proposed algorithm was designed to help oncologists to provide the best therapeutic options for brain tumor patients.
Collapse
|
40
|
Obrador E, Salvador R, López-Blanch R, Jihad-Jebbar A, Alcácer J, Benlloch M, Pellicer JA, Estrela JM. Melanoma in the liver: Oxidative stress and the mechanisms of metastatic cell survival. Semin Cancer Biol 2020; 71:109-121. [PMID: 32428715 DOI: 10.1016/j.semcancer.2020.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/03/2020] [Accepted: 05/03/2020] [Indexed: 12/16/2022]
Abstract
Metastatic melanoma is a fatal disease with a rapid systemic dissemination. The most frequent target sites are the liver, bone, and brain. Melanoma metastases represent a heterogeneous cell population, which associates with genomic instability and resistance to therapy. Interaction of melanoma cells with the hepatic sinusoidal endothelium initiates a signaling cascade involving cytokines, growth factors, bioactive lipids, and reactive oxygen and nitrogen species produced by the cancer cell, the endothelium, and also by different immune cells. Endothelial cell-derived NO and H2O2 and the action of immune cells cause the death of most melanoma cells that reach the hepatic microvascularization. Surviving melanoma cells attached to the endothelium of pre-capillary arterioles or sinusoids may follow two mechanisms of extravasation: a) migration through vessel fenestrae or b) intravascular proliferation followed by vessel rupture and microinflammation. Invading melanoma cells first form micrometastases within the normal lobular hepatic architecture via a mechanism regulated by cross-talk with the stroma and multiple microenvironment-related molecular signals. In this review special emphasis is placed on neuroendocrine (systemic) mechanisms as potential promoters of liver metastatic growth. Growing metastatic cells undergo functional and metabolic changes that increase their capacity to withstand oxidative/nitrosative stress, which favors their survival. This adaptive process also involves upregulation of Bcl-2-related antideath mechanisms, which seems to lead to the generation of more resistant cell subclones.
Collapse
Affiliation(s)
- Elena Obrador
- Department of Physiology, University of Valencia, 46010, Valencia, Spain
| | - Rosario Salvador
- Department of Physiology, University of Valencia, 46010, Valencia, Spain
| | | | - Ali Jihad-Jebbar
- Department of Physiology, University of Valencia, 46010, Valencia, Spain
| | - Javier Alcácer
- Pathology Laboratory, Quirón Hospital, 46010, Valencia, Spain
| | - María Benlloch
- Department of Health & Functional Valorization, San Vicente Martir Catholic University, 46001, Valencia, Spain
| | - José A Pellicer
- Department of Physiology, University of Valencia, 46010, Valencia, Spain
| | - José M Estrela
- Department of Physiology, University of Valencia, 46010, Valencia, Spain.
| |
Collapse
|
41
|
Ma Z, Xu J, Wu L, Wang J, Lin Q, Chowdhury FA, Mazumder MHH, Hu G, Li X, Du W. Hes1 deficiency causes hematopoietic stem cell exhaustion. Stem Cells 2020; 38:756-768. [PMID: 32129527 PMCID: PMC7260087 DOI: 10.1002/stem.3169] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/28/2020] [Accepted: 02/19/2020] [Indexed: 12/19/2022]
Abstract
The transcriptional repressor Hairy Enhancer of Split 1 (HES1) plays an essential role in the development of many organs by promoting the maintenance of stem/progenitor cells, controlling the reversibility of cellular quiescence, and regulating both cell fate decisions. Deletion of Hes1 in mice results in severe defects in multiple organs and is lethal in late embryogenesis. Here we have investigated the role of HES1 in hematopoiesis using a hematopoietic lineage‐specific Hes1 knockout mouse model. We found that while Hes1 is dispensable for steady‐state hematopoiesis, Hes1‐deficient hematopoietic stem cells (HSCs) undergo exhaustion under replicative stress. Loss of Hes1 upregulates the expression of genes involved in PPARγ signaling and fatty acid metabolism pathways, and augments fatty acid oxidation (FAO) in Hes1f/fVav1Cre HSCs and progenitors. Functionally, PPARγ targeting or FAO inhibition ameliorates the repopulating defects of Hes1f/fVav1Cre HSCs through improving quiescence in HSCs. Lastly, transcriptome analysis reveals that disruption of Hes1 in hematopoietic lineage alters expression of genes critical to HSC function, PPARγ signaling, and fatty acid metabolism. Together, our findings identify a novel role of HES1 in regulating stress hematopoiesis and provide mechanistic insight into the function of HES1 in HSC maintenance.
Collapse
Affiliation(s)
- Zhilin Ma
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia, USA.,Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, People's Republic of China
| | - Jian Xu
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia, USA.,Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, People's Republic of China
| | - Limei Wu
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia, USA
| | - Junjie Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia, USA
| | - Qiqi Lin
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia, USA.,Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, People's Republic of China
| | - Fabliha A Chowdhury
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia, USA
| | - Md Habibul H Mazumder
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia, USA
| | - Gangqing Hu
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, West Virginia, USA.,Bioinformatics Core, West Virginia University, Morgantown, West Virginia, USA
| | - Xue Li
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia, USA.,Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, People's Republic of China
| | - Wei Du
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia, USA.,Alexander B. Osborn Hematopoietic Malignancy and Transplantation Program, West Virginia University Cancer Institute, Morgantown, West Virginia, USA
| |
Collapse
|
42
|
Ochi S, Imaizumi Y, Shimojo H, Miyachi H, Kageyama R. Oscillatory expression of Hes1 regulates cell proliferation and neuronal differentiation in the embryonic brain. Development 2020; 147:dev182204. [PMID: 32094111 DOI: 10.1242/dev.182204] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 02/01/2020] [Indexed: 03/01/2024]
Abstract
The expression of the transcriptional repressor Hes1 oscillates in many cell types, including neural progenitor cells (NPCs), but the significance of Hes1 oscillations in development is not fully understood. To examine the effect of altered oscillatory dynamics of Hes1, we generated two types of Hes1 knock-in mice, a shortened (type-1) and an elongated (type-2) Hes1 gene, and examined their phenotypes focusing on neural development. Although both mutations affected Hes1 oscillations, the type-1 mutation dampened Hes1 oscillations more severely, resulting in much lower amplitudes. The average levels of Hes1 expression in type-1 mutant NPCs were also lower than in wild-type NPCs but similar to or slightly higher than those in Hes1 heterozygous mutant mice, which exhibit no apparent defects. Whereas type-2 mutant mice were apparently normal, type-1 mutant mice displayed smaller brains than wild-type mice and upregulated proneural gene expression. Furthermore, proliferation of NPCs decreased and cell death increased in type-1 mutant embryos. When Hes3 and Hes5 were additionally deleted, neuronal differentiation was also accelerated, leading to microcephaly. Thus, robust Hes1 oscillations are required for maintenance and proliferation of NPCs and the normal timing of neurogenesis, thereby regulating brain morphogenesis.
Collapse
Affiliation(s)
- Shohei Ochi
- Institute for Frontier Life and Medical Sciences, Kyoto University, Shogoin-Kawahara, Sakyo-ku, Kyoto 606-8507, Japan
- Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Yui Imaizumi
- Institute for Frontier Life and Medical Sciences, Kyoto University, Shogoin-Kawahara, Sakyo-ku, Kyoto 606-8507, Japan
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hiromi Shimojo
- Institute for Frontier Life and Medical Sciences, Kyoto University, Shogoin-Kawahara, Sakyo-ku, Kyoto 606-8507, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hitoshi Miyachi
- Institute for Frontier Life and Medical Sciences, Kyoto University, Shogoin-Kawahara, Sakyo-ku, Kyoto 606-8507, Japan
| | - Ryoichiro Kageyama
- Institute for Frontier Life and Medical Sciences, Kyoto University, Shogoin-Kawahara, Sakyo-ku, Kyoto 606-8507, Japan
- Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
- Kyoto University Graduate School of Biostudies, Kyoto 606-8501, Japan
- Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto 606-8507, Japan
| |
Collapse
|
43
|
KAGEYAMA R, OCHI S, SUEDA R, SHIMOJO H. The significance of gene expression dynamics in neural stem cell regulation. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2020; 96:351-363. [PMID: 33041269 PMCID: PMC7581957 DOI: 10.2183/pjab.96.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/30/2020] [Indexed: 06/11/2023]
Abstract
Neural stem cells (NSCs) actively proliferate and generate neurons and glial cells (active state) in the embryonic brain, whereas they are mostly dormant (quiescent state) in the adult brain. The expression dynamics of Hes1 are different between active and quiescent NSCs. In active NSCs, Hes1 expression oscillates and periodically represses the expression of proneural genes such as Ascl1, thereby driving their oscillations. By contrast, in quiescent NSCs, Hes1 oscillations maintain expression at higher levels even at trough phases (thus continuous), thereby continuously suppressing proneural gene expression. High levels of Hes1 expression and the resultant suppression of Ascl1 promote the quiescent state of NSCs, whereas oscillatory Hes1 expression and the resultant oscillatory Ascl1 expression regulate their active state. Furthermore, in other developmental contexts, high, continuous Hes1 expression induces astrocyte differentiation or the formation of boundaries, which function as signaling centers. Thus, the expression dynamics of Hes1 are a key regulatory mechanism generating and maintaining various cell types in the nervous system.
Collapse
Affiliation(s)
- Ryoichiro KAGEYAMA
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Kyoto University Graduate School of Medicine, Kyoto, Japan
- Kyoto University Graduate School of Biostudies, Kyoto, Japan
- Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto, Japan
| | - Shohei OCHI
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Kyoto University Graduate School of Medicine, Kyoto, Japan
- United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Risa SUEDA
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Kyoto University Graduate School of Biostudies, Kyoto, Japan
| | - Hiromi SHIMOJO
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
44
|
Abstract
The transition between proliferating and quiescent states must be carefully regulated to ensure that cells divide to create the cells an organism needs only at the appropriate time and place. Cyclin-dependent kinases (CDKs) are critical for both transitioning cells from one cell cycle state to the next, and for regulating whether cells are proliferating or quiescent. CDKs are regulated by association with cognate cyclins, activating and inhibitory phosphorylation events, and proteins that bind to them and inhibit their activity. The substrates of these kinases, including the retinoblastoma protein, enforce the changes in cell cycle status. Single cell analysis has clarified that competition among factors that activate and inhibit CDK activity leads to the cell's decision to enter the cell cycle, a decision the cell makes before S phase. Signaling pathways that control the activity of CDKs regulate the transition between quiescence and proliferation in stem cells, including stem cells that generate muscle and neurons. © 2020 American Physiological Society. Compr Physiol 10:317-344, 2020.
Collapse
Affiliation(s)
- Hilary A Coller
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, California, USA.,Department of Biological Chemistry, David Geffen School of Medicine, and the Molecular Biology Institute, University of California, Los Angeles, California, USA.,Molecular Biology Institute, University of California, Los Angeles, California, USA
| |
Collapse
|
45
|
Pack LR, Daigh LH, Meyer T. Putting the brakes on the cell cycle: mechanisms of cellular growth arrest. Curr Opin Cell Biol 2019; 60:106-113. [PMID: 31252282 PMCID: PMC7187785 DOI: 10.1016/j.ceb.2019.05.005] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/15/2019] [Accepted: 05/18/2019] [Indexed: 02/06/2023]
Abstract
Precise regulation of cellular proliferation is critical to tissue homeostasis and development, but misregulation leads to diseases of excess proliferation or cell loss. To achieve precise control, cells utilize distinct mechanisms of growth arrest such as quiescence and senescence. The decision to enter these growth-arrested states or proliferate is mediated by the core cell-cycle machinery that responds to diverse external and internal signals. Recent advances have revealed the molecular underpinnings of these cell-cycle decisions, highlighting the unique nature of cell-cycle entry from quiescence, identifying endogenous DNA damage as a quiescence-inducing signal, and establishing how persistent arrest is achieved in senescence.
Collapse
Affiliation(s)
- Lindsey R Pack
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Leighton H Daigh
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tobias Meyer
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
46
|
Coller HA. The paradox of metabolism in quiescent stem cells. FEBS Lett 2019; 593:2817-2839. [PMID: 31531979 DOI: 10.1002/1873-3468.13608] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/05/2019] [Accepted: 09/10/2019] [Indexed: 12/12/2022]
Abstract
The shift between a proliferating and a nonproliferating state is associated with significant changes in metabolic needs. Proliferating cells tend to have higher metabolic rates, and their metabolic profiles facilitate biosynthesis, as compared to those of nondividing cells of the same sort. Recent studies have elucidated specific molecules that control metabolic changes while cells shift between proliferation and quiescence. Embryonic stem cells, which are rapidly proliferating, tend to have metabolic patterns that are similar to those of nonstem cells in a proliferative state. Moreover, although adult stem cells tend to be quiescent, their metabolic profiles have been reported in multiple organs to more closely resemble those of proliferating than those of nondividing cells in some respects. The findings raise questions about whether there are metabolic profiles that are required for stemness, and whether these profiles relate to the metabolic properties that may be required for quiescence. Here, we review the literature on how metabolism changes upon commitment to proliferation and compare the proliferating and nonproliferating metabolic states of differentiated cells and embryonic and adult stem cells.
Collapse
Affiliation(s)
- Hilary A Coller
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA.,Department of Biological Chemistry, David Geffen School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
47
|
Duman C, Yaqubi K, Hoffmann A, Acikgöz AA, Korshunov A, Bendszus M, Herold-Mende C, Liu HK, Alfonso J. Acyl-CoA-Binding Protein Drives Glioblastoma Tumorigenesis by Sustaining Fatty Acid Oxidation. Cell Metab 2019; 30:274-289.e5. [PMID: 31056285 DOI: 10.1016/j.cmet.2019.04.004] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 03/12/2019] [Accepted: 04/08/2019] [Indexed: 12/16/2022]
Abstract
Glioblastoma multiforme (GBM) undergoes metabolic reprogramming to meet the high ATP and anabolic demands of the tumor cells. However, the role of fatty acid oxidation (FAO) and its regulators in the GBM context has been largely unknown. Here, we show that the neural stem cell pro-proliferative factor acyl-CoA-binding protein (ACBP, also known as DBI) is highly expressed in GBM, and by binding to acyl-CoAs, it cell-autonomously maintains high proliferation rates, promoting tumor growth and poor survival in several preclinical models. Mechanistic experiments using ACBP-acyl-CoA binding affinity variants and pharmacological FAO modulators suggest that ACBP supports tumor growth by controlling the availability of long-chain fatty acyl-CoAs to mitochondria, promoting FAO in GBM. Thus, our findings uncover a critical link between lipid metabolism and GBM progression established by ACBP and offer a potential therapeutic strategy for an effective anti-proliferative metabolic management of GBM.
Collapse
Affiliation(s)
- Ceren Duman
- Department of Clinical Neurobiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - Kaneschka Yaqubi
- Department of Clinical Neurobiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - Angelika Hoffmann
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, Heidelberg 69120, Germany
| | - Azer Aylin Acikgöz
- Division of Molecular Neurogenetics, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - Andrey Korshunov
- Department of Neuropathology, Heidelberg University Hospital, Im Neuenheimer Feld 220, Heidelberg 69120, Germany
| | - Martin Bendszus
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, Heidelberg 69120, Germany
| | - Christel Herold-Mende
- Division of Experimental Neurosurgery, Department of Neurosurgery, Heidelberg University Hospital, Im Neuenheimer Feld 400, Heidelberg 69120, Germany
| | - Hai-Kun Liu
- Division of Molecular Neurogenetics, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - Julieta Alfonso
- Department of Clinical Neurobiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany.
| |
Collapse
|
48
|
Cobb-Abdullah A, Lyles LR, Odewumi CO, Latinwo LM, Badisa VL, Abazinge M. Diallyl disulfide attenuation effect on transcriptome in rat liver cells against cadmium chloride toxicity. ENVIRONMENTAL TOXICOLOGY 2019; 34:950-957. [PMID: 31077537 DOI: 10.1002/tox.22766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/19/2019] [Accepted: 04/24/2019] [Indexed: 06/09/2023]
Abstract
In this report, liver cells were treated with cadmium chloride (CdCl2 ) and diallyl disulfide (DADS), a major compound from garlic to attenuate the toxic effect of Cd on transcriptome. The viability of Cd treated cells was reduced to 19.9% ± 2.4% in comparison to the untreated cells, whereas the viability of DADS pretreated cells was increased to 48.6% ± 2%. The attenuation effect of DADS was studied at shorter period (6 hours). Transcriptome analysis of CdCl2 alone treated cells resulted in 2119 and 982 (up and down) regulated genes (≥ 2 or ≤ 2-fold), whereas pretreated cells with DADS resulted in 2597 and 1784 genes. These genes were known to function in many important biological processes. Affymetrix array analysis was validated by the pathway specific PCR array that exhibited the same trend of expression. The current study clearly shows the DADS attenuation effect on transcriptome in CdCl2 -treated rat liver cells.
Collapse
Affiliation(s)
- Ahkinyala Cobb-Abdullah
- School of the Environment, Florida A&M University, Tallahassee, Florida
- School of Arts and Sciences, Virginia Union University, Richmond, Virginia
| | - Leonard Roy Lyles
- Department of Biological Sciences, Florida A&M University, Tallahassee, Florida
- Department of Clinical Microbiology, Memorial University Medical Center, Savannah, Georgia
| | - Caroline O Odewumi
- Department of Biological Sciences, Florida A&M University, Tallahassee, Florida
| | - Lekan M Latinwo
- Department of Biological Sciences, Florida A&M University, Tallahassee, Florida
| | - Veera Ld Badisa
- Department of Biological Sciences, Florida A&M University, Tallahassee, Florida
| | - Michael Abazinge
- School of the Environment, Florida A&M University, Tallahassee, Florida
| |
Collapse
|
49
|
Ye S, Ding YF, Jia WH, Liu XL, Feng JY, Zhu Q, Cai SL, Yang YS, Lu QY, Huang XT, Yang JS, Jia SN, Ding GP, Wang YH, Zhou JJ, Chen YD, Yang WJ. SET Domain-Containing Protein 4 Epigenetically Controls Breast Cancer Stem Cell Quiescence. Cancer Res 2019; 79:4729-4743. [PMID: 31308046 DOI: 10.1158/0008-5472.can-19-1084] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/06/2019] [Accepted: 07/10/2019] [Indexed: 12/31/2022]
Abstract
Quiescent cancer stem cells (CSC) play important roles in tumorigenesis, relapse, and resistance to chemoradiotherapy. However, the determinants of CSC quiescence and how they sustain themselves to generate tumors and relapse beyond resistance to chemoradiotherapy remains unclear. Here, we found that SET domain-containing protein 4 (SETD4) epigenetically controls breast CSC (BCSC) quiescence by facilitating heterochromatin formation via H4K20me3 catalysis. H4K20me3 localized to the promoter regions and regulated the expression of a set of genes in quiescent BCSCs (qBCSC). SETD4-defined qBCSCs were resistant to chemoradiotherapy and promoted tumor relapse in a mouse model. Upon activation, a SETD4-defined qBCSC sustained itself in a quiescent state by asymmetric division and concurrently produced an active daughter cell that proliferated to produce a cancer cell population. Single-cell sequence analysis indicated that SETD4+ qBCSCs clustered together as a distinct cell type within the heterogeneous BCSC population. SETD4-defined quiescent CSCs were present in multiple cancer types including gastric, cervical, ovarian, liver, and lung cancers and were resistant to chemotherapy. SETD4-defined qBCSCs had a high tumorigenesis potential and correlated with malignancy and chemotherapy resistance in clinical breast cancer patients. Taken together, the results from our previous study and current study on six cancer types reveal an evolutionarily conserved mechanism of cellular quiescence epigenetically controlled by SETD4. Our findings provide insights into the mechanism of tumorigenesis and relapse promoted by SETD4-defined quiescent CSCs and have broad implications for clinical therapies. SIGNIFICANCE: These findings advance our knowledge on the epigenetic determinants of quiescence in cancer stem cell populations and pave the way for future pharmacologic developments aimed at targeting drug-resistant quiescent stem cells.
Collapse
Affiliation(s)
- Sen Ye
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yan-Fu Ding
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Wen-Huan Jia
- Institute of Cell and Developmental Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Xiao-Li Liu
- Institute of Cell and Developmental Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jing-Yi Feng
- Institute of Cell and Developmental Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Qian Zhu
- Institute of Cell and Developmental Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Sun-Li Cai
- Institute of Cell and Developmental Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yao-Shun Yang
- Institute of Cell and Developmental Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Qian-Yun Lu
- Institute of Cell and Developmental Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Xue-Ting Huang
- Institute of Cell and Developmental Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jin-Shu Yang
- Institute of Cell and Developmental Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Sheng-Nan Jia
- Department of General Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Guo-Ping Ding
- Department of General Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yue-Hong Wang
- Department of Respiratory Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jiao-Jiao Zhou
- Department of Surgical Oncology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yi-Ding Chen
- Department of Surgical Oncology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Wei-Jun Yang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China. .,Institute of Cell and Developmental Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
50
|
Wang F, Liu S, Liu J, Feng F, Guo Y, Zhang W, Zheng G, Wang Q, Cai L, Guo M, Lian X, Xu G, Zhang H. SP promotes cell proliferation in esophageal squamous cell carcinoma through the NK1R/Hes1 axis. Biochem Biophys Res Commun 2019; 514:1210-1216. [PMID: 31109645 DOI: 10.1016/j.bbrc.2019.05.092] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 05/12/2019] [Indexed: 01/20/2023]
|